JP2005074146A - Method for measuring ultrasonic wave, and mechanism for generating the ultrasonic wave - Google Patents

Method for measuring ultrasonic wave, and mechanism for generating the ultrasonic wave Download PDF

Info

Publication number
JP2005074146A
JP2005074146A JP2003311468A JP2003311468A JP2005074146A JP 2005074146 A JP2005074146 A JP 2005074146A JP 2003311468 A JP2003311468 A JP 2003311468A JP 2003311468 A JP2003311468 A JP 2003311468A JP 2005074146 A JP2005074146 A JP 2005074146A
Authority
JP
Japan
Prior art keywords
ultrasonic
blood vessel
vessel wall
wall
transmission beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003311468A
Other languages
Japanese (ja)
Inventor
Hiroshi Kanai
浩 金井
Hideyuki Hasegawa
長谷川英之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003311468A priority Critical patent/JP2005074146A/en
Publication of JP2005074146A publication Critical patent/JP2005074146A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To plot an area between the inner membrane and the medial membrane of a blood vessel wall in each ultrasonic beam radiating position with high precision and to correctly measure the movement of the blood vessel wall by providing an ultrasonic wave measuring method and a measuring instrument used therefor for performing scanning, so as to allow an ultrasonic beam and the blood vessel wall to be normally and substantially vertical. <P>SOLUTION: The instrument includes an array oscillator with a plurality of oscillators arrayed linearly; a delay apparatus group arranged correspondingly to the oscillators; and a control means for generating the ultrasonic beam by controlling the oscillation of each oscillation element and for performing scanning, so as to allow the ultrasonic beam to substantially orthogonally cross the blood vessel wall, by controlling the delay amount of each delay apparatus. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、生体に超音波を送受信することにより、血管壁の厚さの拍動に伴う微小な変化や粘弾性特性などの物理的特性を取得するための測定方法に関する。   The present invention relates to a measurement method for acquiring physical characteristics such as a minute change accompanying a pulsation of the thickness of a blood vessel wall and viscoelastic characteristics by transmitting and receiving ultrasonic waves to and from a living body.

近年、心筋梗塞や脳梗塞などの循環器疾患による死亡率の増加が社会的な問題となっている。動脈硬化症はそれら疾患の主因の一つであることから、その早期診断と生活習慣の是正に対する必要性が高まっている。動脈硬化の度合いを測定するための一つの方法として、血管に対する超音波診断法がある。超音波を用いた動脈硬化症の診断は、非侵襲的で患者に与える負担が少ないため、臨床の場で広く用いられている。   In recent years, an increase in mortality due to cardiovascular diseases such as myocardial infarction and cerebral infarction has become a social problem. Since arteriosclerosis is one of the main causes of these diseases, there is an increasing need for early diagnosis and correction of lifestyle habits. One method for measuring the degree of arteriosclerosis is an ultrasonic diagnostic method for blood vessels. Diagnosis of arteriosclerosis using ultrasonic waves is widely used in clinical settings because it is non-invasive and has a small burden on patients.

超音波による血管の診断においては、心拍動に伴う数十ミクロンの微小な動脈壁厚変化を位相差トラッキング法を用いて超音波計測し、動脈の局所的な弾性特性を算出することが行われている(非特許文献1)。
H. Kanai, M. Sato, Y. Koiwa, N.Chubachi, “Transcutaneous Measurement and Spectrum Analysis of Heart Wall Vibrations”,IEEE Transactions on Ultrasonics, Ferro-electrics,and Frequency Control, Vol. 43, pp. 791-810, 1996
In the diagnosis of blood vessels using ultrasound, a minute change in arterial wall thickness of several tens of microns associated with heartbeat is measured ultrasonically using the phase difference tracking method to calculate the local elastic characteristics of the artery. (Non-Patent Document 1).
H. Kanai, M. Sato, Y. Koiwa, N. Chubachi, “Transcutaneous Measurement and Spectrum Analysis of Heart Wall Vibrations”, IEEE Transactions on Ultrasonics, Ferro-electrics, and Frequency Control, Vol. 43, pp. 791-810 , 1996

ところで、血管に対する超音波計測においては、超音波ビームが血管壁に対し直交に近い状態で入射されないと、心拍動に伴う血管壁の微小な変化を精度良く検出することができない。これは、かかる直交性が保たれていないと、血管壁の厚みの変化方向とビームの方向が異なることにより、計測位置ずれが生じるためである。   By the way, in ultrasonic measurement on a blood vessel, a minute change in the blood vessel wall accompanying heartbeat cannot be detected with high accuracy unless the ultrasonic beam is incident in a state of being orthogonal to the blood vessel wall. This is because, if this orthogonality is not maintained, the measurement position shifts due to the change in the direction of change in the thickness of the blood vessel wall and the direction of the beam.

超音波ビームと血管壁が直交する範囲を広くするため、頸動脈など表在性の血管の測定には、血管軸と平行にプローブを設置するリニア走査を用いて、長軸断面で計測することが広く行われている(特許文献1)。また、図1(a)に示されるようなリニア走査により血管軸に沿った断面(長軸断面)のみならず、図1(b)に示すような血管軸に垂直な断面(短軸断面)における断層像の測定も行われている。
特公昭39−21580号公報
In order to widen the range where the ultrasound beam and the blood vessel wall are orthogonal to each other, superficial blood vessels such as the carotid artery should be measured with a long-axis cross section using linear scanning with a probe placed parallel to the blood vessel axis. Is widely performed (Patent Document 1). Further, not only a cross section along the blood vessel axis (long-axis cross section) by linear scanning as shown in FIG. 1A but also a cross section perpendicular to the blood vessel axis as shown in FIG. 1B (short-axis cross section). Measurements of tomograms are also being conducted.
Japanese Examined Patent Publication No. 39-21580

リニア走査においては、超音波ビームが互いに平行となるように走査されるため、血管の短軸(輪切り)断面では、血管の中心Oを通る超音波ビームしか血管壁に対して実質的に垂直にはならない。超音波ビームと血管壁の直交性が保たれない場合(図2(a)の右側の垂直線で示す)には、血管壁で反射される超音波ビームは血管壁と垂直方向に反射される傾向にあるので、探触子方向に戻ってくる反射波成分が小さくなる。そのため、リニア走査で得られた短軸Bモード断層像においては、血管中心Oを通る超音波ビーム近傍の狭い領域でしか血管の内膜面が描出されない。   In the linear scanning, since the ultrasonic beams are scanned so as to be parallel to each other, only the ultrasonic beam passing through the center O of the blood vessel is substantially perpendicular to the blood vessel wall in the short axis (circular section) cross section of the blood vessel. Must not. When the orthogonality between the ultrasonic beam and the blood vessel wall is not maintained (indicated by the vertical line on the right side of FIG. 2 (a)), the ultrasonic beam reflected by the blood vessel wall is reflected in a direction perpendicular to the blood vessel wall. Since there is a tendency, the reflected wave component returning to the probe direction becomes small. Therefore, in the short-axis B-mode tomographic image obtained by linear scanning, the intimal surface of the blood vessel is drawn only in a narrow region near the ultrasonic beam passing through the blood vessel center O.

また、リニア走査において、特願20001−249398号に開示された方法を適用して、血管壁の運動を計測する場合、血管壁に対して実質的に垂直にならない超音波ビーム位置においては、図2に示すように、超音波ビームと血管壁の運動方向が一致せず、血管壁の位置を追跡することができない。図2(a)に示す血管拡張前において、血管のある部位に当たっていたビームは、同(b)の血管拡張後において、血管の異なる部位に照射されてしまっている。これでは、位置追跡は不可能である。   Further, in the linear scanning, when measuring the movement of the blood vessel wall by applying the method disclosed in Japanese Patent Application No. 20001-249398, the ultrasonic beam position that is not substantially perpendicular to the blood vessel wall is shown in FIG. As shown in FIG. 2, the movement directions of the ultrasonic beam and the blood vessel wall do not match, and the position of the blood vessel wall cannot be tracked. Before the blood vessel dilation shown in FIG. 2 (a), the beam that hits a site with a blood vessel has been irradiated to different sites of the blood vessel after the blood vessel dilation in FIG. 2 (b). With this, position tracking is impossible.

総頸動脈が内頸動脈と外頸動脈とに分岐する部位における流入口・流出口(図3(a)の点線の楕円で囲んだ部分)は、動脈硬化の好発部位である。しかし、分岐部は図3(a)のように膨らみを持つことから、リニア走査による血管軸に沿った断面(長軸)の断層像において、例えば、図3で「関心点」と表示した部位において、超音波ビームを血管壁と直交させることができない。従って、関心点においては、その内膜−中膜の描出が難しく、動脈硬化の進展の指標である内膜―中膜の厚さの計測ができない。   The inlet / outlet (portion surrounded by the dotted ellipse in FIG. 3A) at the site where the common carotid artery branches into the internal carotid artery and the external carotid artery is a site where arteriosclerosis occurs frequently. However, since the bifurcation has a bulge as shown in FIG. 3 (a), in the tomographic image of the cross section (long axis) along the blood vessel axis by linear scanning, for example, the part indicated as “interesting point” in FIG. In this case, the ultrasonic beam cannot be orthogonal to the blood vessel wall. Therefore, at the point of interest, it is difficult to depict the intima-media, and the intima-media thickness, which is an indicator of the progression of arteriosclerosis, cannot be measured.

本願発明は、超音波ビームと血管壁が常に実質的に垂直となるように走査する超音波測定方法及びこれに用いる測定装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an ultrasonic measurement method for scanning an ultrasonic beam and a blood vessel wall so that they are always substantially perpendicular, and a measurement apparatus used therefor.

また、本願発明は、これにより、各超音波ビーム照射位置において血管壁の内膜―中膜領域を精度良く描出するとともに、血管壁の運動を正確に測定できるようにすることを目的とする。   Another object of the present invention is to accurately depict the intima-media region of the blood vessel wall at each ultrasonic beam irradiation position and to accurately measure the motion of the blood vessel wall.

本願発明に係る超音波測定装置は、複数の振動子がリニア配列されたアレイ振動子と、前記各振動子に対応して設けられた遅延器群と、前記各振動素子の励振を制御することにより超音波ビームを形成させる制御手段であって、前記各遅延器の遅延量を制御することにより、超音波ビームが血管壁と実質的に直交するように走査させる制御手段とを有する。   The ultrasonic measurement apparatus according to the present invention controls an array transducer in which a plurality of transducers are linearly arranged, a delay group provided corresponding to each transducer, and excitation of each transducer element. Control means for forming an ultrasonic beam by controlling the delay amount of each delay device so that the ultrasonic beam scans substantially perpendicular to the blood vessel wall.

本願発明にかかる超音波測定方法は、経時的に肉厚が変化する管を超音波で測定する方法であって、第1の超音波発信ビームと第2の超音波発信ビームを前記管の内壁に対して実質的に垂直に当て、前記第1の超音波発信ビームは前記第2の超音波発信ビームと平行ではないというものである。   An ultrasonic measurement method according to the present invention is a method for measuring a tube whose thickness changes over time with ultrasonic waves, and the first ultrasonic transmission beam and the second ultrasonic transmission beam are connected to the inner wall of the tube. Substantially perpendicular to the first ultrasonic transmission beam, the first ultrasonic transmission beam is not parallel to the second ultrasonic transmission beam.

本願発明は、経時的に肉厚が変化する管を超音波で測定する超音波測定方法であって、第1の超音波発信ビームと第2の超音波発信ビームを前記管の内壁に対して実質的に垂直に当て、第1の超音波発信ビームは第2の超音波発信ビームと平行ではない、超音波測定方法にかかる。第1の超音波発信ビームと第2の超音波発信ビームは、前記管の内壁に対して90±14°の角度を有することが好ましい。   The present invention relates to an ultrasonic measurement method for ultrasonically measuring a tube whose thickness changes over time, wherein the first ultrasonic transmission beam and the second ultrasonic transmission beam are applied to the inner wall of the tube. Applying the ultrasonic measurement method, the first ultrasonic transmission beam is applied substantially vertically and the first ultrasonic transmission beam is not parallel to the second ultrasonic transmission beam. It is preferable that the first ultrasonic transmission beam and the second ultrasonic transmission beam have an angle of 90 ± 14 ° with respect to the inner wall of the tube.

また、本願発明は、経時的に肉厚が変化する管を超音波で測定するための超音波測定機構であって、管の内壁に対して実質的に垂直に発信された第1の超音波発信ビームとは異なり、かつ、管の内壁に対して実質的に垂直な方向に第2の超音波発信ビームを発信する超音波発信手段を具備する、超音波発生機構にかかる。具体的には、この超音波発信手段は、複数の振動素子からなり、それぞれの前記振動素子に対して予め定められた遅延量を入力することによって、前記超音波発信ビームを発信するものである。なお、第1の超音波発信ビームと第2の超音波発信ビームは、前記管の内壁に対して90±14°の角度を有していることが好ましい。   The present invention is also an ultrasonic measurement mechanism for ultrasonically measuring a tube whose thickness changes over time, and the first ultrasonic wave transmitted substantially perpendicularly to the inner wall of the tube. Unlike the transmission beam, the ultrasonic generation mechanism includes an ultrasonic transmission unit that transmits the second ultrasonic transmission beam in a direction substantially perpendicular to the inner wall of the tube. Specifically, the ultrasonic wave transmitting means includes a plurality of vibration elements, and transmits the ultrasonic wave transmission beam by inputting a predetermined delay amount to each of the vibration elements. . In addition, it is preferable that the first ultrasonic transmission beam and the second ultrasonic transmission beam have an angle of 90 ± 14 ° with respect to the inner wall of the tube.

従来型のリニア走査においては、超音波ビームが互いに平行となるように走査されるため、血管の短軸(輪切り)断面では、血管の中心軸を通るただ1本の超音波ビームしか血管壁と垂直にはならない。また、頸動脈分岐部は膨らみを持っているため、動脈硬化の好発部位である分岐部流入口・流出口の血管壁と超音波ビームが直交せず、血管壁を描出することができなかった。   In the conventional linear scanning, since the ultrasonic beams are scanned so as to be parallel to each other, only one ultrasonic beam passing through the central axis of the blood vessel is crossed with the blood vessel wall in the short axis (circular cut) section of the blood vessel. It will not be vertical. In addition, because the carotid bifurcation has a bulge, the blood vessel wall at the bifurcation inlet / outlet, which is a common site of arteriosclerosis, is not perpendicular to the ultrasound beam, and the blood vessel wall cannot be depicted. It was.

本願発明によれば、超音波ビームと血管壁が常に実質的に垂直(90±14°)となるように走査することにより、全超音波ビーム位置において血管壁を描出できるとともに、血管壁の運動を正確に測定することができる。   According to the present invention, by scanning so that the ultrasonic beam and the blood vessel wall are always substantially perpendicular (90 ± 14 °), the blood vessel wall can be depicted at all ultrasonic beam positions, and the movement of the blood vessel wall Can be measured accurately.

本願発明にかかる超音波測定装置は、振動素子をリニア配列してアレイ振動子を構成し、各振動素子にはそれぞれ対応する遅延器を介して送信パルスを供給する。リニア型電子スキャンプローブの複数個の振動子に、それぞれ遅延時間を設けて順次駆動すると、斜め方向に波面が合成され、ある角度を持ってビームが放射される。   The ultrasonic measurement apparatus according to the present invention forms an array transducer by linearly arranging vibration elements, and supplies a transmission pulse to each vibration element via a corresponding delay device. When a plurality of transducers of the linear type electronic scan probe are sequentially driven with a delay time, the wavefront is synthesized in an oblique direction, and a beam is emitted with a certain angle.

そして、各遅延器の遅延量を制御手段によって制御することによりアレイ振動子から放射される超音波ビームを、1)血管短軸(輪切り)断面の場合には血管中心Oを通るように、2)頸動脈分岐部長軸断面の場合には流入口と流出口の血管壁に接する円(図3(b)参照)の中心(例えば、2点O1’とO2’)を通るように走査する。これによって、超音波ビームと血管壁を実質的に直交させることができる。 Then, by controlling the delay amount of each delay unit by the control means, the ultrasonic beam radiated from the array transducer 1) passes through the blood vessel center O in the case of the cross section of the blood vessel short axis (2). ) In the case of a long-axis cross section of the carotid artery bifurcation, scanning is performed so that it passes through the center (for example, two points O 1 ′ and O 2 ′) of a circle (see FIG. 3B) that touches the blood vessel wall at the inlet and outlet. To do. Thereby, the ultrasonic beam and the blood vessel wall can be substantially orthogonal.

本願発明にかかる超音波測定装置において、超音波ビームの走査は、所定数の振動素子を1送受信グループとしてこの送受信グループの組み合わせをアレイに沿って順次シフトさせていくとともに、その送受信グループを構成する各振動素子の遅延量の調整により設定方向へビームを形成し、送受信グループのシフトにつれて各振動素子に与える遅延量を変化させることにより実現する。   In the ultrasonic measurement apparatus according to the present invention, the scanning of the ultrasonic beam is performed by sequentially shifting the combination of the transmission / reception groups along the array with a predetermined number of vibration elements as one transmission / reception group, and configuring the transmission / reception group. This is realized by forming a beam in the setting direction by adjusting the delay amount of each vibration element, and changing the delay amount given to each vibration element as the transmission / reception group shifts.

この構成において、各遅延器に与える遅延量は、1)血管の短軸(輪切り)断面においては血管中心、2)頸動脈分岐部長軸(血管中心軸に沿った)断面では流入口と流出口の血管壁に接する円の中心、から前記各振動素子までの距離に基づき決定する。このことは、逆に言えば、1つの探触子でも、遅延量の設定の仕方によって様々な深さの血管を測定できることを意味する。   In this configuration, the amount of delay given to each delay device is 1) the center of the blood vessel in the short axis (circular section) of the blood vessel, and 2) the inlet and outlet in the cross section of the long axis of the carotid artery bifurcation (along the blood vessel central axis) It is determined based on the distance from the center of the circle in contact with the blood vessel wall to each of the vibration elements. In other words, this means that even one probe can measure blood vessels of various depths depending on how the delay amount is set.

図4に本実施形態における超音波走査機構の概念図を示す。本実施形態では、複数(例えば200個)の振動素子2からなるリニアアレイ振動子において、リニア走査の場合と同様にして、送受信に用いる振動素子2を時間とともに順にシフトしていく。所定数の振動素子2を1つの送受信グループ3として一度に駆動し、送受信を行う。この送受信グループ3は、送受信ごとに所定振動素子数分ずつシフトされる。   FIG. 4 is a conceptual diagram of the ultrasonic scanning mechanism in the present embodiment. In the present embodiment, in a linear array transducer including a plurality of (for example, 200) vibrating elements 2, the vibrating elements 2 used for transmission and reception are sequentially shifted with time in the same manner as in the case of linear scanning. A predetermined number of vibration elements 2 are driven as one transmission / reception group 3 at a time to perform transmission / reception. The transmission / reception group 3 is shifted by a predetermined number of vibration elements for each transmission / reception.

本実施形態では、1つの送受信グループ3内の各振動素子2の遅延量4は、図4に示すような座標系を適用し、1つの送受信グループの中心の振動子(位置(x0,0))に与える遅延量を基準とすると、ビーム通過点1の位置(X0,Z0)と、各振動素子2の位置(xn,0)により決定することができる。
ここで、ν0は媒質中の音速である。
In the present embodiment, the delay amount 4 of each vibration element 2 in one transmission / reception group 3 is applied with a coordinate system as shown in FIG. 4 and the center transducer (position (x 0, 0 )) As a reference, it can be determined by the position (X 0 , Z 0 ) of the beam passing point 1 and the position (x n, 0) of each vibration element 2.
Here, ν 0 is the speed of sound in the medium.

このようにして、順次送受信グループ3をシフトさせていくことにより、全超音波ビームがビーム通過点1すなわち血管中心Oを通るように走査することができ、いずれも壁に垂直に超音波を入射−反射させることができる。   By sequentially shifting the transmission / reception group 3 in this way, the entire ultrasonic beam can be scanned so as to pass through the beam passing point 1, that is, the blood vessel center O, and the ultrasonic waves are incident on the wall perpendicularly. -It can be reflected.

送受信制御回路9は、所定時間ごとに可変遅延パルス発生器7に対して送信パルスを出力するとともに、この送信パルスと同期したタイミングパルスを電子スイッチ5及び受信可変遅延回路8に供給する。可変遅延パルス発生器7は、所定時間ごとに供給される送信パルスに応じて、各振動素子2ごとについてトリガパルスを生成する回路であり、各振動素子ごとについて別個に遅延量4を設定することが可能となっている。遅延量4の設定は、ビーム通過点設定器10によって行われる。ビーム通過点設定器10により設定された遅延量4に基づき、可変遅延パルス発生器7は、各振動素子2に対応して、ビームの方向及びフォーカシングに応じた遅延量4をもったトリガパルスを発生する。高周波パルス発生器6は、このトリガパルスを電力増幅して振動素子2へ供給される駆動パルスを生成する。この駆動パルスは電子スイッチ5に入力される。電子スイッチ5は、送受信制御回路9からのタイミングパルスに応じて、リニア配列のアレイ振動子の振動素子2から送受信グループを選択する。すなわち、電子スイッチ5は、いま選択されている送受信グループ3の振動素子2についてのみオンとなり、駆動パルスを振動素子2へ伝える。そして、この駆動パルスにより送受信グループ3に含まれる振動素子2が駆動され超音波パルスを発振する。   The transmission / reception control circuit 9 outputs a transmission pulse to the variable delay pulse generator 7 every predetermined time and supplies a timing pulse synchronized with the transmission pulse to the electronic switch 5 and the reception variable delay circuit 8. The variable delay pulse generator 7 is a circuit that generates a trigger pulse for each vibration element 2 according to a transmission pulse supplied every predetermined time, and sets a delay amount 4 for each vibration element separately. Is possible. The delay amount 4 is set by the beam passage point setting device 10. Based on the delay amount 4 set by the beam passing point setting device 10, the variable delay pulse generator 7 generates a trigger pulse having a delay amount 4 corresponding to the beam direction and focusing corresponding to each vibration element 2. Occur. The high frequency pulse generator 6 amplifies the power of the trigger pulse to generate a drive pulse supplied to the vibration element 2. This drive pulse is input to the electronic switch 5. In response to the timing pulse from the transmission / reception control circuit 9, the electronic switch 5 selects a transmission / reception group from the vibration elements 2 of the array transducer in the linear array. That is, the electronic switch 5 is turned on only for the vibration element 2 of the currently selected transmission / reception group 3 and transmits the drive pulse to the vibration element 2. Then, the vibration element 2 included in the transmission / reception group 3 is driven by this drive pulse to oscillate an ultrasonic pulse.

体内の血管などからのエコーは、まず振動素子2によって受信され、その受信エコー信号は電子スイッチ5を介して受信可変遅延回路8に入力される。受信可変遅延回路8は、各振動素子2ごとに対応して別個に遅延量4を設定することが可能であり、可変遅延パルス発生器7と同様に遅延量4の設定がなされる。受信可変遅延回路8内での遅延量4の設定も、ビーム通過点設定器10によってなされる。受信エコー信号は、この受信可変遅延回路8にて所定の遅延を受けたのち加算され、加算後の信号を処理することにより血管壁の断層像が得られる。また特願2001−249398号に示される方法を適用することにより、血管壁の運動や粘弾性特性などが得られる。   An echo from a blood vessel or the like in the body is first received by the vibration element 2, and the received echo signal is input to the reception variable delay circuit 8 via the electronic switch 5. The reception variable delay circuit 8 can individually set the delay amount 4 corresponding to each vibration element 2, and the delay amount 4 is set similarly to the variable delay pulse generator 7. The delay amount 4 in the reception variable delay circuit 8 is also set by the beam passage point setting device 10. The reception echo signals are added after receiving a predetermined delay in the reception variable delay circuit 8, and a tomographic image of the blood vessel wall is obtained by processing the signal after the addition. Further, by applying the method disclosed in Japanese Patent Application No. 2001-249398, the motion of the blood vessel wall, viscoelastic characteristics, and the like can be obtained.

ビーム通過点設定器10は、各振動素子についての遅延量をテーブルとして有しており、この遅延量データが可変遅延パルス発生器7や受信可変遅延回路8に設定される。テーブルには、ビーム通過点の深さと各振動素子2のアレイ内における位置から演算された遅延量があらかじめ作成され登録されている。深さの異なる複数のビーム通過点についての遅延量を求めてテーブルに登録しておけば、それら各ビーム通過点を選択することにより、異なる深さの血管に関しても超音波ビームと血管壁と直交するように走査することができる。   The beam passing point setting device 10 has a delay amount for each vibration element as a table, and this delay amount data is set in the variable delay pulse generator 7 and the reception variable delay circuit 8. In the table, the delay amount calculated from the depth of the beam passing point and the position in the array of each vibration element 2 is created and registered in advance. If the delay amount for a plurality of beam passing points having different depths is obtained and registered in the table, by selecting each beam passing point, the ultrasound beam and the blood vessel wall are orthogonal to each other even for blood vessels having different depths. Can be scanned.

第一の実施形態では、上記のような超音波発生回路を用いて超音波を発生させ、これを図2に示す血管短軸(輪切り)断面では断面を円と近似し、すべてのビーム通過点を血管中心Oに設定することで、超音波の照射方向と血管壁とを直行させることができる。   In the first embodiment, an ultrasonic wave is generated using the ultrasonic wave generation circuit as described above, and the cross section is approximated to a circle in the cross section of the short axis of the blood vessel (circular slice) shown in FIG. Is set to the blood vessel center O, the ultrasonic wave irradiation direction and the blood vessel wall can be made to go straight.

また、第二の実施形態では、図3(a)に示すような頸動脈分岐部の長軸(血管中心軸に沿った)断面では分岐部を楕円(図3(a)の点線)と仮定して、流入口と流出口の血管壁関心点に対応する前記楕円上の点に接する複数の円を設定する。そして、超音波ビームを各々の円の中心を通るように走査することで、超音波の照射方向と血管壁とを直交させることができる。   In the second embodiment, the carotid artery bifurcation as shown in FIG. 3 (a) is assumed to be an ellipse (dotted line in FIG. 3 (a)) in the cross section of the long axis (along the central axis of the blood vessel). Then, a plurality of circles in contact with the points on the ellipse corresponding to the vascular wall interest points at the inlet and the outlet are set. Then, by scanning the ultrasonic beam so as to pass through the center of each circle, the irradiation direction of the ultrasonic wave and the blood vessel wall can be made orthogonal.

第二の実施形態の場合、以下のようにして、例えば、2つのビーム通過点を設定する。まず、図3(a)の点線に示すように分岐部を、図3(b)に示すように分岐部の中心Oを原点とするx-y座標系で表し、分岐部の形状を楕円と仮定し、その長径と短径をそれぞれa、bと設定すると、楕円の式は、
で表される。これは、断層像上で血管壁に最も整合する楕円を表示させることで自動的にa、bとOを中心とする座標系を計測により決定できる。
In the case of the second embodiment, for example, two beam passing points are set as follows. First, as shown in the dotted line of FIG. 3 (a), the branch portion is represented by an xy coordinate system having the origin O as the center of the branch portion as shown in FIG. When the major axis and minor axis are set as a and b, respectively, the ellipse formula is
It is represented by The coordinate system centered on a, b, and O can be automatically determined by measurement by displaying an ellipse that best matches the blood vessel wall on the tomographic image.

次に、流入口と流出口の関心点A、B、C、Dと楕円の中心Oとの血管軸方向の距離をci(i=1,2)と設定する。これら長径a、短径b、及び関心点A、B、C、Dと楕円中心Oとのx軸方向の距離ci(i=1, 2)を用いて、流入口と流出口の4つの関心点において、前記仮定した楕円と接する円の中心のO1’(m,0)とO2’(m,0)の位置は、以下のように決定できる。例えば、流入口における関心点Aに関しては、その座標を(c,d)とすると、関心点Aにおける上記の楕円の接線の方程式は(3)式で示される。
また、関心点Aで上記の楕円と接する円は、半径をrとおくと、
であるから、円の方程式は、
(x−m1)2+y2=r2 ・・・(5)
で表される。また、関心点Aにおける円の接線の方程式は(6)式で示される。
(c1−m1)(x−m1)+dy=r2 ・・・(6)
(6)式にrを代入して変形すると、
(c1−m1)x+dy=c1 2 +d2−c11 ・・・(7)
となる。
Next, the distance in the blood vessel axis direction between the points of interest A, B, C, D at the inlet and the outlet and the center O of the ellipse is set as c i (i = 1, 2). Using the major axis a, the minor axis b, and the distance c i (i = 1, 2) in the x-axis direction between the points of interest A, B, C, D and the ellipse center O, four inlets and outlets At the point of interest, the positions of O 1 ′ (m 1 , 0) and O 2 ′ (m 2 , 0) at the center of the circle in contact with the assumed ellipse can be determined as follows. For example, regarding the point of interest A at the inflow port, if the coordinates are (c 1 , d), the equation of the tangent line of the ellipse at the point of interest A is expressed by the following equation (3).
Also, if the circle that touches the ellipse at the point of interest A is r,
So the equation of the circle is
(x−m 1 ) 2 + y 2 = r 2 ... (5)
It is represented by Further, the equation of the tangent line of the circle at the point of interest A is expressed by equation (6).
(c 1 −m 1 ) (x−m 1 ) + dy = r 2 (6)
Substituting r into equation (6) and transforming it,
(c 1 −m 1 ) x + dy = c 1 2 + d 2 −c 1 m 1 (7)
It becomes.

点Aにおける2つの接線の方程式を一致させれば、楕円を複数の円で近似したときの点Aを通る円の中心O1’を通過するビームは点Aで壁に直交させることができる。そのため、(3)式と(7)式のyの係数を等しくするため(3)式をb2倍した結果と(7)式のxの係数と定数項どうしがそれぞれ等しいことから、(8)式と(9)式が得られる。
b2=c1 2+d2−c1m1 ・・・(9)
したがって、(8)式より
が得られ、流入口の関心点に接する円の中心O1’(m1,0)が決定できる。
If the equations of the two tangents at the point A are matched, the beam passing through the center O 1 ′ of the circle passing through the point A when the ellipse is approximated by a plurality of circles can be made orthogonal to the wall at the point A. For this reason, the result of multiplying equation (3) by b 2 to equalize the coefficient of y in equations (3) and (7) is equal to the coefficient of x and the constant term in equation (7). ) And (9) are obtained.
b 2 = c 1 2 + d 2 −c 1 m 1 ... (9)
Therefore, from equation (8)
And the center O 1 ′ (m 1 , 0) of the circle in contact with the point of interest at the inlet can be determined.

さらに、(10)式の結果を(9)式に代入して、d2に関して整理することによって、次式が得られる。
Further, by substituting the result of the equation (10) into the equation (9) and arranging for d 2 , the following equation is obtained.

これによって、楕円中心Oからx軸方向にc1だけ離れた点A、Bのy座標dが決定できる。さらに、これらの点に超音波ビームを送信・受信するときの角度θは、次のように決定できる。
As a result, the y-coordinate d of points A and B separated from the ellipse center O by c 1 in the x-axis direction can be determined. Further, the angle θ when transmitting and receiving the ultrasonic beam at these points can be determined as follows.

以上より、1)分岐部の断層像から、最も分岐部の形状に整合する楕円と整合できる範囲を決定して、その長軸a、短軸b、座標系を定めた上で、2)楕円の中心Oからx軸方向にc1だけ離れた点A、Bを表示するためには、(10)式で決められる中心O1’(m1,0)を通り、(12)式で決められるθだけ傾いた超音波ビームを用いることによって、ほぼ常に壁に垂直に超音波ビームを送受信することができる。 From the above, 1) the range that can be matched with the ellipse that most closely matches the shape of the branch part is determined from the tomogram of the branch part, and after defining the major axis a, the minor axis b, and the coordinate system, 2) the ellipse To display points A and B separated by c 1 from the center O in the x-axis direction, pass through the center O 1 '(m 1 , 0) determined by equation (10) and determine by equation (12) By using the ultrasonic beam inclined by θ, the ultrasonic beam can be transmitted and received almost always perpendicular to the wall.

図5に、第二の実施態様による、頸動脈分岐部の長軸断面における超音波走査及び画像化法の概念図を示す。分岐部の流入・流出口近傍を描出する場合には、図5のようにリニアアレイ振動子上に開口面1、開口面2を設定し、開口面1はO1 を通るように、開口面2はO2’を通るように、開口面1と開口面2に関して交互に走査を行う。上記のように走査して得られた反射波のデータから、図5の斜線で示す部位に関して画像化することで、血管壁に対して、常にほぼ垂直に入射して反射された受信信号から、画像を構成でき、動脈硬化の好発部位である頸動脈分岐部の流入・流出口近傍の血管壁の内膜−中膜領域を描出することができる。 FIG. 5 shows a conceptual diagram of the ultrasonic scanning and imaging method in the longitudinal cross section of the carotid bifurcation according to the second embodiment. When drawing the vicinity of the inflow / outflow of the bifurcation, set the opening surface 1 and the opening surface 2 on the linear array transducer as shown in FIG. 5, and the opening surface 1 passes through O 1 ′. The surface 2 scans alternately with respect to the opening surface 1 and the opening surface 2 so as to pass through O 2 ′. From the reflected wave data obtained by scanning as described above, by imaging with respect to the site indicated by the oblique lines in FIG. 5, from the received signal reflected and reflected almost always perpendicular to the blood vessel wall, An image can be constructed, and the intima-media region of the blood vessel wall in the vicinity of the inflow / outflow of the carotid bifurcation, which is a common site of arteriosclerosis, can be depicted.

図6のような条件で、第一の実施形態に従って超音波ビームの走査を行った。
超音波ビームを0.2mm間隔で44方向に照射し、それぞれのビームが血管中心を表す点Oを通るように設計した。ビーム番号をk (−21〜0〜22) とし、それぞれのビーム照射中心位置をcと表す。coはプローブの中心である。プローブから点Oまでの距離をLiとすると、ビーム照射中心位置cでの垂直方向からのビーム傾斜角度θ、各ビームの焦点距離fはそれぞれ次のように表される。

=0.2*k [mm] ・・・(13)
θ=arctan(dk/Li) ・・・ (14)
=(Li/cosθ)+9 [mm]・・・(15)

(15)式の右辺において、焦点位置を血管後壁後方に定めるため、ビーム照射中心位置cと血管中心点Oとのあいだの距離に9mmを加えている。これは超音波ビームの焦点位置を壁よりも深い位置に設定することで、ビーム径が大きくなり、血管の位置ずれによる影響を低減できるからである。プローブから血管中心O間の距離Lを変えることにより、被験者毎に血管の深さが異なる場合でも超音波ビームと血管壁が直交するようにビーム走査可能となる。
The ultrasonic beam was scanned according to the first embodiment under the conditions shown in FIG.
Ultrasonic beams were irradiated in 44 directions at intervals of 0.2 mm, and each beam was designed to pass through point O representing the center of the blood vessel. The beam number is k (−21 to 0 to 22), and each beam irradiation center position is represented as ck . c o is the center of the probe. When the distance from the probe to the point O and L i, the beam inclination angle theta k from the vertical direction at the beam irradiation center position c k, the focal length f k of each beam are expressed as follows.

d k = 0.2 * k [mm] (13)
θ k = arctan (d k / L i ) (14)
f k = (Li / cos θ k ) +9 [mm] (15)

In the right side of equation (15), 9 mm is added to the distance between the beam irradiation center position kk and the blood vessel center point O in order to determine the focal position behind the blood vessel rear wall. This is because by setting the focal position of the ultrasonic beam at a position deeper than the wall, the beam diameter is increased, and the influence of the displacement of the blood vessel can be reduced. By varying the distance L i between the vessel center O from the probe, the depth of the blood vessel even if the different ultrasonic beams and the vessel wall becomes possible beam scanning so as to be perpendicular to each subject.

図7(a)と図7(b)に、リニア走査(従来例)及び本実施例により得られた頸動脈の短軸(輪切り)断層像をそれぞれ示す。従来例であるリニア走査により得られたBモード断層像では、血管中心を通る超音波ビームの近傍約0.9 mm程度の範囲のみでしか、超音波ビームは血管壁に対して実質的に垂直にはならない。従って、この近傍領域においてのみ内膜面を確認できる。他方、本実施例で得られたBモード断層像では、全ての超音波ビーム位置において内膜面が明瞭に確認できる。   FIGS. 7 (a) and 7 (b) show a short-axis (circular cut) tomogram of the carotid artery obtained by linear scanning (conventional example) and this example, respectively. In the B-mode tomogram obtained by the conventional linear scanning, the ultrasonic beam is substantially perpendicular to the blood vessel wall only in the vicinity of about 0.9 mm in the vicinity of the ultrasonic beam passing through the blood vessel center. Don't be. Therefore, the intimal surface can be confirmed only in the vicinity region. On the other hand, in the B-mode tomogram obtained in this example, the intimal surface can be clearly confirmed at all ultrasonic beam positions.

図8に従来例、本実施例によって得られた超音波像を解析して得た心拍動に伴う血管壁の厚みの変化を示す。従来例であるリニア走査で計測を行った場合、超音波ビームが血管壁と直交しているビーム位置(図7(a)のl1)では図8(a)に示すように厚み変化が再現性良く計測されているが、図7(a)のビーム位置l2のように超音波ビームと壁が直交していないビーム位置では、心拍動により計測点が超音波ビームから外れるため、図8(b)のように厚み変化が正しく得られなかった。図8(b)では、超音波ビームと血管壁が直交しないことにより超音波の反射強度が低下するので、反射波のS/Nが劣化し、拍間の再現性が低下していることも窺われる。 FIG. 8 shows a change in the thickness of the blood vessel wall due to the heartbeat obtained by analyzing the ultrasonic images obtained by the conventional example and the present embodiment. When measurement is performed by the conventional linear scanning, the change in thickness is reproduced as shown in FIG. 8A at the beam position (l 1 in FIG. 7A) where the ultrasonic beam is orthogonal to the blood vessel wall. Although the measurement is performed with good performance, at the beam position where the ultrasonic beam and the wall are not orthogonal, such as the beam position l 2 in FIG. As shown in (b), the thickness change was not obtained correctly. In FIG. 8 (b), since the ultrasonic beam and the blood vessel wall are not orthogonal to each other, the reflected intensity of the ultrasonic wave is reduced, so that the S / N of the reflected wave is deteriorated and the reproducibility between beats is also reduced. Be redeemed.

他方、本実施例においては、図7(a)におけるビーム位置l2のように従来例によるリニア走査では超音波ビームと血管壁を直交させることができない位置(図7(b)のビーム位置l’2)においても、図8(c)に示すように、厚み変化が再現性良く計測されている。 On the other hand, in the present embodiment, as in the beam position l 2 in FIG. 7A, the position where the ultrasonic beam and the blood vessel wall cannot be orthogonalized by the linear scanning according to the conventional example (the beam position l in FIG. 7B). Also in ' 2 ), as shown in FIG. 8 (c), the thickness change is measured with good reproducibility.

図9(a)と図9(b)にはそれぞれ、従来例によるリニア走査と本実施例で計測した、各超音波ビーム位置における血管壁の厚み変化の6拍分の平均値と標準偏差をそれぞれ示す。図9(a)のリニア走査による計測結果から分かるように、超音波ビームが血管中心Oを通る状態、すなわち超音波ビームと血管壁が直交している状態から14度以上外れると、計測された厚み変化の再現性が低下することから、血管壁の厚み変化を精度良く計測するためには、超音波ビームと血管壁を直交状態から±14度以内に保つ必要があると考えられる。一方、本実施例による測定法では、図9(b)に示すように全超音波ビーム位置において、ビームと血管壁の直交性が保たれているため、全ビーム位置において血管壁の厚み変化が再現性良く計測されていることが分かる。なお、本実施例においても直交性については、上記事実から±14度以内であれば実用性が認められる。   9 (a) and 9 (b) show the average value and standard deviation for six beats of the change in the thickness of the blood vessel wall at each ultrasonic beam position, respectively, measured by the linear scanning according to the conventional example and the present embodiment. Each is shown. As can be seen from the measurement result by linear scanning in FIG. 9 (a), the measurement was performed when the ultrasonic beam deviated by 14 degrees or more from the state passing through the blood vessel center O, that is, the state where the ultrasonic beam and the blood vessel wall were orthogonal to each other. Since the reproducibility of the thickness change is reduced, it is considered necessary to keep the ultrasonic beam and the blood vessel wall within ± 14 degrees from the orthogonal state in order to accurately measure the thickness change of the blood vessel wall. On the other hand, in the measurement method according to the present embodiment, as shown in FIG. 9 (b), the orthogonality between the beam and the blood vessel wall is maintained at all ultrasonic beam positions. It turns out that it is measured with good reproducibility. In the present embodiment, practicality is recognized for the orthogonality within ± 14 degrees from the above fact.

本明細書においては、血管を実例として本件発明を説明したが、本件発明の適用は血管のみに限定されるものではない。経時的にその直径が収縮する管の肉厚等を測定するために本件発明は適用できる。また、経時的に直径が収縮していない管においても、本件発明は適用可能である。   In the present specification, the present invention has been described using blood vessels as examples, but application of the present invention is not limited to blood vessels. The present invention can be applied to measure the thickness of a tube whose diameter shrinks over time. The present invention is also applicable to a tube whose diameter has not shrunk over time.

リニア走査(従来例)による血管の測定を示す図である。It is a figure which shows the measurement of the blood vessel by linear scanning (conventional example). 心拍動による血管壁の運動を示す図である。It is a figure which shows the exercise | movement of the blood vessel wall by a heartbeat. 頸動脈分岐部における超音波走査を示す図である。It is a figure which shows the ultrasonic scan in a carotid artery bifurcation part. 本実施形態における超音波走査及び送受信系を示す図である。It is a figure which shows the ultrasonic scanning and transmission / reception system in this embodiment. 頸動脈分岐部の長軸断面における超音波走査及び画像化法を示す概念図である。It is a conceptual diagram which shows the ultrasonic scanning and imaging method in the major-axis cross section of a carotid artery bifurcation part. 本実施例によるビーム走査の概略図である。It is the schematic of the beam scanning by a present Example. リニア走査(従来例)、本実施例によって計測された頸動脈の短軸Bモード断層像である。It is the short axis B mode tomogram of the carotid artery measured by the linear scanning (conventional example) and the present Example. リニア走査(従来例)、本実施例によって計測された、拍動に伴う頸動脈壁の厚み変化波形である。It is the thickness change waveform of the carotid artery wall accompanying the pulsation measured by the linear scanning (conventional example) and the present embodiment. リニア走査(従来例)、本測定法によって計測された、各超音波ビーム位置における頸動脈壁の厚み変化の6拍の平均値と標準偏差を示す図である。It is a figure which shows the average value and standard deviation of 6 beats of the thickness change of the carotid artery wall in each ultrasonic beam position measured by the linear scanning (conventional example) and this measurement method.

Claims (5)

管を超音波で測定する超音波測定方法であって、第1の超音波発信ビームと第2の超音波発信ビームを前記管の内壁に対して実質的に垂直に当て、前記第1の超音波発信ビームは前記第2の超音波発信ビームと平行ではない、超音波測定方法。   An ultrasonic measurement method for measuring a tube with ultrasonic waves, wherein a first ultrasonic transmission beam and a second ultrasonic transmission beam are applied substantially perpendicular to an inner wall of the tube, and the first ultrasonic transmission beam is applied. The ultrasonic wave measuring method, wherein the ultrasonic wave transmission beam is not parallel to the second ultrasonic wave transmission beam. 前記第1の超音波発信ビームと第2の超音波発信ビームは、前記管の内壁に対して90±14°の角度を有する、請求項1の超音波測定方法。   The ultrasonic measurement method according to claim 1, wherein the first ultrasonic transmission beam and the second ultrasonic transmission beam have an angle of 90 ± 14 ° with respect to the inner wall of the tube. 管を超音波で測定するための超音波測定機構であって、
前記管の内壁に対して実質的に垂直に発信された第1の超音波発信ビームとは異なり、かつ、前記管の内壁に対して実質的に垂直な方向に第2の超音波発信ビームを発信する超音波発信手段を具備する、超音波発生機構。
An ultrasonic measurement mechanism for measuring a tube with ultrasonic waves,
Unlike the first ultrasonic transmission beam transmitted substantially perpendicular to the inner wall of the tube, the second ultrasonic transmission beam is directed in a direction substantially perpendicular to the inner wall of the tube. An ultrasonic generation mechanism comprising ultrasonic transmission means for transmitting.
上記超音波発信手段は、複数の振動素子からなり、それぞれの前記振動素子に対して予め定められた遅延量を入力することによって、前記超音波発信ビームを発信する、請求項3の超音波発生機構。   4. The ultrasonic wave generation according to claim 3, wherein the ultrasonic wave transmission means includes a plurality of vibration elements, and transmits the ultrasonic wave transmission beam by inputting a predetermined delay amount to each of the vibration elements. mechanism. 前記第1の超音波発信ビームと第2の超音波発信ビームは、前記管の内壁に対して90±14°の角度を有する、請求項3または請求項4の超音波発生機構。   The ultrasonic generation mechanism according to claim 3 or 4, wherein the first ultrasonic transmission beam and the second ultrasonic transmission beam have an angle of 90 ± 14 ° with respect to the inner wall of the tube.
JP2003311468A 2003-09-03 2003-09-03 Method for measuring ultrasonic wave, and mechanism for generating the ultrasonic wave Pending JP2005074146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003311468A JP2005074146A (en) 2003-09-03 2003-09-03 Method for measuring ultrasonic wave, and mechanism for generating the ultrasonic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003311468A JP2005074146A (en) 2003-09-03 2003-09-03 Method for measuring ultrasonic wave, and mechanism for generating the ultrasonic wave

Publications (1)

Publication Number Publication Date
JP2005074146A true JP2005074146A (en) 2005-03-24

Family

ID=34413026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003311468A Pending JP2005074146A (en) 2003-09-03 2003-09-03 Method for measuring ultrasonic wave, and mechanism for generating the ultrasonic wave

Country Status (1)

Country Link
JP (1) JP2005074146A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021192A (en) * 2005-06-16 2007-02-01 Toshiba Corp Ultrasonic diagnostic apparatus and ultrasonic transmission/reception condition optimizing program
WO2007063619A1 (en) * 2005-11-30 2007-06-07 Matsushita Electric Industrial Co., Ltd. Ultrasonic diagnostic apparatus
JP2007195662A (en) * 2006-01-25 2007-08-09 Yunekusu:Kk Apparatus for measuring intraluminal diameter of biological tubular body
WO2008149540A1 (en) * 2007-06-04 2008-12-11 Panasonic Corporation Ultrasonic diagnosis device and ultrasonic probe for use in ultrasonic diagnosis device
JP2009039407A (en) * 2007-08-10 2009-02-26 Panasonic Corp Ultrasonic diagnosis device, and ultrasonic probe for use in ultrasonic diagnosis device
JP2009039258A (en) * 2007-08-08 2009-02-26 Panasonic Corp Ultrasonic diagnosis device
JP2010046229A (en) * 2008-08-20 2010-03-04 Yunekusu:Kk Vasodilation response image display apparatus
JP2011067546A (en) * 2009-09-28 2011-04-07 Fujifilm Corp Ultrasonic diagnostic apparatus and method for calculating elasticity index
JP2012085789A (en) * 2010-10-19 2012-05-10 Seiko Epson Corp Blood vessel diameter measurement device
JP2013013759A (en) * 2005-06-16 2013-01-24 Toshiba Corp Ultrasonic diagnostic apparatus and ultrasonic transmission/reception condition optimizing program
JP2013046856A (en) * 2012-12-05 2013-03-07 Panasonic Corp Ultrasonic diagnosis device
US8672847B2 (en) 2010-11-10 2014-03-18 Fujifilm Corporation Ultrasound diagnostic apparatus and method
JP2014111209A (en) * 2014-03-19 2014-06-19 Seiko Epson Corp Blood vessel diameter measurement device and blood vessel diameter measurement method
US8864668B2 (en) 2008-04-02 2014-10-21 Medison Co., Ltd. Formation of an elastic image in an ultrasound system

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021192A (en) * 2005-06-16 2007-02-01 Toshiba Corp Ultrasonic diagnostic apparatus and ultrasonic transmission/reception condition optimizing program
US9606227B2 (en) 2005-06-16 2017-03-28 Toshiba Medical Systems Corporation Ultrasonic transmission/reception condition optimization method, ultrasonic transmission/reception condition optimization program, and ultrasonic diagnostic apparatus
JP2013013759A (en) * 2005-06-16 2013-01-24 Toshiba Corp Ultrasonic diagnostic apparatus and ultrasonic transmission/reception condition optimizing program
WO2007063619A1 (en) * 2005-11-30 2007-06-07 Matsushita Electric Industrial Co., Ltd. Ultrasonic diagnostic apparatus
US8052602B2 (en) 2005-11-30 2011-11-08 Panasonic Corporation Ultrasonic diagnostic apparatus
JP2007195662A (en) * 2006-01-25 2007-08-09 Yunekusu:Kk Apparatus for measuring intraluminal diameter of biological tubular body
CN102579082A (en) * 2007-06-04 2012-07-18 松下电器产业株式会社 Ultrasonic diagnosis device and ultrasonic probe for use in ultrasonic diagnosis device
WO2008149540A1 (en) * 2007-06-04 2008-12-11 Panasonic Corporation Ultrasonic diagnosis device and ultrasonic probe for use in ultrasonic diagnosis device
US8439839B2 (en) 2007-06-04 2013-05-14 Panasonic Corporation Ultrasonic diagnosis device and ultrasonic probe for use in ultrasonic diagnosis device
JP2009039258A (en) * 2007-08-08 2009-02-26 Panasonic Corp Ultrasonic diagnosis device
JP2009039407A (en) * 2007-08-10 2009-02-26 Panasonic Corp Ultrasonic diagnosis device, and ultrasonic probe for use in ultrasonic diagnosis device
US8864668B2 (en) 2008-04-02 2014-10-21 Medison Co., Ltd. Formation of an elastic image in an ultrasound system
JP2010046229A (en) * 2008-08-20 2010-03-04 Yunekusu:Kk Vasodilation response image display apparatus
JP2011067546A (en) * 2009-09-28 2011-04-07 Fujifilm Corp Ultrasonic diagnostic apparatus and method for calculating elasticity index
JP2012085789A (en) * 2010-10-19 2012-05-10 Seiko Epson Corp Blood vessel diameter measurement device
US9642594B2 (en) 2010-10-19 2017-05-09 Seiko Epson Corporation Blood vessel diameter measurement device
US8672847B2 (en) 2010-11-10 2014-03-18 Fujifilm Corporation Ultrasound diagnostic apparatus and method
JP2013046856A (en) * 2012-12-05 2013-03-07 Panasonic Corp Ultrasonic diagnosis device
JP2014111209A (en) * 2014-03-19 2014-06-19 Seiko Epson Corp Blood vessel diameter measurement device and blood vessel diameter measurement method

Similar Documents

Publication Publication Date Title
Carovac et al. Application of ultrasound in medicine
RU2559910C2 (en) Propagation/tracking sequences for vibrometry of dispersion transverse waves
US8439839B2 (en) Ultrasonic diagnosis device and ultrasonic probe for use in ultrasonic diagnosis device
US7753847B2 (en) Ultrasound vibrometry
RU2580419C2 (en) Sampling ultrasonic vibrometry of scattering transverse waves with high spatial resolution
EP2232299B1 (en) Method and system for imaging vessels
JP6632257B2 (en) Subject information acquisition device
JP2011078744A (en) Method and device for displacement measurement, and ultrasonic diagnostic apparatus
JPH09509601A (en) Method and apparatus for positioning a vibration device
JP2009500082A (en) Concave phased array imaging catheter
JP2005074146A (en) Method for measuring ultrasonic wave, and mechanism for generating the ultrasonic wave
JP2012005690A (en) Measuring device, biological testing device, flow velocity measuring method, and pressure measuring method
JP5998197B2 (en) Biological blood vessel diameter continuous measurement device
JP5714221B2 (en) Ultrasonic diagnostic apparatus and ultrasonic transmission / reception method
JP2006115937A (en) Ultrasonic diagnostic apparatus
JP6853372B2 (en) Control method of ultrasonic diagnostic equipment and ultrasonic diagnostic equipment
CN109073751A (en) The acoustics of inside and outside ultrasonic probe is registrated
JP2003230560A (en) Ultrasonograph
JP2002034986A (en) Ultrasonograph
JP2019187777A (en) Ultrasound diagnostic apparatus and ultrasound signal processing method
JP5154858B2 (en) Ultrasonic diagnostic apparatus and ultrasonic probe used for ultrasonic diagnostic apparatus
JP5148203B2 (en) Ultrasonic diagnostic equipment
JP2009160370A (en) Ultrasonic diagnosis device and ultrasonic probe for use in ultrasonic diagnosis device
WO2015107993A1 (en) Diagnostic ultrasound apparatus and pulse wave measurement method
KR20180096342A (en) Ultrasound probe and manufacturing method for the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060829

A711 Notification of change in applicant

Effective date: 20060829

Free format text: JAPANESE INTERMEDIATE CODE: A711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060901

A521 Written amendment

Effective date: 20060829

Free format text: JAPANESE INTERMEDIATE CODE: A821

RD03 Notification of appointment of power of attorney

Effective date: 20061006

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061006

RD04 Notification of resignation of power of attorney

Effective date: 20061114

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061024

RD02 Notification of acceptance of power of attorney

Effective date: 20071114

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071121

RD02 Notification of acceptance of power of attorney

Effective date: 20071128

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071212

A072 Dismissal of procedure

Effective date: 20080305

Free format text: JAPANESE INTERMEDIATE CODE: A072

A072 Dismissal of procedure

Effective date: 20080326

Free format text: JAPANESE INTERMEDIATE CODE: A072

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091014

A521 Written amendment

Effective date: 20091214

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD04 Notification of resignation of power of attorney

Effective date: 20091215

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A02 Decision of refusal

Effective date: 20100112

Free format text: JAPANESE INTERMEDIATE CODE: A02