JPS5941959B2 - Liquid phase epitaxial growth equipment - Google Patents

Liquid phase epitaxial growth equipment

Info

Publication number
JPS5941959B2
JPS5941959B2 JP1078781A JP1078781A JPS5941959B2 JP S5941959 B2 JPS5941959 B2 JP S5941959B2 JP 1078781 A JP1078781 A JP 1078781A JP 1078781 A JP1078781 A JP 1078781A JP S5941959 B2 JPS5941959 B2 JP S5941959B2
Authority
JP
Japan
Prior art keywords
substrate
phase epitaxial
liquid phase
growth
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1078781A
Other languages
Japanese (ja)
Other versions
JPS57129896A (en
Inventor
基幸 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP1078781A priority Critical patent/JPS5941959B2/en
Publication of JPS57129896A publication Critical patent/JPS57129896A/en
Publication of JPS5941959B2 publication Critical patent/JPS5941959B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 本発明は特に化合物半導体発光素子を製造する際に適し
た液相エピタキシャル成長装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a liquid phase epitaxial growth apparatus particularly suitable for manufacturing compound semiconductor light emitting devices.

従来の液相エピタキシャル成長装置は第1図に示すよう
に構成されている。
A conventional liquid phase epitaxial growth apparatus is constructed as shown in FIG.

即ち第1図に示す成長装置は、半導体基板1を支持する
カーボン製の基板支持体2と、液相エピタキシャル溶液
4を収容するカーボン製の溶液収容体3とから構成され
ている。尚基板支持体2に支持される基板1は、第2図
に示すように凹部に設けられ、基板支持体2の表面から
ある間隔dを有するように配置されている。通常この間
隔dは50〜80tLm位である。このように構成され
た成長装置で、溶液収容体3と基板支持体2とを相対的
に移動して基板1上に溶液4を接触させて液相エピタキ
シャル成長させるものである。次に第1図の成長装置を
用い、ダブルエテロ接合のGaAlAs発光素子を製造
する場合について説明する。
That is, the growth apparatus shown in FIG. 1 is comprised of a substrate support 2 made of carbon that supports a semiconductor substrate 1, and a solution container 3 made of carbon that accommodates a liquid phase epitaxial solution 4. The substrate 1 supported by the substrate support 2 is provided in a recess as shown in FIG. 2, and is arranged at a certain distance d from the surface of the substrate support 2. Usually, this interval d is about 50 to 80 tLm. In the growth apparatus configured in this manner, the solution container 3 and the substrate support 2 are moved relatively to bring the solution 4 into contact with the substrate 1 to perform liquid phase epitaxial growth. Next, the case of manufacturing a double eterojunction GaAlAs light emitting device using the growth apparatus shown in FIG. 1 will be described.

まず溶液収容体3には図に示すように2つの溶液溜が設
けられ、一方の溶液溜にはGa、Al及びp型の不純物
が導入された溶液4aが、他方の溶液溜にはGa、Al
及びn型の不純物が導入された溶液4bが収容されてい
る。5はGaAsの多結晶板で、溶液4a、4b中へA
s原子を供給する役目をしている。
First, the solution container 3 is provided with two solution reservoirs as shown in the figure, one solution reservoir contains a solution 4a into which Ga, Al, and p-type impurities are introduced, and the other solution reservoir contains Ga, Al, and p-type impurities. Al
and a solution 4b into which n-type impurities are introduced. 5 is a polycrystalline plate of GaAs, and A is inserted into solutions 4a and 4b.
Its role is to supply s atoms.

6はカーボン製蓋で、溶液4a、4bが基板1に接触し
た時平担になるように重しの役目をしている。
Reference numeral 6 denotes a carbon lid, which acts as a weight so that the solutions 4a and 4b are flat when they come into contact with the substrate 1.

この結晶成長装置を反応管に封入し、水素雰囲気中で温
度を850゜C迄上げる。そして1時間、温度850゜
Cで保持する。−cQコ後徐冷した後基板支持体2をス
ライドさせ、第1図に示す如く溶液4aに接触させ、次
に溶液4bに接触させる。基板1上に成長する層厚は、
接触時間に依存する。基板1に成長層7が得られた状態
の断面図を第3図に示す。この第3図から明らかのよう
に成長層7の厚さは基板端部で異常成長7aする。この
理由としては基板1表面を(100)の低指数結晶とし
ても、その端部(エッジ)は高指数面となつている。一
般に結晶成長の速さは(100)<(110)<(11
1)面という関係があり、高指数面は低指数面よりも結
晶成長が速い。それ故端部での結晶成長が速くなる。又
もう一つの理由としては、基板端部から熱の放散があり
、基板中央部と端部で温度差が出来る。温度は中央部が
高く、端部が低くなつている。そのためAs原子は(G
a原子は過剰にある)温度の低い方へより拡散され、結
果的に端部が厚く成長することになる。この様な結晶基
板は、溶液収容体3と基板支持板2の相対的な移動を阻
害するばかりでなく、溶液収容体3の基板支持板1との
摺動表面にキズを生じさせ、基板1表面の前記異常成長
層7aにより、基板1より溶液の剥離を困難ならしめる
This crystal growth apparatus is sealed in a reaction tube, and the temperature is raised to 850°C in a hydrogen atmosphere. The temperature is then maintained at 850°C for 1 hour. -cQ After cooling slowly, the substrate support 2 is slid and brought into contact with solution 4a and then with solution 4b as shown in FIG. The layer thickness grown on the substrate 1 is
Depends on contact time. FIG. 3 shows a cross-sectional view of a state in which a grown layer 7 has been obtained on the substrate 1. As is clear from FIG. 3, the thickness of the grown layer 7 grows abnormally 7a at the edge of the substrate. The reason for this is that even though the surface of the substrate 1 is a low index crystal of (100), its edges are high index planes. Generally, the crystal growth speed is (100) < (110) < (11
1) There is a plane relationship, and crystal growth is faster on high index planes than on low index planes. Therefore, crystal growth at the edges becomes faster. Another reason is that heat is dissipated from the edges of the substrate, creating a temperature difference between the center and edges of the substrate. The temperature is higher in the center and lower at the edges. Therefore, the As atom is (G
The a atoms (excessive a) are diffused more toward the lower temperature, resulting in thicker growth at the edges. Such a crystal substrate not only obstructs the relative movement of the solution container 3 and the substrate support plate 2, but also causes scratches on the sliding surface of the solution container 3 and the substrate support plate 1, causing damage to the substrate 1. The abnormal growth layer 7a on the surface makes it difficult to remove the solution from the substrate 1.

このため多層成長層の各成長層の組成が所望のものが得
られないことがあつた。又、前記異常成長層7aがカー
ボンをこすることにより溶液に混入し、結晶成長を阻害
させ成長表面は良好でなかつた。又、これらの基板を素
子化する時、この異常成長層が工程を複雑化させていた
。本発明は、上記した点に鑑みなされたもので、異常成
長層が得られることのない液相エピタキシヤル成長装置
を提供するものである。
For this reason, the desired composition of each grown layer of the multi-layer grown layer could not be obtained. Further, the abnormally grown layer 7a mixed into the solution by rubbing carbon, inhibiting crystal growth and resulting in an unsatisfactory growth surface. Furthermore, when these substrates are fabricated into devices, this abnormally grown layer complicates the process. The present invention has been made in view of the above points, and provides a liquid phase epitaxial growth apparatus in which no abnormally grown layer is obtained.

即ち、本発明は基板支持体の基板が収容される凹部の側
壁部だけに、基板支持体及び溶液収容体を構成するカー
ボンよりも熱伝導率の小さい部材例えば石英ガラスを配
設し、基板端部の成長速度を遅くして基板端部での異常
成長をなくした成長装置である。
That is, in the present invention, a member such as quartz glass having a lower thermal conductivity than carbon constituting the substrate support and the solution container is disposed only on the side wall of the recess in which the substrate is accommodated, and the edge of the substrate is This is a growth device that eliminates abnormal growth at the edges of the substrate by slowing down the growth rate at the edges of the substrate.

次に本発明を、第4図に示す一実施例に基づき説明する
Next, the present invention will be explained based on an embodiment shown in FIG.

第4図にぉいて第1図と同符号は同じものを示すもので
ある為説明を省略する。この第4図において、従来例で
示した第1図と相異する点は、基板支持体2及び溶液収
谷体3を構成するカーボンよりも熱伝導率の小さい部材
9例えばカーボンより10〜100倍熱伝導率の小さい
石英ガラスを、基板支持体2の基板収容部である凹部の
周辺部に設けたところである。このように構成した液相
エピタキシヤル成長装置を用い、従来と同様な方法で結
晶成長を行なうと、従来の成長装置と異なり、基板1の
端部を熱伝導率の小さい石英ガラス9で囲んでいるため
、成長装置が徐冷されるに従がい、基板1の中央部は早
く温度が下がり早く成長るが、その基板1の端部は中央
部に比べ遅く温度が下降し、遅く成長する。
In FIG. 4, the same reference numerals as in FIG. 1 indicate the same things, so the explanation will be omitted. The difference in FIG. 4 from FIG. 1 showing the conventional example is that a member 9 having a thermal conductivity lower than that of carbon constituting the substrate support 2 and the solution collector 3 is, for example, 10 to 100% lower than that of carbon. The quartz glass having a double thermal conductivity is provided around the recessed portion of the substrate support 2 which is the substrate accommodating portion. When crystal growth is performed using the liquid phase epitaxial growth apparatus configured in this manner in the same manner as conventional methods, unlike conventional growth apparatuses, the edges of the substrate 1 are surrounded by quartz glass 9 with low thermal conductivity. Therefore, as the growth apparatus is slowly cooled, the temperature at the center of the substrate 1 decreases quickly and the growth occurs quickly, but the temperature at the ends of the substrate 1 decreases more slowly than the center and the growth occurs more slowly.

したがつて結果的には第6図の1剰こ基板1の端部に異
常成長層即ち厚い成長層のない結晶層7が得られる。尚
石英ガラス9は溶液4a,4b1基板1、カーボンの熱
容量に応じてその外形的寸法、厚さを決定する必要があ
る。また第5図A,bの様に、基板との接触面積を大き
くして基板端部の温度下降をさらに遅くするようにすれ
ば効果が大きくなる。また溶液溜と基板支持体の石英ガ
ラス9との摺動面は鏡面であれ、フロストした面であれ
本効果に影響をおよぼさないが、石英ガラス9をフロス
トをしておけば、溶液との濡れを悪くなる為、石英ガラ
ス9中のSi等が入りにくくなり、結果的に良質な成長
層を得ることができる。さらに第4図及び第5図の成長
装置において成長層7が比較的薄い5μm以下の場合に
も基板の縦横の寸法が溶液溜の底部の寸法よりも若干大
きくても効果がある。然しながら成長層7が5μmより
厚くなると、結晶端部の結晶方位の影響が無視出来なく
なる。即ち基板支持体の凹部の底部の縦、横寸法よりも
溶液溜の縦、横寸法を小さくならしめ、勿論溶液溜の寸
法を基板の寸法よりも小さくする。このようにすれば基
板端部の結晶方位の影響を取り除くことができる。この
成長装置で得られた成長層は端部から約200μm程度
迄中央部よりも膜厚が薄く、その周辺部以外はきわめて
均一な成長層であつた。又、以上説明したように本発明
の成長装置であれば、従来の成長装置よりも溶液の混入
がなく所望の組成の成長層を得ることができ、素子化す
る場合においても従来は周辺部0.5mmを切り取つて
素子化プロセスにかけていたが本発明の装置を用いれば
その必要性は皆無であつた。
Therefore, as a result, a crystal layer 7 without an abnormal growth layer, that is, a thick growth layer, is obtained at the edge of the single-layer substrate 1 shown in FIG. The external dimensions and thickness of the quartz glass 9 must be determined depending on the heat capacities of the solutions 4a, 4b, the substrate 1, and carbon. Furthermore, as shown in FIGS. 5A and 5B, the effect will be greater if the contact area with the substrate is increased to further slow down the temperature drop at the edge of the substrate. Also, whether the sliding surface between the solution reservoir and the quartz glass 9 of the substrate support is a mirror surface or a frosted surface does not affect this effect, but if the quartz glass 9 is frosted, the solution and This makes it difficult for Si, etc. in the quartz glass 9 to enter, and as a result, a high-quality growth layer can be obtained. Further, in the growth apparatus shown in FIGS. 4 and 5, even when the growth layer 7 is relatively thin and has a thickness of 5 μm or less, there is an effect even if the vertical and horizontal dimensions of the substrate are slightly larger than the dimensions of the bottom of the solution reservoir. However, when the growth layer 7 becomes thicker than 5 μm, the influence of the crystal orientation of the crystal edges cannot be ignored. That is, the vertical and horizontal dimensions of the solution reservoir are made smaller than the vertical and horizontal dimensions of the bottom of the recess of the substrate support, and of course the dimensions of the solution reservoir are made smaller than the dimensions of the substrate. In this way, the influence of the crystal orientation at the edge of the substrate can be removed. The growth layer obtained with this growth apparatus was thinner from the edge to about 200 μm than the center, and was extremely uniform except for the peripheral area. Furthermore, as explained above, with the growth apparatus of the present invention, a grown layer with a desired composition can be obtained with less solution contamination than with conventional growth apparatuses. Although .5 mm was cut out and subjected to the element formation process, there was no need to do so if the apparatus of the present invention was used.

なお、上記実施例において、基板支持体の基板収容部分
の周辺部に、カーボンよりも熱伝導率の小さい部材とし
て石英ガラスを用いた力′5sA1203BN等であつ
ても良い。
In the above embodiment, the peripheral part of the substrate accommodating part of the substrate support may be made of quartz glass, such as quartz glass, which has a lower thermal conductivity than carbon.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の液相エピタキシヤル装置を示す断面図、
第2図は第1図の液相エピタキシヤル装置の基板支持体
たけを取り出して示した断面図、第3図は第1図の成長
装置で基板に成長層を形成した伏態を示す断面図、第4
図は本発明一実施例の液相エピタキシヤル成長装置を示
す断面図、第5図は本発明の他の実施例の液相エピタキ
シヤル成長装置の基板支持体の概略図で、aは断面図、
bは平面図、第6図は第4図の成長装置で基板に成長層
を形成した伏態を示す断面図である。 図において、1は半導体基板、2はカーボン製基板支持
体、3は溶液収容体、4a,4bは溶液、5はGaSa
多結晶、6はカーボン製蓋、 7は成長 層、 7aは異常成長層、 9は石英ガラス板である。
FIG. 1 is a sectional view showing a conventional liquid phase epitaxial device.
FIG. 2 is a sectional view showing only the substrate support of the liquid phase epitaxial apparatus shown in FIG. , 4th
The figure is a sectional view showing a liquid phase epitaxial growth apparatus according to one embodiment of the present invention, FIG. 5 is a schematic diagram of a substrate support of a liquid phase epitaxial growth apparatus according to another embodiment of the present invention, and a is a sectional view ,
6b is a plan view, and FIG. 6 is a sectional view showing a state in which a growth layer is formed on a substrate using the growth apparatus of FIG. 4. In the figure, 1 is a semiconductor substrate, 2 is a carbon substrate support, 3 is a solution container, 4a and 4b are solutions, and 5 is a GaSa
6 is a carbon lid, 7 is a growth layer, 7a is an abnormal growth layer, and 9 is a quartz glass plate.

Claims (1)

【特許請求の範囲】[Claims] 1 液相エピタキシャル溶液を収容するカーボンで構成
された液相エピタキシャル溶液収容体と、該溶液収容体
の底部を構成する如く設けられた基板が配設される凹部
を有するカーボン製基板支持体とを備え、前記溶液収容
体と基板支持体とを相対的にスライドして、前記液相エ
ピタキシャル溶液と前記基板とを対接せしめ、前記基板
上に液相エピタキシャル成長層を形成する液相エピタキ
シャル成長装置において、前記カーボン製基板支持体の
基板が収容される凹部の側壁部をカーボンよりも熱伝導
率の小さい部材で構成し、凹部の底部をカーボンで構成
したことを特徴とする液相エピタキシャル成長装置。
1. A liquid-phase epitaxial solution container made of carbon that accommodates a liquid-phase epitaxial solution, and a carbon-made substrate support having a concave portion in which a substrate is disposed so as to constitute the bottom of the solution container. A liquid phase epitaxial growth apparatus comprising: relatively sliding the solution container and the substrate support to bring the liquid phase epitaxial solution and the substrate into contact with each other to form a liquid phase epitaxial growth layer on the substrate; A liquid phase epitaxial growth apparatus characterized in that the side wall of the recess in which the substrate of the carbon substrate support is accommodated is made of a material having a lower thermal conductivity than carbon, and the bottom of the recess is made of carbon.
JP1078781A 1981-01-29 1981-01-29 Liquid phase epitaxial growth equipment Expired JPS5941959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1078781A JPS5941959B2 (en) 1981-01-29 1981-01-29 Liquid phase epitaxial growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1078781A JPS5941959B2 (en) 1981-01-29 1981-01-29 Liquid phase epitaxial growth equipment

Publications (2)

Publication Number Publication Date
JPS57129896A JPS57129896A (en) 1982-08-12
JPS5941959B2 true JPS5941959B2 (en) 1984-10-11

Family

ID=11760039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1078781A Expired JPS5941959B2 (en) 1981-01-29 1981-01-29 Liquid phase epitaxial growth equipment

Country Status (1)

Country Link
JP (1) JPS5941959B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58202524A (en) * 1982-05-21 1983-11-25 Hitachi Ltd Crystal growing device
JPS63224229A (en) * 1987-03-12 1988-09-19 Mitsubishi Electric Corp Liquid phase crystal growth device

Also Published As

Publication number Publication date
JPS57129896A (en) 1982-08-12

Similar Documents

Publication Publication Date Title
Filby et al. Single-crystal films of silicon on insulators
JP2001064098A (en) Method and device for growing crystal, and group iii nitride crystal
JPS5941959B2 (en) Liquid phase epitaxial growth equipment
US3530011A (en) Process for epitaxially growing germanium on gallium arsenide
JPS6050759B2 (en) ZnSe epitaxial growth method and growth apparatus
JPH0797299A (en) Method for growing sic single crystal
JP2599767B2 (en) Solution growth equipment
JPS6021897A (en) Process for liquid phase epitaxial crystal growth
van Oirschot et al. LPE growth of DH laser structures with the double source method
JPH0930891A (en) Semiconductor liquid crystal epitaxial device
JPS6131059B2 (en)
JP3515858B2 (en) Boat for liquid phase epitaxial growth
JPS61261293A (en) Boat for liquid-phase epitaxial growth
JPH0279422A (en) Liquid phase epitaxial growth device and growth method
IE35057B1 (en) Methods of growing multilayer semiconductor crystals
JPS621358B2 (en)
JPS6230694A (en) Liquid-phase epitaxial growth
JPS623094A (en) Liquid-phase epitaxial growth apparatus
Hattori et al. Solution growth of off-axis 4H-SiC for power device application
JPS6235998B2 (en)
JPS5917241A (en) Liquid phase growth method
JPS6110099A (en) Method for continuous growth of thin film crystal
JPH10182277A (en) Device for producing single crystal and production of single crystal, using the same
JPS63190795A (en) Liquid phase epitaxy
JPS58182222A (en) Apparatus for liquid phase epitaxial growth