JP2005123417A - Liquid phase epitaxial growing method - Google Patents

Liquid phase epitaxial growing method Download PDF

Info

Publication number
JP2005123417A
JP2005123417A JP2003357247A JP2003357247A JP2005123417A JP 2005123417 A JP2005123417 A JP 2005123417A JP 2003357247 A JP2003357247 A JP 2003357247A JP 2003357247 A JP2003357247 A JP 2003357247A JP 2005123417 A JP2005123417 A JP 2005123417A
Authority
JP
Japan
Prior art keywords
solution
substrate
holder
growth
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003357247A
Other languages
Japanese (ja)
Inventor
Teppei Sugawara
鉄平 菅原
Yukiya Shibata
幸弥 柴田
Norio Shimada
紀雄 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003357247A priority Critical patent/JP2005123417A/en
Publication of JP2005123417A publication Critical patent/JP2005123417A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To furthermore uniformize a temperature at a center and a temperature at an outer circumferential part of a growing substrate in a graphite tool during liquid phase epitaxial growing. <P>SOLUTION: An epitaxial layer on a substrate 2 is grown by including a growing solution 6 to a plurality of solution pools 1 of the solution holder 10 of a slide boat, placing the substrate 2 to the substrate mount 7 of a substrate holder 3, cooling the substrate holder 3 and the solution holder 10, and making the growing solution 6 in contact with the substrate 2. A solution thermal buffer 5 made of a solution with a thermal conductivity equivalent to that of the growing solution is provided to both sides of each solution pool 1 of the solution holder 10 in its sliding direction to uniformize the thermal environment around the substrate 1, thereby uniformizing the thickness of the epitaxial layer grown on the substrate 1 within the substrate face. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、スライドボート法による液相エピタキシャル成長方法、特にエピタキシャル成長させる膜厚の均一化を図る技術に関するものである。   The present invention relates to a liquid phase epitaxial growth method using a slide boat method, and more particularly to a technique for achieving a uniform film thickness for epitaxial growth.

図2にGaAs薄膜を液相エピタキシャル成長させる従来のスライドボートの概略図を示す。グラファイトで作られたスライドボートは、成長用溶液6を入れる溶液溜1をスライド方向に複数個形成した溶液ホルダ10と、GaAs基板2を載置する基板載置部7を表面の一部を掘り込んで形成した基板ホルダ3とから構成される。これら溶液ホルダ10と基板ホルダ3とは、操作棒4を操作することにより、相互に水平方向に移動させることができるようになっている。   FIG. 2 is a schematic view of a conventional slide boat for growing a GaAs thin film by liquid phase epitaxial growth. A slide boat made of graphite digs a part of the surface of a solution holder 10 in which a plurality of solution reservoirs 1 for containing a growth solution 6 are formed in a sliding direction and a substrate mounting portion 7 on which a GaAs substrate 2 is mounted. And a substrate holder 3 formed by being embedded. The solution holder 10 and the substrate holder 3 can be moved in the horizontal direction by operating the operation rod 4.

このスライドボートを炉に入れて昇温し、溶液溜1に入ったGa融液をGaAsで飽和させて成長用溶液を作った後、冷却して成長用溶液6を過冷却状態にする。その後、徐冷しながら溶液溜1をGaAs基板2上に移動させ、成長用溶液6をGaAs基板2と接触させる。これによりGaAs基板2上にGaAsエピタキシャル層が成長する。所定の厚さの薄膜が成長した後、再び溶液溜1をGaAs基板2の上から移動させ、成長を停止させる。   The slide boat is placed in a furnace and heated to saturate the Ga melt contained in the solution reservoir 1 with GaAs to form a growth solution, and then cooled to bring the growth solution 6 into a supercooled state. Thereafter, the solution reservoir 1 is moved onto the GaAs substrate 2 while gradually cooling, and the growth solution 6 is brought into contact with the GaAs substrate 2. As a result, a GaAs epitaxial layer grows on the GaAs substrate 2. After the thin film having a predetermined thickness is grown, the solution reservoir 1 is moved again from the GaAs substrate 2 to stop the growth.

上記方法で成長したエピタキシャルウェハのエピタキシャル層の膜厚は、炉およびスライドボートの形状にもよるが、一般的に、周辺が厚く、中央が薄くなりやすい。これは、冷却そのものが、スライドボートの外側から輻射と伝熱により行われるためであり、冷却過程で基板載置部面内の温度が不均一になるためである。   The film thickness of the epitaxial layer of the epitaxial wafer grown by the above method generally depends on the shape of the furnace and the slide boat, but generally the periphery is thick and the center tends to be thin. This is because the cooling itself is performed by radiation and heat transfer from the outside of the slide boat, and the temperature in the surface of the substrate mounting portion becomes non-uniform during the cooling process.

そこで、従来、基板を載置する基板載置部にパイロリティック・グラファイト板を用いて、ここの熱伝導度を基板ホルダの熱伝導度よりも高くすることにより、基板面内の温度を均一に冷却させて、基板上に形成されるエピタキシャル層の膜厚が周辺と中央で差が生じないようにすることが知られている(例えば、特許文献1参照)。
特開平9−221388号公報
Therefore, conventionally, a pyrolytic graphite plate is used for the substrate mounting portion on which the substrate is mounted, and the thermal conductivity here is made higher than the thermal conductivity of the substrate holder, so that the temperature in the substrate surface is made uniform. It is known that the thickness of the epitaxial layer formed on the substrate is cooled so that there is no difference between the periphery and the center (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 9-221388

しかしながら、上記の液相エピタキシャル成長法に用いられるグラファイト治具の構造では、複数個の溶液溜1が溶液ホルダ10のスライド方向に離間して配設され、その各溶液溜1に、これと同じ大きさで設けられた基板載置部7がスライドして対向するように構成されている。従って、各原料溶液溜1に基板載置部7が対向したとき、基板2の周囲の熱環境が均一でない。すなわち、基板中心部では溶液溜1と対接して同温度となるが、基板外周部は、溶液溜1の外周部(溶液ホルダ10)と接近し、その温度の影響を受ける。   However, in the structure of the graphite jig used in the above liquid phase epitaxial growth method, a plurality of solution reservoirs 1 are arranged apart from each other in the sliding direction of the solution holder 10, and each solution reservoir 1 has the same size as this. The substrate mounting portion 7 provided in this way is configured to slide and oppose. Therefore, when the substrate platform 7 faces each raw material solution reservoir 1, the thermal environment around the substrate 2 is not uniform. That is, the temperature at the center of the substrate is the same as that of the solution reservoir 1, but the outer periphery of the substrate approaches the outer periphery of the solution reservoir 1 (solution holder 10) and is affected by the temperature.

このため、成長基板中心部と成長基板外周部での温度が不均一となり、成長基板中心部と成長基板外周部での温度の均一性が悪い。その結果、成長したLED用エピタキシャルウェハの面内での厚さのバラツキが大きい。つまり厚さの均一性が悪く、生産歩留りが悪い。   For this reason, the temperature at the growth substrate center and the growth substrate outer periphery becomes non-uniform, and the temperature uniformity at the growth substrate center and the growth substrate outer periphery is poor. As a result, the thickness variation in the plane of the grown LED epitaxial wafer is large. That is, the thickness uniformity is poor and the production yield is poor.

そこで、本発明の目的は、上記課題を解決し、液相エピタキシャル成長中のグラファイト治具内の、成長基板の中心部と外周部での温度の更なる均一化を図ることにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-described problems and to further uniform the temperature at the center portion and the outer peripheral portion of the growth substrate in the graphite jig during liquid phase epitaxial growth.

上記目的を達成するため、本発明は、次のように構成したものである。   In order to achieve the above object, the present invention is configured as follows.

請求項1の発明に係る液相エピタキシャル成長方法は、基板ホルダと溶液ホルダとを備えたスライドボートの上記溶液ホルダの溶液溜に成長用溶液を収容し、上記基板ホルダの基板載置部に基板を載置し、成長用溶液を基板と接触させることにより基板上にエピタキシャル層を成長させるに際し、上記溶液ホルダの溶液溜のスライド方向両側に、成長用溶液と同等の熱伝導度である溶液で形成された溶液熱バッファ部を設けて基板周辺の熱環境を均一にすることにより、上記基板上に成長されるエピタキシャル層の基板面内での厚さを均一化させることを特徴とする。   In the liquid phase epitaxial growth method according to the first aspect of the present invention, a growth solution is stored in a solution reservoir of the solution holder of a slide boat provided with a substrate holder and a solution holder, and the substrate is placed on the substrate mounting portion of the substrate holder. When the epitaxial layer is grown on the substrate by placing it and bringing the growth solution into contact with the substrate, it is formed with a solution having a thermal conductivity equivalent to that of the growth solution on both sides of the solution reservoir in the slide direction of the solution holder. The thickness of the epitaxial layer grown on the substrate in the substrate surface is made uniform by providing the solution heat buffer portion and making the thermal environment around the substrate uniform.

請求項2の発明に係る液相エピタキシャル成長方法は、基板ホルダと溶液ホルダとを備えたスライドボートの上記溶液ホルダの複数の溶液溜に成長用溶液を収容し、上記基板ホルダの基板載置部に基板を載置し、成長用溶液を基板と接触させることにより基板上にエピタキシャル層を成長させるに際し、上記溶液ホルダの各溶液溜のスライド方向両側に、成長用溶液と同等の熱伝導度である溶液で形成された溶液熱バッファ部を設けて基板周辺の熱環境を均一にすることにより、上記基板上に成長されるエピタキシャル層の基板面内での厚さを均一化させることを特徴とする。   In the liquid phase epitaxial growth method according to the second aspect of the present invention, a growth solution is accommodated in a plurality of solution reservoirs of the solution holder of a slide boat provided with a substrate holder and a solution holder, and the substrate mounting portion of the substrate holder is provided with the growth solution. When the epitaxial layer is grown on the substrate by placing the substrate and bringing the growth solution into contact with the substrate, the thermal conductivity is equivalent to that of the growth solution on both sides in the sliding direction of each solution reservoir of the solution holder. A thickness of the epitaxial layer grown on the substrate is made uniform in the substrate surface by providing a solution thermal buffer formed of a solution to make the thermal environment around the substrate uniform. .

請求項3の発明は、請求項1又は2記載の液相エピタキシャル成長方法において、上記基板ホルダと溶液ホルダにグラファイト治具を用い、その溶液ホルダの溶液溜の両側にGa溶液で形成されたGa溶液熱バッファ部を設けたことを特徴とする。   The invention according to claim 3 is the liquid phase epitaxial growth method according to claim 1 or 2, wherein a graphite jig is used for the substrate holder and the solution holder, and a Ga solution is formed by Ga solution on both sides of the solution reservoir of the solution holder. A thermal buffer unit is provided.

本発明によれば、次のような優れた効果が得られる。   According to the present invention, the following excellent effects can be obtained.

請求項1の発明によれば、溶液ホルダの溶液溜のスライド方向両側に、成長用溶液と同等の熱伝導度である溶液(半導体溶液等)で形成された溶液熱バッファ部を設けているので、エピタキシャル成長時の基板周辺の熱環境が均一になり、基板上に形成されるエピタキシャル層の膜厚が周辺と中央で差が生じないようになる。   According to the first aspect of the present invention, the solution heat buffer section formed of a solution (semiconductor solution or the like) having the same thermal conductivity as the growth solution is provided on both sides of the solution holder in the solution reservoir in the sliding direction. The thermal environment around the substrate during epitaxial growth becomes uniform, and the film thickness of the epitaxial layer formed on the substrate does not differ between the periphery and the center.

請求項2の発明によれば、溶液ホルダの各溶液溜のスライド方向両側又は溶液溜と溶液溜の間に、成長用溶液と同等の熱伝導度である溶液(半導体溶液等)で形成された溶液熱バッファ部を設けているので、エピタキシャル成長時の基板周辺の熱環境が均一になり、基板上に形成されるエピタキシャル層の膜厚が周辺と中央で差が生じないようになる。   According to the second aspect of the present invention, the solution holder is formed of a solution (semiconductor solution or the like) having a thermal conductivity equivalent to that of the growth solution, on both sides in the sliding direction of each solution reservoir or between the solution reservoir and the solution reservoir. Since the solution heat buffer section is provided, the thermal environment around the substrate during epitaxial growth becomes uniform, and the film thickness of the epitaxial layer formed on the substrate does not differ between the periphery and the center.

請求項3の発明によれば、基板ホルダと溶液ホルダにグラファイト治具を用い、その溶液ホルダの溶液溜の両側にGa溶液で形成されたGa溶液熱バッファ部を設けているので、GaAs基板を取り扱った場合に、成長用溶液と同等の熱伝導度であるGa溶液で形成されたGa溶液熱バッファ部が溶液溜の両側に存在することになり、基板の周囲熱環境を容易に均一にすることができることから、GaAs基板上に面内膜厚の均一なGaAlAsエピタキシャル層を成長させることができる。   According to the invention of claim 3, a graphite jig is used for the substrate holder and the solution holder, and the Ga solution thermal buffer portion formed of Ga solution is provided on both sides of the solution reservoir of the solution holder. When handled, a Ga solution thermal buffer formed of a Ga solution having a thermal conductivity equivalent to that of the growth solution is present on both sides of the solution reservoir, so that the ambient thermal environment of the substrate is easily made uniform. Therefore, a GaAlAs epitaxial layer having a uniform in-plane film thickness can be grown on the GaAs substrate.

<発明の要点>
本発明では、液相エピタキシャル成長において図1(a)(b)に示すように、グラファイト治具の溶液溜の左右に、成長用溶液と同等の熱伝導度である半導体溶液等の溶液で形成された溶液熱バッファ部、例えばGa溶液で形成されたGa熱バッファ部を設け、溶液溜とその周辺の熱容量の均一性を図る。これにより、成長基板中心部と成長基板外周部での温度の均一性を図り、LED用エピタキシャルウェハの面内での厚さの均一なLED用エピタキシャル層、例えばLED用の活性層とクラッド層を順次成長させる。
<Key points of the invention>
In the present invention, in the liquid phase epitaxial growth, as shown in FIGS. 1A and 1B, the left and right sides of the solution reservoir of the graphite jig are formed of a solution such as a semiconductor solution having a thermal conductivity equivalent to that of the growth solution. A solution heat buffer portion, for example, a Ga heat buffer portion formed of a Ga solution, is provided to achieve uniformity in the heat capacity of the solution reservoir and its surroundings. As a result, the uniformity of the temperature at the center of the growth substrate and the outer periphery of the growth substrate is achieved, and the LED epitaxial layer having a uniform thickness in the plane of the LED epitaxial wafer, for example, the active layer and the cladding layer for the LED are formed. Grow sequentially.

本発明に従い、Ga溶液で形成されたGa熱バッファ部を設けたスライドボートを用いて液相エピタキシャル成長を行うことにより、LED用エピタキシャルウェハ面内膜厚の差(Max−Min)を従来グラファイト治具を用いた時と比較して、約1/15とすることができる。   In accordance with the present invention, by performing liquid phase epitaxial growth using a slide boat provided with a Ga thermal buffer formed of a Ga solution, the difference in film thickness (Max-Min) in the epitaxial wafer for LEDs can be reduced with a conventional graphite jig. As compared with the case of using, it can be about 1/15.

以下に本発明の実施の形態を図1を用いて説明する。グラファイトで作られた横型スライドボートは、成長用溶液6を入れる溶液溜1をスライド方向に複数個形成した溶液ホルダ10と、GaAs基板2を載置する基板載置部7を形成した基板ホルダ(グラファイトスライダ)3とから構成され、これら溶液ホルダ10と基板ホルダ3とは、相互に水平方向に移動させることができるようになっていることは、従来の図2のスライドボートと略同様である。   Hereinafter, an embodiment of the present invention will be described with reference to FIG. A horizontal slide boat made of graphite includes a solution holder 10 in which a plurality of solution reservoirs 1 for storing a growth solution 6 are formed in a sliding direction, and a substrate holder (in which a GaAs substrate 2 is placed) and a substrate holder 7 on which a GaAs substrate 2 is placed ( It is substantially the same as the conventional slide boat of FIG. 2 that the solution holder 10 and the substrate holder 3 can be moved in the horizontal direction. .

しかし、図2の場合と異なり、本実施の形態では、上記スライド方向に複数個の溶液溜1が形成された溶液ホルダ10において、各溶液溜1のスライド方向両側に、成長用溶液と同等の熱伝導度である半導体溶液で形成されたGa溶液熱バッファ部5が設けてあり、これにより基板周辺の熱環境を均一にして、上記基板上に成長されるエピタキシャル層の基板面内での厚さを均一化させる構成となっている。この実施形態の場合、Ga溶液熱バッファ部5は、溶液溜1と溶液溜1の間隔を埋めるような大きさで設けられている。   However, unlike the case of FIG. 2, in the present embodiment, in the solution holder 10 in which a plurality of solution reservoirs 1 are formed in the sliding direction, the same solution as the growth solution is provided on both sides of each solution reservoir 1 in the sliding direction. A Ga solution thermal buffer section 5 formed of a semiconductor solution having thermal conductivity is provided, thereby making the thermal environment around the substrate uniform, and the thickness of the epitaxial layer grown on the substrate in the substrate plane. The structure is made uniform. In the case of this embodiment, the Ga solution heat buffer unit 5 is provided in such a size as to fill the gap between the solution reservoir 1 and the solution reservoir 1.

液相エピタキシャル成長方法は、スライドボートの上記溶液ホルダ10の複数の溶液溜1に成長用溶液6を収容し、上記基板ホルダ3の基板載置部7にGaAs基板2を載置し、基板ホルダ3と溶液ホルダ10とを冷却して、成長用溶液6を基板2と接触させることにより、GaAs基板上にGaAlAsエピタキシャル層を成長させる。その際、成長用溶液6に接触する基板2を中心に見て、当該溶液溜1の両側にGa溶液熱バッファ部5が設けられ、基板の周囲熱環境が均一化されているので、基板2には膜厚の均一なエピタキシャル層が成長される。   In the liquid phase epitaxial growth method, the growth solution 6 is accommodated in the plurality of solution reservoirs 1 of the solution holder 10 of the slide boat, the GaAs substrate 2 is mounted on the substrate mounting portion 7 of the substrate holder 3, and the substrate holder 3. The solution holder 10 is cooled, and the growth solution 6 is brought into contact with the substrate 2 to grow a GaAlAs epitaxial layer on the GaAs substrate. At this time, the Ga solution heat buffer section 5 is provided on both sides of the solution reservoir 1 with the substrate 2 in contact with the growth solution 6 as the center, and the ambient thermal environment of the substrate is made uniform. An epitaxial layer having a uniform film thickness is grown.

成長治具として、図1に示す、上記溶液溜1の左右にGa溶液で形成されたGa溶液熱バッファ部を設けたグラファイト治具(スライドボート)を用いた。   As a growth jig, a graphite jig (slide boat) provided with a Ga solution heat buffer portion formed of a Ga solution on the left and right sides of the solution reservoir 1 shown in FIG. 1 was used.

P型GaAs基板2とエピタキシャル層の原料であるGa、GaAs、Al、Zn、Teを成長冶具にセットし、液相エピタキシャル成長装置内の所定の位置に設置した。水素気雰囲気で上記成長装置を900℃に加熱して、3時間保持後700℃まで1℃/minの割合で降温させた。降温中に上記基板2を順次成長用溶液6に接触させ、LED用のP型GaAlAsクラッド層、P型GaAlAs活性層、N型GaAlAsクラッド層を順次液相エピタキシャル成長させた。そのときのP型GaAs基板2上に成長したLED用エピタキシャルウェハの面内の膜厚を測定した。   Ga, GaAs, Al, Zn, and Te, which are raw materials for the P-type GaAs substrate 2 and the epitaxial layer, were set on a growth jig and placed at predetermined positions in the liquid phase epitaxial growth apparatus. The growth apparatus was heated to 900 ° C. in a hydrogen atmosphere, held for 3 hours, and then cooled to 700 ° C. at a rate of 1 ° C./min. The substrate 2 was sequentially brought into contact with the growth solution 6 while the temperature was lowered, and the P-type GaAlAs cladding layer, the P-type GaAlAs active layer, and the N-type GaAlAs cladding layer for LED were sequentially grown by liquid phase epitaxial growth. The in-plane film thickness of the LED epitaxial wafer grown on the P-type GaAs substrate 2 was measured.

また、比較例として図2に示す、通常使用されている溶液溜の左右にGa溶液で形成されたGa溶液熱バッファ部を設けていないグラファイト治具(スライドボート)を用いて、上記と同様の条件を用いて、LED用エピタキシャルウェハを作製し、LED用エピタキシャルウェハの面内の膜厚を測定した。   In addition, using a graphite jig (slide boat) that is not provided with a Ga solution thermal buffer formed of Ga solution on the left and right of a commonly used solution reservoir shown in FIG. The epitaxial wafer for LED was produced using conditions, and the film thickness in the surface of the epitaxial wafer for LED was measured.

表1に、上記測定結果を示す。なおLED用エピタキシャルウェハ面内の図3に示す5箇所(四隅と中央)で膜厚の測定を行った。すなわち、一辺が40mmの基板において、各辺から5mm内側の四隅I、II、IV、Vと、各辺から20mm内側の中央部III、という各ポジションの膜厚を測定した。

Figure 2005123417
表1のLED用エピタキシャルウェハ面内膜厚のMax−Minの差から明らかな通り、成長させたLED用エピタキシャルウェハの面内膜厚分布の差(Max−Min)は、比較例では3.0であるのに対し、本実施例の場合は0.2と小さくなった。すなわち、本実施例のグラファイト治具の溶液溜の左右にGa溶液で形成されたGa溶液熱バッファ部5を設けたグラファイト治具(図1)を用いて成長を行った場合の方が、従来グラファイト治具(図2)を用いて成長を行った場合(比較例)と比較して、ウェハの面内膜厚分布の差(Max−Min)を1/15と少なくすることができた。 Table 1 shows the measurement results. The film thickness was measured at five locations (four corners and the center) shown in FIG. 3 in the plane of the LED epitaxial wafer. That is, on a substrate having a side of 40 mm, the film thickness was measured at each of the four corners I, II, IV, V 5 mm inside from each side and the central part III 20 mm inside from each side.
Figure 2005123417
As is clear from the difference in Max-Min of the in-plane film thickness of the LED epitaxial wafer in Table 1, the difference in the in-plane film thickness distribution (Max-Min) of the grown epitaxial wafer for LED is 3.0 in the comparative example. On the other hand, in the case of the present Example, it became small with 0.2. That is, the case where the growth was performed using a graphite jig (FIG. 1) provided with a Ga solution thermal buffer section 5 formed of a Ga solution on the left and right of the solution reservoir of the graphite jig of the present embodiment is conventional. The difference (Max-Min) in the in-plane film thickness distribution of the wafer could be reduced to 1/15 compared to the case where growth was performed using a graphite jig (FIG. 2) (Comparative Example).

本発明の液相エピタキシャル成長に用いたスライドボートの構造を示したもので、(a)は断面図、(b)はB−B’断面図である。The structure of the slide boat used for the liquid phase epitaxial growth of this invention is shown, (a) is sectional drawing, (b) is B-B 'sectional drawing. 従来の液相エピタキシャル成長に用いたスライドボートの構造を示したもので、(a)は断面図、(b)はA−A’断面図である。The structure of the slide boat used for the conventional liquid phase epitaxial growth is shown, (a) is sectional drawing, (b) is A-A 'sectional drawing. 本発明の成長方法で試作したLED用エピタキシャルウェハを表面から見た図であり、LED用エピタキシャルウェハの膜厚を測定したポジションを示した図である。It is the figure which looked at the epitaxial wafer for LED manufactured with the growth method of this invention from the surface, and is the figure which showed the position which measured the film thickness of the epitaxial wafer for LED.

符号の説明Explanation of symbols

1 溶液溜
2 基板
3 基板ホルダ
4 操作棒
5 Ga溶液熱バッファ部
6 成長用溶液
7 基板載置部
10 溶液ホルダ
DESCRIPTION OF SYMBOLS 1 Solution reservoir 2 Substrate 3 Substrate holder 4 Operation rod 5 Ga solution thermal buffer part 6 Growth solution 7 Substrate mounting part 10 Solution holder

Claims (3)

基板ホルダと溶液ホルダとを備えたスライドボートの上記溶液ホルダの溶液溜に成長用溶液を収容し、上記基板ホルダの基板載置部に基板を載置し、成長用溶液を基板と接触させることにより基板上にエピタキシャル層を成長させるに際し、
上記溶液ホルダの溶液溜のスライド方向両側に、成長用溶液と同等の熱伝導度である溶液で形成された溶液熱バッファ部を設けて基板周辺の熱環境を均一にすることにより、上記基板上に成長されるエピタキシャル層の基板面内での厚さを均一化させることを特徴とする液相エピタキシャル成長方法。
A growth solution is accommodated in a solution reservoir of the solution holder of a slide boat having a substrate holder and a solution holder, the substrate is placed on the substrate placement portion of the substrate holder, and the growth solution is brought into contact with the substrate. When growing an epitaxial layer on the substrate by
By providing a solution heat buffer part formed of a solution having a thermal conductivity equivalent to that of the growth solution on both sides of the solution holder in the slide direction of the solution holder, and making the thermal environment around the substrate uniform, A liquid phase epitaxial growth method characterized in that the thickness of the epitaxial layer grown on the substrate is made uniform in the substrate plane.
基板ホルダと溶液ホルダとを備えたスライドボートの上記溶液ホルダの複数の溶液溜に成長用溶液を収容し、上記基板ホルダの基板載置部に基板を載置し、成長用溶液を基板と接触させることにより基板上にエピタキシャル層を成長させるに際し、
上記溶液ホルダの各溶液溜のスライド方向両側に、成長用溶液と同等の熱伝導度である溶液で形成された溶液熱バッファ部を設けて基板周辺の熱環境を均一にすることにより、上記基板上に成長されるエピタキシャル層の基板面内での厚さを均一化させることを特徴とする液相エピタキシャル成長方法。
A growth solution is stored in a plurality of solution reservoirs of the solution holder of a slide boat including a substrate holder and a solution holder, the substrate is placed on the substrate placement portion of the substrate holder, and the growth solution is brought into contact with the substrate. When growing an epitaxial layer on the substrate by
By providing a solution heat buffer section formed of a solution having a thermal conductivity equivalent to that of the growth solution on both sides in the slide direction of each solution reservoir of the solution holder to make the thermal environment around the substrate uniform, A liquid phase epitaxial growth method characterized in that the thickness of an epitaxial layer grown on the substrate is made uniform in the substrate plane.
請求項1又は2記載の液相エピタキシャル成長方法において、
上記基板ホルダと溶液ホルダにグラファイト治具を用い、その溶液ホルダの溶液溜の両側にGa溶液で形成されたGa溶液熱バッファ部を設けたことを特徴とする液相エピタキシャル成長方法。
In the liquid phase epitaxial growth method according to claim 1 or 2,
A liquid phase epitaxial growth method, wherein a graphite jig is used for the substrate holder and the solution holder, and a Ga solution thermal buffer portion formed of a Ga solution is provided on both sides of a solution reservoir of the solution holder.
JP2003357247A 2003-10-17 2003-10-17 Liquid phase epitaxial growing method Pending JP2005123417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003357247A JP2005123417A (en) 2003-10-17 2003-10-17 Liquid phase epitaxial growing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003357247A JP2005123417A (en) 2003-10-17 2003-10-17 Liquid phase epitaxial growing method

Publications (1)

Publication Number Publication Date
JP2005123417A true JP2005123417A (en) 2005-05-12

Family

ID=34614186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003357247A Pending JP2005123417A (en) 2003-10-17 2003-10-17 Liquid phase epitaxial growing method

Country Status (1)

Country Link
JP (1) JP2005123417A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114473746A (en) * 2020-10-26 2022-05-13 昆明物理研究所 Automatic device for grinding graphite boat for mercury cadmium telluride liquid phase epitaxy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114473746A (en) * 2020-10-26 2022-05-13 昆明物理研究所 Automatic device for grinding graphite boat for mercury cadmium telluride liquid phase epitaxy

Similar Documents

Publication Publication Date Title
JP5304713B2 (en) Silicon carbide single crystal substrate, silicon carbide epitaxial wafer, and thin film epitaxial wafer
JP5729182B2 (en) Method for producing n-type group III nitride single crystal, n-type group III nitride single crystal and crystal substrate
JP7264343B2 (en) Group III nitride crystal production method and seed substrate
JP7182262B2 (en) RAMO4 SUBSTRATE AND MANUFACTURING METHOD THEREOF, AND GROUP III NITRIDE SEMICONDUCTOR
JP2005123417A (en) Liquid phase epitaxial growing method
JP5948988B2 (en) Method for producing silicon carbide single crystal
US11319646B2 (en) Gallium arsenide single crystal substrate
JP2007314383A (en) Crucible and thin plate manufacturing apparatus
US20140190413A1 (en) Apparatus for fabricating ingot
JP2008300603A (en) Semiconductor production apparatus
JP6168091B2 (en) Group III nitride crystal and group III nitride crystal substrate
JPH0930891A (en) Semiconductor liquid crystal epitaxial device
JP2006315908A (en) Apparatus for liquid phase growth
KR20130078984A (en) Method for fabricating gallium nitride substrate
JP2538009B2 (en) Liquid phase epitaxial growth method
JP2008177286A (en) Method for manufacturing epitaxial wafer, epitaxial wafer and device
JP3515858B2 (en) Boat for liquid phase epitaxial growth
JP2003246699A (en) SEMICONDUCTOR WAFER OF SiC SINGLE CRYSTAL AND METHOD OF PRODUCING THE SAME
JP4518782B2 (en) Method for producing diboride single crystal
KR101382968B1 (en) apparatus for fabricating sapphire ingot and manufacturing method thereof
JP2006190786A (en) Liquid phase epitaxial growth apparatus
JP2006173338A (en) Manufacturing method of epitaxial wafer for light emitting diode
JPS5941959B2 (en) Liquid phase epitaxial growth equipment
JP2010165937A (en) Method of manufacturing epitaxial wafer, and graphite tool
JP2006005074A (en) Method for liquid phase epitaxy