JP2006121791A - Noncontact power feeder for vehicle - Google Patents

Noncontact power feeder for vehicle Download PDF

Info

Publication number
JP2006121791A
JP2006121791A JP2004305176A JP2004305176A JP2006121791A JP 2006121791 A JP2006121791 A JP 2006121791A JP 2004305176 A JP2004305176 A JP 2004305176A JP 2004305176 A JP2004305176 A JP 2004305176A JP 2006121791 A JP2006121791 A JP 2006121791A
Authority
JP
Japan
Prior art keywords
power
circuit
coil
power feeding
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004305176A
Other languages
Japanese (ja)
Inventor
Toshiro Matsui
敏郎 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2004305176A priority Critical patent/JP2006121791A/en
Publication of JP2006121791A publication Critical patent/JP2006121791A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a noncontact power feeder for mobile object which enables easy designing of a power feeder, according to itself, even if the mobile object is different, and whose handling is easy at maintenance or cleaning. <P>SOLUTION: A power feed module 3 is constituted by integrating a power feed circuit and a power feed coil and forming a surface part for accommodating the power feed coil in plane form. A power-receiving coil 4 is constituted, by integrating a power receiving circuit and a power-receiving coil and forming a surface part for accommodation of the power receiving coil in plane form. Many power feed coils 3 are arranged along the shifting course 2 of the mobile object 1, and the power-receiving module 4 is provided in the mobile object 1 so that the surface part can face the surface part of the power feed module 3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、クリーンルーム内等で部品等を搬送する移動体に非接触状態で給電することが可能な非接触給電装置に関する。   The present invention relates to a non-contact power supply apparatus that can supply power in a non-contact state to a moving body that conveys components in a clean room or the like.

半導体製造工場などのクリーンルームにおいては、製造工程間で部品等の搬送を行なう移動体による発塵を抑制する必要から、移動体を非接触で給電する給電装置が用いられている。
従来、この種の非接触給電装置としては、下記する特許文献に示されるように、移動体が移動する移動経路に高周波電流を流す励磁線路を設け、これに対して移動体に複数のピックアップを設け、移動経路に設けられた励磁線路を一次側とし、移動体に設けられたピックアップを二次側として電磁誘導により移動体に給電する装置が知られている。
In a clean room such as a semiconductor manufacturing factory, a power feeding device that supplies power to a moving body in a non-contact manner is used because it is necessary to suppress dust generation by the moving body that conveys parts and the like between manufacturing processes.
Conventionally, as this kind of non-contact power feeding device, as shown in the following patent document, an excitation line for flowing a high-frequency current is provided in a moving path along which the moving body moves, and a plurality of pickups are provided on the moving body. There is known an apparatus that feeds power to a moving body by electromagnetic induction with an excitation line provided in the moving path as a primary side and a pickup provided in the moving body as a secondary side.

特許第35224413号公報Japanese Patent No. 3522413

しかしながら、上述した構成においては、移動体の移動経路に沿って給電線(励磁線路)を移動経路の設置表面から立ち上げて敷設する必要があるので、メンテナンス時や清掃時などで取り扱いに注意を要し、また、移動体に合わせた給電線を敷設する必要があるため、設計変更を簡単に行いにくく、移動体が異なれば、給電装置の設計を根本的に変更する必要があり、開発期間やコストを必要する不都合がある。   However, in the configuration described above, it is necessary to lay and lay the feeder line (excitation line) along the moving path of the moving body from the installation surface of the moving path. In addition, since it is necessary to lay the power supply line according to the moving body, it is difficult to change the design easily, and if the moving body is different, it is necessary to fundamentally change the design of the power supply device. And there is a disadvantage that requires cost.

そこで、この発明においては、移動体が異なっても、移動体に合わせて給電装置の設計を容易に行なうことができ、また、メンテナンス時や清掃時などでも取り扱いが容易である移動体の非接触給電装置を提供することを主たる課題としている。   Therefore, in the present invention, even if the moving body is different, the power feeding device can be easily designed according to the moving body, and the non-contacting of the moving body is easy to handle even during maintenance or cleaning. The main problem is to provide a power feeding device.

上記課題を達成するために、この発明に係る移動体の非接触給電装置は、移動体の移動経路に沿って敷設された給電回路の給電用コイルから、前記移動体に設けられた受電回路の受電用コイルを介して非接触状態で給電する構成であって、前記給電回路と前記給電用コイルとを一体化すると共に前記給電用コイルを収容した表出部分を平坦状に形成して給電モジュールを構成し、前記受電回路と前記受電用コイルとを一体化すると共に前記受電用コイルを収容した表出部分を平坦状に形成して受電モジュールを構成し、前記給電モジュールを前記移動体の移動経路に沿って多数配置し、前記受電モジュールをその表出部分が前記給電モジュールの表出部分と対峙し得るよう前記移動体に設けたことを特徴としている(請求項1)。   In order to achieve the above object, a non-contact power feeding device for a moving body according to the present invention includes a power receiving circuit provided on the moving body from a power feeding coil of a power feeding circuit laid along a moving path of the moving body. A power feeding module configured to feed power in a non-contact state via a power receiving coil, wherein the power feeding circuit and the power feeding coil are integrated and an exposed portion accommodating the power feeding coil is formed in a flat shape. The power receiving circuit and the power receiving coil are integrated, and a power receiving module is formed by forming a flat exposed portion accommodating the power receiving coil, and moving the power feeding module to the movable body. A large number of power receiving modules are arranged along a path, and the power receiving module is provided on the moving body so that the exposed portion of the power receiving module can face the exposed portion of the power feeding module.

したがって、給電側および受電側が共にモジュール化されると共に給電モジュールと受電モジュールのそれぞれの表出部分を平坦状に形成したので、設置表面から立設させた給電線を配設する必要がなく、また、給電モジュールや受電モジュールをモジュール単位で追加、削除、レイアウトの変更を行なうことで、種々の給電態様に対応させることが可能となり、異なる移動体や設置箇所に同一の給電モジュール及び受電モジュールを用いて対応することが可能となる。   Therefore, since both the power feeding side and the power receiving side are modularized, and the exposed portions of the power feeding module and the power receiving module are formed flat, it is not necessary to arrange a power feeding line erected from the installation surface. By adding, deleting, and changing the layout of power supply modules and power reception modules in units of modules, it becomes possible to support various power supply modes, and the same power supply module and power reception module are used for different moving bodies and installation locations. It is possible to respond.

ここで、給電モジュールとしては、例えば、交流電源を整流して直流電源を生成する整流回路と、この整流回路によって生成される直流電源が供給される正側及び負側直流母線と、この正側及び負側直流母線間に接続されるインバータ主回路と、このインバータ主回路の出力端子に接続される前記給電用コイルと、この給電用コイルと一方の直流母線との間に接続され、前記給電用コイルと共振する共振回路と、前記インバータ主回路の出力端子と前記一方の直流母線との間に接続されるスナバ回路と、前記インバータ主回路を制御する制御手段とを有して構成するとよい(請求項2)。   Here, as the power supply module, for example, a rectifier circuit that rectifies an AC power supply to generate a DC power supply, a positive side and a negative DC bus that are supplied with the DC power generated by the rectifier circuit, and the positive side And the inverter main circuit connected between the negative DC bus, the power feeding coil connected to the output terminal of the inverter main circuit, the power feeding coil and one DC bus connected to the power feeding coil, and the power feeding And a resonance circuit that resonates with the coil for use, a snubber circuit connected between the output terminal of the inverter main circuit and the one DC bus, and a control means for controlling the inverter main circuit. (Claim 2).

より具体的には、給電モジュールは、交流電源を整流して直流電源を生成する整流回路と、この整流回路によって生成される直流電源が供給される正側及び負側直流母線と、この正側及び負側直流母線間に直列接続される第1及び第2のスイッチング素子と、これら第1及び第2のスイッチング素子の一方の両端子間に接続された給電用コイル及びこれに共振する共振回路と、前記一方のスイッチング素子の両端子間に接続され、スナバコンデンサ及び第3のスイッチング素子で構成されるスナバ回路と、前記第1乃至第3のスイッチング素子に制御信号を出力して導通制御する制御手段とを有して構成するとよい。
このような構成は、磁気誘導加熱調理器などの給電ユニットに利用され得る構成であり、汎用性のある給電モジュールを利用することが可能となる。
More specifically, the power supply module includes a rectifier circuit that rectifies an AC power supply to generate a DC power supply, a positive side and a negative DC bus that are supplied with the DC power generated by the rectifier circuit, and the positive side And the first and second switching elements connected in series between the negative DC bus, the power supply coil connected between one of the terminals of the first and second switching elements, and the resonance circuit that resonates therewith And a snubber circuit connected between both terminals of the one switching element and configured by a snubber capacitor and a third switching element, and a control signal is output to the first to third switching elements to control conduction. And a control means.
Such a configuration is a configuration that can be used in a power feeding unit such as a magnetic induction heating cooker, and a versatile power feeding module can be used.

また、上述した受電モジュールとしては、例えば、前記給電用コイルに近接して誘導起電力を発生させる受電用コイルと、前記受電用コイルに共振する共振回路と、前記共振回路に接続された整流回路と、移動体の負荷に並列接続された平滑回路と、整流回路から出力された出力電圧をチョッパ制御するチョッパ回路とを有して構成したり(請求項3)、前記給電用コイルに近接して誘導起電力を発生させる受電用コイルと、前記受電用コイルに共振する共振回路と、前記共振回路に接続された整流回路と、移動体の負荷に並列接続された平滑回路と、整流回路から出力される出力電圧を制御する制御手段とを有して構成するとよい(請求項4)。   The power receiving module described above includes, for example, a power receiving coil that generates an induced electromotive force in the vicinity of the power feeding coil, a resonant circuit that resonates with the power receiving coil, and a rectifier circuit that is connected to the resonant circuit. And a smoothing circuit connected in parallel to the load of the mobile body, and a chopper circuit for chopper-controlling the output voltage output from the rectifier circuit (Claim 3), or close to the feeding coil A receiving coil that generates an induced electromotive force, a resonance circuit that resonates with the receiving coil, a rectifier circuit that is connected to the resonance circuit, a smoothing circuit that is connected in parallel to a load of a moving object, and a rectifier circuit And a control means for controlling the output voltage to be output.

さらに、移動体の停止位置が定まっておらず、動きが予想できないような場合には、前記給電モジュールを所定の間隔で前記移動体の移動経路上に多数配置する構成に対し、前記受電モジュールを前記給電モジュールと異なる間隔で前記移動体の移動方向に複数配置し、停止位置がどこであっても、いずれかの給電モジュールからいずれかの受電モジュールに給電できるようにし、変換電力がほぼ一定となるようにするとよい(請求項5)。   Further, in the case where the stop position of the moving body is not fixed and the movement cannot be predicted, the power receiving module is arranged in a configuration in which a large number of the power feeding modules are arranged on the moving path of the moving body at a predetermined interval. A plurality of moving bodies are arranged in the moving direction of the moving body at different intervals from the power supply module so that power can be supplied from any power supply module to any power reception module regardless of the stop position, and the converted power becomes almost constant. (Claim 5).

また、各給電モジュールによる給電を同期させるような場合には、隣り合う給電モジュール間の干渉を避けるために、移動体の移動方向での給電モジュール間の間隔を同方向での受電モジュールの寸法の半分以上に設定するとよい(請求項6)。   In addition, when power feeding by each power feeding module is synchronized, in order to avoid interference between adjacent power feeding modules, the distance between the power feeding modules in the moving direction of the moving body is set to the dimension of the power receiving module in the same direction. It is good to set it to half or more (Claim 6).

以上述べたように、この発明に係る移動体の非接触給電装置によれば、給電回路と給電用コイルとを一体化し、給電用コイルを収容した表出部分を平坦状に形成した給電モジュールを移動体の移動経路上に多数配置し、受電回路と受電用コイルとを一体化し、受電用コイルを収容した表出部分を平坦状に形成した受電モジュールを移動体に設け、これら給電モジュールと受電モジュールとを互いの表出部分を対峙し得るように設けたので、設置表面から突出する給電線が不要となり、また、メンテナンス時や清掃時に引っ掛ける等して破損させる不都合もなくなり、取り扱いが容易となる。
さらに、給電モジュールや受電モジュールは、モジュール単位で設置数を増減させたり、レイアウトを変更することで、供給電力を調整したり、移動体の種類に対応させることが
可能となるので、移動体に合わせて給電装置の設計を容易に行なうことが可能となる。
As described above, according to the non-contact power feeding device for a moving body according to the present invention, the power feeding module in which the power feeding circuit and the power feeding coil are integrated and the exposed portion accommodating the power feeding coil is formed in a flat shape. A large number of power receiving circuits are arranged on the moving path of the moving body, the power receiving circuit and the power receiving coil are integrated, and the power receiving module in which the exposed portion accommodating the power receiving coil is formed in a flat shape is provided on the moving body. Since the module is provided so that the exposed parts can face each other, there is no need for a power supply line that protrudes from the installation surface, and there is no inconvenience of being damaged by being caught during maintenance or cleaning, making handling easier Become.
In addition, the power supply module and the power reception module can adjust the power supply by adjusting the number of modules installed and changing the layout, and adapting to the type of mobile object. In addition, the power supply device can be easily designed.

以下、本発明の最良の実施形態を添付図面を参照しながら説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, the best embodiment of the invention will be described with reference to the accompanying drawings.

図1において、移動体の非接触給電装置の外観図が示されている。
この非接触給電装置は、移動体1の移動経路2に設けられた多数の給電モジュール3と、移動体1に設けられた多数の受電モジュール4とにより構成され、この例においては、給電モジュール3を移動経路2の上面に設け、受電モジュール4を給電モジュール3と所定の間隔を隔て対峙し得るように移動体1の底部に設けるようにしている。
In FIG. 1, the external view of the non-contact electric power feeder of a moving body is shown.
This non-contact power feeding apparatus includes a large number of power feeding modules 3 provided on the moving path 2 of the moving body 1 and a large number of power receiving modules 4 provided on the moving body 1. In this example, the power feeding module 3 Is provided on the upper surface of the moving path 2, and the power receiving module 4 is provided on the bottom of the moving body 1 so as to face the power feeding module 3 with a predetermined distance.

給電モジュール3は、給電回路5を給電用コイル6と共に一体化し、受電モジュール4と対峙し得る表出部分を平坦状に形成してその内部に給電用コイル6を収容するようにしたもので、図2に示されるような回路構成を備えている。   The power supply module 3 is configured such that the power supply circuit 5 is integrated with the power supply coil 6, the exposed portion that can be opposed to the power reception module 4 is formed in a flat shape, and the power supply coil 6 is accommodated therein. A circuit configuration as shown in FIG. 2 is provided.

給電回路5は、商用交流電源7に接続されて商用交流電源7を整流する整流器8と、この整流器8によって生成される直流電源が供給される正側及び負側直流母線9a,9bとを有し、整流器8の出力端子は、正側直流母線9aに配されたリアクタ10を介して平滑コンデンサ11の両端に接続されている。正側及び負側の直流母線間には、正側の直流母線9aに接続される第1のスイッチング素子を構成するIGBT12と、負側の直流母線9bに接続される第2のスイッチング素子を構成するIGBT13とが直列に接続され、これらIGBT12,13によりハーフブリッジ型のインバータ主回路が構成されている。また、それぞれのIGBT12,13のコレクタ・エミッタ間には、フリーホイールダイオード14,15が接続され、インバータ主回路の出力端子は、給電用コイル6の一端に接続され、給電用コイル6の他端と負側直流母線9bとの間には、共振コンデンサ16とダイオード17との並列回路が接続されている。   The power feeding circuit 5 includes a rectifier 8 connected to the commercial AC power supply 7 and rectifying the commercial AC power supply 7, and positive and negative DC buses 9a and 9b to which a DC power generated by the rectifier 8 is supplied. The output terminal of the rectifier 8 is connected to both ends of the smoothing capacitor 11 via the reactor 10 disposed on the positive DC bus 9a. Between the positive DC bus and the negative DC bus, the IGBT 12 constituting the first switching element connected to the positive DC bus 9a and the second switching element connected to the negative DC bus 9b are constituted. The IGBTs 13 are connected in series, and the IGBTs 12 and 13 constitute a half-bridge type inverter main circuit. Free wheel diodes 14 and 15 are connected between the collectors and emitters of the IGBTs 12 and 13, and the output terminal of the inverter main circuit is connected to one end of the power supply coil 6, and the other end of the power supply coil 6. And a negative DC bus 9b, a parallel circuit of a resonant capacitor 16 and a diode 17 is connected.

また、インバータ主回路の出力端子には、スナバコンデサ18が接続され、このスナバコンデンサ18と負側直流母線9bとの間に、第3のスイッチング素子を構成するIGBT19が接続されている。また、IGBT19のコレクタ・エミッタ間には、フリーホイールダイオード20が接続されている。   A snubber capacitor 18 is connected to the output terminal of the inverter main circuit, and an IGBT 19 constituting a third switching element is connected between the snubber capacitor 18 and the negative side DC bus 9b. A free wheel diode 20 is connected between the collector and emitter of the IGBT 19.

これらインバータ主回路の出力端子と負側直流母線9bとの間に接続されたスナバコンデンサ18及びIGBT19によりスナバ回路が構成され、インバータ主回路の動作時におけるスイッチング損失を低減するようにしている。   A snubber capacitor 18 and IGBT 19 connected between the output terminal of the inverter main circuit and the negative-side DC bus 9b constitute a snubber circuit so as to reduce switching loss during operation of the inverter main circuit.

前記平滑コンデンサ11の充放電経路には、この平滑コンデンサ11に流入する高周波電流を検出するカレントトランス21が設けられ、このカレントトランス21の二次側電圧に基づき入力電流検知回路22で入力電流を検出し、この検出された入力電流に対応する信号を制御回路23へ与えるようにしている。また、正側直流母線9aの電圧は、入力検知回路24で検出され、この検出された入力電圧に対応する信号を制御回路23に与えるようにしている。   A current transformer 21 for detecting a high-frequency current flowing into the smoothing capacitor 11 is provided in the charge / discharge path of the smoothing capacitor 11, and an input current is detected by the input current detection circuit 22 based on the secondary side voltage of the current transformer 21. A signal corresponding to the detected input current is supplied to the control circuit 23. The voltage of the positive DC bus 9a is detected by the input detection circuit 24, and a signal corresponding to the detected input voltage is supplied to the control circuit 23.

制御回路23は、例えば、中央演算装置(CPU)、読出専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、入出力ポート等を有して構成されるそれ自体公知のもので、前記入力電流検知回路22および入力電圧検出回路24からの信号を入力し、メモリに与えられた所定のプログラムにしたがって入力信号を処理し、PWM生成回路25へ制御信号を出力するようにしている。   The control circuit 23 is, for example, a publicly known circuit configured with a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), an input / output port, and the like. Signals from the circuit 22 and the input voltage detection circuit 24 are input, the input signal is processed according to a predetermined program given to the memory, and a control signal is output to the PWM generation circuit 25.

PWM生成回路25は、発振器26が出力する固定周波数の発振信号を入力し、制御回路23からの信号に基づき、各IGBT12,13,19を固定周波数方式のPWM(パルス幅)制御にて動作させるために、パルス幅変調されたPWM駆動制御信号を生成する。このPWM生成回路25により生成されたPWM駆動制御信号は、駆動回路27によりIGBTオンオフ用のPWM駆動信号に変換され、それぞれのIGBT12,13,19のベースに供給される。   The PWM generation circuit 25 receives an oscillation signal of a fixed frequency output from the oscillator 26, and operates each of the IGBTs 12, 13, and 19 by PWM (pulse width) control of the fixed frequency system based on the signal from the control circuit 23. For this purpose, a pulse width modulated PWM drive control signal is generated. The PWM drive control signal generated by the PWM generation circuit 25 is converted into a PWM drive signal for turning on / off the IGBT by the drive circuit 27 and supplied to the bases of the respective IGBTs 12, 13, and 19.

IGBT12,13は、駆動回路27からの信号を受けて交互にオンオフ動作し、これにより、給電用コイル6と共振コンデンサ16とを直列共振状態に設定し、給電コイル6に高周波電力を発生させるようにしている。   The IGBTs 12 and 13 are alternately turned on and off in response to a signal from the drive circuit 27, thereby setting the power supply coil 6 and the resonance capacitor 16 in a series resonance state so that the power supply coil 6 generates high-frequency power. I have to.

そして、このような給電モジュール3を所定の間隔で移動体1の移動経路2に沿って多数配置し、この例においては、移動体1の移動方向での給電モジュール3の間隔L1を受電モジュール4の同方向の寸法の半分以上に設定している。また、移動経路2に沿って給電モジュールを3列に配置し、図示しない同期回路により同期をとって高周波電力を発生させるようにしている。尚、この例において、給電モジュール3は、1個あたり1〜10KWの給電量を出力するように設計されている。   A large number of such power supply modules 3 are arranged along the movement path 2 of the moving body 1 at a predetermined interval. In this example, the interval L1 of the power supply modules 3 in the moving direction of the moving body 1 is set as the power receiving module 4. It is set to more than half of the dimension in the same direction. In addition, the power supply modules are arranged in three rows along the movement path 2, and high frequency power is generated in synchronization with a synchronization circuit (not shown). In this example, the power supply module 3 is designed to output a power supply amount of 1 to 10 KW per unit.

これに対し、受電モジュール4は、受電回路30を受電用コイル(ピックアップコイル)31と共に一体化し、給電モジュール3と対峙し得る表出部分を平坦状に形成してその内部に受電用コイル31を収容するようにしたもので、図3に示されるような回路構成を備えている。   On the other hand, the power receiving module 4 integrates the power receiving circuit 30 together with the power receiving coil (pickup coil) 31, forms a flat exposed portion that can be opposed to the power feeding module 3, and has the power receiving coil 31 inside. A circuit configuration as shown in FIG. 3 is provided.

即ち、受電モジュール4は、給電用コイル6に近接して誘導起電力を発生させるピックアップコイル31と、このピックアップコイル31に並列接続されてピックアップコイル31に共振する共振コンデンサ32と、この共振コンデンサ32に並列接続された整流回路33とを有している。この整流回路33は、ピックアップコイル31の出力を整流するショットキーダイオード等を利用したダイオードブリッジで構成されており、この整流回路33の出力端子には、平滑コンデンサ34、降下型のチョッパ回路(バックコンバータ)35が並列接続されている。   That is, the power receiving module 4 includes a pickup coil 31 that generates an induced electromotive force in the vicinity of the power supply coil 6, a resonance capacitor 32 that is connected in parallel to the pickup coil 31 and resonates with the pickup coil 31, and the resonance capacitor 32. And a rectifier circuit 33 connected in parallel to each other. The rectifier circuit 33 is constituted by a diode bridge using a Schottky diode or the like that rectifies the output of the pickup coil 31. The output terminal of the rectifier circuit 33 has a smoothing capacitor 34, a drop-type chopper circuit (back-up circuit). Converter) 35 is connected in parallel.

チョッパ回路35は、制御回路36によりオンオフ制御されるパワーMOSFET等によって構成されるスイッチング素子37と、還流ダイード38及びチョークコイル39とを有して構成され、制御回路36によるPWMなどの変調制御により、出力電圧を一定にするようにパルス幅や時間を制御するようにしている。そして、このチョッパ回路35の出力側には、負荷変動を安定させる低周波用コンデンサ40aと高調波ノイズを低減させる高周波用コンデンサ40bとを組み合わせた平滑回路40と,移動体1の負荷41とが並列接続されている。これによりスイッチング素子37のオン期間には、整流回路33から出力された電力の一部をチョークコイル39に貯えつつ負荷41へ供給し、スイッチング素子37のオフ期間には、チョークコイル39に貯えた電力を還流ダイオード38を還流して負荷41に放出し、リップルの低減を図るようにしている。   The chopper circuit 35 includes a switching element 37 configured by a power MOSFET or the like that is on / off controlled by a control circuit 36, a reflux diode 38, and a choke coil 39, and is controlled by modulation control such as PWM by the control circuit 36. The pulse width and time are controlled so as to keep the output voltage constant. On the output side of the chopper circuit 35, a smoothing circuit 40 that combines a low frequency capacitor 40a that stabilizes load fluctuations and a high frequency capacitor 40b that reduces harmonic noise, and a load 41 of the moving body 1 are provided. Connected in parallel. As a result, during the ON period of the switching element 37, a part of the power output from the rectifier circuit 33 is supplied to the load 41 while being stored in the choke coil 39, and is stored in the choke coil 39 during the OFF period of the switching element 37. Electric power is recirculated through the freewheeling diode 38 and discharged to the load 41 so as to reduce the ripple.

そして、このような受電モジュール4を所定の間隔で移動体1の底部に多数配置し、この例においては、前記給電モジュール3に合わせて移動方向に沿って3列に配置されている。また、移動方向での受電モジュール4の間隔L2を給電モジュール3の間隔L1と異ならせている。   And many such power receiving modules 4 are arrange | positioned in the bottom part of the mobile body 1 by the predetermined space | interval, and in this example, it arrange | positions along the said electric power feeding module 3 in 3 rows along a moving direction. Further, the interval L2 between the power receiving modules 4 in the moving direction is different from the interval L1 between the power supply modules 3.

尚、給電用コイル3と受電用コイル4は、例えば、ぞれぞれ図4(a)に示されるように、渦巻き状に巻かられている。また、コイルの高周波電流の周波数は、20KHz〜100KHzの範囲に設定され、素線は直径0.3mm〜0.02mmの範囲の微細線集合撚り線が用いられ、周波数が高いほど、表皮効果の影響が大きくなるため、細いより線が用いられる。この例においては、電力変換効率や電力損失を考慮して20KHzのモジュールが用いられている。また、給電用コイル3と受電用コイル4の間隔は、近接するほど漏れ磁束が少なくなり、変換電力が多くなるので、数ミリ以下に調整されている。   The power supply coil 3 and the power reception coil 4 are wound in a spiral shape, for example, as shown in FIG. 4A. In addition, the frequency of the high frequency current of the coil is set in a range of 20 KHz to 100 KHz, and the strand is a fine wire assembly stranded wire having a diameter in the range of 0.3 mm to 0.02 mm. Thin strands are used because of the greater effect. In this example, a 20 KHz module is used in consideration of power conversion efficiency and power loss. Further, the distance between the power feeding coil 3 and the power receiving coil 4 is adjusted to several millimeters or less because the leakage magnetic flux decreases and the converted power increases as the distance between the power feeding coil 3 and the power receiving coil 4 increases.

次に、以上のように構成された給電装置の動作を説明する。
交流電源から出力される200Vの交流は、各給電モジュール3により20KHzの高周波の正弦波に変換され、それぞれの給電用コイル6に供給されて高周波磁界を発生させる。この状態で、移動体1に設けられた受電モジュール4の受電用コイル(ピックアップコイル)31が給電用コイル6に近接していると、受電用コイル31に給電用コイル6との間で発生する誘導起電力が受電され、受電された電力は、受電回路30の整流回路33で整流され、チョッパ回路37で所定の電圧に調整された後に、移動体1を駆動させる電動モータなどの負荷41へ供給され、これにより、移動体1を走行レール上に沿って移動させる。
Next, the operation of the power supply apparatus configured as described above will be described.
The 200V AC output from the AC power source is converted into a high frequency sine wave of 20 KHz by each power supply module 3 and supplied to each power supply coil 6 to generate a high frequency magnetic field. In this state, when the power receiving coil (pickup coil) 31 of the power receiving module 4 provided in the moving body 1 is close to the power feeding coil 6, the power receiving coil 31 generates between the power feeding coil 6. The induced electromotive force is received, and the received power is rectified by the rectifying circuit 33 of the power receiving circuit 30 and adjusted to a predetermined voltage by the chopper circuit 37, and then to a load 41 such as an electric motor that drives the moving body 1. As a result, the moving body 1 is moved along the traveling rail.

移動体1の移動に伴い、受電モジュール4が対峙する給電モジュール3は刻々と移り変わっていくが、受電モジュール4は、新たに対峙する給電モジュール3との間で上述した動作が繰り返され、誘導起電力が受電され続ける。これにより、移動経路2の全範囲に亘って移動体1に非接触で給電することを可能にしている。   As the moving body 1 moves, the power supply module 3 facing the power receiving module 4 changes every moment, but the power receiving module 4 repeats the above-described operation with the power supply module 3 newly facing the Electric power continues to be received. Thereby, it is possible to supply power to the moving body 1 in a non-contact manner over the entire range of the moving path 2.

したがって、上述の構成によれば、表出部分が平坦状に形成された給電モジュール3と受電モジュール4とを対峙させて非接触にて給電されるので、移動体1の移動経路には、経路表面から立設する給電線を配設する必要がなく、メンテナンス時や清掃時に引っ掛けて破損させる不都合もなくなり、取り扱いが容易となる。   Therefore, according to the above-described configuration, since the power supply module 3 and the power reception module 4 having the exposed portion formed in a flat shape face each other and are fed in a non-contact manner, the moving path of the mobile body 1 includes the path There is no need to arrange a power supply line standing from the surface, and there is no inconvenience of being damaged by being caught during maintenance or cleaning, and handling becomes easy.

また、給電モジュール3や受電モジュール4の数やレイアウトを変更することで、供給電力量を調整することができるので、移動体1の需要電力に合わせて適切な給電装置の設計を容易に行うことが可能になると共に、種々の給電態様に対応することが可能となる。このため、異なる移動体や設置箇所に対して同一の給電モジュール3及び受電モジュール4を用いて対応することが可能となる。   In addition, since the amount of power supply can be adjusted by changing the number and layout of the power supply modules 3 and the power receiving modules 4, it is easy to design an appropriate power supply device according to the power demand of the mobile unit 1. It becomes possible to cope with various power supply modes. For this reason, it becomes possible to cope with different moving bodies and installation locations by using the same power supply module 3 and power receiving module 4.

さらに、上述の構成において、給電モジュール3にあっては、磁気誘導加熱調理器の給電ユニットと原理的に同様であるので、既存の磁気誘導加熱調理器の給電ユニットをそのまま利用することも可能であり、また、受電モジュール4にあっては、既存の磁気誘導加熱調理器の給電ユニットの給電回路を取り外し、コイル部分をそのまま残して受電回路30を組み込めば形成することができるので、製造コストを大幅に削減することが可能となる。   Furthermore, in the above-described configuration, the power supply module 3 is similar in principle to the power supply unit of the magnetic induction heating cooker, so that the power supply unit of the existing magnetic induction heating cooker can be used as it is. In addition, the power receiving module 4 can be formed by removing the power feeding circuit of the power feeding unit of the existing magnetic induction heating cooker and incorporating the power receiving circuit 30 while leaving the coil portion as it is. It becomes possible to reduce significantly.

図5において、受電モジュール4の受電回路30の他の構成例が示されている。この例において、受電回路30は、給電用コイル6に近接して誘導起電力を発生させる受電用コイル(ピックアップコイル)31に共振する共振コンデンサ42と、この共振コンデンサ42に並列接続された整流回路43とを有している。この整流回路43は、ピックアップコイル31の出力を整流するショットキーダイオード43a,43b,43c,43d等を利用したダイオードブリッジで構成され、ダイオード43c,43dの導通、非導通をIGBT、トランジスタ、FETなどのスイッチグ素子で構成された制御回路44で制御し、制御回路44によるPWMなどの変調制御により、出力電圧を一定にするようパルス幅や時間を制御するようにしている。そして、この整流回路43の出力端子には、直列接続された平滑コイル45を介して、負荷変動を安定させる低周波用コンデンサ46aと高調波ノイズを低減させる高周波用コンデンサ46bとを組み合わせた平滑回路46と、移動体1の負荷41とが並列接続されている。尚、他の構成は、前記構成例と同様である。   FIG. 5 shows another configuration example of the power receiving circuit 30 of the power receiving module 4. In this example, the power reception circuit 30 includes a resonance capacitor 42 that resonates with a power reception coil (pickup coil) 31 that generates an induced electromotive force in the vicinity of the power supply coil 6, and a rectifier circuit that is connected in parallel to the resonance capacitor 42. 43. The rectifier circuit 43 is configured by a diode bridge using Schottky diodes 43a, 43b, 43c, 43d and the like for rectifying the output of the pickup coil 31. The pulse width and time are controlled so as to make the output voltage constant by the control circuit 44 constituted by the switching elements of the above and by modulation control such as PWM by the control circuit 44. The output terminal of the rectifier circuit 43 is connected to a smoothing circuit combining a low-frequency capacitor 46a for stabilizing load fluctuations and a high-frequency capacitor 46b for reducing harmonic noise via a smoothing coil 45 connected in series. 46 and the load 41 of the moving body 1 are connected in parallel. Other configurations are the same as those in the above configuration example.

このような構成においても、受電用コイル(ピックアップコイル)31で受電した誘導起電力は、受電回路30の整流回路43で整流されつつ制御回路44によって出力電圧が調節され、その後、移動体1を駆動させる電動モータなどの移動体の負荷41へ供給され、これにより、移動体1を走行レール上に沿って移動させることが可能となり、前記構成例と同様の作用効果を得ることが可能となる。   Even in such a configuration, the induced electromotive force received by the power receiving coil (pickup coil) 31 is rectified by the rectifying circuit 43 of the power receiving circuit 30, and the output voltage is adjusted by the control circuit 44. Supplied to a load 41 of a moving body such as an electric motor to be driven, whereby the moving body 1 can be moved along the traveling rail, and the same operational effects as in the above configuration example can be obtained. .

尚、上述の例では、給電用コイル6と受電用コイル31を渦巻き状に巻いた構成を説明したが、図4(b)で示す円形状や図4(c)で示す矩形状に数ターン巻回したもので代用してもよい。コイルの巻き方を円形状や矩形状にしたものにあっては、磁界の分布が図同図に示すように良くなり、給電用コイル6と受電用コイル31との中心線がずれている場合でも、変換電力への影響を受けにくくすることが可能となる。この給電用コイル6と受電用コイル31は、磁力線の分布を考慮すると、同一形状のものを用いればよいが、磁心を利用する場合やモジュールのレイアウトによっては、効率を向上させるために適宜形状を変更してもよい。   In the above-described example, the structure in which the power feeding coil 6 and the power receiving coil 31 are wound in a spiral shape has been described. However, the circular shape shown in FIG. 4B or the rectangular shape shown in FIG. You may substitute what was wound. When the winding method of the coil is circular or rectangular, the distribution of the magnetic field is improved as shown in the figure, and the center line between the power feeding coil 6 and the power receiving coil 31 is shifted. However, it becomes possible to make it less susceptible to the conversion power. The power supply coil 6 and the power reception coil 31 may have the same shape in consideration of the distribution of magnetic field lines. However, depending on the case of using a magnetic core or the layout of the module, the power supply coil 6 and the power reception coil 31 may be appropriately shaped to improve efficiency. It may be changed.

また、移動経路上に配設した各給電モジュール3を同期回路を用いずに非同期で高周波電力を発生させてもよく、このような構成を採用した場合には、給電モジュール間の間隔に前述のような制限を設ける必要はない。   Further, the high-frequency power may be generated asynchronously without using the synchronization circuit for each power supply module 3 disposed on the movement path. When such a configuration is adopted, the interval between the power supply modules is described above. There is no need to provide such restrictions.

さらに、上述の構成例では、移動経路2の上面に給電モジュール3を設置し、移動体1の下面に受電モジュール4を設置したが、移動経路2を付設する部屋や移動体1の形状に応じて、例えば、給電モジュール3を移動経路に設けられた立設面に設置し、受電モジュール4をこの立設面と対峙する移動体の側面に設置するなど、側方からの給電に対応させるようにしてもよい。また、給電用コイル6と受電用コイル31との間の漏れ磁束を少なくする対策として、フェライト等の磁心を利用してもよい。   Furthermore, in the above-described configuration example, the power supply module 3 is installed on the upper surface of the moving path 2 and the power receiving module 4 is installed on the lower surface of the moving body 1. However, depending on the room to which the moving path 2 is attached and the shape of the moving body 1 Thus, for example, the power supply module 3 is installed on a standing surface provided in the movement path, and the power receiving module 4 is installed on the side surface of the moving body facing the standing surface so as to correspond to power supply from the side. It may be. Further, a magnetic core such as ferrite may be used as a countermeasure for reducing the leakage magnetic flux between the power feeding coil 6 and the power receiving coil 31.

さらにまた、上述の構成においては、給電モジュール3間の間隔を受電モジュール4間の間隔と異ならせることで、移動体1の停止位置や動きが予想できないような場合でも変換電力を一定にするようにしたが、移動体1の停止位置が決まっているような場合であれば、それに合わせて給電モジュール3と受電モジュール4の位相を一致させて配置し、効率を高めるようにしてもよい。   Furthermore, in the above-described configuration, the conversion power is made constant even when the stop position or movement of the moving body 1 cannot be predicted by making the interval between the power supply modules 3 different from the interval between the power receiving modules 4. However, if the stop position of the moving body 1 is determined, the power feeding module 3 and the power receiving module 4 may be arranged so as to coincide with each other to increase the efficiency.

図1は、本発明に係る移動体の非接触給電装置を示す外観図であり、図1(a)は移動体1を移動経路2から外した状態を示す斜視図であり、図2(b)は移動体1を移動経路上に乗せた状態を示す平面図である。FIG. 1 is an external view showing a non-contact power feeding device for a moving body according to the present invention, and FIG. 1 (a) is a perspective view showing a state in which the moving body 1 is removed from a moving path 2, and FIG. ) Is a plan view showing a state in which the moving body 1 is placed on the moving path. 図2は、本発明に係る非接触給電装置の給電モジュール3の構成例を示す電気回路図である。FIG. 2 is an electric circuit diagram showing a configuration example of the power supply module 3 of the non-contact power supply apparatus according to the present invention. 図3は、本発明に係る非接触給電装置の受電モジュールの構成例を示す電気回路図である。FIG. 3 is an electric circuit diagram showing a configuration example of a power receiving module of the non-contact power feeding device according to the present invention. 図4は、給電モジュールの給電用コイルと受電モジュールの受電用コイルの巻き方の構成例とその磁界分布を説明する図である。FIG. 4 is a diagram illustrating a configuration example of how to wind the power feeding coil of the power feeding module and the power receiving coil of the power receiving module and the magnetic field distribution thereof. 図5は、本発明に係る非接触給電装置の受電モジュールの他の構成例を示す電気回路図である。FIG. 5 is an electric circuit diagram showing another configuration example of the power receiving module of the non-contact power feeding device according to the present invention.

符号の説明Explanation of symbols

1 移動体
2 移動経路
3 給電モジュール
4 受電モジュール
5 給電回路
6 給電用コイル
8 整流回路
9a 正側直流母線
9b 負側直流母線
12,13,19 IGBT
18 スナバコンデンサ
16 共振コンデンサ
30 受電回路
31 受電用コイル
32,42 共振コンデンサ
33,43 整流回路
35 チョッパ回路
40,46 平滑回路
DESCRIPTION OF SYMBOLS 1 Mobile body 2 Moving path 3 Feeding module 4 Power receiving module 5 Feeding circuit 6 Feeding coil 8 Rectifier circuit 9a Positive side DC bus 9b Negative side DC bus 12, 13, 19 IGBT
18 Snubber capacitor 16 Resonant capacitor 30 Power receiving circuit 31 Power receiving coil 32, 42 Resonant capacitor 33, 43 Rectifier circuit 35 Chopper circuit 40, 46 Smoothing circuit

Claims (6)

移動体の移動経路に沿って敷設された給電回路の給電用コイルから、前記移動体に設けられた受電回路の受電用コイルを介して非接触状態で給電する移動体の非接触給電装置であって、
前記給電回路と前記給電用コイルとを一体化すると共に前記給電用コイルを収容した表出部分を平坦状に形成して給電モジュールを構成し、
前記受電回路と前記受電用コイルとを一体化すると共に前記受電用コイルを収容した表出部分を平坦状に形成して受電モジュールを構成し、
前記給電モジュールを前記移動体の移動経路に沿って多数配置し、
前記受電モジュールをその表出部分が前記給電モジュールの表出部分と対峙し得るよう前記移動体に設けたことを特徴とする移動体の非接触給電装置。
A non-contact power feeding device for a mobile body that feeds power in a non-contact state from a power feeding coil of a power feeding circuit laid along a moving path of the mobile body through a power receiving coil of a power receiving circuit provided in the moving body. And
The power feeding circuit and the power feeding coil are integrated with each other, and a power feeding module is configured by forming a flat exposed portion accommodating the power feeding coil,
The power receiving module is configured by integrating the power receiving circuit and the power receiving coil and forming an exposed portion containing the power receiving coil in a flat shape,
A large number of the power supply modules are arranged along the movement path of the moving body,
A non-contact power feeding device for a moving body, wherein the power receiving module is provided on the moving body so that the exposed portion of the power receiving module can face the exposed portion of the power feeding module.
前記給電モジュールは、交流電源を整流して直流電源を生成する整流回路と、この整流回路によって生成される直流電源が供給される正側及び負側直流母線と、この正側及び負側直流母線間に接続されるインバータ主回路と、このインバータ主回路の出力端子に接続される前記給電用コイルと、この給電用コイルと一方の直流母線との間に接続され、前記給電用コイルと共振する共振回路と、前記インバータ主回路の出力端子と前記一方の直流母線との間に接続されるスナバ回路と、前記インバータ主回路を制御する制御手段とを有することを特徴とする請求項1記載の移動体の非接触給電装置。 The power supply module includes a rectifier circuit that rectifies an AC power supply to generate a DC power supply, positive and negative DC buses to which a DC power generated by the rectifier circuit is supplied, and the positive and negative DC buses. An inverter main circuit connected in between, the power feeding coil connected to the output terminal of the inverter main circuit, and the power feeding coil and one of the DC buses connected to resonate with the power feeding coil 2. A resonance circuit, a snubber circuit connected between an output terminal of the inverter main circuit and the one DC bus, and control means for controlling the inverter main circuit. Non-contact power feeding device for moving objects. 前記受電モジュールは、前記給電用コイルに近接して誘導起電力を発生させる受電用コイルと、前記受電用コイルに共振する共振回路と、前記共振回路に接続された整流回路と、移動体の負荷に並列接続された平滑回路と、整流回路から出力された出力電圧をチョッパ制御するチョッパ回路とを有することを特徴とする請求項1記載の移動体の非接触給電装置。 The power reception module includes a power reception coil that generates an induced electromotive force in the vicinity of the power supply coil, a resonance circuit that resonates with the power reception coil, a rectifier circuit that is connected to the resonance circuit, and a load of a moving object A non-contact power feeding apparatus for a moving body according to claim 1, further comprising: a smoothing circuit connected in parallel to each other; and a chopper circuit that chopper-controls an output voltage output from the rectifier circuit. 前記受電モジュールは、前記給電用コイルに近接して誘導起電力を発生させる受電用コイルと、前記受電用コイルに共振する共振回路と、前記共振回路に接続された整流回路と、移動体の負荷に並列接続された平滑回路と、整流回路から出力される出力電圧を制御する制御手段とを有することを特徴とする請求項1記載の移動体の非接触給電装置。 The power reception module includes a power reception coil that generates an induced electromotive force in the vicinity of the power supply coil, a resonance circuit that resonates with the power reception coil, a rectifier circuit that is connected to the resonance circuit, and a load of a moving object The non-contact electric power feeder of the moving body of Claim 1 which has the smoothing circuit connected in parallel with, and the control means which controls the output voltage output from a rectifier circuit. 前記給電モジュールを所定の間隔で前記移動体の移動経路上に多数配置し、前記受電モジュールを前記給電モジュールと異なる間隔で前記移動体の移動方向に複数配置したことを特徴とする請求項1記載の移動体の非接触給電装置。 The power supply module is arranged in a large number on a moving path of the moving body at a predetermined interval, and a plurality of power receiving modules are arranged in a moving direction of the moving body at intervals different from the power feeding module. Non-contact power feeding device for mobile body. 前記給電モジュールによる給電を同期させ、前記移動体の移動方向での前記給電モジュール間の間隔を同方向での前記受電モジュールの寸法の半分以上に設定したことを特徴とする請求項1記載の移動体の非接触給電装置。 The movement according to claim 1, wherein power feeding by the power feeding module is synchronized, and an interval between the power feeding modules in a moving direction of the moving body is set to be more than half of a dimension of the power receiving module in the same direction. Body non-contact power feeding device.
JP2004305176A 2004-10-20 2004-10-20 Noncontact power feeder for vehicle Pending JP2006121791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004305176A JP2006121791A (en) 2004-10-20 2004-10-20 Noncontact power feeder for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004305176A JP2006121791A (en) 2004-10-20 2004-10-20 Noncontact power feeder for vehicle

Publications (1)

Publication Number Publication Date
JP2006121791A true JP2006121791A (en) 2006-05-11

Family

ID=36539154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004305176A Pending JP2006121791A (en) 2004-10-20 2004-10-20 Noncontact power feeder for vehicle

Country Status (1)

Country Link
JP (1) JP2006121791A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009284695A (en) * 2008-05-23 2009-12-03 Kawasaki Plant Systems Ltd Insulating power feeding device for moving body
JP2010035300A (en) * 2008-07-28 2010-02-12 Showa Aircraft Ind Co Ltd Non-contact power supply apparatus
JP2010125974A (en) * 2008-11-27 2010-06-10 Railway Technical Res Inst Noncontact electric supply system for railway vehicle
JP2011097671A (en) * 2009-10-27 2011-05-12 Nippon Tekumo:Kk Non-contact power supply device
JP2011097733A (en) * 2009-10-29 2011-05-12 Tokyo Seimitsu Co Ltd Driver and driving method
JP2011135704A (en) * 2009-12-25 2011-07-07 Daifuku Co Ltd Noncontact power supply facility
JP2011135772A (en) * 2009-12-24 2011-07-07 Rusk Intellectual Reserve Ag Electric vehicle and electric supply arrangement for the same
JP2011167031A (en) * 2010-02-15 2011-08-25 Toyota Central R&D Labs Inc Power supplying device for moving body
WO2011118404A1 (en) * 2010-03-23 2011-09-29 トヨタ自動車株式会社 Power-feed device
JP2011217506A (en) * 2010-03-31 2011-10-27 Daifuku Co Ltd Non-contact power feeding apparatus
JP2011223703A (en) * 2010-04-07 2011-11-04 Showa Aircraft Ind Co Ltd Portable type non-contact power supply device
WO2011152677A2 (en) * 2010-06-03 2011-12-08 한국과학기술원 Cross-segment feed device capable of turning on/turning off individual modules
KR101132695B1 (en) * 2010-09-09 2012-03-30 한국철도기술연구원 Rail propulsion apparatus and system for tracked vehicle
WO2012050345A2 (en) * 2010-10-13 2012-04-19 한국과학기술원 Non-contact power transmission device, magnetic induction-type power supply device, magnetic induction-type power collector, and moving object using same
KR101143345B1 (en) 2010-09-15 2012-05-09 주식회사 신성에프에이 Parallel operating apparatus of non-contact power supply system and method thereof
KR101166867B1 (en) * 2010-09-09 2012-07-19 한국과학기술원 Charging management system of vehicle
WO2012102075A1 (en) 2011-01-28 2012-08-02 パナソニック 株式会社 Power-feeding module of contactless power-feeding apparatus, method of using power-feeding module of contactless power-feeding apparatus, and method of manufacturing power-feeding module of contactless power-feeding apparatus
US8319474B2 (en) 2006-11-15 2012-11-27 Mitsubishi Heavy Industries, Ltd. Non-contact type power feeder system for mobile object
JPWO2011046223A1 (en) * 2009-10-14 2013-03-07 Udトラックス株式会社 Power storage device
KR101251634B1 (en) 2010-08-10 2013-04-08 한국과학기술원 System and Method for Charging of Electric Vehicle Battery with Non Contact Electromagnetic Inductive Charging in Parking Lot
JP2013126908A (en) * 2011-12-19 2013-06-27 Mitsubishi Heavy Ind Ltd Power supply system for moving body
KR101437155B1 (en) 2012-07-10 2014-09-03 한국철도기술연구원 Power supply method for electromotive forklift truck of cell area in depository and power supply apparatus using the method
CN104901434A (en) * 2015-06-02 2015-09-09 中国民航大学 Electric vehicle wireless charging and automatic alignment control device based on energy detection
WO2015160513A1 (en) * 2014-04-18 2015-10-22 Qualcomm Incorporated Inductive power supply for vehicles comprising a plurality of charging coils havuing a shorter pitch than the pick-up coils
CN105283347A (en) * 2013-07-18 2016-01-27 株式会社Ihi Movement mechanism
JP2017042045A (en) * 2009-05-26 2017-02-23 株式会社ヘッズ Non-contact power supply device
JP2017131008A (en) * 2016-01-19 2017-07-27 富士通株式会社 Power transmitter, power receiver and wireless power transmission system
WO2017149599A1 (en) * 2016-02-29 2017-09-08 三菱電機エンジニアリング株式会社 Resonance-type wireless power transmission device
KR20170139220A (en) * 2016-06-08 2017-12-19 한국과학기술원 Wireless Power Transfer Apparatus
JP2020088973A (en) * 2018-11-20 2020-06-04 日本無線株式会社 Non-contact power transmission device and non-contact power transmission system
JP2021078238A (en) * 2019-11-08 2021-05-20 株式会社今仙電機製作所 Wireless power supply system and control method therefor
WO2021166109A1 (en) * 2020-02-19 2021-08-26 株式会社Fuji Non-contact power supply system
JP2021170854A (en) * 2020-04-14 2021-10-28 北伸電機株式会社 Non-contact power supply device of mobile body
WO2022025328A1 (en) * 2020-07-31 2022-02-03 엘지전자 주식회사 Wireless power transmission device

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8319474B2 (en) 2006-11-15 2012-11-27 Mitsubishi Heavy Industries, Ltd. Non-contact type power feeder system for mobile object
JP4536131B2 (en) * 2008-05-23 2010-09-01 カワサキプラントシステムズ株式会社 Insulated power feeder for moving objects
JP2009284695A (en) * 2008-05-23 2009-12-03 Kawasaki Plant Systems Ltd Insulating power feeding device for moving body
JP2010035300A (en) * 2008-07-28 2010-02-12 Showa Aircraft Ind Co Ltd Non-contact power supply apparatus
JP2010125974A (en) * 2008-11-27 2010-06-10 Railway Technical Res Inst Noncontact electric supply system for railway vehicle
JP2017042045A (en) * 2009-05-26 2017-02-23 株式会社ヘッズ Non-contact power supply device
US10128694B2 (en) 2009-10-14 2018-11-13 Volvo Truck Corporation Power storage apparatus
JP5581325B2 (en) * 2009-10-14 2014-08-27 Udトラックス株式会社 Power storage device
US9496721B2 (en) 2009-10-14 2016-11-15 Ud Trucks Corporation Power storage apparatus
JPWO2011046223A1 (en) * 2009-10-14 2013-03-07 Udトラックス株式会社 Power storage device
JP2011097671A (en) * 2009-10-27 2011-05-12 Nippon Tekumo:Kk Non-contact power supply device
JP2011097733A (en) * 2009-10-29 2011-05-12 Tokyo Seimitsu Co Ltd Driver and driving method
JP2011135772A (en) * 2009-12-24 2011-07-07 Rusk Intellectual Reserve Ag Electric vehicle and electric supply arrangement for the same
JP2011135704A (en) * 2009-12-25 2011-07-07 Daifuku Co Ltd Noncontact power supply facility
JP2011167031A (en) * 2010-02-15 2011-08-25 Toyota Central R&D Labs Inc Power supplying device for moving body
JP2011200052A (en) * 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc Power supply device
WO2011118404A1 (en) * 2010-03-23 2011-09-29 トヨタ自動車株式会社 Power-feed device
CN102835002A (en) * 2010-03-23 2012-12-19 丰田自动车株式会社 Power-feed device
JP2011217506A (en) * 2010-03-31 2011-10-27 Daifuku Co Ltd Non-contact power feeding apparatus
JP2011223703A (en) * 2010-04-07 2011-11-04 Showa Aircraft Ind Co Ltd Portable type non-contact power supply device
WO2011152677A2 (en) * 2010-06-03 2011-12-08 한국과학기술원 Cross-segment feed device capable of turning on/turning off individual modules
WO2011152677A3 (en) * 2010-06-03 2012-02-23 한국과학기술원 Cross-segment feed device capable of turning on/turning off individual modules
KR101251634B1 (en) 2010-08-10 2013-04-08 한국과학기술원 System and Method for Charging of Electric Vehicle Battery with Non Contact Electromagnetic Inductive Charging in Parking Lot
KR101166867B1 (en) * 2010-09-09 2012-07-19 한국과학기술원 Charging management system of vehicle
KR101132695B1 (en) * 2010-09-09 2012-03-30 한국철도기술연구원 Rail propulsion apparatus and system for tracked vehicle
KR101143345B1 (en) 2010-09-15 2012-05-09 주식회사 신성에프에이 Parallel operating apparatus of non-contact power supply system and method thereof
WO2012050345A3 (en) * 2010-10-13 2012-06-14 한국과학기술원 Non-contact power transmission device, magnetic induction-type power supply device, magnetic induction-type power collector, and moving object using same
KR101232036B1 (en) * 2010-10-13 2013-02-12 한국과학기술원 Contactless Power Transfer Apparatus and Inductive Power Supply Apparatus
WO2012050345A2 (en) * 2010-10-13 2012-04-19 한국과학기술원 Non-contact power transmission device, magnetic induction-type power supply device, magnetic induction-type power collector, and moving object using same
EP2669912A1 (en) * 2011-01-28 2013-12-04 Panasonic Corporation Power-feeding module of contactless power-feeding apparatus, method of using power-feeding module of contactless power-feeding apparatus, and method of manufacturing power-feeding module of contactless power-feeding apparatus
WO2012102075A1 (en) 2011-01-28 2012-08-02 パナソニック 株式会社 Power-feeding module of contactless power-feeding apparatus, method of using power-feeding module of contactless power-feeding apparatus, and method of manufacturing power-feeding module of contactless power-feeding apparatus
EP2669912A4 (en) * 2011-01-28 2015-03-25 Panasonic Corp Power-feeding module of contactless power-feeding apparatus, method of using power-feeding module of contactless power-feeding apparatus, and method of manufacturing power-feeding module of contactless power-feeding apparatus
CN103262188A (en) * 2011-01-28 2013-08-21 松下电器产业株式会社 Power-feeding module of contactless power-feeding apparatus, method of using power-feeding module of contactless power-feeding apparatus, and method of manufacturing power-feeding module of contactless power-feeding apparatus
JP2012161110A (en) * 2011-01-28 2012-08-23 Panasonic Corp Power supply module of non-contact power supply device, usage method of power supply module of non-contact power supply device, and manufacturing method of power supply module of non-contact power supply device
US9325386B2 (en) 2011-01-28 2016-04-26 Panasonic Intellectual Property Management Co., Ltd. Power supplying module for contactless power supplying device, method for using power supplying module of contactless power supplying device, and method for manufacturing power supplying module of contactless power supplying device
JP2013126908A (en) * 2011-12-19 2013-06-27 Mitsubishi Heavy Ind Ltd Power supply system for moving body
KR101437155B1 (en) 2012-07-10 2014-09-03 한국철도기술연구원 Power supply method for electromotive forklift truck of cell area in depository and power supply apparatus using the method
CN105283347A (en) * 2013-07-18 2016-01-27 株式会社Ihi Movement mechanism
US9533590B2 (en) 2014-04-18 2017-01-03 Qualcomm Incorporated Base array network design for multiple vehicle pads
CN106232416A (en) * 2014-04-18 2016-12-14 高通股份有限公司 For including that spacing is shorter than the inductive power of the vehicle of multiple charge coils of pick-up coil
WO2015160513A1 (en) * 2014-04-18 2015-10-22 Qualcomm Incorporated Inductive power supply for vehicles comprising a plurality of charging coils havuing a shorter pitch than the pick-up coils
CN104901434A (en) * 2015-06-02 2015-09-09 中国民航大学 Electric vehicle wireless charging and automatic alignment control device based on energy detection
JP2017131008A (en) * 2016-01-19 2017-07-27 富士通株式会社 Power transmitter, power receiver and wireless power transmission system
WO2017149599A1 (en) * 2016-02-29 2017-09-08 三菱電機エンジニアリング株式会社 Resonance-type wireless power transmission device
JPWO2017149599A1 (en) * 2016-02-29 2018-03-08 三菱電機エンジニアリング株式会社 Resonant type wireless power transmission device
KR101865852B1 (en) * 2016-06-08 2018-07-16 한국과학기술원 Wireless Power Transfer Apparatus
KR20170139220A (en) * 2016-06-08 2017-12-19 한국과학기술원 Wireless Power Transfer Apparatus
JP2020088973A (en) * 2018-11-20 2020-06-04 日本無線株式会社 Non-contact power transmission device and non-contact power transmission system
JP7141922B2 (en) 2018-11-20 2022-09-26 日本無線株式会社 Contactless power transmission device and contactless power transmission system
JP2021078238A (en) * 2019-11-08 2021-05-20 株式会社今仙電機製作所 Wireless power supply system and control method therefor
WO2021166109A1 (en) * 2020-02-19 2021-08-26 株式会社Fuji Non-contact power supply system
JPWO2021166109A1 (en) * 2020-02-19 2021-08-26
JP7395707B2 (en) 2020-02-19 2023-12-11 株式会社Fuji Contactless power supply system
JP2021170854A (en) * 2020-04-14 2021-10-28 北伸電機株式会社 Non-contact power supply device of mobile body
JP7388655B2 (en) 2020-04-14 2023-11-29 北伸電機株式会社 Contactless power supply device for mobile objects
WO2022025328A1 (en) * 2020-07-31 2022-02-03 엘지전자 주식회사 Wireless power transmission device

Similar Documents

Publication Publication Date Title
JP2006121791A (en) Noncontact power feeder for vehicle
KR101853825B1 (en) Non-contact electric power transmitting device and electric power transfer system
USRE45651E1 (en) Electronic control method for a planar inductive battery charging apparatus
JP4778432B2 (en) Frequency controlled resonant converter
US9755500B2 (en) Power feed device of inductive charging device
JP6154835B2 (en) Non-contact power supply device
JP6079878B2 (en) Power feeding device and non-contact power feeding system
WO2013136755A1 (en) Power feed device of inductive charging device
JP2015144554A (en) Power conversion equipment
JP4671515B2 (en) Power supply device
US20180097406A1 (en) Inductive power transmitter
JP2018506257A (en) Inductive power transmitter
US10447090B1 (en) Inductive power receiver
JP2009254031A (en) Non-contact feeder device
JP2005170380A (en) Non-contact current feed system
US20190260234A1 (en) Transmission system for contactlessly transmitting energy
JP6951373B2 (en) Power receiving equipment
JP2007053861A (en) Contactless feeder system
JP2017539194A (en) Induction power receiver
KR101383556B1 (en) Method And Apparatus for Controlling Rectification And Regulation
JP2018509876A (en) Inductive power receiver
JP2929897B2 (en) Automatic warehouse
JP7237545B2 (en) Electric vehicle power supply
JP7305437B2 (en) Electric vehicle power supply
CN216600248U (en) Automatically controlled board and air conditioning equipment