JPH1138107A - Method for estimating residual capacity of secondary battery - Google Patents

Method for estimating residual capacity of secondary battery

Info

Publication number
JPH1138107A
JPH1138107A JP9209726A JP20972697A JPH1138107A JP H1138107 A JPH1138107 A JP H1138107A JP 9209726 A JP9209726 A JP 9209726A JP 20972697 A JP20972697 A JP 20972697A JP H1138107 A JPH1138107 A JP H1138107A
Authority
JP
Japan
Prior art keywords
battery
capacity
discharge
discharge current
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9209726A
Other languages
Japanese (ja)
Inventor
Shoji Asai
彰司 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP9209726A priority Critical patent/JPH1138107A/en
Publication of JPH1138107A publication Critical patent/JPH1138107A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method by which the residual capacity of a secondary battery can be estimated accurately even when the battery is used as the power source of an electric automobile, etc., under a discharge current fluctuating condition. SOLUTION: The reference value Im of the discharge current of a secondary battery is found (steps 107 to 109) and a map (map 3) indicating the terminal voltage variation of the battery against the discharge capacity variation of the battery is prepared from a map (map 1) indicating the internal resistance value variation of the battery against the discharge capacity variation of the battery and another map (map 2) indicating the electromotive force variation of the battery against the discharge capacity variation of the battery using the reference value Im as a parameter (step 111). Then, the residual capacity of the battery is estimated based on the total capacity of the battery regarding the discharge capacity when the terminal voltage is under a prescribed voltage as the total capacity of the battery (step 113).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電気自動車等に使用
される二次電池の残存容量を正確に推定することができ
る残存容量推定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a remaining capacity estimating method capable of accurately estimating the remaining capacity of a secondary battery used in an electric vehicle or the like.

【0002】[0002]

【従来の技術】電気自動車等において、その動力源とし
て使用される二次電池の残存容量を表示して再充電を促
す等のために、残存容量を正確に推定する方法が求めら
れている。この二次電池の等価回路を図7に示し、起電
力Eに直列に内部抵抗Rが位置している。したがって、
二次電池の端子電圧Vは放電電流をIとして、式(1)
で示される。残存容量とは、必要な放電電流を流した時
に端子電圧が所定値を切るようになるまでの放電可能容
量である。 V=E−RI…(1)
2. Description of the Related Art In an electric vehicle or the like, there is a demand for a method of accurately estimating the remaining capacity in order to display the remaining capacity of a secondary battery used as a power source to prompt recharging. FIG. 7 shows an equivalent circuit of this secondary battery. An internal resistance R is located in series with the electromotive force E. Therefore,
The terminal voltage V of the secondary battery is expressed by the following equation (1), where I is the discharge current.
Indicated by The remaining capacity is a dischargeable capacity until the terminal voltage falls below a predetermined value when a necessary discharge current is passed. V = E-RI (1)

【0003】そこで、例えば特開平8−179018号
公報には、二次電池の内部抵抗値を算出して、この内部
抵抗値より、残存容量が0と見做せる電池電圧(端子電
圧)V0 を得、これに基づいて残存容量を算出し表示す
る残存容量表示装置が提案されている。
Therefore, for example, Japanese Patent Application Laid-Open No. Hei 8-179018 discloses that the internal resistance of a secondary battery is calculated, and from this internal resistance, the battery voltage (terminal voltage) V0 at which the remaining capacity can be regarded as 0 is calculated. A remaining capacity display device that calculates and displays the remaining capacity based on the obtained value has been proposed.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記内部抵
抗値は電池の劣化度(放電容量)に応じて大きくなるも
のの、どの程度大きくなるかは放電電流をどの程度流す
かによって変動する。ここにおいて、上記公報に記載さ
れた残存容量表示装置では、放電電流の履歴を考慮して
いないため、電気自動車等のように走行状態に応じて電
気負荷の大きさ、すなわち放電電流の大きさが変化する
ものでは、算出された残存容量に大きな誤差を生じるお
それがある。
Although the internal resistance value increases in accordance with the degree of deterioration (discharge capacity) of the battery, how much the internal resistance value increases depends on how much discharge current flows. Here, in the remaining capacity display device described in the above publication, since the history of the discharge current is not taken into consideration, the magnitude of the electric load, that is, the magnitude of the discharge current depends on the traveling state as in an electric vehicle or the like. If it changes, a large error may occur in the calculated remaining capacity.

【0005】そこで、本発明はこのような課題を解決す
るもので、二次電池を電気自動車等の動力源として使用
した場合にも正確にその残存容量を推定することができ
る二次電池の残存容量推定方法を提供することを目的と
する。
Accordingly, the present invention is to solve such a problem, and it is possible to accurately estimate the remaining capacity of a secondary battery even when the secondary battery is used as a power source of an electric vehicle or the like. An object of the present invention is to provide a capacity estimation method.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明では、二次電池の放電履歴から放電電流参考
値を求めるステップ(ステップ107〜109)と、放
電電流参考値をパラメータとして、放電容量の変化に対
する電池内部抵抗値の変化を求めるステップ(マップ
1)と、放電容量の変化に対する電池起電力の変化を求
めるステップ(マップ2)と、電池起電力の変化値か
ら、最大放電電流と電池内部抵抗値を乗じた値を引い
て、電池容量の変化に対する電池端子電圧の変化を求め
るステップ(マップ3,ステップ111)と、電池端子
電圧が所定電圧を切る時の放電容量を総容量として、当
該総容量に基づいて残存容量を推定するステップ(ステ
ップ113)とを具備している。
In order to achieve the above object, according to the present invention, a step of obtaining a discharge current reference value from a discharge history of a secondary battery (steps 107 to 109), and using the discharge current reference value as a parameter, The step of determining the change in the battery internal resistance value with respect to the change in the discharge capacity (Map 1), the step of determining the change in the battery electromotive force with respect to the change in the discharge capacity (Map 2), and the maximum discharge current Subtracting the value obtained by multiplying the battery terminal voltage by the battery internal resistance value to determine the change in the battery terminal voltage with respect to the change in the battery capacity (map 3, step 111). (Step 113) for estimating the remaining capacity based on the total capacity.

【0007】本発明においては、放電電流参考値をパラ
メータとして、放電容量の変化に対する電池内部抵抗値
の変化を求め、この電池内部抵抗値に基づき総容量を求
めるとともに残存容量を求めている。こりように、残存
容量の推定に、放電履歴に基づく放電電流参考値を使用
しているから、二次電池を電気自動車等の動力源として
使用した場合のように、放電電流が大きく変化する場合
にも正確にその残存容量を推定することができる。
In the present invention, the change in the internal resistance of the battery with respect to the change in the discharge capacity is determined using the discharge current reference value as a parameter, and the total capacity and the remaining capacity are determined based on the internal resistance of the battery. As described above, since the discharge current reference value based on the discharge history is used for estimating the remaining capacity, when the discharge current greatly changes, such as when the secondary battery is used as a power source of an electric vehicle or the like. In addition, the remaining capacity can be accurately estimated.

【0008】放電電流参考値としては、現在に至るまで
の放電電流の平均値を使用することができる。また、
「放電電流参考値をパラメータとして、放電容量の変化
に対する電池内部抵抗値の変化を求めるステップ」およ
び「放電容量の変化に対する電池起電力の変化を求める
ステップ」は、それぞれ予め実験値を得て、これらをマ
ップデータとして記憶しておく方法が採用できる。
As the discharge current reference value, the average value of the discharge current up to the present can be used. Also,
`` Using the discharge current reference value as a parameter, a step of obtaining a change in the battery internal resistance value with respect to a change in the discharge capacity '' and a `` Step of obtaining a change in the battery electromotive force with respect to a change in the discharge capacity '' respectively obtain experimental values in advance A method of storing these as map data can be adopted.

【0009】また、電池内部抵抗値を二次電池の温度に
応じて補正するようにすれば、さらに正確に残存容量を
推定することができる。
Further, if the internal resistance value of the battery is corrected according to the temperature of the secondary battery, the remaining capacity can be more accurately estimated.

【0010】本発明は以下の構成を有する装置としても
実現できる。すなわち、二次電池の残存容量推定装置
は、二次電池の放電履歴から放電電流参考値を求める手
段と、放電電流参考値をパラメータとして、放電容量の
変化に対する電池内部抵抗値の変化を記憶する手段と、
放電容量の変化に対する電池起電力の変化を記憶する手
段と、電池起電力の変化値から、最大放電電流と電池内
部抵抗値を乗じた値を引いて、放電容量の変化に対する
電池端子電圧の変化を求める手段と、電池端子電圧が所
定電圧を切る時の放電容量を総容量として、当該総容量
に基づいて残存容量を推定する手段とを具備している。
The present invention can also be realized as an apparatus having the following configuration. That is, the device for estimating the remaining capacity of the secondary battery stores the means for calculating the discharge current reference value from the discharge history of the secondary battery, and stores the change in the battery internal resistance value with respect to the change in the discharge capacity using the discharge current reference value as a parameter. Means,
Means for storing a change in battery electromotive force with respect to a change in discharge capacity, and subtracting a value obtained by multiplying a maximum discharge current and a battery internal resistance value from a change in battery electromotive force to obtain a change in battery terminal voltage with respect to a change in discharge capacity. And means for estimating the remaining capacity based on the total capacity with the discharge capacity when the battery terminal voltage falls below a predetermined voltage as the total capacity.

【0000】[0000]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(第1実施形態)図1には本発明の方法を実行する装置
の全体構成を示す。二次電池1は複数の単電池が直列に
接続されて組電池となり、メインスイッチ2を介して電
気自動車のモータ等の電気負荷3へ接続され、これに放
電電流を供給する。なお、二次電池1は適宜充電器4に
接続されて充電される。充放電線Lには電流センサ5が
設けられて、その電流信号がCPUおよびメモリ等を内
蔵する処理装置6に入力している。処理装置6には二次
電池の温度を検出する温度センサ7が接続されるととも
に、表示器8が接続されて、後述の処理により算出され
た二次電池1の残存容量が表示される。なお、電気負荷
3が上記モータ等である場合には回生電流によって二次
電池1が充電されることもある。
(First Embodiment) FIG. 1 shows the overall configuration of an apparatus for executing the method of the present invention. The secondary battery 1 is composed of a plurality of cells connected in series to form an assembled battery, which is connected via a main switch 2 to an electric load 3 such as a motor of an electric vehicle, and supplies a discharge current thereto. In addition, the secondary battery 1 is appropriately connected to the charger 4 and charged. A current sensor 5 is provided on the charge / discharge line L, and its current signal is input to a processing device 6 including a CPU, a memory, and the like. A temperature sensor 7 for detecting the temperature of the secondary battery is connected to the processing device 6 and a display 8 is connected to display the remaining capacity of the secondary battery 1 calculated by a process described later. When the electric load 3 is the motor or the like, the secondary battery 1 may be charged by the regenerative current.

【0011】図2には上記処理装置6内のCPUで実行
される残存容量推定プログラムのフローチャートを示
す。図2(A)の初期処理のステップ101で二次電池
1を満充電まで充電しておき、続くステップ102で
は、電流積算値Qi、放電電流積算値Qdおよび放電時
間積算値tdをリセットする。そして、ステップ103
で、放電電流参考値Imを標準値にセットする。この放
電電流参考値Imは本実施形態では後述のように放電電
流の平均値である。また、標準値とは、後述する通常ル
ーチンの1サイクル目で、検出電流Iが0の時に、求め
る総容量Qmax が公称容量となるような値で、例えば
0.2CAである。
FIG. 2 shows a flowchart of a remaining capacity estimating program executed by the CPU in the processing device 6. In step 101 of the initial process of FIG. 2A, the secondary battery 1 is charged to full charge, and in the following step 102, the integrated current value Qi, the integrated discharge current value Qd, and the integrated discharge time value td are reset. And step 103
Then, the discharge current reference value Im is set to a standard value. In this embodiment, the discharge current reference value Im is an average value of the discharge current as described later. The standard value is a value such that the total capacity Qmax to be obtained becomes the nominal capacity when the detected current I is 0 in the first cycle of a normal routine described later, for example, 0.2 CA.

【0012】図2(B)の通常ルーチンは例えば0.1
秒程度のサイクル周期Δtで繰り返し実行されるもの
で、ステップ104では、電流センサ5および温度セン
サ7からの信号により、充放電線Lを流れる電流Iと二
次電池1の温度Tを検出する。続いてステップ105で
は、それまでの電流積算値Qiに本サイクル周期中の電
流積算値I*Δtを加えて新たな電流積算値Qiとす
る。ステップ106で電流Iの正負を確認し、I>0で
あれば放電電流が流れたものとしてステップ107以下
へ進む。I≦0の場合はステップ110へ進む。
The normal routine shown in FIG.
In step 104, the current I flowing through the charging / discharging line L and the temperature T of the secondary battery 1 are detected based on signals from the current sensor 5 and the temperature sensor 7. Subsequently, at step 105, the current integrated value Qi up to that point is added to the current integrated value I * Δt during the present cycle to obtain a new current integrated value Qi. In step 106, whether the current I is positive or negative is checked. If I> 0, it is determined that the discharge current has flowed, and the process proceeds to step 107 and thereafter. If I ≦ 0, the process proceeds to step 110.

【0013】ステップ107では、それまでの放電電流
積算値Qdに上記電流積算値I*Δtを加えて新たな放
電電流積算値Qdとし、続いて、それまでの放電時間積
算値tdに本サイクル周期Δtを加えて新たな放電時間
積算値tdとする(ステップ108)。ステップ109
では放電電流参考値Imとして、全放電時間中の放電電
流の平均値Qd/tdを求める。
In step 107, the current integrated value I * .DELTA.t is added to the previous discharge current integrated value Qd to obtain a new discharge current integrated value Qd. At is added to make a new integrated discharge time value td (step 108). Step 109
Then, the average value Qd / td of the discharge current during the entire discharge time is obtained as the discharge current reference value Im.

【0014】ステップ110では二次電池1の内部抵抗
変化率Kを式(2)で求める。すなわち、温度Tによる
二次電池1の内部抵抗Rの変化は、使用されている電解
質の温度依存性が支配的であり、内部抵抗Rと温度Tと
の間にはlogR=a/T+b(a,bは実験的に求め
られる定数)の関係がある。したがって、基準温度To
の時の内部抵抗値をRoとして、上記内部抵抗変化率K
は式(2)のようになる。
In step 110, the internal resistance change rate K of the secondary battery 1 is obtained by the equation (2). That is, the change in the internal resistance R of the secondary battery 1 due to the temperature T is dominantly dependent on the temperature of the electrolyte used, and logR = a / T + b (a) between the internal resistance R and the temperature T. , B are constants experimentally obtained). Therefore, the reference temperature To
The internal resistance value at the time of is defined as Ro, and the internal resistance change rate K
Is as shown in equation (2).

【0015】 K=R/Ro=exp(a*(1/T−1/To)…(2)K = R / Ro = exp (a * (1 / T−1 / To) (2)

【0016】ここで、図3には放電容量の変化に伴う内
部抵抗値Roの変化を示す。図に示すように、内部抵抗
値Roは放電容量Qが増大すると非線形的に増大する
が、その増大の程度は放電電流参考値(本実施形態では
既述のように平均値)Imに依存している。すなわち、
放電電流参考値Imが小さい場合には内部抵抗値Roの
増大の程度は大きく、反対に、放電電流参考値Imが大
きい場合には内部抵抗値Roの増大の程度は小さくな
る。このように、内部抵抗値Roは放電容量Qに対する
その変化量が放電電流履歴に依存して異なっている。そ
こで、本実施形態では、図3の、Imをパラメータとす
る内部抵抗変化グラフをマップ1として処理装置6内の
メモリに予め記憶させている。
FIG. 3 shows a change in the internal resistance Ro with a change in the discharge capacity. As shown in the figure, the internal resistance value Ro increases non-linearly as the discharge capacity Q increases. The degree of the increase depends on the discharge current reference value (the average value as described above in the present embodiment) Im. ing. That is,
When the discharge current reference value Im is small, the degree of increase in the internal resistance value Ro is large. Conversely, when the discharge current reference value Im is large, the degree of increase in the internal resistance value Ro is small. As described above, the amount of change in the internal resistance value Ro with respect to the discharge capacity Q differs depending on the discharge current history. Therefore, in the present embodiment, the internal resistance change graph of FIG. 3 using Im as a parameter is stored in the memory of the processing device 6 as Map 1 in advance.

【0017】一方、二次電池1の起電力Eは図4に示す
ように、放電容量Qの増大に伴って非線形的に下降す
る。そこで、本実施形態では、図4の起電力変化グラフ
をマップ2として処理装置6内のメモリに予め記憶させ
ている。そこで、図2のステップ111では、上記マッ
プ1とマップ2から式(3)を使用して、図5に示すよ
うな、放電容量Qに対する端子電圧Vの変化グラフをマ
ップ3として算出する。なお、式(3)におけるImax
は、電気負荷3が要求する最大の放電電流である。
On the other hand, as shown in FIG. 4, the electromotive force E of the secondary battery 1 decreases nonlinearly as the discharge capacity Q increases. Therefore, in the present embodiment, the electromotive force change graph of FIG. 4 is stored in the memory of the processing device 6 in advance as the map 2. Therefore, in step 111 of FIG. 2, a change graph of the terminal voltage V with respect to the discharge capacity Q as shown in FIG. Note that Imax in equation (3)
Is the maximum discharge current required by the electric load 3.

【0018】 V(Q)=E(Q)−K*Ro(Q)*Imax …(3)V (Q) = E (Q) −K * Ro (Q) * Imax (3)

【0019】ステップ112では、上記マップ3(図
5)から、放電電流Imax を維持した時の、端子電圧V
が放電終止電圧Vend まで低下する時の放電容量Qを推
定し、これを二次電池の総容量Qmax とする。そして、
ステップ113で、式(4)により、総容量Qmax から
電流積算値Qiを引いて残存容量Qrとし、これを表示
器8上に表示する。
In step 112, from the map 3 (FIG. 5), the terminal voltage V when the discharge current Imax is maintained.
Is estimated when the discharge voltage drops to the discharge end voltage Vend, and this is assumed to be the total capacity Qmax of the secondary battery. And
In step 113, the current integrated value Qi is subtracted from the total capacity Qmax according to the equation (4) to obtain a remaining capacity Qr, which is displayed on the display 8.

【0020】Qr=Qmax −Qi…(4)Qr = Qmax-Qi (4)

【0021】(第2実施形態)上記第1実施形態では、
残存容量推定プログラムの実行開始から現在に至るまで
の平均放電電流Qd/tdを放電電流参考値Imとして
使用したが、本実施形態では、現在に至るまでの最新の
所定数の放電電流の平均値を放電電流参考値Imとして
使用する。本実施形態における残存容量推定プログラム
は、図2(A)のステップ102,103に代えて、図
6(A)のステップ201,202を使用し、また、図
6(B)のステップ107〜109に代えて、図6
(B)のステップ203〜209を使用する。他のステ
ップは第1実施形態と同様である。
(Second Embodiment) In the first embodiment,
Although the average discharge current Qd / td from the start of execution of the remaining capacity estimation program to the present is used as the discharge current reference value Im, in the present embodiment, the average value of the latest predetermined number of discharge currents up to the present is obtained. Is used as a discharge current reference value Im. The remaining capacity estimation program according to the present embodiment uses steps 201 and 202 in FIG. 6A instead of steps 102 and 103 in FIG. 2A, and further includes steps 107 to 109 in FIG. Instead of FIG.
Steps 203 to 209 of (B) are used. Other steps are the same as in the first embodiment.

【0022】すなわち、図6(A)の初期処理におい
て、二次電池1を満充電にした後、ステップ201で電
流積算値Qiおよび放電電流サンプル数ndをリセット
し、続くステップ202で放電電流参考値Imを第1実
施形態におけると同様の標準値にセットする。図6
(B)に示す通常ルーチン中のステップ203では、放
電電流サンプル数ndをインクリメントし、続くステッ
プ204で本サイクルでサンプルされた放電電流IをI
0 として記憶する。ステップ205で放電電流サンプル
数ndがMより大きいか否かを確認し、nd>Mであれ
ばステップ206で、最新の(M+1)回の各サイクル
中にサンプルされた放電電流の平均値を式(5)より算
出して、これを放電電流参考値Imとする。ステップ2
07では、最も古い(M+1)サイクル前の放電電流デ
ータIM を捨てて、IM-1 〜I0 の各放電電流データを
順次繰り上げる。
That is, in the initial processing of FIG. 6A, after the secondary battery 1 is fully charged, the integrated current value Qi and the number of discharge current samples nd are reset in step 201, and the discharge current is referred to in subsequent step 202. The value Im is set to the same standard value as in the first embodiment. FIG.
In step 203 of the normal routine shown in FIG. 3B, the discharge current sample number nd is incremented, and in step 204, the discharge current I sampled in this cycle is increased by I.
Store as 0. In step 205, it is checked whether or not the number nd of discharge current samples is larger than M. If nd> M, in step 206, the average value of the discharge current sampled in each of the latest (M + 1) cycles is calculated by the following equation. This is calculated from (5), and is set as a discharge current reference value Im. Step 2
At 07, the oldest (M + 1) cycle previous discharge current data IM is discarded, and the discharge current data of IM-1 to I0 is sequentially carried forward.

【0023】[0023]

【数1】 (Equation 1)

【0024】上記ステップ205で、通常ルーチンが開
始されてから十分時間がたっておらず、nd≦Mである
場合には、最新のnd回の各サイクル中にサンプルされ
た各放電電流の平均値を式(6)より算出して、これを
放電電流参考値Imとする(ステップ208)。そし
て、ステップ209では、Ind-1〜I0 の各放電電流デ
ータを順次繰り上げる。
In step 205, if not enough time has elapsed since the start of the normal routine and if nd ≦ M, the average value of the discharge currents sampled during each of the latest nd cycles is calculated. This is calculated from equation (6), and is set as a discharge current reference value Im (step 208). Then, in step 209, the discharge current data of Ind-1 to I0 are sequentially carried up.

【0025】[0025]

【数2】 (Equation 2)

【0026】このようにして、通常は、最新の(M+
1)個の放電電流の平均値が放電電流参考値Imとして
使用されるから、最新の放電電流履歴に基づいて二次電
池1の残存容量をより正確に推定することができる。
In this way, the latest (M +
1) Since the average value of the discharge currents is used as the discharge current reference value Im, the remaining capacity of the secondary battery 1 can be more accurately estimated based on the latest discharge current history.

【0027】なお、上記各実施形態では、放電電流参考
値Imとして平均値を使用したが、放電電流履歴を良く
示すものであれば他の指標値を使用することができる。
In the above embodiments, the average value is used as the discharge current reference value Im, but any other index value can be used as long as it shows the discharge current history well.

【0028】[0028]

【発明の効果】以上のように、本発明の二次電池の残存
容量推定方法によれば、二次電池を放電電流の変動が大
きい電気自動車等の動力源として使用した場合にも正確
にその残存容量を推定することができる
As described above, according to the method for estimating the state of charge of a secondary battery of the present invention, even when the secondary battery is used as a power source of an electric vehicle or the like having a large variation in discharge current, the method can be used accurately. Remaining capacity can be estimated

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を実施する装置の全体ブロック構
成図である。
FIG. 1 is an overall block diagram of an apparatus for implementing a method of the present invention.

【図2】本発明の第1実施形態における、処理装置内の
CPUで実行される残存容量推定プログラムのフローチ
ャートである。
FIG. 2 is a flowchart of a remaining capacity estimation program executed by a CPU in the processing device according to the first embodiment of the present invention.

【図3】内部抵抗値の変化を示すグラフである。FIG. 3 is a graph showing a change in an internal resistance value.

【図4】起電力の変化を示すグラフである。FIG. 4 is a graph showing a change in electromotive force.

【図5】端子電圧の変化を示すグラフである。FIG. 5 is a graph showing a change in terminal voltage.

【図6】本発明の第2実施形態における、処理装置内の
CPUで実行される残存容量推定プログラムの部分的フ
ローチャートである。
FIG. 6 is a partial flowchart of a remaining capacity estimation program executed by a CPU in a processing device according to a second embodiment of the present invention.

【図7】二次電池の等価回路である。FIG. 7 is an equivalent circuit of a secondary battery.

【符号の説明】[Explanation of symbols]

1…二次電池、3…電気負荷、5…電流センサ、6…処
理装置、7…温度センサ。
DESCRIPTION OF SYMBOLS 1 ... Secondary battery, 3 ... Electrical load, 5 ... Current sensor, 6 ... Processing device, 7 ... Temperature sensor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 二次電池の放電履歴から放電電流参考値
を求めるステップと、 放電電流参考値をパラメータとして、放電容量の変化に
対する電池内部抵抗値の変化を求めるステップと、 放電容量の変化に対する電池起電力の変化を求めるステ
ップと、 電池起電力の変化値から、最大放電電流と電池内部抵抗
値を乗じた値を引いて、電池容量の変化に対する電池端
子電圧の変化を求めるステップと、 電池端子電圧が所定電圧を切る時の放電容量を総容量と
して、当該総容量に基づいて残存容量を推定するステッ
プとを具備する二次電池の残存容量推定方法。
A step of obtaining a discharge current reference value from a discharge history of the secondary battery; a step of obtaining a change in battery internal resistance value with respect to a change in discharge capacity using the discharge current reference value as a parameter; Calculating a change in battery electromotive force; subtracting a value obtained by multiplying a maximum discharge current and a battery internal resistance value from a change value of the battery electromotive force to obtain a change in battery terminal voltage with respect to a change in battery capacity; Estimating the remaining capacity based on the total capacity using the discharge capacity when the terminal voltage falls below a predetermined voltage as a total capacity.
JP9209726A 1997-07-19 1997-07-19 Method for estimating residual capacity of secondary battery Pending JPH1138107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9209726A JPH1138107A (en) 1997-07-19 1997-07-19 Method for estimating residual capacity of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9209726A JPH1138107A (en) 1997-07-19 1997-07-19 Method for estimating residual capacity of secondary battery

Publications (1)

Publication Number Publication Date
JPH1138107A true JPH1138107A (en) 1999-02-12

Family

ID=16577633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9209726A Pending JPH1138107A (en) 1997-07-19 1997-07-19 Method for estimating residual capacity of secondary battery

Country Status (1)

Country Link
JP (1) JPH1138107A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015252A1 (en) * 2003-06-27 2005-02-17 The Furukawa Electric Co., Ltd. Method for judging deterioration of accumulator, method for measuring secondary cell internal impedance, device for measuring secondary cell internal impedance, device for judging deterioration of secondary cell, and power source system
US6920404B2 (en) 2000-09-28 2005-07-19 Japan Storage Battery Co., Ltd. Method of detecting residual capacity of secondary battery
WO2007032382A1 (en) * 2005-09-16 2007-03-22 The Furukawa Electric Co., Ltd Secondary cell degradation judgment method, secondary cell degradation judgment device, and power supply system
US7459884B2 (en) 2004-04-27 2008-12-02 Sony Corporation Remaining capacity calculation method for secondary battery, and battery pack
JP2009202668A (en) * 2008-02-26 2009-09-10 Furukawa Electric Co Ltd:The Battery state detection sensor device
JP2011515652A (en) * 2008-01-11 2011-05-19 エスケー エナジー カンパニー リミテッド Method and apparatus for measuring SOC of battery in battery management system
CN103257323A (en) * 2013-06-03 2013-08-21 清华大学 Method for estimating lithium ion battery remaining available capacity
JP2018186101A (en) * 2015-07-02 2018-11-22 日立オートモティブシステムズ株式会社 Battery control device and battery pack
US11262409B2 (en) 2018-10-12 2022-03-01 Lg Energy Solution, Ltd. Battery management apparatus and method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6920404B2 (en) 2000-09-28 2005-07-19 Japan Storage Battery Co., Ltd. Method of detecting residual capacity of secondary battery
US7616003B2 (en) 2003-06-27 2009-11-10 The Furukawa Electric Co., Ltd. Method for determining deterioration of accumulator battery, method for measuring internal impedance of secondary battery, equipment for measuring internal impedance of secondary battery, equipment for determining deterioration of secondary battery, and power supply system
WO2005015252A1 (en) * 2003-06-27 2005-02-17 The Furukawa Electric Co., Ltd. Method for judging deterioration of accumulator, method for measuring secondary cell internal impedance, device for measuring secondary cell internal impedance, device for judging deterioration of secondary cell, and power source system
US7362074B2 (en) 2003-06-27 2008-04-22 The Furukawa Electric Co., Ltd. Method for determining deterioration of accumulator battery, method for measuring internal impedance of secondary battery, equipment for measuring internal impedance of secondary battery, equipment for determining deterioration of secondary battery, and power supply system
EP2626716A3 (en) * 2003-06-27 2013-11-27 The Furukawa Electric Co., Ltd. Device and method for judging deterioration of accumulator / secondary cell
US7459884B2 (en) 2004-04-27 2008-12-02 Sony Corporation Remaining capacity calculation method for secondary battery, and battery pack
US9091739B2 (en) 2005-09-16 2015-07-28 The Furukawa Electric Co., Ltd Method and apparatus for determining deterioration of secondary battery, and power supply system therewith
US7626394B2 (en) 2005-09-16 2009-12-01 The Furukawa Electric Co., Ltd. Method and apparatus for determining deterioration of secondary battery, and power supply system therewith
US8129996B2 (en) 2005-09-16 2012-03-06 The Furukawa Electric Co., Ltd. Method and apparatus for determining deterioration of secondary battery, and power supply system therewith
WO2007032382A1 (en) * 2005-09-16 2007-03-22 The Furukawa Electric Co., Ltd Secondary cell degradation judgment method, secondary cell degradation judgment device, and power supply system
JP2011515652A (en) * 2008-01-11 2011-05-19 エスケー エナジー カンパニー リミテッド Method and apparatus for measuring SOC of battery in battery management system
JP2009202668A (en) * 2008-02-26 2009-09-10 Furukawa Electric Co Ltd:The Battery state detection sensor device
CN103257323A (en) * 2013-06-03 2013-08-21 清华大学 Method for estimating lithium ion battery remaining available capacity
JP2018186101A (en) * 2015-07-02 2018-11-22 日立オートモティブシステムズ株式会社 Battery control device and battery pack
US10680453B2 (en) 2015-07-02 2020-06-09 Hitachi Automotive Systems, Ltd. Battery control device
US11247581B2 (en) 2015-07-02 2022-02-15 Vehicle Energy Japan, Inc. Battery control device
US11262409B2 (en) 2018-10-12 2022-03-01 Lg Energy Solution, Ltd. Battery management apparatus and method

Similar Documents

Publication Publication Date Title
JP4075762B2 (en) Apparatus and method for calculating remaining capacity in secondary battery
JP5109304B2 (en) Battery remaining capacity detection device
US9533597B2 (en) Parameter identification offloading using cloud computing resources
JP5051661B2 (en) Method and apparatus for estimating SOC value of secondary battery, and degradation determination method and apparatus
JP4923929B2 (en) Battery internal resistance estimation device
JP3006298B2 (en) Battery remaining capacity meter
JP2008064496A (en) Battery control apparatus, electric vehicle, and program for making computer execute processing for estimation for charged condition of secondary battery
JP5704108B2 (en) Battery system and estimation method
WO2008053410A2 (en) Apparatus and method for determination of the state-of-charge of a battery when the battery is not in equilibrium
WO2007074614A1 (en) Charged state estimation device and charged state estimation method of secondary battery
JP6440377B2 (en) Secondary battery state detection device and secondary battery state detection method
JP2002234408A (en) Method and device for estimating open-circuit voltage of vehicle battery
CN111196180B (en) Vehicle control unit, vehicle and remaining driving range display method and device thereof
KR20220034543A (en) Method for estimating state of charge of battery
JP6421986B2 (en) Secondary battery charging rate estimation method, charging rate estimation device, and soundness estimation device
EP3756937B1 (en) Apparatus and method for estimating soc
JP6729312B2 (en) Battery evaluation method and battery evaluation apparatus
JP2006058012A (en) Dischargeable capacity detection method
JPH1138107A (en) Method for estimating residual capacity of secondary battery
JPWO2020158182A1 (en) Battery control device
EP3726639A1 (en) Rechargeable battery temperature estimation device and rechargeable battery temperature estimation method
JP5904916B2 (en) Battery soundness calculation device and soundness calculation method
JP2009126278A (en) Internal state detection device of on-board secondary battery
JP3976645B2 (en) Battery charge state measuring method and apparatus
CN115279623A (en) Battery current limit estimation based on RC model