JP2007000350A - Artificial heart pump equipped with dynamic pressure bearing - Google Patents

Artificial heart pump equipped with dynamic pressure bearing Download PDF

Info

Publication number
JP2007000350A
JP2007000350A JP2005183582A JP2005183582A JP2007000350A JP 2007000350 A JP2007000350 A JP 2007000350A JP 2005183582 A JP2005183582 A JP 2005183582A JP 2005183582 A JP2005183582 A JP 2005183582A JP 2007000350 A JP2007000350 A JP 2007000350A
Authority
JP
Japan
Prior art keywords
impeller
dynamic pressure
casing
bearing
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005183582A
Other languages
Japanese (ja)
Other versions
JP4517076B2 (en
Inventor
Takashi Yamane
隆志 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005183582A priority Critical patent/JP4517076B2/en
Priority to PCT/JP2006/312541 priority patent/WO2006137496A1/en
Publication of JP2007000350A publication Critical patent/JP2007000350A/en
Application granted granted Critical
Publication of JP4517076B2 publication Critical patent/JP4517076B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/047Bearings hydrostatic; hydrodynamic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/196Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body replacing the entire heart, e.g. total artificial hearts [TAH]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/226Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly radial components
    • A61M60/232Centrifugal pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/422Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/824Hydrodynamic or fluid film bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0646Units comprising pumps and their driving means the pump being electrically driven the hollow pump or motor shaft being the conduit for the working fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Cardiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • External Artificial Organs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent blood as a working fluid flowing through a gap of an impeller dynamic pressure bearing of an artificial heart pump from recirculating from an outflow part of an impeller; and to receive thrust force with just a thrust dynamic pressure bearing. <P>SOLUTION: The impeller 5 comprises an impeller main body 8 and the impeller bearing member 9. A permanent magnet 21 is provided along a cylindrical surface 7, and a vane 6 is radially provided on a bottom surface. A casing bearing member 17 is provided on an inner casing 4, a radial dynamic pressure bearing is formed whose dynamic pressure grooves are provided either on a peripheral surface 13 of an upper cylindrical part 11 of the impeller bearing member 17 or a cylindrical inner surface 18 of the casing bearing member 17, and the thrust dynamic pressure bearing is formed whose dynamic pressure grooves are provided either on an upper surface 15 of the impeller bearing member 17 or a lower end surface 19 of the casing bearing member 17. The dynamic pressure grooves lead the working fluid from an impeller inflow part so that the fluid can be discharged from the outflow part. When the impeller 5 is rotating, it is lifted and its thrust force is received with just the thrust dynamic pressure bearing. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は生体の心臓の代わりに、或いは生体の心臓と共に用いる人工心臓用ポンプに関し、特にラジアル方向及びスラスト方向共に動圧軸受により支持した人工心臓ポンプに関する。   The present invention relates to an artificial heart pump used in place of or together with a living heart, and more particularly to an artificial heart pump supported by dynamic pressure bearings in both the radial direction and the thrust direction.

我が国においても、臓器移植法が施行され、脳死からの心臓移植が可能となっているが、実情はドナー不足のため、なお残る患者を救う道は人工心臓しかない。人工心臓の研究は古くから行われ、臨床使用も多数報告されている。人工心臓には、生体心臓を切除しないで並列に入れる補助人工心臓と、切除して結合する完全置換人工心臓とがある。従来これらは、ベッドサイドに制御装置を設置した空気駆動型のものがほとんどであったが、近年は腹部埋め込みが可能で、ベルトないしリュックにつけたバッテリを用いて電気駆動する補助人工心臓も開発され、現在の製品ではそのサイズの点から体格の大きい患者用に限られるものの、在宅治療もできる人工心臓が用いられるようになっている。   In Japan, organ transplantation has been implemented, and heart transplantation from brain death is possible. However, since the actual situation is a lack of donors, the only way to save the remaining patients is artificial heart. Artificial heart has been studied for a long time, and many clinical uses have been reported. The artificial heart includes an auxiliary artificial heart that can be placed in parallel without excising the living heart, and a complete replacement artificial heart that is excised and combined. In the past, most of these were air-driven types with a control device installed on the bedside, but in recent years, an artificial heart that can be implanted in the abdomen and is electrically driven using a battery attached to a belt or backpack has been developed. Although current products are limited to patients with large physiques due to their size, artificial hearts that can be used at home are being used.

このような人工心臓をポンプ形式の点から分類すると、大別して拍動流式及び連続流式の2方式が存在する。拍動流型は、1回の拍出毎に定量の血液を送出する方式であり、臨床応用が進んだ補助人工心臓では年単位の使用実績を有するものもある。連続流型は回転機構により連続的に血液を送出する方式であり、送出量がポンプ容積には直接関係せず小型化が容易で、体内埋め込み型の補助人工心臓用に有望である。無拍動流が生体に与える影響については、いくつかの動物実験によると、生理的問題なく生存することが報告されている。ただし、生理的には拍動流が好ましいとされているため、連続流ポンプは生体心臓を残して付ける補助人工心臓として開発が進められている。連続流型ポンプの中には遠心式、軸流式、回転容積式などの個別形式がある。本発明は、この連続流型人工心臓に関するものである。   When such an artificial heart is classified from the point of the pump type, there are roughly two types, a pulsating flow type and a continuous flow type. The pulsatile flow type is a method of delivering a fixed amount of blood for each stroke, and some auxiliary artificial hearts that have advanced clinical applications have a track record of use on a yearly basis. The continuous flow type is a system in which blood is continuously sent out by a rotating mechanism, and the delivery amount is not directly related to the pump volume and is easily reduced in size, which is promising for an implantable auxiliary artificial heart. Regarding the effects of non-pulsatile flow on a living body, some animal experiments have reported that they survive without physiological problems. However, since pulsatile flow is preferable physiologically, the continuous flow pump is being developed as an auxiliary artificial heart that leaves a living heart. Among continuous flow type pumps, there are individual types such as a centrifugal type, an axial flow type, and a rotary displacement type. The present invention relates to this continuous flow type artificial heart.

具体例として、本発明者によって図3に示すような人工心臓用遠心ポンプが提案され、特許第2807786号として特許されている(特開平10−33664号・特許文献1)。この人工心臓ポンプによると、図3に示すように遠心式インペラ42を対向する2面からなるラジアル軸受46−48及びピボット軸受45−50で支えている。ケーシング47の下部にはインペラ駆動装置51を設け、その内部で磁石53が回転することにより、インペラ内蔵の磁石群44を回転駆動している。それによりケーシング上部に形成した流入口54から血液が流入し、ケーシングの下部周囲に設けた流出口からこれを吐出することができるようになっている。なお、上記のような磁気カップリングによりインペラを回転する手段として、可動部分53を電磁石群に置換したダイレクトドライブ方式の駆動装置を採用したものも開発されている。   As a specific example, a centrifugal pump for an artificial heart as shown in FIG. 3 has been proposed by the present inventor and patented as Japanese Patent No. 2807786 (Japanese Patent Laid-Open No. 10-33664, Patent Document 1). According to this artificial heart pump, as shown in FIG. 3, the centrifugal impeller 42 is supported by two opposing radial bearings 46-48 and pivot bearings 45-50. An impeller driving device 51 is provided at the lower portion of the casing 47, and a magnet 53 is rotated inside the impeller driving device 51, thereby rotating the magnet group 44 with a built-in impeller. Thereby, blood flows in from the inlet 54 formed in the upper part of the casing, and can be discharged from the outlet provided around the lower part of the casing. As a means for rotating the impeller by the magnetic coupling as described above, a direct drive type driving device in which the movable portion 53 is replaced with an electromagnet group has been developed.

更に本発明者等は上記のような人工心臓ポンプの軽量化、ピボット軸受部分での摩擦摺動の問題点を解決するため、特開2003−24434号公報(特許文献2)に示されるようなピボット軸受を用いず、全て動圧軸受で作動する人工心臓ポンプを提案している。即ち、この人工心臓ポンプは図4に示すように、下側ケーシング75の中心下部に設けた下側スラスト受け76に固定軸77を突設し、上端部に上側スラスト受け78を固定する。中心部に流入部63を設けたインペラ部62の下方にインペラ支持部材67を設け、その外周に永久磁石81を等間隔に配置し、この永久磁石81に対向して下側ケーシング75の外周に電磁石82を配置することにより、ダイレクト駆動のインペラ駆動装置83を構成する。インペラ支持部材67の中心側には軸受形成部材68を設け、その中心部の円筒状内面と外周にラジアル動圧溝80を形成した固定軸77間にラジアル動圧軸受を形成している。また、インペラ支持部材67の上端面72に設けた上側スラスト用動圧発生溝73と上側スラスト受け78との間で上側ラジアル動圧軸受を構成し、インペラ支持部材67の下端面68に設けた下側スラスト用動圧発生溝71と下側スラスト受け76との間で下側ラジアル動圧軸受を構成している。このポンプにおいては、インペラ61の流出部69の血液を作動流体として各軸受部を循環させるものである。   Furthermore, in order to solve the problems of the weight reduction of the artificial heart pump and the frictional sliding at the pivot bearing part as described above, the present inventors have disclosed a technique disclosed in Japanese Patent Laid-Open No. 2003-24434 (Patent Document 2). We have proposed an artificial heart pump that does not use a pivot bearing, but operates entirely on a hydrodynamic bearing. That is, as shown in FIG. 4, this artificial heart pump has a fixed shaft 77 protruding from a lower thrust receiver 76 provided at the lower center of the lower casing 75, and an upper thrust receiver 78 fixed to the upper end. An impeller support member 67 is provided below the impeller portion 62 provided with an inflow portion 63 at the center, and permanent magnets 81 are arranged at equal intervals on the outer periphery thereof, and on the outer periphery of the lower casing 75 facing the permanent magnet 81. By arranging the electromagnet 82, a direct drive impeller drive device 83 is configured. A bearing forming member 68 is provided on the center side of the impeller support member 67, and a radial dynamic pressure bearing is formed between a cylindrical inner surface and a fixed shaft 77 formed with a radial dynamic pressure groove 80 on the outer periphery thereof. An upper radial dynamic pressure bearing is formed between the upper thrust dynamic pressure generating groove 73 provided on the upper end surface 72 of the impeller support member 67 and the upper thrust receiver 78, and provided on the lower end surface 68 of the impeller support member 67. A lower radial dynamic pressure bearing is configured between the lower thrust dynamic pressure generating groove 71 and the lower thrust receiver 76. In this pump, blood in the outflow portion 69 of the impeller 61 is circulated through each bearing portion as a working fluid.

このような構成の人工心臓ポンプによって、前記問題点を解決し、更に下記特許文献3に記載されているような人工心臓ポンプよりも、安定した回転を行わせることができるようになっている。また、下記特許文献4に記載されているような人工心臓ポンプのように、インペラの駆動に際してインペラを回転軸線方向に吸引しながら回転させることによる、大きなスラスト力の発生もなくすことができる。
特開平10−33664号公報 特開2003−24434号公報 特表2001−515765号公報 特開平9−206372号公報
The artificial heart pump having such a configuration solves the above-described problems, and can perform more stable rotation than the artificial heart pump described in Patent Document 3 below. Further, like an artificial heart pump as described in Patent Document 4 below, generation of a large thrust force can be eliminated by rotating the impeller while sucking it in the direction of the rotation axis when driving the impeller.
JP-A-10-33664 JP 2003-24434 A JP-T-2001-515765 JP-A-9-206372

本発明者が提案した上記特許文献2に開示した人工心臓用ポンプにおいては、ピボット軸受を用いることなく安定した作動を行うことができるものであるが、このポンプにおいてはスラスト軸受として上側スラスト揺動圧発生溝73と上側スラスト受け78との間で上側ラジアル動圧軸受を構成し、インペラ支持部材67の下端面68に設けた下側スラスト用動圧発生溝71と下側スラスト受け76との間で下側ラジアル動圧軸受を構成しているので、インペラ部62と一体的に回転するインペラ支持部材67が、上側スラスト受け78と下側スラスト受け76との間で、上下方向のいずれにも偏らずに正確に回転させることが血球破壊防止のために必要である。   In the artificial heart pump disclosed in Patent Document 2 proposed by the present inventor, stable operation can be performed without using a pivot bearing. In this pump, the upper thrust oscillation is used as a thrust bearing. An upper radial dynamic pressure bearing is formed between the pressure generating groove 73 and the upper thrust receiver 78, and a lower thrust dynamic pressure generating groove 71 and a lower thrust receiver 76 provided on the lower end surface 68 of the impeller support member 67 are formed. Since the lower radial dynamic pressure bearing is formed between the upper thrust receiver 78 and the lower thrust receiver 76, the impeller support member 67 that rotates integrally with the impeller portion 62 is positioned in any of the vertical directions. In order to prevent blood cell destruction, it is necessary to rotate it accurately without bias.

そのため上記人工心臓用ポンプにおいては、特に精密なスラスト圧力調整を必要とする問題がある。また、これらの動圧軸受部分には動作流体として血液を循環させているものであるが、動圧軸受の微少間隙にインペラから吐出した血液を再循環させて用いているため血液の凝固防止の点から問題があり、特に再循環してインペラから吐出した血液が再度動圧軸受部分に循環する可能性もあり、更に血液凝固の点で不利である。   For this reason, the artificial heart pump has a problem that it requires particularly precise thrust pressure adjustment. In addition, blood is circulated as a working fluid in these dynamic pressure bearing parts. However, since blood discharged from the impeller is recirculated and used in a minute gap of the dynamic pressure bearing, blood coagulation is prevented. In particular, there is a problem, and there is a possibility that blood recirculated and discharged from the impeller will circulate again to the hydrodynamic bearing portion, which is further disadvantageous in terms of blood coagulation.

しかも、インペラから吐出した血液の動圧軸受への再循環に際して、下側スラスト動圧軸受の間隙、ラジアル動圧軸受の間隙、上側スラスト動圧軸受の間隙を順に循環させているため、多数の微少間隙を通ることとなり、血液に与える影響が大きく、血液の凝固防止に不利となるため、できる限り動圧軸受を通る回数を減らすことが望まれる。   In addition, when the blood discharged from the impeller is recirculated to the hydrodynamic bearing, the gap of the lower thrust hydrodynamic bearing, the gap of the radial hydrodynamic bearing, and the gap of the upper thrust hydrodynamic bearing are circulated in order. Since it passes through a minute gap and has a large effect on blood, which is disadvantageous for preventing blood coagulation, it is desirable to reduce the number of times that it passes through the hydrodynamic bearing as much as possible.

本発明は上記のような知見に基づいてなされたもので、インペラのスラスト方向及びラジアル方向のいずれも動圧軸受で支持するに際して、動圧軸受の間隙を流れる動作流体としての血液をインペラの吐出側から再循環させることなく、また、特にスラスト軸受を上下両方に設けることなく、片方のみで支持し安定して作動することができるようにした、動圧軸受を備えた人工心臓ポンプを提供することを主たる目的としている。   The present invention has been made on the basis of the above-described knowledge. When the impeller is supported by the hydrodynamic bearing in both the thrust direction and the radial direction, blood as the working fluid flowing through the gap of the hydrodynamic bearing is discharged from the impeller. Provided is an artificial heart pump provided with a hydrodynamic bearing, which can be supported and stably operated only on one side without recirculation from the side, and in particular without providing a thrust bearing on both upper and lower sides. This is the main purpose.

本発明に係る動圧軸受を備えた人工心臓ポンプは、上記課題を解決するため、上方中心部に流入口を形成し、下方円筒部外周面に沿って複数の極をもつ永久磁石を配置し、下面側に前記流入口に連通する開口を中心として放射状に延びる複数のベーンを備え、上方に突出する上方円筒部を備えたインペラを、前記インペラの下方円筒部外周面に対向する円筒状内周面に複数の電磁石を配置したケーシング内に回転且つ上下動自在に設け、前記インペラの上方円筒部外周面とこれに対向するケーシング内周面のいずれかに動圧溝を備えたラジアル動圧軸受を形成するとともに、前記インペラの上面とこれに対向するケーシング下端面のいずれかに動圧溝を備えたスラスト動圧軸受を形成したことを特徴とする。   In order to solve the above problems, an artificial heart pump including a hydrodynamic bearing according to the present invention has an inlet formed in an upper center portion and a permanent magnet having a plurality of poles arranged along the outer peripheral surface of the lower cylindrical portion. An impeller having a plurality of vanes extending radially around an opening communicating with the inlet on the lower surface side, and an upper cylindrical portion protruding upward, and a cylindrical inner surface facing the outer peripheral surface of the lower cylindrical portion of the impeller Radial dynamic pressure provided in a casing having a plurality of electromagnets arranged on its peripheral surface so that it can rotate and move up and down, and has a dynamic pressure groove on either the outer peripheral surface of the upper cylindrical portion of the impeller or the inner peripheral surface of the casing facing this A thrust dynamic pressure bearing provided with a dynamic pressure groove on either the upper surface of the impeller or the lower end surface of the casing facing the bearing is formed.

本発明に係る他の動圧軸受を備えた人工心臓ポンプは、前記動圧溝を備えたスラスト動圧軸受において、前記インペラの流入口の流体を、前記各動圧溝の作用により各動圧溝に導き、ベーンの流体吐出側に流出させたことを特徴とする。   An artificial heart pump having another dynamic pressure bearing according to the present invention is the thrust dynamic pressure bearing having the dynamic pressure groove, wherein the fluid at the inlet of the impeller is supplied to each dynamic pressure groove by the action of each dynamic pressure groove. It is led to the groove and flows out to the fluid discharge side of the vane.

本発明に係る他の動圧軸受を備えた人工心臓ポンプは、前記動圧溝を備えたスラスト動圧軸受において、 前記ベーン内の永久磁石の配置位置を、前記ケーシング内の電磁石の配置位置より、少なくともインペラの非回転時には下方に配置したことを特徴とする請求項1記載の動圧軸受を備えた人工心臓ポンプ。   An artificial heart pump provided with another dynamic pressure bearing according to the present invention is the thrust dynamic pressure bearing provided with the dynamic pressure groove, wherein the arrangement position of the permanent magnet in the vane is more than the arrangement position of the electromagnet in the casing. 2. The artificial heart pump provided with a hydrodynamic bearing according to claim 1, wherein the artificial heart pump is disposed at least when the impeller is not rotating.

本発明に係る他の動圧軸受を備えた人工心臓ポンプは、前記動圧溝を備えたスラスト動圧軸受において、前記インペラは、内部に前記永久磁石を備え下面側に前記ベーンを備えるインペラ本体と、前記上方円筒部と前記インペラ本体の上部に位置する円板部とからなるインペラ軸受部材とから構成し、前記上方円筒部外周面とこれに対向するケーシング内周面のいずれかに動圧溝を備えたラジアル動圧軸受を形成し、前記円板部の上面とこれに対向するケーシング下端面のいずれかに動圧溝を備えたスラスト動圧軸受を形成したことを特徴とする。   An artificial heart pump including another dynamic pressure bearing according to the present invention is a thrust dynamic pressure bearing including the dynamic pressure groove, wherein the impeller includes the permanent magnet therein and the vane on a lower surface side. And an impeller bearing member composed of the upper cylindrical portion and a disc portion located at the upper portion of the impeller body, and dynamic pressure is applied to either the outer peripheral surface of the upper cylindrical portion or the casing inner peripheral surface facing the upper cylindrical portion. A radial dynamic pressure bearing having a groove is formed, and a thrust dynamic pressure bearing having a dynamic pressure groove is formed on either the upper surface of the disk portion or the lower end surface of the casing facing the disk portion.

本発明に係る他の動圧軸受を備えた人工心臓ポンプは、前記動圧溝を備えたスラスト動圧軸受において、前記ケーシングは、前記インペラの上方円筒部外周面に対向する内周面と、前記インペラの上面に対向する下端面とを備えたケーシング軸受部材を、ケーシング本体と別体に形成し、両者を結合してなることを特徴とする。   An artificial heart pump provided with another dynamic pressure bearing according to the present invention is a thrust dynamic pressure bearing provided with the dynamic pressure groove, wherein the casing has an inner peripheral surface facing an outer peripheral surface of an upper cylindrical portion of the impeller, A casing bearing member having a lower end surface facing the upper surface of the impeller is formed separately from the casing body, and both are combined.

本発明に係る他の動圧軸受を備えた人工心臓ポンプは、前記動圧溝を備えたスラスト動圧軸受において、前記ケーシングにおいて前記ベーンの端面が対向する底面には、前記インペラの流入口の直下に略円錐面をなす案内突起を固定して、該案内突起により流体を中心側から外周方向に案内し、前記ベーンをセミオープンベーンの態様で作動することを特徴とする。   An artificial heart pump including another dynamic pressure bearing according to the present invention is a thrust dynamic pressure bearing including the dynamic pressure groove, wherein the bottom surface of the casing facing the end surface of the vane is provided with an inlet of the impeller. A guide projection having a substantially conical surface is fixed immediately below, and the fluid is guided from the center side to the outer peripheral direction by the guide projection, and the vane is operated in a semi-open vane mode.

本発明は上記のように構成したので、インペラのスラスト方向及びラジアル方向のいずれも動圧軸受で支持するに際して、動圧軸受の間隙を流れる、インペラの流入側から一部をバイパスして動圧軸受の間隙を通し、インペラの吐出側に導き、動作流体としての血液をインペラの吐出側から再循環させることがなくなる。また、特にスラスト軸受を上下両方に設けることなく、片方のみで支持し安定して作動することができ、軸受の構成を簡素化することができ、その分安価なものとすることができると共に、動圧軸受の間隙を流れることによる血液への悪影響を減少させることができる。   Since the present invention is configured as described above, when both the thrust direction and radial direction of the impeller are supported by the dynamic pressure bearing, the dynamic pressure is bypassed partially from the inflow side of the impeller and flows through the gap of the dynamic pressure bearing. There is no longer any possibility that blood as a working fluid is recirculated from the discharge side of the impeller through the bearing gap and guided to the discharge side of the impeller. In addition, without providing a thrust bearing on both the upper and lower sides, it can be supported and operated stably only on one side, the structure of the bearing can be simplified, and the cost can be reduced accordingly. The adverse effect on blood due to flowing through the gap of the hydrodynamic bearing can be reduced.

本発明は、インペラの動圧軸受の間隙を流れる作動流体としての血液をインペラの吐出側から再循環させることなく、またスラスト軸受を1つだけにするという課題を、上方中心部に流入口を形成し、下方円筒部外周面に沿って複数の極をもつ永久磁石を配置し、下面側に前記流入口に連通する開口を中心として放射状に延びる複数のベーンを備え、上方に突出する上方円筒部を備えたインペラを、前記インペラの下方円筒部外周面に対向する円筒状内周面に複数の電磁石を配置したケーシング内に回転且つ上下動自在に設け、前記インペラの上方円筒部外周面とこれに対向するケーシング内周面のいずれかに動圧溝を備えたラジアル動圧軸受を形成するとともに、前記インペラの上面とこれに対向するケーシング下端面のいずれかに動圧溝を備えたスラスト動圧軸受を形成することにより解決した。   The present invention solves the problem of not recirculating blood as a working fluid flowing through the gap of the dynamic pressure bearing of the impeller from the discharge side of the impeller and using only one thrust bearing. An upper cylinder that protrudes upward, has a permanent magnet having a plurality of poles formed along the outer peripheral surface of the lower cylindrical portion, and has a plurality of vanes extending radially around the opening communicating with the inflow port on the lower surface side An impeller provided with a portion is rotatably and vertically movable in a casing having a plurality of electromagnets arranged on a cylindrical inner peripheral surface facing the outer peripheral surface of the lower cylindrical portion of the impeller, and an outer peripheral surface of the upper cylindrical portion of the impeller. A radial dynamic pressure bearing having a dynamic pressure groove is formed on one of the casing inner peripheral surfaces facing this, and the dynamic pressure groove is formed on either the upper surface of the impeller and the lower end surface of the casing facing the same. It was solved by forming a thrust dynamic pressure bearing equipped.

本発明の実施例を図面に沿って説明する。図1は本発明の実施例の断面図であり、図示する人工心臓ポンプ1においては主要構成部材として、下側ケーシング2と、上側ケーシング3と、上側ケーシング3の中心部に嵌合する内側ケーシング4と、これらのケーシング内部で回転するインペラ5とを備えている。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of an embodiment of the present invention. In the illustrated artificial heart pump 1, as main components, a lower casing 2, an upper casing 3, and an inner casing that fits in the center of the upper casing 3. 4 and an impeller 5 rotating inside these casings.

インペラ5は図2にも示しているように、下端面側に図中4枚のベーン6を突出して設け、外周が円筒面7をなしている樹脂製のインペラ本体8に対して、その上方にセラミックス等からなるインペラ軸受部材9を圧入、或いは接着等により固定している。インペラ軸受部材9はインペラ本体8の円筒面7と一致する外径を備えた円板部10と、その上方に突出した上方円筒部11と、その下方に突出した下方円筒部12とから成り、下方円筒部12をインペラ本体8の上部に嵌合し固定している。   As shown in FIG. 2, the impeller 5 is provided with four vanes 6 projecting from the lower end surface side, with the outer periphery forming a cylindrical surface 7 above the resin-made impeller body 8. An impeller bearing member 9 made of ceramic or the like is fixed by press-fitting or bonding. The impeller bearing member 9 is composed of a disc portion 10 having an outer diameter that coincides with the cylindrical surface 7 of the impeller body 8, an upper cylindrical portion 11 protruding upward, and a lower cylindrical portion 12 protruding downward. The lower cylindrical portion 12 is fitted and fixed to the upper portion of the impeller body 8.

図1及び図2に示す実施例においては、このインペラ軸受部材9の上方円筒部11における外周面13にラジアル動圧溝14を形成し、円板部10の上面15にスラスト動圧溝16を形成している。一方、内側ケーシング4の中心下端部にはセラミックス等からなるケーシング軸受部材17を嵌合して固定しており、このケーシング軸受部材17はインペラ軸受部材9の上方円筒部11と間隙をもって嵌合する円筒状内周面18と、下端面19、及びその中心部には中心開口20を備えている。   In the embodiment shown in FIGS. 1 and 2, a radial dynamic pressure groove 14 is formed on the outer peripheral surface 13 of the upper cylindrical portion 11 of the impeller bearing member 9, and a thrust dynamic pressure groove 16 is formed on the upper surface 15 of the disc portion 10. Forming. On the other hand, a casing bearing member 17 made of ceramics or the like is fitted and fixed to the center lower end portion of the inner casing 4, and this casing bearing member 17 is fitted with the upper cylindrical portion 11 of the impeller bearing member 9 with a gap. A cylindrical inner peripheral surface 18, a lower end surface 19, and a central opening 20 are provided at the center thereof.

上記のようなインペラ軸受部材9とケーシング軸受部材17によって、インペラ軸受部材9の前記ラジアル動圧溝14はケーシング軸受部材17の円筒状内周面18と間隙介して対向し、インペラ軸受部材9のスラスト動圧溝16はケーシング軸受部材17の下端面19と対向している。前記実施例においては動圧溝を全てインペラ軸受部材9側に形成した例を示したが、逆にケーシング軸受部材17における円筒状内周面18にラジアル動圧溝を形成し、下端面19にスラスト動圧溝を形成する組み合わせを採用することができ、更には、前記円筒状内周面18にラジアル動圧溝形成し、前記上面15にスラスト動圧溝を形成する組み合わせ、あるいは前記外周面13にラジアル動圧溝を形成し、前記下端面19にスラスト動圧溝を形成する組み合わせ等、任意の組み合わせを採用することができる。   By the impeller bearing member 9 and the casing bearing member 17 as described above, the radial dynamic pressure groove 14 of the impeller bearing member 9 is opposed to the cylindrical inner peripheral surface 18 of the casing bearing member 17 via a gap. The thrust dynamic pressure groove 16 faces the lower end surface 19 of the casing bearing member 17. In the above embodiment, the example in which all the dynamic pressure grooves are formed on the impeller bearing member 9 side is shown, but conversely, the radial dynamic pressure grooves are formed on the cylindrical inner peripheral surface 18 of the casing bearing member 17 and the lower end surface 19 is formed. A combination in which a thrust dynamic pressure groove is formed can be employed. Further, a radial dynamic pressure groove is formed on the cylindrical inner peripheral surface 18 and a thrust dynamic pressure groove is formed on the upper surface 15, or the outer peripheral surface. Arbitrary combinations such as a combination in which a radial dynamic pressure groove is formed in 13 and a thrust dynamic pressure groove is formed in the lower end surface 19 can be adopted.

インペラ本体8内にはインペラ本体の下方円筒部の外周面を形成する円筒面7の内側であって、円筒面7に沿って複数の極をもつ永久磁石21を等間隔に配置しており、これらの永久磁石21は図中上方ケーシング3の内周側に配置した複数個の電磁石22と対向している。特に図示実施例においては、複数の永久磁石の列の中心線aを、少なくともインペラの非回転時においてインペラが自重で降下しているとき、前記複数の電磁石22の中心線bよりも下方に位置するように配置し、電磁石の通電による永久磁石との磁気結合時に、その磁力によってインペラ5全体を上方に持ち上げて回転できるようにし、その際に円板部10の上面15とケーシング軸受部材17の下端面19とが近接し、その間隙でのスラスト動圧軸受によって回転支持可能としている。   Inside the impeller body 8, permanent magnets 21 having a plurality of poles are arranged at equal intervals inside the cylindrical surface 7 that forms the outer peripheral surface of the lower cylindrical portion of the impeller body, These permanent magnets 21 are opposed to a plurality of electromagnets 22 arranged on the inner peripheral side of the upper casing 3 in the drawing. In particular, in the illustrated embodiment, the center line a of the row of the plurality of permanent magnets is positioned below the center line b of the plurality of electromagnets 22 when the impeller is lowered by its own weight at least when the impeller is not rotating. When the magnetic coupling with the permanent magnet by energization of the electromagnet is performed, the entire impeller 5 can be lifted upward by the magnetic force, and the upper surface 15 of the disc portion 10 and the casing bearing member 17 can be rotated. The lower end surface 19 is in close proximity, and can be supported by a thrust hydrodynamic bearing in the gap.

インペラ本体8の下端に形成したベーン6は、図示実施例ではその中心のベーン開口23の中心と偏心して放射状に延びており、図中4枚示している。その組み立て状態においては図1に示されるように、ベーン開口23の下方に固定された断面円錐形をなして、中心部をポンプ軸線方向に流入する血液流を、外周方向に案内する案内突起24と対向しており、ベーン6はこの案内突起24と対向する傾斜端面25と、下側ケーシング2のケーシング上面26と対向する下端面27とを備えている。   In the illustrated embodiment, the vanes 6 formed at the lower end of the impeller body 8 are eccentric from the center of the central vane opening 23 and extend radially, and four are shown in the figure. In the assembled state, as shown in FIG. 1, a guide projection 24 which forms a conical section fixed below the vane opening 23 and guides the blood flow flowing in the central portion in the pump axial direction in the outer peripheral direction. The vane 6 includes an inclined end face 25 facing the guide protrusion 24 and a lower end face 27 facing the casing upper face 26 of the lower casing 2.

内側ケーシング4の中心には流入口28を形成し、この流入口28には接続管29を固定している。また、図示実施例においては内側ケーシング4において下方に延びる円筒部30の外周が上側ケーシング3の中心部に嵌合し、それにより上側ケーシング3の内周側に固定した複数の電磁石22に対する内側隔壁を構成している。更に、内側ケーシング4の円筒部30から外方に延びる外周フランジ部31は下側ケーシング2と上側ケーシング3の間に挟まれ、ボルト32によってこれらを一体的に結合している。   An inlet 28 is formed at the center of the inner casing 4, and a connecting pipe 29 is fixed to the inlet 28. Further, in the illustrated embodiment, the outer periphery of the cylindrical portion 30 extending downward in the inner casing 4 is fitted to the center portion of the upper casing 3, and thereby the inner partition walls for the plurality of electromagnets 22 fixed to the inner peripheral side of the upper casing 3. Is configured. Further, an outer peripheral flange portion 31 extending outward from the cylindrical portion 30 of the inner casing 4 is sandwiched between the lower casing 2 and the upper casing 3 and is integrally coupled by a bolt 32.

上記のような構造からなり、図1のように組み立てられた人工心臓用ポンプ1の作動に際しては、電磁石22に通電すると通常のモータと同様に電磁石22の電磁力の所定の変化によって永久磁石21が順に吸引及び反発して回転し、インペラ5が回転する。それにより、接続管29から流入した体内の血液は、内側ケーシング4の流入口28からケーシング軸受部材17の中心開口20、インペラ軸受部材9の貫通口17、ベーン開口23をそれぞれ通り、案内突部24によって外周方向に案内され、セミオープンベーンの態様で、回転するベーン6によって外周方向に加圧流動させられ、下側ケーシング2の吐出通路33から吐出部材34の吐出口35を経て体内に循環させることができる。   In the operation of the artificial heart pump 1 constructed as described above and assembled as shown in FIG. 1, when the electromagnet 22 is energized, the permanent magnet 21 is caused by a predetermined change in the electromagnetic force of the electromagnet 22 in the same manner as a normal motor. Rotate in order by suction and repulsion, and the impeller 5 rotates. Thereby, the blood in the body flowing in from the connection pipe 29 passes through the inlet 28 of the inner casing 4 through the central opening 20 of the casing bearing member 17, the through-hole 17 of the impeller bearing member 9, and the vane opening 23. 24 is guided in the outer peripheral direction, is pressurized and flowed in the outer peripheral direction by the rotating vane 6 in a semi-open vane manner, and circulates in the body from the discharge passage 33 of the lower casing 2 through the discharge port 35 of the discharge member 34. Can be made.

上記電磁石22への通電時に、前記のような電磁石22と永久磁石の上下方向a、bの偏心により、またベーン6内の血液流の力によって、回転するインペラ5は最初自重で下方に降下していた状態から上方にスラスト力を受け移動し、図示実施例においては、インペラ軸受部材15の円板部10における上面15に形成されるスラスト動圧溝16と、ケーシング軸受部材17の下端面19との間に形成されるスラスト動圧軸受で上記スラスト力が支持される。   When the electromagnet 22 is energized, the rotating impeller 5 is initially lowered by its own weight due to the eccentricity of the electromagnet 22 and the permanent magnet in the vertical directions a and b and the force of blood flow in the vane 6. In the illustrated embodiment, the thrust dynamic pressure groove 16 formed on the upper surface 15 of the disc portion 10 of the impeller bearing member 15 and the lower end surface 19 of the casing bearing member 17 are moved. The thrust force is supported by a thrust hydrodynamic bearing formed between the two.

また、インペラ軸受部材9の上方円筒部11の外周面13に形成したラジアル動圧溝14と、ケーシング軸受部材17の円筒状内周面18との間に形成されるラジアル動圧軸受でラジアル方向に支持される。したがって、この人工心臓ポンプ1においては、前記従来のものにおいて上下両側にスラスト軸受が必要であったのに対して、本発明においては上記のように片側のスラスト軸受のみで安定して回転を支持することができる。なお、インペラ5の回転時にインペラ5を上方に移動させる力は、ポンプの流体加圧力によって充分得られるときには、前記のような電磁石と永久磁石の偏心は不要となる。   Further, the radial dynamic pressure bearing formed between the radial dynamic pressure groove 14 formed on the outer peripheral surface 13 of the upper cylindrical portion 11 of the impeller bearing member 9 and the cylindrical inner peripheral surface 18 of the casing bearing member 17 is a radial direction. Supported by Therefore, in the artificial heart pump 1, the thrust bearings on both the upper and lower sides are necessary in the conventional pump, whereas in the present invention, the rotation is stably supported only by the thrust bearing on one side as described above. can do. When the force for moving the impeller 5 upward during rotation of the impeller 5 is sufficiently obtained by the fluid pressurizing force of the pump, the eccentricity of the electromagnet and the permanent magnet is not necessary.

このとき上記のような動圧溝を充分深く形成することによって、ケーシング軸受部材17の中心開口20から流入する血液の一部が、インペラ軸受部材9の上端部とケーシング軸受部材17との間隙35を通り、ラジアル軸受部の間隙においてラジアル動圧溝14によりポンプ軸線方向に加圧され、次いでスラスト軸受部の間隙においてスラスト動圧溝16により放射方向に加圧され、円板部10の外周面及びインペラ本体8の外周面7と、内側ケーシング4の円筒部30の内周面との間隙を順に通り、ベーン6からの吐出流に混合して吐出する。それにより、各動圧軸受を通る血液は再循環することがなくなり、血液凝固の発生を防止することができる。   At this time, by forming the dynamic pressure groove as described above sufficiently deeply, a part of blood flowing from the central opening 20 of the casing bearing member 17 causes a gap 35 between the upper end portion of the impeller bearing member 9 and the casing bearing member 17. And is pressurized in the pump axial direction by the radial dynamic pressure groove 14 in the gap of the radial bearing portion, and then radially pressurized by the thrust dynamic pressure groove 16 in the gap of the thrust bearing portion, and the outer peripheral surface of the disc portion 10 And it passes through the gap | interval of the outer peripheral surface 7 of the impeller main body 8, and the internal peripheral surface of the cylindrical part 30 of the inner casing 4, and mixes with the discharge flow from the vane 6, and discharges. Thereby, the blood passing through each dynamic pressure bearing is not recirculated, and the occurrence of blood coagulation can be prevented.

本発明の実施例の断面図である。It is sectional drawing of the Example of this invention. 同実施例のインペラの斜視図及び平面図及び底面図である。It is the perspective view of the impeller of the Example, a top view, and a bottom view. 本発明者等が先に提案した人工心臓用遠心ポンプの断面図である。It is sectional drawing of the centrifugal pump for artificial hearts which the present inventors proposed previously. 本発明者等により前記ポンプを改良した人工心臓用遠心ポンプの断面図である。It is sectional drawing of the centrifugal pump for artificial hearts which improved the said pump by the present inventors.

符号の説明Explanation of symbols

1 人工心臓ポンプ
2 下側ケーシング
3 上側ケーシング
4 内側ケーシング
5 インペラ
6 ベーン
7 円筒面
8 インペラ本体
9 インペラ軸受部材
10 円板部
11 上方円筒部
12 下方円筒部
13 外周面
14 ラジアル動圧溝
15 上面
16 スラスト動圧溝
17 ケーシング軸受部材
18 円筒状内周面
19 下端面
20 中心開口
21 永久磁石
22 電磁石
23 ベーン開口
24 案内突起
25 傾斜端面
26 ケーシング上面
27 下端面
28 流入口
29 接続管
30 円筒部
31 外周フランジ部
32 ボルト
33 吐出通路
34 吐出部材
DESCRIPTION OF SYMBOLS 1 Artificial heart pump 2 Lower casing 3 Upper casing 4 Inner casing 5 Impeller 6 Vane 7 Cylindrical surface 8 Impeller main body 9 Impeller bearing member 10 Disk part 11 Upper cylindrical part 12 Lower cylindrical part 13 Outer peripheral surface 14 Radial dynamic pressure groove 15 Upper surface 16 Thrust dynamic pressure groove 17 Casing bearing member 18 Cylindrical inner peripheral surface 19 Lower end surface 20 Center opening 21 Permanent magnet 22 Electromagnet 23 Vane opening 24 Guide projection 25 Inclined end surface 26 Upper surface 27 Lower end surface 28 Inlet 29 Connection pipe 30 Cylindrical portion 31 Outer peripheral flange 32 Bolt 33 Discharge passage 34 Discharge member

Claims (6)

上方中心部に流入口を形成し、下方円筒部外周面に沿って複数の極をもつ永久磁石を配置し、下面側に前記流入口に連通する開口を中心として放射状に延びる複数のベーンを備え、上方に突出する上方円筒部を備えたインペラを、前記インペラの下方円筒部外周面に対向する円筒状内周面に複数の電磁石を配置したケーシング内に回転且つ上下動自在に設け、
前記インペラの上方円筒部外周面とこれに対向するケーシング内周面のいずれかに動圧溝を備えたラジアル動圧軸受を形成するとともに、前記インペラの上面とこれに対向するケーシング下端面のいずれかに動圧溝を備えたスラスト動圧軸受を形成したことを特徴とする動圧軸受を備えた人工心臓ポンプ。
An inlet is formed in the upper center portion, a permanent magnet having a plurality of poles is arranged along the outer peripheral surface of the lower cylindrical portion, and a plurality of vanes extending radially around the opening communicating with the inlet on the lower surface side An impeller having an upper cylindrical portion protruding upward is provided in a casing in which a plurality of electromagnets are arranged on a cylindrical inner peripheral surface facing the outer peripheral surface of the lower cylindrical portion of the impeller so as to be rotatable and vertically movable;
A radial dynamic pressure bearing having a dynamic pressure groove is formed on either the outer peripheral surface of the upper cylindrical portion of the impeller and the casing inner peripheral surface facing the upper cylindrical portion, and any of the upper surface of the impeller and the lower end surface of the casing facing the impeller An artificial heart pump provided with a dynamic pressure bearing, characterized in that a thrust dynamic pressure bearing provided with a crab dynamic pressure groove is formed.
前記インペラの流入口の流体を、前記各動圧溝の作用により各動圧溝に導き、ベーンの流体吐出側に流出させたことを特徴とする請求項1記載の動圧軸受を備えた人工心臓ポンプ。   The artificial fluid equipped with a hydrodynamic bearing according to claim 1, wherein the fluid at the inlet of the impeller is guided to each hydrodynamic groove by the action of each hydrodynamic groove and flows out to the fluid discharge side of the vane. Heart pump. 前記ベーン内の永久磁石の配置位置を、前記ケーシング内の電磁石の配置位置より、少なくともインペラの非回転時には下方に配置したことを特徴とする請求項1記載の動圧軸受を備えた人工心臓ポンプ。   2. The artificial heart pump with a hydrodynamic bearing according to claim 1, wherein the arrangement position of the permanent magnet in the vane is arranged below the arrangement position of the electromagnet in the casing at least when the impeller is not rotating. . 前記インペラは、内部に前記永久磁石を備え下面側に前記ベーンを備えるインペラ本体と、前記上方円筒部と前記インペラ本体の上部に位置する円板部とからなるインペラ軸受部材とから構成し、
前記上方円筒部外周面とこれに対向するケーシング内周面のいずれかに動圧溝を備えたラジアル動圧軸受を形成し、前記円板部の上面とこれに対向するケーシング下端面のいずれかに動圧溝を備えたスラスト動圧軸受を形成したことを特徴とする請求項1記載の動圧軸受を備えた人工心臓ポンプ。
The impeller includes an impeller body including the permanent magnet therein and the vane on a lower surface side, and an impeller bearing member including the upper cylindrical portion and a disk portion positioned at an upper portion of the impeller body,
A radial dynamic pressure bearing having a dynamic pressure groove is formed on either the outer peripheral surface of the upper cylindrical portion or the casing inner peripheral surface facing the upper cylindrical portion, and either the upper surface of the disc portion or the lower end surface of the casing facing the disk portion. 2. The artificial heart pump provided with a dynamic pressure bearing according to claim 1, wherein a thrust dynamic pressure bearing provided with a dynamic pressure groove is formed.
前記ケーシングは、前記インペラの上方円筒部外周面に対向する内周面と、前記インペラの上面に対向する下端面とを備えたケーシング軸受部材を、ケーシング本体と別体に形成し、両者を結合してなることを特徴とする請求項1記載の動圧軸受を備えた人工心臓ポンプ。   The casing forms a casing bearing member having an inner peripheral surface facing the outer peripheral surface of the upper cylindrical portion of the impeller and a lower end surface facing the upper surface of the impeller, separately from the casing body, and couples them together The artificial heart pump provided with the hydrodynamic bearing according to claim 1. 前記ケーシングにおいて前記ベーンの端面が対向する底面には、前記インペラの流入口の直下に略円錐面をなす案内突起を固定して、該案内突起により流体を中心側から外周方向に案内し、前記ベーンをセミオープンベーンの態様で作動することを特徴とする請求項1記載の動圧軸受を備えた人工心臓ポンプ。   In the casing, a guide projection having a substantially conical surface is fixed immediately below the inflow port of the impeller on a bottom surface of the vane facing the end surface of the impeller, and the fluid is guided from the center side to the outer periphery by the guide projection, 2. The artificial heart pump having a hydrodynamic bearing according to claim 1, wherein the vane is operated in a semi-open vane manner.
JP2005183582A 2005-06-23 2005-06-23 Artificial heart pump with hydrodynamic bearing Expired - Fee Related JP4517076B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005183582A JP4517076B2 (en) 2005-06-23 2005-06-23 Artificial heart pump with hydrodynamic bearing
PCT/JP2006/312541 WO2006137496A1 (en) 2005-06-23 2006-06-22 Artificial heart pump with dynamic pressure bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005183582A JP4517076B2 (en) 2005-06-23 2005-06-23 Artificial heart pump with hydrodynamic bearing

Publications (2)

Publication Number Publication Date
JP2007000350A true JP2007000350A (en) 2007-01-11
JP4517076B2 JP4517076B2 (en) 2010-08-04

Family

ID=37570523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005183582A Expired - Fee Related JP4517076B2 (en) 2005-06-23 2005-06-23 Artificial heart pump with hydrodynamic bearing

Country Status (2)

Country Link
JP (1) JP4517076B2 (en)
WO (1) WO2006137496A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172565A (en) * 2011-02-21 2012-09-10 Mitsubishi Electric Corp Pump, and heat pump device
JP2015532146A (en) * 2012-10-12 2015-11-09 アビオメド オイローパ ゲーエムベーハー Centrifugal blood pump
US9879691B2 (en) 2014-08-22 2018-01-30 Nidec Corporation Dynamic pressure bearing pump

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2808658C (en) * 2010-08-20 2017-02-28 Thoratec Corporation Implantable blood pump
JP4875783B1 (en) 2011-09-15 2012-02-15 三菱重工業株式会社 Magnetic coupling pump and pump unit equipped with the same
DE102012200803B4 (en) 2012-01-20 2015-04-02 Yasa Motors Poland Sp. z.o.o. Wet rotor
DE102012200806B4 (en) * 2012-01-20 2014-07-31 Yasa Motors Poland Sp. z.o.o. Wet runner pump with power electronics
DE102012200816B4 (en) * 2012-01-20 2015-04-02 Yasa Motors Poland Sp. z.o.o. Wet runner pump with permanent magnet
DE102012200807B4 (en) * 2012-01-20 2014-09-25 Yasa Motors Poland Sp. z.o.o. Wet runner pump with slide bearing
EP2999495B1 (en) 2013-05-23 2019-07-03 Reinheart GmbH Impeller of a centrifugal pump apparatus
DK3127562T3 (en) * 2015-08-04 2021-01-18 Abiomed Europe Gmbh SELF-CONDUCTIVE RENT
EP4275737A3 (en) 2018-01-10 2023-12-20 Tc1 Llc Bearingless implantable blood pump
CN110075377B (en) * 2019-06-26 2019-10-08 上海微创医疗器械(集团)有限公司 Magnetic liquid suspension formula blood pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0491396A (en) * 1990-07-31 1992-03-24 Ntn Corp Turbo type pump
US6227817B1 (en) * 1999-09-03 2001-05-08 Magnetic Moments, Llc Magnetically-suspended centrifugal blood pump
JP2002315824A (en) * 2001-04-23 2002-10-29 National Institute Of Advanced Industrial & Technology Rotary pump for artificial heart
JP2002541986A (en) * 1999-04-23 2002-12-10 ヴェントラシスト・ピーティワイ・リミテッド Rotary blood pump and control device therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0491396A (en) * 1990-07-31 1992-03-24 Ntn Corp Turbo type pump
JP2002541986A (en) * 1999-04-23 2002-12-10 ヴェントラシスト・ピーティワイ・リミテッド Rotary blood pump and control device therefor
US6227817B1 (en) * 1999-09-03 2001-05-08 Magnetic Moments, Llc Magnetically-suspended centrifugal blood pump
JP2002315824A (en) * 2001-04-23 2002-10-29 National Institute Of Advanced Industrial & Technology Rotary pump for artificial heart

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172565A (en) * 2011-02-21 2012-09-10 Mitsubishi Electric Corp Pump, and heat pump device
JP2015532146A (en) * 2012-10-12 2015-11-09 アビオメド オイローパ ゲーエムベーハー Centrifugal blood pump
JP2017164503A (en) * 2012-10-12 2017-09-21 アビオメド オイローパ ゲーエムベーハー Centrifugal blood pump
US11092158B2 (en) 2012-10-12 2021-08-17 Abiomed Europe Gmbh Centrifugal blood pump with hydrodynamic bearing
US9879691B2 (en) 2014-08-22 2018-01-30 Nidec Corporation Dynamic pressure bearing pump

Also Published As

Publication number Publication date
WO2006137496A1 (en) 2006-12-28
JP4517076B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
JP4517076B2 (en) Artificial heart pump with hydrodynamic bearing
JP3834610B2 (en) Artificial heart pump with hydrodynamic bearing
JP6360937B2 (en) Centrifugal blood pump
US10731652B2 (en) Hydrodynamic thrust bearings for rotary blood pump
US8152493B2 (en) Centrifugal rotary blood pump with impeller having a hydrodynamic thrust bearing surface
EP3539584A1 (en) Microaxial pump for assisting blood circulation (variants)
US20170043076A1 (en) Rotary Blood Pump
US20140309481A1 (en) Rotary pump with levitated impeller having thrust bearing for improved startup
WO2014000753A1 (en) Centrifugal blood pump apparatus
JP2009254436A (en) Artificial heart pump equipped with dynamic pressure bearing
AU2012261669B2 (en) Rotary blood pump
JP4866704B2 (en) Artificial heart pump with hydrodynamic bearing
US20230381489A1 (en) Implantable centrifugal cardiac assist pump having permanent magnets embedded in impeller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4517076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees