JP2005274214A - Residual capacity detection device of vehicle battery - Google Patents

Residual capacity detection device of vehicle battery Download PDF

Info

Publication number
JP2005274214A
JP2005274214A JP2004084877A JP2004084877A JP2005274214A JP 2005274214 A JP2005274214 A JP 2005274214A JP 2004084877 A JP2004084877 A JP 2004084877A JP 2004084877 A JP2004084877 A JP 2004084877A JP 2005274214 A JP2005274214 A JP 2005274214A
Authority
JP
Japan
Prior art keywords
battery
remaining capacity
internal resistance
mode
deterioration mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2004084877A
Other languages
Japanese (ja)
Inventor
Makoto Hirano
誠 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2004084877A priority Critical patent/JP2005274214A/en
Publication of JP2005274214A publication Critical patent/JP2005274214A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a residual capacity detection device of a vehicle battery capable of improving accuracy of residual capacity estimation. <P>SOLUTION: This device has a voltage detector 8 for detecting a terminal voltage of a battery 1; a current detector 7 for detecting a discharge current I; an internal resistance detection means A1 for determining an internal resistance R of the battery 1; a deterioration mode determination means A2 for determining a deterioration mode from the present internal resistance R and the terminal voltage V by using a deterioration mode setting map map1 wherein a primary correlation mode wire N between the internal resistance and the terminal voltage of the battery, the first battery deterioration mode area nI below the primary correlation mode wire N, and the second battery deterioration mode area nII over the primary correlation mode wire are set; and a residual capacity detection means A3 for determining the residual capacity Q from the present internal resistance R by using a residual capacity setting map map2 wherein the residual capacity Q of the battery corresponding to the internal resistance R is set corresponding to the first and second battery deterioration modes nI, nII. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、車両に搭載されるバッテリの残存容量を適確に検出できる車両用バッテリの残存容量検出装置に関する。   The present invention relates to a vehicle battery remaining capacity detection device capable of accurately detecting the remaining capacity of a battery mounted on a vehicle.

車両電源系の基幹部品であるバッテリの役割はー昔前のエンジン始動用から、ECUバックアップ電源としての役割、アイドリングストップでのエンジン停止状態での電気負荷駆動用など益々重要な位置付けになっている。
そこで、たとえば、比重計方式の残存容量検出装置が採用されており、この場合、バッテリ比重と充電度合SOC(=残存容量/現劣化状態の満充電容量×100{%〕)が図5に示すようなリニア関係にあることを利用している。なお、図5のa1、a2線は互に異なる容量のバッテリの特性を示す。
The role of the battery, which is a key component of the vehicle power supply system, is becoming more and more important, such as the role of the ECU backup power source, the driving of the electric load when the engine is stopped at the idling stop, from the old engine start .
Therefore, for example, a hydrometer type remaining capacity detection device is employed, and in this case, the battery specific gravity and the degree of charge SOC (= remaining capacity / full charge capacity in the current deteriorated state × 100 {%]) are shown in FIG. It uses that there is a linear relationship. Note that the a1 and a2 lines in FIG. 5 indicate the characteristics of batteries having different capacities.

この残存容量検出装置では、バッテリの複数セルの一つにフロートとリードスイッチを用いた比重計タイプのセンサーを取り付け、適性比重以上、即ち、適性充電度合SOC以上でオン信号を出力するようにしている。
更に、特開昭58−123479号(特許文献1)には、クランキング中におけるバッテリ端子間電圧およびバッテリ放電電流と、クランキング直前のバッテリ端子電圧および放電電流とからバッテリの内部抵抗を演算し、この内部抵抗に基づいてバッテリ残存容量を検出する技術が開示される。特開平07−260904号(特許文献2)には、演算したバッテリの内部抵抗をパラメータとして、内部抵抗―残存容量マップを用いてバッテリ残存容量を求める技術が開示される。
In this remaining capacity detection device, a hydrometer type sensor using a float and a reed switch is attached to one of a plurality of cells of a battery, and an ON signal is output at an appropriate specific gravity or more, that is, an appropriate charge degree SOC or more. Yes.
Further, Japanese Patent Application Laid-Open No. 58-123479 (Patent Document 1) calculates the internal resistance of the battery from the voltage between the battery terminals and the battery discharge current during cranking, and the battery terminal voltage and the discharge current immediately before cranking. A technique for detecting the remaining battery capacity based on the internal resistance is disclosed. Japanese Patent Application Laid-Open No. 07-260904 (Patent Document 2) discloses a technique for obtaining a battery remaining capacity using an internal resistance-residual capacity map using the calculated internal resistance of the battery as a parameter.

特開昭58−123479号公報JP 58-123479 A 特開平07−260904号公報JP 07-260904 A

しかし、比重検知方式の残存容量検出装置は、リードSW式のため、出力がON/OFFであり、残存容量の値(大小のレベル)を知ることができない。
更に、特許文献1及び2のようにバッテリ内部抵抗のみから残存容量を推定する方法では、検知誤差が大きいという問題がある。即ち、鉛バッテリはその使用環境に応じて異なる劣化モードとなり、いずれの劣化モードにあるかにより内部抵抗と残存容量との対応関係が変動するが、これが考慮されていないのである。
However, since the residual capacity detection device of the specific gravity detection method is a lead SW type, the output is ON / OFF, and the value (large or small level) of the residual capacity cannot be known.
Furthermore, the method of estimating the remaining capacity only from the battery internal resistance as in Patent Documents 1 and 2 has a problem that the detection error is large. That is, the lead battery has different deterioration modes depending on the use environment, and the correspondence relationship between the internal resistance and the remaining capacity varies depending on the deterioration mode, but this is not taken into consideration.

本発明者は、この点に着目し、バッテリの劣化モードを判定した上で、この劣化モードを考慮して、内部抵抗に対応する残存容量の推定を行うことで、その精度を高めることができると考えた。
ここで、鉛バッテリの代表的な劣化モードとしては、高速走行が多い車両のように過充電、高温使用が多いと格子腐蝕が、タクシーやアイドリングストップ機能付自動車のように深い充放電の繰り返しが多いと正極活物質軟化が、浅い充放電の繰り返しが多いと負極活物質硬化(サルフェーション)が生じることが知られている。
The present inventor pays attention to this point, determines the deterioration mode of the battery, and considers the deterioration mode, and estimates the remaining capacity corresponding to the internal resistance, thereby improving the accuracy. I thought.
Here, as a typical deterioration mode of lead battery, overcharge like a vehicle with many high-speed running, lattice corrosion occurs when there is a lot of high temperature use, and repeated deep charge and discharge like a taxi or an automobile with an idling stop function. It is known that softening of the positive electrode active material occurs when the amount is large, and hardening of the negative electrode active material (sulfation) occurs when the shallow charge / discharge cycle is frequent.

そこで、本発明者は、上記3つの劣化モードそれぞれに対応する内部抵抗Rと残存容量Qの相関を測定して比較したところ図3に示すような特性を得た。   Therefore, the present inventor measured and compared the correlation between the internal resistance R and the remaining capacity Q corresponding to each of the above three deterioration modes, and obtained characteristics as shown in FIG.

この内部抵抗R―残存容量Qデータ線図の作成にあたっては、複数の同一特性の被試験体としてのバッテリ1の一つを正極活物質軟化の劣化モードを生じるように所定経過時間使用し、その後の内部抵抗Rと残存容量Qの相関を測定し、図3中に△印で示すデータ列P1を得た。更に、被試験体としてのバッテリ1の他の一つを格子腐蝕の劣化モードを生じるように所定経過時間使用し、その後の内部抵抗Rと残存容量Qの相関を測定し、図3中に□印で示すデータ列P2を得た。   In creating the internal resistance R-remaining capacity Q data diagram, one of the batteries 1 as a plurality of specimens having the same characteristics is used for a predetermined elapsed time so as to cause a deterioration mode of softening of the positive electrode active material, and thereafter A correlation between the internal resistance R and the remaining capacity Q was measured, and a data string P1 indicated by Δ in FIG. 3 was obtained. Further, the other one of the batteries 1 as a device under test is used for a predetermined elapsed time so as to generate a lattice corrosion deterioration mode, and the correlation between the internal resistance R and the remaining capacity Q thereafter is measured. A data string P2 indicated by a mark was obtained.

更に、バッテリ1の他の一つを負極活物質硬化の劣化モードを生じるように所定経過時間使用し、その後の内部低抗Rと残存容量Qの相関を測定し、図3に×印で示すデータ列P2を得た。   Further, another one of the batteries 1 is used for a predetermined elapsed time so as to cause a deterioration mode of curing of the negative electrode active material, and the correlation between the internal resistance R and the remaining capacity Q is measured thereafter, and is indicated by x in FIG. A data string P2 was obtained.

即ち、正極活物質軟化の劣化モード(以下第1劣化モードという)においては、内部抵抗Rと残存容量Qの相関が図3のデータ列P1で表され、格子腐蝕又は負極活物質硬化の劣化モード(以下、第2劣化モードという)においては、内部抵抗Rと残存容量Qの相関が共通のデータ列P2で表されることが確認された。   That is, in the deterioration mode of the positive electrode active material softening (hereinafter referred to as the first deterioration mode), the correlation between the internal resistance R and the remaining capacity Q is represented by the data string P1 in FIG. In (hereinafter referred to as the second deterioration mode), it was confirmed that the correlation between the internal resistance R and the remaining capacity Q is represented by a common data string P2.

更に本発明者は、上述と同様の方法を用い、上記3つの劣化モードそれぞれに対応する内部抵抗Rとオープン電圧V(クランキング前の端子電圧)の相関を測定して比較したところ図6に示すような特性を得た。   Furthermore, the present inventor measured and compared the correlation between the internal resistance R and the open voltage V (terminal voltage before cranking) corresponding to each of the above three deterioration modes using the same method as described above, and FIG. The characteristics shown were obtained.

即ち、正極活物質軟化の劣化モード(即ち、第1劣化モード)にあるバッテリ1ではその各測定値が、内部抵抗R―オープン電圧Vマップにおいて、バッテリの新品時、即ちバッテリ劣化度合SOH(=現劣化状態の満充電容量/初期満充電容量×100[%])が100[%]時の内部抵抗Rとオープン電圧Vの当初相関モード線Nよりも下側の領域NIに得られ、格子腐蝕又は負極活物質硬化の劣化モード(即ち、第2劣化モード)にあるバッテリ1ではその各測定値が、上記当初相関モードNよりも上側の領域NIIに得られることが判明した。
本発明は、上述の着眼点及び実験分析結果に基づき案出されたものであり、バッテリの残存容量推定の精度向上を図れるものである。
That is, in the battery 1 in the deterioration mode of the positive electrode active material softening (that is, the first deterioration mode), each measured value is measured in the internal resistance R-open voltage V map when the battery is new, that is, the battery deterioration degree SOH (= (The full charge capacity in the presently deteriorated state / initial full charge capacity × 100 [%]) is obtained in the region NI below the initial correlation mode line N of the internal resistance R and the open voltage V at the time of 100 [%]. In the battery 1 in the deterioration mode of corrosion or negative electrode active material hardening (that is, the second deterioration mode), it has been found that each measured value is obtained in the region NII above the initial correlation mode N.
The present invention has been devised based on the above-mentioned focus and experimental analysis results, and can improve the accuracy of battery remaining capacity estimation.

この発明の請求項1に係る車両用バッテリの残存容量検出装置は、バッテリの端子電圧を検出する電圧検出器と、上記バッテリの放電電流を検出する電流検出器と、上記電圧検出器及び上記電流検出器によりクランキング前及びクランキング時に検出されたバッテリの端子電圧および放電電流から上記バッテリの内部抵抗を求める内部抵抗推定手段と、上記バッテリの搭載初期の内部抵抗とバッテリの残存容量の当初相関モード線と上記当初相関モード線を下回る第1バッテリ劣化モード域と上記当初相関モード線を上回る第2バッテリ劣化モード域とが設定された劣化モード設定マップを用い、現在の内部抵抗とバッテリの端子電圧より劣化モードを判定する劣化モード判定手段と、上記内部抵抗に対応するバッテリの残存容量が上記第1バッテリ劣化モード及び第2バッテリ劣化モードに応じてそれぞれ設定された残存容量設定マップを用い、現在の内部抵抗より残存容量を求める残存容量検出手段と、を有することを特徴とする。   According to a first aspect of the present invention, there is provided a remaining capacity detecting device for a vehicle battery, a voltage detector for detecting a terminal voltage of the battery, a current detector for detecting a discharge current of the battery, the voltage detector, and the current. Internal resistance estimation means for obtaining the internal resistance of the battery from the terminal voltage and discharge current of the battery detected before and during cranking by the detector, and an initial correlation between the internal resistance of the battery and the remaining capacity of the battery Using a deterioration mode setting map in which a mode line and a first battery deterioration mode region that is lower than the initial correlation mode line and a second battery deterioration mode region that is higher than the initial correlation mode line are set, the current internal resistance and the battery terminal A deterioration mode determination means for determining a deterioration mode from the voltage, and a remaining capacity of the battery corresponding to the internal resistance is the first Using the remaining capacity setting map which is set respectively in accordance with the Tteri degraded mode and the second battery degraded mode, characterized in that it has a remaining capacity detecting means for determining the remaining capacity than the current internal resistance, a.

この発明の請求項2は、請求項1に記載の車両用バッテリの残存容量検出装置において、上記残存容量検出手段が求めたバッテリの残存容量を表示する表示器を付設することを特徴とする。   According to a second aspect of the present invention, in the vehicle battery remaining capacity detecting device according to the first aspect, a display for displaying the remaining capacity of the battery obtained by the remaining capacity detecting means is additionally provided.

この発明の請求項1によれば、バッテリの端子電圧と放電電流よりバッテリの内部抵抗を求め、劣化モード設定マップを用いて現在の内部抵抗と端子電圧より劣化モードを判定し、判定した劣化モードに応じた残存容量設定マップを用いて現在の内部抵抗に対応するバッテリの残存容量を求めるので、残存容量推定の精度向上を図れる。   According to the first aspect of the present invention, the internal resistance of the battery is obtained from the terminal voltage and discharge current of the battery, the deterioration mode is determined from the current internal resistance and terminal voltage using the deterioration mode setting map, and the determined deterioration mode is determined. Since the remaining capacity of the battery corresponding to the current internal resistance is obtained using the remaining capacity setting map according to the above, the accuracy of the remaining capacity estimation can be improved.

請求項2によれば、現在の内部抵抗に対応するバッテリの残存容量を表示器により表示でき、信頼性の有る残存容量表示を行える。   According to the second aspect, the remaining capacity of the battery corresponding to the current internal resistance can be displayed by the display, and the remaining capacity can be displayed with reliability.

以下、本発明の一実施形態にかかる車両用バッテリの残存容量検出装置について説明する。図1は車両用バッテリの残存容量検出装置(以下バッテリの残存容量検出装置という)の全体構成を示し、図2はバッテリ1の残存容量検出装置の制御機能部のブロック図を示す。
バッテリの残存容量検出装置は不図示の車両に車載され互いに直列接続された1対のバッテリ(以下バッテリという)1a、1bと、高電位側のバッテリ1bのプラス端子2に給電線3を介し接続されるスタータ4および車載の電気負荷5と、給電線3に介装される電流検出器(以下電流センサという)7と、1対のバッテリ1のプラス端子の電圧値を検出する1対の電圧検出器8と、エンジンコントロールユニット(以下ECUという)6と、ECU6に接続された表示器9とを備える。
Hereinafter, a remaining capacity detection device for a vehicle battery according to an embodiment of the present invention will be described. FIG. 1 shows an overall configuration of a remaining capacity detection device for a vehicle battery (hereinafter referred to as a remaining capacity detection device for a battery), and FIG. 2 shows a block diagram of a control function unit of the remaining capacity detection device for a battery 1.
A battery remaining capacity detection device is mounted on a vehicle (not shown) and connected to a pair of batteries (hereinafter referred to as batteries) 1a and 1b connected in series with each other and a positive terminal 2 of a battery 1b on the high potential side via a feeder line 3. Starter 4 and on-vehicle electric load 5, current detector (hereinafter referred to as current sensor) 7 interposed in the feed line 3, and a pair of voltages for detecting the voltage value of the positive terminals of the pair of batteries 1 A detector 8, an engine control unit (hereinafter referred to as ECU) 6, and a display 9 connected to the ECU 6 are provided.

ECU6は不図示の入出力回路に多数のポートを有し、その電源系の制御構成部材にのみ着目した場合、出力ポートには表示器9が接続され、入力ポートには電流センサ7、電圧検出器8とが接続される。
ここで、表示器9は連続的に表示できるレベルゲージでよく、ここでは液晶表示器が採用される。
電流センサ7はスタータ4および車載の電気負荷側へ放電される放電電流を検出し、電流値をECU6に入力する。
The ECU 6 has a number of ports in an input / output circuit (not shown). When attention is paid only to the control components of the power supply system, the display 9 is connected to the output port, the current sensor 7 is connected to the input port, and the voltage detection is performed. The device 8 is connected.
Here, the display 9 may be a level gauge capable of continuous display, and here, a liquid crystal display is adopted.
The current sensor 7 detects a discharge current discharged to the starter 4 and the vehicle-mounted electric load side, and inputs a current value to the ECU 6.

各電圧検出器8は各バッテリ1のプラス端子の電圧値を所定検出時期に応じて検出し、電圧値VをECU6に入力する。
本実施形態においては、バッテリ1aとバッテリ1bのそれぞれについて同様の手段を用いてその残存容量を検出するが、以下、バッテリ1aについてのみバッテリ1として説明する。
Each voltage detector 8 detects the voltage value of the plus terminal of each battery 1 according to a predetermined detection time, and inputs the voltage value V to the ECU 6.
In the present embodiment, the remaining capacity of each of the battery 1a and the battery 1b is detected using the same means. Hereinafter, only the battery 1a will be described as the battery 1.

図2に示すように、ECU6はその電源系の制御機能のみに着目すると、内部抵抗推定手段A1、劣化モード判定手段A2、残存容量検出手段A3、表示器9を制御する表示制御部A4としての制御機能を有する。なお、表示器9とこれを制御する表示制御部A4とが表示手段を構成する。   As shown in FIG. 2, when focusing on only the control function of the power supply system, the ECU 6 serves as a display control unit A4 that controls the internal resistance estimation unit A1, the degradation mode determination unit A2, the remaining capacity detection unit A3, and the display 9. Has a control function. The display 9 and the display control unit A4 that controls the display 9 constitute display means.

内部抵抗検出手段A1は電圧検出器8及び電流センサ7によりクランキング前及びクランキング時に検出されたバッテリ1の端子電圧端子電圧V、Vおよび放電電流I、Iからバッテリ1の内部抵抗R{=|(V−V)/(I−I)|}を求める。 The internal resistance detection means A1 detects the internal voltage of the battery 1 from the terminal voltage terminal voltages V 1 and V 2 and the discharge currents I 1 and I 2 detected before and during the cranking by the voltage detector 8 and the current sensor 7. The resistance R {= | (V 1 −V 2 ) / (I 1 −I 2 ) |} is obtained.

劣化モード判定手段A2はバッテリ1の搭載初期の内部抵抗Rとバッテリ1の端子電圧Vの当初相関モード線Nと当初相関モード線Nを下回る第1バッテリ劣化モード域nIと当初相関モード線Nを上回る第2バッテリ劣化モード域nIIとが設定された劣化モード設定マップmap1を用い、現在の内部抵抗Rと端子電圧Vより劣化モード域nIあるいはnIIを判定する。なお、ここでの劣化モード設定マップmap1の一例を、図2中に示した。 The deterioration mode determination means A2 includes an internal resistance R in the initial stage of the battery 1, an initial correlation mode line N of the terminal voltage V1 of the battery 1, a first battery deterioration mode region nI lower than the initial correlation mode line N, and an initial correlation mode line N. using degraded mode setting map map1 of the second battery degraded mode range nII is set greater than, determines the current degraded mode range nI or nII than the internal resistance R and the terminal voltage V 1. An example of the deterioration mode setting map map1 here is shown in FIG.

この劣化モード設定マップmap1は図6で説明したようにバッテリ1の劣化モードが車両の使用態様で異なることを考慮して設定された。
即ち、図6で説明したように、バッテリ1の新品時の内部抵抗Rとバッテリ1の端子電圧Vの当初相関モード線Nはバッテリ1の工場出荷前の新品時のデータに基づき設定されている。
The deterioration mode setting map map1 is set in consideration of the fact that the deterioration mode of the battery 1 differs depending on the usage mode of the vehicle as described with reference to FIG.
That is, as described with reference to FIG. 6, the initial correlation mode line N of the internal resistance R of the battery 1 when it is new and the terminal voltage V of the battery 1 is set based on the data when the battery 1 is new before shipment from the factory. .

更に、バッテリ1が当初相関モード線Nより下側のR−V領域である第1バッテリ劣化モード域nIに経時的に達しているのは、バッテリが正極活物質軟化を生じている場合と推定され、当初相関モード線Nより上側のR−V領域である第2バッテリ劣化モード域nIIに経時的に達しているのは、格子腐蝕あるいは負極活物質硬化(サルフェーション)が生じている場合と推定される。このような劣化特性を踏まえ、劣化モード設定マップmap1を用い、現在の内部抵抗Rとバッテリ1の端子電圧Vの位置eより第1、第2バッテリ劣化モード域nIあるいはnIIを判定することができる。 Furthermore, it is estimated that the battery 1 reaches the first battery deterioration mode region nI that is the RV region below the initial correlation mode line N with time when the battery has softened the positive electrode active material. It is estimated that the reason why the second battery deterioration mode region nII, which is the RV region above the correlation mode line N, has been reached with time is that lattice corrosion or negative electrode active material hardening (sulfation) has occurred. Is done. Based on such degradation characteristics, using a degraded mode setting map map1, the current internal resistance R and the first from the position e of the terminal voltage V 1 of the battery 1, it is possible to determine the second battery degraded mode range nI or nII it can.

残存容量検出手段A3は内部抵抗Rに対応するバッテリの残存容量Qが第1バッテリ劣化モードnI及び第2バッテリ劣化モードnIIに応じてそれぞれ設定された残存容量設定マップmap2を用い、現在の内部抵抗Rより残存容量Qを求める。なお、ここでの残存容量設定マップmap2の一例を、図2中に示す。
この残存容量設定マップmap2は図3で説明したように、予め実測された内部抵抗R−残存容量Qデータ線図に基づき作成されている。
The remaining capacity detection means A3 uses the remaining capacity setting map map2 in which the remaining capacity Q of the battery corresponding to the internal resistance R is set according to the first battery deterioration mode nI and the second battery deterioration mode nII, respectively, and the current internal resistance The remaining capacity Q is obtained from R. An example of the remaining capacity setting map map2 here is shown in FIG.
As described with reference to FIG. 3, the remaining capacity setting map map2 is created based on the internal resistance R-remaining capacity Q data diagram measured in advance.

即ち、図2中の第1バッテリ劣化モードnIでの残存容量Qの演算用線図p1は、図3中に示す正極活物質軟化による劣化モードでのデータ列P1を基準に用いて設定された。同じく第2バッテリ劣化モードnIIでの残存容量Qの演算用線図p2は、図3中に示す格子腐蝕あるいは負極活物質硬化(サルフェーション)による劣化モードでのデータ列P2を基準に用いて設定された。
表示制御部A4(表示手段の制御部)は残存容量検出手段A3からの演算値である残存容量Qを入力され、 表示手段の表示器9に残存容量Q相当の表示駆動信号を出力する。これにより表示器9が残存容量Qを表示する。
That is, the calculation diagram p1 of the remaining capacity Q in the first battery deterioration mode nI in FIG. 2 is set using the data string P1 in the deterioration mode by softening of the positive electrode active material shown in FIG. 3 as a reference. . Similarly, the calculation diagram p2 of the remaining capacity Q in the second battery deterioration mode nII is set based on the data string P2 in the deterioration mode due to lattice corrosion or negative electrode active material hardening (sulfation) shown in FIG. It was.
The display control unit A4 (the control unit of the display means) receives the remaining capacity Q which is the calculated value from the remaining capacity detection means A3, and outputs a display drive signal corresponding to the remaining capacity Q to the display 9 of the display means. As a result, the display 9 displays the remaining capacity Q.

本発明の一実施形態にかかる車両用バッテリの残存容量検出装置は、上述のような構成を成しているので、以下、図4に示す各フローチャートに基づいてその作動を説明する。
まず、不図示のエンジンキースイッチがオンされるのを検出するとステップs1よりステップs2に進み、 各センサからの電圧V、電流I等のデータの取り込みを行う。
Since the remaining capacity detection device for a vehicle battery according to an embodiment of the present invention has the above-described configuration, the operation thereof will be described below based on each flowchart shown in FIG.
First, when it is detected that an engine key switch (not shown) is turned on, the process proceeds from step s1 to step s2, and data such as voltage V 1 and current I 1 from each sensor is captured.

次に、ステップs3でエンジン始動信号の有無を判断する。ここでは不図示のイグニションスイッチがオンのとき、エンジン始動信号有りと判断する。エンジン始動信号有り(すなわち、エンジンクランキング時)ではYesでステップs4に進む。エンジン始動信号無し(すなわち、エンジンクランキング前)ではNoでステップs5に進み、キースイッチオフとなるまではステップs3に戻る。   Next, in step s3, it is determined whether or not there is an engine start signal. Here, when an ignition switch (not shown) is on, it is determined that there is an engine start signal. If there is an engine start signal (that is, during engine cranking), the process proceeds to Yes in step s4. If there is no engine start signal (that is, before engine cranking), the process proceeds to step s5 with No, and returns to step s3 until the key switch is turned off.

エンジン始動信号有りでステップs4に達すると、ここでは始動直後(クランキング時)の電圧V、電流Iのデータの取り込みを行い、ECU6の所定記憶エリアにストアし、ステップs6に進む。 When step s4 is reached with an engine start signal, the data of voltage V 2 and current I 2 immediately after start (during cranking) are taken in, stored in a predetermined storage area of ECU 6, and the process proceeds to step s6.

ステップs6では電圧検出器8及び電流センサ7によりクランキング前及びクランキング時に検出されたバッテリ1の端子電圧V、Vおよび放電電流I、Iを取り込み、これらの各値に基づき、バッテリ1の内部抵抗R{=|(V−V)/(I−I)|}を演算する。 In step s6, the terminal voltages V 1 and V 2 of the battery 1 and the discharge currents I 1 and I 2 detected before and during the cranking by the voltage detector 8 and the current sensor 7 are taken in, and based on these values, The internal resistance R {= | (V 1 −V 2 ) / (I 1 −I 2 ) |} of the battery 1 is calculated.

ステップs7では、劣化モード設定マップmap1を用い、現在の内部抵抗Rと端子電圧Vに相当する劣化モード設定マップmap1上の位置が当初相関モード線Nより下側の第1バッテリ劣化モード域nIか、当初相関モード線Nより上側の第2バッテリ劣化モード域nIIかを判断し、メインルーチンにリターンする。なお、当初相関モード線N上にある場合、ここでは当初相関モード線Nより上側と見做すよう処理するが、これに代えて下側と見做すよう処理しても同様の効果を奏することができる。 In step s7, using degraded mode setting map map1, the current internal resistance R and the first battery degraded mode range lower than the initial correlation mode line N position on degraded mode setting map map1 corresponding to the terminal voltage V 1 nI Or whether it is the second battery deterioration mode region nII above the initial correlation mode line N, and the process returns to the main routine. In the case where it is on the initial correlation mode line N, here, processing is performed so as to be regarded as the upper side of the initial correlation mode line N. However, the same effect can be obtained even if processing is performed so as to be regarded as the lower side instead. be able to.

ステップs8に達すると、バッテリ1が第1バッテリ劣化モード域nIか否か判断し、Yesでステップs9に、Noでステップs10に進む。
ステップs9では現劣化モードが第1バッテリ劣化モード域nIであるとして、残存容量設定マップmap2の第1バッテリ劣化モードnIでの残存容量Qの演算用線図p1を選択する。
When step s8 is reached, it is determined whether or not the battery 1 is in the first battery deterioration mode region nI. If yes, the process proceeds to step s9, and if no, the process proceeds to step s10.
In step s9, assuming that the current deterioration mode is the first battery deterioration mode area nI, the calculation diagram p1 of the remaining capacity Q in the first battery deterioration mode nI of the remaining capacity setting map map2 is selected.

他方、ステップs10では現劣化モードが第2バッテリ劣化モード域nIIであるとして、残存容量設定マップmap2の第2バッテリ劣化モードnIIでの残存容量Qの演算用線図p2を選択する。
ステップs9、s10の何れかより、ステップs11に達すると、ここでは、 ステップs9、s10の何れかで選択した残存容量設定マップmap2の演算用線図p1、p2に応じて、最新の内部抵抗Rに対応する残存容量Qを求める。
On the other hand, in step s10, assuming that the current deterioration mode is the second battery deterioration mode region nII, the calculation diagram p2 of the remaining capacity Q in the second battery deterioration mode nII of the remaining capacity setting map map2 is selected.
When step s11 is reached from either step s9 or s10, the latest internal resistance R is determined according to the calculation diagrams p1 and p2 of the remaining capacity setting map map2 selected in either step s9 or s10. The remaining capacity Q corresponding to is obtained.

次いでステップs12では演算された残存容量Qの表示処理を行う。この残存容量表示処理では最新のバッテリの残存容量Qを表示制御部A4で受け、相当する表示信号を表示器9に所定時間(例えば3秒)出力して残存容量Qの表示を行い、今回の制御を終了する。   Next, in step s12, the calculated remaining capacity Q is displayed. In this remaining capacity display process, the latest battery remaining capacity Q is received by the display control unit A4, and a corresponding display signal is output to the display 9 for a predetermined time (for example, 3 seconds) to display the remaining capacity Q. End control.

このように、バッテリ1の内部抵抗相当の残存容量算出値と実勢値のずれが、バッテリ1の劣化モードにより異なることに着目し、ここでは、第2バッテリ劣化モードP2(格子腐蝕及び負極活物質硬化の劣化モード)に有ると、内部抵抗R相当の残存容量Qを大きめに修正でき、逆に、第1バッテリ劣化モードP1(正極活物質軟化の劣化モード)にあると、内部抵抗R相当の残存容量Qを小さめに修正でき、常にバッテリの劣化モードを考慮して、適正な残存容量Qを算出でき、残存容量推定の精度向上を図れる。
更に、最新の内部抵抗Rに対応するバッテリ1の残存容量Qを表示器9により表示でき、信頼性の有る残存容量表示を実行することができる。
Thus, paying attention to the fact that the difference between the calculated value of the remaining capacity corresponding to the internal resistance of the battery 1 and the actual value differs depending on the deterioration mode of the battery 1, here, the second battery deterioration mode P2 (lattice corrosion and negative electrode active material) In the deterioration mode of hardening), the remaining capacity Q corresponding to the internal resistance R can be corrected to be large, and conversely, in the first battery deterioration mode P1 (deterioration mode of softening of the positive electrode active material) The remaining capacity Q can be corrected to a smaller value, the appropriate remaining capacity Q can be calculated in consideration of the battery deterioration mode, and the accuracy of the remaining capacity estimation can be improved.
Furthermore, the remaining capacity Q of the battery 1 corresponding to the latest internal resistance R can be displayed by the display 9, and the remaining capacity display with reliability can be executed.

上述のところにおいて、車両用バッテリの残存容量検出装置はバッテリの残存容量を表示器によりユーザーに示す車両に搭載されるものとしたが、これ以外に、バッテリの残存容量を元にしたECU制御を行う車両にも同様に適用できる。   In the above description, the vehicle battery remaining capacity detection device is mounted on the vehicle that indicates the remaining capacity of the battery to the user by the display. However, in addition to this, ECU control based on the remaining capacity of the battery is performed. The same applies to vehicles to be performed.

本発明の一実施形態にかかるバッテリの残存容量検出装置の全体概略構成図である。1 is an overall schematic configuration diagram of a battery remaining capacity detection device according to an embodiment of the present invention. 図1の残存容量検出装置のECUの機能構成を示すブロック図である。It is a block diagram which shows the function structure of ECU of the remaining capacity detection apparatus of FIG. 図1の残存容量検出装置のECUが用いる第1バッテリ劣化モードP1と第2バッテリ劣化モードP2に対応する内部抵抗―残留容量特性線図である。FIG. 3 is an internal resistance-residual capacity characteristic diagram corresponding to a first battery deterioration mode P1 and a second battery deterioration mode P2 used by the ECU of the remaining capacity detection device of FIG. 図1の残存容量検出装置のECUが行うメインルーチンのフローチャートである。It is a flowchart of the main routine which ECU of the remaining capacity detection apparatus of FIG. 1 performs. バッテリの比重―SOC特性線図である。It is a specific gravity-SOC characteristic diagram of a battery. バッテリの内部抵抗―オープン電圧特性線図である。It is an internal resistance-open voltage characteristic diagram of a battery.

符号の説明Explanation of symbols

1 バッテリ
6 ECU
7 電流検出器
8 電圧検出器
9 表示器
map1 劣化モード設定マップ
map2 残存容量設定マップ
A1 内部抵抗推定手段
A2 劣化モード判定段
A3 残存容量検出手段
A4 表示制御部(表示手段)
N 当初相関モード線
I 放電電流
P1 第1バッテリ劣化モード
P2 第2バッテリ劣化モード
Q1 残存容量(第1残存容量推定手段による)
R 内部抵抗
V オープン電圧(端子電圧)
1 Battery 6 ECU
7 current detector 8 voltage detector 9 indicator map1 deterioration mode setting map map2 remaining capacity setting map A1 internal resistance estimation means A2 deterioration mode determination stage A3 remaining capacity detection means A4 display control section (display means)
N initial correlation mode line I discharge current P1 first battery deterioration mode P2 second battery deterioration mode Q1 remaining capacity (by first remaining capacity estimating means)
R Internal resistance V Open voltage (terminal voltage)

Claims (2)

バッテリの端子電圧を検出する電圧検出器と、
上記バッテリの放電電流を検出する電流検出器と、
上記電圧検出器及び上記電流検出器によりクランキング前及びクランキング時に検出されたバッテリの端子電圧および放電電流から上記バッテリの内部抵抗を求める内部抵抗推定手段と、
上記バッテリの搭載初期の内部抵抗とバッテリの端子電圧の当初相関モード線と上記当初相関モード線を下回る第1バッテリ劣化モード域と上記当初相関モード線を上回る第2バッテリ劣化モード域とが設定された劣化モード設定マップを用い、現在の内部抵抗と端子電圧より劣化モードを判定する劣化モード判定手段と、
上記内部抵抗に対応するバッテリの残存容量が上記第1バッテリ劣化モード及び第2バッテリ劣化モードに応じてそれぞれ設定された残存容量設定マップを用い、現在の内部抵抗より残存容量を求める残存容量検出手段と、
を有することを特徴とする車両用バッテリの残存容量検出装置。
A voltage detector for detecting the terminal voltage of the battery;
A current detector for detecting the discharge current of the battery;
Internal resistance estimating means for determining the internal resistance of the battery from the terminal voltage and discharge current of the battery detected before and during cranking by the voltage detector and the current detector;
An initial correlation mode line of the initial internal resistance of the battery and the battery terminal voltage, a first battery deterioration mode region lower than the initial correlation mode line, and a second battery deterioration mode region higher than the initial correlation mode line are set. Using the deterioration mode setting map, deterioration mode determination means for determining the deterioration mode from the current internal resistance and terminal voltage,
The remaining capacity detecting means for determining the remaining capacity from the current internal resistance using the remaining capacity setting map in which the remaining capacity of the battery corresponding to the internal resistance is set in accordance with the first battery deterioration mode and the second battery deterioration mode, respectively. When,
A remaining capacity detection device for a vehicle battery, comprising:
請求項1に記載の車両用バッテリの残存容量検出装置において、
上記残存容量検出手段が求めたバッテリの残存容量を表示する表示器を付設することを特徴とする車両用バッテリの残存容量検出装置。
The remaining capacity detection device for a vehicle battery according to claim 1,
An apparatus for detecting a remaining capacity of a vehicular battery, comprising a display for displaying the remaining capacity of the battery obtained by the remaining capacity detecting means.
JP2004084877A 2004-03-23 2004-03-23 Residual capacity detection device of vehicle battery Ceased JP2005274214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004084877A JP2005274214A (en) 2004-03-23 2004-03-23 Residual capacity detection device of vehicle battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004084877A JP2005274214A (en) 2004-03-23 2004-03-23 Residual capacity detection device of vehicle battery

Publications (1)

Publication Number Publication Date
JP2005274214A true JP2005274214A (en) 2005-10-06

Family

ID=35174063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004084877A Ceased JP2005274214A (en) 2004-03-23 2004-03-23 Residual capacity detection device of vehicle battery

Country Status (1)

Country Link
JP (1) JP2005274214A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010000612A1 (en) 2009-03-03 2010-10-21 Denso Corporation, Kariya-City Device for detecting the state of the battery
DE102010016564A1 (en) 2009-04-23 2010-11-25 Denso Corporation, Kariya-City Automatic engine control device
CN103176134A (en) * 2011-12-26 2013-06-26 中国移动通信集团安徽有限公司 Online storage battery capacity estimation method
JP2013541700A (en) * 2010-08-27 2013-11-14 日本テキサス・インスツルメンツ株式会社 Rechargeable battery monitoring using multiple parameter update rates
WO2014068954A1 (en) * 2012-10-30 2014-05-08 三洋電機株式会社 Storage battery system
KR101456349B1 (en) 2010-03-31 2014-11-03 발렌스 테크놀로지, 인코포레이티드 Monitoring state of charge of a battery system
KR101461681B1 (en) 2006-03-31 2014-11-13 발렌스 테크놀로지, 인코포레이티드 Battery charge indication methods, battery charge monitoring devices, rechargeable batteries, and articles of manufacture
WO2019087462A1 (en) * 2017-10-30 2019-05-09 株式会社Gsユアサ Power storage system, capacity estimation device for secondary battery and capacity estimation method for lead storage battery
CN112198443A (en) * 2020-09-28 2021-01-08 烽火通信科技股份有限公司 Method and device for detecting service life of storage battery
US10976370B2 (en) 2016-09-29 2021-04-13 Gs Yuasa International Ltd. SOC estimation device of energy storage device, energy storage apparatus, and SOC estimation method of energy storage device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101461681B1 (en) 2006-03-31 2014-11-13 발렌스 테크놀로지, 인코포레이티드 Battery charge indication methods, battery charge monitoring devices, rechargeable batteries, and articles of manufacture
DE102010000612B4 (en) 2009-03-03 2023-08-03 Denso Corporation Battery condition detection device
US8244449B2 (en) 2009-03-03 2012-08-14 Denso Corporation Apparatus for detecting the state of battery
DE102010000612A1 (en) 2009-03-03 2010-10-21 Denso Corporation, Kariya-City Device for detecting the state of the battery
DE102010016564A1 (en) 2009-04-23 2010-11-25 Denso Corporation, Kariya-City Automatic engine control device
JP2010270747A (en) * 2009-04-23 2010-12-02 Denso Corp Automatic engine control device
DE102010016564B4 (en) 2009-04-23 2024-02-15 Denso Corporation Automatic engine control device
US8770165B2 (en) 2009-04-23 2014-07-08 Denso Corporation Automatic engine control device
KR101456349B1 (en) 2010-03-31 2014-11-03 발렌스 테크놀로지, 인코포레이티드 Monitoring state of charge of a battery system
JP2013541700A (en) * 2010-08-27 2013-11-14 日本テキサス・インスツルメンツ株式会社 Rechargeable battery monitoring using multiple parameter update rates
CN103176134A (en) * 2011-12-26 2013-06-26 中国移动通信集团安徽有限公司 Online storage battery capacity estimation method
JPWO2014068954A1 (en) * 2012-10-30 2016-09-08 三洋電機株式会社 Battery system
WO2014068954A1 (en) * 2012-10-30 2014-05-08 三洋電機株式会社 Storage battery system
US10976370B2 (en) 2016-09-29 2021-04-13 Gs Yuasa International Ltd. SOC estimation device of energy storage device, energy storage apparatus, and SOC estimation method of energy storage device
JPWO2019087462A1 (en) * 2017-10-30 2020-12-03 株式会社Gsユアサ Power storage system, rechargeable battery capacity estimation device, and lead-acid battery capacity estimation method
JP7036121B2 (en) 2017-10-30 2022-03-15 株式会社Gsユアサ Power storage system, secondary battery capacity estimation device, and lead-acid battery capacity estimation method
US11313914B2 (en) 2017-10-30 2022-04-26 Gs Yuasa International Ltd. Energy storage system, capacity estimation device for secondary battery, and capacity estimation method for lead-acid battery
WO2019087462A1 (en) * 2017-10-30 2019-05-09 株式会社Gsユアサ Power storage system, capacity estimation device for secondary battery and capacity estimation method for lead storage battery
CN112198443A (en) * 2020-09-28 2021-01-08 烽火通信科技股份有限公司 Method and device for detecting service life of storage battery
CN112198443B (en) * 2020-09-28 2023-09-22 烽火通信科技股份有限公司 Method and device for detecting service life of storage battery

Similar Documents

Publication Publication Date Title
US7962300B2 (en) Battery state judging method, and battery state judging apparatus
US10656210B2 (en) Secondary battery state detection device and secondary battery state detection method
JP5109304B2 (en) Battery remaining capacity detection device
JP4823974B2 (en) Storage battery remaining capacity detection method and remaining capacity detection apparatus
JP5070790B2 (en) Battery state detection system and automobile equipped with the same
JP5598869B2 (en) Secondary battery state detection device and secondary battery state detection method
JP5644190B2 (en) Battery state estimation device and battery information notification device
JP4670778B2 (en) Battery status notification method
JP2017219404A (en) Vehicle and battery state detection system thereof
JP2005274214A (en) Residual capacity detection device of vehicle battery
EP3756937B1 (en) Apparatus and method for estimating soc
JP6350886B2 (en) Lithium-ion battery deterioration judgment method
JP2008074257A (en) Battery deterioration determination device
JP2007261433A (en) Battery control device and battery control method
JP2010139423A (en) Diagnostic device for deteriorated state of secondary cell
JP5566926B2 (en) Secondary battery state detection device and secondary battery state detection method
JP2005292035A (en) Method of detecting battery condition
JP5535092B2 (en) Lead storage battery state detection device and lead storage battery state detection method
JP4760276B2 (en) Engine starting storage battery deterioration determining method and apparatus, and engine starting storage battery provided with the deterioration determining apparatus
JPH1138107A (en) Method for estimating residual capacity of secondary battery
JP2007170953A (en) Deterioration determining device of secondary battery
JP4751381B2 (en) Engine control method and engine control apparatus for idling stop vehicle
JP2006137316A (en) Vehicle power source managing device
JP2005265642A (en) Remaining amount detection system for vehicle battery
JP3714866B2 (en) Engine start system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20100622