JP2003121129A - Apparatus and method for measurement of shape - Google Patents

Apparatus and method for measurement of shape

Info

Publication number
JP2003121129A
JP2003121129A JP2001311023A JP2001311023A JP2003121129A JP 2003121129 A JP2003121129 A JP 2003121129A JP 2001311023 A JP2001311023 A JP 2001311023A JP 2001311023 A JP2001311023 A JP 2001311023A JP 2003121129 A JP2003121129 A JP 2003121129A
Authority
JP
Japan
Prior art keywords
light receiving
sensor
shape
measured
receiving elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001311023A
Other languages
Japanese (ja)
Other versions
JP3845286B2 (en
Inventor
Ryuji Sakida
隆二 崎田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2001311023A priority Critical patent/JP3845286B2/en
Publication of JP2003121129A publication Critical patent/JP2003121129A/en
Application granted granted Critical
Publication of JP3845286B2 publication Critical patent/JP3845286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the error amount of a phase shift when the surface of a specimen is inspected. SOLUTION: A cylindrical specimen 1 is turned, moire fringes at a specific fringe order are shifted precisely by a desired phase, a measuring region is limited to a part near the fringe order, its shape is measured on the basis of phase-shifted moire fringe data obtained by a light receiving element 13 at a measuring head 6 in a stereolattice-type moire optical system in which at least three lines of light receiving elements with linearly integrated pixels are. installed, the runout on the surface of the cylindrical specimen 1 in the arrangement direction of the light receiving element 13 is measured by a distance sensor 7 during the measurement of the shape, and the positional relationship between the light receiving element 13 and the cylindrical specimen 1 is controlled so as to be always constant in the arrangement direction of the light receiving element 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、例えば円筒状被
検物等の表面形状や、キズや膨らみ,うねり,へこみ等
の欠陥を検出する形状測定装置及び形状測定方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shape measuring apparatus and a shape measuring method for detecting the surface shape of, for example, a cylindrical test object and defects such as scratches, bulges, undulations and dents.

【0002】[0002]

【従来の技術】感光体ドラムなどの円筒状被検物の欠陥
検査方法として、例えば特開平2−201142号公報及び特
開平4−169840号公報が開示されている。特開平2−20
1142号公報に示された異常検出方法は、図15に示すよ
うに、光源31からのレーザ光ビーム32を回転多面鏡
36を介して感光体ドラム33の軸方向に走査するよう
に照射し、この走査光はドラム30の感光層表面にて反
射し、正常な表面からの反射光は、ほぼ受光器35に進
入して反射光の強度が検出され、受光器5の出力は所定
の演算処理部等に入力される。ここでの処理で検出値が
異常に低下したときに、表面状態の異常として検出す
る。また、特開平4−169840号公報に示された円周表面
傷検査方法は、図16に示すように、ハロゲン光源等を
備えた投光器41から感光体ドラム43へ向けてスリッ
ト光42を投射し、感光体ドラム43の表面欠陥によっ
て散乱された散乱光をレンズ44によって集光してライ
ンセンサ45で受光して欠陥による散乱光により異常を
検出している。
2. Description of the Related Art As a method of inspecting a cylindrical test object such as a photosensitive drum for defects, for example, JP-A-2-201142 and JP-A-4-169840 are disclosed. Japanese Patent Laid-Open No. 2-20
In the abnormality detecting method disclosed in Japanese Patent No. 1142, as shown in FIG. 15, a laser light beam 32 from a light source 31 is irradiated through a rotating polygon mirror 36 so as to scan the photosensitive drum 33 in the axial direction, The scanning light is reflected by the surface of the photosensitive layer of the drum 30, and the light reflected from the normal surface almost enters the photodetector 35, the intensity of the reflected light is detected, and the output of the photodetector 5 is subjected to a predetermined arithmetic processing. It is input to the department. When the detected value is abnormally lowered by the processing here, it is detected as an abnormal surface state. Further, in the circumferential surface flaw inspection method disclosed in JP-A-4-169840, as shown in FIG. 16, a slit light 42 is projected from a projector 41 equipped with a halogen light source or the like toward a photosensitive drum 43. The scattered light scattered by the surface defect of the photoconductor drum 43 is condensed by the lens 44 and received by the line sensor 45, and the abnormality is detected by the scattered light due to the defect.

【0003】[0003]

【発明が解決しようとする課題】感光体にはピンホール
や打痕,擦り傷,気泡の巻き込み,クラック,ゴミ等の
付着による欠陥及び感光層の膜厚のムラや液ダレ,支持
体の傷等多種多様な欠陥が生ずる可能性がある。上記の
ような光学式検査装置による場合は、ピンホールや打
痕,擦り傷,ゴミ等の付着による欠陥のように、表面の
凹凸の変化率の大きな欠陥は精度良く検出できるが、感
光層の膜厚ムラ等の如く凹凸の変化率の小さい欠陥ある
いは支持体の傷のように感光体表面に凹凸の変化のない
欠陥に対しては検出精度に問題があった。
Problems such as pinholes, dents, scratches, inclusion of air bubbles, cracks, dust, and other defects on the photoconductor, unevenness in the film thickness of the photosensitive layer, liquid sagging, and scratches on the support are considered. A wide variety of defects can occur. In the case of using the optical inspection device as described above, a defect having a large rate of change in surface irregularities, such as a defect caused by a pinhole, a dent, a scratch, dust, or the like, can be accurately detected. There is a problem in detection accuracy for a defect having a small rate of change in unevenness such as thickness unevenness or a defect having no change in unevenness on the surface of the photoconductor such as a scratch on the support.

【0004】一方、三次元測定法の1手法としてモアレ
法が挙げられる。モアレ法には、実体格子型と格子投影
型があり、様々な分野において広く利用されている。格
子投影型のモアレ法とは、図17に示すように、投影用
と観察用とに、それぞれ小さな格子G1,G2を配置
し、G1をレンズL1により物体に投影し、物体形状に
応じて変形した格子線をレンズL2を通じてもう一つの
格子G2上に結像させ、縞等高線を基準面から所定距離
のところに生じさせるようにしたものである。実体格子
型のモアレ法とは、図18に示すように、基準面に一つ
の格子Gを設置し、図19に示すように、レンズL1の
位置に点光源S1を置き、レンズL2の位置に観察眼e
を置いて、格子Gの光源S1による影を物体上に落し、
物体形状に応じて変形した格子Gの影を形成させ、これ
を格子Gを通して観察することにより、この格子Gと変
形した格子の影とによって生じるモアレ縞を観測する方
法である。
On the other hand, one of the three-dimensional measurement methods is the moire method. The Moire method includes a physical lattice type and a lattice projection type, which are widely used in various fields. As shown in FIG. 17, the lattice projection type moire method is such that small lattices G1 and G2 are arranged for projection and observation, respectively, and G1 is projected onto an object by a lens L1 and deformed according to the object shape. This grid line is imaged on another grid G2 through the lens L2 so that the fringe contour line is generated at a predetermined distance from the reference plane. In the real lattice type moire method, as shown in FIG. 18, one lattice G is installed on the reference plane, and as shown in FIG. 19, a point light source S1 is placed at the position of the lens L1 and at the position of the lens L2. Observation eye e
, The shadow of the light source S1 of the grating G is cast on the object,
This is a method of forming a shadow of the lattice G deformed according to the shape of the object and observing the shadow through the lattice G to observe moire fringes generated by the lattice G and the shadow of the deformed lattice.

【0005】この実体格子型のモアレ法を例にとり、さ
らに詳しく説明する。図19に示すように、光源S1及
び観測点S2と物体Oとの間の同一平面に格子G1,G
2を配置し、光源S1と観察点S2の距離をd、光源S
1及び観察点S2から格子G1,G1までの距離をL、
格子G1,G2から物体Oまでの距離をh、格子G1,
G2はいずれもピッチsをもつが、格子G1、G2は面
内で互いにεだけずれている(格子ピッチの位相でいえ
ば2πε/s)とすると、下記(1)式で表せる。 cos(2π/s)・[{dh−ε(h+L)}/(h+L)] (1) 形成されるモアレ縞(等高線)は、格子面を基準(0
次)として、格子面から離れるに従い、順に1次、2次
とカウントされる次数を持つ。そこで縞次数Nのモアレ
縞をcos2πNと置くことによって得られる。その結
果、第N次のモアレ等高線は基準面からhだけ離れた
下記(2)式で示される位置に形成される。 h={(Ns+ε)L}/(d−Ns−ε) (2) これは位置の座標xを含んでおらず、縞次数Nによって
定める固有の値となっている。すなわち等高線が形成さ
れていることを示す。
A more detailed description will be given by taking the real lattice type moire method as an example. As shown in FIG. 19, the gratings G1 and G1 are arranged on the same plane between the light source S1 and the observation point S2 and the object O.
2, the distance between the light source S1 and the observation point S2 is d, and the light source S is
1 and the distance from the observation point S2 to the grids G1, G1 is L,
The distance from the grids G1, G2 to the object O is h, and the grids G1,
G2 has a pitch s, but the gratings G1 and G2 are displaced from each other by ε in the plane (2πε / s in terms of the phase of the grating pitch), which can be expressed by the following equation (1). cos (2π / s) · [{dh−ε (h + L)} / (h + L)] (1) The moire fringes (contour lines) formed are based on the lattice plane (0
The second order has the orders that are sequentially counted as the first order and the second order with increasing distance from the lattice plane. Therefore, it is obtained by setting the moire fringe of the fringe order N as cos2πN. As a result, the Nth-order moiré contour line is formed at the position indicated by the following equation (2), which is separated from the reference surface by h N. h N = {(Ns + ε ) L} / (d-Ns-ε) (2) which do not contain the coordinate x of the position, and has a unique value determined by the fringe order N. That is, it indicates that contour lines are formed.

【0006】図20に示す実体格子型のモアレ法は、図
19に示す格子G1,G2を1枚の連続した格子Gとし
たものに相当し、ε=0となる。(2)式から下記
(3)式が成り立つ。 h=(NsL)/(d−Ns) (3) 但し、等高線といいながら、その間隔ΔhN=hN+1−h
Nは一定ではなく、次数Nによって異なってしまう。
The solid grid type moire method shown in FIG. 20 corresponds to one in which the gratings G1 and G2 shown in FIG. 19 are made into one continuous grating G, and ε = 0. From the equation (2), the following equation (3) is established. h N = (NsL) / (d−Ns) (3) However, although it is called a contour line, the interval Δh N = h N + 1 −h
N is not constant and varies depending on the order N.

【0007】従来、モアレ法による三次元形状測定法は
対象物を直観的に把握することはできるが、(1)凹凸
の判定がし難い、(2)高感度の三次元測定には不向き
(現時点ではモアレ縞等高線の間隔は10μm程度が限界
とされている)、(3)モアレ縞のビジビリティーが縞
ごとに均一でないためモアレ像を画像処理の対象として
扱いにくい等々の問題が指摘されている。この問題は、
格子投影型の場合、2枚の格子を利用しているために、
その一方を移動させて縞走査すなわちモアレ縞の位相を
シフトさせることによって、等高線間隔を等価的に細か
く分割するとともに、対象の凹凸判定や測定感度の向上
が可能である。
Conventionally, the three-dimensional shape measuring method based on the moire method can intuitively grasp an object, but (1) it is difficult to judge unevenness, and (2) it is not suitable for highly sensitive three-dimensional measurement ( At present, the distance between contours of moire fringes is limited to about 10 μm), and (3) the visibility of moire fringes is not uniform for each fringe, which makes it difficult to handle moire images as image processing targets. . This problem,
In the case of the grid projection type, since two grids are used,
By moving one of them to shift the fringe scanning, that is, the phase of the moire fringes, it is possible to equivalently divide the contour line finely and to determine the unevenness of the target and improve the measurement sensitivity.

【0008】この位相シフト法の原理を説明する。位相
変調された縞画像は、図21に示すように、バイアスを
a、振幅をb、操作可能な位相をθ、高さに相当する位
相値をΦとすると、下記式で表せる。 I=I(θ)=a(x,y)+b(x,y)cos{Φ(x、y)+
θ} ここで求めたいのは各点(x、y)における位相Φ
(x、y)である。バイアスaや振幅bは、表面の反射
率や汚れなどで変化する未知数成分なので、位相θを
0、π/2、πと変化させた下記式で示される3つの縞
画像を生成する。 I=I(0)=a(x,y)+b(x,y)cos{Φ(x、y)+
θ} I=I(π/2)=a(x,y)+b(x,y)cos{Φ(x、
y)+θ} I=I(π)=a(x,y)+b(x,y)cos{Φ(x、y)+
θ} そして下記(4)式で位相Φ(x、y)を算出すれば反
射率や汚れ成分を除去して、各点の位相Φ(x、y)を
求めることができる。 Φ(x、y)=tan−1{(I3−I2)/(I1−I2)}+π/4 (4)
The principle of this phase shift method will be described. As shown in FIG. 21, the phase-modulated fringe image can be represented by the following equation, where the bias is a, the amplitude is b, the operable phase is θ, and the phase value corresponding to the height is Φ. I = I (θ) = a (x, y) + b (x, y) cos {Φ (x, y) +
θ} What we want to find here is the phase Φ at each point (x, y).
(X, y). Since the bias a and the amplitude b are unknown components that change due to the reflectance and dirt of the surface, three fringe images represented by the following equations are generated by changing the phase θ to 0, π / 2, π. I = I (0) = a (x, y) + b (x, y) cos {Φ (x, y) +
θ} I = I (π / 2) = a (x, y) + b (x, y) cos {Φ (x,
y) + θ} I = I (π) = a (x, y) + b (x, y) cos {Φ (x, y) +
θ} Then, if the phase Φ (x, y) is calculated by the following equation (4), the reflectance and the dirt component can be removed to obtain the phase Φ (x, y) at each point. Φ (x, y) = tan −1 {(I3-I2) / (I1-I2)} + π / 4 (4)

【0009】しかし、実体格子型の場合には格子Gが一
枚であるため、格子投影型のモアレ法のような位相シフ
トを行っても、すべての次数の縞等高線の位相を揃えな
がら位相を変えることはできない。このような問題点に
対して、例えば特許第2887517号公報に示す高感度三次
元測定法では、格子面の垂直移動と光源又は観察点の水
平移動を同時に行うことにより、各次数のモアレ縞の位
相にほぼ大きな変化をきたすことなく、各次数の縞の位
相がほぼ揃った状態で測定対象に対する縞位相のシフト
ができるので、複数枚の縞画像から位相シフト法の原理
に基いて処理することができ、これによって測定対象に
対するモアレ縞による測定点の密度が増大するととも
に、モアレ縞1周期について約1/40〜1/100程度の物理
的な分割が可能となり、実体格子型のモアレ法では困難
とされていた面の凹凸の判定や測定感度の向上を図るこ
とができる。
However, in the case of the real lattice type, since the number of the lattice G is one, even if the phase shift such as the lattice projection type moire method is performed, the phases of the fringe contours of all orders are made uniform. It cannot be changed. For such a problem, for example, in the high-sensitivity three-dimensional measurement method shown in Japanese Patent No. 2887517, the vertical movement of the lattice plane and the horizontal movement of the light source or the observation point are performed at the same time, so that the moire fringes of each order are formed. Since the fringe phase can be shifted with respect to the measurement target in a state where the phases of the fringes of each order are almost the same without causing a large change in the phase, it is necessary to process from multiple fringe images based on the principle of the phase shift method. This makes it possible to increase the density of measurement points due to moire fringes on the object to be measured, and to physically divide about 1/40 to 1/100 per cycle of moire fringes. It is possible to determine the unevenness of the surface, which was considered difficult, and improve the measurement sensitivity.

【0010】しかし、このように位相シフト法を適用し
て円筒状被検物等の全面測定を行う場合、少なくとも被
検物を3回転以上させて位相シフトさせるために格子移
動とモアレ縞の撮像を繰り返す必要があり測定に時間が
かかる。また、格子を複数方向(平行と回転)に移動さ
せる必要があるため、装置構成が複雑になる等の問題が
ある。
However, in the case where the entire surface of a cylindrical test object or the like is measured by applying the phase shift method in this manner, grating movement and imaging of moire fringes are performed in order to shift the phase of the test object by rotating the test object three times or more. Must be repeated and it takes time to measure. Further, since it is necessary to move the grating in a plurality of directions (parallel and rotational), there is a problem that the device configuration becomes complicated.

【0011】特開平7−332956号公報に示された表面形
状測定装置や文献「位相シフトによる実体格子型モアレ
法」(1991年度精密工学会秋季大会学術講演会講演論文
集)、「液晶ガラスのフラットネス計測」(O plus E 19
96年9月)では、平行光を与えることにより、縞次数に
よる縞間隔の違いをなくしているため、全ての縞の位相
を揃えながらシフトさせている。さらに、これらの方法
では格子運動のみにより位相シフトさせることが可能で
ある。
The surface shape measuring device disclosed in Japanese Unexamined Patent Publication No. 7-332956 and the document "Physical lattice type moire method by phase shift" (Proceedings of the 1991 Precision Engineering Society Autumn Meeting, Academic Lecture Meeting), "Liquid Crystal Glass Flatness measurement ”(O plus E 19
(September 1996), the parallel light is applied to eliminate the difference in the fringe spacing due to the fringe order, so all the fringes are shifted in phase. Furthermore, these methods allow the phase shift only by the lattice motion.

【0012】しかし依然として円筒状被検物等の全面測
定を行う場合、位相シフトした画像を得るために、格子
移動と撮像という動作を繰り返し被検物を3回転以上さ
せる必要があるため測定時間の増大を招く。また、特開
平10−54711号公報に示された表面形状測定方法では、
被検物の高さを変えることにより位相シフトさせてい
る。この場合においても被検物の移動と撮像を複数回繰
り返す必要があるため測定時間の増大を招く。また、凹
凸形状の定量化に関しては明確な方法が充分に説明され
てない。
However, when the entire surface of a cylindrical test object or the like is measured, it is necessary to repeat the operation of moving the grating and imaging in order to obtain a phase-shifted image, and the test object must be rotated three times or more. Cause an increase. Further, in the surface shape measuring method shown in JP-A-10-54711,
The phase is shifted by changing the height of the test object. Even in this case, it is necessary to repeat the movement and the imaging of the object to be inspected a plurality of times, which causes an increase in measurement time. In addition, a clear method for quantifying the uneven shape is not sufficiently explained.

【0013】この発明は上述した問題点を解消し、ロー
ラ部品等の円柱状被検物や液晶等の平面状被検物を対象
とし、実体格子型のモアレ法に位相シフト法を適用し、
さらに1回の1連の撮像により位相シフトした画像を得
ることにより、高速に測定を行う形状測定を行い、その
定量的な形状データから被検物表面の検査を行うととも
に位相シフト誤差量を低減させることができる形状測定
装置及び形状測定方法を提供することを目的とするもの
である。
The present invention solves the above-mentioned problems, and applies to a cylindrical test object such as a roller component or a flat test object such as a liquid crystal, and applies the phase shift method to the real lattice type moire method.
By obtaining a phase-shifted image by one series of imaging once, shape measurement is performed at high speed, and the surface of the object is inspected from the quantitative shape data, and the amount of phase shift error is reduced. An object of the present invention is to provide a shape measuring device and a shape measuring method that can perform the above.

【0014】[0014]

【課題を解決するための手段】この発明に係る形状測定
装置は、画素が直線状に集積された受光素子を少なくと
も3ライン有するセンサが設けられた実体格子型のモア
レ光学系と、被検物を保持して回転させる把持回転機構
と、受光素子の並び方向において被検物表面の回転振れ
を測定する回転振れ測定手段とを有し、被検物を回転さ
せ、特定の縞次数のモアレ縞を所望の位相だけ正確にシ
フトさせ、測定領域をその縞次数近辺に限定し、上記セ
ンサによって得られる位相シフトしたモアレ縞データか
ら形状測定を行い、形状測定中に回転振れ測定手段で受
光素子の並び方向における被検物表面の回転振れを測定
し、その結果から常にセンサと被検物の位置関係が受光
素子の並び方向において一定となるように制御すること
を特徴とする。
SUMMARY OF THE INVENTION A shape measuring apparatus according to the present invention is a physical lattice type moire optical system provided with a sensor having at least 3 lines of light receiving elements in which pixels are linearly integrated, and an object to be inspected. A holding and rotating mechanism for holding and rotating the object, and a rotational shake measuring means for measuring the rotational shake of the surface of the object to be measured in the direction of arrangement of the light receiving elements, and rotating the object to be measured, and moire fringes of a specific stripe order. Is accurately shifted by a desired phase, the measurement area is limited to the vicinity of the fringe order, shape measurement is performed from the phase-shifted moire fringe data obtained by the above sensor, and the rotational shake measuring means measures the shape of the light receiving element during the shape measurement. It is characterized in that the rotational shake of the surface of the object to be inspected in the arrangement direction is measured, and the result is controlled so that the positional relationship between the sensor and the object to be inspected is always constant in the arrangement direction of the light receiving elements.

【0015】上記回転振れ測定手段は距離センサを使用
すると良い。また、回転振れ測定手段として、ライン光
源とエリアセンサを有し、被検物の受光素子側の頂点位
置を検出して受光素子の並び方向における被検物表面の
回転振れを測定するようにしても良い。
A distance sensor may be used as the rotation shake measuring means. Further, as a rotational shake measuring means, a line light source and an area sensor are provided, and the rotational shake of the surface of the test object in the direction of arrangement of the light receiving elements is measured by detecting the apex position of the light receiving element of the test object. Is also good.

【0016】また、回転振れ測定手段の測定結果によ
り、受光素子の位置又は被検物の位置を移動して、常に
センサと被検物の位置関係が受光素子の並び方向におい
て一定となるように制御する。
Further, the position of the light receiving element or the position of the test object is moved according to the measurement result of the rotational shake measuring means so that the positional relationship between the sensor and the test object is always constant in the arrangement direction of the light receiving elements. Control.

【0017】さらに、センサとして多数ラインの画素列
が存在するエリアセンサを用い、回転振れ測定手段で受
光素子の並び方向における被検物表面の回転振れを測定
し、位相シフト誤差が生じないようにエリアセンサ内の
画像データを選択しても良い。
Furthermore, an area sensor having a large number of pixel rows is used as a sensor, and the rotational shake measuring means measures the rotational shake of the surface of the object to be measured in the direction in which the light receiving elements are arranged, so that a phase shift error does not occur. Image data in the area sensor may be selected.

【0018】また、回転振れ測定手段で受光素子の並び
方向における被検物表面の回転振れを測定し、その結果
から位相シフト誤差量を算出し、エリアセンサで得られ
た形状データを位相シフト誤差量を用いて補正すると良
い。
Further, the rotational shake measuring means measures the rotational shake of the surface of the object to be measured in the direction in which the light receiving elements are arranged, the phase shift error amount is calculated from the result, and the shape data obtained by the area sensor is used as the phase shift error. It is good to correct using the amount.

【0019】この発明に係る形状測定方法は、被検物を
回転させ、特定の縞次数のモアレ縞を所望の位相だけ正
確にシフトさせ、測定領域をその縞次数近辺に限定し、
画素が直線状に集積された受光素子を少なくとも3ライ
ン有するセンサが設けられた実体格子型のモアレ光学系
のセンサによって得られる位相シフトしたモアレ縞デー
タから形状測定を行い、形状測定中に受光素子の並び方
向における被検物表面の回転振れを測定し、その結果か
ら常にセンサと被検物の位置関係が受光素子の並び方向
において一定となるように制御することを特徴とする。
In the shape measuring method according to the present invention, the object is rotated, the moire fringes of a specific fringe order are accurately shifted by a desired phase, and the measurement area is limited to the vicinity of the fringe order.
Shape measurement is performed from phase-shifted moire fringe data obtained by a sensor of a real lattice type moire optical system provided with a sensor having at least three lines of light-receiving elements in which pixels are linearly integrated, and the light-receiving element during shape measurement. The rotational shake of the surface of the object to be inspected in the arrangement direction of is measured, and from the result, the positional relationship between the sensor and the object to be inspected is controlled so as to be constant in the arrangement direction of the light receiving elements.

【0020】上記センサとして多数ラインの画素列が存
在するエリアセンサを用い、受光素子の並び方向におけ
る被検物表面の回転振れを測定し、位相シフト誤差が生
じないようにエリアセンサ内の画像データを選択するこ
とを特徴とする。
An area sensor having a large number of lines of pixels is used as the sensor, the rotational shake of the surface of the object to be measured in the direction of arrangement of the light receiving elements is measured, and image data in the area sensor is stored so that a phase shift error does not occur. Is selected.

【0021】また、受光素子の並び方向における被検物
表面の回転振れを測定し、その結果から位相シフト誤差
量を算出し、エリアセンサで得られた形状データを位相
シフト誤差量を用いて補正すると良い。
Further, the rotational shake of the surface of the object to be measured in the direction of arrangement of the light receiving elements is measured, the phase shift error amount is calculated from the result, and the shape data obtained by the area sensor is corrected using the phase shift error amount. Good to do.

【0022】[0022]

【発明の実施の形態】図1はこの発明の形状測定装置の
構成を示す斜視図である。図に示すように、円筒状被検
物1の形状や欠陥を検出する形状測定装置2は、円筒状
被検物1を固定する把持冶具3と、把持冶具3を回転す
る回転モータ4と、自動ステージ5に設けられた測定ヘ
ッド6と距離センサ7を有する。把持冶具3は、例えば
三つ爪チャック等を有し、円筒状被検物1を芯出しして
固定する。自動ステージ5は、円筒状被検物1の軸方向
であるx方向に移動するx方向自動ステージ8と、x方
向自動ステージ8に設けられ、x方向と受光素子11の
光軸方向であるz方向と直交するy方向に移動するy方
向自動ステージ9を有し、x方向自動ステージ8により
測定ヘッド6を円筒状被検物1の軸方向に移動させ、y
方向移動ステージ9により測定ヘッド6をy方向に移動
する。そして円筒状被検物1を把持冶具3で固定し、回
転モータ4により把持冶具3を回転しながら、測定ヘッ
ド6を円筒状被検物1の軸方向に移動させて、円筒状被
検物1の全面の測定を行う。
1 is a perspective view showing the configuration of a shape measuring apparatus according to the present invention. As shown in the figure, the shape measuring device 2 for detecting the shape and defects of the cylindrical test object 1 includes a gripping jig 3 for fixing the cylindrical test object 1, a rotary motor 4 for rotating the gripping jig 3, It has a measuring head 6 and a distance sensor 7 provided on the automatic stage 5. The gripping jig 3 has, for example, a three-claw chuck, and centers and fixes the cylindrical test object 1. The automatic stage 5 is provided on the x-direction automatic stage 8 and the x-direction automatic stage 8 which moves in the x-direction which is the axial direction of the cylindrical object 1, and the z-direction which is the x-direction and the optical axis direction of the light receiving element 11. There is a y-direction automatic stage 9 that moves in the y-direction orthogonal to the direction, and the x-direction automatic stage 8 moves the measuring head 6 in the axial direction of the cylindrical test object 1,
The measuring head 6 is moved in the y direction by the direction moving stage 9. Then, the cylindrical test object 1 is fixed by the gripping jig 3, and the measuring head 6 is moved in the axial direction of the cylindrical test object 1 while rotating the gripping jig 3 by the rotation motor 4, so that the cylindrical test object 1 is moved. 1. Measure the entire surface of 1.

【0023】測定ヘッド6は、図2の斜視図に示すよう
に、光源10と、光源10より円筒状被検物1側に設け
られた格子パターン11と、格子パターン11に対して
円筒状被検物1と反対側で、格子パターン11に対して
光源10と同じ距離を隔てて設けられたレンズ12と、
レンズ12に対して格子パターン11と反対側に設けら
れた受光素子13を有する。受光素子13は、少なくと
も3ラインのライン状に画素が集積されている。ここで
は3ラインの場合に関して説明する。受光素子13の各
ラインを、図3に示すように、A列とB列とC列とし、
受光素子13と格子パターン11と円筒状被検物1の位
置関係は、図3及び図4に示すように被検物1が円筒状
であることを利用して、画素列A,B,Cの視野に対応
する高さを変化させてやる。また、受光素子13の画素
列A,B,Cはy方向に並んでいる。ここで所望のステ
ップ量が与えられるように、円筒状被検物1の回転スピ
ードと受光素子13の走査周期と撮像倍率と画素列A,
B,C間の距離を調節してやる。
As shown in the perspective view of FIG. 2, the measuring head 6 includes a light source 10, a grid pattern 11 provided on the cylindrical object 1 side of the light source 10, and a cylindrical pattern with respect to the grid pattern 11. A lens 12 provided on the side opposite to the inspection object 1 at the same distance as the light source 10 with respect to the grid pattern 11,
The light receiving element 13 is provided on the side opposite to the lattice pattern 11 with respect to the lens 12. In the light receiving element 13, pixels are integrated in a line shape of at least 3 lines. Here, the case of three lines will be described. Each line of the light receiving element 13 is, as shown in FIG. 3, a row A, a row B, and a row C,
The positional relationship among the light receiving element 13, the lattice pattern 11 and the cylindrical test object 1 is obtained by utilizing the fact that the test object 1 is cylindrical as shown in FIGS. I will change the height corresponding to the field of view. The pixel rows A, B, and C of the light receiving element 13 are arranged in the y direction. Here, the rotation speed of the cylindrical object 1, the scanning cycle of the light receiving element 13, the imaging magnification, the pixel array A, and the pixel array A, so that a desired step amount is given.
Adjust the distance between B and C.

【0024】この受光素子13の画素列A,B,Cで円
筒状被検物1を撮像するときは、まず、図4に示すよう
に、時刻tにおいてA列で円筒状被検物1の領域3
(ステップ0面)を、B列で領域2(ステップ1面)
を、C列で領域1(ステップ2面)撮像する。次に時刻
においては、A列で領域4(ステップ0面)を、B
列で領域3(ステップ1面)を、C列で領域2(ステッ
プ2面)を撮像する。さらに、時刻tではA列で領域
5(ステップ0面)を、B列で領域4(ステップ1面)
を、C列で領域3(ステップ2面)を撮像する。これを
繰り返すことにより、画像メモリ上に、図5に示すよう
に、各時刻ごとの画素列A,B,Cによる検出データが
得られる。そこで、時刻t1のA列のデータと時刻t
のB列のデータと時刻tのC列のデータを下記(4)
式Φ(x、y)=tan−1{(I3−I2)/(I1−I
2)}+π/4 (4)から領域3の形状測定を行う
ことができる。この定量的な形状データをもとに円筒状
被検物1の表面に生じるうねりやへこみ等の欠陥検査や
平坦度の検査を行う。
When the cylindrical test object 1 is imaged by the pixel rows A, B, and C of the light receiving element 13, first, as shown in FIG. 4, the cylindrical test object 1 in the A row at time t 1 . Area 3
(Step 0 surface), row 2 in area 2 (Step 1 surface)
Is imaged in the region 1 (step 2 surface) in the C column. Next, at time t 2 , the area 4 (step 0 surface) in the column A is set to B
Region 3 (step 1 surface) is imaged in a row, and region 2 (step 2 surface) is imaged in a column C. Further, at time t 3 , the area 5 (step 0 surface) is in the row A, and the area 4 (step 1 surface) is in the row B.
Area 3 (step 2 surface) is imaged in the C column. By repeating this, the detection data by the pixel rows A, B, and C for each time is obtained in the image memory as shown in FIG. Therefore, the data of column A at time t 1 and time t 2
The data of the B column of and the data of the C column at time t 3 are shown in (4) below.
Formula Φ (x, y) = tan −1 {(I3-I2) / (I1-I
2)} + π / 4 (4) The shape of the region 3 can be measured. Based on this quantitative shape data, defect inspection such as undulations and dents generated on the surface of the cylindrical object 1 and flatness inspection are performed.

【0025】厳密には、縞次数により縞間隔が異なるの
で、測定する縞次数によりステップ量が異なり測定誤差
が生じるが、レンズ12から格子パターン11までの距
離L=200mm、光源10とレンズ12の距離70mm、
格子パターン11の格子間隔s=83.3μm(12本/m
m)とした場合、下記(3)式 h=(NsL)/(d−Ns) (3) によりモアレ等高線縞hは、図6に示すようになる。
ここで、円筒状被検物1の基準高さを縞次数n=3の位
置に、測定範囲をn=2〜4の約480μmの範囲に設定
したとすると、Δh=239.423μm、Δh=239.995
μmの差は0.572μmとわずかであり、高低差が数μm程
度のうねりやへこみを測定するには問題のないレベルで
ある。
Strictly speaking, since the fringe spacing differs depending on the fringe order, the step amount varies depending on the fringe order to be measured, and a measurement error occurs, but the distance L from the lens 12 to the lattice pattern 11 is 200 mm, and the distance between the light source 10 and the lens 12 is large. Distance 70mm,
The lattice spacing of the lattice pattern 11 is 83.3 μm (12 / m
m), the moire contour fringes h N are as shown in FIG. 6 by the following equation (3) h N = (NsL) / (d−Ns) (3).
Here, assuming that the reference height of the cylindrical test object 1 is set to the position of the stripe order n = 3 and the measurement range is set to a range of about 480 μm with n = 2 to 4, Δh 2 = 239.423 μm, Δh 3 = 239.995
The difference in μm is as small as 0.572 μm, which is a level that does not pose a problem in measuring undulations or dents whose height difference is about several μm.

【0026】以上の方法においては、円筒状被検物1と
受光素子13の画素列A,B,Cの位置関係が非常に重
要となってくる。すなわち、円筒状被検物1が回転振れ
の影響でy方向に移動した場合、所望のステップ量から
ずれてしまうので形状データに誤差が生じる。一方、円
筒状被検物1が受光素子13の光軸方向zに振れた場合
は、ステップ量は変わらないため回転振れを含めた形状
データが得られるが、円筒状被検物1の1周に対応する
周波数成分を取り除く等の周波数処理により取り除くこ
とができる。すなわち、位相シフトモアレ法を用いた円
筒状被検物1の形状測定において、常に測定ヘッド6と
円筒状被検物1の位置関係がy方向において一定となる
ように制御し、位相シフト誤差量を低減させることが必
要である。
In the above method, the positional relationship between the cylindrical test object 1 and the pixel rows A, B and C of the light receiving element 13 becomes very important. That is, when the cylindrical test object 1 moves in the y direction due to the influence of rotational shake, it deviates from the desired step amount, and thus an error occurs in the shape data. On the other hand, when the cylindrical test object 1 is shaken in the optical axis direction z of the light receiving element 13, the shape data including the rotational shake is obtained because the step amount does not change, but one round of the cylindrical test object 1 is obtained. Can be removed by frequency processing such as removing the frequency component corresponding to. That is, in the shape measurement of the cylindrical test object 1 using the phase shift moire method, the positional relationship between the measurement head 6 and the cylindrical test object 1 is controlled to be constant in the y direction, and the phase shift error amount is controlled. It is necessary to reduce.

【0027】そこで図7に示すように、距離センサ7に
より円筒状被検物1のy方向の回転振れ量を測定し、そ
の測定結果に基いて受光素子13の画素列A,B,Cと
円筒状被検物1の位置関係をy方向において一定に保ち
ながら、円筒状被検物1を回転させて撮像していく。こ
の距離センサ7の代わりに、図8に示すように、投光部
14と受光部15からなら外径測定機を用いたり、円筒
状被検物1の稜線を他のカメラで撮像し画像処理により
その位置を算出することにより円筒状被検物1の回転振
れを測定するようにしても良い。
Therefore, as shown in FIG. 7, the distance sensor 7 measures the rotational shake amount of the cylindrical object 1 in the y direction, and based on the measurement result, the pixel rows A, B, and C of the light receiving element 13 are detected. While the positional relationship of the cylindrical test object 1 is kept constant in the y direction, the cylindrical test object 1 is rotated and images are taken. As shown in FIG. 8, instead of the distance sensor 7, an outer diameter measuring machine is used from the light projecting section 14 and the light receiving section 15, or the ridgeline of the cylindrical object 1 is imaged by another camera. The rotational shake of the cylindrical test object 1 may be measured by calculating the position of the cylindrical test object 1.

【0028】この受光素子13の画素列A,B,Cと円
筒状被検物1の位置関係をy方向において一定に保つた
めに、図9に示すように、距離センサ7の測定結果に基
づき、受光素子13の画素列A,B,Cと円筒状被検物
1の位置関係がy方向において一定になるように、y方
向自動ステージ15により受光素子13の位置を制御す
る。ここで円筒状被検物1を保持して回転する把持冶具
3と回転モータ4をy方向に移動自在な自動ステージに
設けて、距離センサ7の測定結果に基づき、受光素子1
3の画素列A,B,Cと円筒状被検物1の位置関係がy
方向において一定になるようにしても良い。
In order to keep the positional relationship between the pixel arrays A, B and C of the light receiving element 13 and the cylindrical object 1 constant in the y direction, as shown in FIG. 9, based on the measurement result of the distance sensor 7, The y-direction automatic stage 15 controls the position of the light-receiving element 13 so that the positional relationship between the pixel rows A, B, and C of the light-receiving element 13 and the cylindrical test object 1 is constant in the y-direction. Here, the gripping jig 3 that rotates while holding the cylindrical test object 1 and the rotation motor 4 are provided on an automatic stage that is movable in the y direction, and based on the measurement result of the distance sensor 7, the light receiving element 1
The positional relationship between the three pixel rows A, B, and C and the cylindrical test object 1 is y.
You may make it constant in a direction.

【0029】また、円筒状被検物1のy方向の回転振れ
量を測定する距離センサ12の代わりに、図10に示す
ように、円筒状被検物1のz方向の頂点位置16を測定
し、その測定結果に基いて受光素子13の画素列A,
B,Cと円筒状被検物1の位置関係がy方向において一
定になるようにしても良い。この円筒状被検物1の頂点
位置16の検出方法としては、例えば図11に示すよう
に、光切断法を使用すれば良い。この光切断法は、図1
1に示すように、円筒状被検物1にライン光源17から
光を投影して、x方向とy方向にそれぞれ画素列を有す
るエリアセンサ18でレンズ19を介して観察する。こ
のときエリアセンサ18では、図12に示すように、円
筒状被検物1の形状に応じて円弧20が観察される。こ
の円弧20の頂点位置16を画像処置によって検出し、
そのy方向位置を測定する。この頂点位置16を基準に
して、受光素子13の画素列A,B,Cと円筒状被検物
1の位置関係がy方向において一定になるように保つよ
うにする。
Further, instead of the distance sensor 12 which measures the rotational shake amount of the cylindrical test object 1 in the y direction, the apex position 16 in the z direction of the cylindrical test object 1 is measured as shown in FIG. Then, based on the measurement result, the pixel row A of the light receiving element 13,
The positional relationship between B and C and the cylindrical test object 1 may be constant in the y direction. As a method for detecting the apex position 16 of the cylindrical test object 1, for example, a light cutting method may be used as shown in FIG. This light cutting method is shown in FIG.
As shown in FIG. 1, light is projected from the line light source 17 onto the cylindrical test object 1 and observed through the lens 19 by the area sensor 18 having pixel rows in the x direction and the y direction. At this time, in the area sensor 18, as shown in FIG. 12, an arc 20 is observed according to the shape of the cylindrical test object 1. The apex position 16 of the arc 20 is detected by image processing,
The y-direction position is measured. Based on this vertex position 16, the positional relationship between the pixel rows A, B, C of the light receiving element 13 and the cylindrical test object 1 is kept constant in the y direction.

【0030】また、距離センサ7の測定結果により、測
定ヘッド6又は円筒状被検物1をy方向に移動して、受
光素子11の画素列A,B,Cと円筒状被検物1の位置
関係がy方向において一定になるようにする代わりに、
図13に示すように、受光素子13として多数ラインの
画素列を有するエリアセンサ21を用いても良い。この
エリアセンサ21が例えば100ラインの画素列を有
し、所望のステップ量が得られる画像データは10ライ
ンと15ライン及び20ライン目に対応しているとす
る。この場合、円筒状被検物1を回転させながらエリア
センサ21で1フレーム目、2フレーム目、3フレーム
目…と撮像を行い画像データを保存しておく。また、距
離センサ7で円筒状被検物1のy方向の回転振れも測定
し記憶しておく。そして1フレーム目撮像時の回転振れ
測定値が「0」であれば、10ラインと15ライン及び
20ライン目の画像データを選択し、回転振れが生じて
いればその量に応じ、所望のステップ量が得られるよう
に例えば15ラインと20ライン及び25ライン目とい
うように画像データを選択して形状データを算出すれば
良い。
Further, according to the measurement result of the distance sensor 7, the measuring head 6 or the cylindrical test object 1 is moved in the y direction, and the pixel rows A, B, C of the light receiving element 11 and the cylindrical test object 1 are moved. Instead of keeping the positional relationship constant in the y direction,
As shown in FIG. 13, an area sensor 21 having a pixel line of many lines may be used as the light receiving element 13. It is assumed that the area sensor 21 has a pixel line of 100 lines, for example, and the image data for obtaining a desired step amount corresponds to the 10th line, the 15th line, and the 20th line. In this case, while the cylindrical test object 1 is being rotated, the area sensor 21 picks up an image in the first frame, the second frame, the third frame, ... And stores the image data. Further, the rotational shake of the cylindrical object 1 in the y direction is also measured and stored by the distance sensor 7. If the rotational shake measurement value at the time of capturing the first frame is “0”, the image data of the 10th line, the 15th line, and the 20th line is selected. The shape data may be calculated by selecting the image data such as the 15th line, the 20th line, and the 25th line so that the amount can be obtained.

【0031】また、図14に示すように、実際の形状デ
ータをx、測定値をyとすると、位相シフト誤差がない
場合、y=xの関係になる。しかし、位相シフト誤差が
あるにも関わらず(4)式を使って形状データを算出す
ると、形状データにも誤差が生じy=ax+bという関
係になる。そこで、距離センサ7で円筒状被検物1のy
方向の回転振れを測定しておき、その測定値からシフト
誤差量を算出する。このシフト誤差量がわかれば、y=
ax+bの未知数であるa,bが判明し、位相シフト誤
差がない値に補正することができる。
Further, as shown in FIG. 14, assuming that the actual shape data is x and the measured value is y, there is a relation of y = x when there is no phase shift error. However, when the shape data is calculated using the equation (4) despite the presence of the phase shift error, the shape data also has an error, which results in a relation of y = ax + b. Therefore, y of the cylindrical object 1 is measured by the distance sensor 7.
The rotational shake in the direction is measured, and the shift error amount is calculated from the measured value. If this shift error amount is known, y =
The unknowns a and b of ax + b are known, and it is possible to correct to a value with no phase shift error.

【0032】[0032]

【発明の効果】この発明は以上説明したように、被検物
を回転させ、特定の縞次数のモアレ縞を所望の位相だけ
正確にシフトさせ、測定領域をその縞次数近辺に限定
し、画素が直線状に集積された受光素子を少なくとも3
ライン有するセンサが設けられた実体格子型のモアレ光
学系のセンサによって得られる位相シフトしたモアレ縞
データから形状測定を行い、形状測定中に回転振れ測定
手段で受光素子の並び方向における被検物表面の回転振
れを測定して常にセンサと被検物の位置関係が受光素子
の並び方向において一定となるように制御することによ
り、形状を測定しているときの位相シフト誤差を低減す
ることができ、被検物等の表面形状や、キズや膨らみ,
うねり,へこみ等の欠陥を精度良く検出することができ
る。
As described above, according to the present invention, the object is rotated, the moire fringes of a specific fringe order are accurately shifted by a desired phase, and the measurement area is limited to the vicinity of the fringe order. At least three light-receiving elements that are linearly integrated
The shape is measured from the phase-shifted moire fringe data obtained by the sensor of the real lattice type moire optical system provided with the sensor having the line, and the surface of the object to be inspected in the alignment direction of the light receiving elements by the rotational shake measuring means during the shape measurement. It is possible to reduce the phase shift error when measuring the shape by measuring the rotational shake of the sensor and controlling it so that the positional relationship between the sensor and the test object is always constant in the direction in which the light receiving elements are arranged. , Surface shape of the object to be inspected, scratches and bulges,
Defects such as undulations and dents can be detected accurately.

【0033】また、回転振れ測定手段として距離センサ
を使用したり、ライン光源とエリアセンサを有し、被検
物の受光素子側の頂点位置を検出して受光素子の並び方
向における被検物表面の回転振れを測定することによ
り、被検物表面の回転振れを精度良く測定することがで
きる。
Further, a distance sensor is used as the rotational shake measuring means, or a line light source and an area sensor are provided, and the apex position on the light receiving element side of the test object is detected to detect the surface of the test object in the arrangement direction of the light receiving elements. By measuring the rotational shake of the object, the rotational shake of the surface of the test object can be accurately measured.

【0034】さらに、回転振れ測定手段の測定結果によ
り、受光素子の位置又は被検物の位置を移動して、常に
センサと被検物の位置関係が受光素子の並び方向におい
て一定となるように制御することにより、簡単な構成で
センサと被検物の相対的位置を自動的に調整することが
できる。
Further, the position of the light receiving element or the position of the object to be inspected is moved according to the measurement result of the rotational shake measuring means so that the positional relationship between the sensor and the object to be inspected is always constant in the arrangement direction of the light receiving elements. By controlling, the relative position of the sensor and the test object can be automatically adjusted with a simple configuration.

【0035】また、センサとして多数ラインの画素列が
存在するエリアセンサを用い、回転振れ測定手段で受光
素子の並び方向における被検物表面の回転振れを測定
し、位相シフト誤差が生じないようにエリアセンサ内の
画像データを選択することにより、形状を測定している
ときの位相シフト誤差を精度良く低減することができ
る。
Further, an area sensor having a large number of lines of pixels is used as a sensor, and the rotational shake measuring means measures the rotational shake of the surface of the object to be measured in the direction in which the light receiving elements are arranged, so that a phase shift error does not occur. By selecting the image data in the area sensor, it is possible to accurately reduce the phase shift error when measuring the shape.

【0036】さらに、受光素子の並び方向における被検
物表面の回転振れを測定し、その結果から位相シフト誤
差量を算出し、エリアセンサで得られた形状データを位
相シフト誤差量を用いて補正することにより、位相シフ
ト誤差による形状測定誤差を低減させることができる。
Further, the rotational shake of the surface of the object to be measured in the direction of arrangement of the light receiving elements is measured, the phase shift error amount is calculated from the result, and the shape data obtained by the area sensor is corrected using the phase shift error amount. By doing so, the shape measurement error due to the phase shift error can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の形状測定装置の構成を示す斜視図で
ある。
FIG. 1 is a perspective view showing a configuration of a shape measuring apparatus of the present invention.

【図2】測定ヘッドの構成を示す斜視図である。FIG. 2 is a perspective view showing a configuration of a measuring head.

【図3】受光素子と格子パターンと円筒状被検物の位置
関係を示す配置図である。
FIG. 3 is a layout diagram showing a positional relationship between a light receiving element, a lattice pattern, and a cylindrical test object.

【図4】受光素子の画素列の測定領域を示す配置図であ
る。
FIG. 4 is an arrangement diagram showing a measurement region of a pixel row of a light receiving element.

【図5】受光素子の画素列の時刻毎の測定データを示す
説明図である。
FIG. 5 is an explanatory diagram showing measurement data of a pixel array of a light receiving element for each time.

【図6】受光素子の画素列の測定データを示す説明図で
ある。
FIG. 6 is an explanatory diagram showing measurement data of a pixel row of a light receiving element.

【図7】円筒状被検物に対する距離センサの配置図であ
る。
FIG. 7 is a layout view of a distance sensor for a cylindrical test object.

【図8】円筒状被検物表面の回転振れを測定する外径測
定機の構成図である。
FIG. 8 is a configuration diagram of an outer diameter measuring device that measures rotational runout of a surface of a cylindrical test object.

【図9】円筒状被検物表面の回転振れが生じたときの受
光素子の移動方向を示す配置図である。
FIG. 9 is an arrangement diagram showing a moving direction of a light receiving element when rotational shake of the surface of a cylindrical test object occurs.

【図10】円筒状被検物の頂点位置と受光素子の位置配
置関係を示す配置図である。
FIG. 10 is an arrangement diagram showing a positional arrangement relationship between a vertex position of a cylindrical test object and a light receiving element.

【図11】光切断法により円筒状被検物の頂点を測定す
る測定装置の構成図である。
FIG. 11 is a configuration diagram of a measuring device that measures the apex of a cylindrical test object by a light section method.

【図12】測定した頂点位置を示す説明図である。FIG. 12 is an explanatory diagram showing measured vertex positions.

【図13】エリアセンサを有する受光素子と格子パター
ンと円筒状被検物の位置関係を示す配置図である。
FIG. 13 is a layout diagram showing a positional relationship between a light receiving element having an area sensor, a lattice pattern, and a cylindrical test object.

【図14】位相シフト誤差の有無による測定値の変化特
性図である。
FIG. 14 is a change characteristic diagram of measured values depending on the presence or absence of a phase shift error.

【図15】従来の構成を示す配置図である。FIG. 15 is a layout diagram showing a conventional configuration.

【図16】他の従来例の構成を示す配置図である。FIG. 16 is a layout diagram showing the configuration of another conventional example.

【図17】格子投影型のモアレ法の説明図である。FIG. 17 is an explanatory diagram of a lattice projection type moire method.

【図18】実体格子型のモアレ法の説明図である。FIG. 18 is an explanatory diagram of a real lattice type moire method.

【図19】モアレ法による光源と観測点と格子及び物体
の配置図である。
FIG. 19 is a layout diagram of a light source, an observation point, a grid, and an object by the moire method.

【図20】実体格子型のモアレ法の光源と観測点と格子
及び物体の配置図である。
FIG. 20 is a layout diagram of a light source, an observation point, a lattice, and an object of a real lattice type moire method.

【図21】位相変調された縞画像の光強度特性図であ
る。
FIG. 21 is a light intensity characteristic diagram of a phase-modulated fringe image.

【符号の説明】 1;円筒状被検物、2;形状測定装置、3;把持冶具、
4;回転モータ、5;自動ステージ、6;測定ヘッド、
7;距離センサ、8;x方向自動ステージ、9;y方向
自動ステージ、10;光源、11;格子パターン、1
2;レンズ、13;受光素子。
[Explanation of reference numerals] 1; cylindrical test object, 2; shape measuring device, 3; gripping jig,
4; rotary motor, 5; motorized stage, 6; measuring head,
7; distance sensor, 8; x-direction automatic stage, 9; y-direction automatic stage, 10; light source, 11; lattice pattern, 1
2; lens, 13; light receiving element.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F065 AA06 AA50 BB08 BB16 FF01 FF07 HH05 HH07 JJ02 JJ03 JJ05 JJ09 JJ25 JJ26 LL04 MM03 MM04 2G051 AA90 AB07 AC30 BB20 CA03 CA07 DA08    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2F065 AA06 AA50 BB08 BB16 FF01                       FF07 HH05 HH07 JJ02 JJ03                       JJ05 JJ09 JJ25 JJ26 LL04                       MM03 MM04                 2G051 AA90 AB07 AC30 BB20 CA03                       CA07 DA08

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 画素が直線状に集積された受光素子を少
なくとも3ライン有するセンサが設けられた実体格子型
のモアレ光学系と、被検物を保持して回転させる把持回
転機構と、受光素子の並び方向において被検物表面の回
転振れを測定する回転振れ測定手段とを有し、 被検物を回転させ、特定の縞次数のモアレ縞を所望の位
相だけ正確にシフトさせ、測定領域をその縞次数近辺に
限定し、上記センサによって得られる位相シフトしたモ
アレ縞データから形状測定を行い、形状測定中に回転振
れ測定手段で受光素子の並び方向における被検物表面の
回転振れを測定し、その結果から常にセンサと被検物の
位置関係が受光素子の並び方向において一定となるよう
に制御することを特徴とする形状測定装置。
1. A physical lattice type moire optical system provided with a sensor having at least three lines of light-receiving elements in which pixels are linearly integrated, a gripping rotation mechanism for holding and rotating an object, and a light-receiving element. It has a rotation shake measuring means for measuring the rotation shake of the surface of the object to be measured in the arrangement direction of, and rotates the object to accurately shift the moire fringes of a specific stripe order by a desired phase, and The shape is measured from the phase-shifted Moire fringe data obtained by the sensor, limited to the vicinity of the fringe order, and the rotational shake of the surface of the object to be measured in the alignment direction of the light receiving elements is measured by the rotational shake measuring means during the shape measurement. From the result, the shape measuring apparatus is controlled so that the positional relationship between the sensor and the object to be inspected is always constant in the arrangement direction of the light receiving elements.
【請求項2】 上記回転振れ測定手段は距離センサであ
る請求項1記載の形状測定装置。
2. The shape measuring device according to claim 1, wherein the rotation shake measuring means is a distance sensor.
【請求項3】 上記回転振れ測定手段はライン光源とエ
リアセンサを有し、被検物の受光素子側の頂点位置を検
出して受光素子の並び方向における被検物表面の回転振
れを測定する請求項1記載の形状測定装置。
3. The rotational shake measuring means has a line light source and an area sensor, detects the apex position on the light receiving element side of the object to be measured, and measures the rotational shake of the surface of the object in the direction of arrangement of the light receiving elements. The shape measuring device according to claim 1.
【請求項4】 上記回転振れ測定手段の測定結果によ
り、受光素子の位置又は被検物の位置を移動して、常に
センサと被検物の位置関係が受光素子の並び方向におい
て一定となるように制御する請求項1記載の形状測定装
置。
4. The position of the light receiving element or the position of the test object is moved according to the measurement result of the rotational shake measuring means so that the positional relationship between the sensor and the test object is always constant in the direction in which the light receiving elements are arranged. The shape measuring apparatus according to claim 1, wherein
【請求項5】 上記センサとして多数ラインの画素列が
存在するエリアセンサを用い、回転振れ測定手段で受光
素子の並び方向における被検物表面の回転振れを測定
し、位相シフト誤差が生じないようにエリアセンサ内の
画像データを選択することを特徴とする請求項1乃至4
のいずれかに記載の形状測定装置。
5. An area sensor having a large number of lines of pixels is used as the sensor, and the rotational shake measuring means measures the rotational shake of the surface of the object to be measured in the direction in which the light receiving elements are arranged so that a phase shift error does not occur. 5. The image data in the area sensor is selected as the image data.
The shape measuring device according to any one of 1.
【請求項6】 上記回転振れ測定手段で受光素子の並び
方向における被検物表面の回転振れを測定し、その結果
から位相シフト誤差量を算出し、エリアセンサで得られ
た形状データを位相シフト誤差量を用いて補正する請求
項5記載の形状測定装置。
6. The rotational shake measuring means measures the rotational shake of the surface of the test object in the arrangement direction of the light receiving elements, calculates the phase shift error amount from the result, and phase-shifts the shape data obtained by the area sensor. The shape measuring apparatus according to claim 5, wherein the shape measuring apparatus corrects using an error amount.
【請求項7】 被検物を回転させ、特定の縞次数のモア
レ縞を所望の位相だけ正確にシフトさせ、測定領域をそ
の縞次数近辺に限定し、画素が直線状に集積された受光
素子を少なくとも3ライン有するセンサが設けられた実
体格子型のモアレ光学系のセンサによって得られる位相
シフトしたモアレ縞データから形状測定を行い、形状測
定中に受光素子の並び方向における被検物表面の回転振
れを測定し、その結果から常にセンサと被検物の位置関
係が受光素子の並び方向において一定となるように制御
することを特徴とする形状測定方法。
7. A light receiving element in which pixels are linearly integrated by rotating a test object to accurately shift a moire fringe of a specific fringe order by a desired phase and limiting a measurement region to the vicinity of the fringe order. Shape measurement is performed from phase-shifted moire fringe data obtained by a sensor of a real lattice type moire optical system provided with a sensor having at least 3 lines, and rotation of the surface of the test object in the alignment direction of the light receiving elements during the shape measurement. A shape measuring method characterized by measuring a shake and controlling from the result so that the positional relationship between the sensor and the object to be measured is always constant in the direction in which the light receiving elements are arranged.
【請求項8】 上記センサとして多数ラインの画素列が
存在するエリアセンサを用い、受光素子の並び方向にお
ける被検物表面の回転振れを測定し、位相シフト誤差が
生じないようにエリアセンサ内の画像データを選択する
ことを特徴とする請求項7記載の形状測定方法。
8. An area sensor having a large number of lines of pixels is used as the sensor, the rotational shake of the surface of the object to be measured in the direction in which the light receiving elements are arranged is measured, and an area sensor is provided in the area sensor to prevent a phase shift error. The shape measuring method according to claim 7, wherein image data is selected.
【請求項9】 上記受光素子の並び方向における被検物
表面の回転振れを測定し、その結果から位相シフト誤差
量を算出し、エリアセンサで得られた形状データを位相
シフト誤差量を用いて補正する請求項8記載の形状測定
方法。
9. The rotational shake of the surface of the object to be measured in the direction in which the light receiving elements are arranged is measured, the phase shift error amount is calculated from the result, and the shape data obtained by the area sensor is calculated using the phase shift error amount. The shape measuring method according to claim 8, wherein the shape is corrected.
JP2001311023A 2001-10-09 2001-10-09 Shape measuring apparatus and shape measuring method Expired - Fee Related JP3845286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001311023A JP3845286B2 (en) 2001-10-09 2001-10-09 Shape measuring apparatus and shape measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001311023A JP3845286B2 (en) 2001-10-09 2001-10-09 Shape measuring apparatus and shape measuring method

Publications (2)

Publication Number Publication Date
JP2003121129A true JP2003121129A (en) 2003-04-23
JP3845286B2 JP3845286B2 (en) 2006-11-15

Family

ID=19129916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001311023A Expired - Fee Related JP3845286B2 (en) 2001-10-09 2001-10-09 Shape measuring apparatus and shape measuring method

Country Status (1)

Country Link
JP (1) JP3845286B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097928A (en) * 2001-09-25 2003-04-03 Ricoh Co Ltd Method and device for shape measurement
JP2012173112A (en) * 2011-02-21 2012-09-10 Ricoh Co Ltd Raman spectroscopic apparatus and raman spectroscopic method
CN114623786A (en) * 2022-05-16 2022-06-14 成都市鸿侠科技有限责任公司 Surface finish detection device for large arc-shaped component of aircraft
CN115235385A (en) * 2022-08-03 2022-10-25 江苏精益智控科技有限公司 Steel pipe flatness full-length detection device and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097928A (en) * 2001-09-25 2003-04-03 Ricoh Co Ltd Method and device for shape measurement
JP4675011B2 (en) * 2001-09-25 2011-04-20 株式会社リコー Shape measuring method and shape measuring apparatus
JP2012173112A (en) * 2011-02-21 2012-09-10 Ricoh Co Ltd Raman spectroscopic apparatus and raman spectroscopic method
CN114623786A (en) * 2022-05-16 2022-06-14 成都市鸿侠科技有限责任公司 Surface finish detection device for large arc-shaped component of aircraft
CN114623786B (en) * 2022-05-16 2022-07-15 成都市鸿侠科技有限责任公司 Surface finish detection device for large arc-shaped component of aircraft
CN115235385A (en) * 2022-08-03 2022-10-25 江苏精益智控科技有限公司 Steel pipe flatness full-length detection device and method
CN115235385B (en) * 2022-08-03 2024-01-05 江苏精益智控科技有限公司 Equipment and method for detecting flatness and overall length of steel pipe

Also Published As

Publication number Publication date
JP3845286B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
KR100471524B1 (en) Exposure method
KR101547649B1 (en) Inspection apparatus
JP5112650B2 (en) Method and system for determining drift of the position of a light beam relative to a chuck
KR102583096B1 (en) Interference roll-off measurements using static fringe patterns
JP4087146B2 (en) Shape measuring method and shape measuring apparatus
JP3845286B2 (en) Shape measuring apparatus and shape measuring method
JP2003042734A (en) Method and apparatus for measurement of surface shape
JP2003057191A (en) Apparatus for measuring shape of cylindrical article to be measured and method of adjusting the apparatus for measuring shape of cylindrical article to be measured, as well as method for processing signal
JP4675011B2 (en) Shape measuring method and shape measuring apparatus
JPH08219999A (en) Method and apparatus for calibrating surface defect-inspection optical system
JP3921432B2 (en) Shape measuring apparatus and shape measuring method using moire optical system
JP4106836B2 (en) Inspection device
JP4402849B2 (en) Surface shape measuring method and surface shape measuring apparatus
JPH065495A (en) Method and equipment for position detection
JP2002148029A (en) Apparatus and method of inspecting cylindrical object surface irregularities
JP2557650B2 (en) Sample shape measuring device
JP3902088B2 (en) Shape measuring method and shape measuring apparatus
JP3146568B2 (en) Pattern recognition device
JP4011205B2 (en) Sample inspection equipment
JP3863408B2 (en) Magnetic head slider inspection device
JPH11186155A (en) Estimation method of exposure performance, scanning type exposure system using the method, and device manufacture using the system.
JP2006105748A (en) Analyzing method accompanied by incidence of beam
JP5950760B2 (en) Calibration method of interference shape measuring mechanism
JP5777068B2 (en) Mask evaluation device
JPH10281732A (en) Dimension measuring equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees