JP2004245303A - Artificial heart pump - Google Patents

Artificial heart pump Download PDF

Info

Publication number
JP2004245303A
JP2004245303A JP2003034927A JP2003034927A JP2004245303A JP 2004245303 A JP2004245303 A JP 2004245303A JP 2003034927 A JP2003034927 A JP 2003034927A JP 2003034927 A JP2003034927 A JP 2003034927A JP 2004245303 A JP2004245303 A JP 2004245303A
Authority
JP
Japan
Prior art keywords
dynamic pressure
pressure generating
generating groove
plate portion
thrust dynamic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003034927A
Other languages
Japanese (ja)
Other versions
JP4072721B2 (en
Inventor
Takashi Sano
岳志 佐野
Toshiyuki Osada
俊幸 長田
Takeshi Okubo
剛 大久保
Masashi Tagawa
雅士 田川
Takashi Yamane
隆志 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Mitsubishi Heavy Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2003034927A priority Critical patent/JP4072721B2/en
Publication of JP2004245303A publication Critical patent/JP2004245303A/en
Application granted granted Critical
Publication of JP4072721B2 publication Critical patent/JP4072721B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/047Bearings hydrostatic; hydrodynamic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • F04D29/0413Axial thrust balancing hydrostatic; hydrodynamic thrust bearings

Abstract

<P>PROBLEM TO BE SOLVED: To provide an artificial heart pump capable of preventing hemolysis and thrombus from being generated while maintaining stability and durability of blood supplying. <P>SOLUTION: A plurality of radial dynamic generating grooves 40, a plurality of front side thrust dynamic pressure generating grooves 41, and plurality of rear side dynamic pressure grooves generating 42 formed in a shaft portion 20 forming a bearing 2, a front side plate portion 21, and a rear side plate portion 22 comprises deep first dynamic pressure generating grooves 40a, 41a, 42a, and shallow second dynamic pressure generating grooves 40b, 41b, 42b respectively. During a rotation of an impeller 3, a part of a blood pumped flows as a lubricating fluid in small gaps Q1-Q3 defined by a sleeve 30 which is integral with the impeller 3, the shaft portion 20, the front side plate portion 21, and the rear side plate portion 22, the flowing quantity of the blood increases by the first dynamic pressure generating grooves 40a, 41a, 42b, and effective dynamic pressure is generated in the blood by the second dynamic pressure generating grooves 40b, 41b, 42b. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、生体の心臓の代替又は補助として血液を取り込むとともに圧送する遠心方式の人工心臓ポンプに関する。
【0002】
【従来の技術】
一般に、遠心方式の人工心臓ポンプは、図8に示すように、大きくは、ハウジング1と、このハウジング1内に固定された軸受2と、この軸受2に対しハウジング1内で回転可能に支持された羽根車3と、を備えており、羽根車3の回転により、軸方向前方から血液を取り込んで径方向外方へ圧送するようになっている(例えば、特許文献1参照)。
【0003】
具体的には、ハウジング1は、前側ハウジング10と後側ハウジング11とを組み合わせてなり、溶接や接着剤やボルト等による接合により一体化されて、内部空間が形成されたものである。前側ハウジング10の前端には、外部からハウジング1内に血液を取り込むための吸入側接続口12が、詳細は後述する軸受2の軸線上に設けられ、他方、前側ハウジング10又は後側ハウジング11(図8では前側ハウジング10)の一側には、ハウジング1内から外部に血液を送り出すための吐出側接続口13が設けられている。つまり、羽根車3の回転により、吸入側接続口12から血液が吸引されてハウジング1内に取り込まれ、その血液が詳細は後述する羽根車3の前側シュラウド32と後側シュラウド31との間隙P(以下、「羽根車内流路」と記すことがある)を経て昇圧され、吐出側接続口13から送り出されるという主たる血液流路が形成される。
【0004】
軸受2は、詳細は後述する羽根車3のラジアル移動を規制するための管状の軸部20と、この軸部20の前後端からそれぞれ径方向外方に突出するよう配設され、羽根車3のスラスト移動を規制するための円盤状の前側プレート部21、後側プレート部22と、前側プレート部21の外面すなわち前面を覆い、吸入側接続口12から取り込まれた軸方向後方に向けて流れる血液を詳細は後述する羽根車内流路Pの入口Pに送り込むために中心部が隆起した曲面を有する先端部23と、この先端部23から前側プレート部21、軸部20、後側プレート部22、及び後側ハウジング11の後端を貫通する軸支部24と、よりなり、これらは溶接や接着剤やボルト等によってハウジング1内でこれと一体的に固定されている。
【0005】
羽根車3は、軸部20の外周面に微小間隙を隔てて対向する貫通孔である内周面とともに前側プレート部21、後側プレート部22の各内面に微小間隙を隔てて対向する前面、後面を有するセラミック焼結体のスリーブ30と、このスリーブが同軸状に挿嵌された後側シュラウド31と、この後側シュラウド31の前方でこれと同軸状で所定の間隙を隔てた前側シュラウド32と、この前側シュラウド32と後側シュラウド31との間隙に設けられ、血液を吸入するとともに昇圧するための複数の羽根33と、よりなり、これらは一体成型、焼嵌めやロウ付けや接着剤等による接合により一体的になっている。つまり、羽根車3(スリーブ30)は、ハウジング1と一体の軸受2(軸部20、前側プレート部21及び後側プレート部22)に対して回転可能になり、この羽根車3の回転に伴って、軸方向前方から血液を取り込み、羽根車内流路Pとなる前側シュラウド32と後側シュラウド31との間隙で羽根33により昇圧しながら、径方向外方へ圧送するという人工心臓ポンプに望まれる機能が得られる。
【0006】
なお、羽根車3の回転駆動は、例えば磁力を活用してなされる。具体的には、図8に示すように、後側シュラウド31の後部には、形成された環状溝31cに永久磁石34が収容されてこれが蓋体35で密閉されて固定され、他方、後側ハウジング11の後部には、永久磁石34の周囲を覆う同軸状の位置に、外部又は内蔵の電源に接続された回転磁界発生器14が配設されている。これにより、電源から電力供給を受けた回転磁界発生器14が回転磁界を発生し、この磁力を受けて永久磁石34が同期してその軸線周りに回転しようとすることで、羽根車3が軸受2に対して回転するわけである。
【0007】
ここで、軸受2に対して羽根車3を円滑に回転させる潤滑機構について、図9〜図14を参照しながら述べる。図9に示すように、羽根車3の回転に伴って、羽根車内流路Pには径方向内方にある入口Pから径方向外方にある出口Pに向けて血液が流れるが、その血液は羽根33により遠心力の作用とあいまって昇圧される。従って、血液に作用する圧力は、入口Pよりも出口Pの方が高くなり、入口Pと出口Pの間で圧力差が生じる。
【0008】
このため、羽根車内流路Pにおける出口Pから噴き出された血液の一部は、後側ハウジング11の内壁と後側シュラウド31の外壁との間隙に導き入れられ、続いて後側プレート部22の内面とスリーブ30の後面との微小間隙Q、軸部20の外周面とスリーブ30の内周面との微小間隙Q、及び前側プレート部21の内面とスリーブ30の前面との微小間隙Qを経由して、羽根車内流路Pにおける入口Pに送り出され、結局、吸入側接続口12からハウジング1内に取り込まれた血液に合流するようになる(図9中の点線矢印参照)。つまり、羽根車3の回転中は、羽根車3(スリーブ30)と軸受2(軸部20、前側プレート部21及び後側プレート部22)との微小間隙Q〜Qに血液が流動することになり、この血液を潤滑流体として活用するわけである。
【0009】
但し、回転中の羽根車3には、径方向のラジアル荷重及び軸方向のスラスト荷重が作用するため、これらを支持して微小間隙Q〜Qを確保すべく以下の工夫がなされている。
【0010】
先ず第1に、軸受2を構成する軸部20の外周面には、図9〜図11に示すように、羽根車3(スリーブ30)のラジアル荷重を支持するためのラジアル動圧発生溝140(図10中のシングルハッチング部参照)が部分的に複数設けられている。これらラジアル動圧発生溝140は、スパイラルグルーブと呼ばれる螺旋状をなしており、一律に深さがほぼ一定に加工されたものである。
【0011】
第2に、前側プレート部21の内面には、図9、及び図12〜図14に示すように、羽根車3のスラスト荷重を支持するための前側スラスト動圧発生溝141が複数設けられている。これら前側スラスト動圧発生溝141は、渦巻状をなしており、ラジアル動圧発生溝140と同様、一律に深さがほぼ一定に加工されたものである。他方、後側プレート部22の内面にも、これと同様に、羽根車3のスラスト荷重を支持するための後側スラスト動圧発生溝142が複数設けられている。なお、図12は、前側スラスト動圧発生溝141又は後側スラスト動圧発生溝142が、前側プレート部21又は後側プレート部22における各内面上で部分的に設けられた態様を示し、図13は、前側プレート部21又は後側プレート部22における各内面上の外周すなわち外縁から、内周すなわち軸部20の外周面に至る間に連続するよう設けられた態様を示している。
【0012】
このような工夫を施すことにより、回転中の羽根車3は、ラジアル動圧発生溝140、前側スラスト動圧発生溝141又は後側スラスト動圧発生溝142を流動する血液にラジアル動圧及びスラスト動圧が生じて、軸受2に対して浮上した非接触状態に保持されるようになるため、円滑な回転が可能となり、ひいては人工心臓ポンプとしての血液供給の安定性と耐久性の向上につながる。
【0013】
【特許文献1】
特開平7−136247号公報(第2−3頁、第1図)
【0014】
【発明が解決しようとする課題】
ところで、人工心臓ポンプには、取り扱う対象流体が血液であってしかも用いられる対象が人間や動物であることから、特に、溶血及び血栓を長期間引き起こさないことが宿命的な解決課題として強く要求される。なお、溶血とは、血液中の赤血球の表面膜が損傷してその機能が失われる現象であり、血栓とは、血液が凝集して血管等の血液流路を塞ぐ現象である。
【0015】
しかし、上記の人工心臓ポンプでは、羽根車3をなすスリーブ30と、軸受2をなす軸部20、前側プレート部21及び後側プレート部22と、で形成される微小間隙Q〜Qにおいて、溶血及び血栓が頻発していた。何故ならば、この微小間隙Q〜Qは、従来、数μm〜十数μmと極めて狭い間隙寸法が設定されていたため、血液そのものが流動し難い状況にあり、溶血に関していえば、軸受2に対する羽根車3の相対的な回転速度差により、流動する血液に多大なせん断応力が作用し、このせん断応力で赤血球が損傷してしまうからである。また、血栓に関しては、流動する血液が接触する個所における素材の面粗度や親和性の影響は勿論であるが、血液そのものの流動速度が遅かったり、流動量が少なかったりして滞る場合に発生すると考えられ、そうすると、微小間隙Q〜Qが極めて狭いことは不利な要素であったからである。
【0016】
このような溶血及び血栓の問題を解決する手法としては、微小間隙Q〜Qの間隙寸法を単に拡大することが考えられる。しかし、拡大しすぎると今度は、回転中の羽根車3のラジアル荷重及びスラスト荷重を支持するためのラジアル動圧及びスラスト動圧の効力が著しく低減し、これにより、人工心臓ポンプとしての血液供給の安定性と耐久性につながる軸受2に対する歯車3の円滑な回転が阻害されるため、その間隙寸法は30μm〜40μm程度が限界であり、実際にこれでは溶血及び血栓の問題を十分に解決できなかった。
【0017】
そこで、本発明は、上記の問題に鑑みてなされたものであり、血液供給の安定性と耐久性を維持しつつ、溶血及び血栓の発生を抑制できる人工心臓ポンプを提供することを目的とするものである。
【0018】
【課題を解決するための手段】
上記目的を達成するため、本発明による人工心臓ポンプは、ハウジングと、このハウジング内に固定され、軸部及びこの軸部から径方向外方に突出する前側プレート部、後側プレート部よりなる軸受と、前記軸部の外周面に微小間隙を隔てて対向する貫通孔とともに、前記前側プレート部、後側プレート部の各内面に微小間隙を隔てて対向する前面、後面を有し、前記軸受に対し前記ハウジング内で回転可能に支持された羽根車と、を備えていて、前記羽根車の回転により、軸方向前方から血液を取り込んで径方向外方へ圧送するとともに、この圧送された血液の一部を前記後側プレート部の内面と前記羽根車の後面との微小間隙に導き入れ、前記軸部の外周面と前記羽根車の貫通孔との微小間隙、及び前記前側プレート部の内面と前記羽根車の前面との微小間隙を経由して、取り込まれる前記血液に合流させる人工心臓ポンプにおいて、前記軸部の外周面には前記羽根車のラジアル荷重を支持するためのラジアル動圧発生溝が複数設けられ、前記前側プレート部、後側プレート部の各内面には前記羽根車のスラスト荷重を支持するための前側スラスト動圧発生溝、後側スラスト動圧発生溝が複数ずつ設けられており、前記ラジアル動圧発生溝、前記前側スラスト動圧発生溝、及び後側スラスト動圧発生溝のうちそれぞれの少なくとも1つが、他の前記ラジアル動圧発生溝、前記前側スラスト動圧発生溝、及び前記後側スラスト動圧発生溝よりも深さが深いことを特徴とする。
【0019】
これにより、深さの深いラジアル動圧発生溝、前側スラスト動圧発生溝及び後側スラスト動圧発生溝で血液を多く許容できるため、圧送された血液の一部が潤滑流体として流動する後側プレート部の内面と羽根車の後面との微小間隙、軸部の外周面と羽根車の貫通孔との微小間隙、及び前側プレート部の内面と羽根車の前面との微小間隙では、その血液そのものの流動量が増し、溶血及び血栓の発生が抑制される。しかも、他のラジアル動圧発生溝、前側スラスト動圧発生溝及び後側スラスト動圧発生溝では、流動する血液にラジアル動圧及びスラスト動圧が有効に生じるため、軸受に対する羽根車の円滑な回転が可能となり、人工心臓ポンプとしての血液供給の安定性と耐久性が維持される。
【0020】
ここで、実用性を踏まえると、深さの深い前記ラジアル動圧発生溝、前記前側スラスト動圧発生溝、及び前記後側スラスト動圧発生溝は、他の前記ラジアル動圧発生溝、前記前側スラスト動圧発生溝、及び前記後側スラスト動圧発生溝よりも10倍以上深さが深いことが好ましい。
【0021】
また、溶血及び血栓の発生をより効果的に抑制すべく、血液そのものの流動量をより増す観点から、深さの深い前記ラジアル動圧発生溝、前記前側スラスト動圧発生溝、及び前記後側スラスト動圧発生溝は、他の前記ラジアル動圧発生溝、前記前側スラスト動圧発生溝、及び前記後側スラスト動圧発生溝よりも幅が広いことが好ましい。
【0022】
更に、有効なラジアル動圧及びスラスト動圧の発生を確保するとともに、血液そのものの流動を容易にする目的で、前記ラジアル動圧発生溝が螺旋状で、前記前側スラスト動圧発生溝及び前記後側スラスト動圧発生溝が渦巻状であって、深さの深い前記ラジアル動圧発生溝が、前記軸部における前記後側プレート部の内面から前記前側プレート部の内面に至る間に連続し、深さの深い前記前側スラスト動圧発生溝及び前記後側スラスト動圧発生溝が、前記前側プレート部及び前記後側プレート部それぞれにおける外縁から前記軸部の外周面に至る間に連続しているとよい。
【0023】
【発明の実施の形態】
本発明者らは、人工心臓ポンプの宿命的な解決課題である羽根車と軸受との微小間隙における溶血及び血栓の抑制に関して、人工心臓ポンプとしての血液供給の安定性と耐久性を維持することを基本前提に鋭意検討を重ね、その結果、上記の微小間隙において羽根車を浮上状態で回転可能に支持するための軸受に形成されている各種動圧発生溝の態様に着眼し、本発明をなすに至った。
【0024】
つまり、本発明の人工心臓ポンプの大きな特徴は、軸受をなす軸部、前側プレート部及び後側プレート部に複数ずつ形成されているラジアル動圧発生溝、前側スラスト動圧発生溝及び後側動圧発生溝が、それぞれ深さの浅いものと深さの深いものとからなっており、深さの浅いものは、人工心臓ポンプとしての血液供給の安定性と耐久性を維持すべく、流動する血液に有効な動圧を生じさせて軸受に対する羽根車の円滑な回転を確保する役割を果たし、他方の深いものは、溶血及び血栓の発生を抑止すべく、血液そのものの流動量を確保する役割を果たす。
【0025】
以下に、本発明の人工心臓ポンプの実施形態について図面を参照しながら詳述する。先ず、本発明の第1実施形態について説明する。図1は第1実施形態の人工心臓ポンプの潤滑機構を説明する模式図、図2はその人工心臓ポンプにおける軸受のラジアル動圧発生溝を示す軸部外周面の展開図、図3は図2におけるラジアル動圧発生溝と直交する断面を示す軸部外周面の横断面図、図4はその人工心臓ポンプにおける軸受のスラスト動圧発生溝を示す前側プレート部(又は後側プレート部)内面の平面図、図5は図4におけるスラスト動圧発生溝と直交する断面を示す前側プレート部内面の円周方向断面図である。なお、図中で図8及び図9と同じ名称で同じ機能を果たす部分には同一の符号を付し、重複する説明はここでは省略し、相違する点について説明する。後述する第2実施形態においても同様とする。
【0026】
本第1実施形態では、先ず、図1〜図3に示すように、軸受2を構成する軸部20の外周面には、羽根車3(スリーブ30)のラジアル荷重を支持するためのラジアル動圧発生溝40が部分的に複数(図2では6本図示)設けられている。これらラジアル動圧発生溝40は、スパイラルグルーブと呼ばれる螺旋状をなしており、個々において深さがほぼ一定に加工されたものである。
【0027】
ここで、ラジアル動圧発生溝40は、対称位置に配置された一対の第1のラジアル動圧発生溝40a(図2中のダブルハッチング部参照)と、これらの間に配置された第2のラジアル動圧発生溝40b(図2中のシングルハッチング部参照)とからなり、第1のラジアル動圧発生溝40aの深さsaは、第2のラジアル動圧発生溝40bの深さsbよりも深く形成されている。例えば、第1のラジアル動圧発生溝40aの深さsaは500μm〜600μm程度であり、他方、第2のラジアル動圧発生溝40bの深さsbは数十μm程度である。
【0028】
また、図1、図4及び図5に示すように、前側プレート部21の内面には、羽根車3のスラスト荷重を支持するための前側スラスト動圧発生溝41が部分的に複数(図4では6本図示)設けられている。これら前側スラスト動圧発生溝41は、渦巻状をなしており、ラジアル動圧発生溝40と同様、個々において深さがほぼ一定に加工されたものである。
【0029】
ここで、前側スラスト動圧発生溝41は、対称位置に配置された一対の第1の前側スラスト動圧発生溝41a(図4中のダブルハッチング部参照)と、これらの間に配置された第2の前側スラスト動圧発生溝41b(図4中のシングルハッチング部参照)とからなり、第1の前側スラスト動圧発生溝41aの深さtaは、第2の前側スラスト動圧発生溝41bの深さtbよりも深く形成されている。例えば、第1の前側スラスト動圧発生溝41aの深さtaは、第1のラジアル動圧発生溝40aの深さsaと同様、500μm〜600μm程度であり、他方、第2の前側スラスト動圧発生溝41bの深さsbは、第2のラジアル動圧発生溝40bの深さsbと同様、数十μm程度である。
【0030】
更に、後側プレート部22の内面にも、これと同様の態様で、羽根車3のスラスト荷重を支持するための後側スラスト動圧発生溝42が複数設けられており、これら後側スラスト動圧発生溝42は、深さの深い第1の前側スラスト動圧発生溝42aと、深さの浅い第2の前側スラスト動圧発生溝41bとからなる。
【0031】
このように各種動圧発生溝を構成することにより、深さの深い動圧発生溝である第1のラジアル動圧発生溝40a、第1の前側スラスト動圧発生溝41a及び第1の後側スラスト動圧発生溝42aで血液を多く許容できるため、圧送された血液の一部が潤滑流体として流動する、羽根車3をなすスリーブ30と、軸受2をなす軸部20、前側プレート部21及び後側プレート部22と、で形成される微小間隙Q〜Qにおいては、その血液そのものの流動量が増し、溶血及び血栓の発生が抑制されることになる。しかも、深さの浅い動圧発生溝である第2のラジアル動圧発生溝40b、第2の前側スラスト動圧発生溝41b及び第2の後側スラスト動圧発生溝42bでは、流動する血液にラジアル動圧及びスラスト動圧が有効に生じるため、軸受2に対する羽根車3の円滑な回転が可能となり、人工心臓ポンプとしての血液供給の安定性と耐久性が維持されることになる。
【0032】
なお、溶血及び血栓の発生が抑制できる血液そのものの実用的な流動量を確保するためには、第1のラジアル動圧発生溝40a、第1の前側スラスト動圧発生溝41a及び第1の後側スラスト動圧発生溝42aの深さsa、taが、第2のラジアル動圧発生溝40b、第2の前側スラスト動圧発生溝41b及び第2の後側スラスト動圧発生溝42bの深さsb、tbよりも10倍以上深いことが好ましい。
【0033】
また、溶血及び血栓の発生をより効果的に抑制すべく、血液そのものの流動量をより増す観点から、図3及び図5に示す第1のラジアル動圧発生溝40a、第1の前側スラスト動圧発生溝41a及び第1の後側スラスト動圧発生溝42aの幅ua、vaが、第2のラジアル動圧発生溝40b、第2の前側スラスト動圧発生溝41b及び第2の後側スラスト動圧発生溝42bの幅ub、vbよりも広いことが好ましい。
【0034】
次に、本発明の第2実施形態について図6及び図7を参照しながら説明する。図6は第2実施形態の人工心臓ポンプにおける軸受のラジアル動圧発生溝を示す軸部外周面の展開図、図7はその人工心臓ポンプにおける軸受のスラスト動圧発生溝を示す前側プレート部(又は後側プレート部)内面の平面図である。本第2実施形態の特徴は、第1実施形態における第1のラジアル動圧発生溝40a、第1の前側スラスト動圧発生溝41a及び第1の後側スラスト動圧発生溝42aを変形し、血液そのものの流動を容易にした点にある。
【0035】
つまり、第1のラジアル動圧発生溝40aは、図6に示すように、軸部20における前後端、すなわち後側プレート部22の内面から前側プレート部21の内面に至る間に連続するよう形成されている。また、第1の前側スラスト動圧発生溝41aは、図7に示すように、前側プレート部21における外縁から軸部20の外周面に至る間に連続するよう形成されている。更に、第1の後側スラスト動圧発生溝42aも、これと同様の態様で、後側プレート部22における外縁から軸部20の外周面に至る間に連続するよう形成されている。従って、血液そのものは、これら第1のラジアル動圧発生溝40a、第1の前側スラスト動圧発生溝41a及び第1の後側スラスト動圧発生溝42aに沿って、連続的に容易に流動することが可能となり、より効果的に溶血及び血栓を抑止できる。
【0036】
ちなみに、第2のラジアル動圧発生溝40bは、軸部20における前後端まで至っておらず、第2の前側スラスト動圧発生溝41b及び第2の後側スラスト動圧発生溝42bは、前側プレート部21及び後側プレート部22それぞれにおける外縁まで至っていないが、有効なラジアル動圧及びスラスト動圧の発生には支障はない。
【0037】
その他本発明は上記の各実施形態に限定されず、本発明の趣旨を逸脱しない範囲で、種々の変更が可能である。例えば、第2のラジアル動圧発生溝40bが、軸部20における前後端まで連続するよう形成され、第2の前側スラスト動圧発生溝41b及び第2の後側スラスト動圧発生溝42bが、前側プレート部21及び後側プレート部22それぞれにおける外縁から軸部20の外周面に至る間に連続するよう形成されても、勿論構わない。また、前側スラスト動圧発生溝41及び後側スラスト動圧発生溝42は、上記したような渦巻状に限らず、例えば放射状であってもよい。
【0038】
【発明の効果】
以上説明した通り、本発明の人工心臓ポンプによれば、ハウジングと、このハウジング内に固定され、軸部及びこの軸部から径方向外方に突出する前側プレート部、後側プレート部よりなる軸受と、前記軸部の外周面に微小間隙を隔てて対向する貫通孔とともに、前記前側プレート部、後側プレート部の各内面に微小間隙を隔てて対向する前面、後面を有し、前記軸受に対し前記ハウジング内で回転可能に支持された羽根車と、を備えていて、前記羽根車の回転により、軸方向前方から血液を取り込んで径方向外方へ圧送するとともに、この圧送された血液の一部を前記後側プレート部の内面と前記羽根車の後面との微小間隙に導き入れ、前記軸部の外周面と前記羽根車の貫通孔との微小間隙、及び前記前側プレート部の内面と前記羽根車の前面との微小間隙を経由して、取り込まれる前記血液に合流させる人工心臓ポンプにおいて、前記軸部の外周面には前記羽根車のラジアル荷重を支持するためのラジアル動圧発生溝が複数設けられ、前記前側プレート部、後側プレート部の各内面には前記羽根車のスラスト荷重を支持するための前側スラスト動圧発生溝、後側スラスト動圧発生溝が複数ずつ設けられており、前記ラジアル動圧発生溝、前記前側スラスト動圧発生溝、及び後側スラスト動圧発生溝のうちそれぞれの少なくとも1つが、他の前記ラジアル動圧発生溝、前記前側スラスト動圧発生溝、及び前記後側スラスト動圧発生溝よりも深さが深くなっている。つまり、深さの深いラジアル動圧発生溝、前側スラスト動圧発生溝及び後側スラスト動圧発生溝で血液を多く許容できるため、圧送された血液の一部が潤滑流体として流動する羽根車と軸受とで形成される各微小間隙では、その血液そのものの流動量が増し、これにより溶血及び血栓の発生が抑制できる。しかも、他のラジアル動圧発生溝、前側スラスト動圧発生溝及び後側スラスト動圧発生溝では、流動する血液にラジアル動圧及びスラスト動圧が有効に生じるため、軸受に対する羽根車の円滑な回転が可能となり、その結果人工心臓ポンプとしての血液供給の安定性と耐久性が維持できる。
【0039】
ここで、深さの深い前記ラジアル動圧発生溝、前記前側スラスト動圧発生溝、及び前記後側スラスト動圧発生溝が、他の前記ラジアル動圧発生溝、前記前側スラスト動圧発生溝、及び前記後側スラスト動圧発生溝よりも10倍以上深さが深いと、溶血及び血栓の発生が抑制できる血液そのものの実用的な流動量を十分確保することが可能となる。
【0040】
また、深さの深い前記ラジアル動圧発生溝、前記前側スラスト動圧発生溝、及び前記後側スラスト動圧発生溝が、他の前記ラジアル動圧発生溝、前記前側スラスト動圧発生溝、及び前記後側スラスト動圧発生溝よりも幅が広いと、血液そのものの流動量がより増すため、溶血及び血栓の発生をより効果的に抑制することが可能となる。
【0041】
更に、前記ラジアル動圧発生溝が螺旋状で、前記前側スラスト動圧発生溝及び前記後側スラスト動圧発生溝が渦巻状であって、深さの深い前記ラジアル動圧発生溝が、前記軸部における前記後側プレート部の内面から前記前側プレート部の内面に至る間に連続し、深さの深い前記前側スラスト動圧発生溝及び前記後側スラスト動圧発生溝が、前記前側プレート部及び前記後側プレート部それぞれにおける外縁から前記軸部の外周面に至る間に連続していると、ラジアル動圧発生溝、前側スラスト動圧発生溝及び後側スラスト動圧発生溝に特有の形態面から、有効なラジアル動圧及びスラスト動圧の発生が確保でき、その上、血液そのものの流動が容易に可能となる。
【図面の簡単な説明】
【図1】本発明の第1実施形態である人工心臓ポンプの潤滑機構を説明する模式図である。
【図2】第1実施形態における軸受のラジアル動圧発生溝を示す軸部外周面の展開図である。
【図3】図2における軸部外周面の横断面図である。
【図4】第1実施形態における軸受のスラスト動圧発生溝を示す前側プレート部内面の平面図である。
【図5】図4における前側プレート部内面の円周方向断面図である。
【図6】本発明の第2実施形態である人工心臓ポンプにおける軸受のラジアル動圧発生溝を示す軸部外周面の展開図である。
【図7】第2実施形態における軸受のスラスト動圧発生溝を示す前側プレート部内面の平面図である。
【図8】一般的な人工心臓ポンプの構成を示す要部縦断面図である。
【図9】従来の人工心臓ポンプの潤滑機構を説明する模式図である。
【図10】従来の軸受のラジアル動圧発生溝を示す軸部外周面の展開図である。
【図11】図10における軸部外周面の横断面図である。
【図12】従来の軸受のスラスト動圧発生溝を示す前側プレート部内面の平面図である。
【図13】従来の他の軸受のスラスト動圧発生溝を示す前側プレート部内面の平面図である。
【図14】図12又は図13における前側プレート部内面の円周方向断面図である。
【符号の説明】
1 ハウジング
2 軸受
3 羽根車
10 前側ハウジング
11 後側ハウジング
12 吸入側接続口
13 吐出側接続口
14 回転磁界発生器
20 軸部
21 前側プレート部
22 後側プレート部
23 先端部
24 軸支部
30 スリーブ
31 後側シュラウド
32 前側シュラウド
33 羽根
34 永久磁石
35 蓋体
40 ラジアル動圧発生溝
40a 第1のラジアル動圧発生溝(深さの深い動圧発生溝40)
40b 第2のラジアル動圧発生溝(深さの浅い動圧発生溝40)
41 前側スラスト動圧発生溝
41a 第1の前側スラスト動圧発生溝(深さの深い動圧発生溝41)
41b 第2の前側スラスト動圧発生溝(深さの浅い動圧発生溝41)
42 後側スラスト動圧発生溝
42a 第1の後側スラスト動圧発生溝(深さの深い動圧発生溝42)
42b 第2の後側スラスト動圧発生溝(深さの浅い動圧発生溝42)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a centrifugal artificial heart pump that takes in and pumps blood as a substitute or assist for a living heart.
[0002]
[Prior art]
In general, as shown in FIG. 8, a centrifugal artificial heart pump is roughly supported by a housing 1, a bearing 2 fixed in the housing 1, and a rotatable support in the housing 1 with respect to the bearing 2. The impeller 3 is adapted to take in blood from the front in the axial direction and to pump the blood radially outward by rotation of the impeller 3 (for example, see Patent Document 1).
[0003]
Specifically, the housing 1 is formed by combining the front housing 10 and the rear housing 11 and integrated by welding, bonding with an adhesive, a bolt, or the like to form an internal space. At the front end of the front housing 10, a suction-side connection port 12 for taking in blood from the outside into the housing 1 is provided on the axis of the bearing 2 which will be described in detail later, while the front housing 10 or the rear housing 11 ( In FIG. 8, one side of the front housing 10) is provided with a discharge-side connection port 13 for sending blood from inside the housing 1 to the outside. That is, by the rotation of the impeller 3, blood is sucked from the suction side connection port 12 and taken into the housing 1, and the blood is separated into a gap P between a front shroud 32 and a rear shroud 31 of the impeller 3, which will be described in detail later. (Hereinafter, it may be referred to as “inner impeller flow path”), and a main blood flow path is formed in which the pressure is increased and sent out from the discharge side connection port 13.
[0004]
The bearing 2 is provided with a tubular shaft portion 20 for restricting radial movement of the impeller 3, which will be described in detail later, and is disposed so as to project radially outward from front and rear ends of the shaft portion 20, respectively. The disk-shaped front plate portion 21 and the rear plate portion 22 for regulating thrust movement of the front plate portion 21 and the outer surface, that is, the front surface of the front plate portion 21, flow toward the rear in the axial direction taken in from the suction side connection port 12. The inlet P of the channel P in the impeller, which will be described in detail later, 1 A tip 23 having a curved surface with a raised central portion for feeding the front plate 23, the front plate 21, the shaft 20, the rear plate 22, and the rear end of the rear housing 11 from the tip 23. 24, which are integrally fixed in the housing 1 by welding, an adhesive, a bolt, or the like.
[0005]
The impeller 3 has an inner peripheral surface that is a through hole that faces the outer peripheral surface of the shaft portion 20 with a minute gap therebetween, and a front surface that opposes each inner surface of the front plate portion 21 and the rear plate portion 22 with a minute gap therebetween. A sleeve 30 of a ceramic sintered body having a rear surface, a rear shroud 31 in which the sleeve is coaxially inserted, and a front shroud 32 coaxial with the front shroud 32 at a predetermined gap in front of the rear shroud 31. And a plurality of blades 33 provided in the gap between the front shroud 32 and the rear shroud 31 for inhaling blood and increasing the pressure, which are integrally molded, shrink-fitted, brazed, adhesive, or the like. It is integrated by joining. That is, the impeller 3 (sleeve 30) is rotatable with respect to the bearing 2 (the shaft portion 20, the front plate portion 21, and the rear plate portion 22) integrated with the housing 1, and with the rotation of the impeller 3, Thus, it is desired for an artificial heart pump that takes in blood from the front in the axial direction, and pumps the blood radially outward while increasing the pressure by the blades 33 in the gap between the front shroud 32 and the rear shroud 31, which is the flow path P in the impeller. The function is obtained.
[0006]
The rotation of the impeller 3 is performed using, for example, a magnetic force. Specifically, as shown in FIG. 8, at the rear of the rear shroud 31, a permanent magnet 34 is housed in an annular groove 31c formed, and this is sealed and fixed by a lid 35, while the rear magnet is fixed. At the rear part of the housing 11, a rotating magnetic field generator 14 connected to an external or built-in power supply is disposed at a coaxial position covering the periphery of the permanent magnet 34. As a result, the rotating magnetic field generator 14 supplied with power from the power supply generates a rotating magnetic field, and the permanent magnet 34 tries to rotate around its axis synchronously by receiving the magnetic force. It rotates with respect to 2.
[0007]
Here, a lubrication mechanism for smoothly rotating the impeller 3 with respect to the bearing 2 will be described with reference to FIGS. As shown in FIG. 9, with the rotation of the impeller 3, a radially inward entrance P 1 Exit P radially outward from 2 , But the blood is boosted by the blades 33 in combination with the action of the centrifugal force. Therefore, the pressure acting on the blood is 1 Exit P than 2 Is higher and the entrance P 1 And exit P 2 Between the pressure differences.
[0008]
For this reason, the outlet P in the impeller passage P 2 A part of the blood spouted from the inner wall of the rear housing 11 and the outer wall of the rear shroud 31 are introduced into the gap between the inner wall of the rear housing 11 and the minute gap between the inner surface of the rear plate portion 22 and the rear surface of the sleeve 30. Q 1 , A minute gap Q between the outer peripheral surface of the shaft portion 20 and the inner peripheral surface of the sleeve 30. 2 And a minute gap Q between the inner surface of the front plate portion 21 and the front surface of the sleeve 30. 3 Through the inlet P in the impeller flow path P 1 And eventually merges with the blood taken into the housing 1 from the suction-side connection port 12 (see the dotted arrow in FIG. 9). In other words, during the rotation of the impeller 3, the minute gap Q between the impeller 3 (sleeve 30) and the bearing 2 (the shaft 20, the front plate 21, and the rear plate 22). 1 ~ Q 3 Then, the blood flows, and this blood is used as a lubricating fluid.
[0009]
However, since a radial radial load and an axial thrust load are applied to the rotating impeller 3, the impeller 3 is supported by the small gap Q 1 ~ Q 3 The following innovations have been made to ensure
[0010]
First, as shown in FIGS. 9 to 11, a radial dynamic pressure generating groove 140 for supporting a radial load of the impeller 3 (sleeve 30) is formed on the outer peripheral surface of the shaft portion 20 that constitutes the bearing 2. (Refer to the single hatched portion in FIG. 10). These radial dynamic pressure generating grooves 140 have a spiral shape called a spiral groove, and are uniformly processed at a substantially constant depth.
[0011]
Second, a plurality of front thrust dynamic pressure generating grooves 141 for supporting the thrust load of the impeller 3 are provided on the inner surface of the front plate portion 21 as shown in FIGS. 9 and 12 to 14. I have. These front-side thrust dynamic pressure generating grooves 141 have a spiral shape and, like the radial dynamic pressure generating grooves 140, are uniformly processed to have a substantially uniform depth. On the other hand, a plurality of rear thrust dynamic pressure generating grooves 142 for supporting the thrust load of the impeller 3 are similarly provided on the inner surface of the rear plate portion 22. FIG. 12 shows a mode in which the front thrust dynamic pressure generating groove 141 or the rear thrust dynamic pressure generating groove 142 is partially provided on each inner surface of the front plate portion 21 or the rear plate portion 22. Reference numeral 13 denotes a mode provided so as to be continuous from the outer periphery or outer edge on each inner surface of the front plate portion 21 or the rear plate portion 22 to the inner periphery, that is, the outer peripheral surface of the shaft portion 20.
[0012]
By taking such measures, the rotating impeller 3 applies radial dynamic pressure and thrust to blood flowing through the radial dynamic pressure generation groove 140, the front thrust dynamic pressure generation groove 141, or the rear thrust dynamic pressure generation groove 142. Since a dynamic pressure is generated and is maintained in a non-contact state floating with respect to the bearing 2, smooth rotation becomes possible, which leads to improvement in stability and durability of blood supply as an artificial heart pump. .
[0013]
[Patent Document 1]
JP-A-7-136247 (page 2-3, FIG. 1)
[0014]
[Problems to be solved by the invention]
By the way, in the artificial heart pump, since the target fluid to be handled is blood and the target to be used is a human or an animal, it is strongly demanded that a hemolysis and a thrombus not be caused for a long period of time as a fatal problem. You. Hemolysis is a phenomenon in which the surface film of red blood cells in blood is damaged and its function is lost, and thrombus is a phenomenon in which blood aggregates and blocks blood channels such as blood vessels.
[0015]
However, in the above-described artificial heart pump, the minute gap Q formed by the sleeve 30 forming the impeller 3 and the shaft portion 20, the front plate portion 21, and the rear plate portion 22 forming the bearing 2. 1 ~ Q 3 , Hemolysis and thrombosis occurred frequently. Because this small gap Q 1 ~ Q 3 Conventionally, since a very narrow gap size of several μm to several tens of μm has been set, the blood itself is difficult to flow, and in terms of hemolysis, the relative rotational speed difference of the impeller 3 with respect to the bearing 2 depends on the rotational speed difference. This is because a great amount of shear stress acts on flowing blood, and this shear stress damages red blood cells. In addition, thrombus is not only affected by the surface roughness and affinity of the material at the place where the flowing blood comes into contact, but also occurs when the flow speed of the blood itself is slow or the flow amount is small and the blood clogs. It is thought that the small gap Q 1 ~ Q 3 Is extremely disadvantageous.
[0016]
As a method for solving such a problem of hemolysis and thrombus, a micro gap Q is used. 1 ~ Q 3 It is conceivable to simply increase the gap size of. However, if it is enlarged too much, the effectiveness of the radial dynamic pressure and the thrust dynamic pressure for supporting the radial load and the thrust load of the rotating impeller 3 is significantly reduced, and thereby the blood supply as an artificial heart pump is performed. The smooth rotation of the gear 3 with respect to the bearing 2 which leads to the stability and durability of the bearing is hindered, and the gap size is limited to about 30 μm to 40 μm. In practice, this can sufficiently solve the problems of hemolysis and thrombus. Did not.
[0017]
Therefore, the present invention has been made in view of the above problems, and has as its object to provide an artificial heart pump that can suppress the occurrence of hemolysis and thrombus while maintaining the stability and durability of the blood supply. Things.
[0018]
[Means for Solving the Problems]
To achieve the above object, an artificial heart pump according to the present invention comprises a housing, a bearing fixed in the housing, and comprising a shaft portion, a front plate portion and a rear plate portion projecting radially outward from the shaft portion. Along with a through hole facing the outer peripheral surface of the shaft portion with a minute gap therebetween, the front plate portion, a front surface facing the inner surface of the rear plate portion with a minute gap therebetween, and a rear surface facing the inner surface of the rear plate portion. And an impeller rotatably supported in the housing, and by taking in blood from the front in the axial direction and pumping the blood radially outward by rotation of the impeller, A part is introduced into the minute gap between the inner surface of the rear plate portion and the rear surface of the impeller, the minute gap between the outer peripheral surface of the shaft portion and the through hole of the impeller, and the inner surface of the front plate portion. The feather An artificial heart pump that merges with the blood taken in through a minute gap with the front surface of the shaft, wherein a plurality of radial dynamic pressure generating grooves for supporting a radial load of the impeller are provided on an outer peripheral surface of the shaft portion. The front plate portion, the inner surface of the rear plate portion, a plurality of front thrust dynamic pressure generating grooves for supporting the thrust load of the impeller, a plurality of rear thrust dynamic pressure generating grooves are provided, At least one of each of the radial dynamic pressure generating groove, the front thrust dynamic pressure generating groove, and the rear thrust dynamic pressure generating groove is the other of the radial dynamic pressure generating groove, the front thrust dynamic pressure generating groove, and the rear side. It is characterized in that the depth is deeper than the side thrust dynamic pressure generating groove.
[0019]
This allows a large amount of blood to be allowed in the deep radial dynamic pressure generating groove, the front thrust dynamic pressure generating groove, and the rear thrust dynamic pressure generating groove, so that a part of the pumped blood flows as a lubricating fluid. In the minute gap between the inner surface of the plate portion and the rear surface of the impeller, the minute gap between the outer peripheral surface of the shaft portion and the through hole of the impeller, and the minute gap between the inner surface of the front plate portion and the front surface of the impeller, the blood itself is used. , And the occurrence of hemolysis and thrombus is suppressed. Moreover, in the other radial dynamic pressure generating grooves, the front thrust dynamic pressure generating grooves and the rear thrust dynamic pressure generating grooves, the radial dynamic pressure and the thrust dynamic pressure are effectively generated in the flowing blood. Rotation becomes possible, and the stability and durability of the blood supply as an artificial heart pump are maintained.
[0020]
Here, from the viewpoint of practicality, the radial dynamic pressure generating groove having a large depth, the front thrust dynamic pressure generating groove, and the rear thrust dynamic pressure generating groove are the other radial dynamic pressure generating grooves, It is preferable that the depth is at least 10 times deeper than the thrust dynamic pressure generating groove and the rear thrust dynamic pressure generating groove.
[0021]
Further, in order to more effectively suppress the occurrence of hemolysis and thrombus, from the viewpoint of increasing the flow amount of blood itself, the radial dynamic pressure generating groove having a large depth, the front thrust dynamic pressure generating groove, and the rear side The thrust dynamic pressure generating groove is preferably wider than the other radial dynamic pressure generating grooves, the front thrust dynamic pressure generating grooves, and the rear thrust dynamic pressure generating grooves.
[0022]
Further, in order to ensure the generation of effective radial dynamic pressure and thrust dynamic pressure, and to facilitate the flow of blood itself, the radial dynamic pressure generating groove is spiral, and the front thrust dynamic pressure generating groove and the rear The side thrust dynamic pressure generating groove is spiral, and the radial dynamic pressure generating groove having a large depth is continuous from the inner surface of the rear plate portion to the inner surface of the front plate portion in the shaft portion, The front-side thrust dynamic pressure generating groove and the rear-side thrust dynamic pressure generating groove having a large depth are continuous between outer edges of the front plate portion and the rear plate portion and the outer peripheral surface of the shaft portion. Good.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have maintained the stability and durability of the blood supply as an artificial heart pump with respect to the prevention of hemolysis and thrombus in the minute gap between the impeller and the bearing, which is a fatal problem of the artificial heart pump. As a result, the present invention focuses on various types of dynamic pressure generating grooves formed in a bearing for rotatably supporting the impeller in a floating state in the above-described minute gap. I've reached the point.
[0024]
In other words, a major feature of the artificial heart pump of the present invention is that a plurality of radial dynamic pressure generating grooves, a front thrust dynamic pressure generating groove, and a rear dynamic Each of the pressure generating grooves has a shallow depth and a deep depth, and the shallow depth flows to maintain the stability and durability of the blood supply as an artificial heart pump. It generates the effective dynamic pressure on the blood to ensure smooth rotation of the impeller with respect to the bearings, while the deep one plays the role of securing the flow rate of the blood itself to prevent hemolysis and thrombus formation. Fulfill.
[0025]
Hereinafter, embodiments of the artificial heart pump of the present invention will be described in detail with reference to the drawings. First, a first embodiment of the present invention will be described. FIG. 1 is a schematic view illustrating a lubrication mechanism of the artificial heart pump according to the first embodiment, FIG. 2 is a development view of a shaft outer peripheral surface showing a radial dynamic pressure generating groove of a bearing in the artificial heart pump, and FIG. FIG. 4 is a cross-sectional view of a shaft outer peripheral surface showing a cross section orthogonal to the radial dynamic pressure generating groove in FIG. 4. FIG. 4 is a front plate (or rear plate) inner surface showing a thrust dynamic pressure generating groove of a bearing of the artificial heart pump. FIG. 5 is a circumferential cross-sectional view of the inner surface of the front plate portion showing a cross section orthogonal to the thrust dynamic pressure generating groove in FIG. In the drawings, parts having the same names and the same functions as those in FIGS. 8 and 9 are denoted by the same reference numerals, and overlapping description will be omitted here, and different points will be described. The same applies to a second embodiment described later.
[0026]
In the first embodiment, first, as shown in FIGS. 1 to 3, a radial movement for supporting the radial load of the impeller 3 (sleeve 30) is provided on the outer peripheral surface of the shaft portion 20 that constitutes the bearing 2. A plurality of (six in FIG. 2) pressure generating grooves 40 are provided partially. These radial dynamic pressure generating grooves 40 have a spiral shape called a spiral groove, and are processed to have a substantially constant depth in each case.
[0027]
Here, the radial dynamic pressure generating groove 40 is composed of a pair of first radial dynamic pressure generating grooves 40a (see double hatched portions in FIG. 2) arranged at symmetrical positions, and a second radial dynamic pressure generating groove 40a disposed therebetween. The radial dynamic pressure generating groove 40b (see a single hatched portion in FIG. 2) has a depth sa of the first radial dynamic pressure generating groove 40a larger than a depth sb of the second radial dynamic pressure generating groove 40b. It is deeply formed. For example, the depth sa of the first radial dynamic pressure generating groove 40a is about 500 μm to 600 μm, while the depth sb of the second radial dynamic pressure generating groove 40b is about several tens μm.
[0028]
Also, as shown in FIGS. 1, 4 and 5, a plurality of front thrust dynamic pressure generating grooves 41 for supporting the thrust load of the impeller 3 are partially formed on the inner surface of the front plate portion 21 (FIG. 4). In the figure, six are provided). These front-side thrust dynamic pressure generating grooves 41 have a spiral shape and, like the radial dynamic pressure generating grooves 40, are individually processed to have a substantially constant depth.
[0029]
Here, the front thrust dynamic pressure generating groove 41 is composed of a pair of first front thrust dynamic pressure generating grooves 41a (see double-hatched portions in FIG. 4) arranged at symmetrical positions, and a second thrust dynamic pressure generating groove 41 disposed therebetween. The second front thrust dynamic pressure generating groove 41b (see the single hatched portion in FIG. 4), the depth ta of the first front thrust dynamic pressure generating groove 41a is equal to that of the second front thrust dynamic pressure generating groove 41b. It is formed deeper than depth tb. For example, the depth ta of the first front-side thrust dynamic pressure generating groove 41a is approximately 500 μm to 600 μm, like the depth sa of the first radial dynamic-pressure generating groove 40a, while the second front thrust dynamic pressure The depth sb of the generation groove 41b is about several tens μm, like the depth sb of the second radial dynamic pressure generation groove 40b.
[0030]
Further, a plurality of rear thrust dynamic pressure generating grooves 42 for supporting the thrust load of the impeller 3 are provided on the inner surface of the rear plate portion 22 in a similar manner. The pressure generating groove 42 includes a first front thrust dynamic pressure generating groove 42a having a large depth and a second front thrust dynamic pressure generating groove 41b having a small depth.
[0031]
By configuring the various dynamic pressure generating grooves in this way, the first radial dynamic pressure generating groove 40a, the first front thrust dynamic pressure generating groove 41a, and the first rear side, which are deep dynamic pressure generating grooves, are formed. Since a large amount of blood can be tolerated in the thrust dynamic pressure generating groove 42a, a part of the pumped blood flows as a lubricating fluid, a sleeve 30 forming the impeller 3, a shaft portion 20 forming the bearing 2, a front plate portion 21 and A minute gap Q formed by the rear plate portion 22 1 ~ Q 3 In, the flow rate of the blood itself increases, and the occurrence of hemolysis and thrombus is suppressed. In addition, the second radial dynamic pressure generating groove 40b, the second front thrust dynamic pressure generating groove 41b, and the second rear thrust dynamic pressure generating groove 42b, which are shallow dynamic pressure generating grooves, reduce the flow of blood. Since the radial dynamic pressure and the thrust dynamic pressure are effectively generated, the impeller 3 can smoothly rotate with respect to the bearing 2, and the stability and durability of the blood supply as the artificial heart pump can be maintained.
[0032]
In order to secure a practical flow amount of blood itself that can suppress the occurrence of hemolysis and thrombus, the first radial dynamic pressure generating groove 40a, the first front thrust dynamic pressure generating groove 41a, and the first The depth sa, ta of the side thrust dynamic pressure generating groove 42a is equal to the depth of the second radial dynamic pressure generating groove 40b, the second front thrust dynamic pressure generating groove 41b, and the second rear thrust dynamic pressure generating groove 42b. It is preferably 10 times or more deeper than sb and tb.
[0033]
In addition, in order to more effectively suppress the occurrence of hemolysis and thrombus, from the viewpoint of increasing the flow amount of blood itself, the first radial dynamic pressure generation groove 40a shown in FIGS. The widths ua and va of the pressure generation groove 41a and the first rear thrust dynamic pressure generation groove 42a are the second radial dynamic pressure generation groove 40b, the second front thrust dynamic pressure generation groove 41b, and the second rear thrust. It is preferable that the width is wider than the widths ub and vb of the dynamic pressure generation grooves 42b.
[0034]
Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 6 is a developed view of a shaft outer peripheral surface showing a radial dynamic pressure generating groove of a bearing in the artificial heart pump according to the second embodiment, and FIG. 7 is a front plate portion showing a thrust dynamic pressure generating groove of the bearing in the artificial heart pump. FIG. 4 is a plan view of an inner surface (or a rear plate portion). The feature of the second embodiment is that the first radial dynamic pressure generating groove 40a, the first front thrust dynamic pressure generating groove 41a, and the first rear thrust dynamic pressure generating groove 42a in the first embodiment are deformed, The point is that it facilitates the flow of blood itself.
[0035]
That is, the first radial dynamic pressure generating groove 40a is formed so as to be continuous between the front and rear ends of the shaft portion 20, that is, from the inner surface of the rear plate portion 22 to the inner surface of the front plate portion 21, as shown in FIG. Have been. As shown in FIG. 7, the first front-side thrust dynamic pressure generating groove 41 a is formed so as to be continuous from the outer edge of the front plate portion 21 to the outer peripheral surface of the shaft portion 20. Further, the first rear-side thrust dynamic pressure generating groove 42 a is formed in a similar manner so as to be continuous from the outer edge of the rear-side plate portion 22 to the outer peripheral surface of the shaft portion 20. Therefore, the blood itself easily and continuously flows along the first radial dynamic pressure generating groove 40a, the first front thrust dynamic pressure generating groove 41a, and the first rear thrust dynamic pressure generating groove 42a. It is possible to more effectively suppress hemolysis and thrombus.
[0036]
Incidentally, the second radial dynamic pressure generating groove 40b does not reach the front and rear ends of the shaft portion 20, and the second front thrust dynamic pressure generating groove 41b and the second rear thrust dynamic pressure generating groove 42b are formed by the front plate. Although it does not reach the outer edge of each of the portion 21 and the rear plate portion 22, there is no problem in generating effective radial dynamic pressure and thrust dynamic pressure.
[0037]
In addition, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the present invention. For example, the second radial dynamic pressure generating groove 40b is formed to be continuous to the front and rear ends of the shaft portion 20, and the second front thrust dynamic pressure generating groove 41b and the second rear thrust dynamic pressure generating groove 42b are Of course, it may be formed continuously from the outer edge of each of the front plate portion 21 and the rear plate portion 22 to the outer peripheral surface of the shaft portion 20. Further, the front-side thrust dynamic pressure generating groove 41 and the rear-side thrust dynamic pressure generating groove 42 are not limited to the spiral shape as described above, and may be, for example, radial.
[0038]
【The invention's effect】
As described above, according to the artificial heart pump of the present invention, a bearing including a housing, a front plate portion, and a rear plate portion fixed within the housing and projecting radially outward from the shaft portion. Along with a through hole facing the outer peripheral surface of the shaft portion with a minute gap therebetween, the front plate portion, a front surface facing the inner surface of the rear plate portion with a minute gap therebetween, and a rear surface facing the inner surface of the rear plate portion. And an impeller rotatably supported in the housing, and by taking in blood from the front in the axial direction and pumping the blood radially outward by rotation of the impeller, A part is introduced into the minute gap between the inner surface of the rear plate portion and the rear surface of the impeller, the minute gap between the outer peripheral surface of the shaft portion and the through hole of the impeller, and the inner surface of the front plate portion. Of the impeller In an artificial heart pump that merges with the blood to be taken in through a minute gap with a surface, a plurality of radial dynamic pressure generating grooves for supporting the radial load of the impeller are provided on an outer peripheral surface of the shaft portion. A plurality of front thrust dynamic pressure generating grooves and a plurality of rear thrust dynamic pressure generating grooves for supporting the thrust load of the impeller are provided on the inner surfaces of the front plate portion and the rear plate portion, respectively. At least one of each of the dynamic pressure generating groove, the front thrust dynamic pressure generating groove, and the rear thrust dynamic pressure generating groove is the other of the radial dynamic pressure generating groove, the front thrust dynamic pressure generating groove, and the rear side. The depth is deeper than the thrust dynamic pressure generating groove. In other words, the deep radial dynamic pressure generating groove, the front thrust dynamic pressure generating groove, and the rear thrust dynamic pressure generating groove allow a large amount of blood, so that a part of the pumped blood flows as a lubricating fluid. In each of the minute gaps formed by the bearings, the flow amount of the blood itself increases, thereby suppressing the occurrence of hemolysis and thrombus. Moreover, in the other radial dynamic pressure generating grooves, the front thrust dynamic pressure generating grooves, and the rear thrust dynamic pressure generating grooves, since the radial dynamic pressure and the thrust dynamic pressure are effectively generated in the flowing blood, the impeller is smoothly moved with respect to the bearing. Rotation becomes possible, and as a result, stability and durability of the blood supply as an artificial heart pump can be maintained.
[0039]
Here, the radial dynamic pressure generating groove having a large depth, the front thrust dynamic pressure generating groove, and the rear thrust dynamic pressure generating groove are other radial dynamic pressure generating grooves, the front thrust dynamic pressure generating groove, When the depth is at least 10 times deeper than the rear thrust dynamic pressure generating groove, it is possible to sufficiently secure a practical flow amount of blood itself that can suppress the occurrence of hemolysis and thrombus.
[0040]
Further, the radial dynamic pressure generating groove having a large depth, the front thrust dynamic pressure generating groove, and the rear thrust dynamic pressure generating groove are other radial dynamic pressure generating grooves, the front thrust dynamic pressure generating groove, and When the width is wider than the rear thrust dynamic pressure generating groove, the flow amount of blood itself is further increased, so that the occurrence of hemolysis and thrombus can be more effectively suppressed.
[0041]
Further, the radial dynamic pressure generating groove is helical, the front thrust dynamic pressure generating groove and the rear thrust dynamic pressure generating groove are spiral, and the radial dynamic pressure generating groove having a large depth is formed by the shaft. The front thrust dynamic pressure generating groove and the rear thrust dynamic pressure generating groove, which are continuous from the inner surface of the rear plate portion to the inner surface of the front plate portion in the portion, are deeper, the front plate portion and When continuous between the outer edge of each of the rear plate portions and the outer peripheral surface of the shaft portion, a form specific to the radial dynamic pressure generating groove, the front thrust dynamic pressure generating groove, and the rear thrust dynamic pressure generating groove is provided. Therefore, effective radial dynamic pressure and thrust dynamic pressure can be generated, and the blood itself can easily flow.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating a lubrication mechanism of an artificial heart pump according to a first embodiment of the present invention.
FIG. 2 is a developed view of a shaft outer peripheral surface showing a radial dynamic pressure generating groove of the bearing in the first embodiment.
FIG. 3 is a cross-sectional view of an outer peripheral surface of a shaft portion in FIG. 2;
FIG. 4 is a plan view of an inner surface of a front plate portion showing a thrust dynamic pressure generation groove of the bearing according to the first embodiment.
FIG. 5 is a circumferential sectional view of the inner surface of the front plate portion in FIG. 4;
FIG. 6 is a development view of a shaft outer peripheral surface showing a radial dynamic pressure generating groove of a bearing in the artificial heart pump according to the second embodiment of the present invention.
FIG. 7 is a plan view of an inner surface of a front plate portion showing a thrust dynamic pressure generation groove of a bearing according to a second embodiment.
FIG. 8 is a vertical sectional view showing a main part of a general artificial heart pump.
FIG. 9 is a schematic diagram illustrating a lubrication mechanism of a conventional artificial heart pump.
FIG. 10 is a developed view of a shaft outer peripheral surface showing a radial dynamic pressure generating groove of a conventional bearing.
11 is a cross-sectional view of the outer peripheral surface of the shaft in FIG.
FIG. 12 is a plan view of an inner surface of a front plate portion showing a thrust dynamic pressure generation groove of a conventional bearing.
FIG. 13 is a plan view of an inner surface of a front plate portion showing a thrust dynamic pressure generation groove of another conventional bearing.
FIG. 14 is a circumferential sectional view of the inner surface of the front plate portion in FIG. 12 or FIG.
[Explanation of symbols]
1 Housing
2 Bearing
3 impeller
10 Front housing
11 Rear housing
12 Suction side connection port
13 Discharge side connection port
14 Rotating magnetic field generator
20 Shaft
21 Front plate
22 Rear plate
23 Tip
24 axle support
30 sleeve
31 Rear shroud
32 Front shroud
33 feather
34 permanent magnet
35 Lid
40 Radial dynamic pressure generating groove
40a First radial dynamic pressure generating groove (deep dynamic pressure generating groove 40)
40b Second radial dynamic pressure generating groove (shallow dynamic pressure generating groove 40)
41 Front thrust dynamic pressure generating groove
41a First front thrust dynamic pressure generating groove (dynamic pressure generating groove 41 having a large depth)
41b Second front-side thrust dynamic pressure generating groove (shallow dynamic pressure generating groove 41)
42 Rear thrust dynamic pressure generating groove
42a First rear thrust dynamic pressure generating groove (dynamic pressure generating groove 42 having a large depth)
42b 2nd rear thrust dynamic pressure generating groove (shallow dynamic pressure generating groove 42)

Claims (4)

ハウジングと、このハウジング内に固定され、軸部及びこの軸部から径方向外方に突出する前側プレート部、後側プレート部よりなる軸受と、前記軸部の外周面に微小間隙を隔てて対向する貫通孔とともに、前記前側プレート部、後側プレート部の各内面に微小間隙を隔てて対向する前面、後面を有し、前記軸受に対し前記ハウジング内で回転可能に支持された羽根車と、を備えていて、前記羽根車の回転により、軸方向前方から血液を取り込んで径方向外方へ圧送するとともに、この圧送された血液の一部を前記後側プレート部の内面と前記羽根車の後面との微小間隙に導き入れ、前記軸部の外周面と前記羽根車の貫通孔との微小間隙、及び前記前側プレート部の内面と前記羽根車の前面との微小間隙を経由して、取り込まれる前記血液に合流させる人工心臓ポンプにおいて、
前記軸部の外周面には前記羽根車のラジアル荷重を支持するためのラジアル動圧発生溝が複数設けられ、前記前側プレート部、後側プレート部の各内面には前記羽根車のスラスト荷重を支持するための前側スラスト動圧発生溝、後側スラスト動圧発生溝が複数ずつ設けられており、
前記ラジアル動圧発生溝、前記前側スラスト動圧発生溝、及び後側スラスト動圧発生溝のうちそれぞれの少なくとも1つが、他の前記ラジアル動圧発生溝、前記前側スラスト動圧発生溝、及び前記後側スラスト動圧発生溝よりも深さが深いことを特徴とする人工心臓ポンプ。
A housing and a bearing fixed to the housing, the front plate portion and the rear plate portion projecting radially outward from the shaft portion and facing the bearing, and facing the outer peripheral surface of the shaft portion with a small gap therebetween; Along with the through-hole, the front plate portion, a front surface facing each inner surface of the rear plate portion with a small gap, a rear surface, and an impeller rotatably supported in the housing with respect to the bearing, With the rotation of the impeller, the blood is taken in from the front in the axial direction and is pumped radially outward, and a part of the pumped blood is part of the inner surface of the rear plate portion and the impeller. Introduced into the minute gap between the rear surface and the minute gap between the outer peripheral surface of the shaft portion and the through hole of the impeller, and the minute gap between the inner surface of the front plate portion and the front surface of the impeller. To the blood In the artificial heart pump to flow,
A plurality of radial dynamic pressure generating grooves for supporting a radial load of the impeller are provided on an outer peripheral surface of the shaft portion, and a thrust load of the impeller is provided on each inner surface of the front plate portion and the rear plate portion. A plurality of front-side thrust dynamic pressure generating grooves for supporting and a plurality of rear-side thrust dynamic pressure generating grooves are provided,
At least one of each of the radial dynamic pressure generating groove, the front thrust dynamic pressure generating groove, and the rear thrust dynamic pressure generating groove is the other radial dynamic pressure generating groove, the front thrust dynamic pressure generating groove, and An artificial heart pump characterized by being deeper than the rear thrust dynamic pressure generating groove.
深さの深い前記ラジアル動圧発生溝、前記前側スラスト動圧発生溝、及び前記後側スラスト動圧発生溝は、他の前記ラジアル動圧発生溝、前記前側スラスト動圧発生溝、及び前記後側スラスト動圧発生溝よりも10倍以上深さが深いことを特徴とする請求項1に記載の人工心臓ポンプ。The radial dynamic pressure generating groove having a large depth, the front thrust dynamic pressure generating groove, and the rear thrust dynamic pressure generating groove are the other radial dynamic pressure generating grooves, the front thrust dynamic pressure generating grooves, and the rear The artificial heart pump according to claim 1, wherein the depth is at least 10 times deeper than the side thrust dynamic pressure generating groove. 深さの深い前記ラジアル動圧発生溝、前記前側スラスト動圧発生溝、及び前記後側スラスト動圧発生溝は、他の前記ラジアル動圧発生溝、前記前側スラスト動圧発生溝、及び前記後側スラスト動圧発生溝よりも幅が広いことを特徴とする請求項1又は2に記載の人工心臓ポンプ。The radial dynamic pressure generating groove having a large depth, the front thrust dynamic pressure generating groove, and the rear thrust dynamic pressure generating groove are the other radial dynamic pressure generating grooves, the front thrust dynamic pressure generating grooves, and the rear The artificial heart pump according to claim 1, wherein the width is wider than the side thrust dynamic pressure generating groove. 前記ラジアル動圧発生溝が螺旋状で、前記前側スラスト動圧発生溝及び前記後側スラスト動圧発生溝が渦巻状であって、
深さの深い前記ラジアル動圧発生溝が、前記軸部における前記後側プレート部の内面から前記前側プレート部の内面に至る間に連続し、深さの深い前記前側スラスト動圧発生溝及び前記後側スラスト動圧発生溝が、前記前側プレート部及び前記後側プレート部それぞれにおける外縁から前記軸部の外周面に至る間に連続していることを特徴とする請求項1から3のいずれかに記載の人工心臓ポンプ。
The radial dynamic pressure generating groove is spiral, the front thrust dynamic pressure generating groove and the rear thrust dynamic pressure generating groove are spiral,
The deep radial dynamic pressure generating groove having a large depth is continuous from the inner surface of the rear plate portion to the inner surface of the front plate portion in the shaft portion, and the front thrust dynamic pressure generating groove having a large depth is provided. 4. The rear thrust dynamic pressure generating groove is continuous between an outer edge of each of the front plate portion and the rear plate portion and an outer peripheral surface of the shaft portion. 2. The artificial heart pump according to item 1.
JP2003034927A 2003-02-13 2003-02-13 Artificial heart pump Expired - Lifetime JP4072721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003034927A JP4072721B2 (en) 2003-02-13 2003-02-13 Artificial heart pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003034927A JP4072721B2 (en) 2003-02-13 2003-02-13 Artificial heart pump

Publications (2)

Publication Number Publication Date
JP2004245303A true JP2004245303A (en) 2004-09-02
JP4072721B2 JP4072721B2 (en) 2008-04-09

Family

ID=33020488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003034927A Expired - Lifetime JP4072721B2 (en) 2003-02-13 2003-02-13 Artificial heart pump

Country Status (1)

Country Link
JP (1) JP4072721B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254436A (en) * 2008-04-14 2009-11-05 National Institute Of Advanced Industrial & Technology Artificial heart pump equipped with dynamic pressure bearing
JP2010261436A (en) * 2009-04-28 2010-11-18 Assoma Inc Canned pump equipped with permanent magnet
JP2014156927A (en) * 2013-01-15 2014-08-28 Canon Machinery Inc Sliding surface structure
WO2015097916A1 (en) * 2013-12-27 2015-07-02 株式会社サンメディカル技術研究所 Blood pump and ventricular assist system
JP2015155682A (en) * 2014-02-21 2015-08-27 三菱重工業株式会社 Noncontact bearing pump
WO2015146741A1 (en) * 2014-03-25 2015-10-01 Ntn株式会社 Water pump
JP2017038813A (en) * 2015-08-20 2017-02-23 国立研究開発法人産業技術総合研究所 Blood pump
US9879691B2 (en) 2014-08-22 2018-01-30 Nidec Corporation Dynamic pressure bearing pump
WO2018052184A1 (en) * 2016-09-13 2018-03-22 New Motech Co., Ltd. Pump for circulating hot water
JP2018204610A (en) * 2018-09-05 2018-12-27 Ntn株式会社 Water pump
JP2019058442A (en) * 2017-09-27 2019-04-18 テルモ株式会社 Pump device
CN110496257A (en) * 2018-05-18 2019-11-26 江苏心佑医疗器械有限公司 A kind of small rotary formula blood pump for mobile hart-lung machine
CN112516455A (en) * 2020-11-18 2021-03-19 深圳核心医疗科技有限公司 Pump body and ventricular assist system
CN113439167A (en) * 2019-02-04 2021-09-24 伊格尔工业股份有限公司 Sliding component
WO2022019201A1 (en) * 2020-07-22 2022-01-27 テルモ株式会社 Pump device
WO2024080381A1 (en) * 2022-10-14 2024-04-18 ミネベアミツミ株式会社 Motor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3634528B1 (en) 2017-06-07 2023-06-07 Shifamed Holdings, LLC Intravascular fluid movement devices, systems, and methods of use
EP3710076B1 (en) 2017-11-13 2023-12-27 Shifamed Holdings, LLC Intravascular fluid movement devices, systems, and methods of use
EP4085965A1 (en) 2018-02-01 2022-11-09 Shifamed Holdings, LLC Intravascular blood pumps and methods of use and manufacture
US11964145B2 (en) 2019-07-12 2024-04-23 Shifamed Holdings, Llc Intravascular blood pumps and methods of manufacture and use

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254436A (en) * 2008-04-14 2009-11-05 National Institute Of Advanced Industrial & Technology Artificial heart pump equipped with dynamic pressure bearing
JP2010261436A (en) * 2009-04-28 2010-11-18 Assoma Inc Canned pump equipped with permanent magnet
JP2014156927A (en) * 2013-01-15 2014-08-28 Canon Machinery Inc Sliding surface structure
WO2015097916A1 (en) * 2013-12-27 2015-07-02 株式会社サンメディカル技術研究所 Blood pump and ventricular assist system
JP2015155682A (en) * 2014-02-21 2015-08-27 三菱重工業株式会社 Noncontact bearing pump
WO2015146741A1 (en) * 2014-03-25 2015-10-01 Ntn株式会社 Water pump
JP2015183650A (en) * 2014-03-25 2015-10-22 Ntn株式会社 water pump
US9879691B2 (en) 2014-08-22 2018-01-30 Nidec Corporation Dynamic pressure bearing pump
JP2017038813A (en) * 2015-08-20 2017-02-23 国立研究開発法人産業技術総合研究所 Blood pump
WO2018052184A1 (en) * 2016-09-13 2018-03-22 New Motech Co., Ltd. Pump for circulating hot water
JP2019058442A (en) * 2017-09-27 2019-04-18 テルモ株式会社 Pump device
CN110496257A (en) * 2018-05-18 2019-11-26 江苏心佑医疗器械有限公司 A kind of small rotary formula blood pump for mobile hart-lung machine
JP2018204610A (en) * 2018-09-05 2018-12-27 Ntn株式会社 Water pump
CN113439167A (en) * 2019-02-04 2021-09-24 伊格尔工业股份有限公司 Sliding component
WO2022019201A1 (en) * 2020-07-22 2022-01-27 テルモ株式会社 Pump device
CN112516455A (en) * 2020-11-18 2021-03-19 深圳核心医疗科技有限公司 Pump body and ventricular assist system
WO2024080381A1 (en) * 2022-10-14 2024-04-18 ミネベアミツミ株式会社 Motor

Also Published As

Publication number Publication date
JP4072721B2 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
JP2004245303A (en) Artificial heart pump
JP6246928B2 (en) Impeller for axial pump
JP2022020677A (en) Intravascular blood pump
JP4184611B2 (en) Rotating blood pump
US8114008B2 (en) Blood pump and pump unit
CN1245793C (en) Device for delivering single-phase or multiphase fluids without altering the properties thereof
EP3294367A1 (en) Improved axial flow blood pump
JP4534073B2 (en) Secondary impeller of ventricular assist system
JP2009254436A (en) Artificial heart pump equipped with dynamic pressure bearing
JP4059316B2 (en) Blood pump
JP2007000350A (en) Artificial heart pump equipped with dynamic pressure bearing
US11686318B2 (en) Centrifugal blood pump device
US20220072296A1 (en) Pump device for pumping blood
JP2022502174A (en) Sealed micro pump
JP4078245B2 (en) Artificial heart pump
JP2003205030A (en) Artificial cardiac pump
JP2005348996A (en) Artificial heart pump
JP2928875B2 (en) Sealing mechanism of artificial heart pump
JP2000337292A (en) Pump
JP2004353564A (en) Centrifugal pump
JP4107886B2 (en) Axial flow pump
WO2022019201A1 (en) Pump device
TWI754144B (en) Pump rotor and pump thereof
JP2019058442A (en) Pump device
WO2019044737A1 (en) Pump device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4072721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term