JP2008300603A - Semiconductor production apparatus - Google Patents

Semiconductor production apparatus Download PDF

Info

Publication number
JP2008300603A
JP2008300603A JP2007144702A JP2007144702A JP2008300603A JP 2008300603 A JP2008300603 A JP 2008300603A JP 2007144702 A JP2007144702 A JP 2007144702A JP 2007144702 A JP2007144702 A JP 2007144702A JP 2008300603 A JP2008300603 A JP 2008300603A
Authority
JP
Japan
Prior art keywords
solution
solution tank
gan
based semiconductor
semiconductor wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007144702A
Other languages
Japanese (ja)
Inventor
Yukio Shakuda
幸男 尺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2007144702A priority Critical patent/JP2008300603A/en
Publication of JP2008300603A publication Critical patent/JP2008300603A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor production apparatus in which doping work can be completed in a short time by controlling the amount of diffusion correctly when doping into a GaN base semiconductor is performed by diffusing impurities in a solution. <P>SOLUTION: The semiconductor production apparatus is provided with a slider 3 as a wafer carrying section, three solution tanks 11, 12, 13, and heaters 6, 7, 8 provided above and below each solution tank. The slider 3 is formed so that a GaN base semiconductor wafer 4 can be mounted thereon. The heaters 6, 7, 8 can be controlled independently. The solution tank 11 is used for heating the GaN base semiconductor wafer 4, the solution tank 12 is used for impurity diffusion, and the solution tank 13 is used for cooling the GaN base semiconductor wafer 4. The solution tank 12 and the solution tanks 11, 13 are arranged to have different temperatures. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、不純物を溶け込ませた溶液を用い、溶液中の不純物を拡散させることによりGaN系半導体層に不純物をドーピングする半導体製造装置に関する。   The present invention relates to a semiconductor manufacturing apparatus that uses a solution in which impurities are dissolved and diffuses impurities in the solution to dope impurities into a GaN-based semiconductor layer.

GaP、GaAs、InP等の III−V族化合物半導体エピタキシャルウエハは通常液相エピタキシャル成長法(LPE法)により作製されている。一般的に、液相エピタキシャル成長法ではスライドボート法が用いられる。このスライドボート法で用いられるスライドボートは、非特許文献1に示されるように、グラファイトで作製されており、成長溶液を入れる溶液溜を摺動方向に2以上有する溶液ホルダと、表面の一部を掘り込んで基板等を載置する基板載置部を形成したスライダーとから構成されている。これら溶液ホルダとスライダーとは、相互に水平方向に移動させることができるようになっている。   III-V group compound semiconductor epitaxial wafers such as GaP, GaAs, InP and the like are usually produced by a liquid phase epitaxial growth method (LPE method). Generally, a slide boat method is used in the liquid phase epitaxial growth method. As shown in Non-Patent Document 1, the slide boat used in this slide boat method is made of graphite, and has a solution holder having two or more solution reservoirs in which the growth solution is placed in the sliding direction, and a part of the surface. And a slider formed with a substrate placement portion for placing a substrate or the like. The solution holder and the slider can be moved in the horizontal direction.

例えば、GaAs薄膜を作製する場合で説明すると、スライドボートを炉に入れて昇温し、溶液溜に入ったGa融液をGaAsで飽和させて成長溶液を作製した後、冷却して成長溶液を過冷却状態にする。その後、徐冷しながらGaAs基板上に成長溶液の入った溶液溜が真上に来るようにスライダーを移動させ、成長溶液をGaAs基板と接触させる。これによりGaAs基板上にGaAsエピタキシャル層が成長する。所定の厚さの薄膜が成長した後、スライダーを移動させることにより成長溶液の入った溶液溜をGaAs基板上から移動させ、成長を停止させる。   For example, in the case of producing a GaAs thin film, a slide boat is placed in a furnace and heated to saturate the Ga melt contained in the solution reservoir with GaAs to produce a growth solution, and then cooled to remove the growth solution. Make it supercooled. Thereafter, the slider is moved so that the solution reservoir containing the growth solution is directly above the GaAs substrate while gradually cooling, and the growth solution is brought into contact with the GaAs substrate. As a result, a GaAs epitaxial layer grows on the GaAs substrate. After the thin film having a predetermined thickness is grown, the solution reservoir containing the growth solution is moved from the GaAs substrate by moving the slider to stop the growth.

複数のエピタキシャル層を成長させる場合には成長用溶液溜に成長用溶液を入れておき、GaAs基板との接触、降温、分離をくり返してエピタキシャル層を積層させる。このように、液相エピタキシャル法は、溶液温度を下げることにより、溶液中に溶けている溶質元素を過飽和状態にし、それを基板上に析出させることにより、結晶成長を行う技術である。
培風館 赤崎勇編著、「III−IV族化合物半導体」28頁〜29頁、1994年5月20日発行
When growing a plurality of epitaxial layers, the growth solution is placed in the growth solution reservoir, and the epitaxial layers are stacked by repeating contact with the GaAs substrate, temperature drop, and separation. As described above, the liquid phase epitaxial method is a technique for crystal growth by lowering the solution temperature to bring the solute element dissolved in the solution into a supersaturated state and depositing it on the substrate.
Baifukan Isao Akasaki, “III-IV compound semiconductors”, pages 28-29, published May 20, 1994

しかし、上記の液相エピタキシャル法では、AlInGaN4元混晶系を作製することはできず、一般的にMOCVD法(有機金属気相成長法)が用いられている。そして、p型やn型の不純物のドーピングに関しても、その原料となるガスを成長室に流して気相成長法により行われる。ところで、AlInGaN4元混晶系の不純物のドーピングに関しては、MOCVD法のような気相成長法によるのではなく、不純物を含んだ溶液中にGaN系半導体を浸漬させ熱拡散させる方法が提案されている。   However, in the above liquid phase epitaxial method, an AlInGaN quaternary mixed crystal system cannot be produced, and the MOCVD method (metal organic vapor phase epitaxy) is generally used. Further, the doping of p-type and n-type impurities is also performed by vapor phase growth with a gas as a raw material flowing into the growth chamber. By the way, regarding the doping of AlInGaN quaternary mixed crystal impurities, a method of thermally diffusing a GaN-based semiconductor by immersing it in a solution containing impurities has been proposed instead of using a vapor phase growth method such as MOCVD. .

例えば、GaN系半導体にp型の不純物をドーピングする場合には、Ga(ガリウム)融液が入った1つの溶液槽にMOCVD法等でエピタキシャル成長させたGaN系半導体ウエハを入れておき、このGa融液中にp型の不純物を溶け込ませて、Ga融液温度を900℃程度にまで上げた後、GaN系半導体ウエハの結晶中にGa融液中のp型不純物を拡散させる。また、n型不純物の拡散についても、n型不純物の原材料が変わるだけで、上記同様の構成で拡散を行う。   For example, when p-type impurities are doped in a GaN-based semiconductor, a GaN-based semiconductor wafer epitaxially grown by MOCVD or the like is placed in one solution tank containing a Ga (gallium) melt, and this Ga-fused semiconductor. After p-type impurities are dissolved in the liquid and the Ga melt temperature is raised to about 900 ° C., the p-type impurities in the Ga melt are diffused into the crystals of the GaN-based semiconductor wafer. In addition, n-type impurities are diffused with the same structure as described above, only by changing the raw material of the n-type impurities.

上記のように溶液中の不純物をウエハに拡散する場合の溶液が収容された溶液槽の温度変化を図11に示す。まず、不純物をドーピングしたいウエハを溶液槽の底に配置し、溶媒となるGa融液と溶質となる不純物の原材料を入れた後、期間Aで示されるように、溶液槽を加熱し、所定時間かけて900℃程度にし、一定期間(図の期間B)温度を保持する。その後、期間Cのように溶液槽の温度を次第に下げていき所定の温度まで下がったところで、ウエハを溶液槽から取り出す。   FIG. 11 shows the temperature change of the solution tank in which the solution is stored when the impurities in the solution are diffused into the wafer as described above. First, a wafer to be doped with impurities is placed at the bottom of the solution tank, and after adding Ga melt as a solvent and raw materials for impurities as a solute, the solution tank is heated as shown in period A for a predetermined time. Over about 900 ° C., and the temperature is maintained for a certain period (period B in the figure). Thereafter, the temperature of the solution tank is gradually lowered as in period C, and when the temperature drops to a predetermined temperature, the wafer is taken out from the solution tank.

図11では、期間Bの間が本来不純物をウエハ中に拡散する期間であるが、期間A(加熱期間)や期間C(冷却期間)の間も、不純物が溶け込んでいる溶液とウエハは接触しているので、これらの期間中も不純物の拡散が起こる。溶液はほとんどGa融液で構成されており、Gaの熱容量が大きいために、熱しにくく、冷めにくい。したがって、拡散反応を起こすための最適な900℃の温度まで、加熱する期間Aと、900℃から冷却する期間Cは長くなってしまう。   In FIG. 11, the period B is originally a period during which impurities are diffused into the wafer. However, the solution in which the impurities are dissolved is also in contact with the wafer during the period A (heating period) and the period C (cooling period). Thus, impurity diffusion occurs during these periods. The solution is almost composed of a Ga melt, and since the heat capacity of Ga is large, it is difficult to heat and cool. Therefore, the heating period A and the cooling period C from 900 ° C. to the optimum temperature of 900 ° C. for causing the diffusion reaction become long.

拡散量を正確に制御するためには、期間Bの間だけ、溶液槽内の溶液とGaN系半導体ウエハとが接触している必要があるが、期間A及び期間Cの間も接触しており、しかも上述したように期間A及び期間Cの時間は長くなっているので、この間もGaN系半導体ウエハへの不純物拡散がかなり進行し、拡散量を正確に制御するのが困難であるという問題があった。また、期間A及び期間Cの時間が長いため、GaN系半導体ウエハに対するドーピング作業の終了までに時間がかかりすぎ、歩留まりの低下を招いていた。   In order to accurately control the diffusion amount, it is necessary that the solution in the solution tank and the GaN-based semiconductor wafer are in contact with each other only during the period B. In addition, as described above, since the period A and the period C are long, impurity diffusion into the GaN-based semiconductor wafer proceeds considerably during this period, and it is difficult to accurately control the diffusion amount. there were. Further, since the period A and the period C are long, it takes too much time to complete the doping operation on the GaN-based semiconductor wafer, resulting in a decrease in yield.

本発明は、上述した課題を解決するために創案されたものであり、溶液中の不純物を拡散させることによりGaN系半導体へのドーピングを行う場合に、拡散量を正確に制御できるようにし、ドーピング作業を短時間で終了させることができる半導体製造装置を提供することを目的としている。   The present invention was devised to solve the above-described problems, and allows doping to be accurately controlled when doping a GaN-based semiconductor by diffusing impurities in a solution. An object of the present invention is to provide a semiconductor manufacturing apparatus capable of completing the work in a short time.

上記目的を達成するために、請求項1記載の発明は、GaN系半導体に不純物をドーピングする半導体製造装置であって、ガリウム溶液が収容された第1溶液槽と、ガリウム溶液と前記不純物との混合溶液が収容され前記第1溶液槽とは異なる温度を有する第2溶液槽とを少なくとも備え、前記第1溶液槽と第2溶液槽に収容された各溶液に前記GaN系半導体を浸漬して、前記GaN系半導体に不純物をドーピングすることを特徴とする半導体製造装置である。   In order to achieve the above object, the invention described in claim 1 is a semiconductor manufacturing apparatus for doping impurities into a GaN-based semiconductor, comprising a first solution tank containing a gallium solution, a gallium solution and the impurities. At least a second solution tank containing a mixed solution and having a temperature different from that of the first solution tank, and immersing the GaN-based semiconductor in each solution contained in the first solution tank and the second solution tank. A semiconductor manufacturing apparatus, wherein the GaN-based semiconductor is doped with impurities.

また、請求項2記載の発明は、前記GaN系半導体を前記第1溶液槽と第2溶液槽に収容された各溶液に浸漬させるために、前記GaN系半導体が載置されたカーボン製のウエハ搬送部を備え、前記ウエハ搬送部を挿入するための挿入口が前記第1溶液槽及び第2溶液槽に形成されていることを特徴とする請求項1記載の半導体製造装置である。   According to a second aspect of the present invention, there is provided a carbon wafer on which the GaN-based semiconductor is placed in order to immerse the GaN-based semiconductor in each solution contained in the first solution tank and the second solution tank. 2. The semiconductor manufacturing apparatus according to claim 1, further comprising a transfer unit, wherein an insertion port for inserting the wafer transfer unit is formed in the first solution tank and the second solution tank.

また、請求項3記載の発明は、前記第1溶液槽と第2溶液槽に収容された各溶液の上部にガリウムよりも比重の小さい液体封止剤が形成されていることを特徴とする請求項1〜請求項2のいずれか1項に記載の半導体製造装置である。   The invention described in claim 3 is characterized in that a liquid sealant having a specific gravity smaller than that of gallium is formed on the upper part of each solution contained in the first solution tank and the second solution tank. It is a semiconductor manufacturing apparatus of any one of Claims 1-2.

また、請求項4記載の発明は、前記第1溶液槽は、1つで前記GaN系半導体の加熱及び冷却の両方を行う溶液槽であることを特徴とする請求項1〜請求項3のいずれか1項に記載の半導体製造装置である。   According to a fourth aspect of the present invention, the first solution tank is a single solution tank that performs both heating and cooling of the GaN-based semiconductor. 2. A semiconductor manufacturing apparatus according to claim 1.

また、請求項5記載の発明は、前記第1溶液槽は、複数設けられており、前記GaN系半導体の加熱用溶液槽と冷却用溶液槽とに分けられていることを特徴とする請求項1〜請求項3のいずれか1項に記載の半導体製造装置である。   The invention according to claim 5 is characterized in that a plurality of the first solution tanks are provided and divided into a heating solution tank and a cooling solution tank for the GaN-based semiconductor. It is a semiconductor manufacturing apparatus of any one of Claims 1-3.

本発明の半導体製造装置は、ガリウム溶液が収容された第1溶液槽と、ガリウム溶液と不純物との混合溶液が収容され前記第1溶液槽とは異なる温度を有する第2溶液槽とを少なくとも有しており、これら第1溶液槽と第2溶液槽に収容された各溶液にGaN系半導体を浸漬して溶液中の不純物をGaN系半導体に拡散させることによりドーピングを行っているので、不純物拡散用の溶液槽と加熱又は冷却用の溶液槽とを分けることができ、従来と比較して不純物拡散量を正確に制御できるとともに、加熱又は冷却を迅速に行うことができる。   The semiconductor manufacturing apparatus of the present invention has at least a first solution tank containing a gallium solution and a second solution tank containing a mixed solution of a gallium solution and impurities and having a temperature different from that of the first solution tank. Since doping is performed by immersing a GaN-based semiconductor in each solution contained in the first solution tank and the second solution tank and diffusing impurities in the solution into the GaN-based semiconductor, impurity diffusion is performed. The solution tank for heating and the solution tank for heating or cooling can be separated, and the impurity diffusion amount can be accurately controlled as compared with the conventional one, and heating or cooling can be performed quickly.

以下、図面を参照して本発明の一実施形態を説明する。図1は本発明の第1の半導体製造装置の基本的な構成を示す。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a basic configuration of a first semiconductor manufacturing apparatus of the present invention.

本発明の半導体製造装置に用いられるウエハは、六方晶化合物半導体であるIII−V族GaN系半導体が用いられており、上記III−V族GaN系半導体は、4元混晶系のAlGaInN(x+y+z=1、0≦x≦1、0<y≦1、0≦z≦1)で表される。 The wafer used in the semiconductor manufacturing apparatus of the present invention uses a III-V group GaN-based semiconductor which is a hexagonal compound semiconductor, and the III-V group GaN-based semiconductor is a quaternary mixed crystal Al x Ga. represented by y in z N (x + y + z = 1,0 ≦ x ≦ 1,0 <y ≦ 1,0 ≦ z ≦ 1).

図1の半導体製造装置は、ウエハ搬送部であるスライダー3、3つの溶液槽11、12、13、各溶液槽の上下に設けられたヒータ6、7、8が設けられている。スライダー3には、表面の一部を掘り込んでGaN系半導体ウエハ4を載置するウエハ保持部が形成されている。ヒータ6、7、8は各々独立して制御することができるようになっており、各ヒータの熱出力を個々に変えて、各溶液槽11、12、13を加熱することができる。   The semiconductor manufacturing apparatus of FIG. 1 is provided with a slider 3, which is a wafer transfer unit, three solution tanks 11, 12, 13 and heaters 6, 7, 8 provided above and below each solution tank. The slider 3 is formed with a wafer holding portion on which a part of the surface is dug to place the GaN-based semiconductor wafer 4. The heaters 6, 7, and 8 can be controlled independently, and each solution tank 11, 12, and 13 can be heated by individually changing the heat output of each heater.

また、3つの溶液槽11、12、13は、基本的に同じ構造に形成されており、各溶液槽は、図5のように構成されている。各溶液槽11、12、13に対応する溶液槽1は、図5に示されるように、内部に溶液を収容するための容積を有する容器1aを有しており、容器1aにはスライダー3を挿入するための挿入口1bが形成されている。   Moreover, the three solution tanks 11, 12, and 13 are basically formed in the same structure, and each solution tank is configured as shown in FIG. As shown in FIG. 5, the solution tank 1 corresponding to each of the solution tanks 11, 12, and 13 has a container 1 a having a volume for containing the solution therein, and the container 1 a has a slider 3. An insertion slot 1b for insertion is formed.

上述したように、スライダー3にはGaN系半導体ウエハ4が載置、保持できるようになっており、スライダー3を挿入口1bに差し込んだ状態で、スライダー3と容液槽1とは相対的に移動させることができるようになっている。スライダー3を挿入口1bに差し込んだ状態で、スラライダー3の表面と挿入口1bの壁面との隙間は、1mm未満(例えば、0.2mm〜0.3mm)に形成されているので、表面張力により、スライダー3を前後に移動させても中のGa溶液2は外に漏れ出さない。また、容器1aは、カーボン又はアルミナ等で、スライダー3はカーボンで構成されている。カーボン製であると、耐熱性が高くなり、容器1a及びスライダー3の両方をカーボン製にすれば、これら相互の摩擦係数は小さくなる。   As described above, the GaN-based semiconductor wafer 4 can be placed and held on the slider 3, and the slider 3 and the liquid tank 1 are relatively positioned with the slider 3 inserted into the insertion port 1b. It can be moved. In a state where the slider 3 is inserted into the insertion port 1b, the gap between the surface of the slider 3 and the wall surface of the insertion port 1b is formed to be less than 1 mm (for example, 0.2 mm to 0.3 mm). Thus, even if the slider 3 is moved back and forth, the Ga solution 2 inside does not leak out. The container 1a is made of carbon or alumina, and the slider 3 is made of carbon. If it is made of carbon, the heat resistance becomes high, and if both the container 1a and the slider 3 are made of carbon, the mutual friction coefficient becomes small.

さらに、図5では図示していないが、図1の構成図からもわかるように、溶液槽1の挿入口は、1対設けられており、挿入口1bに対向するように、挿入口1bと正反対側にもう1つの挿入口が設けられており、図1の溶液槽11、12、13とスライダー3との関係のようにスライダー3は1対の挿入口を突き抜けて差し込まれている。また、容器1aにはGa(ガリウム)を含むGa溶液2がスライダー3のGaN系半導体ウエハ4が十分浸漬するような位置まで注入される。   Further, although not shown in FIG. 5, as can be seen from the configuration diagram of FIG. 1, a pair of insertion ports of the solution tank 1 are provided, and the insertion port 1 b is arranged so as to face the insertion port 1 b. Another insertion port is provided on the opposite side, and the slider 3 is inserted through a pair of insertion ports as in the relationship between the solution tanks 11, 12, 13 and the slider 3 in FIG. Further, the Ga solution 2 containing Ga (gallium) is injected into the container 1a to a position where the GaN-based semiconductor wafer 4 of the slider 3 is sufficiently immersed.

以上のように構成された半導体製造装置を用いてGaN系半導体に不純物をドーピングする方法を図1〜図4を用いて説明する。まず、溶液槽11、12、13の各挿入口にスライダー3を差し込み、図1のようにセッティングする。次に、Ga融液を各溶液槽11、12、13に注入し、スライダー3が完全に浸漬し、各溶液槽の上部位置にまで達するようにする。その後、溶液槽12にのみドーピング材料を投入する。例えば、p型不純物をドーピングしたい場合には、Mg(マグネシウム)やZn(亜鉛)等の材料又はその融液を混入させ、溶け込ませる。n型不純物をドーピングしたい場合には、Si(シリコン)等の材料又はその融液を混入させ、溶け込ませる。このように、通常、不純物材料としては金属元素が用いられる。   A method of doping impurities into a GaN-based semiconductor using the semiconductor manufacturing apparatus configured as described above will be described with reference to FIGS. First, the slider 3 is inserted into each insertion port of the solution tanks 11, 12, and 13, and setting is performed as shown in FIG. Next, Ga melt is poured into each of the solution tanks 11, 12, and 13 so that the slider 3 is completely immersed and reaches the upper position of each of the solution tanks. Thereafter, the doping material is charged only into the solution tank 12. For example, when it is desired to dope a p-type impurity, a material such as Mg (magnesium) or Zn (zinc) or a melt thereof is mixed and dissolved. When it is desired to dope an n-type impurity, a material such as Si (silicon) or a melt thereof is mixed and dissolved. Thus, a metal element is usually used as the impurity material.

したがって、この状態では、溶液槽11内の溶液22と溶液槽13内の溶液22は、各々Ga融液のみで構成されており、一方、溶液槽12内の溶液21はGa融液と不純物融液との混合液で構成される。後述するように、溶液槽11(第1溶液槽に相当)はGaN系半導体ウエハ4を昇温させる役割を、溶液槽12(第2溶液槽に相当)はGaN系半導体ウエハ4に不純物を拡散させる役割を、溶液槽13(第1溶液槽に相当)はGaN系半導体ウエハ4を降温させる役割を果たす。   Therefore, in this state, the solution 22 in the solution tank 11 and the solution 22 in the solution tank 13 are each composed of only Ga melt, while the solution 21 in the solution tank 12 is composed of Ga melt and impurity melt. Consists of a liquid mixture. As will be described later, the solution tank 11 (corresponding to the first solution tank) serves to raise the temperature of the GaN-based semiconductor wafer 4, and the solution tank 12 (corresponding to the second solution tank) diffuses impurities into the GaN-based semiconductor wafer 4. The solution tank 13 (corresponding to the first solution tank) serves to lower the temperature of the GaN-based semiconductor wafer 4.

また、B等の液体封止剤5を投入して、図1のように、各容液槽内の溶液22、21の上側を液体封止剤5で覆うようにする。例えば、Bの融点は460℃、比重2.46であり、液体封止剤5としては、Ga融液よりも比重が小さく、かつ900℃程度に加熱しても蒸発しない物質が必要である。 Further, a liquid sealant 5 such as B 2 O 3 is introduced so that the upper side of the solutions 22 and 21 in each liquid tank is covered with the liquid sealant 5 as shown in FIG. For example, B 2 O 3 has a melting point of 460 ° C. and a specific gravity of 2.46, and the liquid sealant 5 needs a substance that has a specific gravity smaller than that of Ga melt and does not evaporate even when heated to about 900 ° C. It is.

ドーピング材料としてGaよりも蒸気圧の高い金属、すなわちGaよりも蒸発、昇華しやすい金属が溶液に溶け込んでいると、温度を上昇させた場合、ドーピング金属材料の一部が蒸気として溶液槽外部に放出されてしまい、溶液中のドーピング金属材料濃度が変化して、正確なドーピングが行えなくなる。また、製造装置を蒸気となったドーピング金属材料で汚してしまうことがあった。これらの問題を防止するために、液体封止剤5が用いられる。ドーピング材料に用いられるGaよりも蒸気圧の高い金属には、例えば、Zn等がある。なお、n型不純物でGaよりも蒸気圧の高い材料としては、金属ではないが、S(イオウ)やSe(セレン)がある。   If a metal having a higher vapor pressure than Ga, that is, a metal that is easier to evaporate and sublimate than Ga, is dissolved in the solution as a doping material, when the temperature is raised, a part of the doping metal material is vaporized outside the solution tank. As a result, the concentration of the doping metal material in the solution changes, and accurate doping cannot be performed. In addition, the manufacturing apparatus may be contaminated with the doping metal material that has become vapor. In order to prevent these problems, the liquid sealing agent 5 is used. Examples of the metal having a higher vapor pressure than Ga used for the doping material include Zn. In addition, although it is not a metal as a material whose vapor pressure is higher than Ga with an n-type impurity, there exist S (sulfur) and Se (selenium).

次に、スライダー3に設けられたウエハ保持部にGaN系半導体ウエハ4を必要な枚数取り付ける。その後、各ヒータ6、7、8の出力を別々に制御し、溶液槽11、12、13の温度を異なる温度に到達するようにする。例えば、図2に示すように、溶液槽11は200℃に、溶液槽12は400℃に、溶液槽13は200℃になるように各ヒータ6、7、8を用いて加熱する。   Next, a necessary number of GaN-based semiconductor wafers 4 are attached to the wafer holding portion provided on the slider 3. Thereafter, the outputs of the heaters 6, 7, and 8 are controlled separately so that the temperatures of the solution tanks 11, 12, and 13 reach different temperatures. For example, as shown in FIG. 2, the solution tank 11 is heated to 200 ° C., the solution tank 12 is heated to 400 ° C., and the solution tank 13 is heated to 200 ° C. using the heaters 6, 7, and 8.

そして、スライダー3を矢印の方向に移動させて、図2に示されるように、溶液槽11の中にGaN系半導体ウエハ4を浸漬させる。溶液槽11内の溶液22は、Ga融液のみであるので、溶液槽11内に移動したGaN系半導体ウエハ4と溶液22との間で反応は発生せず、GaN系半導体ウエハ4が所定温度まで加熱されることになる。   Then, the slider 3 is moved in the direction of the arrow, and the GaN-based semiconductor wafer 4 is immersed in the solution tank 11 as shown in FIG. Since the solution 22 in the solution tank 11 is only Ga melt, no reaction occurs between the GaN-based semiconductor wafer 4 moved into the solution tank 11 and the solution 22, and the GaN-based semiconductor wafer 4 is kept at a predetermined temperature. Will be heated up to.

GaN系半導体ウエハ4が溶液槽11に移動させた直後から、ヒータ6、7、8の出力を各々制御し、図3に示すように、溶液槽11の温度を600℃に、溶液槽12の温度を900℃に、溶液槽13の温度を600℃に上げる。そして、GaN系半導体ウエハ4が600℃程度まで達した状態で、図3に示すように、スライダー3を矢印の方向に移動させ、GaN系半導体ウエハ4を次の溶液槽12に移動させる。溶液槽12の溶液21は、Ga融液とドーピング用の金属が混合した溶液であり、溶液槽12は不純物拡散用の溶液槽であるため、GaN系半導体ウエハ4に対して900℃の温度条件での不純物拡散が行われる。ここで、GaN系半導体ウエハ4はGa融液に比べると熱容量も容積も非常に小さいので、900℃の温度にすぐに上昇し、900℃での不純物拡散が行える。また、冷却時も同じで、溶液槽内の溶液温度にすぐに達する。   Immediately after the GaN-based semiconductor wafer 4 is moved to the solution tank 11, the outputs of the heaters 6, 7, and 8 are controlled, and the temperature of the solution tank 11 is set to 600 ° C. as shown in FIG. The temperature is raised to 900 ° C., and the temperature of the solution bath 13 is raised to 600 ° C. Then, with the GaN-based semiconductor wafer 4 reaching about 600 ° C., as shown in FIG. 3, the slider 3 is moved in the direction of the arrow, and the GaN-based semiconductor wafer 4 is moved to the next solution bath 12. The solution 21 in the solution tank 12 is a solution in which Ga melt and a doping metal are mixed. Since the solution tank 12 is a solution tank for impurity diffusion, a temperature condition of 900 ° C. is applied to the GaN-based semiconductor wafer 4. Impurity diffusion is performed. Here, since the GaN-based semiconductor wafer 4 has a much smaller heat capacity and volume than the Ga melt, it immediately rises to a temperature of 900 ° C. and can diffuse impurities at 900 ° C. The same is true for cooling, and the solution temperature in the solution tank is reached immediately.

このように、GaN系半導体ウエハ4を移動させる前に、最初の溶液槽11を200℃程度に温めておき、GaN系半導体ウエハ4を溶液槽11中に移動させた後、600℃程度にまで加熱し、次に、900℃に加熱された溶液槽12に移動させるようにし、温度の変化を段階的にしているのは、GaN系半導体ウエハ4を割れないようにするためである。例えば、最初の溶液槽11を600℃まで加熱した後に、常温の状態に置かれたGaN系半導体ウエハ4を溶液槽11内に移動させた場合には、温度の変化が激しいために、GaN系半導体ウエハ4に亀裂が生じる。   Thus, before the GaN-based semiconductor wafer 4 is moved, the first solution tank 11 is warmed to about 200 ° C., and after the GaN-based semiconductor wafer 4 is moved into the solution tank 11, the temperature is increased to about 600 ° C. The reason why the temperature is changed stepwise by heating and then moving to the solution bath 12 heated to 900 ° C. is to prevent the GaN-based semiconductor wafer 4 from cracking. For example, after the first solution tank 11 is heated to 600 ° C., when the GaN-based semiconductor wafer 4 placed in a room temperature state is moved into the solution tank 11, the temperature changes drastically. Cracks occur in the semiconductor wafer 4.

溶液槽12を所定の時間900℃に維持して、GaN系半導体ウエハ4への不純物拡散が終了した後、ヒータ6、7、8を切って、図4に示すように、溶液槽11の温度を300℃に、溶液槽12の温度を600℃に、溶液槽13の温度を300℃に冷却する。その後、図4に示すように、スライダー3を矢印の方向に移動させ、GaN系半導体ウエハ4を次の溶液槽13に移動させる。溶液槽13は、Ga融液のみが収容されている冷却用の溶液槽なので、GaN系半導体ウエハ4と溶液22との反応は起こらず、GaN系半導体ウエハ4は300℃にすぐに冷却される。ここからさらに300℃以下の温度に冷却することもできる。   After the solution bath 12 is maintained at 900 ° C. for a predetermined time and the impurity diffusion into the GaN-based semiconductor wafer 4 is completed, the heaters 6, 7, and 8 are turned off, and as shown in FIG. Is cooled to 300 ° C., the temperature of the solution bath 12 is cooled to 600 ° C., and the temperature of the solution bath 13 is cooled to 300 ° C. Thereafter, as shown in FIG. 4, the slider 3 is moved in the direction of the arrow, and the GaN-based semiconductor wafer 4 is moved to the next solution tank 13. Since the solution bath 13 is a cooling bath containing only Ga melt, the reaction between the GaN-based semiconductor wafer 4 and the solution 22 does not occur, and the GaN-based semiconductor wafer 4 is immediately cooled to 300 ° C. . From here, it can also cool to the temperature of 300 degrees C or less.

上記のように、溶液槽12でGaN系半導体ウエハ4で600℃まで冷却した後、温度が300℃に下げられた溶液槽13に移動させて冷却するようにしているので、1つの溶液槽の中にGaN系半導体ウエハ4を浸漬させて、その中で900℃から300℃に冷却するよりも、冷却時間は早くなる。また、溶液槽12と溶液槽13の温度差を300℃にして、GaN系半導体ウエハ4に急激な温度変化を与えないようにしているので、GaN系半導体ウエハ4の割れを防止することができる。   As described above, after cooling to 600 ° C. with the GaN-based semiconductor wafer 4 in the solution tank 12, the solution is moved to the solution tank 13 whose temperature is lowered to 300 ° C. and cooled, so that one solution tank The cooling time is faster than immersing the GaN-based semiconductor wafer 4 therein and cooling it from 900 ° C. to 300 ° C. Further, since the temperature difference between the solution tank 12 and the solution tank 13 is set to 300 ° C. so as not to give a sudden temperature change to the GaN-based semiconductor wafer 4, cracking of the GaN-based semiconductor wafer 4 can be prevented. .

なお、溶液槽13はGaN系半導体ウエハ4の冷却用溶液槽であるので、図1〜図4に示すように、200℃、600℃、300℃と温度をその都度変化させずに、最初から最終温度の300℃に固定するようにしても良い。   Since the solution tank 13 is a solution tank for cooling the GaN-based semiconductor wafer 4, as shown in FIGS. 1 to 4, the temperature is changed from 200 ° C., 600 ° C., and 300 ° C. each time without changing from the beginning. You may make it fix to 300 degreeC of final temperature.

以上のように、本発明では、溶液槽を複数用い、図1の例では、溶液槽11をGaN系半導体ウエハ4の加熱用として、溶液槽12を不純物拡散用として、溶液槽13をGaN系半導体ウエハ4の冷却用として分けているので、GaN系半導体ウエハ4の加熱又は冷却する期間中は、不純物が入った溶液21との接触をほとんどなくすることができ、不純物拡散量を正確に制御することができる。また、加熱又は冷却用の溶液槽を用いることで、加熱又は冷却を迅速に行うことができ、ドーピング作業時間を短縮することができる。   As described above, in the present invention, a plurality of solution tanks are used. In the example of FIG. 1, the solution tank 11 is used for heating the GaN-based semiconductor wafer 4, the solution tank 12 is used for impurity diffusion, and the solution tank 13 is used for GaN-based semiconductors. Since the semiconductor wafer 4 is divided for cooling, the contact with the solution 21 containing impurities can be almost eliminated during the heating or cooling period of the GaN-based semiconductor wafer 4, and the amount of impurity diffusion can be accurately controlled. can do. Further, by using a solution tank for heating or cooling, heating or cooling can be performed quickly, and the doping operation time can be shortened.

図6は、図1とは異なり、溶液槽を2つ使用する第2の半導体製造装置の構成を示す。図1と同じ符号を付している部分は、同じ構成を示す。上述したように、溶液槽12は不純物拡散用の溶液槽であり、第2溶液槽に相当する。溶液12はGa融液とドーピング用金属材料が混合した溶液である。一方、溶液槽11は、GaN系半導体ウエハ4の加熱及び冷却の両方を兼ねた溶液槽であり、第1溶液槽に相当する。溶液11はGa融液のみで構成されている。ウエハ搬送部であるスライダー3にはGaN系半導体ウエハ4が保持されており、スライダー3を左右に移動させることで、GaN系半導体ウエハ4の加熱、不純物拡散、冷却の各工程が行われる。   FIG. 6 is different from FIG. 1 in showing the configuration of a second semiconductor manufacturing apparatus using two solution vessels. Parts denoted by the same reference numerals as those in FIG. 1 indicate the same configuration. As described above, the solution tank 12 is a solution tank for impurity diffusion, and corresponds to the second solution tank. The solution 12 is a mixed solution of Ga melt and a doping metal material. On the other hand, the solution tank 11 is a solution tank that serves as both heating and cooling of the GaN-based semiconductor wafer 4 and corresponds to a first solution tank. The solution 11 is composed only of Ga melt. A GaN-based semiconductor wafer 4 is held on the slider 3 serving as a wafer transfer unit, and the GaN-based semiconductor wafer 4 is heated, diffused, and cooled by moving the slider 3 left and right.

図6〜図9を参照して、GaN系半導体に不純物をドーピングする方法を説明する。最初のセッティング等については、第1の半導体製造装置と同じであるので、説明を省略する。まず、各ヒータ6、7の出力を別々に制御し、溶液槽11、12の温度を異なる温度に到達するようにする。例えば、図7に示すように、溶液槽11は200℃に、溶液槽12は400℃になるように各ヒータ6、7を用いて加熱する。   A method for doping impurities in a GaN-based semiconductor will be described with reference to FIGS. Since the first setting and the like are the same as those of the first semiconductor manufacturing apparatus, description thereof is omitted. First, the outputs of the heaters 6 and 7 are controlled separately so that the temperatures of the solution tanks 11 and 12 reach different temperatures. For example, as shown in FIG. 7, the solution tank 11 is heated to 200 ° C. and the solution tank 12 is heated to 400 ° C. using the heaters 6 and 7.

そして、スライダー3を矢印の方向に移動させて、図7に示されるように、溶液槽11の中にGaN系半導体ウエハ4を浸漬させる。溶液槽11内の溶液22は、Ga融液のみであるので、溶液槽11内に移動したGaN系半導体ウエハ4と溶液22との間で反応は発生せず、GaN系半導体ウエハ4が所定温度まで加熱されることになる。   Then, the slider 3 is moved in the direction of the arrow, and the GaN-based semiconductor wafer 4 is immersed in the solution tank 11 as shown in FIG. Since the solution 22 in the solution tank 11 is only Ga melt, no reaction occurs between the GaN-based semiconductor wafer 4 moved into the solution tank 11 and the solution 22, and the GaN-based semiconductor wafer 4 is kept at a predetermined temperature. Will be heated up to.

GaN系半導体ウエハ4を溶液槽11に移動させた直後から、ヒータ6、7の出力を各々制御し、図8に示すように、溶液槽11の温度を600℃に、溶液槽12の温度を900℃に上昇させる。そして、GaN系半導体ウエハ4が600℃程度まで達した状態で、図8に示すように、スライダー3を矢印の方向に移動させ、GaN系半導体ウエハ4を次の溶液槽12に移動させる。溶液槽12の溶液21は、Ga融液とドーピング用の金属が混合した溶液であり、溶液槽12は不純物拡散用の溶液槽であるため、GaN系半導体ウエハ4に対して900℃の温度条件での不純物拡散が行われる。   Immediately after the GaN-based semiconductor wafer 4 is moved to the solution tank 11, the outputs of the heaters 6 and 7 are controlled, and the temperature of the solution tank 11 is set to 600 ° C. and the temperature of the solution tank 12 is set as shown in FIG. Raise to 900 ° C. Then, with the GaN-based semiconductor wafer 4 reaching about 600 ° C., as shown in FIG. 8, the slider 3 is moved in the direction of the arrow, and the GaN-based semiconductor wafer 4 is moved to the next solution bath 12. The solution 21 in the solution tank 12 is a solution in which Ga melt and a doping metal are mixed. Since the solution tank 12 is a solution tank for impurity diffusion, a temperature condition of 900 ° C. is applied to the GaN-based semiconductor wafer 4. Impurity diffusion is performed.

溶液槽12を所定の時間900℃に維持して、GaN系半導体ウエハ4への不純物拡散が終了した後、ヒータ6、7を切って、図9に示すように、溶液槽11の温度を300℃に、溶液槽12の温度を600℃に下げる。その後、図9に示すように、スライダー3を矢印の方向(図8、9とは反対方向)に移動させ、GaN系半導体ウエハ4を前の溶液槽11に戻す。この段階での溶液槽11は、GaN系半導体ウエハ4の冷却用の溶液槽として作用し、ここでGaN系半導体ウエハ4が300℃にすぐに冷却される。ここからさらに300℃以下の温度に冷却しても良い。   After the solution tank 12 is maintained at 900 ° C. for a predetermined time and the impurity diffusion into the GaN-based semiconductor wafer 4 is completed, the heaters 6 and 7 are turned off, and the temperature of the solution tank 11 is set to 300 as shown in FIG. The temperature of the solution bath 12 is lowered to 600 ° C. Thereafter, as shown in FIG. 9, the slider 3 is moved in the direction of the arrow (the direction opposite to FIGS. 8 and 9), and the GaN-based semiconductor wafer 4 is returned to the previous solution tank 11. The solution tank 11 at this stage functions as a solution tank for cooling the GaN-based semiconductor wafer 4, where the GaN-based semiconductor wafer 4 is immediately cooled to 300 ° C. From here, you may further cool to the temperature of 300 degrees C or less.

上記第1及び第2の半導体製造装置では、GaN系半導体ウエハ4を移動させる前に各溶液槽の温度を変化させる工程と、GaN系半導体ウエハ4を次の溶液槽に移動させてから各溶液槽の温度を変化させる工程とを組み合わせてGaN系半導体ウエハ4を迅速に加熱、冷却を行うとともに、GaN系半導体ウエハ4が留まっている溶液槽温度又はGaN系半導体ウエハ4の温度と次の溶液槽温度との温度差を小さくしておくことにより、GaN系半導体ウエハ4に対する急激な温度変化を避け、ウエハの亀裂を避けるようにしていたが、これを各溶液槽の温度は、一定の温度に設定された後は、そのままに維持しておき、ウエハ搬送部であるスライダーを移動させるだけで加熱、冷却するようにしても良い。   In the first and second semiconductor manufacturing apparatuses, the temperature of each solution tank is changed before the GaN-based semiconductor wafer 4 is moved, and each solution is moved after the GaN-based semiconductor wafer 4 is moved to the next solution tank. Combined with the step of changing the temperature of the tank, the GaN-based semiconductor wafer 4 is rapidly heated and cooled, and the temperature of the solution tank where the GaN-based semiconductor wafer 4 remains or the temperature of the GaN-based semiconductor wafer 4 and the next solution By keeping the temperature difference from the bath temperature small, a rapid temperature change with respect to the GaN-based semiconductor wafer 4 is avoided, and cracking of the wafer is avoided. However, the temperature of each solution bath is a constant temperature. After being set, the temperature may be maintained as it is, and the heating and cooling may be performed only by moving the slider as the wafer transfer unit.

上記、各溶液槽の温度は固定にして、スライダーを移動させるだけで、GaN系半導体ウエハの加熱、冷却を行う第3の半導体製造装置の構成例を図10に示す。この例では、溶液槽を11、12、13、14、15と5個設けた。溶液槽11〜15に対応して、ヒータ6、7、8、9、10が配置されている。溶液槽13に入れられた溶液21のみが、Ga融液と不純物金属材料との混合液であり、その他の溶液槽11、12、14、15には、Ga融液からなる溶液22が入れられている。ここで、溶液槽13が第2溶液槽に相当し、溶液槽11、12、14、15が第1溶液槽に相当する。   FIG. 10 shows a configuration example of a third semiconductor manufacturing apparatus that heats and cools the GaN-based semiconductor wafer only by moving the slider while fixing the temperature of each solution bath. In this example, five solution tanks 11, 12, 13, 14, 15 were provided. Corresponding to the solution tanks 11 to 15, heaters 6, 7, 8, 9, and 10 are arranged. Only the solution 21 put in the solution tank 13 is a mixed solution of Ga melt and impurity metal material, and the solution 22 made of Ga melt is put in the other solution tanks 11, 12, 14, and 15. ing. Here, the solution tank 13 corresponds to the second solution tank, and the solution tanks 11, 12, 14, and 15 correspond to the first solution tank.

また、各ヒータ6、7、8、9、10の独立した制御により、例えば、溶液槽11は300℃、溶液槽12は600℃、溶液槽13は900℃、溶液槽14は600℃、溶液槽15は300℃に各々加熱維持され、GaN系半導体ウエハ4に不純物がドーピング処理され、ドーピング作業が終了するまでは、各溶液槽の温度は変化しない。したがって、中央の溶液槽13が不純物拡散用の溶液槽であり、溶液槽11、12がウエハ加熱用溶液槽であり、溶液槽14、15がウエハ冷却用溶液槽となる。   Moreover, by independent control of each heater 6, 7, 8, 9, 10, for example, the solution tank 11 is 300 ° C., the solution tank 12 is 600 ° C., the solution tank 13 is 900 ° C., the solution tank 14 is 600 ° C. The baths 15 are each heated and maintained at 300 ° C., and the impurities in the GaN-based semiconductor wafer 4 are doped, and the temperature of each solution bath does not change until the doping operation is completed. Therefore, the central solution tank 13 is a solution tank for impurity diffusion, the solution tanks 11 and 12 are wafer heating solution tanks, and the solution tanks 14 and 15 are wafer cooling solution tanks.

スライダー3を矢印の方向に移動させて、GaN系半導体ウエハ4を溶液槽11、12、13、14、15の順に各溶液槽内部の溶液と接触させていく。そうすることにより、GaN系半導体ウエハ4が溶液槽13に達するまでは、段階的にウエハが加熱されることになり、溶液槽13では不純物拡散に適した温度でドーピングが行うことができ、さらに、溶液槽13から溶液槽15に至る過程で段階的に冷却されることになる。なお、図10の例では、各溶液槽の温度差を300℃にしてあるが、温度変化を小さくするために、溶液槽の個数をさらに増やしても良い。   The slider 3 is moved in the direction of the arrow, and the GaN-based semiconductor wafer 4 is brought into contact with the solution inside each solution tank in the order of the solution tanks 11, 12, 13, 14, and 15. By doing so, the wafer is heated step by step until the GaN-based semiconductor wafer 4 reaches the solution bath 13, and the solution bath 13 can perform doping at a temperature suitable for impurity diffusion. In the process from the solution tank 13 to the solution tank 15, the cooling is performed step by step. In the example of FIG. 10, the temperature difference between the solution tanks is set to 300 ° C., but the number of solution tanks may be further increased in order to reduce the temperature change.

また、第1及び第2の半導体製造装置(図1、図6)では、不純物拡散用の溶液槽12にGaN系半導体ウエハ4を浸漬している時間は、本来不純物を拡散する900℃に維持された期間だけではなく、900℃から600℃に冷却する期間も含まれてしまうのであるが、図10の第3の半導体製造装置では、溶液槽13内の不純物が含まれる溶液にGaN系半導体ウエハ4を浸漬している時間は本来不純物を拡散する900℃に維持された期間だけになるので、より正確なドーピングを行うことができる。
In the first and second semiconductor manufacturing apparatuses (FIGS. 1 and 6), the time during which the GaN-based semiconductor wafer 4 is immersed in the solution tank 12 for diffusing impurities is maintained at 900 ° C. where the impurities are originally diffused. In the third semiconductor manufacturing apparatus of FIG. 10, the GaN-based semiconductor is included in the solution containing the impurities in the solution tank 13, although the period of cooling from 900 ° C. to 600 ° C. is included. Since the time during which the wafer 4 is immersed is only a period during which impurities are originally diffused and maintained at 900 ° C., more accurate doping can be performed.

本発明による第1の半導体製造装置の構成を示す図である。It is a figure which shows the structure of the 1st semiconductor manufacturing apparatus by this invention. 第1の半導体製造装置を用いて不純物をドーピングする一製造工程を示す図である。It is a figure which shows one manufacturing process of doping an impurity using a 1st semiconductor manufacturing apparatus. 第1の半導体製造装置を用いて不純物をドーピングする一製造工程を示す図である。It is a figure which shows one manufacturing process of doping an impurity using a 1st semiconductor manufacturing apparatus. 第1の半導体製造装置を用いて不純物をドーピングする一製造工程を示す図である。It is a figure which shows one manufacturing process of doping an impurity using a 1st semiconductor manufacturing apparatus. 本発明による半導体製造装置における基本的部分の構成を示す図である。It is a figure which shows the structure of the fundamental part in the semiconductor manufacturing apparatus by this invention. 本発明による第2の半導体製造装置の構成を示す図である。It is a figure which shows the structure of the 2nd semiconductor manufacturing apparatus by this invention. 第2の半導体製造装置を用いて不純物をドーピングする一製造工程を示す図である。It is a figure which shows one manufacturing process of doping an impurity using a 2nd semiconductor manufacturing apparatus. 第2の半導体製造装置を用いて不純物をドーピングする一製造工程を示す図である。It is a figure which shows one manufacturing process of doping an impurity using a 2nd semiconductor manufacturing apparatus. 第2の半導体製造装置を用いて不純物をドーピングする一製造工程を示す図である。It is a figure which shows one manufacturing process of doping an impurity using a 2nd semiconductor manufacturing apparatus. 本発明による第3の半導体製造装置の構成を示す図である。It is a figure which shows the structure of the 3rd semiconductor manufacturing apparatus by this invention. 従来の半導体製造装置により不純物をドーピングする場合に、1つの溶液槽の温度変化を示す図である。It is a figure which shows the temperature change of one solution tank, when doping with an impurity with the conventional semiconductor manufacturing apparatus.

符号の説明Explanation of symbols

1 溶液槽
1a 容器
1b 挿入口
2 Ga溶液
3 スライダー
4 Ga系半導体ウエハ
5 液体封止剤
6、1、1 ヒータ
11、12、13 溶液槽
21、22 溶液
DESCRIPTION OF SYMBOLS 1 Solution tank 1a Container 1b Insertion slot 2 Ga solution 3 Slider 4 Ga type semiconductor wafer 5 Liquid sealing agent 6, 1, 1 Heater 11, 12, 13 Solution tank 21, 22 Solution

Claims (5)

GaN系半導体に不純物をドーピングする半導体製造装置であって、
ガリウム溶液が収容された第1溶液槽と、ガリウム溶液と前記不純物との混合溶液が収容され前記第1溶液槽とは異なる温度を有する第2溶液槽とを少なくとも備え、
前記第1溶液槽と第2溶液槽に収容された各溶液に前記GaN系半導体を浸漬して、前記GaN系半導体に不純物をドーピングすることを特徴とする半導体製造装置。
A semiconductor manufacturing apparatus for doping impurities into a GaN-based semiconductor,
A first solution tank containing a gallium solution; and at least a second solution tank containing a mixed solution of the gallium solution and the impurities and having a temperature different from that of the first solution tank;
A semiconductor manufacturing apparatus, wherein the GaN-based semiconductor is immersed in each solution contained in the first solution tank and the second solution tank, and the GaN-based semiconductor is doped with impurities.
前記GaN系半導体を前記第1溶液槽と第2溶液槽に収容された各溶液に浸漬させるために、前記GaN系半導体が載置されたカーボン製のウエハ搬送部を備え、
前記ウエハ搬送部を挿入するための挿入口が前記第1溶液槽及び第2溶液槽に形成されていることを特徴とする請求項1記載の半導体製造装置。
In order to immerse the GaN-based semiconductor in each solution contained in the first solution tank and the second solution tank, a carbon wafer transfer unit on which the GaN-based semiconductor is placed is provided.
The semiconductor manufacturing apparatus according to claim 1, wherein an insertion port for inserting the wafer transfer unit is formed in the first solution tank and the second solution tank.
前記第1溶液槽と第2溶液槽に収容された各溶液の上部にガリウムよりも比重の小さい液体封止剤が形成されていることを特徴とする請求項1〜請求項2のいずれか1項に記載の半導体製造装置。   The liquid sealing agent having a specific gravity smaller than that of gallium is formed on the top of each solution contained in the first solution tank and the second solution tank. The semiconductor manufacturing apparatus according to item. 前記第1溶液槽は、1つで前記GaN系半導体の加熱及び冷却の両方を行う溶液槽であることを特徴とする請求項1〜請求項3のいずれか1項に記載の半導体製造装置。   The said 1st solution tank is a solution tank which performs both heating and cooling of the said GaN-type semiconductor by one, The semiconductor manufacturing apparatus of any one of Claims 1-3 characterized by the above-mentioned. 前記第1溶液槽は、複数設けられており、前記GaN系半導体の加熱用溶液槽と冷却用溶液槽とに分けられていることを特徴とする請求項1〜請求項3のいずれか1項に記載の半導体製造装置。
The said 1st solution tank is provided with two or more, It has divided into the solution tank for the heating of the said GaN-type semiconductor, and the solution tank for cooling, The any one of Claims 1-3 characterized by the above-mentioned. The semiconductor manufacturing apparatus described in 1.
JP2007144702A 2007-05-31 2007-05-31 Semiconductor production apparatus Withdrawn JP2008300603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007144702A JP2008300603A (en) 2007-05-31 2007-05-31 Semiconductor production apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007144702A JP2008300603A (en) 2007-05-31 2007-05-31 Semiconductor production apparatus

Publications (1)

Publication Number Publication Date
JP2008300603A true JP2008300603A (en) 2008-12-11

Family

ID=40173826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007144702A Withdrawn JP2008300603A (en) 2007-05-31 2007-05-31 Semiconductor production apparatus

Country Status (1)

Country Link
JP (1) JP2008300603A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201633A (en) * 2014-03-31 2015-11-12 日本碍子株式会社 Method of introducing dopant to group xiii nitride self-supporting substrate, group xiii nitride self-supporting substrate, method of manufacturing semiconductor element, method of manufacturing led element, and led element
JP2015199651A (en) * 2014-03-31 2015-11-12 日本碍子株式会社 Method of introducing dopant to group 13 nitride single crystal
WO2023007781A1 (en) * 2021-07-26 2023-02-02 国立大学法人東海国立大学機構 Nitride semiconductor device, nitride semiconductor substrate, and method for manufacturing nitride semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201633A (en) * 2014-03-31 2015-11-12 日本碍子株式会社 Method of introducing dopant to group xiii nitride self-supporting substrate, group xiii nitride self-supporting substrate, method of manufacturing semiconductor element, method of manufacturing led element, and led element
JP2015199651A (en) * 2014-03-31 2015-11-12 日本碍子株式会社 Method of introducing dopant to group 13 nitride single crystal
WO2023007781A1 (en) * 2021-07-26 2023-02-02 国立大学法人東海国立大学機構 Nitride semiconductor device, nitride semiconductor substrate, and method for manufacturing nitride semiconductor device

Similar Documents

Publication Publication Date Title
US3632431A (en) Method of crystallizing a binary semiconductor compound
US8940095B2 (en) Apparatus for growth of single crystals including a solute feeder
JP2009149452A (en) Method for growing semiconductor crystal
JP2008300603A (en) Semiconductor production apparatus
KR20170139162A (en) Method for maintaining the contained volume of molten material depleted and refilled
JPS5920638B2 (en) Epitaxy solution growth method for Group 3-5 ternary compounds
JP2004277224A (en) Method for growing group iii nitride
Dutta Bulk crystal growth of ternary III–V semiconductors
Mauk Liquid-Phase Epitaxy
JP2009190914A (en) Method for producing semiconductor crystal
US4390379A (en) Elimination of edge growth in liquid phase epitaxy
JPS626338B2 (en)
JP2006160586A (en) Method for manufacturing compound semiconductor single crystal
JPH0243723A (en) Solution growth device
van Oirschot et al. LPE growth of DH laser structures with the double source method
JP2003267794A (en) Method and apparatus for growing crystal
JPS6381918A (en) Manufacture of mixed crystal
JPH0563235A (en) Manufacture of semiconductor element
JPH05114565A (en) Slide boat member and liquid phase epitaxy using same
JPH0566915B2 (en)
JPS60236221A (en) Method for liquid-phase epitaxial growth
JPH06279178A (en) Production of semiconductor device and device therefor
JPS621358B2 (en)
JPS59128298A (en) Liquid phase epitaxial growing method
JP2006173338A (en) Manufacturing method of epitaxial wafer for light emitting diode

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100803