JP2001170172A - Dialyzer for blood processing - Google Patents

Dialyzer for blood processing

Info

Publication number
JP2001170172A
JP2001170172A JP36296299A JP36296299A JP2001170172A JP 2001170172 A JP2001170172 A JP 2001170172A JP 36296299 A JP36296299 A JP 36296299A JP 36296299 A JP36296299 A JP 36296299A JP 2001170172 A JP2001170172 A JP 2001170172A
Authority
JP
Japan
Prior art keywords
dialyzer
hollow fiber
water
membrane
water permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36296299A
Other languages
Japanese (ja)
Other versions
JP4211169B2 (en
Inventor
Hidetoshi Ozawa
英俊 小澤
Hidekazu Nakajima
秀和 中島
Shigehisa Wada
茂久 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP36296099A priority Critical patent/JP4211168B2/en
Priority to JP36296299A priority patent/JP4211169B2/en
Priority to US09/736,373 priority patent/US6605218B2/en
Priority to TW089127070A priority patent/TW467750B/en
Priority to KR1020000078501A priority patent/KR100701115B1/en
Priority to CNB2004100955019A priority patent/CN100453126C/en
Priority to CA002329103A priority patent/CA2329103C/en
Priority to CNB001355821A priority patent/CN1240446C/en
Priority to DE60034416T priority patent/DE60034416T2/en
Priority to AT00311580T priority patent/ATE359858T1/en
Priority to EP00311580A priority patent/EP1110563B1/en
Priority to ES00311580T priority patent/ES2285998T3/en
Publication of JP2001170172A publication Critical patent/JP2001170172A/en
Priority to US10/404,099 priority patent/US6960297B2/en
Application granted granted Critical
Publication of JP4211169B2 publication Critical patent/JP4211169B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dialyzer which is a dry type semipermeable membrane, and has high water-permeability and dialyzing performance. SOLUTION: For this dialyzer for a blood processing, a semipermeable membrane containing a hydrophobic polymer and a hydrophilic polymer as the constituent components is built in. In such a dialyzer for the blood processing, the post-drying water-permeability to the pre-drying water- permeability of the semipermeable membrane is 1/2 or higher, and also, the clearance of vitamin B12 of the dialyzer is 135 ml/min or higher by a 1.6 m2 conversion.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は乾燥前後における透
水性能の変化が少ない血液処理用透析器に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blood treatment dialyzer with little change in water permeability before and after drying.

【0002】[0002]

【従来の技術】人工腎臓を含む血液処理用の半透膜は、
天然素材セルロース、また、その誘導体であるセルロー
スジアセテート、セルローストリアセテート、時代の変
化とともに、合成高分子が登場し、ポリスルホン、PM
MA、ポリアクリロニトリルなどが幅広く使用され、近
年ではセルロースをPEGなどで処理し、血液適合性を
改良した改質膜も使用されるようになってきた。慢性腎
不全患者の血液処理法についてはアルブミンの漏れは最
小限に抑えつつ、その他の低分子蛋白を積極的に除去す
る試みがなされている。膜の改良だけでなく、血液透析
濾過法(HDF)や、プッシュ&プル法が透析効率の向
上や低分子蛋白の積極除去のため開発された。現在、膜
素材の中で透水性能が高いポリスルホンが、このような
透析手法の進歩に合致したものとして、幅広く使用され
るに至っている。ポリスルホンは熱可塑性の耐熱エンジ
ニアリングプラスチックとして自動車、電気、医療用具
の分野で幅広く用いられているが、ポリスルホンのみで
透析膜を作った場合、分子間凝集力が強く、ポアサイズ
のコントロールができないだけでなく、疎水性のために
血液との親和性に乏しく、血小板などの血液成分が付着
しやすく、残血の原因となるだけでなく、膜性能の低下
も激しく起こる。さらに、エアーロック現象を起しやす
いため、このままでは血液処理用に用いることはできな
い。
2. Description of the Related Art Semi-permeable membranes for blood treatment, including artificial kidneys,
As the natural material cellulose and its derivatives, cellulose diacetate and cellulose triacetate, change with the times, synthetic polymers have appeared, and polysulfone, PM
MA, polyacrylonitrile, and the like are widely used, and in recent years, modified membranes obtained by treating cellulose with PEG or the like to improve blood compatibility have been used. In blood treatment of patients with chronic renal failure, attempts have been made to positively remove other low molecular proteins while minimizing albumin leakage. In addition to membrane improvements, hemodiafiltration (HDF) and push-and-pull methods have been developed to improve dialysis efficiency and actively remove low molecular weight proteins. At present, polysulfone having high water-permeability among membrane materials has been widely used as being compatible with such advances in dialysis techniques. Polysulfone is widely used as a heat-resistant engineering plastic in the fields of automobiles, electricity, and medical devices.However, when a dialysis membrane is made of polysulfone alone, not only cannot the pore size be controlled because of strong intermolecular cohesion. Because of its hydrophobicity, it has poor affinity for blood, and blood components such as platelets tend to adhere, causing not only residual blood, but also severe deterioration in membrane performance. Further, since the airlock phenomenon easily occurs, it cannot be used for blood treatment as it is.

【0003】従って、孔形成材として無機塩などを混入
し、脱離することで孔を形作り、後で親水化処理する方
法や、予め、親水性高分子を造孔剤として混入し、脱離
させてポアを形成後、残った親水性成分で同時にポリマ
ー表面を親水化し、これを半透膜、逆浸透膜として用い
る方法が考案された。例示すると(1)金属塩を入れて
製膜する方法、(2)親水性高分子を入れて製膜する方
法、(3)多価アルコールを入れて製膜する方法などが
すでに開示されている。しかし、特開昭61−2328
60、特開昭58−114702のようにポリエチレン
グリコール等の多価アルコールを入れて製膜を行う場
合、洗浄が不十分の場合、膜に残存するポリエチレング
リコール等の溶出によって、透析時に患者の目に異常が
起こる場合もある。金属塩類の場合はポアサイズが大き
すぎて透析膜には不適である。また、特公平5−543
73では透析膜が記載されているが、親水性高分子の溶
出が少なく、かつ透水性能が高いドライタイプの膜は開
示されていない。
Accordingly, a method of forming pores by mixing inorganic salts or the like as a pore-forming material and desorbing them, and subsequently performing a hydrophilic treatment, or mixing a hydrophilic polymer as a pore-forming agent in advance and desorbing After the formation of pores, a method has been devised in which the surface of the polymer is simultaneously hydrophilized with the remaining hydrophilic component, and this is used as a semipermeable membrane or a reverse osmosis membrane. For example, (1) a method of forming a film by adding a metal salt, (2) a method of forming a film by adding a hydrophilic polymer, and (3) a method of forming a film by adding a polyhydric alcohol have been disclosed. . However, Japanese Patent Application Laid-Open No. 61-2328
60, when a polyhydric alcohol such as polyethylene glycol is added to form a membrane as in JP-A-58-114702, and when washing is insufficient, the patient's eye during dialysis due to the elution of polyethylene glycol etc. remaining on the membrane. In some cases, abnormalities occur. In the case of metal salts, the pore size is too large and is not suitable for a dialysis membrane. In addition, Japanese Patent Publication 5-543
No. 73 describes a dialysis membrane, but does not disclose a dry-type membrane having little elution of a hydrophilic polymer and high water permeability.

【0004】[0004]

【発明が解決しようとする課題】人工透析患者の大幅な
伸びが続き、日本国内の透析患者は20万人を越えた。
ダイアライザーは多種多様のものが出回っているが、大
きく分けて、充填液を用いるウェットタイプと充填液を
用いないドライタイプに分別される。ウェットタイプは
水の存在によって凍結、破損が起こりやすく、また重量
が重いために輸送コストがかかるのが欠点となってい
る。
The dialysis patients have continued to grow significantly, and the number of dialysis patients in Japan has exceeded 200,000.
Various types of dialyzer are available, but they are roughly classified into a wet type using a filling liquid and a dry type not using a filling liquid. The wet type is disadvantageous in that freezing and breakage are likely to occur due to the presence of water, and transportation costs are high due to its heavy weight.

【0005】本発明は軽い・凍結しないなどの利点があ
るドライタイプの半透膜において、従来欠点とされてい
た透水性・透析性能をウェット並に向上させたドライタ
イプの半透膜を利用した透析器を提供することである。
[0005] The present invention utilizes a dry type semipermeable membrane which has advantages such as lightness and non-freezing, and which has improved water permeability and dialysis performance, which has been conventionally regarded as a drawback, as well as wet. It is to provide a dialyzer.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を達成
するため、次の構成を有する。
The present invention has the following arrangement to achieve the above object.

【0007】疎水性高分子、親水性高分子を構成成分と
して含んでなる半透膜を内蔵した血液処理用透析器にお
いて、該半透膜の乾燥前透水性能に対する乾燥後の透水
性能が1/2以上かつ、透析器のビタミンB12のクリア
ランスが1.6m2換算で135ml/min以上である血液処理用透
析器。
In a blood treatment dialyzer containing a semipermeable membrane containing a hydrophobic polymer and a hydrophilic polymer as constituents, the permeability of the semipermeable membrane after drying to the permeability before drying is 1/1/2. A dialyzer for blood treatment wherein the clearance of vitamin B12 of the dialyzer is not less than 135 ml / min in terms of 1.6 m2.

【0008】[0008]

【発明の実施の形態】半透膜を構成する疎水性高分子と
して、例えば、ポリスルホン、ポリアミド、ポリイミ
ド、ポリフェニルエーテル、ポリフェニレンスルフィド
などほとんどのエンジニアリングプラスチックを用いる
ことができるが、下記示性式で表されるポリスルホンが
特に好ましい。ポリスルホンは下記基本骨格からなる
が、ベンゼン環部分を修飾したものも用いることができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION As a hydrophobic polymer constituting a semipermeable membrane, most engineering plastics such as polysulfone, polyamide, polyimide, polyphenyl ether, and polyphenylene sulfide can be used. The polysulfones represented are particularly preferred. The polysulfone has the following basic skeleton, but those having a modified benzene ring portion can also be used.

【0009】[0009]

【化1】 Embedded image

【0010】親水性高分子としては、例えばポリエチレ
ングリコール、ポリビニルアルコール、カルボキシメチ
ルセルロース、ポリビニルピロリドンなどが用いられ、
単独で用いてもよいし、混合して用いてもよい。工業的
にも比較的入手しやすいポリビニルピロリドンが好まし
い。また、親水性高分子は分子量が異なる2種類以上を
用いることも好ましい。その場合、重量平均分子量で5
倍以上異なるものを用いることが好ましい。
As the hydrophilic polymer, for example, polyethylene glycol, polyvinyl alcohol, carboxymethyl cellulose, polyvinyl pyrrolidone and the like are used.
They may be used alone or as a mixture. Polyvinylpyrrolidone, which is relatively easily available industrially, is preferred. It is also preferable to use two or more hydrophilic polymers having different molecular weights. In that case, the weight average molecular weight is 5
It is preferable to use one that differs by a factor of two or more.

【0011】本発明において半透膜を形成するために用
いられる原液としては疎水性高分子、親水性高分子、溶
媒、および添加剤からなることが好ましい。溶媒につい
ては疎水性高分子、親水性高分子、添加剤の3者を良く
溶かす両性溶媒が用いられる。ジメチルアセトアミド、
ジメチルホルムアミド、ジメチルスルホキシド、アセト
ン、アセトアルデヒド、2ーメチルピロリドンなどであ
るが、危険性、安定性、毒性の面からジメチルアセトア
ミドが好ましい。添加剤はポリスルホンの貧溶媒で親水
性高分子と相溶性を持つもので、アルコール、グリセリ
ン、水、エステル類等であるが、プロセス適性の面から
特に水が好ましい。
In the present invention, the stock solution used for forming the semipermeable membrane preferably comprises a hydrophobic polymer, a hydrophilic polymer, a solvent, and an additive. As the solvent, an amphoteric solvent that can dissolve the hydrophobic polymer, the hydrophilic polymer, and the additive well is used. Dimethylacetamide,
Examples thereof include dimethylformamide, dimethylsulfoxide, acetone, acetaldehyde, and 2-methylpyrrolidone, and dimethylacetamide is preferred from the viewpoints of danger, stability, and toxicity. The additive is a poor solvent for polysulfone and is compatible with the hydrophilic polymer, and is an alcohol, glycerin, water, an ester or the like, but water is particularly preferred from the viewpoint of process suitability.

【0012】また、製膜原液の粘度は市販されている疎
水性高分子の分子量が低いことから、親水性高分子の分
子量に依存する。原液粘度の低下はその中空糸製膜時に
糸切れ、糸揺れなどを起こし安定性を悪化させる。その
ためPVPは高分子量のものを用いることが好ましく、
PVPを混合して用いる場合には平均分子量を20万以
上に上げることが好ましい。
The viscosity of the stock solution depends on the molecular weight of the hydrophilic polymer because the molecular weight of the commercially available hydrophobic polymer is low. A decrease in the viscosity of the undiluted solution causes breakage, swaying, and the like during the formation of the hollow fiber, thereby deteriorating the stability. Therefore, it is preferable to use high molecular weight PVP,
When PVP is used as a mixture, the average molecular weight is preferably increased to 200,000 or more.

【0013】次に製膜原液のポリマー濃度について述べ
る。前述の点からポリマー濃度は上げるに従って製膜性
は良くなるが逆に空孔率が減少し、透水性能が低下する
ため最適範囲が存在する。本発明のように膜を乾燥させ
ても高い選択透過性と低アルブミン透過性を兼ね備えた
膜を得るためには疎水性高分子の濃度は10〜20重量
%が好ましく、さらに好ましくは12〜18重量%、親
水性高分子の濃度は2〜20 重量%が好ましく、さら
に好ましくは3〜15 重量%である。さらに、分子量
の異なる2種以上の親水性ポリマーを用いる場合には、
原液中の分子量10万以上のポリマーの混和比率は1〜
10重量%が好ましい。高すぎると原液粘度が上昇し、
製膜困難となるだけでなく、透水性、拡散性能が低下す
る傾向がある。逆に低すぎる場合、中高分子尿毒蛋白を
透過させるための適当なネットワークを構築できない傾
向がある。
Next, the polymer concentration of the stock solution will be described. From the above-mentioned point, as the polymer concentration is increased, the film-forming property is improved, but on the contrary, the porosity is reduced and the water permeability is reduced, so that an optimum range exists. In order to obtain a membrane having both high selective permeability and low albumin permeability even when the membrane is dried as in the present invention, the concentration of the hydrophobic polymer is preferably 10 to 20% by weight, more preferably 12 to 18% by weight. The concentration of the hydrophilic polymer is preferably 2 to 20% by weight, more preferably 3 to 15% by weight. Further, when two or more hydrophilic polymers having different molecular weights are used,
The mixing ratio of the polymer having a molecular weight of 100,000 or more in the stock solution is 1 to
10% by weight is preferred. If it is too high, the stock solution viscosity will increase,
Not only is it difficult to form a film, but also the water permeability and diffusion performance tend to decrease. On the other hand, if it is too low, there is a tendency that an appropriate network for permeating the medium high molecular weight uremic protein cannot be constructed.

【0014】次いで、製膜方法の一態様を以下に説明す
る。上述したような構成の製膜原液を芯液と同時に2重
スリット管構造の口金から同時に吐出させ、中空糸膜を
成形する。その後、所定の水洗、乾燥工程、クリンプ工
程を経た後、巻き取られ、適当な長さにカットした後、
ケースに挿入され、ポッティング材によって端部を封止
し、モジュール化される。
Next, one embodiment of the film forming method will be described below. The membrane-forming stock solution having the above-described structure is simultaneously discharged simultaneously with the core liquid from a die having a double slit tube structure to form a hollow fiber membrane. Then, after a predetermined washing, drying step and crimping step, it is wound up and cut into an appropriate length,
It is inserted into a case, and its ends are sealed with a potting material to be modularized.

【0015】特に本発明の場合、モジュール化までの工
程において、膜を保湿剤で保持し、乾燥工程を一切入れ
ないという方法を用いず、膜の収縮を考慮した原液設計
を行って、保湿剤を用いずに乾燥する操作を行うことに
より、本発明の乾燥前透水性能に対する乾燥後透水性能
が1/2以上の膜を得ることができる。 さらに、特に
人工腎臓に用いる場合など、このままでは半透膜から親
水性高分子の溶出が多いため、溶出物低減のためにγ
線、電子線、熱、化学的に架橋を行うことが好ましい。
空気存在下(酸素存在下)でのγ線照射は励起した酸素
ラジカルによって高分子の主鎖が切れ、分解が起こるた
め、好ましくは膜の自重に対して100以上1000%
未満さらに好ましくは100〜600%の水を抱液させ
て、不活性ガスで空気を置換した後、γ線照射を行うと
親水性高分子の溶出が好適に抑えられる。不活性ガスは
窒素、アルゴン、ヘリウム、炭酸ガスなどが好適に用い
られるが、特に、安価な窒素が好ましい。γ線照射量は
10〜50Kgyが好ましく、さらに好ましくは10〜
30KGyである。架橋処理により、疎水性高分子と親
水性高分子が結合することで親水性高分子の溶出が減少
し、後述する強制溶出試験における親水性高分子の溶出
確認でもピークが確認されず、半透膜中からの溶出量が
10ppm以下の膜とすることができる。ここでいう溶
出量とは疎水性高分子と親水性高分子の良溶媒で、溶解
度が0.5g/1ml以上であり、かつ水と混合しない
溶媒に一定量の中空糸を分散・溶解させ、次に一定量の
水相(0.1N−塩化アンモニウム溶液(pH9.
5))へ親水性高分子を抽出し、その抽出液中の親水性
高分子の濃度を意味する。かかる良溶媒としては、例え
ばポリスルホンとポリビニルピロリドンの場合、塩化メ
チレンが好適に用いられる。
Particularly, in the case of the present invention, in the process up to the modularization, a stock solution is designed in consideration of film shrinkage without using a method of holding the membrane with a humectant and not including a drying step at all. By performing an operation of drying without using a membrane, it is possible to obtain a membrane having a water permeability after drying of 1/2 or more of the water permeability before drying of the present invention. Furthermore, especially when used for an artificial kidney, since the hydrophilic polymer is often eluted from the semipermeable membrane as it is, γ is used to reduce the eluted material.
Crosslinking is preferably performed by a beam, an electron beam, heat, or chemical.
Irradiation of γ-rays in the presence of air (in the presence of oxygen) breaks the main chain of the polymer due to excited oxygen radicals and causes decomposition.
Less than 100% to 600% of water is preferably immersed in water, and the air is replaced with an inert gas, and then γ-ray irradiation is performed, whereby the elution of the hydrophilic polymer is suitably suppressed. As the inert gas, nitrogen, argon, helium, carbon dioxide, or the like is preferably used, and particularly, inexpensive nitrogen is preferable. The amount of γ-ray irradiation is preferably 10 to 50 Kgy, more preferably 10 to 50 Kgy.
30 KGy. By the cross-linking treatment, the elution of the hydrophilic polymer is reduced due to the binding of the hydrophobic polymer and the hydrophilic polymer, and no peak is observed in the elution of the hydrophilic polymer in the forced elution test described later, and the semipermeable liquid is not observed. A film having an elution amount of 10 ppm or less from the film can be obtained. The elution amount here is a good solvent of a hydrophobic polymer and a hydrophilic polymer, the solubility is 0.5 g / 1 ml or more, and a certain amount of hollow fiber is dispersed and dissolved in a solvent that is not mixed with water, Next, a certain amount of aqueous phase (0.1 N-ammonium chloride solution (pH 9.
5)) Extracting the hydrophilic polymer, and means the concentration of the hydrophilic polymer in the extract. As the good solvent, for example, in the case of polysulfone and polyvinylpyrrolidone, methylene chloride is suitably used.

【0016】これらの方法で作成された半透膜は疎水性
高分子と親水性高分子のネットワークによって、その尿
毒物質の拡散、有用蛋白であるアルブミンの阻止などの
血液処理膜としての性能を発揮し、親水性高分子の溶出
が少ないという特徴を有する。アルブミン透過率が3%
を越えるような場合は低アルブミン血症や、高齢者の場
合はその栄養状態に影響を及ぼす傾向があり、アルブミ
ン透過率は3%以下であることが好ましい。尿毒物質と
しては、ビタミンB12、尿素、クレアチニン、尿酸な
どがあるが、本発明においては、ビタミンB12のクリ
アランスが1.6m2換算で、135ml/min以上
とすることができる。また、尿素、クレアチニン、尿酸
は、それぞれ、188、175、165ml/min以
上のクリアランスを有することが実用上、好ましい。
The semipermeable membranes produced by these methods exhibit the properties of a blood treatment membrane, such as the diffusion of uremic substances and the inhibition of albumin, a useful protein, due to the network of hydrophobic and hydrophilic polymers. However, it is characterized in that the elution of the hydrophilic polymer is small. Albumin transmittance 3%
If the ratio exceeds the above, there is a tendency to affect hypoalbuminemia or the nutritional status of the elderly, and the albumin transmittance is preferably 3% or less. Examples of the uremic substance include vitamin B12, urea, creatinine, and uric acid, and in the present invention, the clearance of vitamin B12 can be 135 ml / min or more in terms of 1.6 m2. It is practically preferable that urea, creatinine, and uric acid each have a clearance of 188, 175, and 165 ml / min or more.

【0017】また、以上のような特性を得るためには、
架橋後の膜中の親水性高分子の含有率が2〜6重量%で
あることが好ましい。極端に低い場合は水濡れ性が低下
し、血液と接触した際に凝固を引き起こす。また、架橋
後の膜は5〜15重量%の不溶化物を含んでいることが
好ましい。
In order to obtain the above characteristics,
It is preferable that the content of the hydrophilic polymer in the film after crosslinking is 2 to 6% by weight. If it is extremely low, the water wettability is reduced and causes coagulation upon contact with blood. The crosslinked film preferably contains 5 to 15% by weight of an insolubilized substance.

【0018】以上の通り、本発明により得られた血液処
理用半透膜は、湿潤保持剤の付着されていない状態で乾
燥させる製造工程と、さらに製膜後架橋するという製造
工程を採用することにより半透膜の乾燥前透水性能に対
する乾燥後の透水性能が1/2以上であるという構造を
形成することができる。その結果、ドライの状態で使用
しても、透水性能の低下が少なく、かつ溶出物の漏れも
少ないという優れた効果を有する透析器とすることがで
きる。ドライ状態で使用できるため、軽く、凍結の心配
がなく、取り扱いが容易で高性能な半透膜を提供するこ
とが出来、透析コストの削減にも寄与できる。また、乾
燥による透析性能低下が少ないため、各種の温度・滅菌
条件でも高い透析性能を実現する。同時に人体から見れ
ば異物である親水性高分子の溶出を抑えることができ、
医療用具の安全性を高めることができる。本発明の透析
器は人工腎臓、血漿分離膜、体外循環吸着用担体などの
血液処理用途にも適用可能である。
As described above, the semipermeable membrane for blood treatment obtained according to the present invention employs a manufacturing step of drying without a moisturizing agent attached, and a manufacturing step of cross-linking after membrane formation. Thereby, a structure in which the water permeability after drying with respect to the water permeability before drying of the semipermeable membrane is 1 / or more can be formed. As a result, even when used in a dry state, it is possible to obtain a dialyzer having an excellent effect that a decrease in water permeability is small and a leakage of an elute is small. Because it can be used in a dry state, it is possible to provide a high-performance semipermeable membrane that is light, free from worry of freezing, easy to handle, and can contribute to reduction in dialysis cost. In addition, since dialysis performance is not significantly reduced by drying, high dialysis performance is realized even under various temperature and sterilization conditions. At the same time, the elution of the hydrophilic polymer, which is a foreign substance when viewed from the human body, can be suppressed,
The safety of the medical device can be improved. The dialyzer of the present invention is also applicable to blood treatment applications such as artificial kidneys, plasma separation membranes, and carriers for extracorporeal circulation adsorption.

【0019】[0019]

【実施例】次に実施例に基づき本発明を説明する。Next, the present invention will be described based on examples.

【0020】用いた測定法は以下の通りである。 (1)透水性能の測定 中空糸両端部を封止したガラス管ミニモジュール(本数
36本:有効長10cm)の中空糸内側に水圧100m
mHgをかけ、外側へ流出してくる単位時間当たりの濾
過量を測定した。
The measuring method used is as follows. (1) Measurement of Water Permeability The water pressure is 100 m inside the hollow fiber of a glass tube mini module (36 tubes: effective length 10 cm) in which both ends of the hollow fiber are sealed.
mHg was applied, and the amount of filtration per unit time flowing out was measured.

【0021】透水性能は下記の式で算出した。The water permeability was calculated by the following equation.

【0022】[0022]

【数1】 (Equation 1)

【0023】ここでQW:濾過量(ml) T:流出時
間(hr) P:圧力(mmHg) A:膜面積(m2)(中空糸内表面面積換算) (2)乾燥による性能変化の確認 湿潤剤が付着していなければ、そのまま下記条件で、乾
燥しても良いが、付着している場合、湿潤剤を除くため
に、中空糸10gを150mlの純水に浸漬し、24時
間放置する。この操作を2回繰り返した後、糸束の状態
で、100℃で24時間乾燥し、その前後での透水性能
を測定する。 (3)溶質のクリアランス測定 昭和57年9月発行日本人工臓器学会編ダイアライザー
性能評価基準に基づいて行った。この中で測定方法が2
種類あるが、本実験はTMP0mmHgを基準とした。
各溶質の内、特にVB12は光による分解が起こるた
め、サンプリング後、測定当日のうちに測定することが
望ましい。クリアランスは以下の式を用いて計算した。
膜面積が異なるものについては、クリアランスから総括
物質移動係数を計算し、そこから面積換算を行うことが
できる。 クリアランス
Here, QW: filtration amount (ml) T: outflow time (hr) P: pressure (mmHg) A: membrane area (m 2 ) (in terms of hollow fiber inner surface area) (2) Confirmation of performance change by drying If the humectant is not attached, it may be dried as it is under the following conditions, but if it is attached, 10 g of the hollow fiber is immersed in 150 ml of pure water and left for 24 hours to remove the humectant. . After repeating this operation twice, the bundle is dried at 100 ° C. for 24 hours in the state of a yarn bundle, and the water permeability before and after the drying is measured. (3) Measurement of solute clearance Measured based on dialyzer performance evaluation standards published by the Japanese Society for Artificial Organs, September 1982. The measurement method is 2
Although there are some types, this experiment was based on TMP of 0 mmHg.
Of the solutes, especially VB12, which is decomposed by light, it is desirable to measure it on the day of measurement after sampling. The clearance was calculated using the following equation.
For those having different membrane areas, the overall mass transfer coefficient can be calculated from the clearance and the area can be converted therefrom. clearance

【0024】[0024]

【数2】 (Equation 2)

【0025】ここでCBi:モジュール入口側濃度、
CBo:モジュール出口側濃度 QB:モジュール供給液量(ml/min) (4)アルブミン透過率の測定 血液槽に温度37℃で保温したヘマトクリット30%、
総蛋白量6.5g/dlの牛血(ヘパリン処理血)を用
いて、中空糸内側にポンプで200ml/minで送っ
た。その際、モジュール出口側の圧力を調整して、濾過
量がモジュール面積1m2当たり20ml/min(す
なわち1.6m2では32ml/min)かかるように
し、濾液、出口血液は血液槽に戻した。環流開始後1時
間後に中空糸側入り口、出口の血液、濾液をサンプリン
グし、血液は遠心分離により血清に分離した後、商品名
A/G B−テストワコー(和光純薬)のBCG(ブロ
ムクレゾールグリーン)法キットによって分析し、その
濃度からアルブミン透過率(%)を算出した。また、濾
液の濃度算出に当たって、アルブミンの検量線について
は、良好な感度を得るため、低濃度での検量線を作成す
る目的で、キット付属の血清アルブミンを適宜、希釈し
て作成した。
Here, CBi: concentration at the module inlet side,
CBo: Module outlet concentration QB: Module supply liquid volume (ml / min) (4) Measurement of albumin transmittance Hematocrit 30% kept in a blood tank at a temperature of 37 ° C.
Bovine blood (heparin-treated blood) having a total protein amount of 6.5 g / dl was used to pump the inside of the hollow fiber at a rate of 200 ml / min using a pump. At that time, the pressure at the module outlet side was adjusted so that the filtration amount was 20 ml / min per 1 m2 of the module area (that is, 32 ml / min at 1.6 m2), and the filtrate and the outlet blood were returned to the blood tank. One hour after the start of the reflux, blood and filtrate at the inlet and outlet of the hollow fiber were sampled, and the blood was separated into serum by centrifugation, and then BCG (Bromcresol, trade name: A / GB-Test Wako (Wako Pure Chemical)) Green) method kit, and albumin transmittance (%) was calculated from the concentration. In calculating the concentration of the filtrate, the albumin calibration curve was prepared by appropriately diluting the serum albumin included in the kit in order to obtain a calibration curve at a low concentration in order to obtain good sensitivity.

【0026】[0026]

【数3】 (Equation 3)

【0027】ここでCF:濾液中、CBi:モジュール
入り口、 CBi:モジュール出口のアルブミン濃度 (5)強制溶出試験における水層に移動した親水性高分
子ポリビニルピロリドン濃度の測定透析モジュールを血
液側から透析液側へ純水1リットルで洗浄し、モジュー
ルから取り出した中空糸1gを塩化メチレン10mlに
溶解し(仕込量10wt/vol%)、0.1N−塩化
アンモニウム溶液(pH9.5)10mlで抽出を行
い、そのまま、得られた塩化メチレン−水溶液を超遠心
機(20000rpm×15min)で分離し、水層を
細孔径0.5ミクロンのフィルターで濾過を行いサンプ
ル液とした。
Here, CF: in the filtrate, CBi: the module inlet, and CBi: the albumin concentration at the module outlet. (5) Measurement of the concentration of the hydrophilic polymer polyvinylpyrrolidone transferred to the aqueous layer in the forced elution test The liquid side was washed with 1 liter of pure water, and 1 g of the hollow fiber taken out of the module was dissolved in 10 ml of methylene chloride (charged amount: 10 wt / vol%), and extracted with 10 ml of a 0.1N ammonium chloride solution (pH 9.5). The obtained methylene chloride-water solution was separated as it was by an ultracentrifuge (20,000 rpm × 15 min), and the aqueous layer was filtered with a filter having a pore diameter of 0.5 μm to obtain a sample liquid.

【0028】この溶液を温度23℃で東ソーTSK−g
el−GMPWXL 2本直列につないだ理論段数(8
900段×2)のカラムを用い、移動相として0.1N
−塩化アンモニウム溶液(pH9.5)、流量 1.0
ml/min、サンプル打ち込み量 0.2mlで分析
を行った。9種の単分散ポリエチレングリコールを基準
物質にして分子量較正を行い、標品のPVPのピーク面
積−濃度検量線を作成し、サンプルのPVPピーク面積
から水層(5ml)に移動したPVP濃度を求めた。P
VPが検出されたサンプルは、回収率(水相への移動
量)を標品から求め、その回収率を元に水相のPVP濃
度から中空糸当たりの溶出量を換算して求めた。 (6)元素分析法によるポリビニルピロリドンの含有率
の測定 γ線照射後のサンプルを常温、真空ポンプで乾固させ、
その10mgをCHNコーダーで分析し、窒素含有量か
らポリビニルピロリドンの含有率を計算した。 (7)不溶物量の測定 γ線照射後の中空糸膜10gを取り、100mlのジメ
チルホルムアミドに溶解した。遠心分離機で1500r
pm 10分で不溶物を分離し、上澄み液を捨てる。こ
の操作を3回繰り返し、さらに純水100mlで洗浄、
同様に遠心分離操作を3回繰り返し、残った固形物を蒸
発乾固し、最後に真空ポンプで乾燥した。その重量から
不溶物の含有率を求めた。 実施例1 ポリスルホン(アモコ社 Udel−P3500)4
部、(アモコ社 Udel−P1700)12部、ポリ
ビニルピロリドン(インターナショナルスペシャルプロ
ダクツ社;以下ISP社と略す) K30 4部、ポリ
ビニルピロリドン(ISP社K90)2部をジメチルア
セトアミド77部、水1部を加熱溶解し、製膜原液とし
た。
This solution was heated at a temperature of 23 ° C. to Tosoh TSK-g.
el-GMPWXL The number of theoretical plates connected in series (8
Using a column of 900 stages x 2), 0.1N as mobile phase
-Ammonium chloride solution (pH 9.5), flow rate 1.0
The analysis was performed at a ml / min and a sample injection amount of 0.2 ml. Calibration of molecular weight was performed using 9 kinds of monodispersed polyethylene glycol as a reference substance, a calibration curve of peak area of standard PVP-concentration curve was prepared, and the concentration of PVP transferred to the aqueous layer (5 ml) was determined from the peak area of PVP of the sample. Was. P
For the sample in which VP was detected, the recovery rate (amount transferred to the aqueous phase) was obtained from the sample, and the elution amount per hollow fiber was calculated from the PVP concentration in the aqueous phase based on the recovery rate. (6) Measurement of content of polyvinylpyrrolidone by elemental analysis method The sample after γ-ray irradiation was dried at room temperature with a vacuum pump,
10 mg thereof was analyzed with a CHN coder, and the content of polyvinylpyrrolidone was calculated from the nitrogen content. (7) Measurement of insoluble matter amount 10 g of the hollow fiber membrane after γ-ray irradiation was taken and dissolved in 100 ml of dimethylformamide. 1500r with centrifuge
The insolubles are separated at pm 10 minutes and the supernatant is discarded. This operation is repeated three times, and further washed with 100 ml of pure water.
Similarly, the centrifugation operation was repeated three times, and the remaining solid matter was evaporated to dryness, and finally dried by a vacuum pump. The content of insolubles was determined from the weight. Example 1 Polysulfone (Amoco Udel-P3500) 4
Part, (Amoco Udel-P1700) 12 parts, polyvinylpyrrolidone (International Special Products Company; hereinafter abbreviated as ISP) 4 parts K30, polyvinylpyrrolidone (ISP K90) 2 parts 77 parts dimethylacetamide, and 1 part water It was dissolved and used as a film forming stock solution.

【0029】原液粘度は50℃で13.4Pa・sであ
った。この原液を温度50℃の紡糸口金部へ送り、外径
0.35mm、内径0.25mmの2重スリット管から
芯液としてジメチルアセトアミド65部、水35部から
なる溶液を吐出させ、中空糸膜を形成させた後、温度3
0℃、露点28℃で調湿し、10ミクロン以下のドライ
ミストを加えた250mmのドライゾーン雰囲気を経
て、ジメチルアセトアミド20重量%、水80重量%か
らなる温度40℃の凝固浴を通過させ、80℃60秒の
水洗工程、135℃の乾燥工程を2分通過させ、160
℃のクリンプ工程を経て得られた中空糸膜を巻き取り束
とした。この中空糸膜を1.6m2になるように、ケー
スに充填し、ポッティングし、端部を両面開口させて、
透析モジュールとした。 モジュール化後、脱気工程を
経た、温水(37℃)で、血液側を毎分200ml/m
inで1分充填した後、血液側を止め、不活性ガス(窒
素):圧力0.1MPa、15秒で充填水を押し出し
た。この時の中空糸膜の抱液率は320%であった。
The viscosity of the stock solution was 13.4 Pa · s at 50 ° C. This undiluted solution is sent to a spinneret at a temperature of 50 ° C., and a solution consisting of 65 parts of dimethylacetamide and 35 parts of water is discharged as a core solution from a double slit tube having an outer diameter of 0.35 mm and an inner diameter of 0.25 mm, thereby forming a hollow fiber membrane. After the formation of
0 ° C., humidity controlled at a dew point of 28 ° C., passed through a 250 mm dry zone atmosphere to which a dry mist of 10 μm or less was added, passed through a coagulation bath at a temperature of 40 ° C. composed of 20% by weight of dimethylacetamide and 80% by weight of water, After passing through a water washing step at 80 ° C. for 60 seconds and a drying step at 135 ° C. for 2 minutes,
The hollow fiber membrane obtained through the crimping step at a temperature of ° C was wound into a bundle. This hollow fiber membrane is filled in a case so as to be 1.6 m 2 , potted, and both ends are opened on both sides.
A dialysis module was used. After modularization, the blood side was degassed with warm water (37 ° C) and the blood side was 200 ml / m / min.
After filling for 1 minute in, the blood side was stopped, and the filling water was extruded at an inert gas (nitrogen) pressure of 0.1 MPa for 15 seconds. At this time, the hydration rate of the hollow fiber membrane was 320%.

【0030】透析液側も不活性ガスで置換後、最後に不
活性ガス封入状態で湿潤状態のまま、γ線照射(25K
Gy)を行った。透水性能、各溶質におけるクリアラン
ス、アルブミン透過率を測定したところ、尿素、クレア
チニン、尿酸、リン酸、VB12のクリアランスはそれ
ぞれ195ml/min、185ml/min、180
ml/min、186ml/min、145ml/mi
n、透水性能 756ml/hr/m2/mmHg、ア
ルブミン透過率1.5%であった。
After replacing the dialysate side with an inert gas, γ-ray irradiation (25 K
Gy). When the water permeability, clearance in each solute, and albumin permeability were measured, the clearances of urea, creatinine, uric acid, phosphoric acid, and VB12 were 195 ml / min, 185 ml / min, and 180, respectively.
ml / min, 186 ml / min, 145 ml / mi
n, water permeability 756 ml / hr / m 2 / mmHg, and albumin transmittance 1.5%.

【0031】また、乾燥後の中空糸の透水性能は772
ml/hr/m2/mmHgであり、性能低下は観測
されなかった。さらに、中空糸膜中のポリビニルピロリ
ドン量を元素分析法により測定したところ3.5%であ
った。また、γ線照射後の中空糸の不溶物量を測定した
ところ7.2%であった。強制溶出試験における中空糸
膜から水層に移動したPVPの濃度を調べた結果、ピー
クが現れず検出されなかった。 実施例2 ポリスルホン(アモコ社 Udel−P3500)4
部、(アモコ社 Udel−P1700)12部、ポリ
ビニルピロリドン(ISP社 K30)3部、ポリビニ
ルピロリドン(ISP社K90)3部をジメチルアセト
アミド77部、水1部を加熱溶解し、製膜原液とした。
原液粘度は50℃で18Pa・sであった。実施例1と
同様な工程を経てモジュールを作成した。
The water permeability of the dried hollow fiber is 772.
ml / hr / m 2 / mmHg, and no performance decrease was observed. Furthermore, when the amount of polyvinylpyrrolidone in the hollow fiber membrane was measured by elemental analysis, it was 3.5%. In addition, the amount of insoluble matter in the hollow fiber after gamma ray irradiation was 7.2%. As a result of examining the concentration of PVP transferred from the hollow fiber membrane to the aqueous layer in the forced elution test, no peak appeared and was not detected. Example 2 Polysulfone (Amoco Udel-P3500) 4
Parts, 12 parts of (Amoco Udel-P1700), 3 parts of polyvinylpyrrolidone (ISP K30), 3 parts of polyvinylpyrrolidone (ISP K90) 77 parts of dimethylacetamide, and 1 part of water dissolved by heating to obtain a stock solution. .
The stock solution viscosity was 18 Pa · s at 50 ° C. A module was created through the same steps as in Example 1.

【0032】水押し出し後の中空糸膜の抱液率は330
%であった。γ線照射(25KGy)後、透水性能、各
溶質におけるクリアランス、アルブミン透過率を測定し
たところ、尿素、クレアチニン、尿酸、リン酸、VB1
2のクリアランスはそれぞれ193ml/min、18
2ml/min、178ml/min、184ml/m
in、142ml/min、透水性能 720ml/h
r/m2/mmHg、アルブミン透過率1.8%であっ
た。乾燥後の中空糸の透水性能は734 ml/hr/
m2/mmHgであり、性能低下は観測されなかった。
The water retention rate of the hollow fiber membrane after water extrusion was 330.
%Met. After γ-ray irradiation (25 KGy), the water permeability, the clearance in each solute, and the albumin transmittance were measured, and urea, creatinine, uric acid, phosphoric acid, VB1
The clearances of 2 were 193 ml / min and 18 respectively.
2ml / min, 178ml / min, 184ml / m
in, 142ml / min, water permeability 720ml / h
r / m 2 / mmHg, and albumin transmittance was 1.8%. The water permeability of the hollow fiber after drying is 734 ml / hr /
m2 / mmHg, and no performance deterioration was observed.

【0033】さらに、中空糸膜中のポリビニルピロリド
ン量を元素分析法により測定したところ4.0%であっ
た。また、γ線照射後の中空糸の不溶物量を測定したと
ころ7.8%となった。強制溶出試験における中空糸膜
から水層に移動したPVPの濃度を調べた結果、実施例
1と同様に検出されなかった。 実施例3 ポリスルホン(アモコ社 Udel−P3500)4
部、(アモコ社 Udel−P1700)12部、ポリ
ビニルピロリドン(ISP社 K30)2部、ポリビニ
ルピロリドン(ISP社K90)4部をジメチルアセト
アミド77部、水1部を加熱溶解し、製膜原液とした。
原液粘度は50℃で23Pa・sであった。実施例1と
同様な工程を経てモジュール化した。
Further, the amount of polyvinylpyrrolidone in the hollow fiber membrane was measured by elemental analysis and found to be 4.0%. The amount of insoluble matter in the hollow fiber after γ-ray irradiation was 7.8%. As a result of examining the concentration of PVP transferred from the hollow fiber membrane to the aqueous layer in the forced elution test, no PVP was detected as in Example 1. Example 3 Polysulfone (Amoco Udel-P3500) 4
Parts, (Amoco Udel-P1700) 12 parts, polyvinylpyrrolidone (ISP K30) 2 parts, polyvinylpyrrolidone (ISP K90) 4 parts 77 parts dimethylacetamide and water 1 part heated and dissolved to obtain a film forming stock solution. .
The stock solution viscosity was 23 Pa · s at 50 ° C. The module was formed through the same steps as in Example 1.

【0034】水押し出し後の中空糸膜の抱液率は400
%であった。γ線照射(25KGy)後、透水性能、各
溶質におけるクリアランス、アルブミン透過率を測定し
たところ透水性能 702ml/hr/m2/mmH
g、尿素、クレアチニン、尿酸、リン酸、VB12のク
リアランスはそれぞれ191ml/min、180ml
/min、175ml/min、181ml/min、
140ml/min、アルブミン透過率1.0%であっ
た。乾燥後の中空糸の透水性能は727 ml/hr/
m2/mmHgであり、性能低下は観測されなかった。
The water retention rate of the hollow fiber membrane after water extrusion is 400
%Met. After γ-ray irradiation (25 KGy), the water permeability, the clearance in each solute, and the albumin transmittance were measured. The water permeability was 702 ml / hr / m 2 / mmH.
g, urea, creatinine, uric acid, phosphoric acid, clearance of VB12 are 191 ml / min and 180 ml, respectively.
/ Min, 175 ml / min, 181 ml / min,
140 ml / min, and albumin transmittance was 1.0%. The water permeability of the dried hollow fiber is 727 ml / hr /
m2 / mmHg, and no performance deterioration was observed.

【0035】さらに、中空糸膜中のポリビニルピロリド
ン量を元素分析法により測定したところ4.7%であっ
た。また、γ線照射後の中空糸の不溶物量を測定したと
ころ8.3%となった。強制溶出試験における中空糸膜
から水層に移動したPVPの濃度を調べた結果、実施例
1と同様に検出されなかった。 実施例4 ポリスルホン(アモコ社 Udel−P3500)4
部、(アモコ社 Udel−P1700)12部、ポリ
ビニルピロリドン(ISP社 K30)1部、ポリビニ
ルピロリドン(ISP社K90)5部をジメチルアセト
アミド77部、水1部を加熱溶解し、製膜原液とした。
原液粘度は50℃で29Pa・sであった。実施例1と
同様な工程を経てモジュール化した。
Further, the amount of polyvinylpyrrolidone in the hollow fiber membrane was measured by elemental analysis and found to be 4.7%. The amount of insoluble matter in the hollow fiber after γ-ray irradiation was measured to be 8.3%. As a result of examining the concentration of PVP transferred from the hollow fiber membrane to the aqueous layer in the forced elution test, no PVP was detected as in Example 1. Example 4 Polysulfone (Amoco Udel-P3500) 4
Parts, (Amoco Udel-P1700) 12 parts, polyvinylpyrrolidone (ISP K30) 1 part, polyvinylpyrrolidone (ISP K90) 5 parts 77 parts dimethylacetamide and water 1 part heated and dissolved to obtain a film forming stock solution. .
The stock solution viscosity was 29 Pa · s at 50 ° C. The module was formed through the same steps as in Example 1.

【0036】水押し出し後の中空糸膜の抱液率は380
%であった。γ線照射(25KGy)後、透水性能、各
溶質におけるクリアランス、アルブミン透過率を測定し
たところ透水性能 675ml/hr/m2/mmH
g、尿素、クレアチニン、尿酸、リン酸、VB12のク
リアランスはそれぞれ190ml/min、179ml
/min、173ml/min、179ml/min、
138ml/min、アルブミン透過率0.9%であっ
た。乾燥後の中空糸の透水性能は668 ml/hr/
m2/mmHgであり、性能低下は観測されなかった。
The water retention rate of the hollow fiber membrane after water extrusion was 380.
%Met. After γ-ray irradiation (25 KGy), the water permeability, the clearance in each solute, and the albumin transmittance were measured. The water permeability was 675 ml / hr / m 2 / mmH.
g, urea, creatinine, uric acid, phosphoric acid, clearance of VB12 are 190 ml / min and 179 ml, respectively.
/ Min, 173 ml / min, 179 ml / min,
138 ml / min and albumin transmittance was 0.9%. The water permeability of the dried hollow fiber was 668 ml / hr /
m2 / mmHg, and no performance deterioration was observed.

【0037】さらに、中空糸膜中のポリビニルピロリド
ン量を元素分析法により測定したところ5.1%であっ
た。また、γ線照射後の中空糸の不溶物量を測定したと
ころ8.9%となった。強制溶出試験における中空糸膜
から水層に移動したPVPの濃度を調べた結果、実施例
1と同様に検出されなかった。 実施例5 ポリスルホン(アモコ社 Udel−P3500)4
部、(アモコ社 Udel−P1700)12部、ポリ
ビニルピロリドン(ISP社K90)6部をジメチルア
セトアミド77部、水1部を加熱溶解し、製膜原液とし
た。原液粘度は50℃で38Pa・sであった。実施例
1と同様な工程を経てモジュール化した。
Further, the content of polyvinylpyrrolidone in the hollow fiber membrane was measured by elemental analysis and found to be 5.1%. In addition, the amount of insoluble matter in the hollow fiber after γ-ray irradiation was measured to be 8.9%. As a result of examining the concentration of PVP transferred from the hollow fiber membrane to the aqueous layer in the forced elution test, no PVP was detected as in Example 1. Example 5 Polysulfone (Amoco Udel-P3500) 4
Parts, 12 parts of (Amoco Udel-P1700), 6 parts of polyvinylpyrrolidone (K90 of ISP), 77 parts of dimethylacetamide, and 1 part of water were heated and dissolved to prepare a film forming stock solution. The stock solution viscosity was 38 Pa · s at 50 ° C. The module was formed through the same steps as in Example 1.

【0038】水押し出し後の中空糸膜の抱液率は350
%であった。γ線照射(25KGy)後、透水性能、各
溶質におけるクリアランス、アルブミン透過率を測定し
たところ透水性能620ml/hr/m2/mmHg、
尿素、クレアチニン、尿酸、リン酸、VB12のクリア
ランスはそれぞれ189ml/min、177ml/m
in、169ml/min、178ml/min、13
7ml/min、アルブミン透過率0.8%であった。
乾燥後の中空糸の透水性能は656 ml/hr/m2
/mmHgであり、性能低下は観測されなかった。
The water retention rate of the hollow fiber membrane after water extrusion is 350
%Met. After γ-ray irradiation (25 KGy), the water permeability, the clearance in each solute, and the albumin transmittance were measured. The water permeability was 620 ml / hr / m 2 / mmHg,
The clearances of urea, creatinine, uric acid, phosphoric acid and VB12 are 189 ml / min and 177 ml / m, respectively.
in, 169 ml / min, 178 ml / min, 13
7 ml / min and albumin transmittance was 0.8%.
The water permeability of the dried hollow fiber is 656 ml / hr / m2.
/ MmHg, and no performance degradation was observed.

【0039】さらに、中空糸膜中のポリビニルピロリド
ン量を元素分析法により測定したところ5.5%であっ
た。また、γ線照射後の中空糸の不溶物量を測定したと
ころ9.2%となった。強制溶出試験における中空糸膜
から水層に移動したPVPの濃度を調べた結果、実施例
1と同様に検出されなかった。 比較例1 ポリスルホン(アモコ社 Udel−P3500)18
部、ポリビニルピロリドン(BASF K90)3部、
ポリビニルピロリドン(BASF K30)6部をジメ
チルアセトアミド72部、水1部を加熱溶解し、製膜原
液とした。原液粘度は30℃で70Pa・sであった。
この原液を温度50℃の紡糸口金部へ送り、外径0.3
5mm、内径0.25mmの2重スリット管から芯液と
してジメチルアセトアミド65部、水35部からなる溶
液を吐出させ、中空糸膜を形成させた後、温度30℃、
露点28℃の調湿250mmのドライゾーン雰囲気を経
て、ジメチルアセトアミド20重量%、水80重量%か
らなる温度40℃の凝固浴を通過させ、80℃20秒の
水洗工程、グリセリンによる保湿工程を経て得られた中
空糸膜を巻き取り束とした。グリセリン脱液後、ケース
に充填し、ポッティングし、端部を両面開口させて、モ
ジュールを作成した。 グリセリンを洗い流し、水充填
した後、25kGyのγ線照射を行った。このモジュー
ルの透水性能、各溶質におけるクリアランス、アルブミ
ン透過率を測定したところ、尿素、クレアチニン、尿
酸、リン酸、VB12のクリアランスはそれぞれ194
ml/min、185ml/min、176ml/mi
n、183ml/min、135ml/min、透水性
能 716ml/hr/m2/mmHg、アルブミン透
過率0.7%であった。
Further, the amount of polyvinylpyrrolidone in the hollow fiber membrane was measured by elemental analysis and found to be 5.5%. In addition, the amount of insoluble matter in the hollow fiber after γ-ray irradiation was measured to be 9.2%. As a result of examining the concentration of PVP transferred from the hollow fiber membrane to the aqueous layer in the forced elution test, no PVP was detected as in Example 1. Comparative Example 1 Polysulfone (Amoco Udel-P3500) 18
Parts, polyvinylpyrrolidone (BASF K90) 3 parts,
6 parts of polyvinylpyrrolidone (BASF K30) were heated and dissolved in 72 parts of dimethylacetamide and 1 part of water to prepare a film forming stock solution. The stock solution viscosity was 70 Pa · s at 30 ° C.
This stock solution was sent to a spinneret at a temperature of 50 ° C.
A solution composed of 65 parts of dimethylacetamide and 35 parts of water was discharged as a core liquid from a double slit tube having a diameter of 5 mm and an inner diameter of 0.25 mm to form a hollow fiber membrane.
After passing through a dry zone atmosphere having a dew point of 28 ° C. and a humidity control of 250 mm, a coagulation bath containing dimethylacetamide (20% by weight) and water (80% by weight) at a temperature of 40 ° C. is passed. The obtained hollow fiber membrane was used as a wound bundle. After the glycerin was drained, the case was filled, potted, and the ends were opened on both sides to produce a module. After glycerin was washed out and filled with water, 25 kGy of γ-ray irradiation was performed. When the water permeability, clearance in each solute, and albumin permeability of this module were measured, the clearances of urea, creatinine, uric acid, phosphoric acid, and VB12 were 194, respectively.
ml / min, 185 ml / min, 176 ml / mi
n, 183 ml / min, 135 ml / min, water permeability 716 ml / hr / m 2 / mmHg, and albumin transmittance 0.7%.

【0040】中空糸膜中のポリビニルピロリドン量を元
素分析法により測定したところ4.5%であった。ま
た、中空糸の不溶物量を測定したところ8.0%となっ
た。強制溶出試験における中空糸膜から水層に移動した
PVPの濃度を調べた結果、実施例1と同様に検出され
なかった。次に、モジュールの充填液を抜いて、そのま
ま、乾燥機で中空糸膜を乾燥させ、透水性能、各溶質に
おけるクリアランス、アルブミン透過率を測定したとこ
ろ、尿素、クレアチニン、尿酸、リン酸、VB12のク
リアランスはそれぞれ186ml/min、177ml
/min、169ml/min、176ml/min、
119ml/min、透水性能 10ml/hr/m2
/mmHg、アルブミン透過率0.1%で大幅な性能低
下が見られた。乾燥前の中空糸をモジュールから取り出
し、前述の方法で乾燥を行っても、同様に透水性能の低
下が確認された。
The amount of polyvinylpyrrolidone in the hollow fiber membrane was measured by elemental analysis and found to be 4.5%. Further, the insoluble matter content of the hollow fiber was measured, and it was 8.0%. As a result of examining the concentration of PVP transferred from the hollow fiber membrane to the aqueous layer in the forced elution test, no PVP was detected as in Example 1. Next, the filling liquid of the module was drained, and the hollow fiber membrane was dried with a dryer as it was, and the water permeability, the clearance in each solute, and the albumin transmittance were measured, and urea, creatinine, uric acid, phosphoric acid, and VB12 were removed. Clearance is 186ml / min and 177ml respectively
/ Min, 169 ml / min, 176 ml / min,
119 ml / min, water permeability 10 ml / hr / m 2
/ MmHg and albumin transmittance of 0.1%, a significant decrease in performance was observed. Even when the hollow fiber before drying was taken out of the module and dried by the method described above, a decrease in water permeability was also confirmed.

【0041】[0041]

【発明の効果】本発明により、軽い・凍結しないなどの
利点があるドライタイプの半透膜であって、かつ、透水
性・透析性能にも優れた半透膜を内蔵した血液処理用透
析器を提供することができる。
According to the present invention, a dialyzer for blood treatment incorporating a semi-permeable membrane of a dry type having advantages such as lightness and non-freezing and having excellent water permeability and dialysis performance. Can be provided.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4C077 AA05 BB01 KK12 KK21 LL01 LL05 LL11 PP15 PP18 4D006 GA13 HA02 JA02C JA13A JA70A JB05 MA01 MB02 MB20 MC40 MC62 MC85 MC86 MC89 NA10 NA63 NA64 NA75 PB09 PB52 PC41 PC47  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4C077 AA05 BB01 KK12 KK21 LL01 LL05 LL11 PP15 PP18 4D006 GA13 HA02 JA02C JA13A JA70A JB05 MA01 MB02 MB20 MC40 MC62 MC85 MC86 MC89 NA10 NA63 NA64 NA75 PB09 PB52 PC41 PC47

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】疎水性高分子、親水性高分子を構成成分と
して含んでなる半透膜を内蔵した血液処理用透析器にお
いて、該半透膜の乾燥前透水性能に対する乾燥後の透水
性能が1/2以上かつ、透析器のビタミンB12のクリ
アランスが1.6m2換算で135ml/min以上で
ある血液処理用透析器。
1. A blood treatment dialyzer having a built-in semipermeable membrane containing a hydrophobic polymer and a hydrophilic polymer as a constituent component, wherein the semipermeable membrane has a water permeability after drying as compared to a water permeability before drying. A blood treatment dialyzer wherein the clearance of vitamin B12 of the dialyzer is at least 135 ml / min in terms of 1.6 m 2 .
【請求項2】疎水性高分子がポリスルホン系樹脂、親水
性高分子がポリビニルピロリドンである請求項1記載の
血液処理用透析器。
2. The blood treatment dialyzer according to claim 1, wherein the hydrophobic polymer is a polysulfone resin and the hydrophilic polymer is polyvinylpyrrolidone.
【請求項3】ポリビニルピロリドン含有率がポリスルホ
ン系樹脂に対して1〜10重量%である請求項2記載の
血液処理用透析器。
3. The blood treatment dialyzer according to claim 2, wherein the content of polyvinylpyrrolidone is 1 to 10% by weight based on the polysulfone resin.
【請求項4】アルブミン透過率が3%以下である請求項
1〜3のいずれかに記載の血液処理用透析器。
4. The blood processing dialyzer according to claim 1, wherein the albumin transmittance is 3% or less.
JP36296299A 1999-12-21 1999-12-21 Dialysis machine for blood treatment Expired - Lifetime JP4211169B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP36296099A JP4211168B2 (en) 1999-12-21 1999-12-21 Dialyzer manufacturing method and sterilization method
JP36296299A JP4211169B2 (en) 1999-12-21 1999-12-21 Dialysis machine for blood treatment
US09/736,373 US6605218B2 (en) 1999-12-21 2000-12-15 Dialyzers for blood treatment and processes for production thereof
TW089127070A TW467750B (en) 1999-12-21 2000-12-18 The dialyzater for blood treatment and the method of production thereof
KR1020000078501A KR100701115B1 (en) 1999-12-21 2000-12-19 Dialyzers for Blood Treatment and Processes for Production Thereof
CA002329103A CA2329103C (en) 1999-12-21 2000-12-20 Dialyzers for blood treatment and processes for production thereof
CNB2004100955019A CN100453126C (en) 1999-12-21 2000-12-20 Dialyzers for blood treatment and processes for production thereof
CNB001355821A CN1240446C (en) 1999-12-21 2000-12-20 Blood dialyser and manufacture thereof
DE60034416T DE60034416T2 (en) 1999-12-21 2000-12-21 Dialyzers for blood treatment and their manufacturing process
AT00311580T ATE359858T1 (en) 1999-12-21 2000-12-21 DIALYZERS FOR BLOOD TREATMENT AND THEIR PRODUCTION PROCESS
EP00311580A EP1110563B1 (en) 1999-12-21 2000-12-21 Dialyzers for blood treatment and processes for production thereof
ES00311580T ES2285998T3 (en) 1999-12-21 2000-12-21 DIALIZERS FOR THE TREATMENT OF BLOOD AND PROCESSES FOR THE PRODUCTION OF THE SAME.
US10/404,099 US6960297B2 (en) 1999-12-21 2003-04-02 Dialyzers for blood treatment and processes for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36296299A JP4211169B2 (en) 1999-12-21 1999-12-21 Dialysis machine for blood treatment

Publications (2)

Publication Number Publication Date
JP2001170172A true JP2001170172A (en) 2001-06-26
JP4211169B2 JP4211169B2 (en) 2009-01-21

Family

ID=18478176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36296299A Expired - Lifetime JP4211169B2 (en) 1999-12-21 1999-12-21 Dialysis machine for blood treatment

Country Status (1)

Country Link
JP (1) JP4211169B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003245526A (en) * 2001-12-19 2003-09-02 Toray Ind Inc Hollow fiber membrane, method for manufacturing the same, hollow fiber membrane module and method for manufacturing the same
JP2005334318A (en) * 2004-05-27 2005-12-08 Toyobo Co Ltd High strength and high water permeability hollow fiber membrane type hemocatharsis apparatus
JP2005334428A (en) * 2004-05-28 2005-12-08 Toyobo Co Ltd High water permeability hollow fiber membrane type hemocatharsis apparatus with superior hemocompatibility
JP2005342095A (en) * 2004-06-01 2005-12-15 Toyobo Co Ltd High water-permeable hollow fiber membrane type blood purifier
JP2006051094A (en) * 2004-08-10 2006-02-23 Toyobo Co Ltd Hollow fiber membrane module
WO2007018242A2 (en) 2005-08-10 2007-02-15 Asahi Kasei Medical Co Ltd Hollow fiber membrane type blood purifier
JP2007229096A (en) * 2006-02-28 2007-09-13 Toray Ind Inc Hollow fibrous membrane module and manufacture process of the same
JP2010017712A (en) * 2001-12-19 2010-01-28 Toray Ind Inc Hollow fiber membrane and hollow fiber membrane module
WO2013094533A1 (en) 2011-12-19 2013-06-27 東レ株式会社 Hollow fiber membrane module and casing tube used for same
JP2015163398A (en) * 2009-09-01 2015-09-10 東レ株式会社 Separation membrane and separation membrane module, and method of producing separation membrane and method of manufacturing separation membrane module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8786793B2 (en) 2007-07-27 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017712A (en) * 2001-12-19 2010-01-28 Toray Ind Inc Hollow fiber membrane and hollow fiber membrane module
JP2003245526A (en) * 2001-12-19 2003-09-02 Toray Ind Inc Hollow fiber membrane, method for manufacturing the same, hollow fiber membrane module and method for manufacturing the same
JP4678063B2 (en) * 2001-12-19 2011-04-27 東レ株式会社 Hollow fiber membrane module
JP2005334318A (en) * 2004-05-27 2005-12-08 Toyobo Co Ltd High strength and high water permeability hollow fiber membrane type hemocatharsis apparatus
JP4666248B2 (en) * 2004-05-27 2011-04-06 東洋紡績株式会社 High strength high water permeability hollow fiber membrane blood purifier
JP2005334428A (en) * 2004-05-28 2005-12-08 Toyobo Co Ltd High water permeability hollow fiber membrane type hemocatharsis apparatus with superior hemocompatibility
JP2005342095A (en) * 2004-06-01 2005-12-15 Toyobo Co Ltd High water-permeable hollow fiber membrane type blood purifier
JP4706194B2 (en) * 2004-06-01 2011-06-22 東洋紡績株式会社 Highly permeable hollow fiber membrane blood purifier
JP4599934B2 (en) * 2004-08-10 2010-12-15 東洋紡績株式会社 Hollow fiber membrane module
JP2006051094A (en) * 2004-08-10 2006-02-23 Toyobo Co Ltd Hollow fiber membrane module
WO2007018242A2 (en) 2005-08-10 2007-02-15 Asahi Kasei Medical Co Ltd Hollow fiber membrane type blood purifier
JP2007229096A (en) * 2006-02-28 2007-09-13 Toray Ind Inc Hollow fibrous membrane module and manufacture process of the same
JP2015163398A (en) * 2009-09-01 2015-09-10 東レ株式会社 Separation membrane and separation membrane module, and method of producing separation membrane and method of manufacturing separation membrane module
WO2013094533A1 (en) 2011-12-19 2013-06-27 東レ株式会社 Hollow fiber membrane module and casing tube used for same

Also Published As

Publication number Publication date
JP4211169B2 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
JP4211168B2 (en) Dialyzer manufacturing method and sterilization method
JP4061798B2 (en) Semipermeable membrane for blood treatment and dialyzer for blood treatment using the same
CN100457242C (en) Dialysis membrane having improved average molecular distance
JP4453248B2 (en) Method for producing hollow fiber membrane and hollow fiber membrane module
EP2845641B1 (en) Permselective asymmetric membranes with high molecular weight polyvinylpyrrolidone, the preparation and use thereof
JP6059040B2 (en) Blood treatment hollow fiber membrane, blood purifier comprising the blood treatment hollow fiber membrane, and method for producing the blood purification device
JP3617194B2 (en) Permselective separation membrane and method for producing the same
JP3366040B2 (en) Polysulfone-based semipermeable membrane and method for producing the same
JP4211169B2 (en) Dialysis machine for blood treatment
AU672856B2 (en) High flux hollow fiber membrane
JP3966481B2 (en) Semipermeable membrane
JP3651121B2 (en) Permselective separation membrane
JP3295321B2 (en) Permselective hollow fiber membrane
JP3334705B2 (en) Polysulfone-based selectively permeable hollow fiber membrane
JP4003982B2 (en) Polysulfone-based selectively permeable separation membrane
JP2000153134A (en) High performance blood purifying membrane
JP4678063B2 (en) Hollow fiber membrane module
JP2894475B2 (en) Hemodialysis machine using hollow fiber membrane
JP2000210544A (en) Production of semipermeable membrane
JP3489372B2 (en) Perm-selective separation membrane
JP2007260345A (en) Permselective separation membrane module
KR20010073727A (en) A polysulfone-based hollow fiber membrance for hemodialysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061220

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080522

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4211169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

EXPY Cancellation because of completion of term