WO2017149599A1 - Resonance-type wireless power transmission device - Google Patents

Resonance-type wireless power transmission device Download PDF

Info

Publication number
WO2017149599A1
WO2017149599A1 PCT/JP2016/056051 JP2016056051W WO2017149599A1 WO 2017149599 A1 WO2017149599 A1 WO 2017149599A1 JP 2016056051 W JP2016056051 W JP 2016056051W WO 2017149599 A1 WO2017149599 A1 WO 2017149599A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
wireless power
power transmission
transmission
type wireless
Prior art date
Application number
PCT/JP2016/056051
Other languages
French (fr)
Japanese (ja)
Inventor
阿久澤 好幸
有基 伊藤
Original Assignee
三菱電機エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機エンジニアリング株式会社 filed Critical 三菱電機エンジニアリング株式会社
Priority to JP2017516980A priority Critical patent/JP6479174B2/en
Priority to PCT/JP2016/056051 priority patent/WO2017149599A1/en
Priority to TW105125138A priority patent/TW201733248A/en
Publication of WO2017149599A1 publication Critical patent/WO2017149599A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a resonance type wireless power transmission apparatus that wirelessly transmits power between a transmission antenna and a reception antenna.
  • Patent Document 1 In the coil unit disclosed in Patent Document 1, a magnetic body is disposed outside a coil that performs power transmission. Thereby, the leakage magnetic field radiated to the space passes through the magnetic body and returns to the coil, and unnecessary radiation to the space is reduced. In this coil unit, a conductor plate is disposed between the coil and the magnetic body. Thereby, it can adjust so that the coupling
  • the conventional technology includes a magnetic body and a conductor plate, there is a problem that the entire apparatus is increased in size and weight.
  • the entire coil when the entire coil is not surrounded by a magnetic material, there is a problem in that a magnetic field is radiated to a space from a location where the magnetic material is not disposed and a leakage magnetic field is generated.
  • a magnetic material since a magnetic material is used in the prior art, there is a problem that heat is generated due to iron loss and power transmission efficiency is reduced.
  • the conductor plate since the conductor plate is used in the prior art, there is a problem that heat is generated due to eddy current loss and power transmission efficiency is reduced. Further, since the end face of the coil is open, there is a problem that the leakage magnetic field is structurally large.
  • the present invention has been made to solve the above-described problems, and provides a resonant wireless power transmission device that can suppress the generation of a leakage magnetic field without using a magnetic body and a conductor plate. It is aimed.
  • a resonant wireless power transmission device includes a transmission antenna wound in a spiral shape and a reception antenna wound in a spiral shape, and one end face of the transmission antenna and one end face of the reception antenna face each other.
  • the other end face of the transmitting antenna and the other end face of the receiving antenna are opposed to each other.
  • the leakage magnetic field generated from the resonance type wireless power transmission device can be suppressed without using a magnetic body and a conductor plate.
  • FIG. 1A is a schematic diagram illustrating a configuration example of a resonant wireless power transmission device according to Embodiment 1 of the present invention
  • FIG. 1B is a schematic diagram of a transmission antenna as viewed from an end surface side.
  • 1 is an equivalent circuit diagram of a resonance type wireless power transmission apparatus according to Embodiment 1 of the present invention.
  • FIG. FIG. 3A is a schematic diagram illustrating another configuration example of the resonant wireless power transmission device according to the first embodiment of the present invention
  • FIG. 3B is a schematic diagram of the transmission antenna as viewed from the end surface side. It is a schematic diagram which shows another structural example of the resonance type radio
  • FIG. 11A and FIG. 11B are diagrams showing a hardware configuration example of the control unit of the transmission power supply in the fifth and sixth embodiments of the present invention.
  • FIG. 1 is a schematic diagram showing a configuration example of a resonant wireless power transmission apparatus according to Embodiment 1 of the present invention
  • FIG. 2 is an equivalent circuit diagram of the resonant wireless power transmission apparatus.
  • the resonant wireless power transmission apparatus includes a transmission power source 1, a transmitter 2, a receiver 3, and a reception circuit 4.
  • the transmission power source 1 and the transmitter 2 constitute a transmission device 5, and the receiver 3 and the reception circuit 4 constitute a reception device 6.
  • the transmission power source 1 supplies single frequency AC power.
  • the transmitter 2 wirelessly transmits the power supplied from the transmission power source 1 to the receiver 3.
  • the transmitter 2 shown in FIGS. 1 and 2 has resonance capacitors C ⁇ b> 11 and C ⁇ b> 12 and a transmission antenna (transmission coil) 21.
  • the resonance capacitors C11 and C12 adjust the resonance condition of the transmission antenna 21.
  • one end of the resonance capacitor C ⁇ b> 11 is connected to one of the pair of output terminals of the transmission power source 1.
  • one end of the resonance capacitor C12 is connected to the other terminal of the pair of output terminals of the transmission power source 1.
  • the transmitting antenna 21 has one end connected to the other end of the resonance capacitor C11 and the other end connected to the other end of the resonance capacitor C12. Details of the transmission antenna 21 will be described later.
  • the receiver 3 receives power from the transmitter 2.
  • the receiver 3 shown in FIGS. 1 and 2 has a receiving antenna (receiving coil) 31 and resonance capacitors C21 and C22.
  • the resonance capacitors C21 and C22 adjust the resonance conditions of the reception antenna 31.
  • one end of the receiving antenna 31 is connected to one end of the resonance capacitor C21, and the other end is connected to one end of the resonance capacitor C22. Details of the receiving antenna 31 will be described later.
  • the power transmission method between the transmitting antenna 21 and the receiving antenna 31 is not particularly limited, and any of a magnetic field resonance method, an electric field resonance method, and an electromagnetic induction method may be used.
  • the receiving circuit 4 is connected to the receiver 3.
  • one terminal of the pair of input terminals is connected to the other end of the resonance capacitor C21, and the other terminal is connected to the other end of the resonance capacitor C22.
  • Examples of the receiving circuit 4 include a configuration including a rectifier circuit and a load, a configuration including a rectifier circuit, a reception power source (DC / DC converter) and a load, and a configuration including only a load.
  • the transmission antenna 21 has a helical (helical) coil shape, and both end faces 21a and 21b receive signals.
  • the axial center shape is formed in an arc shape so as to face the antenna 31 side.
  • the receiving antenna 31 has a helical (helical) coil shape, and the axial center is formed in an arc shape so that both end faces 31a and 31b face the transmitting antenna 21 side.
  • FIG. 1B only the transmission antenna 21 is shown, but the same applies to the reception antenna 31.
  • the transmission antenna 21 and the reception antenna 31 are configured such that one end surface 21a of the transmission antenna 21 and one end surface 31a of the reception antenna 31 are opposed to each other, the other end surface 21b of the transmission antenna 21 and the other end surface 31b of the reception antenna 31 are opposed. Are arranged so as to face each other. Note that the end surfaces 21a and 21b of the transmission antenna 21 and the end surfaces 31a and 31b of the reception antenna 31 do not have to be strictly opposed to each other, for example, an area of 75% or more of the end surface. Should just face each other.
  • the end surfaces 21a and 21b of the transmitting antenna 21 and the end surfaces 31a and 31b of the receiving antenna 31 are arranged to face each other, thereby reducing the number of magnetic field leaks and suppressing the generation of a leakage magnetic field into the space. Can do.
  • a one-dot chain line indicates a path of interlinkage magnetic flux (main magnetic flux), and a broken line indicates leakage magnetic flux.
  • the shapes of the transmission antenna 21 and the reception antenna 31 are not limited to the shapes shown in FIG. 1, and may be, for example, the shapes shown in FIG. In FIG. 1, the winding start position and the winding end position of the transmission antenna 21 are opposite to each other, but in FIG. 3, the coil winding start position and the winding end position of the transmission antenna 21 are On the same side.
  • the coil is wound spirally from the winding start position toward the tip, and is wound back to the winding start position with the same winding direction. Thereby, the direction of the electric current which flows into the transmission antenna 21 can be made into the same direction by the going of a coil and a return.
  • the receiving antenna 31 is configured in the same manner as the transmitting antenna 21. Moreover, even if it is the shape shown in FIG. 3, an equivalent circuit is the same as FIG.
  • the shapes of the transmitting antenna 21 and the receiving antenna 31 may be different as shown in FIG. FIG. 4 shows a case where the number of turns between the transmitting antenna 21 and the receiving antenna 31 is changed.
  • the axial center shape of the transmitting antenna 21 and the receiving antenna 31 is an arc shape
  • the present invention is not limited to this, and may be a square shape, for example.
  • the transmission antenna 21 wound spirally and the reception antenna 31 wound spirally are provided, and one end face 21a of the transmission antenna 21 and the reception antenna 31 are provided. Since the other end surface 21b of the transmitting antenna 21 and the other end surface 31b of the receiving antenna 31 are opposed to each other, the resonance type wireless power can be used without using a magnetic material and a conductor plate. The leakage magnetic field generated from the transmission device can be suppressed.
  • the entire apparatus can be reduced in size and weight compared to the conventional configuration. Further, since iron loss due to the magnetic material does not occur, the loss and heat generation of the entire apparatus are less than in the conventional configuration, and the power transmission efficiency can be increased. Moreover, since eddy current loss due to the conductor plate does not occur, the loss and heat generation of the entire apparatus are less than in the conventional configuration, and the power transmission efficiency can be increased.
  • the resonance type wireless power transmission apparatus according to Embodiment 1 has a large effect of reducing the leakage magnetic field, particularly for high power wireless power transmission.
  • FIG. FIG. 5 is a schematic diagram showing a configuration example of a resonance type wireless power transmission apparatus according to Embodiment 2 of the present invention.
  • the resonance type wireless power transmission device according to the second embodiment shown in FIG. 5 includes resonance capacitors C11 and C12 and resonance capacitors C21 and C22 from the resonance type wireless power transmission device according to the first embodiment shown in FIG.
  • the transmission antenna 21 and the reception antenna 31 are open type. Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
  • the transmission antenna 21 is divided into first and second transmission antennas 211 and 212 as shown in FIG.
  • the first transmission antenna 211 has one end connected to one of the pair of output terminals of the transmission power supply 1 and the other end open.
  • the second transmission antenna 212 has one end connected to the other terminal of the pair of output terminals of the transmission power source 1 and the other end opened.
  • the receiving antenna 31 is divided into first and second receiving antennas 311 and 312 as shown in FIG.
  • the first receiving antenna 311 has one end opened and the other end connected to one terminal of the pair of input terminals of the receiving circuit 4.
  • the second receiving antenna 312 has one end opened and the other end connected to the other terminal of the pair of input terminals of the receiving circuit 4.
  • the end surface 21a of the first transmission antenna 211 and the end surface 31a of the first reception antenna 311 are opposed to each other, and the end surface 21b of the second transmission antenna 212 and the end surface 31b of the second reception antenna 312 are opposed to each other.
  • the end surfaces 21a and 21b of the transmission antenna 21 and the end surfaces 31a and 31b of the reception antenna 31 do not have to be strictly opposed to each other, for example, an area of 75% or more of the end surface. Should just face each other.
  • the transmitting antenna 21 and the receiving antenna 31 are each of the parasitic capacitance of the coil.
  • the self-resonance can be performed by using and the own resonance condition can be adjusted.
  • the end surfaces 21a and 21b of the transmitting antenna 21 and the end surfaces 31a and 31b of the receiving antenna 31 are arranged to face each other, thereby reducing the number of magnetic field leak points, Generation of a leakage magnetic field into the space can be suppressed without using a conductor plate.
  • the resonance type wireless power transmission apparatus according to Embodiment 2 has a large effect of reducing the leakage magnetic field, particularly for high power wireless power transmission.
  • FIG. FIG. 6 is a schematic diagram showing a configuration example of a resonance type wireless power transmission apparatus according to Embodiment 3 of the present invention.
  • the transmitting antenna 21 and the receiving antenna 31 of the resonant wireless power transmission apparatus according to the first embodiment shown in FIG. 1 are changed to a conical shape. Is.
  • Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
  • the diameters of the end faces 21a and 21b are configured to be larger than the diameters of the portions other than the end faces 21a and 21b.
  • the end surfaces 21a and 21b have a conical shape in which the diameter on the side of the end surfaces 21a and 21b is gradually increased toward the end surfaces 21a and 21b with respect to the diameter of the portion other than the end surfaces 21a and 21b.
  • the receiving antenna 31 is configured in the same manner as the transmitting antenna 21.
  • the diameters of the end surfaces 21a, 21b, 31a, and 31b of the transmitting antenna 21 and the receiving antenna 31 are made larger than the diameters of the portions other than the end surfaces 21a, 21b, 31a, and 31b.
  • the end faces 21a, 21b, 31a, 31b can be easily made to face each other.
  • the enlargement of only the one part diameter can avoid the enlargement of the whole antenna.
  • FIG. 6 shows the case where the end faces 21a, 21b, 31a, 31b of both the transmitting antenna 21 and the receiving antenna 31 are configured to be large, the end face of only one antenna may be configured to be large.
  • 6 shows the case where the transmitting antenna 21 and the receiving antenna 31 have a conical shape.
  • the present invention is not limited to this, and the diameters of the end faces 21a, 21b, 31a, 31b are the end faces 21a, 21b, 31a,
  • the shape may be any shape as long as it is larger than the diameter of the portion other than 31b.
  • FIG. 7 is a schematic diagram showing a configuration example of a resonance type wireless power transmission apparatus according to Embodiment 4 of the present invention.
  • the resonance type wireless power transmission apparatus according to the fourth embodiment shown in FIG. 7 is obtained by adding a repeater 7 to the resonance type wireless power transmission apparatus according to the first embodiment shown in FIG.
  • Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
  • the repeater 7 shown in FIG. 7 includes a resonance capacitor C31 and a relay antenna (relay coil) 71.
  • the resonance capacitor C31 adjusts the resonance condition of the relay antenna 71.
  • the resonance capacitor C31 has one end connected to one end of the relay antenna 71 and the other end connected to the other end of the relay antenna 71.
  • the relay antenna 71 has a coil shape wound in a helical shape (spiral shape), and both end surfaces 71a and 71b are adjacent antennas (the transmitting antenna 21, the receiving antenna 31 or the antenna).
  • the axial center shape is formed in an arc shape so as to face the other relay antenna 71) side.
  • the end surfaces 71a and 71b of the relay antenna 71 are arranged to face the end surfaces of the adjacent antennas.
  • the end faces 71a and 71b of the relay antenna 71 and the end faces of the adjacent antennas may not face all of the end faces, for example, an area of 75% or more of the end faces. Should just face each other.
  • the transmission distance can be extended.
  • the present invention is not limited to this, and may be a square shape, for example.
  • the diameters of the end faces 71a and 71b of the relay antenna 71 may be larger than the diameters of the portions other than the end faces 71a and 71b.
  • the repeater 7 includes the resonance capacitor C31 and the relay antenna 71.
  • the present invention is not limited to this, and similarly to FIG. 5, the resonance capacitor C31 may be removed, and the relay antenna 71 may be an open type and self-resonate.
  • the repeater 7 is added to the resonant wireless power transmission apparatus shown in FIG.
  • the present invention is not limited to this, and the repeater 7 may be added to other resonance type wireless power transmission apparatuses as shown in FIGS.
  • the loop shape including the transmission antenna 21, the reception antenna 31, and the relay antenna 71 is not limited to the shape shown in FIG. 7, and may be a shape as shown in FIG. 8, for example.
  • the relay antenna 71 is disposed only between one end (right end) of the transmission antenna 21 and one end (left end) of the reception antenna 31 for easy understanding of the drawing.
  • the relay antenna 71 is also arranged between the other end (left end) of the antenna and the receiving antenna 31 (right end) (dotted line portion shown in FIG. 8), and a loop is formed.
  • FIG. 9 is a schematic diagram showing an application example of a resonance type wireless power transmission apparatus according to Embodiment 5 of the present invention.
  • FIG. 9 shows a case where the transmission device 5 is provided in the parking lot (fixed portion) 101a and the reception device 6 is provided in the electric vehicle (moving body) 102a to supply power to the electric vehicle 102a.
  • the transmitting antenna 21 and the receiving antenna 31 of the resonance type wireless power transmission apparatus are illustrated.
  • the transmission power source 1 has a function (control unit) for switching on / off of power supply to the transmission antenna 21. At this time, the transmission power source 1 determines that the transmission vehicle antenna 102a stops at the parking lot 101a, and determines that the end surfaces 21a and 21b of the transmission antenna 21 and the end surfaces 31a and 31b of the reception antenna 31 face each other. Power is supplied to 21.
  • the power supply ON / OFF determination in the transmission power source 1 may be determined by, for example, detecting the electric vehicle 102a using an object detection sensor, or communication between the transmission device 5 and the reception device 6 may be performed. You may determine by doing.
  • FIG. 10 is a schematic diagram showing an application example of a resonance type wireless power transmission apparatus according to Embodiment 6 of the present invention.
  • FIG. 10 shows a case where a plurality of transmission devices 5 are provided in a production line (fixed part) 101b of a factory, and one or more reception devices 6 are provided in a pallet (moving body) 102b to supply power to the pallet 102b. ing. In FIG. 10, only the transmitting antenna 21 and the receiving antenna 31 of the resonance type wireless power transmission apparatus are illustrated.
  • the transmitting antennas 21 are arranged at regular intervals along the production line 101b.
  • Two receiving antennas 31 are provided for one pallet 102b.
  • suffixes (-1, -2, ...) are added to the codes of the respective systems.
  • the transmission power source 1 has a function (control unit) for switching on / off of power supply to the transmission antenna 21. At this time, the transmission power source 1 supplies power to the transmission antenna 21 when it is determined that the end surfaces 21a and 21b of any one of the transmission antennas 21 and the end surfaces 31a and 31b of any one of the reception antennas 31 face each other. Do.
  • the power supply ON / OFF determination in the transmission power source 1 may be determined by, for example, detecting the pallet 102b using an object detection sensor, or performing communication between the transmission device 5 and the reception device 6. The timing of power supply may be preset if the operation of the pallet 102b is known.
  • the transmission power source 1-1 (not shown) turns on the transmission antenna 21-1 and connects to one reception antenna (for example, the reception antenna 31-1). Conduct power transmission.
  • the transmission power supply 1-2 (not shown) turns off the transmission antenna 21-2, and the transmission antenna 21-2 and the other reception antenna (for example, the reception antenna 31-2) operate as a relay antenna.
  • a transmission power supply 1-4 (not shown) turns on the transmission antenna 21-4 and transmits power to the reception antenna 31-4.
  • transmission power supplies 1-3 and 1-5 (not shown) turn off the transmission antennas 21-3 and 21-5 whose end faces are not opposed to each other, and transmit the transmission antennas 21-3 and 21-5 and the reception antenna 31. -3 does not operate as a relay antenna.
  • a plurality of transmission devices 5 are provided in the production line 101b of the factory, one or more reception devices 6 are provided in the pallet 102b, and power is supplied to the pallet 102b is shown.
  • the present invention is not limited to this.
  • an electric vehicle that is moving by providing a plurality of transmitting devices 5 on a road surface (fixed portion) and providing one or more receiving devices 6 on an electric vehicle (moving body). You may comprise so that electric power feeding may be performed.
  • the transmission power source 1 is provided for each transmission antenna 21.
  • the present invention is not limited to this, and one transmission power source 1 may be provided for a plurality of transmission antennas 21.
  • the transmission power source 1 is configured to be able to individually switch the power supply to each transmission antenna 21 on and off.
  • FIG. 11 a hardware configuration example of the control unit of transmission power supply 1 in the fifth and sixth embodiments will be described.
  • the function in the control unit of the transmission power supply 1 is realized by the processing circuit 501.
  • a CPU Central Processing Unit, a central processing unit, a processing unit, an arithmetic unit, a microprocessor, which executes a program stored in the memory 503,
  • a microcomputer, a processor, and a DSP (Digital Signal Processor) 502 may also be used.
  • DSP Digital Signal Processor
  • the processing circuit 501 When the processing circuit 501 is dedicated hardware, the processing circuit 501 includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), and an FPGA (Field Programmable Gate). Array) or a combination thereof.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate
  • the processing circuit 501 When the processing circuit 501 is the CPU 502, the function of the control unit is realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are described as programs and stored in the memory 503.
  • the processing circuit 501 realizes the function of the control unit by reading and executing the program stored in the memory 503. That is, the transmission power source includes a memory 503 for storing a program that, when executed by the processing circuit 501, results in the function of the control unit being executed as a result.
  • these programs are what makes a computer perform the procedure and method of a control part.
  • the memory 503 is a nonvolatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), or the like. And a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disc), and the like.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), or the like.
  • a magnetic disk a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disc), and the like.
  • the processing circuit 501 can realize the above-described functions by hardware, software, firmware, or a combination thereof.
  • the resonance type wireless power transmission device can suppress the generation of a leakage magnetic field without using a magnetic body and a conductor plate, and can transmit power between a transmission antenna and a reception antenna wirelessly. Suitable for use in wireless power transmission devices and the like.
  • 1 transmission power source 2 transmitter, 3 receiver, 4 receiving circuit, 5 transmitting device, 6 receiving device, 7 repeater, 21 transmitting antenna, 21a, 21b end face, 31 receiving antenna, 31a, 31b end face, 71 relay antenna, 71a, 71b end face, 101a parking lot (fixed part), 101b production line (fixed part), 102a vehicle (moving body), 102b pallet (moving body), 211, 212, first and second transmitting antennas, 311, 312th 1, 2 receiving antennas, 501 processing circuit, 502 CPU, 503 memory.

Abstract

This resonance-type wireless power transmission device is provided with a transmission antenna (21) wound in a spiral shape and with a receiving antenna (31) wound in a spiral shape, wherein one end surface of the transmission antenna (21) and one end surface of the receiving antenna (31) are arranged oppositely of each other, and the other end surface of said transmission antenna (21) and the other end surface of said receiving antenna (31) are arranged oppositely of each other.

Description

共振型無線電力伝送装置Resonant type wireless power transmission device
 この発明は、送信アンテナと受信アンテナとの間を無線で電力を伝送する共振型無線電力伝送装置に関するものである。 The present invention relates to a resonance type wireless power transmission apparatus that wirelessly transmits power between a transmission antenna and a reception antenna.
 電気自動車等のパワーエレクトロニクス装置では、大電力の無線電力伝送が必要となり、漏洩磁界の強度も高くなるため、漏洩磁界を低減する対策が必要になる。そこで、従来から、電力伝送効率の低下を抑制しつつ、不要な漏洩磁界を低減する構成が知られている(例えば特許文献1参照)。この特許文献1に開示されたコイルユニットでは、電力伝送を行うコイルの外側に磁性体を配置している。これにより、空間へ放射された漏洩磁界が磁性体を通過してコイルへ戻り、空間への不要放射が低減される。また、このコイルユニットでは、コイルと磁性体との間に導体板を配置している。これにより、コイルと磁性体との結合度が顕著に高くならないように調整することができる。 In power electronics devices such as electric vehicles, high-power wireless power transmission is required, and the strength of the leakage magnetic field is increased. Therefore, measures to reduce the leakage magnetic field are required. Therefore, conventionally, a configuration is known in which an unnecessary leakage magnetic field is reduced while suppressing a decrease in power transmission efficiency (see, for example, Patent Document 1). In the coil unit disclosed in Patent Document 1, a magnetic body is disposed outside a coil that performs power transmission. Thereby, the leakage magnetic field radiated to the space passes through the magnetic body and returns to the coil, and unnecessary radiation to the space is reduced. In this coil unit, a conductor plate is disposed between the coil and the magnetic body. Thereby, it can adjust so that the coupling | bonding degree of a coil and a magnetic body may not become high remarkably.
特開2015-185719号公報JP-A-2015-185719
 しかしながら、従来技術では、磁性体及び導体板を備えているため、装置全体が大型化し重量化するという課題がある。また、従来技術において、コイル全体を磁性体で囲わない場合には、磁性体が配置されていない箇所から空間へ磁界が放射され、漏洩磁界が発生するという課題がある。また、従来技術では磁性体を使用しているため、鉄損による発熱が生じて電力伝送効率の低下が生じるという課題がある。また、従来技術では導体板を使用しているため、渦電流損による発熱が生じて電力伝送効率の低下が生じるという課題がある。また、コイルの端面が開放されているため、構造的に漏洩磁界が大きいという課題がある。 However, since the conventional technology includes a magnetic body and a conductor plate, there is a problem that the entire apparatus is increased in size and weight. Further, in the prior art, when the entire coil is not surrounded by a magnetic material, there is a problem in that a magnetic field is radiated to a space from a location where the magnetic material is not disposed and a leakage magnetic field is generated. In addition, since a magnetic material is used in the prior art, there is a problem that heat is generated due to iron loss and power transmission efficiency is reduced. Moreover, since the conductor plate is used in the prior art, there is a problem that heat is generated due to eddy current loss and power transmission efficiency is reduced. Further, since the end face of the coil is open, there is a problem that the leakage magnetic field is structurally large.
 この発明は、上記のような課題を解決するためになされたもので、磁性体及び導体板を用いることなく、漏洩磁界の発生を抑制することができる共振型無線電力伝送装置を提供することを目的としている。 The present invention has been made to solve the above-described problems, and provides a resonant wireless power transmission device that can suppress the generation of a leakage magnetic field without using a magnetic body and a conductor plate. It is aimed.
 この発明に係る共振型無線電力伝送装置は、らせん状に巻かれた送信アンテナと、らせん状に巻かれた受信アンテナとを備え、送信アンテナの一方の端面と受信アンテナの一方の端面とが対向され、当該送信アンテナの他方の端面と当該受信アンテナの他方の端面とが対向されたものである。 A resonant wireless power transmission device according to the present invention includes a transmission antenna wound in a spiral shape and a reception antenna wound in a spiral shape, and one end face of the transmission antenna and one end face of the reception antenna face each other. The other end face of the transmitting antenna and the other end face of the receiving antenna are opposed to each other.
 この発明によれば、上記のように構成したので、磁性体及び導体板を用いることなく、共振型無線電力伝送装置から発生する漏洩磁界を抑制することができる。 According to the present invention, since it is configured as described above, the leakage magnetic field generated from the resonance type wireless power transmission device can be suppressed without using a magnetic body and a conductor plate.
図1Aは、この発明の実施の形態1に係る共振型無線電力伝送装置の構成例を示す模式図であり、図1Bは、送信アンテナを端面側から見た模式図である。1A is a schematic diagram illustrating a configuration example of a resonant wireless power transmission device according to Embodiment 1 of the present invention, and FIG. 1B is a schematic diagram of a transmission antenna as viewed from an end surface side. この発明の実施の形態1に係る共振型無線電力伝送装置の等価回路図である。1 is an equivalent circuit diagram of a resonance type wireless power transmission apparatus according to Embodiment 1 of the present invention. FIG. 図3Aは、この発明の実施の形態1に係る共振型無線電力伝送装置の別の構成例を示す模式図であり、図3Bは、送信アンテナを端面側から見た模式図である。FIG. 3A is a schematic diagram illustrating another configuration example of the resonant wireless power transmission device according to the first embodiment of the present invention, and FIG. 3B is a schematic diagram of the transmission antenna as viewed from the end surface side. この発明の実施の形態1に係る共振型無線電力伝送装置の別の構成例を示す模式図である。It is a schematic diagram which shows another structural example of the resonance type radio | wireless power transmission apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る共振型無線電力伝送装置の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the resonance type wireless power transmission apparatus which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る共振型無線電力伝送装置の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the resonance type wireless power transmission apparatus which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係る共振型無線電力伝送装置の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the resonance type wireless power transmission apparatus which concerns on Embodiment 4 of this invention. この発明の実施の形態4に係る共振型無線電力伝送装置の別の構成例を示す模式図である。It is a schematic diagram which shows another structural example of the resonance type wireless power transmission apparatus which concerns on Embodiment 4 of this invention. この発明の実施の形態5に係る共振型無線電力伝送装置の適用例を示す模式図であり、電気自動車への給電を示す側面図である。It is a schematic diagram which shows the application example of the resonance type wireless power transmission apparatus which concerns on Embodiment 5 of this invention, and is a side view which shows the electric power feeding to an electric vehicle. この発明の実施の形態6に係る共振型無線電力伝送装置の適用例を示す模式図であり、パレットへの給電を示す上面図である。It is a schematic diagram which shows the application example of the resonance type wireless power transmission apparatus which concerns on Embodiment 6 of this invention, and is a top view which shows the electric power feeding to a pallet. 図11A、図11Bは、この発明の実施の形態5,6における送信電源の制御部のハードウェア構成例を示す図である。FIG. 11A and FIG. 11B are diagrams showing a hardware configuration example of the control unit of the transmission power supply in the fifth and sixth embodiments of the present invention.
 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1はこの発明の実施の形態1に係る共振型無線電力伝送装置の構成例を示す模式図であり、図2は当該共振型無線電力伝送装置の等価回路図である。
 共振型無線電力伝送装置は、図1,2に示すように、送信電源1、送信器2、受信器3及び受信回路4を備えている。なお、送信電源1及び送信器2は送信装置5を構成し、受信器3及び受信回路4は受信装置6を構成している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a schematic diagram showing a configuration example of a resonant wireless power transmission apparatus according to Embodiment 1 of the present invention, and FIG. 2 is an equivalent circuit diagram of the resonant wireless power transmission apparatus.
As shown in FIGS. 1 and 2, the resonant wireless power transmission apparatus includes a transmission power source 1, a transmitter 2, a receiver 3, and a reception circuit 4. The transmission power source 1 and the transmitter 2 constitute a transmission device 5, and the receiver 3 and the reception circuit 4 constitute a reception device 6.
 送信電源1は、単一周波数の交流電力を供給するものである。
 送信器2は、送信電源1から供給された電力を、受信器3に無線で伝送するものである。図1,2に示す送信器2は、共振用コンデンサC11,C12及び送信アンテナ(送信コイル)21を有している。共振用コンデンサC11,C12は、送信アンテナ21の共振条件を調整するものである。ここで、共振用コンデンサC11は、一端が送信電源1の一対の出力端子のうちの一方の端子に接続されている。また、共振用コンデンサC12は、一端が送信電源1の一対の出力端子のうちの他方の端子に接続されている。また、送信アンテナ21は、一端が共振用コンデンサC11の他端に接続され、他端が共振用コンデンサC12の他端に接続されている。この送信アンテナ21の詳細については後述する。
The transmission power source 1 supplies single frequency AC power.
The transmitter 2 wirelessly transmits the power supplied from the transmission power source 1 to the receiver 3. The transmitter 2 shown in FIGS. 1 and 2 has resonance capacitors C <b> 11 and C <b> 12 and a transmission antenna (transmission coil) 21. The resonance capacitors C11 and C12 adjust the resonance condition of the transmission antenna 21. Here, one end of the resonance capacitor C <b> 11 is connected to one of the pair of output terminals of the transmission power source 1. In addition, one end of the resonance capacitor C12 is connected to the other terminal of the pair of output terminals of the transmission power source 1. The transmitting antenna 21 has one end connected to the other end of the resonance capacitor C11 and the other end connected to the other end of the resonance capacitor C12. Details of the transmission antenna 21 will be described later.
 受信器3は、送信器2からの電力を受信するものである。図1,2に示す受信器3は、受信アンテナ(受信コイル)31及び共振用コンデンサC21,C22を有している。共振用コンデンサC21,C22は、受信アンテナ31の共振条件を調整するものである。ここで、受信アンテナ31は、一端が共振用コンデンサC21の一端に接続され、他端が共振用コンデンサC22の一端に接続されている。この受信アンテナ31の詳細については後述する。 The receiver 3 receives power from the transmitter 2. The receiver 3 shown in FIGS. 1 and 2 has a receiving antenna (receiving coil) 31 and resonance capacitors C21 and C22. The resonance capacitors C21 and C22 adjust the resonance conditions of the reception antenna 31. Here, one end of the receiving antenna 31 is connected to one end of the resonance capacitor C21, and the other end is connected to one end of the resonance capacitor C22. Details of the receiving antenna 31 will be described later.
 なお、送信アンテナ21と受信アンテナ31との間の電力伝送方式は特に限定されるものではなく、磁界共鳴による方式、電界共鳴による方式、電磁誘導による方式の何れであってもよい。 The power transmission method between the transmitting antenna 21 and the receiving antenna 31 is not particularly limited, and any of a magnetic field resonance method, an electric field resonance method, and an electromagnetic induction method may be used.
 受信回路4は、受信器3に接続されたものである。この受信回路4は、一対の入力端子のうちの一方の端子が共振用コンデンサC21の他端に接続され、他方の端子が共振用コンデンサC22の他端に接続されている。この受信回路4としては、整流回路及び負荷から成る構成や、整流回路、受信電源(DC/DCコンバータ)及び負荷から成る構成、負荷のみから成る構成等が挙げられる。 The receiving circuit 4 is connected to the receiver 3. In the receiving circuit 4, one terminal of the pair of input terminals is connected to the other end of the resonance capacitor C21, and the other terminal is connected to the other end of the resonance capacitor C22. Examples of the receiving circuit 4 include a configuration including a rectifier circuit and a load, a configuration including a rectifier circuit, a reception power source (DC / DC converter) and a load, and a configuration including only a load.
 次に、送信アンテナ21及び受信アンテナ31の詳細について説明する。
 実施の形態1に係る共振型無線電力伝送装置では、図1に示すように、送信アンテナ21は、ヘリカル状(らせん状)に巻かれたコイル形状であり、且つ、両端面21a,21bが受信アンテナ31側を向くように軸心形状が円弧状に構成されている。同様に、受信アンテナ31は、ヘリカル状(らせん状)に巻かれたコイル形状であり、且つ、両端面31a,31bが送信アンテナ21側を向くように軸心形状が円弧状に構成されている。なお図1Bでは、送信アンテナ21のみを図示しているが、受信アンテナ31についても同様である。
 そして、送信アンテナ21及び受信アンテナ31は、送信アンテナ21の一方の端面21aと受信アンテナ31の一方の端面31aとが対向され、送信アンテナ21の他方の端面21bと受信アンテナ31の他方の端面31bとが対向されるように配置されている。なお、送信アンテナ21の端面21a,21bと受信アンテナ31の端面31a,31bとの対向は、端面のうちの全ての面が厳密に対向していなくてもよく、例えば端面の75%以上の面積が対向していればよい。
Next, details of the transmitting antenna 21 and the receiving antenna 31 will be described.
In the resonant wireless power transmission device according to the first embodiment, as shown in FIG. 1, the transmission antenna 21 has a helical (helical) coil shape, and both end faces 21a and 21b receive signals. The axial center shape is formed in an arc shape so as to face the antenna 31 side. Similarly, the receiving antenna 31 has a helical (helical) coil shape, and the axial center is formed in an arc shape so that both end faces 31a and 31b face the transmitting antenna 21 side. . In FIG. 1B, only the transmission antenna 21 is shown, but the same applies to the reception antenna 31.
The transmission antenna 21 and the reception antenna 31 are configured such that one end surface 21a of the transmission antenna 21 and one end surface 31a of the reception antenna 31 are opposed to each other, the other end surface 21b of the transmission antenna 21 and the other end surface 31b of the reception antenna 31 are opposed. Are arranged so as to face each other. Note that the end surfaces 21a and 21b of the transmission antenna 21 and the end surfaces 31a and 31b of the reception antenna 31 do not have to be strictly opposed to each other, for example, an area of 75% or more of the end surface. Should just face each other.
 このように、送信アンテナ21の端面21a,21bと受信アンテナ31の端面31a,31bとが対向されて配置されることで、磁界の漏れる箇所が減り、空間への漏洩磁界の発生を抑制することができる。なお図1Aにおいて、一点鎖線は鎖交磁束(主磁束)の経路を示し、破線は漏洩磁束を示している。 As described above, the end surfaces 21a and 21b of the transmitting antenna 21 and the end surfaces 31a and 31b of the receiving antenna 31 are arranged to face each other, thereby reducing the number of magnetic field leaks and suppressing the generation of a leakage magnetic field into the space. Can do. In FIG. 1A, a one-dot chain line indicates a path of interlinkage magnetic flux (main magnetic flux), and a broken line indicates leakage magnetic flux.
 なお、送信アンテナ21及び受信アンテナ31の形状は、図1に示すような形状に限るものではなく、例えば図3に示すような形状としてもよい。
 図1では、送信アンテナ21のコイルの巻き始めの位置と巻き終わりの位置とが反対側となっているが、図3では、送信アンテナ21のコイルの巻き始めの位置と巻き終わりの位置とが同じ側となっている。この図3に示す送信アンテナ21では、コイルを、巻き始めの位置から先端に向かってらせん状に巻き、同じ巻線方向のまま巻き始めの位置まで戻すように巻く。これにより、コイルの行きと帰りで、送信アンテナ21に流れる電流の向きを同じ向きとすることができる。受信アンテナ31についても送信アンテナ21と同様に構成されている。また、図3に示す形状であっても等価回路は図2と同一である。
Note that the shapes of the transmission antenna 21 and the reception antenna 31 are not limited to the shapes shown in FIG. 1, and may be, for example, the shapes shown in FIG.
In FIG. 1, the winding start position and the winding end position of the transmission antenna 21 are opposite to each other, but in FIG. 3, the coil winding start position and the winding end position of the transmission antenna 21 are On the same side. In the transmitting antenna 21 shown in FIG. 3, the coil is wound spirally from the winding start position toward the tip, and is wound back to the winding start position with the same winding direction. Thereby, the direction of the electric current which flows into the transmission antenna 21 can be made into the same direction by the going of a coil and a return. The receiving antenna 31 is configured in the same manner as the transmitting antenna 21. Moreover, even if it is the shape shown in FIG. 3, an equivalent circuit is the same as FIG.
 また、送信アンテナ21及び受信アンテナ31の形状を、図4に示すように異なる形状としてもよい。図4では、送信アンテナ21と受信アンテナ31との巻数を変えた場合を示している。
 また上記では、送信アンテナ21及び受信アンテナ31の軸心形状を円弧状とした場合を示したが、これに限るものではなく、例えば角状としてもよい。
Further, the shapes of the transmitting antenna 21 and the receiving antenna 31 may be different as shown in FIG. FIG. 4 shows a case where the number of turns between the transmitting antenna 21 and the receiving antenna 31 is changed.
Moreover, although the case where the axial center shape of the transmitting antenna 21 and the receiving antenna 31 is an arc shape has been described above, the present invention is not limited to this, and may be a square shape, for example.
 以上のように、この実施の形態1によれば、らせん状に巻かれた送信アンテナ21と、らせん状に巻かれた受信アンテナ31とを備え、送信アンテナ21の一方の端面21aと受信アンテナ31の一方の端面31aとが対向され、当該送信アンテナ21の他方の端面21bと当該受信アンテナ31の他方の端面31bとが対向されたので、磁性体及び導体板を用いることなく、共振型無線電力伝送装置から発生する漏洩磁界を抑制することができる。 As described above, according to the first embodiment, the transmission antenna 21 wound spirally and the reception antenna 31 wound spirally are provided, and one end face 21a of the transmission antenna 21 and the reception antenna 31 are provided. Since the other end surface 21b of the transmitting antenna 21 and the other end surface 31b of the receiving antenna 31 are opposed to each other, the resonance type wireless power can be used without using a magnetic material and a conductor plate. The leakage magnetic field generated from the transmission device can be suppressed.
 また、磁性体及び導体板を用いずに漏洩磁界の発生を抑制することができるため、従来構成に対して装置全体を小型化及び軽量化できる。また、磁性体による鉄損は生じないため、従来構成に対し、装置全体での損失及び発熱が少なく、電力伝送効率を高めることができる。また、導体板による渦電流損は生じないため、従来構成に対し、装置全体での損失及び発熱が少なく、電力伝送効率を高めることができる。また、実施の形態1に係る共振型無線電力伝送装置は、送信アンテナ21の端面21a,21b及び受信アンテナ31の端面31a,31bが開放されていないため、構造的にも漏洩磁界の発生が抑えられる。また、実施の形態1に係る共振型無線電力伝送装置は、特に大電力の無線電力伝送に対して、漏洩磁界の低減効果が大きくなる。 Also, since the generation of a leakage magnetic field can be suppressed without using a magnetic body and a conductor plate, the entire apparatus can be reduced in size and weight compared to the conventional configuration. Further, since iron loss due to the magnetic material does not occur, the loss and heat generation of the entire apparatus are less than in the conventional configuration, and the power transmission efficiency can be increased. Moreover, since eddy current loss due to the conductor plate does not occur, the loss and heat generation of the entire apparatus are less than in the conventional configuration, and the power transmission efficiency can be increased. In addition, since the end surfaces 21a and 21b of the transmitting antenna 21 and the end surfaces 31a and 31b of the receiving antenna 31 are not open in the resonant wireless power transmission device according to the first embodiment, the generation of the leakage magnetic field is suppressed structurally. It is done. In addition, the resonance type wireless power transmission apparatus according to Embodiment 1 has a large effect of reducing the leakage magnetic field, particularly for high power wireless power transmission.
実施の形態2.
 図5はこの発明の実施の形態2に係る共振型無線電力伝送装置の構成例を示す模式図である。この図5に示す実施の形態2に係る共振型無線電力伝送装置は、図1に示す実施の形態1に係る共振型無線電力伝送装置から共振用コンデンサC11,C12及び共振用コンデンサC21,C22を取除き、送信アンテナ21及び受信アンテナ31を開放型としたものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
Embodiment 2. FIG.
FIG. 5 is a schematic diagram showing a configuration example of a resonance type wireless power transmission apparatus according to Embodiment 2 of the present invention. The resonance type wireless power transmission device according to the second embodiment shown in FIG. 5 includes resonance capacitors C11 and C12 and resonance capacitors C21 and C22 from the resonance type wireless power transmission device according to the first embodiment shown in FIG. The transmission antenna 21 and the reception antenna 31 are open type. Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
 実施の形態2における送信器2では、図5に示すように、送信アンテナ21が第1,2の送信アンテナ211,212に分割されている。そして、第1の送信アンテナ211は、一端が送信電源1の一対の出力端子のうちの一方の端子に接続され、他端が開放されている。また、第2の送信アンテナ212は、一端が送信電源1の一対の出力端子のうちの他方の端子に接続され、他端が開放されている。
 同様に、実施の形態2における受信器3では、図5に示すように、受信アンテナ31が第1,2の受信アンテナ311,312に分割されている。そして、第1の受信アンテナ311は、一端が開放され、他端が受信回路4の一対の入力端子のうちの一方の端子に接続されている。また、第2の受信アンテナ312は、一端が開放され、他端が受信回路4の一対の入力端子のうちの他方の端子に接続されている。
In the transmitter 2 according to Embodiment 2, the transmission antenna 21 is divided into first and second transmission antennas 211 and 212 as shown in FIG. The first transmission antenna 211 has one end connected to one of the pair of output terminals of the transmission power supply 1 and the other end open. The second transmission antenna 212 has one end connected to the other terminal of the pair of output terminals of the transmission power source 1 and the other end opened.
Similarly, in the receiver 3 according to the second embodiment, the receiving antenna 31 is divided into first and second receiving antennas 311 and 312 as shown in FIG. The first receiving antenna 311 has one end opened and the other end connected to one terminal of the pair of input terminals of the receiving circuit 4. The second receiving antenna 312 has one end opened and the other end connected to the other terminal of the pair of input terminals of the receiving circuit 4.
 そして、第1の送信アンテナ211の端面21aと第1の受信アンテナ311の端面31aとが対向され、第2の送信アンテナ212の端面21bと第2の受信アンテナ312の端面31bとが対向されるように配置されている。なお、送信アンテナ21の端面21a,21bと受信アンテナ31の端面31a,31bとの対向は、端面のうちの全ての面が厳密に対向していなくてもよく、例えば端面の75%以上の面積が対向していればよい。 The end surface 21a of the first transmission antenna 211 and the end surface 31a of the first reception antenna 311 are opposed to each other, and the end surface 21b of the second transmission antenna 212 and the end surface 31b of the second reception antenna 312 are opposed to each other. Are arranged as follows. Note that the end surfaces 21a and 21b of the transmission antenna 21 and the end surfaces 31a and 31b of the reception antenna 31 do not have to be strictly opposed to each other, for example, an area of 75% or more of the end surface. Should just face each other.
 このように、共振用コンデンサC11,C12及び共振用コンデンサC21,C22を使用せず、送信アンテナ21及び受信アンテナ31を開放型とすることで、送信アンテナ21及び受信アンテナ31がそれぞれコイルの寄生容量を用いて自己共振を行い、自身の共振条件を調整することができる。また、図5に示すような構成としても、送信アンテナ21の端面21a,21bと受信アンテナ31の端面31a,31bとが対向されて配置されることで、磁界の漏れる箇所が減り、磁性体及び導体板を用いることなく、空間への漏洩磁界の発生を抑制することができる。 In this way, by using the transmitting antenna 21 and the receiving antenna 31 as an open type without using the resonant capacitors C11 and C12 and the resonant capacitors C21 and C22, the transmitting antenna 21 and the receiving antenna 31 are each of the parasitic capacitance of the coil. The self-resonance can be performed by using and the own resonance condition can be adjusted. Also, as shown in FIG. 5, the end surfaces 21a and 21b of the transmitting antenna 21 and the end surfaces 31a and 31b of the receiving antenna 31 are arranged to face each other, thereby reducing the number of magnetic field leak points, Generation of a leakage magnetic field into the space can be suppressed without using a conductor plate.
 また、磁性体及び導体板を用いずに漏洩磁界の発生を抑制することができるため、従来構成に対して装置全体を小型化及び軽量化できる。また、磁性体による鉄損は生じないため、従来構成に対し、装置全体での損失及び発熱が少なく、電力伝送効率を高めることができる。また、導体板による渦電流損は生じないため、従来構成に対し、装置全体での損失及び発熱が少なく、電力伝送効率を高めることができる。また、実施の形態2に係る共振型無線電力伝送装置は、特に大電力の無線電力伝送に対して、漏洩磁界の低減効果が大きくなる。 Also, since the generation of a leakage magnetic field can be suppressed without using a magnetic body and a conductor plate, the entire apparatus can be reduced in size and weight compared to the conventional configuration. Further, since iron loss due to the magnetic material does not occur, the loss and heat generation of the entire apparatus are less than in the conventional configuration, and the power transmission efficiency can be increased. Moreover, since eddy current loss due to the conductor plate does not occur, the loss and heat generation of the entire apparatus are less than in the conventional configuration, and the power transmission efficiency can be increased. In addition, the resonance type wireless power transmission apparatus according to Embodiment 2 has a large effect of reducing the leakage magnetic field, particularly for high power wireless power transmission.
実施の形態3.
 図6はこの発明の実施の形態3に係る共振型無線電力伝送装置の構成例を示す模式図である。この図6に示す実施の形態3に係る共振型無線電力伝送装置は、図1に示す実施の形態1に係る共振型無線電力伝送装置の送信アンテナ21及び受信アンテナ31を円錐型形状に変更したものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
Embodiment 3 FIG.
FIG. 6 is a schematic diagram showing a configuration example of a resonance type wireless power transmission apparatus according to Embodiment 3 of the present invention. In the resonant wireless power transmission apparatus according to the third embodiment shown in FIG. 6, the transmitting antenna 21 and the receiving antenna 31 of the resonant wireless power transmission apparatus according to the first embodiment shown in FIG. 1 are changed to a conical shape. Is. Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
 実施の形態3における送信アンテナ21では、端面21a,21bの径が当該端面21a,21b以外の部分の径に対して大きく構成されている。図6では、端面21a,21b側の径が、当該端面21a,21b側以外の部分の径に対して端面21a,21bに向かって徐々に大きく構成された円錐型形状とされている。受信アンテナ31についても送信アンテナ21と同様に構成されている。 In the transmission antenna 21 according to the third embodiment, the diameters of the end faces 21a and 21b are configured to be larger than the diameters of the portions other than the end faces 21a and 21b. In FIG. 6, the end surfaces 21a and 21b have a conical shape in which the diameter on the side of the end surfaces 21a and 21b is gradually increased toward the end surfaces 21a and 21b with respect to the diameter of the portion other than the end surfaces 21a and 21b. The receiving antenna 31 is configured in the same manner as the transmitting antenna 21.
 このように、送信アンテナ21及び受信アンテナ31の端面21a,21b,31a,31bの径を当該端面21a,21b,31a,31b以外の部分の径に対して大きく構成することで、実施の形態1における効果に加え、端面21a,21b,31a,31b同士を対向させ易くすることができる。また、一部の径のみを大きく構成することで、アンテナ全体の大型化を回避することができる。 As described above, the diameters of the end surfaces 21a, 21b, 31a, and 31b of the transmitting antenna 21 and the receiving antenna 31 are made larger than the diameters of the portions other than the end surfaces 21a, 21b, 31a, and 31b. In addition to the effects described above, the end faces 21a, 21b, 31a, 31b can be easily made to face each other. Moreover, the enlargement of only the one part diameter can avoid the enlargement of the whole antenna.
 なお図6では、送信アンテナ21及び受信アンテナ31の両方のアンテナの端面21a,21b,31a,31bを大きく構成した場合を示したが、一方のアンテナのみの端面を大きく構成してもよい。また図6では、送信アンテナ21及び受信アンテナ31を円錐型形状とした場合を示したが、これに限るものではなく、端面21a,21b,31a,31bの径が当該端面21a,21b,31a,31b以外の部分の径よりも大きい形状であればよく、任意の形状とすることができる。 Although FIG. 6 shows the case where the end faces 21a, 21b, 31a, 31b of both the transmitting antenna 21 and the receiving antenna 31 are configured to be large, the end face of only one antenna may be configured to be large. 6 shows the case where the transmitting antenna 21 and the receiving antenna 31 have a conical shape. However, the present invention is not limited to this, and the diameters of the end faces 21a, 21b, 31a, 31b are the end faces 21a, 21b, 31a, The shape may be any shape as long as it is larger than the diameter of the portion other than 31b.
 また上記では、図1に示す共振型無線電力伝送装置の送信アンテナ21及び受信アンテナ31の形状を変えた場合を示した。しかしながら、これに限るものではなく、図3~5に示すような他の共振型無線電力伝送装置についても同様に実施の形態3の構成を適用可能である。 In the above description, the case where the shapes of the transmitting antenna 21 and the receiving antenna 31 of the resonant wireless power transmission apparatus shown in FIG. 1 are changed is shown. However, the present invention is not limited to this, and the configuration of the third embodiment can be similarly applied to other resonant wireless power transmission apparatuses as shown in FIGS.
実施の形態4.
 図7はこの発明の実施の形態4に係る共振型無線電力伝送装置の構成例を示す模式図である。この図7に示す実施の形態4に係る共振型無線電力伝送装置は、図1に示す実施の形態1に係る共振型無線電力伝送装置に、中継器7を追加したものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
Embodiment 4 FIG.
FIG. 7 is a schematic diagram showing a configuration example of a resonance type wireless power transmission apparatus according to Embodiment 4 of the present invention. The resonance type wireless power transmission apparatus according to the fourth embodiment shown in FIG. 7 is obtained by adding a repeater 7 to the resonance type wireless power transmission apparatus according to the first embodiment shown in FIG. Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
 中継器7は、1つ以上設けられ、送信器2と受信器3との間に介在されて配置されたものである。図7では、中継器7を2つ設け、各系統の符号に接尾記号(-1,-2)を付している。図7に示す中継器7は、共振用コンデンサC31及び中継アンテナ(中継コイル)71を有している。共振用コンデンサC31は、中継アンテナ71の共振条件を調整するものである。ここで、共振用コンデンサC31は、一端が中継アンテナ71の一端に接続され、他端が中継アンテナ71の他端に接続されている。 One or more repeaters 7 are provided and arranged between the transmitter 2 and the receiver 3. In FIG. 7, two repeaters 7 are provided, and suffixes (-1, -2) are added to the codes of the respective systems. The repeater 7 shown in FIG. 7 includes a resonance capacitor C31 and a relay antenna (relay coil) 71. The resonance capacitor C31 adjusts the resonance condition of the relay antenna 71. Here, the resonance capacitor C31 has one end connected to one end of the relay antenna 71 and the other end connected to the other end of the relay antenna 71.
 また、中継アンテナ71は、図7に示すように、ヘリカル状(らせん状)に巻かれたコイル形状であり、且つ、両端面71a,71bが、隣接するアンテナ(送信アンテナ21、受信アンテナ31又は他の中継アンテナ71)側を向くように、軸心形状が円弧状に構成されている。
 そして、中継アンテナ71の端面71a,71bが、上記隣接するアンテナの端面に対向されて配置されている。なおこの際、中継アンテナ71の端面71a,71bと上記隣接するアンテナの端面との対向は、端面のうちの全ての面が厳密に対向していなくてもよく、例えば端面の75%以上の面積が対向していればよい。
In addition, as shown in FIG. 7, the relay antenna 71 has a coil shape wound in a helical shape (spiral shape), and both end surfaces 71a and 71b are adjacent antennas (the transmitting antenna 21, the receiving antenna 31 or the antenna). The axial center shape is formed in an arc shape so as to face the other relay antenna 71) side.
The end surfaces 71a and 71b of the relay antenna 71 are arranged to face the end surfaces of the adjacent antennas. At this time, the end faces 71a and 71b of the relay antenna 71 and the end faces of the adjacent antennas may not face all of the end faces, for example, an area of 75% or more of the end faces. Should just face each other.
 このように、送信器2と受信器3との間に1つ以上の中継器7を介在させることで、実施の形態1における効果に加え、伝送距離を延長することができる。 Thus, by interposing one or more repeaters 7 between the transmitter 2 and the receiver 3, in addition to the effects in the first embodiment, the transmission distance can be extended.
 なお上記では、中継アンテナ71の軸心形状を円弧状とした場合を示したが、これに限るものではなく、例えば角状としてもよい。また、図6と同様に、中継アンテナ71の端面71a,71bの径を当該端面71a,71b以外の部分の径よりも大きく構成してもよい。
 また上記では、中継器7が共振用コンデンサC31及び中継アンテナ71を有する場合を示した。しかしながら、これに限るものではなく、図5と同様に、共振用コンデンサC31を取除き、中継アンテナ71を開放型として、自己共振させるようにしてもよい。
In addition, although the case where the axial center shape of the relay antenna 71 is an arc shape has been described above, the present invention is not limited to this, and may be a square shape, for example. Similarly to FIG. 6, the diameters of the end faces 71a and 71b of the relay antenna 71 may be larger than the diameters of the portions other than the end faces 71a and 71b.
In the above description, the repeater 7 includes the resonance capacitor C31 and the relay antenna 71. However, the present invention is not limited to this, and similarly to FIG. 5, the resonance capacitor C31 may be removed, and the relay antenna 71 may be an open type and self-resonate.
 また上記では、図1に示す共振型無線電力伝送装置に中継器7を追加した場合を示した。しかしながら、これに限るものではなく、図3~6に示すような他の共振型無線電力伝送装置に中継器7を追加してもよい。 In the above description, the repeater 7 is added to the resonant wireless power transmission apparatus shown in FIG. However, the present invention is not limited to this, and the repeater 7 may be added to other resonance type wireless power transmission apparatuses as shown in FIGS.
 また、送信アンテナ21、受信アンテナ31及び中継アンテナ71から成るループ形状は、図7に示す形状に限るものではなく、例えば図8に示すような形状としてもよい。なお図8では、図を見易くするため、送信アンテナ21の一端(右端)と受信アンテナ31の一端(左端)との間にのみ中継アンテナ71が配置されているが、実際には、送信アンテナ21の他端(左端)と受信アンテナ31(右端)との間(図8に示す点線部分)にも中継アンテナ71が配置されており、一巡のループが形成されている。 Further, the loop shape including the transmission antenna 21, the reception antenna 31, and the relay antenna 71 is not limited to the shape shown in FIG. 7, and may be a shape as shown in FIG. 8, for example. In FIG. 8, the relay antenna 71 is disposed only between one end (right end) of the transmission antenna 21 and one end (left end) of the reception antenna 31 for easy understanding of the drawing. The relay antenna 71 is also arranged between the other end (left end) of the antenna and the receiving antenna 31 (right end) (dotted line portion shown in FIG. 8), and a loop is formed.
実施の形態5.
 実施の形態5では、実施の形態1~4に示した共振型無線電力伝送装置の具体的な適用例について示す。図9はこの発明の実施の形態5に係る共振型無線電力伝送装置の適用例を示す模式図である。
 図9では、駐車場(固定部)101aに送信装置5を設け、電気自動車(移動体)102aに受信装置6を設けて、電気自動車102aへの給電を行う場合を示している。なお図9では、共振型無線電力伝送装置のうちの送信アンテナ21及び受信アンテナ31のみを図示している。
Embodiment 5 FIG.
In the fifth embodiment, a specific application example of the resonance type wireless power transmission apparatus shown in the first to fourth embodiments will be described. FIG. 9 is a schematic diagram showing an application example of a resonance type wireless power transmission apparatus according to Embodiment 5 of the present invention.
FIG. 9 shows a case where the transmission device 5 is provided in the parking lot (fixed portion) 101a and the reception device 6 is provided in the electric vehicle (moving body) 102a to supply power to the electric vehicle 102a. In FIG. 9, only the transmitting antenna 21 and the receiving antenna 31 of the resonance type wireless power transmission apparatus are illustrated.
 また、送信電源1は、送信アンテナ21への電力供給のオンオフを切替える機能(制御部)を有している。この際、送信電源1は、電気自動車102aが駐車場101aに停車して、送信アンテナ21の端面21a,21bと受信アンテナ31の端面31a,31bとが対向したと判定した場合に、当該送信アンテナ21への電力供給を行う。この送信電源1における電力供給のオンオフ判定としては、例えば、物体検知センサを用いて電気自動車102aの検知を行うことで判定してもよいし、送信装置5と受信装置6との間で通信を行うことで判定してもよい。 Further, the transmission power source 1 has a function (control unit) for switching on / off of power supply to the transmission antenna 21. At this time, the transmission power source 1 determines that the transmission vehicle antenna 102a stops at the parking lot 101a, and determines that the end surfaces 21a and 21b of the transmission antenna 21 and the end surfaces 31a and 31b of the reception antenna 31 face each other. Power is supplied to 21. The power supply ON / OFF determination in the transmission power source 1 may be determined by, for example, detecting the electric vehicle 102a using an object detection sensor, or communication between the transmission device 5 and the reception device 6 may be performed. You may determine by doing.
 図9に示すような電気自動車102aへの給電では、大電力を扱うため、漏洩磁界が問題となる。しかしながら、実施の形態1~4に示した共振型無線電力伝送装置を用いることで、大電力を用いる場合であっても、漏洩磁界の発生を抑制することが可能となる。 In the power feeding to the electric vehicle 102a as shown in FIG. 9, since a large electric power is handled, a leakage magnetic field becomes a problem. However, by using the resonance type wireless power transmission apparatus shown in Embodiments 1 to 4, it is possible to suppress the generation of a leakage magnetic field even when large power is used.
実施の形態6.
 実施の形態6では、実施の形態1~4に示した共振型無線電力伝送装置の別の具体的な適用例について示す。図10はこの発明の実施の形態6に係る共振型無線電力伝送装置の適用例を示す模式図である。
 図10では、工場の製造ライン(固定部)101bに複数の送信装置5を設け、パレット(移動体)102bに1つ以上の受信装置6を設けて、パレット102bへの給電を行う場合を示している。なお図10では、共振型無線電力伝送装置のうちの送信アンテナ21及び受信アンテナ31のみを図示している。
Embodiment 6 FIG.
In the sixth embodiment, another specific application example of the resonant wireless power transmission device shown in the first to fourth embodiments will be described. FIG. 10 is a schematic diagram showing an application example of a resonance type wireless power transmission apparatus according to Embodiment 6 of the present invention.
FIG. 10 shows a case where a plurality of transmission devices 5 are provided in a production line (fixed part) 101b of a factory, and one or more reception devices 6 are provided in a pallet (moving body) 102b to supply power to the pallet 102b. ing. In FIG. 10, only the transmitting antenna 21 and the receiving antenna 31 of the resonance type wireless power transmission apparatus are illustrated.
 図10では、送信アンテナ21は、製造ライン101bに沿って一定間隔で配置されている。また、受信アンテナ31は、1つのパレット102bに対して2つ設けられている。なお図10では、各系統の符号に接尾記号(-1,-2,・・・)を付している。 In FIG. 10, the transmitting antennas 21 are arranged at regular intervals along the production line 101b. Two receiving antennas 31 are provided for one pallet 102b. In FIG. 10, suffixes (-1, -2, ...) are added to the codes of the respective systems.
 また、送信電源1は、送信アンテナ21への電力供給のオンオフを切替える機能(制御部)を有している。この際、送信電源1は、何れかの送信アンテナ21の端面21a,21bと何れかの受信アンテナ31の端面31a,31bとが対向したと判定した場合に、当該送信アンテナ21への電力供給を行う。この送信電源1における電力供給のオンオフ判定としては、例えば、物体検知センサを用いてパレット102bの検知を行うことで判定してもよいし、送信装置5と受信装置6との間で通信を行うことで判定してもよいし、パレット102bの動作が既知の場合には電力供給のタイミングを予め設定してもよい。 Further, the transmission power source 1 has a function (control unit) for switching on / off of power supply to the transmission antenna 21. At this time, the transmission power source 1 supplies power to the transmission antenna 21 when it is determined that the end surfaces 21a and 21b of any one of the transmission antennas 21 and the end surfaces 31a and 31b of any one of the reception antennas 31 face each other. Do. The power supply ON / OFF determination in the transmission power source 1 may be determined by, for example, detecting the pallet 102b using an object detection sensor, or performing communication between the transmission device 5 and the reception device 6. The timing of power supply may be preset if the operation of the pallet 102b is known.
 図10に示す状態では、パレット102b-1に対しては、不図示の送信電源1-1は、送信アンテナ21-1をオン状態とし、一方の受信アンテナ(例えば受信アンテナ31-1)への電力伝送を行う。この際、不図示の送信電源1-2は、送信アンテナ21-2をオフ状態とし、当該送信アンテナ21-2及び他方の受信アンテナ(例えば受信アンテナ31-2)は中継アンテナとして動作する。
 また、パレット102b-2に対しては、不図示の送信電源1-4は、送信アンテナ21-4をオン状態とし、受信アンテナ31-4への電力伝送を行う。一方、不図示の送信電源1-3,1-5は、端面が対向していない送信アンテナ21-3,21-5をオフ状態とし、当該送信アンテナ21-3,21-5及び受信アンテナ31-3は中継アンテナとしても動作しない。
In the state shown in FIG. 10, for the pallet 102b-1, the transmission power source 1-1 (not shown) turns on the transmission antenna 21-1 and connects to one reception antenna (for example, the reception antenna 31-1). Conduct power transmission. At this time, the transmission power supply 1-2 (not shown) turns off the transmission antenna 21-2, and the transmission antenna 21-2 and the other reception antenna (for example, the reception antenna 31-2) operate as a relay antenna.
For the pallet 102b-2, a transmission power supply 1-4 (not shown) turns on the transmission antenna 21-4 and transmits power to the reception antenna 31-4. On the other hand, transmission power supplies 1-3 and 1-5 (not shown) turn off the transmission antennas 21-3 and 21-5 whose end faces are not opposed to each other, and transmit the transmission antennas 21-3 and 21-5 and the reception antenna 31. -3 does not operate as a relay antenna.
 図10に示すような工場におけるパレット102bへの給電であっても、漏洩磁界の発生を抑制することが可能となる。 Even when power is supplied to the pallet 102b in the factory as shown in FIG. 10, the generation of the leakage magnetic field can be suppressed.
 なお上記では、工場の製造ライン101bに複数の送信装置5を設け、パレット102bに1つ以上の受信装置6を設け、パレット102bへの給電を行う場合を示した。しかしながら、これに限るものではなく、例えば、道路面(固定部)に複数の送信装置5を設け、電気自動車(移動体)に1つ以上の受信装置6を設けて、移動している電気自動車への給電を行うように構成してもよい。 In the above description, the case where a plurality of transmission devices 5 are provided in the production line 101b of the factory, one or more reception devices 6 are provided in the pallet 102b, and power is supplied to the pallet 102b is shown. However, the present invention is not limited to this. For example, an electric vehicle that is moving by providing a plurality of transmitting devices 5 on a road surface (fixed portion) and providing one or more receiving devices 6 on an electric vehicle (moving body). You may comprise so that electric power feeding may be performed.
 なお上記では、送信アンテナ21毎に送信電源1を設けた場合を想定して説明を行った。しかしながら、これに限るものではなく、複数の送信アンテナ21に対して1つの送信電源1を設けるようにしてもよい。なおこの場合には、送信電源1は、各送信アンテナ21に対する電力供給を個別にオンオフ切替え可能に構成されている。 In the above description, it is assumed that the transmission power source 1 is provided for each transmission antenna 21. However, the present invention is not limited to this, and one transmission power source 1 may be provided for a plurality of transmission antennas 21. In this case, the transmission power source 1 is configured to be able to individually switch the power supply to each transmission antenna 21 on and off.
 最後に、図11を参照して、実施の形態5,6における送信電源1の制御部のハードウェア構成例を説明する。
 送信電源1の制御部における機能は、処理回路501により実現される。図11に示すように、処理回路501は、専用のハードウェアであっても、メモリ503に格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)ともいう)502であってもよい。
Finally, referring to FIG. 11, a hardware configuration example of the control unit of transmission power supply 1 in the fifth and sixth embodiments will be described.
The function in the control unit of the transmission power supply 1 is realized by the processing circuit 501. As shown in FIG. 11, even if the processing circuit 501 is dedicated hardware, a CPU (Central Processing Unit, a central processing unit, a processing unit, an arithmetic unit, a microprocessor, which executes a program stored in the memory 503, A microcomputer, a processor, and a DSP (Digital Signal Processor) 502 may also be used.
 処理回路501が専用のハードウェアである場合、処理回路501は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものが該当する。 When the processing circuit 501 is dedicated hardware, the processing circuit 501 includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), and an FPGA (Field Programmable Gate). Array) or a combination thereof.
 処理回路501がCPU502の場合、制御部の機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアやファームウェアはプログラムとして記述され、メモリ503に格納される。処理回路501は、メモリ503に記憶されたプログラムを読み出して実行することにより、制御部の機能を実現する。すなわち、送信電源は、処理回路501により実行されるときに、制御部の機能が結果的に実行されることになるプログラムを格納するためのメモリ503を備える。また、これらのプログラムは、制御部の手順や方法をコンピュータに実行させるものであるともいえる。ここで、メモリ503とは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)等の、不揮発性又は揮発性の半導体メモリや、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)等が該当する。 When the processing circuit 501 is the CPU 502, the function of the control unit is realized by software, firmware, or a combination of software and firmware. Software and firmware are described as programs and stored in the memory 503. The processing circuit 501 realizes the function of the control unit by reading and executing the program stored in the memory 503. That is, the transmission power source includes a memory 503 for storing a program that, when executed by the processing circuit 501, results in the function of the control unit being executed as a result. Moreover, it can be said that these programs are what makes a computer perform the procedure and method of a control part. Here, the memory 503 is a nonvolatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), or the like. And a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disc), and the like.
 このように、処理回路501は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、上述の各機能を実現することができる。 As described above, the processing circuit 501 can realize the above-described functions by hardware, software, firmware, or a combination thereof.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, any combination of the embodiments, or any modification of any component in each embodiment, or omission of any component in each embodiment is possible. .
 この発明に係る共振型無線電力伝送装置は、磁性体及び導体板を用いることなく、漏洩磁界の発生を抑制することができ、送信アンテナと受信アンテナとの間を無線で電力を伝送する共振型無線電力伝送装置等に用いるのに適している。 The resonance type wireless power transmission device according to the present invention can suppress the generation of a leakage magnetic field without using a magnetic body and a conductor plate, and can transmit power between a transmission antenna and a reception antenna wirelessly. Suitable for use in wireless power transmission devices and the like.
 1 送信電源、2 送信器、3 受信器、4 受信回路、5 送信装置、6 受信装置、7 中継器、21 送信アンテナ、21a,21b 端面、31 受信アンテナ、31a,31b 端面、71 中継アンテナ、71a,71b 端面、101a 駐車場(固定部)、101b 製造ライン(固定部)、102a 車両(移動体)、102b パレット(移動体)、211,212 第1,2の送信アンテナ、311,312 第1,2の受信アンテナ、501 処理回路、502 CPU、503 メモリ。 1 transmission power source, 2 transmitter, 3 receiver, 4 receiving circuit, 5 transmitting device, 6 receiving device, 7 repeater, 21 transmitting antenna, 21a, 21b end face, 31 receiving antenna, 31a, 31b end face, 71 relay antenna, 71a, 71b end face, 101a parking lot (fixed part), 101b production line (fixed part), 102a vehicle (moving body), 102b pallet (moving body), 211, 212, first and second transmitting antennas, 311, 312th 1, 2 receiving antennas, 501 processing circuit, 502 CPU, 503 memory.

Claims (7)

  1.  らせん状に巻かれた送信アンテナと、
     らせん状に巻かれた受信アンテナとを備え、
     前記送信アンテナの一方の端面と前記受信アンテナの一方の端面とが対向され、当該送信アンテナの他方の端面と当該受信アンテナの他方の端面とが対向された
     ことを特徴とする共振型無線電力伝送装置。
    A transmitting antenna wound in a spiral,
    A receiving antenna wound in a spiral,
    One end face of the transmitting antenna and one end face of the receiving antenna are opposed to each other, and the other end face of the transmitting antenna is opposed to the other end face of the receiving antenna. apparatus.
  2.  前記送信アンテナ及び前記受信アンテナのうち少なくとも一方は、端面の径が当該端面以外の部分の径に対して大きく構成された
     ことを特徴とする請求項1記載の共振型無線電力伝送装置。
    The resonance type wireless power transmission device according to claim 1, wherein at least one of the transmitting antenna and the receiving antenna is configured such that a diameter of an end face is larger than a diameter of a portion other than the end face.
  3.  らせん状に巻かれ、前記送信アンテナと前記受信アンテナとの間に介在された1つ以上の中継アンテナを備え、
     前記中継アンテナは、端面が、前記送信アンテナ、前記受信アンテナ又は他の前記中継アンテナの端面に対向された
     ことを特徴とする請求項1記載の共振型無線電力伝送装置。
    One or more relay antennas wound in a spiral and interposed between the transmitting antenna and the receiving antenna;
    The resonance type wireless power transmission device according to claim 1, wherein an end surface of the relay antenna is opposed to an end surface of the transmission antenna, the reception antenna, or another relay antenna.
  4.  前記送信アンテナと前記受信アンテナは、磁界共鳴、電界共鳴又は電磁誘導により電力伝送を行う
     ことを特徴とする請求項1記載の共振型無線電力伝送装置。
    The resonance type wireless power transmission device according to claim 1, wherein the transmission antenna and the reception antenna perform power transmission by magnetic field resonance, electric field resonance, or electromagnetic induction.
  5.  前記送信アンテナは固定部に設けられ、
     前記受信アンテナは、前記固定部に対向可能な移動体に設けられた
     ことを特徴とする請求項1記載の共振型無線電力伝送装置。
    The transmitting antenna is provided in a fixed portion;
    The resonance type wireless power transmission apparatus according to claim 1, wherein the reception antenna is provided on a movable body that can face the fixed portion.
  6.  前記送信アンテナは前記移動体の移動方向に沿って複数配置された
     ことを特徴とする請求項5記載の共振型無線電力伝送装置。
    The resonance type wireless power transmission apparatus according to claim 5, wherein a plurality of the transmission antennas are arranged along a moving direction of the moving body.
  7.  前記受信アンテナは前記移動体に複数設けられた
     ことを特徴とする請求項6記載の共振型無線電力伝送装置。
    The resonance type wireless power transmission device according to claim 6, wherein a plurality of the receiving antennas are provided on the moving body.
PCT/JP2016/056051 2016-02-29 2016-02-29 Resonance-type wireless power transmission device WO2017149599A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017516980A JP6479174B2 (en) 2016-02-29 2016-02-29 Resonant type wireless power transmission device
PCT/JP2016/056051 WO2017149599A1 (en) 2016-02-29 2016-02-29 Resonance-type wireless power transmission device
TW105125138A TW201733248A (en) 2016-02-29 2016-08-08 Resonant-type wireless power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/056051 WO2017149599A1 (en) 2016-02-29 2016-02-29 Resonance-type wireless power transmission device

Publications (1)

Publication Number Publication Date
WO2017149599A1 true WO2017149599A1 (en) 2017-09-08

Family

ID=59743534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056051 WO2017149599A1 (en) 2016-02-29 2016-02-29 Resonance-type wireless power transmission device

Country Status (3)

Country Link
JP (1) JP6479174B2 (en)
TW (1) TW201733248A (en)
WO (1) WO2017149599A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006121791A (en) * 2004-10-20 2006-05-11 Chugoku Electric Power Co Inc:The Noncontact power feeder for vehicle
JP2010098032A (en) * 2008-10-15 2010-04-30 Yazaki Corp Electric power transmitting apparatus
US20110089768A1 (en) * 2009-09-24 2011-04-21 Byrne Norman R Worksurface power transfer
JP2011200052A (en) * 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc Power supply device
JP2012533280A (en) * 2009-07-14 2012-12-20 コンダクティクス−バンプフラー ゲーエムベーハー Inductive transmission device for electrical energy
JP2014011332A (en) * 2012-06-29 2014-01-20 Toyota Motor Corp Non-contact power transmission coil unit, power receiving apparatus, vehicle, and power transmitting apparatus
JP2014023262A (en) * 2012-07-17 2014-02-03 Denso Corp Noncontact power supply unit
JP2014518059A (en) * 2011-04-28 2014-07-24 アライアント・テクシステムズ・インコーポレーテッド Equipment for transmitting energy wirelessly using near-field energy
WO2014119294A1 (en) * 2013-01-30 2014-08-07 パナソニック株式会社 Contactless-power-transfer-device coil and contactless power-transfer device
JP2015177633A (en) * 2014-03-14 2015-10-05 株式会社デンソー Non-contact power supply device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006121791A (en) * 2004-10-20 2006-05-11 Chugoku Electric Power Co Inc:The Noncontact power feeder for vehicle
JP2010098032A (en) * 2008-10-15 2010-04-30 Yazaki Corp Electric power transmitting apparatus
JP2012533280A (en) * 2009-07-14 2012-12-20 コンダクティクス−バンプフラー ゲーエムベーハー Inductive transmission device for electrical energy
US20110089768A1 (en) * 2009-09-24 2011-04-21 Byrne Norman R Worksurface power transfer
JP2011200052A (en) * 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc Power supply device
JP2014518059A (en) * 2011-04-28 2014-07-24 アライアント・テクシステムズ・インコーポレーテッド Equipment for transmitting energy wirelessly using near-field energy
JP2014011332A (en) * 2012-06-29 2014-01-20 Toyota Motor Corp Non-contact power transmission coil unit, power receiving apparatus, vehicle, and power transmitting apparatus
JP2014023262A (en) * 2012-07-17 2014-02-03 Denso Corp Noncontact power supply unit
WO2014119294A1 (en) * 2013-01-30 2014-08-07 パナソニック株式会社 Contactless-power-transfer-device coil and contactless power-transfer device
JP2015177633A (en) * 2014-03-14 2015-10-05 株式会社デンソー Non-contact power supply device

Also Published As

Publication number Publication date
JPWO2017149599A1 (en) 2018-03-08
TW201733248A (en) 2017-09-16
JP6479174B2 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
US9502922B2 (en) Charging apparatus
US20160013661A1 (en) Resonators for wireless power transfer systems
KR102125722B1 (en) Coil structure for inductive and resonant wireless charging transmitter and integral control method for the same
JP6293370B2 (en) Wireless power transmission device
US8482159B2 (en) Wireless power apparatus and wireless power-receiving method
US20110133569A1 (en) Wireless power transmission device and wireless power reception device
JP2018533238A (en) Single-layer multimode antenna for wireless power transfer using magnetic field coupling
US20160126639A1 (en) Coil structure and wireless power receiving apparatus including the same
EP2688181A1 (en) Power supply system
JP6079026B2 (en) Coil unit and wireless power feeder using the same
JP2018537060A (en) Near-field communication and wireless power transfer dual-mode antenna for devices with metal back
US20160268846A1 (en) Automatic matching circuit for high frequency power supply
US20180233273A1 (en) Wireless power transmitting device
JP5523540B2 (en) Transmission system using wireless power transmission and transmission apparatus on transmission side
JP6479174B2 (en) Resonant type wireless power transmission device
KR20140013015A (en) Transmission coil for wireless power transmission
US20180248415A1 (en) Power transmission device
KR101932383B1 (en) Wireless power transfer apparatus using metamaterial and loop coil array and method thereof
JP6289868B2 (en) Coil unit and power transmission system
KR20200040526A (en) Wireless power transmission apparatus
KR20160043900A (en) Coil structure and wireless power receiving apparatus using the same
JP6338693B2 (en) Resonant power transmission device and power supply range control device
KR102183127B1 (en) Wireless apparatus for transmitting power
JP6904652B2 (en) Communication device of non-contact power supply device
JP5599447B2 (en) Wireless power transmission transmission system and receiving side transmission apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017516980

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892444

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892444

Country of ref document: EP

Kind code of ref document: A1