JP2006271546A - Puncture controller, puncture robot and program for puncture control - Google Patents

Puncture controller, puncture robot and program for puncture control Download PDF

Info

Publication number
JP2006271546A
JP2006271546A JP2005092644A JP2005092644A JP2006271546A JP 2006271546 A JP2006271546 A JP 2006271546A JP 2005092644 A JP2005092644 A JP 2005092644A JP 2005092644 A JP2005092644 A JP 2005092644A JP 2006271546 A JP2006271546 A JP 2006271546A
Authority
JP
Japan
Prior art keywords
needle
information
puncture
biological tissue
manipulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005092644A
Other languages
Japanese (ja)
Other versions
JP4390146B2 (en
Inventor
Masakatsu Fujie
正克 藤江
Atsushi Okamoto
淳 岡本
Hiroshi Kobayashi
洋 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Original Assignee
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University filed Critical Waseda University
Priority to JP2005092644A priority Critical patent/JP4390146B2/en
Publication of JP2006271546A publication Critical patent/JP2006271546A/en
Application granted granted Critical
Publication of JP4390146B2 publication Critical patent/JP4390146B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)
  • Surgical Instruments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control the operation of a manipulator holding a needle so that the needle accurately reaches a target part of living tissue to be punctured. <P>SOLUTION: This puncture controller 10 comprises: an information storage part 21 storing various kinds of information (general information) of the general human liver; a correction part 22 for correcting the general information in the information storage part 21 to individual information corresponding to the individual difference of a puncture object patient; and a course decision part 23 for combining information by a model obtained from the individual information in the correction part 22 and force information and/or visual information obtained by a force sensor 18 and an image acquisition device 19, deciding the course of the needle 23 and giving a drive command to an actuator 16. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、穿刺制御装置、穿刺ロボット及び穿刺制御用プログラムに係り、更に詳しくは、ロボットを使って生体組織に穿刺を行う際に、当該生体組織の特性を考慮し、穿刺のターゲットに針を確実に到達させることに寄与する穿刺制御装置、穿刺ロボット及び穿刺制御用プログラムに関する。   The present invention relates to a puncture control device, a puncture robot, and a puncture control program, and more particularly, when a puncture is performed on a biological tissue using a robot, in consideration of the characteristics of the biological tissue, a needle is used as a puncture target. The present invention relates to a puncture control device, a puncture robot, and a puncture control program that contributes to reliably reaching.

近時、医療現場では、患者に負担の少ない低侵襲な治療が求められているが、その中でも、針を用いた穿刺による治療法が注目を集めている。この治療法としては、例えば、ガン等の治療等に用いられるRFA(ラジオ波凝固療法)がある。このRFAは、腫瘍の存在する生体組織の病変部位に針を刺し、当該病変部位に対してラジオ波による高熱を付与することにより凝固壊死させる療法である。ところが、医師の手で生体組織の表面から穿刺の対象部分(ターゲット)に針を正確に到達させるには、針の移動に伴う生体組織の変形をも考慮に入れながら、針の位置や進入角度等を調整しなければならず、相当の熟練度を要し、医師の経験と勘に頼るところが大きい。特に、最も柔らかい臓器の一つである肝臓は、熟練した医師であっても、失敗する可能性が高いと言われている。   Recently, in the medical field, there is a demand for minimally invasive treatment with less burden on the patient. Among them, a treatment method by puncture using a needle is attracting attention. As this treatment method, for example, there is RFA (radiofrequency coagulation therapy) used for treatment of cancer and the like. This RFA is a therapy for coagulating necrosis by puncturing a lesion site in a living tissue where a tumor is present and applying high heat by radio waves to the lesion site. However, in order for a doctor to accurately reach the needle from the surface of the living tissue to the target portion (target) of the puncture, the position of the needle and the angle of entry while taking into account the deformation of the living tissue as the needle moves. Etc. must be adjusted, requires considerable skill, and relies heavily on the experience and intuition of doctors. In particular, the liver, which is one of the softest organs, is said to be highly likely to fail even by a skilled doctor.

従って、マスター・スレーブ方式等を採用する手術支援ロボットが種々研究されている中、マニピュレータに保持された針を生体組織表面から穿刺のターゲットに確実に到達させるような手術支援ロボットが要請されている。ここで、針の進路の決定に際しては、生体組織の状態や変形を考慮し、当該変形を予測して生体組織の状態に対応させることが必要である。   Therefore, a variety of surgical support robots employing a master / slave method have been studied, and there is a demand for a surgical support robot that can reliably reach the puncture target from the surface of the living tissue with the needle held by the manipulator. . Here, when determining the course of the needle, it is necessary to consider the state and deformation of the living tissue and predict the deformation to correspond to the state of the living tissue.

ところで、生体組織のターゲットに針を到達させる際に、生体組織の境界を貫通したか否かを針に作用する荷重の変化から検知する穿刺装置が知られている(特許文献1参照)。
特開2004−81852号公報
By the way, there is known a puncture device that detects whether or not a boundary of a living tissue has been penetrated from a change in a load acting on the needle when the needle reaches the target of the living tissue (see Patent Document 1).
JP 2004-81852 A

しかしながら、前記穿刺装置にあっては、針が生体組織の境界を貫通したか否かを判断するものであって、針が正確に穿刺のターゲットに到達できるように、針の進路を決定するものでなく、針を正確にターゲットに導くことができない。   However, in the puncture device, it is determined whether or not the needle has penetrated the boundary of the living tissue, and determines the course of the needle so that the needle can accurately reach the puncture target. In addition, the needle cannot be accurately guided to the target.

本発明は、このような事情に鑑みて案出されたものであり、その目的は、穿刺される生体組織のターゲット部分に正確に針が到達するように、当該針を保持するマニピュレータの動作制御を行うことができる穿刺制御装置、穿刺ロボット及び穿刺制御用プログラムを提供することにある。   The present invention has been devised in view of such circumstances, and an object of the present invention is to control the operation of a manipulator that holds the needle so that the needle accurately reaches the target portion of the punctured living tissue. It is to provide a puncture control apparatus, a puncture robot, and a puncture control program that can perform puncture.

(1)前記目的を達成するため、本発明は、所定の生体組織に穿刺を行う針を保持するマニピュレータの動作を制御する穿刺制御装置において、
前記生体組織内の針に対する力情報及び/又は視覚情報と、前記生体組織の各種情報から得られたモデルによる情報とを複合して前記針の進路を決定し、当該進路に沿って針が動くように前記マニピュレータの動作を制御する、という構成を採っている。
(1) In order to achieve the above object, the present invention provides a puncture control apparatus that controls the operation of a manipulator that holds a needle that punctures a predetermined living tissue.
The path of the needle is determined by combining force information and / or visual information on the needle in the biological tissue and information based on a model obtained from various information on the biological tissue, and the needle moves along the path. The operation of the manipulator is controlled as described above.

(2)ここで、前記生体組織の各種情報は、当該生体組織の一般的なデータに対し、前記力情報及び/又は視覚情報から、個体差に応じて補正される、という構成を採ることが好ましい。   (2) Here, various information on the living tissue may be corrected according to individual differences from the force information and / or visual information with respect to general data of the living tissue. preferable.

(3)また、本発明に係る穿刺ロボットは、前述の穿刺制御装置を備えている。   (3) The puncture robot according to the present invention includes the puncture control device described above.

(4)更に、本発明は、所定の生体組織に穿刺を行う針を保持するマニピュレータの動作を制御する穿刺制御装置に組み込まれた穿刺制御用プログラムであって、
前記生体組織内の針に対する力情報及び/又は視覚情報と、前記生体組織の各種情報から得られたモデルによる情報とを複合して前記針の進路を決定するステップと、当該進路に沿って針が動くように前記マニピュレータへの動作指令を行うステップとを、
前記穿刺制御装置に実行させる、という構成を採っている。
(4) Furthermore, the present invention is a puncture control program incorporated in a puncture control device that controls the operation of a manipulator that holds a needle for puncturing a predetermined living tissue,
Determining a course of the needle by combining force information and / or visual information on the needle in the biological tissue and information based on a model obtained from various types of information on the biological tissue; and a needle along the course Instructing the manipulator to move so that the
The configuration is such that the puncture control device is executed.

前記(1)、(3)、(4)のように構成することで、生体組織内の針に対する力情報及び視覚情報から実際の針の状態を把握しつつ、生体組織の各種情報から得られるモデルを使って、針の動作を予測して針の進路を決定することができ、生体組織の状態と変形を考慮しながら、針をターゲットに確実に到達させることができる。このため、医師の経験と勘に全て頼らなくても、穿刺を確実に行うことができる。   By configuring as in the above (1), (3), and (4), it is obtained from various information on the living tissue while grasping the actual needle state from the force information and visual information on the needle in the living tissue. Using the model, it is possible to predict the movement of the needle by predicting the movement of the needle, and it is possible to reliably reach the target while considering the state and deformation of the living tissue. For this reason, puncture can be performed reliably without relying entirely on the experience and intuition of the doctor.

前記(2)のように構成することで、生体組織の状態や変形を個体差に応じて把握することができ、穿刺される生体組織のターゲット部分に針を一層正確に到達させることができる。   By configuring as in the above (2), the state and deformation of the living tissue can be grasped according to individual differences, and the needle can reach the target portion of the living tissue to be punctured more accurately.

以下、本発明の実施例について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1には、本実施例に係る穿刺制御装置の概略構成図が示されている。この穿刺制御装置10は、生体組織を穿刺する穿刺ロボット11の動作制御に用いられ、具体的には、ヒトの肝臓に対して穿刺する針13を保持するマニピュレータ14の動作を制御する装置である。このマニピュレータ14は、マスター・スレーブ方式によって医師が遠隔操作可能に設けられており、医師が超音波画像等を見ながら、図示しない操作具を操作することで、肝臓の表面からその内部であるターゲットに向かって針13を移動させるようになっている。ここで、本実施例の穿刺制御装置10は、針13が肝臓内を移動する際の当該肝臓の状態や変形によって、針13の先端側が医師の意図しない方向に進んだときでも、針13の先端側がターゲットに向かうように、医師の指示した進路を自動修正し、マニピュレータ14を動作させるアクチュエータ16に動作指令する。この穿刺ロボット11には、針13に作用する力情報(外力)を測定する力センサ18と、肝臓内を移動する針13の視覚情報(画像)を所定時間単位で取得する超音波診断装置、磁気共鳴画像診断装置(MRI)等の画像取得装置19とが設けられている。   FIG. 1 shows a schematic configuration diagram of a puncture control apparatus according to the present embodiment. This puncture control device 10 is used for controlling the operation of a puncture robot 11 that punctures a living tissue, and specifically, is a device that controls the operation of a manipulator 14 that holds a needle 13 that punctures a human liver. . The manipulator 14 is provided by a master / slave system so that a doctor can remotely control the target, and the doctor operates an operating tool (not shown) while looking at an ultrasonic image or the like, so that the target inside the liver is inside the target. The needle 13 is moved toward. Here, the puncture control device 10 of the present embodiment allows the needle 13 to move even when the distal end side of the needle 13 advances in a direction unintended by the doctor due to the state and deformation of the liver when the needle 13 moves in the liver. The course instructed by the doctor is automatically corrected so that the distal end is directed to the target, and an operation command is issued to the actuator 16 that operates the manipulator 14. The puncture robot 11 includes a force sensor 18 that measures force information (external force) acting on the needle 13, and an ultrasonic diagnostic apparatus that acquires visual information (image) of the needle 13 moving in the liver in a predetermined time unit. An image acquisition device 19 such as a magnetic resonance imaging apparatus (MRI) is provided.

前記穿刺制御装置10は、図1に示されるように、一般的なヒトの肝臓の各種情報(以下、「一般情報」と称する。)が記憶された情報記憶部21と、情報記憶部21の一般情報を穿刺対象患者の個体差に応じた個体情報に補正する補正部22と、補正部22での個体情報から得られたモデルによる情報と力センサ18及び画像取得装置19によって得られた力情報及び/又は視覚情報とを複合して針13の進路を決定し、アクチュエータ16に駆動指令を行う進路決定部23とを備えて構成されている。   As shown in FIG. 1, the puncture control device 10 includes an information storage unit 21 in which various types of general human liver information (hereinafter referred to as “general information”) is stored, and an information storage unit 21. A correction unit 22 that corrects general information into individual information corresponding to individual differences among puncture target patients, information based on models obtained from individual information in the correction unit 22, and force obtained by the force sensor 18 and the image acquisition device 19 A route determining unit 23 that determines the course of the needle 13 by combining information and / or visual information and issues a drive command to the actuator 16 is provided.

前記情報記憶部21は、一般的なヒトの肝臓の弾性係数、摩擦係数、せん断係数、ポアソン比、大きさ、形状等の各種情報が一般情報として記憶されている。   The information storage unit 21 stores various types of information such as a general human liver elastic coefficient, friction coefficient, shear coefficient, Poisson's ratio, size, and shape as general information.

前記補正部22は、力センサ18及び/又は画像取得装置19によって得られたデータに基づく穿刺対象患者の肝臓内の針13の状態から、情報記憶部21に記憶された一般情報を前記穿刺対象患者の個体情報に補正するように機能する。例えば、前記各種情報のうち弾性係数は、肝臓内の針に作用する力が力センサ18で検出され、そのときの分布荷重と、予め記憶された情報記憶部21の弾性係数から算出された分布荷重とが対比され、誤差等が考慮されて、針13の周囲の肝臓部位における患者個人の弾性係数が決定される。なお、前記補正部22では、画像取得装置19のデータによって得られた穿刺対象患者の肝臓内の針13の状態に基づいて、前述した補正を行うことも可能である。   The correction unit 22 obtains general information stored in the information storage unit 21 from the state of the needle 13 in the liver of the puncture target patient based on the data obtained by the force sensor 18 and / or the image acquisition device 19. It functions to correct the patient's individual information. For example, among the various information, the elastic coefficient is a distribution calculated from the distribution load at the time when the force acting on the needle in the liver is detected by the force sensor 18 and the elastic coefficient of the information storage unit 21 stored in advance. The patient's individual elastic modulus in the liver region around the needle 13 is determined by comparing the load with an error and the like. The correction unit 22 can also perform the above-described correction based on the state of the needle 13 in the liver of the puncture target patient obtained from the data of the image acquisition device 19.

前記進路決定部23では、図示しない操作具からの指令に基づき、次のステップで針の進路が決定される。すなわち、予めターゲットとなる肝臓内の部位が記憶された状態で、肝臓の表面からその内部に進入した針13の現在の状態が力センサ18及び/又は画像取得装置19によって把握され、次なる針13の進路を決定する際の参考とされる。すなわち、力センサ18で針13に作用する力が一定の閾値を超えたときには、針13から肝臓に危険な力が付与されたと判断され、針13を進行させ難くするように穿刺ロボット11を制御する。また、肝臓は、ある一定以上伸びると、硬化する性質を持つため、前記閾値は、肝臓を硬化させないような値に設定される。ここで、針13を進行させ難くする穿刺ロボット11の制御とは、例えば、マニピュレータ14を操作する医師の操作具(図示省略)に対し操作上の抵抗を付加したり、装置から警告音を発したり、図示しないモニターに危険情報を表示したり、針13の進行を停止する等、種々の態様がある。   The course determining unit 23 determines the course of the needle in the next step based on a command from an operating tool (not shown). That is, the current state of the needle 13 that has entered the liver from the surface of the liver in a state where the target site in the liver has been stored in advance is grasped by the force sensor 18 and / or the image acquisition device 19, and the next needle It is used as a reference when deciding 13 courses. That is, when the force acting on the needle 13 by the force sensor 18 exceeds a certain threshold value, it is determined that a dangerous force is applied from the needle 13 to the liver, and the puncture robot 11 is controlled so that the needle 13 is difficult to advance. To do. In addition, since the liver has a property of hardening when it extends beyond a certain level, the threshold value is set to a value that does not harden the liver. Here, the control of the puncture robot 11 that makes it difficult to advance the needle 13 includes, for example, adding an operating resistance to a doctor's operation tool (not shown) that operates the manipulator 14, or generating a warning sound from the apparatus. There are various modes such as displaying danger information on a monitor (not shown) and stopping the progress of the needle 13.

また、画像取得装置19のデータから、肝臓内の針13の画像が撮像され、針13の原形を撮像した画像とマッチングを行うことで、針13の変形が把握される。すなわち、肝臓内を移動する針は、肝臓に囲まれているため、針13の動作に応じて肝臓から反力を受け、撓みを生じる場合がある。このとき、針13の先端は、撓みが生じていない場合に対して位置がずれることになる。従って、前述した画像マッチングによって、針の撓み量を求め、当該撓みによる針13の先端の位置ずれをキャンセルする方向に針13が動くように、マニピュレータ14を動作させる。また、画像取得装置19のデータから、予め設定された穿刺不可部位(例えば、肝硬変部位や血管等)と針13の先端との距離が求められ、当該距離が一定以下になったときには、針13を進行させ難くするように、穿刺ロボット11が制御される。ここでの制御も、例えば、マニピュレータ14を操作する医師の操作具に対し、操作上の抵抗を付加したり、警告音を発したり、図示しないモニターに危険情報を表示したり、針13の進行を停止したり等、種々の態様がある。   Further, the image of the needle 13 in the liver is captured from the data of the image acquisition device 19, and the deformation of the needle 13 is grasped by performing matching with the image obtained by capturing the original shape of the needle 13. That is, since the needle moving in the liver is surrounded by the liver, the needle 13 may bend due to a reaction force from the liver according to the operation of the needle 13. At this time, the position of the tip of the needle 13 is shifted with respect to the case where no bending occurs. Therefore, the amount of bending of the needle is obtained by the above-described image matching, and the manipulator 14 is operated so that the needle 13 moves in a direction to cancel the positional deviation of the tip of the needle 13 due to the bending. Further, from the data of the image acquisition device 19, a distance between a predetermined puncture impossible site (for example, a cirrhosis site or a blood vessel) and the tip of the needle 13 is obtained, and when the distance becomes less than a certain value, the needle 13 The puncture robot 11 is controlled so as to make it difficult to proceed. In this control, for example, an operating resistance is added to the operation tool of the doctor who operates the manipulator 14, a warning sound is generated, danger information is displayed on a monitor (not shown), and the needle 13 is advanced. There are various modes, such as stopping.

更に、補正部22で求められた穿刺対象患者の個体情報を考慮して、マニピュレータの動作が予測制御される。すなわち、肝臓には個体差があり、個々で特性が異なることから、補正部22で求めた穿刺対象患者の肝臓の各種情報から、当該肝臓がモデル化(モデリング)され、針13が意図するルートで進むと、実際どうなるのかを有限要素法等を用いて判断され、前述した力センサ18及び/又は画像取得装置19の各種データによる進路決定と複合して進路決定が行われる。例えば、画像取得装置19のデータから、針13の先端が進行方向左側に5mm撓んだことが把握されると、針13の先端は、ある時間の目標位置から左側に5mmずれてしまうことになる。そのため、その針13の撓みの影響を考慮し、針13を進行方向右側に5mm移動させながら進行させれば良いと判定される。ところが、穿刺対象患者の肝臓のモデリングから、針13の移動前後における肝臓の部位の硬度が相違するため、実際には、針13を進行方向右側に5mm移動させても、針13の先端が前記目標位置から例えば進行方向左側に1mmずれてしまうと計算され、当該計算から、その1mmを加え、針13を進行方向右側に6mm移動させながら進行させれば良いと決定される。   Further, the operation of the manipulator is predicted and controlled in consideration of the individual information of the puncture target patient obtained by the correction unit 22. That is, since there are individual differences in the liver and the characteristics are different from each other, the liver is modeled (modeled) from various information of the liver of the patient to be punctured obtained by the correction unit 22, and the route that the needle 13 is intended for. When the process proceeds to, the actual situation is determined using the finite element method or the like, and the course determination is performed in combination with the course determination based on the various data of the force sensor 18 and / or the image acquisition device 19 described above. For example, if it is grasped from the data of the image acquisition device 19 that the tip of the needle 13 is bent 5 mm to the left in the traveling direction, the tip of the needle 13 is shifted 5 mm to the left from the target position at a certain time. Become. Therefore, in consideration of the influence of the deflection of the needle 13, it is determined that the needle 13 should be advanced while moving 5 mm to the right in the traveling direction. However, since the hardness of the liver region before and after the movement of the needle 13 is different from the modeling of the liver of the patient to be punctured, in fact, even if the needle 13 is moved 5 mm to the right in the traveling direction, the tip of the needle 13 is For example, it is calculated that the position is deviated by 1 mm to the left in the traveling direction from the target position. From the calculation, it is determined that the 1 mm is added and the needle 13 is moved while moving 6 mm to the right in the traveling direction.

従って、このような実施例によれば、穿刺対象患者の肝臓に関する個体情報によるシミュレーションを行いながら、力センサ18や画像取得装置19から実際の状態に応じた制御が行われることになるため、穿刺制御の難しい肝臓等の臓器に対しても、穿刺ロボットにより針13を正確にターゲットに到達させることができるという効果を得る。   Therefore, according to such an embodiment, the control according to the actual state is performed from the force sensor 18 or the image acquisition device 19 while performing the simulation based on the individual information regarding the liver of the puncture target patient. The effect that the needle 13 can accurately reach the target by the puncture robot is obtained even for an organ such as the liver which is difficult to control.

なお、本発明は、肝臓の穿刺制御に限らず、他の臓器や生体組織の穿刺制御に適用することも可能であり、また、他の動物の生体組織に対する穿刺制御にも適用可能である。   The present invention is not limited to puncture control of the liver, but can also be applied to puncture control of other organs and biological tissues, and can also be applied to puncture control of biological tissues of other animals.

また、前記穿刺制御装置10は、針13を保持するマニピュレータ14を有する穿刺ロボット11に一体的に設けられていても良いし、別体としても良い。   Further, the puncture control device 10 may be provided integrally with the puncture robot 11 having the manipulator 14 that holds the needle 13 or may be a separate body.

その他、本発明における装置各部の構成は図示構成例に限定されるものではなく、実質的に同様の作用を奏する限りにおいて、種々の変更が可能である。   In addition, the configuration of each part of the apparatus in the present invention is not limited to the illustrated configuration example, and various modifications are possible as long as substantially the same operation is achieved.

本実施例に係る穿刺制御装置の構成図。The block diagram of the puncture control apparatus which concerns on a present Example.

符号の説明Explanation of symbols

10 穿刺制御装置
11 穿刺ロボット
13 針
14 マニピュレータ
18 力センサ
19 画像取得装置
21 情報記憶部
22 補正部
23 進路決定部
DESCRIPTION OF SYMBOLS 10 Puncture control apparatus 11 Puncture robot 13 Needle 14 Manipulator 18 Force sensor 19 Image acquisition apparatus 21 Information storage part 22 Correction | amendment part 23 Course decision part

Claims (4)

所定の生体組織に穿刺を行う針を保持するマニピュレータの動作を制御する穿刺制御装置において、
前記生体組織内の針に対する力情報及び/又は視覚情報と、前記生体組織の各種情報から得られたモデルによる情報とを複合して前記針の進路を決定し、当該進路に沿って針が動くように前記マニピュレータの動作を制御することを特徴とする穿刺制御装置。
In a puncture control device that controls the operation of a manipulator that holds a needle that punctures a predetermined biological tissue,
The path of the needle is determined by combining force information and / or visual information on the needle in the biological tissue and information based on a model obtained from various information on the biological tissue, and the needle moves along the path. A puncture control device that controls the operation of the manipulator as described above.
前記生体組織の各種情報は、当該生体組織の一般的なデータに対し、前記力情報及び/又は視覚情報から、個体差に応じて補正されることを特徴とする請求項1記載の穿刺制御装置。   The puncture control device according to claim 1, wherein the various types of information on the biological tissue are corrected according to individual differences from the force information and / or visual information with respect to general data of the biological tissue. . 請求項1又は2記載の穿刺制御装置を備えたことを特徴とする穿刺ロボット。   A puncture robot comprising the puncture control device according to claim 1. 所定の生体組織に穿刺を行う針を保持するマニピュレータの動作を制御する穿刺制御装置に組み込まれた穿刺制御用プログラムであって、
前記生体組織内の針に対する力情報及び/又は視覚情報と、前記生体組織の各種情報から得られたモデルによる情報とを複合して前記針の進路を決定するステップと、当該進路に沿って針が動くように前記マニピュレータへの動作指令を行うステップとを、
前記穿刺制御装置に実行させることを特徴とする穿刺制御用プログラム。
A puncture control program incorporated in a puncture control device that controls the operation of a manipulator that holds a needle for puncturing a predetermined biological tissue,
Determining a course of the needle by combining force information and / or visual information on the needle in the biological tissue and information based on a model obtained from various types of information on the biological tissue; and a needle along the course Instructing the manipulator to move so that the
A puncture control program which is executed by the puncture control apparatus.
JP2005092644A 2005-03-28 2005-03-28 Puncture control device, puncture robot, and puncture control program Expired - Fee Related JP4390146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005092644A JP4390146B2 (en) 2005-03-28 2005-03-28 Puncture control device, puncture robot, and puncture control program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005092644A JP4390146B2 (en) 2005-03-28 2005-03-28 Puncture control device, puncture robot, and puncture control program

Publications (2)

Publication Number Publication Date
JP2006271546A true JP2006271546A (en) 2006-10-12
JP4390146B2 JP4390146B2 (en) 2009-12-24

Family

ID=37206871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005092644A Expired - Fee Related JP4390146B2 (en) 2005-03-28 2005-03-28 Puncture control device, puncture robot, and puncture control program

Country Status (1)

Country Link
JP (1) JP4390146B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093455A1 (en) * 2007-02-01 2008-08-07 Olympus Medical Systems Corp. Endoscopic operation device
JP2009226087A (en) * 2008-03-24 2009-10-08 Univ Waseda Support device and its program for puncture planning and method for determining conditions of piercing
JP2009233240A (en) * 2008-03-28 2009-10-15 Univ Waseda Surgery supporting system, approaching state detection device and program thereof
CN102018575A (en) * 2010-12-08 2011-04-20 清华大学 Robot-assisted system and method for controlling flexible needle to puncture soft tissues in real time
JP2011125420A (en) * 2009-12-16 2011-06-30 National Institute Of Advanced Industrial Science & Technology Insertion support device for needle-like surgical instrument
WO2014002805A1 (en) 2012-06-26 2014-01-03 Canon Kabushiki Kaisha Puncture control system and method therefor
CN104007027A (en) * 2014-06-17 2014-08-27 河北大学 Biological soft tissue characteristic test and mechanical parameter calibration system
CN104248471A (en) * 2013-06-27 2014-12-31 中国科学院沈阳自动化研究所 Robot-assisted oblique-tip flexible needle puncture system and method
JP2016027844A (en) * 2014-07-10 2016-02-25 キヤノン株式会社 Puncture planning apparatus and puncture system
CN105615956A (en) * 2016-03-08 2016-06-01 新乡医学院第一附属医院 Tumor interventional treatment device
WO2018071573A1 (en) 2016-10-12 2018-04-19 Intuitive Surgical Operations, Inc. Surgical puncture device insertion systems and related methods
WO2018207498A1 (en) * 2017-05-09 2018-11-15 国立大学法人 岡山大学 Puncture robot and puncture control program
CN110101439A (en) * 2019-06-03 2019-08-09 无锡华飞杰希科技有限公司 A kind of Ultrasound intervention punctures navigation system and puncture supporter
CN110123426A (en) * 2019-06-03 2019-08-16 无锡华飞杰希科技有限公司 A kind of Ultrasound intervention punctures navigation system and puncture supporter
CN110404156A (en) * 2019-08-03 2019-11-05 芜湖安普机器人产业技术研究院有限公司 Target control system and method that the clinic sense of seeds implanted robot mechanics reproduces
CN113171177A (en) * 2021-04-07 2021-07-27 上海交通大学 Human-computer interaction control method and system capable of capturing breakthrough sensation of lumbar puncture tissue layer
WO2024070933A1 (en) * 2022-09-30 2024-04-04 テルモ株式会社 Vascular puncture device and control method thereof

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093455A1 (en) * 2007-02-01 2008-08-07 Olympus Medical Systems Corp. Endoscopic operation device
JP2009226087A (en) * 2008-03-24 2009-10-08 Univ Waseda Support device and its program for puncture planning and method for determining conditions of piercing
JP2009233240A (en) * 2008-03-28 2009-10-15 Univ Waseda Surgery supporting system, approaching state detection device and program thereof
JP2011125420A (en) * 2009-12-16 2011-06-30 National Institute Of Advanced Industrial Science & Technology Insertion support device for needle-like surgical instrument
CN102018575A (en) * 2010-12-08 2011-04-20 清华大学 Robot-assisted system and method for controlling flexible needle to puncture soft tissues in real time
WO2014002805A1 (en) 2012-06-26 2014-01-03 Canon Kabushiki Kaisha Puncture control system and method therefor
JP2014004212A (en) * 2012-06-26 2014-01-16 Canon Inc Puncture control device and method
US9662138B2 (en) 2012-06-26 2017-05-30 Canon Kabushiki Kaisha Puncture control system and method therefor
CN104248471A (en) * 2013-06-27 2014-12-31 中国科学院沈阳自动化研究所 Robot-assisted oblique-tip flexible needle puncture system and method
CN104007027B (en) * 2014-06-17 2016-08-24 河北大学 A kind of biologic soft tissue characteristic test and mechanics parameter calibration system
CN104007027A (en) * 2014-06-17 2014-08-27 河北大学 Biological soft tissue characteristic test and mechanical parameter calibration system
US10255247B2 (en) 2014-07-10 2019-04-09 Canon Kabushiki Kaisha Puncture planning apparatus and puncture system
JP2016027844A (en) * 2014-07-10 2016-02-25 キヤノン株式会社 Puncture planning apparatus and puncture system
US11531726B2 (en) 2014-07-10 2022-12-20 Canon Kabushiki Kaisha Puncture planning apparatus and puncture system
CN105615956A (en) * 2016-03-08 2016-06-01 新乡医学院第一附属医院 Tumor interventional treatment device
WO2018071573A1 (en) 2016-10-12 2018-04-19 Intuitive Surgical Operations, Inc. Surgical puncture device insertion systems and related methods
EP3525696A4 (en) * 2016-10-12 2020-04-08 Intuitive Surgical Operations Inc. Surgical puncture device insertion systems and related methods
CN109618553A (en) * 2016-10-12 2019-04-12 直观外科手术操作公司 Surgical operation sting device insertion system and correlation technique
US11534079B2 (en) 2016-10-12 2022-12-27 Intuitive Surgical Operations, Inc. Surgical puncture device insertion systems and related methods
CN109618553B (en) * 2016-10-12 2022-04-12 直观外科手术操作公司 Surgical puncturing device insertion systems and related methods
WO2018207498A1 (en) * 2017-05-09 2018-11-15 国立大学法人 岡山大学 Puncture robot and puncture control program
JPWO2018207498A1 (en) * 2017-05-09 2020-05-14 国立大学法人 岡山大学 Puncture robot and puncture control program
CN110123426A (en) * 2019-06-03 2019-08-16 无锡华飞杰希科技有限公司 A kind of Ultrasound intervention punctures navigation system and puncture supporter
CN110101439A (en) * 2019-06-03 2019-08-09 无锡华飞杰希科技有限公司 A kind of Ultrasound intervention punctures navigation system and puncture supporter
CN110101439B (en) * 2019-06-03 2024-04-05 北京奥达智声医疗科技有限公司 Ultrasonic intervention puncture navigation system and puncture frame
CN110123426B (en) * 2019-06-03 2024-04-12 北京奥达智声医疗科技有限公司 Ultrasonic intervention puncture navigation system and puncture frame
CN110404156A (en) * 2019-08-03 2019-11-05 芜湖安普机器人产业技术研究院有限公司 Target control system and method that the clinic sense of seeds implanted robot mechanics reproduces
CN113171177A (en) * 2021-04-07 2021-07-27 上海交通大学 Human-computer interaction control method and system capable of capturing breakthrough sensation of lumbar puncture tissue layer
WO2024070933A1 (en) * 2022-09-30 2024-04-04 テルモ株式会社 Vascular puncture device and control method thereof

Also Published As

Publication number Publication date
JP4390146B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP4390146B2 (en) Puncture control device, puncture robot, and puncture control program
JP6872802B2 (en) Systems and methods for inducing the insertion of medical devices
US20210236221A1 (en) Systems and methods for instrument insertion control
US11452567B2 (en) Dynamic planning method for needle insertion
JP6521707B2 (en) Puncture planning device and puncture system
US9956042B2 (en) Systems and methods for robot-assisted transurethral exploration and intervention
JP5288447B2 (en) Surgery support system, approach state detection device and program thereof
Asadian et al. A novel force modeling scheme for needle insertion using multiple Kalman filters
WO2017013828A1 (en) Medical treatment assisting apparatus
JP4636618B2 (en) Simulation device, surgical robot control system using the same, and program for simulation device
WO2016194325A1 (en) Medical treatment assistance system
US20200390512A1 (en) Systems and methods for automatic grip adjustment during energy delivery
JP6482561B2 (en) Robot system
WO2016208140A1 (en) Medical procedure assist device
JP5105330B2 (en) Puncture planning support apparatus and program thereof, and insertion condition determination method
JP4953303B2 (en) Lesions location system
US20220409282A1 (en) Methods and systems for assisting a user in positioning an automated medical device relative to a body of a patient
JP6497299B2 (en) Medical support device
JP2017047005A (en) Medical support device
Leong et al. A precise robotic ablation and division mechanism for liver resection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091001

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4390146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees