JP4190079B2 - Hollow fiber membrane for blood purification and hollow fiber membrane artificial kidney - Google Patents

Hollow fiber membrane for blood purification and hollow fiber membrane artificial kidney Download PDF

Info

Publication number
JP4190079B2
JP4190079B2 JP06572799A JP6572799A JP4190079B2 JP 4190079 B2 JP4190079 B2 JP 4190079B2 JP 06572799 A JP06572799 A JP 06572799A JP 6572799 A JP6572799 A JP 6572799A JP 4190079 B2 JP4190079 B2 JP 4190079B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
membrane
weight
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06572799A
Other languages
Japanese (ja)
Other versions
JP2000254222A5 (en
JP2000254222A (en
Inventor
誠 猿橋
正富 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Kuraray Medical Co Ltd
Original Assignee
Asahi Kasei Kuraray Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kuraray Medical Co Ltd filed Critical Asahi Kasei Kuraray Medical Co Ltd
Priority to JP06572799A priority Critical patent/JP4190079B2/en
Publication of JP2000254222A publication Critical patent/JP2000254222A/en
Publication of JP2000254222A5 publication Critical patent/JP2000254222A5/ja
Application granted granted Critical
Publication of JP4190079B2 publication Critical patent/JP4190079B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • External Artificial Organs (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、血液浄化療法、特に血液透析療法及び血液濾過透析療法に用いる血液浄化用中空糸膜および中空糸膜型人工腎臓に関する。より詳しくは、透析液側からのエンドトキシンの侵入を防ぐ一方、血液接触面においては血小板の吸着を抑えた血液浄化用中空糸膜および中空糸膜型人工腎臓に関する。
【0002】
【従来の技術】
腎不全治療のために、現在中空糸膜を用いた種々の人工腎臓が用いられている。近年、β2−ミクログロブリンを一つの指標とした分子量1万以上の低分子量タンパク質の除去が、治療に有効であることが示され、低分子量タンパク質が通過できる微孔を有する血液浄化膜の開発が盛んに行われてきている。さらに、積極的に低分子量タンパク質の除去を行うために、血液透析と血液濾過を組み合わせた同時血液濾過透析療法が行われている。
【0003】
しかしながら、上記の治療の際、膜を挟んで反対側を流れる透析液が血液側へ流入するので、低分子量タンパク質を除去するために膜の微孔の大きさ(ポアサイズ)を拡大していくと、透析液に含まれるエンドトキシン(内毒素)が血液側へ侵入する可能性が高まり、発熱等の副作用を惹起することが懸念されている。
【0004】
エンドトキシンは、疎水性部分を有し、疎水性材料へ吸着しやすいことが知られており、この原理を利用したエンドトキシン除去フィルターが開発されている。特開平10−151196号、特開平10−118472号は、疎水性高分子のみから中空糸膜を作製し、エンドトキシンを吸着させている。さらに疎水性高分子が血液中のタンパク質を吸着しやすいことによる透水性能の低下を改善させるために中空糸内面のみに親水性高分子を付着させている。これらの出願においては、製膜原液に親水性高分子が存在すると膜外表面の疎水化は不可能であるとして、製膜原液に親水性高分子を混合させず、製膜後に内表面を親水化処理している。
【0005】
従来の技術では、疎水性高分子からなる中空糸膜に親水性高分子を付与することによって、透水性能が改善することと、中空糸膜の親水性が増加することによるエンドトキシンの吸着能力の低下との調整をとりながら適切な範囲を特定することは示されていなかった。
【0006】
また、疎水性高分子の製膜原液に親水性高分子を添加し製膜してから、洗浄等により外表面の親水性高分子の量を減少させた場合、血液と接触する表面の親水性高分子量も減少し、血小板の付着等が生じることが特開平6−296686号に記載されている。
【0007】
【発明が解決しようとする課題】
本発明の目的は、上記問題を解決した親水性高分子と疎水性高分子が混合された製膜原液から製膜された中空糸膜において、外表面へエンドトキシンを吸着する血液浄化用中空糸膜および中空糸膜型人工腎臓を提供することにある。
【0008】
さらに本発明の目的は、中空糸膜中の親水性高分子が少なくかつ血小板を吸着させない血液浄化用中空糸膜および中空糸膜型人工腎臓を提供することにある。
【0009】
【課題を解決するための手段】
上記諸目的は、以下の本発明の血液浄化用中空糸膜および中空糸膜型人工腎臓により達成される。
【0010】
(1)ポリビニルピロリドンと疎水性高分子をその共通溶媒に溶解混合させた製膜原液から製造された中空糸膜において、該中空糸膜の外表面における疎水性高分子に対するポリビニルピロリドンの比率が5〜17%であることを特徴とする血液浄化用中空糸膜。
【0011】
(2) 前記疎水性高分子がポリスルホン系樹脂であることを特徴とする(1)に記載の血液浄化用中空糸膜。
【0013】
) 前記中空糸膜の内表面に抗血栓性物質がコーティングされていることを特徴とする(1)または)に記載の血液浄化用中空糸膜。
【0014】
) 前記抗血栓性物質がビタミンEであることを特徴とする(1)ないし()に記載の血液浄化用中空糸膜。
【0015】
)上記(1)ないし()に記載された中空糸膜を有する中空糸膜型人工腎臓。
【0016】
【発明の実施の形態】
以下本発明を詳細に説明する。
【0017】
本発明の血液浄化用中空糸膜を形成する疎水性高分子は、ポリメチルメタクリレート、ポリスチレン、ポリスルホン、セルローストリアセテート、ポリカーボネート、ポリアリレート等が挙げられ、これらの単独、または2種以上を組み合わせて使用してもよい。これらの疎水性高分子は、エンドトキシン吸着性を有し、人工腎臓として用いた場合に、透析液側からのエンドトキシンの血液側への侵入を防止することができる。
【0018】
本発明の血液浄化用中空糸膜は、その製膜原液に親水性高分子を含み、製膜後、一定の洗浄処理を受け、中空糸膜に残存する。本発明に用いられる親水性高分子は、ポリビニルアルコール、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルピロリドン、ポリテトラメチレンオキサイド等の重合体又はこれらを含む共重合体を含む。好ましくは製膜性、孔径制御の容易さの点でポリビニルピロリドンが好ましい。また、好ましい重量平均分子量は、1万から5百万ダルトン、より好ましくは3万から2百万ダルトンである。透析膜として機能させるための孔径制御が容易である。
【0019】
本発明の血液浄化用中空糸膜に残存する透析液側(通常、中空糸膜の外表面)の親水性高分子の疎水性高分子に対する比率は、5から25%が好ましい。この範囲であれば、透析液中に含まれるエンドトキシンを有効に吸着させることができる。より好ましくは5から20%である。透析液側の親水性高分子の疎水性高分子に対する比率は、X線光電子分光法(X−ray photoelectron spectroscopy,XPS)、赤外線分光法、核磁気共鳴法等の測定方法により測定した、該親水性高分子と該疎水性高分子の存在比率をいう。例えば、疎水性高分子としてポリスルホン樹脂(PS)、親水性高分子としてポリビニルピロリドン(PVP)を選択した場合、XPSにより、特徴的な元素であるイオウ(PS)と窒素(PVP)の元素比とPSおよびPVPの繰り返し単位分子量とから、中空糸膜表面に存在するPSとPVPそれぞれの総原子量の比率を算出し求めることができる。
【0020】
また、本発明の中空糸膜全体の疎水性高分子に対する親水性高分子の比率は、1.0から6.0重量%が好ましい。より好ましくは2.0から5.0重量%である。下限値以下では、洗浄操作を過剰に行わなければならず、効率が悪い。また、上限値以上では、中空糸膜外表面から膜内部へ向かって急激に親水性高分子の比率が上昇することとなり、エンドトキシンの吸着する領域が少なくなり好ましくない。中空糸膜全体の親水性高分子の比率は、中空糸膜を溶媒に溶解してNMR等により分析する方法や、元素分析による方法等がある。例えば、疎水性高分子としてポリスルホン、親水性高分子としてポリビニルピロリドンを用いた場合、元素分析による窒素とイオウの元素比と各高分子の繰り返し単位の分子量とから、重量比を求めることができる。
【0021】
中空糸膜を製膜する場合、従来より用いられている湿式紡糸方法あるいは乾湿式紡糸方法が使用できる。これらの紡糸方法を行う場合、前記疎水性高分子と親水性高分子をこれらの共通溶媒に溶解し製膜原液を調整する。この共通溶媒としては、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N−メチルピロリドン、ジメチルスルフォキシド等の溶媒が溶解性が高く好適であるが、これらに限定されるものではなく、また、2種以上の溶媒を混合して用いてもよい。好ましくは入手の容易さの点で、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミドを単独で用いる。
【0022】
また、製膜原液に粘度調節や孔径制御等の微調整を行うために、アルコール、グリセリン、水等を適量添加しても構わない。排液処理の点から水が好ましく、製膜原液中で0.1から5重量%が上記微調整に好ましい。
【0023】
製膜原液中の疎水性高分子の濃度は、低すぎると膜強度が小さく、紡糸作業、組立作業を慎重に行わなければならず、効率が悪い。また、濃度が高すぎると製膜原液の粘度が上昇し、膜が緻密となり、人工腎臓としての必要な孔径得るための条件設定が難しい。疎水性高分子としてポリスルホンを用いた場合、好ましい疎水性高分子の製膜原液中の濃度は、10から30重量%、好ましくは12から25重量%、さらに好ましくは15から19重量%である。詳細には、疎水性高分子の種類、分子量等により好ましい濃度範囲が変動するため、この範囲に限定されるものではない。
【0024】
製膜原液中の親水性高分子の濃度は、低すぎると良好な孔径制御が困難となり、高すぎると製膜原液の粘度が上昇し、紡糸性が悪化する。親水性高分子として重量平均分子量4.5万ダルトンのポリビニルピロリドンを用いた場合、好ましい製膜原液中の濃度は、5から15重量%、より好ましくは7から10重量%である。分子量が高いものを用いた場合は、低い濃度でもよく、分子量が低いものを用いた場合は、高い濃度が好ましい。
【0025】
湿式紡糸あるいは乾湿式紡糸の際、2重管ノズルの内管より吐出する内部液としては、上記共通溶媒と水との混合物が主として用いられる。製膜原液の凝固速度の制御のために上記共通溶媒を2種以上混合したものや、他の液体を混合してもよい。
【0026】
2重管ノズルより吐出された製膜原液は、水を主体とした凝固浴に浸漬される。製膜原液は、凝固浴によって、中空糸膜としてしっかり形づけられる。その後、必要に応じ水洗浴に浸漬され水洗される。水洗浴の温度が高いほど、外表面のPVPが洗浄される。中空糸膜の外表面のPVPを好ましい比率に調節するために、水洗浴の温度を40から80℃とすることが好ましい。特に50から70℃で洗浄することが好ましい。該水洗浴の洗浄水は、中空糸膜の周囲を移動しているほうが洗浄効率が高いため、洗浄水を循環させて用いても良い。この際、循環中に洗浄水中のPVP濃度が徐々に高くなり洗浄効率が低下してくるので、常に新たな洗浄水を供給することが好ましい。1時間に供給する新たな洗浄水の量が、洗浄水総量の10から50%であることが好ましい。
【0027】
水洗浴で洗浄された中空糸膜は巻き取りが行われ、さらに温水、アルコール、アルコールと水との混合溶液等で洗浄することにより中空糸膜外表面のPVPを積極的に洗浄することが可能である。このようにして得られた中空糸膜の外表面の親水性高分子の存在比率を5から25%、好ましくは5から20%とすることにより、外表面へのエンドトキシン吸着能が得られる。親水性高分子の外表面存在比率が5%未満であると、水透過性が減少する。親水性高分子の外表面存在比率が25%を越えると外表面の親水性が高くなり、エンドトキシンの吸着能が低下する。
【0028】
また、本発明の血液浄化用中空糸膜は、血液と接触する中空糸内表面の血小板付着を抑制するため、抗血栓性物質を付与することが好ましい。中空糸膜外表面の親水性高分子の存在比率を5から25%とした場合、内表面の親水性高分子の存在比率も低下し、血小板が付着しやすくなるからである。抗血栓性物質とはスチレン−ヒドロキシエチルメタクリレート共重合体、親水基を有する(メタ)アクリル酸系モノマーと疎水基を有する(メタ)アクリル酸系モノマーとの重合体のような親水性部分と疎水性部分を有する高分子物質、エイコサペンタエン酸やドコサヘキサエン酸等の長鎖不飽和脂肪酸、ビタミンE等の脂溶性ビタミン類などが挙げられる。処理の容易さや熱に対する安定性が高い点からビタミンEが好ましい。ビタミンEとしてはα−トコフェロール、β−トコフェロール、γ−トコフェロール、δ−トコフェロール、α−酢酸トコフェロール、α−ニコチン酸トコフェロールなどが挙げられる。
【0029】
(実施例1)
ポリスルホン(P−1700)19重量%、ポリビニルピロリドン(K−30)9重量%、N,N−ジメチルホルムアミド72重量%を均一溶解させ製膜原液を調整した。内部液はN,N−ジメチルホルムアミド60重量%、水40重量%の混合液を用いた。
【0030】
上記の製膜原液と内部液をそれぞれ2重管吐出ノズルの外管および内管から同時に空気中に吐出し、水が満たされた凝固浴を通過させた。凝固浴を通過させた後、60℃の温水を1L/分で1時間シャワー洗浄した。
【0031】
シャワー洗浄後、中空糸膜を巻き取り1万本の束にし、さらに110℃1時間水中で処理し、洗浄した。
【0032】
(実施例2)
ポリスルホン(P−1700)19重量%、ポリビニルピロリドン(K−30)9重量%、N,N−ジメチルホルムアミド72重量%を均一溶解させ製膜原液を調整した。内部液は、N,N−ジメチルホルムアミド60重量%、水40重量%の混合液に対して0.1重量%のα−酢酸トコフェロールと0.1重量%のポリエチレングリコール−ポリプロピレングリコール共重合体(プルロニックF−68、旭電化工業社製)を添加して用いた。
【0033】
上記の製膜原液と内部液をそれぞれ2重管吐出ノズルの外管および内管から同時に空気中に吐出し、水が満たされた凝固浴を通過させた。凝固浴を通過させた後、60℃の温水を1L/分で1時間シャワー洗浄した。
【0034】
シャワー洗浄後、中空糸膜を巻き取り1万本の束にし、さらに110℃1時間水中で処理し、洗浄した。
【0035】
(比較例1)
ポリスルホン(P−1700)19重量%、ポリビニルピロリドン(K−30)9重量%、N,N−ジメチルホルムアミド72重量%を均一溶解させ製膜原液を調整した。内部液は、N,N−ジメチルホルムアミド60重量%、水40重量%の混合液して用いた。
【0036】
上記の製膜原液と内部液をそれぞれ2重管吐出ノズルの外管および内管から同時に空気中に吐出し、水が満たされた凝固浴を通過させた。凝固浴を通過させた後、60℃の温水を1L/分で10分間シャワー洗浄した。
【0037】
(比較例2)
ポリスルホン(P−1700)19重量%、ポリビニルピロリドン(K−30)1重量%、N,N−ジメチルホルムアミド80重量%を均一溶解させ製膜原液を調整した。内部液は、N,N−ジメチルホルムアミド60重量%、水40重量%の混合液して用いた。
【0038】
上記の製膜原液と内部液をそれぞれ2重管吐出ノズルの外管および内管から同時に空気中に吐出し、水が満たされた凝固浴を通過させた。凝固浴を通過させた後、60℃の温水を1L/分で1時間シャワー洗浄した。
【0039】
シャワー洗浄後、中空糸膜を巻き取り1万本の束にし、さらに110℃1時間水中で処理し、洗浄した。
【0040】
実施例1、2、比較例1、2で得られた中空糸膜の外表面のポリビニルピロリドンの存在比率をXPSにより測定し、さらに、中空糸膜の内側と連通する血液入口と血液出口、および中空糸膜の外面側と連通する透析液入口と透析液出口とを有するハウジングを用いて有効膜面積1.5mの中空糸膜型人工腎臓を作製し、透水性能とエンドトキシン吸着能を測定した。測定結果を表1に示す。
【0041】
透水性能の測定は、上記中空糸膜型人工腎臓を用いて、逆浸透水を中空糸膜の内側に流速200ml/minで送水し、中空糸膜の外面より流速15ml/minで濾過し、その時の膜間圧力差を測定して算出した。
【0042】
エンドトキシンの吸着能の測定は、上記中空糸膜型人工腎臓を用いて以下の通り行った。エンドトキシン濃度800EU/Lの透析液を、透析液入口より流速30ml/minで送液し、透析液出口からの流出量をポンプを用いて5ml/minに制御し、積極的に中空糸膜の外面側から内側へエンドトキシンを含有する透析液の濾過を4時間行い、中空糸膜の外側から中空糸膜の内側へ濾過された透析液を貯留し、該貯留液のエンドトキシン濃度を測定した。試験液は再循環せず、一方向にのみ流通した。
【0043】
【表1】

Figure 0004190079
【0044】
表1の通り、実施例1、2は、比較例1と同等の透水性能を有し、かつ、エンドトキシンの吸着能を有している。一方、比較例1は、4時間の透析液の逆濾過により、血液側へエンドトキシンが検出された。また、比較例2は、血液側のエンドトキシンは検出されなかったが、透水性能が著名に減少した。
【0045】
(実施例3)
ヒドロキシエチルメタクリレート、メチルメタクリレートおよびブチルメタクリレートのランダム共重合体(ポリマー1)とポリパーフルオロアルキルメタクリレート(ポリマー2)のブロック共重合体(ポリマー1と2の比率は重量比50:50、平均分子量35,000)のポリマー濃度30%メチルイソブチルケトン溶液をメタノールでポリマー濃度を0.7%に希釈した。この溶液を実施例1のPS膜内面に通液した後50℃の乾燥にて溶媒を除去し、ポリマーをPS膜上にコーティングした。
【0046】
得られた中空糸膜で有効膜面積1.5mの人工腎臓の透水性能は320ml/mmHg・hrであった。
【0047】
(血小板数の経時変化)
実施例1、実施例2および実施例3で得られた中空糸膜を用いて膜面積300cmのミニモジュールを作製した。
【0048】
家兎(体重2.7〜3.3kg)を用い、ネンブタール生食2倍希釈液1ml/kgを静注して麻酔した。固定台に家兎を固定し頸動静脈の血管を確保し、回路及びミニモジュールを接続して血流量QB=10ml/minで抗凝固剤を用いずに2時間循環した。採血は、ミニモジュールの動脈側採血ポートから行い、血小板数の経時変化を測定した。なお、血小板の変化率はヘマトクリット値にて補正した(下式)。
【0049】
【数1】
Figure 0004190079
【0050】
結果を表2に示す。
【0051】
【表2】
Figure 0004190079
【0052】
(赤血球膜MDAの測定)
膜面積600cmの実施例1、実施例2のミニモジュールを用いて、以下の操作を行った。
【0053】
まず、滅菌済みミニモジュールを50ml生食でプライミングし、10U/mlヘパリン加血をミニモジュールに充填して37℃で6時間インキュベートした。その後、ミニモジュールから血液を回収し、血球計算機(Sysmex SE9000、東亜医用電子株式会社)により赤血球数をカウント(血算)した。また、ミニモジュールから回収した血液1.8ml(血算済み)を血漿分離(3,000rpm、15min、4℃)により血漿を除去し、10mM PBS(pH8.0)5.4mlに沈殿した赤血球を懸濁させ、遠心分離(3,000rpm、15min、4℃)し、上清のPBSを除去して洗浄した。この洗浄操作を合計3回行った後、上清のPBSを除去し、5mMPBS(pH8.0)5.4mlを添加し、赤血球を溶血させた。
【0054】
上記溶血させた試料を遠心分離(10,000rpm、15min、4℃)して、上清のPBSを除去し2.5mMPBS(pH8.0)5.4mlを赤血球に混合し溶血させる。さらに遠心分離(10,000rpm、15min、4℃)して、上清のPBSを除去し1.25mMPBS(pH8.0)5.4mlを赤血球に混合し溶血させ、遠心分離(10,000rpm、15min、4℃)した。1.25mMPBSでの溶血、遠心分離、洗浄操作を合計5回繰り返す。最後に上清のPBSを除去した後、1.25mMPBSで全量を2mlに合わせた。
【0055】
上記の調整法によって得られた赤血球膜を試料としてTBA法によりMDA(マロンジアルデヒド)を測定した(過酸化脂質テストワコー:和光純薬工業社製)。操作方法を以下に示す。
【0056】
結果を表3に示す。
【0057】
【表3】
Figure 0004190079
【0058】
中空糸膜内面側に抗血栓性物質をコーティングすることにより、血小板の減少を抑制することができることがわかる。また、ビタミンEを用いた場合には赤血球膜脂質の過酸化を抑制できることがわかる。
【0059】
【発明の効果】
以上説明してきた通り、本発明は、親水性高分子と疎水性高分子が混合された製膜原液から製膜された中空糸膜において、外表面へエンドトキシンを吸着する血液浄化用中空糸膜および中空糸膜型人工腎臓を得ることができる。
【0060】
さらに本発明は、中空糸膜中の親水性高分子が少なくかつ血小板を吸着させない血液浄化用中空糸膜および中空糸膜型人工腎臓を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a blood purification hollow fiber membrane and a hollow fiber membrane type artificial kidney used for blood purification therapy, particularly hemodialysis therapy and hemofiltration dialysis therapy. More specifically, the present invention relates to a hollow fiber membrane for blood purification and a hollow fiber membrane type artificial kidney that prevent endotoxin from entering from the dialysate side while suppressing adsorption of platelets on the blood contact surface.
[0002]
[Prior art]
Various artificial kidneys using hollow fiber membranes are currently used for the treatment of renal failure. In recent years, it has been shown that removal of low molecular weight proteins having a molecular weight of 10,000 or more using β2-microglobulin as an index is effective for treatment, and development of a blood purification membrane having micropores through which low molecular weight proteins can pass has been developed. It has been actively performed. Furthermore, in order to actively remove low molecular weight proteins, simultaneous hemofiltration dialysis therapy combining hemodialysis and hemofiltration is performed.
[0003]
However, during the above treatment, the dialysate flowing on the opposite side across the membrane flows into the blood side, so when the pore size of the membrane is increased to remove low molecular weight proteins There is a concern that endotoxin (endotoxin) contained in the dialysate may enter the blood side and cause side effects such as fever.
[0004]
Endotoxin has a hydrophobic portion and is known to be easily adsorbed to a hydrophobic material, and an endotoxin removal filter using this principle has been developed. In JP-A-10-151196 and JP-A-10-118472, a hollow fiber membrane is produced only from a hydrophobic polymer and endotoxin is adsorbed. Furthermore, the hydrophilic polymer is attached only to the inner surface of the hollow fiber in order to improve the decrease in water permeability due to the hydrophobic polymer easily adsorbing proteins in the blood. In these applications, if the hydrophilic polymer is present in the film-forming stock solution, the outer surface of the membrane cannot be hydrophobized. Is being processed.
[0005]
In the prior art, by imparting a hydrophilic polymer to a hollow fiber membrane made of a hydrophobic polymer, the water permeation performance is improved, and the hydrophilicity of the hollow fiber membrane is increased, thereby reducing the endotoxin adsorption ability. It was not shown to specify an appropriate range while adjusting with.
[0006]
In addition, when hydrophilic polymer is added to the membrane forming solution of hydrophobic polymer, and the amount of hydrophilic polymer on the outer surface is reduced by washing, etc., the hydrophilicity of the surface in contact with blood Japanese Patent Application Laid-Open No. 6-296686 describes that the high molecular weight decreases and platelet adhesion occurs.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a hollow fiber membrane for purifying blood that adsorbs endotoxin to the outer surface in a hollow fiber membrane formed from a membrane-forming stock solution in which a hydrophilic polymer and a hydrophobic polymer that have solved the above problems are mixed. And it is providing a hollow fiber membrane type artificial kidney.
[0008]
A further object of the present invention is to provide a hollow fiber membrane for purifying blood and a hollow fiber membrane type artificial kidney that has a small amount of hydrophilic polymer in the hollow fiber membrane and does not adsorb platelets.
[0009]
[Means for Solving the Problems]
The above-mentioned objects are achieved by the following blood purification hollow fiber membrane and hollow fiber membrane artificial kidney of the present invention.
[0010]
(1) In a hollow fiber membrane manufactured from a membrane-forming stock solution in which polyvinylpyrrolidone and a hydrophobic polymer are dissolved and mixed in a common solvent, the ratio of polyvinylpyrrolidone to hydrophobic polymer on the outer surface of the hollow fiber membrane is 5 A hollow fiber membrane for blood purification, characterized in that it is 17 %.
[0011]
(2) The hollow fiber membrane for blood purification according to (1), wherein the hydrophobic polymer is a polysulfone resin.
[0013]
( 3 ) The hollow fiber membrane for blood purification according to (1) or ( 2 ), wherein an inner surface of the hollow fiber membrane is coated with an antithrombotic substance.
[0014]
( 4 ) The hollow fiber membrane for blood purification according to (1) to ( 3 ), wherein the antithrombotic substance is vitamin E.
[0015]
( 5 ) A hollow fiber membrane type artificial kidney having the hollow fiber membrane described in (1) to ( 4 ) above.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
[0017]
Examples of the hydrophobic polymer forming the hollow fiber membrane for blood purification of the present invention include polymethyl methacrylate, polystyrene, polysulfone, cellulose triacetate, polycarbonate, polyarylate, etc., and these are used alone or in combination of two or more. May be. These hydrophobic polymers have endotoxin adsorptivity and, when used as an artificial kidney, can prevent endotoxin from entering the blood side from the dialysate side.
[0018]
The hollow fiber membrane for blood purification of the present invention contains a hydrophilic polymer in the membrane forming stock solution, and after the membrane formation, undergoes a certain washing treatment and remains in the hollow fiber membrane. The hydrophilic polymer used in the present invention includes polymers such as polyvinyl alcohol, polyethylene glycol, polypropylene glycol, polyvinyl pyrrolidone, polytetramethylene oxide, and copolymers containing these. Polyvinyl pyrrolidone is preferable from the viewpoint of film forming property and ease of pore diameter control. The preferred weight average molecular weight is 10,000 to 5 million daltons, more preferably 30,000 to 2 million daltons. Pore diameter control for functioning as a dialysis membrane is easy.
[0019]
The ratio of the hydrophilic polymer to the hydrophobic polymer on the dialysate side (usually the outer surface of the hollow fiber membrane) remaining in the hollow fiber membrane for blood purification of the present invention is preferably 5 to 25%. Within this range, endotoxin contained in the dialysate can be effectively adsorbed. More preferably, it is 5 to 20%. The ratio of the hydrophilic polymer on the dialysate side to the hydrophobic polymer was measured by a measuring method such as X-ray photoelectron spectroscopy (XPS), infrared spectroscopy, nuclear magnetic resonance, etc. The abundance ratio of the hydrophobic polymer and the hydrophobic polymer. For example, when polysulfone resin (PS) is selected as the hydrophobic polymer and polyvinylpyrrolidone (PVP) is selected as the hydrophilic polymer, the element ratio between sulfur (PS) and nitrogen (PVP), which are characteristic elements, is determined by XPS. From the repeating unit molecular weight of PS and PVP, the ratio of the total atomic weight of PS and PVP existing on the hollow fiber membrane surface can be calculated.
[0020]
Further, the ratio of the hydrophilic polymer to the hydrophobic polymer in the entire hollow fiber membrane of the present invention is preferably 1.0 to 6.0% by weight. More preferably, it is 2.0 to 5.0% by weight. Below the lower limit, the washing operation must be performed excessively, and the efficiency is poor. On the other hand, when the value is not less than the upper limit value, the ratio of the hydrophilic polymer rapidly increases from the outer surface of the hollow fiber membrane toward the inside of the membrane, and the region where endotoxin is adsorbed decreases, which is not preferable. The ratio of the hydrophilic polymer in the entire hollow fiber membrane includes a method in which the hollow fiber membrane is dissolved in a solvent and analyzed by NMR, a method by elemental analysis, and the like. For example, when polysulfone is used as the hydrophobic polymer and polyvinylpyrrolidone is used as the hydrophilic polymer, the weight ratio can be determined from the elemental ratio of nitrogen and sulfur by elemental analysis and the molecular weight of the repeating unit of each polymer.
[0021]
When a hollow fiber membrane is formed, a conventionally used wet spinning method or dry wet spinning method can be used. When performing these spinning methods, the said hydrophobic polymer and hydrophilic polymer are melt | dissolved in these common solvents, and film forming stock solution is adjusted. As the common solvent, solvents such as N, N-dimethylacetamide, N, N-dimethylformamide, N-methylpyrrolidone, and dimethyl sulfoxide are preferable because of high solubility, but are not limited thereto. Further, two or more kinds of solvents may be mixed and used. Preferably, N, N-dimethylacetamide and N, N-dimethylformamide are used alone in view of availability.
[0022]
In addition, in order to make fine adjustments such as viscosity adjustment and pore diameter control, an appropriate amount of alcohol, glycerin, water, or the like may be added to the film forming stock solution. Water is preferable from the viewpoint of drainage treatment, and 0.1 to 5% by weight in the film forming stock solution is preferable for the fine adjustment.
[0023]
If the concentration of the hydrophobic polymer in the membrane forming stock solution is too low, the membrane strength is low, and spinning and assembly operations must be carefully performed, which is inefficient. On the other hand, if the concentration is too high, the viscosity of the membrane-forming stock solution increases, the membrane becomes dense, and it is difficult to set conditions for obtaining the necessary pore diameter as an artificial kidney. When polysulfone is used as the hydrophobic polymer, the preferred concentration of the hydrophobic polymer in the membrane forming stock solution is 10 to 30% by weight, preferably 12 to 25% by weight, more preferably 15 to 19% by weight. Specifically, the preferred concentration range varies depending on the type and molecular weight of the hydrophobic polymer, and is not limited to this range.
[0024]
If the concentration of the hydrophilic polymer in the film-forming stock solution is too low, it is difficult to control the pore size, and if it is too high, the viscosity of the film-forming stock solution increases and the spinnability deteriorates. When polyvinylpyrrolidone having a weight average molecular weight of 45,000 daltons is used as the hydrophilic polymer, the preferred concentration in the film-forming stock solution is 5 to 15% by weight, more preferably 7 to 10% by weight. A low concentration may be used when a high molecular weight is used, and a high concentration is preferable when a low molecular weight is used.
[0025]
In the case of wet spinning or dry / wet spinning, as the internal liquid discharged from the inner pipe of the double pipe nozzle, a mixture of the common solvent and water is mainly used. In order to control the coagulation rate of the film-forming stock solution, a mixture of two or more of the above common solvents or other liquids may be mixed.
[0026]
The film-forming stock solution discharged from the double tube nozzle is immersed in a coagulation bath mainly composed of water. The membrane-forming stock solution is firmly shaped as a hollow fiber membrane by a coagulation bath. Then, if necessary, it is immersed in a water-washing bath and washed with water. The higher the temperature of the washing bath, the more the outer surface PVP is washed. In order to adjust the PVP on the outer surface of the hollow fiber membrane to a preferred ratio, the temperature of the washing bath is preferably 40 to 80 ° C. It is particularly preferable to wash at 50 to 70 ° C. Since the washing water in the washing bath has higher washing efficiency when moving around the hollow fiber membrane, the washing water may be circulated and used. At this time, since the concentration of PVP in the washing water gradually increases during the circulation and the washing efficiency is lowered, it is preferable to always supply new washing water. It is preferable that the amount of new cleaning water supplied in one hour is 10 to 50% of the total amount of cleaning water.
[0027]
The hollow fiber membrane washed in the water-washing bath is wound, and the PVP on the outer surface of the hollow fiber membrane can be actively washed by washing with warm water, alcohol, a mixed solution of alcohol and water, etc. It is. The endotoxin adsorption ability to the outer surface can be obtained by setting the ratio of the hydrophilic polymer on the outer surface of the hollow fiber membrane thus obtained to 5 to 25%, preferably 5 to 20%. If the outer surface abundance ratio of the hydrophilic polymer is less than 5%, the water permeability decreases. If the outer surface ratio of the hydrophilic polymer exceeds 25%, the hydrophilicity of the outer surface increases and the endotoxin adsorption ability decreases.
[0028]
In addition, the hollow fiber membrane for blood purification of the present invention is preferably provided with an antithrombotic substance in order to suppress platelet adhesion on the inner surface of the hollow fiber in contact with blood. This is because when the abundance ratio of the hydrophilic polymer on the outer surface of the hollow fiber membrane is 5 to 25%, the abundance ratio of the hydrophilic polymer on the inner surface also decreases, and platelets are likely to adhere. Antithrombotic substances are hydrophilic parts such as styrene-hydroxyethyl methacrylate copolymer, a polymer of (meth) acrylic acid monomer having a hydrophilic group and (meth) acrylic acid monomer having a hydrophobic group, and hydrophobic. And a high-molecular substance having a functional moiety, long-chain unsaturated fatty acids such as eicosapentaenoic acid and docosahexaenoic acid, and fat-soluble vitamins such as vitamin E. Vitamin E is preferred because of its ease of processing and high heat stability. Examples of vitamin E include α-tocopherol, β-tocopherol, γ-tocopherol, δ-tocopherol, α-tocopherol acetate, and α-tocopherol nicotinate.
[0029]
(Example 1)
Polysulfone (P-1700) 19% by weight, polyvinylpyrrolidone (K-30) 9% by weight, and N, N-dimethylformamide 72% by weight were uniformly dissolved to prepare a membrane forming stock solution. As the internal liquid, a mixed liquid of 60% by weight of N, N-dimethylformamide and 40% by weight of water was used.
[0030]
The film-forming stock solution and the inner solution were simultaneously discharged into the air from the outer tube and inner tube of the double tube discharge nozzle, respectively, and passed through a coagulation bath filled with water. After passing through the coagulation bath, 60 ° C. warm water was shower washed at 1 L / min for 1 hour.
[0031]
After shower washing, the hollow fiber membrane was wound into a bundle of 10,000 pieces, and further treated at 110 ° C. for 1 hour in water and washed.
[0032]
(Example 2)
Polysulfone (P-1700) 19% by weight, polyvinylpyrrolidone (K-30) 9% by weight, and N, N-dimethylformamide 72% by weight were uniformly dissolved to prepare a membrane forming stock solution. The internal solution was 0.1% by weight of α-tocopherol acetate and 0.1% by weight of polyethylene glycol-polypropylene glycol copolymer (60% by weight of N, N-dimethylformamide and 40% by weight of water). Pluronic F-68, manufactured by Asahi Denka Kogyo Co., Ltd.) was added and used.
[0033]
The film-forming stock solution and the inner solution were simultaneously discharged into the air from the outer tube and inner tube of the double tube discharge nozzle, respectively, and passed through a coagulation bath filled with water. After passing through the coagulation bath, 60 ° C. warm water was shower washed at 1 L / min for 1 hour.
[0034]
After shower washing, the hollow fiber membrane was wound into a bundle of 10,000 pieces, and further treated at 110 ° C. for 1 hour in water and washed.
[0035]
(Comparative Example 1)
Polysulfone (P-1700) 19% by weight, polyvinylpyrrolidone (K-30) 9% by weight, and N, N-dimethylformamide 72% by weight were uniformly dissolved to prepare a membrane forming stock solution. The internal liquid used was a mixture of 60% by weight of N, N-dimethylformamide and 40% by weight of water.
[0036]
The film-forming stock solution and the inner solution were simultaneously discharged into the air from the outer tube and inner tube of the double tube discharge nozzle, respectively, and passed through a coagulation bath filled with water. After passing through the coagulation bath, 60 ° C. warm water was shower washed at 1 L / min for 10 minutes.
[0037]
(Comparative Example 2)
Polysulfone (P-1700) 19% by weight, polyvinylpyrrolidone (K-30) 1% by weight, and N, N-dimethylformamide 80% by weight were uniformly dissolved to prepare a film-forming stock solution. The internal liquid used was a mixture of 60% by weight of N, N-dimethylformamide and 40% by weight of water.
[0038]
The film-forming stock solution and the inner solution were simultaneously discharged into the air from the outer tube and inner tube of the double tube discharge nozzle, respectively, and passed through a coagulation bath filled with water. After passing through the coagulation bath, 60 ° C. warm water was shower washed at 1 L / min for 1 hour.
[0039]
After shower washing, the hollow fiber membrane was wound into a bundle of 10,000 pieces, and further treated at 110 ° C. for 1 hour in water and washed.
[0040]
The presence ratio of polyvinylpyrrolidone on the outer surface of the hollow fiber membranes obtained in Examples 1 and 2 and Comparative Examples 1 and 2 was measured by XPS, and further, a blood inlet and a blood outlet communicating with the inside of the hollow fiber membrane, and A hollow fiber membrane type artificial kidney having an effective membrane area of 1.5 m 2 was prepared using a housing having a dialysate inlet and a dialysate outlet communicating with the outer surface side of the hollow fiber membrane, and the water permeability and endotoxin adsorption ability were measured. . The measurement results are shown in Table 1.
[0041]
The measurement of water permeability performance was carried out using the above hollow fiber membrane artificial kidney, sending reverse osmosis water to the inside of the hollow fiber membrane at a flow rate of 200 ml / min, and filtering from the outer surface of the hollow fiber membrane at a flow rate of 15 ml / min. The transmembrane pressure difference was measured and calculated.
[0042]
The endotoxin adsorption ability was measured as follows using the hollow fiber membrane artificial kidney. A dialysate with an endotoxin concentration of 800 EU / L is fed from the dialysate inlet at a flow rate of 30 ml / min, and the outflow from the dialysate outlet is controlled to 5 ml / min using a pump, and the outer surface of the hollow fiber membrane is positively The dialysate containing endotoxin was filtered from the side to the inside for 4 hours, the dialysate filtered from the outside of the hollow fiber membrane to the inside of the hollow fiber membrane was stored, and the endotoxin concentration of the stored solution was measured. The test solution did not recirculate and circulated only in one direction.
[0043]
[Table 1]
Figure 0004190079
[0044]
As shown in Table 1, Examples 1 and 2 have water permeability equivalent to that of Comparative Example 1, and have endotoxin adsorption ability. On the other hand, in Comparative Example 1, endotoxin was detected on the blood side by reverse filtration of the dialysate for 4 hours. In Comparative Example 2, no blood endotoxin was detected, but the water permeability was significantly reduced.
[0045]
(Example 3)
Random copolymer of hydroxyethyl methacrylate, methyl methacrylate and butyl methacrylate (Polymer 1) and block copolymer of polyperfluoroalkyl methacrylate (Polymer 2) (Ratio of polymers 1 and 2 is 50:50 by weight, average molecular weight 35 , 000) polymer concentration 30% methyl isobutyl ketone solution was diluted with methanol to a polymer concentration of 0.7%. This solution was passed through the inner surface of the PS membrane of Example 1, and then the solvent was removed by drying at 50 ° C., and the polymer was coated on the PS membrane.
[0046]
With the obtained hollow fiber membrane, the water permeability of an artificial kidney having an effective membrane area of 1.5 m 2 was 320 ml / mmHg · hr.
[0047]
(Change in platelet count over time)
Using the hollow fiber membranes obtained in Example 1, Example 2 and Example 3, mini-modules having a membrane area of 300 cm 2 were produced.
[0048]
A rabbit (body weight 2.7 to 3.3 kg) was anesthetized by intravenously injecting 1 ml / kg of a 2 times diluted Nembutal saline solution. Rabbits were fixed on a fixed base, blood vessels of the jugular arteriovenous vein were secured, a circuit and a mini-module were connected, and the blood flow was QB = 10 ml / min for 2 hours without using an anticoagulant. Blood collection was performed from the arterial blood collection port of the minimodule, and the change in platelet count over time was measured. The rate of change of platelets was corrected with a hematocrit value (the following formula).
[0049]
[Expression 1]
Figure 0004190079
[0050]
The results are shown in Table 2.
[0051]
[Table 2]
Figure 0004190079
[0052]
(Measurement of red blood cell membrane MDA)
The following operations were performed using the mini modules of Example 1 and Example 2 having a membrane area of 600 cm 2 .
[0053]
First, the sterilized mini-module was primed with 50 ml of raw food, 10 U / ml heparinized blood was filled into the mini-module, and incubated at 37 ° C. for 6 hours. Thereafter, blood was collected from the minimodule, and the number of red blood cells was counted (blood count) using a hemocytometer (Sysmex SE9000, Toa Medical Electronics Co., Ltd.). In addition, 1.8 ml of blood collected from the mini module (blood count completed) was removed by plasma separation (3,000 rpm, 15 min, 4 ° C.), and erythrocytes precipitated in 5.4 ml of 10 mM PBS (pH 8.0) were removed. The suspension was suspended and centrifuged (3,000 rpm, 15 min, 4 ° C.), and the supernatant PBS was removed and washed. After this washing operation was performed three times in total, PBS in the supernatant was removed, and 5.4 ml of 5 mM PBS (pH 8.0) was added to lyse the red blood cells.
[0054]
The hemolyzed sample is centrifuged (10,000 rpm, 15 min, 4 ° C.), the supernatant PBS is removed, and 5.4 ml of 2.5 mM PBS (pH 8.0) is mixed with erythrocytes for hemolysis. Further, the mixture was centrifuged (10,000 rpm, 15 min, 4 ° C.), the supernatant PBS was removed, 5.4 ml of 1.25 mM PBS (pH 8.0) was mixed with erythrocytes and hemolyzed, and centrifuged (10,000 rpm, 15 min). 4 ° C.). 1. Repeat hemolysis, centrifugation and washing with 25 mM PBS a total of 5 times. Finally, the supernatant PBS was removed, and the whole volume was adjusted to 2 ml with 1.25 mM PBS.
[0055]
MDA (malondialdehyde) was measured by the TBA method using the erythrocyte membrane obtained by the above adjustment method as a sample (lipid peroxide test Wako: manufactured by Wako Pure Chemical Industries, Ltd.). The operation method is shown below.
[0056]
The results are shown in Table 3.
[0057]
[Table 3]
Figure 0004190079
[0058]
It can be seen that the reduction of platelets can be suppressed by coating the inner surface side of the hollow fiber membrane with an antithrombotic substance. Moreover, it turns out that peroxidation of erythrocyte membrane lipid can be suppressed when vitamin E is used.
[0059]
【The invention's effect】
As described above, the present invention provides a hollow fiber membrane for purifying blood that adsorbs endotoxin to the outer surface in a hollow fiber membrane formed from a membrane-forming stock solution in which a hydrophilic polymer and a hydrophobic polymer are mixed, and A hollow fiber membrane artificial kidney can be obtained.
[0060]
Furthermore, the present invention can provide a blood purification hollow fiber membrane and a hollow fiber membrane type artificial kidney that have a small amount of hydrophilic polymer in the hollow fiber membrane and do not adsorb platelets.

Claims (5)

ポリビニルピロリドンと疎水性高分子をその共通溶媒に溶解混合させた製膜原液から製造された中空糸膜において、該中空糸膜の外表面における疎水性高分子に対するポリビニルピロリドンの比率が5〜17%であることを特徴とする血液浄化用中空糸膜。 In a hollow fiber membrane manufactured from a membrane-forming stock solution in which polyvinyl pyrrolidone and a hydrophobic polymer are dissolved and mixed in the common solvent, the ratio of polyvinyl pyrrolidone to the hydrophobic polymer on the outer surface of the hollow fiber membrane is 5 to 17 %. A hollow fiber membrane for blood purification, characterized by 前記疎水性高分子がポリスルホン系樹脂であることを特徴とする請求項1に記載の血液浄化用中空糸膜。  The hollow fiber membrane for blood purification according to claim 1, wherein the hydrophobic polymer is a polysulfone resin. 前記中空糸膜の内表面に抗血栓性物質がコーティングされていることを特徴とする請求項1または2に記載の血液浄化用中空糸膜。The hollow fiber membrane for blood purification according to claim 1 or 2 , wherein an inner surface of the hollow fiber membrane is coated with an antithrombotic substance. 前記抗血栓性物質がビタミンEであることを特徴とする請求項1ないしに記載の血液浄化用中空糸膜。The hollow fiber membrane for blood purification according to claims 1 to 3, wherein the antithrombotic agent is vitamin E. 請求項1ないしに記載された中空糸膜を有する中空糸膜型人工腎臓。It claims 1 to hollow fiber membrane-type artificial kidney having a hollow fiber membrane as described in 4.
JP06572799A 1999-03-12 1999-03-12 Hollow fiber membrane for blood purification and hollow fiber membrane artificial kidney Expired - Lifetime JP4190079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06572799A JP4190079B2 (en) 1999-03-12 1999-03-12 Hollow fiber membrane for blood purification and hollow fiber membrane artificial kidney

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06572799A JP4190079B2 (en) 1999-03-12 1999-03-12 Hollow fiber membrane for blood purification and hollow fiber membrane artificial kidney

Publications (3)

Publication Number Publication Date
JP2000254222A JP2000254222A (en) 2000-09-19
JP2000254222A5 JP2000254222A5 (en) 2008-09-18
JP4190079B2 true JP4190079B2 (en) 2008-12-03

Family

ID=13295353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06572799A Expired - Lifetime JP4190079B2 (en) 1999-03-12 1999-03-12 Hollow fiber membrane for blood purification and hollow fiber membrane artificial kidney

Country Status (1)

Country Link
JP (1) JP4190079B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015046A1 (en) * 2011-07-27 2013-01-31 旭化成メディカル株式会社 Hollow fiber membrane type blood purifier

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003014394A1 (en) * 2001-08-03 2004-11-25 旭メディカル株式会社 Biocompatibility evaluation method
ATE382670T1 (en) * 2001-10-04 2008-01-15 Toray Industries HYDROPHILIC MATERIAL AND METHOD FOR PRODUCING IT
US20050273031A1 (en) * 2002-08-21 2005-12-08 Tory Industries, Inc. Modified substrate and process for producing modified substrate
JP3594032B1 (en) 2003-08-29 2004-11-24 東洋紡績株式会社 Highly permeable hollow fiber membrane blood purifier
JP3551971B1 (en) 2003-11-26 2004-08-11 東洋紡績株式会社 Polysulfone permselective hollow fiber membrane
JP3580314B1 (en) 2003-12-09 2004-10-20 東洋紡績株式会社 Polysulfone-based selectively permeable hollow fiber membrane bundle and method for producing the same
JP3642065B1 (en) 2004-03-22 2005-04-27 東洋紡績株式会社 Permselective separation membrane and method for producing a selectively permeable separation membrane
JP4666248B2 (en) * 2004-05-27 2011-04-06 東洋紡績株式会社 High strength high water permeability hollow fiber membrane blood purifier
JP2005334428A (en) * 2004-05-28 2005-12-08 Toyobo Co Ltd High water permeability hollow fiber membrane type hemocatharsis apparatus with superior hemocompatibility
JP4706194B2 (en) * 2004-06-01 2011-06-22 東洋紡績株式会社 Highly permeable hollow fiber membrane blood purifier
RU2369429C2 (en) 2004-08-10 2009-10-10 Нипро Корпорейшн Hollow fibre membrane module and method of making said module
JP4839631B2 (en) * 2005-02-22 2011-12-21 東洋紡績株式会社 Polysulfone-based permselective hollow fiber membrane bundle and blood purifier
TWI374038B (en) 2007-05-25 2012-10-11 Asahi Kasei Medical Co Ltd A polysulphone-based membrane for the blood treatment and its manufacturing method
WO2013187396A1 (en) * 2012-06-11 2013-12-19 旭化成メディカル株式会社 Separation membrane for blood treatment and blood treatment device having same membrane incorporated therein
JP6236255B2 (en) * 2012-08-31 2017-11-22 旭化成メディカル株式会社 Substrates and devices
JP5614470B2 (en) * 2013-04-15 2014-10-29 東洋紡株式会社 Blood purifier with excellent mass replacement characteristics
WO2017104557A1 (en) * 2015-12-15 2017-06-22 東洋紡株式会社 Hollow-fiber membrane and hollow-fiber module for cell culturing
JP7435017B2 (en) 2020-02-26 2024-02-21 ニプロ株式会社 Dialysis equipment, method for measuring cardiac output of dialysis patients, calculation device and computer program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015046A1 (en) * 2011-07-27 2013-01-31 旭化成メディカル株式会社 Hollow fiber membrane type blood purifier
JP5638138B2 (en) * 2011-07-27 2014-12-10 旭化成メディカル株式会社 Hollow fiber membrane blood purification device

Also Published As

Publication number Publication date
JP2000254222A (en) 2000-09-19

Similar Documents

Publication Publication Date Title
JP4190079B2 (en) Hollow fiber membrane for blood purification and hollow fiber membrane artificial kidney
AU2019200697B2 (en) Membrane for blood purification
US5496637A (en) High efficiency removal of low density lipoprotein-cholesterol from whole blood
AU2013349977A1 (en) Liver support system
JPWO2002087735A1 (en) Asymmetric porous membrane and method for producing the same
JP6497318B2 (en) Hollow fiber membrane module for washing platelet suspension
JP4061798B2 (en) Semipermeable membrane for blood treatment and dialyzer for blood treatment using the same
WO2009040123A1 (en) Hydrophilic membranes with a non-ionic surfactant
JP4992104B2 (en) Module for hemofiltration or hemodiafiltration
JP5633277B2 (en) Separation membrane module
JPH10230148A (en) Semipermeable membrane
JP3934340B2 (en) Blood purifier
JP7035537B2 (en) Separation membrane module
JP2001170172A (en) Dialyzer for blood processing
JP2703266B2 (en) Polysulfone hollow fiber membrane and method for producing the same
JP4352709B2 (en) Polysulfone-based semipermeable membrane and artificial kidney using the same
EP0570232A2 (en) Microporous polysulfone supports suitable for removal of low density lipoprotein-cholesterol
JP4190361B2 (en) Hollow fiber type body fluid treatment device, hollow fiber bundle used therefor, and method for producing them
JP2000300663A (en) Selective separation membrane
JP5196509B2 (en) Hollow fiber membrane for blood purification and method for producing the same
JP4381058B2 (en) Hollow fiber blood purifier with excellent blood compatibility
JP6817240B2 (en) Hollow fiber membrane type blood purifier
JP3489372B2 (en) Perm-selective separation membrane
Göhl et al. PC-PE Hollow-Fiber Membrane: Structure, Performance Characteristics and Manufacturing
Irfan et al. Recent Development of Hemodialysis Membrane Materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080912

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term