JP2004129797A - Ultrasonic diagnostic equipment - Google Patents

Ultrasonic diagnostic equipment Download PDF

Info

Publication number
JP2004129797A
JP2004129797A JP2002296634A JP2002296634A JP2004129797A JP 2004129797 A JP2004129797 A JP 2004129797A JP 2002296634 A JP2002296634 A JP 2002296634A JP 2002296634 A JP2002296634 A JP 2002296634A JP 2004129797 A JP2004129797 A JP 2004129797A
Authority
JP
Japan
Prior art keywords
arrayed
transducers
blood vessel
ultrasonic diagnostic
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002296634A
Other languages
Japanese (ja)
Inventor
Morio Nishigaki
西垣 森緒
Toshiharu Sato
佐藤 利春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002296634A priority Critical patent/JP2004129797A/en
Priority to EP03758717A priority patent/EP1550403A1/en
Priority to US10/530,193 priority patent/US20060042389A1/en
Priority to CN 200380104688 priority patent/CN1720007A/en
Priority to PCT/JP2003/012896 priority patent/WO2004032747A1/en
Priority to KR1020057006094A priority patent/KR20050055001A/en
Publication of JP2004129797A publication Critical patent/JP2004129797A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate the positioning between a search unit and a blood vessel in ultrasonic diagnostic equipment for observing the blood vessel. <P>SOLUTION: An array transducer A and an array transducer B are disposed into T shape relatively to a subject, and after the cross section of the blood vessel is positioned by the array transducer B to fix one end of the array transducer A, the array transducer A is operated into an arc shape so that the longitudinal direction of the blood vessel and the array direction of the array transducer A are accorded to each other. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば血管のように直線上の臓器の情報を得るための超音波診断装置に関する。
【0002】
【従来の技術】
配列振動子を用いて体内に超音波の送受信を繰り返し行うことで、体内の2次元情報を得る超音波診断装置の原理は既に公知のものとなっている。また、超音波診断装置の信号処理として、振幅情報を用いたBモード表示、移動する血液の反射波の位相が経時的に変化していくことを利用したドプラ血流計、カラーフロー血流映像装置の原理についても既に知られているのでここでは省略する。
【0003】
近年、血液の比較的速い動きだけでなく、臓器の比較的ゆっくりした動きの情報を得る方法、例えば下記の特許文献1に記載されているものなどが知られている。以下、この文献について説明する。図6は下記特許文献1における装置のブロック図である。図6において、送受信器111から出力された高圧の電気パルスは超音波探触子112において超音波信号に変換され、生体113の情報を得たい方向に伝えられる。超音波パルスは生体113内の情報を得たい臓器(あるいは血管など)で反射して超音波探触子112で受信され、送受信器111を経由して直交検波器114で送信周波数とほぼ等しい周波数の参照信号を用いて検波され、I、Qの2つの信号が出力される。
【0004】
【特許文献1】
特公平7−67451号公報
【0005】
I、Qの2信号は振幅演算器116に入力して振幅情報に変換され、この信号はBモード表示に用いられる。I、Qの信号はまた、自己相関器124に入力し、自己相関器124では2回同じ方向に送受信した信号の同一の深さに対し、相関を取ることで、位相の回転量を求める。位相の回転量は臓器の移動量に比例する。この計算を行うのが変位量演算器125である。変位量演算器125で演算された変位量は変位量積分器126により積分することにより、ある時点からの微小な動きのトータルにより、臓器がどこまで動いたのかを求めることができる。
【0006】
振幅演算器116で求めたBモード画像と、変位量積分器126で求めた変位量は、スキャンコンバータ121を経て、表示器122に表示される。また、生体信号センサ129及び生体信号検出器127は、生体113の情報、例えば心拍などを検知し、変位量積分器126における基準位置を決める。生体113に超音波パルスを放射する方向を順次変えながら上記の動作を行うことで、2次元画像として動きを表示することも可能となる。
【0007】
【発明が解決しようとする課題】
しかしながら、従来例において、直線上の臓器として、例えば血管を観察した場合に、超音波探触子112の配列方向を血管の方向に合わせるのが難しいという問題が発生する。ここで、超音波探触子112に近い血管壁、血液部分、超音波探触子112から遠い血管壁というように画像が出るよう、超音波探触子112を位置合わせすることが望ましいが、これには熟練を要する。
【0008】
本発明はこれらの問題を解決し、熟練を要せず血管のように直線上の臓器に位置合わせして観察することができ、高い精度の動き情報を得ることができる超音波診断装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は上記目的を達成するために、
任意の角度で接合された複数の配列振動子と、前記複数の配列振動子の各々からそれぞれ得られる映像を表示する手段とを備え、前記配列振動子は複数の振動子を並列状態に並べる構成とした。
【0010】
すなわち、一例として、複数の配列振動子の配列方向が直交するよう配置する。具体的には、例えば、2つの配列振動子をT字型に配置し、また、2つの配列振動子を十字型に配置し、また、3つの配列振動子をH字型に配置する。
【0011】
上記構成により、複数の配列振動子の一方の中心を直線上の臓器に位置合わせした後、他方の配列方向を直線上の臓器の方向に位置合わせすることができるので、熟練を要せず血管のように直線上の臓器に位置合わせして観察することができ、高い精度の動き情報を得ることができる。
【0012】
【発明の実施の形態】
以下、本発明の実施について図1〜図5を用いて説明する。
<第1の実施の形態>
図1は本発明の第1の実施の形態における複数の配列振動子の被検領域を血管に位置合わせする説明図である。図1(a)は2つの配列振動子A、Bの配置方向を示している。配列振動子Aは振動子a〜nが直線上に配列されて構成され、配列振動子Bは振動子a〜jが直線上に配列されて構成されている。配列振動子Aと配列振動子Bは図1(a)のように、被検体に対してT字型に配置されており、配列振動子Aの振動子a〜nの中心を貫く中心線(図示せず)の延長上に配列振動子Bの中心が位置している。
【0013】
2つの配列振動子A、Bに接続する超音波診断装置のブロック図の例を図2に示す。図2は、図6に示した従来例の装置と比較して、配列振動子Bのために送受信器11、直交検波器14、振幅演算器16が設けてあり、スキャンコンバータ121の入力が3つになっている点が異なり、表示器122には配列振動子Bの振幅情報の画像をも表示できるようになっている。
【0014】
すなわち図2において、超音波探触子(以下単に探触子ともいう)12は2つの配列振動子A、Bにより構成され、送受信器111、11からそれぞれ高圧の電気パルスが配列振動子A、Bに出力され、配列振動子A、Bにおいて超音波信号に変換され、生体13の情報を得たい方向に伝えられる。配列振動子A、Bの超音波パルスはそれぞれ、生体13内の情報を得たい臓器(あるいは血管など)で反射して配列振動子A、Bで受信され、送受信器111、11を経由して直交検波器114、14で送信周波数とほぼ等しい周波数の参照信号を用いて検波され、I、Qの2つの信号が出力される。
【0015】
直交検波器114、14からのI、Qの2信号は、それぞれ振幅演算器116、16に入力して振幅情報に変換され、この信号はBモード表示に用いられる。I、Qの信号はまた、自己相関器124に入力して、自己相関器124では、2回同じ方向に送受信した信号の同一の深さに対し、相関を取ることで、位相の回転量を求める。位相の回転量は臓器の移動量に比例する。この計算を行うのが変位量演算器125である。変位量演算器125で演算された変位量は変位量積分器126により積分することにより、ある時点からの微小な動きのトータルにより、臓器がどこまで動いたのかを求めることができる。振幅演算器116、16で求めたBモード画像と、変位量積分器126で求めた変位量は、スキャンコンバータ121を経て、表示器122に表示される。
【0016】
図3は2つの配列振動子に接続する超音波診断装置の他のブロック図である。この例では、図2に示す配列振動子B側の回路11、14、16を省略し、スイッチ32により配列振動子A、Bのどちらかに切り替えて使用することができる。
【0017】
次に本実施の形態における動作を説明する。図1(b)は血管4上に探触子12を載せた状態を示す。この時点では、配列振動子Bの画像が表示器122に表示されている。操作者は、配列振動子Bの中央部分の振動子eとfの間に血管4の半径方向(輪切り方向)の中心が来るように探触子12の位置を調節する。このとき、画像上において、振動子eとfの間に相当するラインを表示すると、調節がしやすい。調節が終わった段階で、配列振動子Bと血管の関係は、図1(c)のように各中心が位置合わせされる。
【0018】
次に操作者は配列振動子Aが血管4の長手方向に合うように探触子12を操作する。このとき、図1(d)に示すように配列振動子Bの中心点oを軸にして配列振動子A(配列方向β)を円弧状に動かすことで、血管4の方向αに沿うように合わせることができる。この作業においては、配列振動子Aの画像が表示されている。このとき作業上、配列振動子Bの形状は、凸状をしていたほうが中心点oをずらさずに円弧状操作を行うことができる。合わせ終わったときの配列振動子Aと血管4の位置関係は図1(e)のように各方向が位置合わせされる。
【0019】
以上のように、配列振動子Aと直交する配列振動子Bを用いることで、配列振動子Aの一端を決めることができ、その後、円弧状操作により配列振動子Aを血管の長手方向に合わせることが容易にでき、優れた血管の画像を得ることができる。
【0020】
<第2の実施の形態>
図4は本発明の第2の実施の形態における複数の配列振動子の被検領域を血管に合わせる説明図である。図4(a)は、2つの配列振動子A、Bの配置を示したものである。第1の実施の形態と同様に、配列振動子Aは個々の振動子a〜rから構成され、配列振動子Bは個々の振動子a〜jで構成されている。配列振動子Aと配列振動子Bは図4(a)のように十字型に配置されており、配列振動子Aの振動子a〜rの中心を貫く中心線(図示せず)と配列振動子Bの振動子a〜jの中心を貫く中心線(図示せず)は直角に交差している。
【0021】
本発明の第2の実施の形態でも、図4(b)、(c)に示すように配列振動子Bの画像を表示しながら配列振動子Bの中心と血管4の中心を揃える。次に配列振動子Aと配列振動子Bの交点を中心として、図4(d)に示すように配列振動子Aを回転させることにより、図4(e)に示すように血管の長手方向に合わせることができる。
【0022】
<第3の実施の形態>
図5は本発明の第3の実施の形態における複数の配列振動子の被検領域を血管に合わせる説明図である。この実施の形態には3つの配列振動子A、B、Cを用いる。図5(a)は、3つの配列振動子A、B、Cの配置を示したものである。配列振動子Aは個々の振動子a〜jから構成され、配列振動子B、Cはそれぞれ個々の振動子a〜jで構成されている。配列振動子A、配列振動子Bと配列振動子Cは図5(a)のようにH字型に配置されており、配列振動子Aの振動子a〜jの中心を貫く中心線(図示せず)の延長は配列振動子Bと配列振動子Cの中心に位置している。
【0023】
本発明の第3の実施の形態の探触子に接続する超音波診断装置は、おおむね図2、3と同様のものであり、図2に配列振動子C用の回路を追加したもの、あるいは、図3のスイッチ32を3分岐にしたものである。
【0024】
本実施の形態では、まず、平行な配列振動子B、Cの内、任意の、例えば配列振動子Bを用いてその画像を表示し、図5(b)、(c)のように配列振動子Bと血管の各中心を合わせる。次に配列振動子Bと平行な配列振動子Cの画像を表示し、図5(d)に示すように配列振動子Bの中心O1を軸に探触子を回転させ、図5(e)に示すように配列振動子Cと血管4の中心を揃える。このとき、配列振動子Aと血管の長手方向は図5(f)のように揃っている。
なお、配列振動子の配置は、以上説明した実施の形態に限らず、これらの組み合わせた状態であってもよく、例えば、T字型、H字型を2つ以上組み合わせたハシゴ型でもよい。
【0025】
【発明の効果】
本発明は上記実施の形態より明らかなように、配列振動子を2つ以上備えた探触子を用い、初めに1つの探触子で血管の輪切り方向を揃え、次にこれに直交したもう1つの探触子を円弧状に操作することで、血管の長手方向と振動子の方向を揃えることが容易にでき、画質の良好な画像を得ることができ、熟練を要せず血管のように直線上の臓器に位置合わせして観察することができ、高い精度の動き情報を得ることができる超音波診断装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態における2つの配列振動子を用いた探触子と、その位置合わせを示す説明図
(a)2つの配列振動子A、Bの配置方向
(b)配列振動子Bによる位置合わせ中の状態
(c)配列振動子Bにより位置合わせ完了した状態
(d)配列振動子Aによる位置合わせ中の状態
(e)配列振動子Aにより位置合わせ完了した状態
【図2】本発明の第1の実施の形態における超音波診断装置の一例を示すブロック図
【図3】本発明の第1の実施の形態における超音波診断装置の他の例を示すブロック図
【図4】本発明の第2の実施の形態における2つの配列振動子を用いた探触子と、その位置合わせを示す説明図
(a)2つの配列振動子A、Bの配置方向
(b)配列振動子Bによる位置合わせ中の状態
(c)配列振動子Bにより位置合わせ完了した状態
(d)配列振動子Aによる位置合わせ中の状態
(e)配列振動子Aにより位置合わせ完了した状態
【図5】本発明の第3の実施の形態における3つの配列振動子を用いた探触子と、その位置合わせを示す説明図
(a)3つの配列振動子A、B、Cの配置方向
(b)配列振動子Bによる位置合わせ中の状態
(c)配列振動子Bにより位置合わせ完了した状態
(d)配列振動子Cによる位置合わせ中の状態
(e)配列振動子Cにより位置合わせ完了した状態
(f)配列振動子Cにより位置合わせ完了した状態
【図6】従来例における超音波診断装置のブロック図
【符号の説明】
A、B、C 配列振動子
4 血管
11、111 送受信器
12 超音波探触子
13 生体
14、114 直交検波器
16、116 振幅演算器
32 スイッチ
121 スキャンコンバータ
122 表示器
124 自己相関器
125 変位量演算器
126 変位量積分器
127 生体信号検出器
129 生体信号センサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ultrasonic diagnostic apparatus for obtaining information on a linear organ such as a blood vessel.
[0002]
[Prior art]
The principle of an ultrasonic diagnostic apparatus that obtains two-dimensional information in the body by repeatedly transmitting and receiving ultrasonic waves in the body using an arrayed transducer has been known. Also, as a signal processing of the ultrasonic diagnostic apparatus, a B-mode display using amplitude information, a Doppler blood flow meter utilizing the fact that the phase of a reflected wave of moving blood changes with time, a color flow blood flow image Since the principle of the device is already known, it is omitted here.
[0003]
In recent years, a method of obtaining information of relatively slow movement of an organ as well as relatively fast movement of blood, for example, a method described in Patent Literature 1 below is known. Hereinafter, this document will be described. FIG. 6 is a block diagram of the device in Patent Document 1 below. In FIG. 6, a high-voltage electric pulse output from a transceiver 111 is converted into an ultrasonic signal by an ultrasonic probe 112 and transmitted in a direction in which information on the living body 113 is to be obtained. The ultrasonic pulse is reflected by an organ (or a blood vessel or the like) in the living body 113 where information is desired to be received, received by the ultrasonic probe 112, passed through the transceiver 111, and transmitted by the orthogonal detector 114 at a frequency substantially equal to the transmission frequency. , And two signals I and Q are output.
[0004]
[Patent Document 1]
Japanese Patent Publication No. 7-67451
The two signals I and Q are input to an amplitude calculator 116 and converted into amplitude information, and this signal is used for B-mode display. The I and Q signals are also input to the autocorrelator 124, and the autocorrelator 124 obtains a correlation with respect to the same depth of the signal transmitted and received twice in the same direction, thereby obtaining the amount of phase rotation. The amount of phase rotation is proportional to the amount of movement of the organ. The displacement calculator 125 performs this calculation. By integrating the displacement calculated by the displacement calculator 125 by the displacement integrator 126, it is possible to determine how far the organ has moved based on the total fine movement from a certain point in time.
[0006]
The B-mode image obtained by the amplitude calculator 116 and the displacement obtained by the displacement integrator 126 are displayed on the display 122 via the scan converter 121. The biological signal sensor 129 and the biological signal detector 127 detect information on the living body 113, for example, heartbeat, and determine a reference position in the displacement integrator 126. By performing the above operation while sequentially changing the direction in which the ultrasonic pulse is emitted to the living body 113, the movement can be displayed as a two-dimensional image.
[0007]
[Problems to be solved by the invention]
However, in the conventional example, when observing, for example, a blood vessel as a linear organ, there is a problem that it is difficult to match the arrangement direction of the ultrasonic probes 112 with the direction of the blood vessel. Here, it is desirable to position the ultrasonic probe 112 so that an image appears such as a blood vessel wall close to the ultrasonic probe 112, a blood portion, a blood vessel wall far from the ultrasonic probe 112, This requires skill.
[0008]
The present invention solves these problems, and provides an ultrasonic diagnostic apparatus that can align and observe a linear organ such as a blood vessel without skill, and obtain highly accurate motion information. The purpose is to do.
[0009]
[Means for Solving the Problems]
The present invention, in order to achieve the above object,
A plurality of arrayed transducers joined at an arbitrary angle; and means for displaying images obtained from each of the plurality of arrayed transducers, wherein the arrayed transducers are arranged in a state where the plurality of transducers are arranged in parallel. And
[0010]
That is, as an example, a plurality of transducers are arranged so that the arrangement directions are orthogonal. Specifically, for example, two arrayed oscillators are arranged in a T shape, two arrayed oscillators are arranged in a cross shape, and three arrayed oscillators are arranged in an H shape.
[0011]
According to the above configuration, after aligning one center of the plurality of arrayed oscillators with the organ on the straight line, the other array direction can be aligned with the direction of the organ on the straight line. As described above, it is possible to observe by aligning with the organ on a straight line, and to obtain highly accurate motion information.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
<First embodiment>
FIG. 1 is an explanatory diagram for aligning test regions of a plurality of arrayed transducers with a blood vessel according to the first embodiment of the present invention. FIG. 1A shows the arrangement direction of the two arrayed vibrators A and B. The arrayed oscillator A is configured by arranging oscillators a to n on a straight line, and the arrayed oscillator B is configured by arranging oscillators a to j on a straight line. As shown in FIG. 1A, the arrayed oscillators A and B are arranged in a T-shape with respect to the subject, and a center line ( The center of the arrayed transducers B is located on an extension of (not shown).
[0013]
FIG. 2 shows an example of a block diagram of an ultrasonic diagnostic apparatus connected to two array transducers A and B. FIG. 2 is different from the conventional apparatus shown in FIG. 6 in that a transmitter / receiver 11, a quadrature detector 14, and an amplitude calculator 16 are provided for the arrayed oscillator B, and the input of the scan converter 121 is 3 The difference is that the image of the amplitude information of the arrayed oscillators B can be displayed on the display 122.
[0014]
That is, in FIG. 2, an ultrasonic probe (hereinafter, also simply referred to as a probe) 12 is composed of two arrayed transducers A and B, and high-voltage electric pulses are respectively transmitted from the transceivers 111 and 11 to the arrayed transducers A and B. B, is converted into an ultrasonic signal by the array transducers A and B, and is transmitted in a direction in which information of the living body 13 is to be obtained. The ultrasonic pulses of the array transducers A and B are reflected by the organs (or blood vessels, etc.) in the living body 13 where information is desired to be received, received by the array transducers A and B, and transmitted and received by the transceivers 111 and 11 respectively. Quadrature detectors 114 and 14 detect the signal using a reference signal having a frequency substantially equal to the transmission frequency, and output two signals of I and Q.
[0015]
The two signals of I and Q from the quadrature detectors 114 and 14 are input to amplitude calculators 116 and 16, respectively, and are converted into amplitude information. This signal is used for B-mode display. The I and Q signals are also input to the autocorrelator 124, and the autocorrelator 124 obtains a correlation with respect to the same depth of the signal transmitted and received twice in the same direction, thereby reducing the amount of phase rotation. Ask. The amount of phase rotation is proportional to the amount of movement of the organ. The displacement calculator 125 performs this calculation. By integrating the displacement calculated by the displacement calculator 125 by the displacement integrator 126, it is possible to determine how far the organ has moved based on the total fine movement from a certain point in time. The B-mode images obtained by the amplitude calculators 116 and 16 and the displacement obtained by the displacement integrator 126 are displayed on the display 122 via the scan converter 121.
[0016]
FIG. 3 is another block diagram of an ultrasonic diagnostic apparatus connected to two arrayed transducers. In this example, the circuits 11, 14, and 16 on the arrayed oscillator B side shown in FIG. 2 are omitted, and the switch 32 can be used by switching to one of the arrayed oscillators A and B.
[0017]
Next, the operation in the present embodiment will be described. FIG. 1B shows a state in which the probe 12 is placed on the blood vessel 4. At this point, an image of the arrayed transducers B is displayed on the display 122. The operator adjusts the position of the probe 12 so that the center of the blood vessel 4 in the radial direction (rounding direction) is located between the transducers e and f at the center of the arrayed transducers B. At this time, if a line corresponding to the position between the transducers e and f is displayed on the image, adjustment is easy. When the adjustment is completed, the center of the relationship between the arrayed oscillators B and the blood vessels is aligned as shown in FIG.
[0018]
Next, the operator operates the probe 12 so that the arrayed transducers A fit in the longitudinal direction of the blood vessel 4. At this time, as shown in FIG. 1D, by moving the arrayed oscillator A (arraying direction β) in an arc shape with the center point o of the arrayed oscillator B as an axis, it is possible to move along the direction α of the blood vessel 4. Can be matched. In this operation, an image of the array transducer A is displayed. At this time, in terms of work, if the shape of the arrayed vibrators B is convex, it is possible to perform an arc-shaped operation without shifting the center point o. When the alignment is completed, the positional relationship between the array transducer A and the blood vessel 4 is aligned in each direction as shown in FIG.
[0019]
As described above, one end of the arrayed oscillator A can be determined by using the arrayed oscillator B orthogonal to the arrayed oscillator A, and then the arrayed oscillator A is aligned with the longitudinal direction of the blood vessel by an arc-shaped operation. This makes it easy to obtain excellent blood vessel images.
[0020]
<Second embodiment>
FIG. 4 is an explanatory diagram for adjusting a test region of a plurality of arrayed transducers to a blood vessel according to the second embodiment of the present invention. FIG. 4A shows the arrangement of two arrayed vibrators A and B. As in the first embodiment, the arrayed vibrators A are composed of individual vibrators a to r, and the arrayed vibrators B are composed of individual vibrators a to j. The arrayed oscillators A and B are arranged in a cross shape as shown in FIG. 4A, and a center line (not shown) passing through the centers of the oscillators a to r of the arrayed oscillator A and an arrayed oscillator are arranged. Center lines (not shown) passing through the centers of the oscillators a to j of the element B intersect at right angles.
[0021]
Also in the second embodiment of the present invention, the center of the arrayed oscillator B and the center of the blood vessel 4 are aligned while displaying the image of the arrayed oscillator B as shown in FIGS. Next, as shown in FIG. 4D, by rotating the arrayed oscillator A about the intersection of the arrayed oscillators A and B, as shown in FIG. Can be matched.
[0022]
<Third embodiment>
FIG. 5 is an explanatory diagram for adjusting a test region of a plurality of arrayed transducers to a blood vessel according to the third embodiment of the present invention. In this embodiment, three array transducers A, B, and C are used. FIG. 5A shows an arrangement of three arrangement transducers A, B, and C. The arrayed vibrators A are composed of individual vibrators a to j, and the arrayed vibrators B and C are composed of individual vibrators a to j, respectively. The arrayed oscillator A, the arrayed oscillator B, and the arrayed oscillator C are arranged in an H shape as shown in FIG. 5A, and a center line (FIG. 5A) penetrating through the centers of the oscillators a to j of the arrayed oscillator A. The extension (not shown) is located at the center of the arrayed oscillators B and C.
[0023]
The ultrasonic diagnostic apparatus connected to the probe according to the third embodiment of the present invention is substantially the same as that shown in FIGS. 2 and 3 and is obtained by adding a circuit for an arrayed transducer C to FIG. , The switch 32 of FIG. 3 is divided into three branches.
[0024]
In the present embodiment, first, an image is displayed by using an arbitrary one of the parallel arrayed oscillators B and C, for example, the arrayed oscillator B, and the arrayed oscillator is displayed as shown in FIGS. 5B and 5C. The child B and each center of the blood vessel are aligned. Next, an image of the arrayed oscillator C parallel to the arrayed oscillator B is displayed, and the probe is rotated around the center O1 of the arrayed oscillator B as shown in FIG. The center of the arrayed oscillator C and the center of the blood vessel 4 are aligned as shown in FIG. At this time, the longitudinal direction of the arrayed transducers A and the blood vessels are aligned as shown in FIG.
Note that the arrangement of the arrayed vibrators is not limited to the above-described embodiment, and may be in a state in which these are combined. For example, a ladder-type in which two or more T-shaped or H-shaped are combined may be used.
[0025]
【The invention's effect】
As is clear from the above-described embodiment, the present invention uses a probe having two or more arrayed transducers, firstly, aligns the blood vessel slice direction with one probe, and then crosses the direction perpendicular to this. By operating one probe in an arc shape, the longitudinal direction of the blood vessel and the direction of the vibrator can be easily aligned, and a high-quality image can be obtained. Thus, it is possible to provide an ultrasonic diagnostic apparatus capable of observing the position of an organ on a straight line and obtaining highly accurate motion information.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a probe using two arrayed transducers according to a first embodiment of the present invention, and an explanatory view showing alignment thereof. (A) Arrangement direction of two arrayed transducers A and B (b) ) State during alignment by arrayed oscillator B (c) State after alignment by arrayed oscillator B (d) State during alignment by arrayed oscillator A (e) State after alignment by arrayed oscillator A FIG. 2 is a block diagram showing an example of the ultrasonic diagnostic apparatus according to the first embodiment of the present invention; FIG. 3 is a block diagram showing another example of the ultrasonic diagnostic apparatus according to the first embodiment of the present invention; 4A and 4B are explanatory views showing a probe using two arrayed transducers according to a second embodiment of the present invention and alignment thereof, and FIG. ) State during alignment by arrayed oscillator B (c) Arrayed oscillator B (D) State during alignment by arrayed oscillator A (e) State when alignment is completed by arrayed oscillator A [FIG. 5] Three arrayed vibrations in a third embodiment of the present invention (A) Arrangement direction of three arrayed oscillators A, B, and C (b) State during alignment by arrayed oscillator B (c) Array vibration (D) A state in which the alignment is completed by the arrayed oscillator C (e) A state in which the alignment is completed by the arrayed oscillator C (f) A state in which the alignment is completed by the arrayed oscillator C Block diagram of an ultrasonic diagnostic apparatus in a conventional example.
A, B, C Array transducer 4 Blood vessel 11, 111 Transceiver 12 Ultrasonic probe 13 Living body 14, 114 Quadrature detector 16, 116 Amplitude calculator 32 Switch 121 Scan converter 122 Display 124 Autocorrelator 125 Displacement Arithmetic unit 126 Displacement integrator 127 Biological signal detector 129 Biological signal sensor

Claims (5)

任意の角度で接合された複数の配列振動子と、前記複数の配列振動子の各々からそれぞれ得られる映像を表示する手段とを備え、前記配列振動子は複数の振動子を並列状態に並べて構成されている超音波診断装置。A plurality of arrayed transducers joined at an arbitrary angle, and means for displaying images obtained from each of the plurality of arrayed transducers are provided, and the arrayed transducer is configured by arranging a plurality of transducers in a parallel state. Ultrasonic diagnostic equipment. 前記複数の配列振動子の配列方向が直交するように配置されている請求項1に記載の超音波診断装置。The ultrasonic diagnostic apparatus according to claim 1, wherein the arrangement directions of the plurality of arrangement transducers are orthogonal to each other. 前記複数の配列振動子は、2つの配列振動子がT字型に配置されている請求項1に記載の超音波診断装置。The ultrasonic diagnostic apparatus according to claim 1, wherein the plurality of arrayed transducers include two arranged transducers arranged in a T-shape. 前記複数の配列振動子は、2つの配列振動子が十字型に配置されている請求項1に記載の超音波診断装置。The ultrasonic diagnostic apparatus according to claim 1, wherein the plurality of array transducers include two array transducers arranged in a cross shape. 前記複数の配列振動子は、3つの配列振動子がH字型に配置されている請求項1に記載の超音波診断装置。The ultrasonic diagnostic apparatus according to claim 1, wherein the plurality of array transducers include three array transducers arranged in an H shape.
JP2002296634A 2002-10-09 2002-10-09 Ultrasonic diagnostic equipment Pending JP2004129797A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002296634A JP2004129797A (en) 2002-10-09 2002-10-09 Ultrasonic diagnostic equipment
EP03758717A EP1550403A1 (en) 2002-10-09 2003-10-08 Ultrasonic diagnosing device
US10/530,193 US20060042389A1 (en) 2002-10-09 2003-10-08 Ultrasonic diagnosing device
CN 200380104688 CN1720007A (en) 2002-10-09 2003-10-08 Ultrasonic diagnosing device
PCT/JP2003/012896 WO2004032747A1 (en) 2002-10-09 2003-10-08 Ultrasonic diagnosing device
KR1020057006094A KR20050055001A (en) 2002-10-09 2003-10-08 Ultrasonic diagnosing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002296634A JP2004129797A (en) 2002-10-09 2002-10-09 Ultrasonic diagnostic equipment

Publications (1)

Publication Number Publication Date
JP2004129797A true JP2004129797A (en) 2004-04-30

Family

ID=32286558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002296634A Pending JP2004129797A (en) 2002-10-09 2002-10-09 Ultrasonic diagnostic equipment

Country Status (2)

Country Link
JP (1) JP2004129797A (en)
CN (1) CN1720007A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1772102A1 (en) * 2004-07-28 2007-04-11 Unex Corporation Blood vessel shape measuring instrument, blood flow velocity measuring instrument, and blood flow measuring instrument
KR100961855B1 (en) 2008-02-25 2010-06-09 주식회사 메디슨 Ultrasound probe having a plurality of probing sections
JP2010227603A (en) * 2010-06-16 2010-10-14 Aloka Co Ltd Ultrasonic diagnostic apparatus
WO2013080870A1 (en) * 2011-11-30 2013-06-06 ソニー株式会社 Signal processing apparatus and method
CN113017787A (en) * 2019-12-25 2021-06-25 本多电子株式会社 Ultrasonic probe and ultrasonic image display device
WO2023139874A1 (en) * 2022-01-22 2023-07-27 株式会社ユネクス Device for displaying position of puncture needle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9354204B2 (en) * 2011-10-14 2016-05-31 General Electric Company Ultrasonic tomography systems for nondestructive testing
CN103412053B (en) * 2013-07-22 2015-11-18 北京航空航天大学 A kind of acoustic emission source locating method without the need to velocity of wave of launching sensor array and Wave beam forming based on alliteration
CN103750863B (en) * 2014-01-07 2017-07-18 绵阳美科电子设备有限责任公司 A kind of ultrasound volume measuring probe and its measuring method
CN110072462B (en) * 2016-09-16 2022-05-24 国家医疗保健研究所 Method for imaging a sample containing blood and related device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1772102A1 (en) * 2004-07-28 2007-04-11 Unex Corporation Blood vessel shape measuring instrument, blood flow velocity measuring instrument, and blood flow measuring instrument
EP1772102A4 (en) * 2004-07-28 2010-11-10 Unex Corp Blood vessel shape measuring instrument, blood flow velocity measuring instrument, and blood flow measuring instrument
KR100961855B1 (en) 2008-02-25 2010-06-09 주식회사 메디슨 Ultrasound probe having a plurality of probing sections
JP2010227603A (en) * 2010-06-16 2010-10-14 Aloka Co Ltd Ultrasonic diagnostic apparatus
WO2013080870A1 (en) * 2011-11-30 2013-06-06 ソニー株式会社 Signal processing apparatus and method
CN113017787A (en) * 2019-12-25 2021-06-25 本多电子株式会社 Ultrasonic probe and ultrasonic image display device
CN113017787B (en) * 2019-12-25 2023-11-28 本多电子株式会社 Ultrasonic probe and ultrasonic image display device
WO2023139874A1 (en) * 2022-01-22 2023-07-27 株式会社ユネクス Device for displaying position of puncture needle

Also Published As

Publication number Publication date
CN1720007A (en) 2006-01-11

Similar Documents

Publication Publication Date Title
KR960004973B1 (en) Supersonic waves diagnosis apparatus
JPH0347A (en) Ultrasonic diagnosing device
JPS6131135A (en) Ultrasonic diagnostic apparatus
JP2004129797A (en) Ultrasonic diagnostic equipment
JP2001061840A (en) Ultrasonograph
JPS6290144A (en) Ultrasonic diagnostic apparatus
WO2004032747A1 (en) Ultrasonic diagnosing device
JP2005074146A (en) Method for measuring ultrasonic wave, and mechanism for generating the ultrasonic wave
JP2004329609A (en) Ultrasonic diagnostic apparatus
JPS6253182B2 (en)
JP3180958B2 (en) Ultrasound diagnostic equipment
JPS5854940A (en) Composite ultrasonic diagnostic apparatus
JPS60137353A (en) Ultrasonic diagnostic apparatus
JP2004305236A (en) Ultrasonograph
JPH0368694B2 (en)
JP2914871B2 (en) Ultrasound diagnostic equipment
JP2017127528A (en) Ultrasonic diagnostic equipment
JPH09220229A (en) Ultrasonic diagnostic system
JPH02126836A (en) Ultrasonic diagnosis device
JPH02168939A (en) Ultrasonic diagnostic device
JP2656477B2 (en) Ultrasound diagnostic equipment
JPH0556973A (en) Ultrasonic blood flow imaging device
JPH0199542A (en) Ultrasonic diagnostic equipment
JP2004147679A (en) Ultrasonic diagnostic device
JPS6346143A (en) Ultrasonic probe for measuring flood flow

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070302