JP2002336663A - Filtration apparatus - Google Patents

Filtration apparatus

Info

Publication number
JP2002336663A
JP2002336663A JP2001148117A JP2001148117A JP2002336663A JP 2002336663 A JP2002336663 A JP 2002336663A JP 2001148117 A JP2001148117 A JP 2001148117A JP 2001148117 A JP2001148117 A JP 2001148117A JP 2002336663 A JP2002336663 A JP 2002336663A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
filtration
scrubbing
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001148117A
Other languages
Japanese (ja)
Other versions
JP4689074B2 (en
Inventor
Hirosuke Suwa
裕亮 諏訪
Satoru Tsuda
悟 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2001148117A priority Critical patent/JP4689074B2/en
Publication of JP2002336663A publication Critical patent/JP2002336663A/en
Application granted granted Critical
Publication of JP4689074B2 publication Critical patent/JP4689074B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a filtration apparatus in which the whole hollow fiber membrane bundle can be used effectively for filtration and a scrubbing gas can be supplied to the whole hollow fiber membrane bundle when the filtration apparatus is cleaned. SOLUTION: This filtration apparatus is provided with a hollow fiber membrane module in which the hollow fiber membrane bundle is housed and which is hung in a filtration column and raw water introducing passages which are used when filtration is carried out, are used commonly as scrubbing gas introducing passages when the filtration apparatus is cleaned and are arranged at both of the central part and the peripheral parts of the filtration column in the cross section direction of the hollow fiber membrane bundle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、中空糸膜モジュー
ルを用いた濾過装置に関し、各種プラントにおける用水
の濾過処理、たとえば原子力発電所や火力発電所におけ
る復水等の濾過処理に用いて好適な濾過装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filtration device using a hollow fiber membrane module, which is suitable for filtration of water in various plants, for example, filtration of condensate in a nuclear power plant or a thermal power plant. It relates to a filtration device.

【0002】[0002]

【従来の技術】たとえば発電所における復水中の主とし
て酸化鉄からなる微粒子の除去に、中空糸膜モジュール
を用いた濾過装置が使用されている。発電所復水を中空
糸膜で濾過処理すると、膜によって捕捉された主に酸化
鉄からなる微粒子が膜外表面に蓄積し、濾過塔の差圧が
上昇する。濾過処理の継続によって膜外表面の捕捉微粒
子量が増加するにつれて、ほぼ一次の関係で濾過塔の差
圧が上昇するが、このとき、捕捉微粒子量が増えるにつ
れ、単位捕捉微粒子量当たりの差圧上昇率は増大する傾
向にある。したがって、差圧の上昇に伴って濾過寿命が
比較的急速に短くなり、洗浄頻度が増加する傾向にあ
る。
2. Description of the Related Art For example, a filtration device using a hollow fiber membrane module is used for removing fine particles mainly composed of iron oxide during condensate in a power plant. When the condensate of the power plant is filtered with the hollow fiber membrane, the fine particles mainly composed of iron oxide captured by the membrane accumulate on the outer surface of the membrane, and the pressure difference in the filtration tower increases. As the amount of trapped fine particles on the outer surface of the membrane increases due to the continuation of the filtration process, the differential pressure of the filtration tower increases in a substantially linear relationship. At this time, as the amount of trapped fine particles increases, the differential pressure per unit trapped fine particle amount increases. The rate of increase tends to increase. Therefore, as the differential pressure increases, the filtration life becomes relatively short, and the frequency of cleaning tends to increase.

【0003】このような問題は、次のような原因による
と考えられる。すなわち、中空糸膜モジュール内におい
て、中空糸膜が多数本束ねられた中空糸膜束にその外側
周囲から原水が流入し、原水中の微粒子が捕捉され各中
空糸膜の外表面に蓄積されていくが、捕捉された微粒子
により中空糸膜が互いにブリッジングを起こし、さらに
濾過処理時には原水が外側にある中空糸膜から内側にあ
る中空糸膜に向かって流れるために、中空糸膜が束の中
心方向に向けて集束するため、主として周辺の中空糸膜
のみが濾過に寄与し、束の内部の中空糸膜が濾過に有効
に使用されなくなるために引き起こされる事象であると
推定される。
[0003] Such a problem is considered to be due to the following causes. That is, in the hollow fiber membrane module, raw water flows into the hollow fiber membrane bundle in which a large number of hollow fiber membranes are bundled from the outer periphery thereof, and fine particles in the raw water are captured and accumulated on the outer surface of each hollow fiber membrane. However, the hollow fiber membranes cause bridging of the hollow fiber membranes due to the captured fine particles, and the raw water flows from the outer hollow fiber membrane toward the inner hollow fiber membrane during the filtration process. Since the bundle is focused toward the center, it is presumed that mainly the peripheral hollow fiber membrane contributes to the filtration, and the hollow fiber membrane inside the bundle is not effectively used for the filtration.

【0004】このような状態になると、洗浄時において
も次のような問題が生じる。すなわち、洗浄時には、各
中空糸膜の外表面側を洗浄することになるが、たとえば
スクラビング用気体を送り込んで各中空糸膜の外表面側
を洗浄する場合、中空糸膜が束中心方向に向けて集束さ
れていると、中空糸膜束の内部に入り込んで捕捉された
微粒子が洗浄によって除去されにくくなるという問題も
生じる。
[0004] In such a state, the following problems occur even during cleaning. In other words, at the time of washing, the outer surface side of each hollow fiber membrane is washed.For example, when scrubbing gas is sent to wash the outer surface side of each hollow fiber membrane, the hollow fiber membrane is directed toward the center of the bundle. When they are bundled together, there is also a problem that it is difficult for the fine particles trapped in the hollow fiber membrane bundle to be removed by washing.

【0005】[0005]

【発明が解決しようとする課題】そこで本発明の課題
は、上記のような問題点に着目し、濾過処理が長時間継
続される場合にあっても、中空糸膜束の内部まで中空糸
膜束全体にわたって濾過処理に有効に使用できるように
し、差圧の急速な上昇を抑えて濾過寿命の延長、洗浄頻
度の低減をはかるとともに、洗浄時においても、中空糸
膜束全体にわたって捕捉していた微粒子を確実かつ良好
に除去できるようにした濾過装置を提供することにあ
る。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to focus on the above-mentioned problems, and even when the filtration treatment is continued for a long period of time, the hollow fiber membrane can reach the inside of the hollow fiber membrane bundle. The whole bundle was effectively used for the filtration process, and the rapid rise in the differential pressure was suppressed to extend the filtration life and reduce the frequency of washing. At the time of washing, the bundle was trapped throughout the bundle of hollow fiber membranes. An object of the present invention is to provide a filtration device capable of surely and satisfactorily removing fine particles.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る濾過装置は、濾過塔内に、中空糸膜束
を収容した中空糸膜モジュールを垂設した濾過装置であ
って、中空糸膜束の横断面方向における中央部と周囲部
の両方に、濾過処理時の原水導入路兼洗浄時のスクラビ
ング用気体導入路を設けたことを特徴とするものからな
る。
In order to solve the above-mentioned problems, a filtration device according to the present invention is a filtration device in which a hollow fiber membrane module containing a hollow fiber membrane bundle is vertically installed in a filtration tower. And a gas introduction path for scrubbing at the time of filtration and a supply path for raw water at both the central part and the peripheral part in the cross-sectional direction of the hollow fiber membrane bundle.

【0007】中空糸膜モジュールの中空糸膜束における
濾過水の流出方向は一方向(片側)のみとすることも可
能であり、中空糸膜束の両延設方向に濾過水の流出方向
を設定することも可能である。後者の場合には、中空糸
膜モジュールに、一方の流出方向に流出した濾過水を他
方の流出方向に流出した濾過水に合流させる集水路を設
けておけば、中空糸膜モジュール全体としては、濾過水
の流出方向を所定の一方向とすることが可能となる。こ
のような集水路は、たとえば後述の実施態様に示すよう
に、中空糸膜束の外側に位置する原水導入路のさらに外
側に設けることができる。
[0007] The flow direction of the filtered water in the hollow fiber membrane bundle of the hollow fiber membrane module can be only one direction (one side), and the flow direction of the filtered water is set in both extending directions of the hollow fiber membrane bundle. It is also possible. In the latter case, if the hollow fiber membrane module is provided with a water collecting passage for joining the filtered water flowing out in one outflow direction to the filtered water flowing out in the other outflow direction, the hollow fiber membrane module as a whole is The outflow direction of the filtered water can be made one predetermined direction. Such a water collecting channel can be provided further outside the raw water introducing channel located outside the hollow fiber membrane bundle, for example, as shown in an embodiment described later.

【0008】上記中空糸膜束の横断面方向中央部におけ
る原水導入路兼スクラビング用気体導入路は、単なる空
隙からなる流路として形成することもでき、多孔パイプ
を用いて形成することもできる。
The raw water introduction path and the scrubbing gas introduction path at the center of the hollow fiber membrane bundle in the cross-sectional direction can be formed as a flow path consisting of a mere void, or can be formed using a perforated pipe.

【0009】また本発明においては、洗浄時において、
スクラビング用気体が極力中空糸膜束の全域にわたって
供給されるようにするために、スクラビング用気体の供
給を制御あるいは調整することが好ましい。たとえば、
前記中空糸膜束の横断面方向中央部における原水導入路
兼スクラビング用気体導入路の下端に、スクラビング用
気体偏流防止ノズルが下方に向けて延設されている構造
を採用できる。このスクラビング用気体偏流防止ノズル
の長さを調節することで、供給気体の割り振りの調整が
可能であり、また、ノズルの側面に複数の孔を設け、孔
の大きさや個数によって供給気体の割り振りの調整を行
うことも可能である。
Further, in the present invention, at the time of washing,
In order to supply the scrubbing gas as much as possible over the entire area of the hollow fiber membrane bundle, it is preferable to control or adjust the supply of the scrubbing gas. For example,
A structure in which a scrubbing gas drift preventing nozzle extends downward at the lower end of the raw water introduction passage and the scrubbing gas introduction passage at the center in the cross-sectional direction of the hollow fiber membrane bundle. By adjusting the length of the scrubbing gas drift preventing nozzle, it is possible to adjust the distribution of the supply gas.Also, a plurality of holes are provided on the side surface of the nozzle, and the allocation of the supply gas is determined by the size and number of holes. Adjustments can also be made.

【0010】また、スクラビング用気体は、中空糸膜モ
ジュールの下方に設けられた気体噴出口から供給される
場合、このスクラビング用気体噴出口を適切な位置に複
数配置しておくことも、上記のような供給気体の割り振
りに有効である。
When the scrubbing gas is supplied from a gas outlet provided below the hollow fiber membrane module, a plurality of scrubbing gas outlets may be arranged at appropriate positions. This is effective for allocating such supply gas.

【0011】上記のような中空糸膜モジュールは、1個
ずつ垂設することも可能であり、上下方向に2段以上接
続することも可能である。
[0011] The hollow fiber membrane modules as described above can be vertically provided one by one, and can be connected in two or more stages in the vertical direction.

【0012】このように構成される本発明に係る濾過装
置では、濾過塔内に垂設される各中空糸膜モジュールに
おいて、濾過処理時には、中空糸膜束の中央部と周囲部
の両方から原水導入路を通して原水が導入されるので、
中空糸膜束の全体にわたってほぼ均一に原水を送り込む
ことができ、濾過処理が比較的進んだ段階(濾過処理が
長時間継続された段階)にあっても、中空糸膜が束の中
央部に集束するような圧力は加わりにくくなり、中空糸
膜束の全体が濾過処理に有効に使用される。その結果、
差圧の急速な上昇が回避されて濾過寿命の延長が可能に
なり、洗浄頻度の低減が可能になる。
[0012] In the filtration apparatus according to the present invention thus configured, in each of the hollow fiber membrane modules vertically installed in the filtration tower, at the time of the filtration treatment, the raw water is supplied from both the central part and the peripheral part of the hollow fiber membrane bundle. As raw water is introduced through the introduction channel,
Raw water can be fed almost uniformly throughout the hollow fiber membrane bundle, and even when the filtration process is relatively advanced (stage where the filtration process is continued for a long time), the hollow fiber membrane is located at the center of the bundle. Pressure for converging becomes less likely to be applied, and the entire hollow fiber membrane bundle is effectively used for the filtration treatment. as a result,
A rapid rise in the differential pressure is avoided, allowing a longer filter life and a reduced cleaning frequency.

【0013】また、洗浄時においては、中空糸膜束の中
央部と周囲部の両方から気体導入路を通してスクラビン
グ用気体が導入されるので、中空糸膜束の全体にわたっ
て、捕捉されていた微粒子が効率よく除去されることに
なる。その結果、洗浄効果が高められ、差圧回復効果も
高められる。
Further, at the time of washing, scrubbing gas is introduced from both the central portion and the peripheral portion of the hollow fiber membrane bundle through the gas introduction passage, so that the trapped fine particles are distributed over the entire hollow fiber membrane bundle. It will be efficiently removed. As a result, the cleaning effect is enhanced, and the differential pressure recovery effect is also enhanced.

【0014】[0014]

【発明の実施の形態】以下に、本発明の望ましい実施の
形態を、図面を参照しながら説明する。図1は、本発明
が適用可能な濾過装置の代表的な構造を示している。図
1において、1は濾過塔を示しており、濾過塔1内は、
仕切板2によって上室3と下室4とに区画されている。
仕切板2には中空糸膜モジュール5の上端が懸架されて
おり、中空糸膜モジュール5は、上端が仕切板2に固定
された状態で下室4内に垂設されている。図1には1本
の中空糸膜モジュール5のみを示してあるが、濾過塔1
内には多数本の中空糸膜モジュール5が垂設されてい
る。6は、中空糸膜洗浄時のスクラビング用気体導入、
分配機能と通水時の原水整流機能を有する下部仕切板で
あり、この仕切板6に各中空糸膜モジュール5の懸架数
に等しい数のスクラビング用気体噴出口12が設けられ
ている。7は濾過塔1内への原水の入口を示しており、
下室4に流入された原水は中空糸膜モジュール5で濾過
された後上室3へ流出され、出口8を通して所定の行先
へと送られるようになっている。9はドレン管、10は
スクラビング用気体の導入口、11は、下室4を満水に
した状態でスクラビングを行ったときの気体排出のため
のベント口を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a typical structure of a filtration device to which the present invention can be applied. In FIG. 1, reference numeral 1 denotes a filtration tower.
The partition 2 is divided into an upper chamber 3 and a lower chamber 4.
The upper end of the hollow fiber membrane module 5 is suspended from the partition plate 2, and the hollow fiber membrane module 5 is suspended from the lower chamber 4 with the upper end fixed to the partition plate 2. Although only one hollow fiber membrane module 5 is shown in FIG.
A number of hollow fiber membrane modules 5 are provided vertically inside. 6, gas introduction for scrubbing at the time of hollow fiber membrane washing,
This is a lower partition plate having a distribution function and a function of rectifying raw water when flowing water. This partition plate 6 is provided with scrubbing gas jet ports 12 of the same number as the number of suspensions of each hollow fiber membrane module 5. Reference numeral 7 denotes an inlet of raw water into the filtration tower 1,
The raw water flowing into the lower chamber 4 is filtered by the hollow fiber membrane module 5, then flows out to the upper chamber 3, and is sent to a predetermined destination through the outlet 8. Reference numeral 9 denotes a drain pipe, 10 denotes an inlet for scrubbing gas, and 11 denotes a vent for discharging gas when scrubbing is performed in a state where the lower chamber 4 is filled with water.

【0015】上記のような中空糸膜モジュール5に対し
て本発明が実施されるが、先ず比較のために、従来の中
空糸膜モジュールを図9、図10を用いて説明する。
The present invention is applied to the hollow fiber membrane module 5 as described above. First, for comparison, a conventional hollow fiber membrane module will be described with reference to FIGS.

【0016】図9は、従来の中空糸膜モジュール101
による濾過処理時の様子を示しており、仕切板2に懸架
された中空糸膜モジュール101の外筒102の原水導
入口103から導入された下室4からの原水104は、
中空糸膜束105によって濾過され、濾過水106が上
室3へと送られる。洗浄時には、図10に示すように、
下方のスクラビング用気体噴出口107から噴出されて
きたスクラビング用気体108が、下部スカート部10
9内からスクラビング用気体導入口110を通して外筒
102内に導入され、主として中空糸膜束105の周囲
部を上昇されつつ気体により洗浄されるようになってい
る。
FIG. 9 shows a conventional hollow fiber membrane module 101.
The raw water 104 from the lower chamber 4 introduced from the raw water inlet 103 of the outer cylinder 102 of the hollow fiber membrane module 101 suspended on the partition plate 2 is shown in FIG.
Filtration is performed by the hollow fiber membrane bundle 105, and filtered water 106 is sent to the upper chamber 3. At the time of cleaning, as shown in FIG.
The scrubbing gas 108 spouted from the lower scrubbing gas outlet 107 is supplied to the lower skirt portion 10.
9, the gas is introduced into the outer cylinder 102 through the scrubbing gas inlet 110, and the peripheral portion of the hollow fiber membrane bundle 105 is cleaned by the gas while being raised.

【0017】図2は、本発明の第1実施態様に係る濾過
装置の中空糸膜モジュール部を示している。図2におい
て、仕切板2に懸架された中空糸膜モジュール21に
は、上下方向に延びる中空糸膜束22が収容されてお
り、中空糸膜束22の上端は上端接合部23で、下端は
下端接合部24でそれぞれ接着、固定されている。この
中空糸膜束22の横断面方向における中央部には、下端
側が開口し上端側が上端接合部23で封止された、上下
方向に延びる原水導入路兼スクラビング用気体導入路2
5が空隙として形成されている。この原水導入路兼スク
ラビング用気体導入路25内に導入されてきた原水は、
中空糸膜の外表面を通してその内部へと透過(濾過)さ
れるようになっている。中空糸膜束22の横断面方向周
囲部には、中空糸膜束22とは間隙をもたせて外筒26
が設けられており、この間隙が、横断面方向周囲部にお
ける、上下方向に延びる原水導入路兼スクラビング用気
体導入路27として形成されている。この原水導入路兼
スクラビング用気体導入路27は、上下端が上端接合部
23および下端接合部24によって封止されており、導
入されてきた原水は中空糸膜の外表面を通してその内部
へと透過(濾過)されるようになっている。
FIG. 2 shows a hollow fiber membrane module part of the filtration device according to the first embodiment of the present invention. In FIG. 2, a hollow fiber membrane module 22 suspended in a partition plate 2 accommodates a hollow fiber membrane bundle 22 extending in the vertical direction. The upper end of the hollow fiber membrane bundle 22 is an upper end joint 23 and the lower end is a lower end. They are respectively bonded and fixed at the lower end joint 24. A raw water introduction passage and scrubbing gas introduction passage 2 extending in the vertical direction, which is open at the lower end and sealed at the upper end by an upper end joining portion 23 at the center in the cross-sectional direction of the hollow fiber membrane bundle 22.
5 are formed as voids. The raw water introduced into the raw water introduction path and scrubbing gas introduction path 25 is as follows:
The hollow fiber membrane is permeated (filtered) through the outer surface to the inside. Around the hollow fiber membrane bundle 22 in the cross section direction, the outer cylinder 26 is provided with a gap from the hollow fiber membrane bundle 22.
This gap is formed as a raw water introduction passage and a scrubbing gas introduction passage 27 extending in the vertical direction at the peripheral portion in the cross-sectional direction. The upper and lower ends of the raw water introduction passage and scrubbing gas introduction passage 27 are sealed by an upper end joint 23 and a lower end joint 24, and the introduced raw water permeates through the outer surface of the hollow fiber membrane to the inside thereof. (Filtration).

【0018】中空糸膜束22の各中空糸膜は、その延在
方向両端で開口されており、上部開口から流出された濾
過水はそのまま上室3へと送られる。下部開口から流出
された濾過水は、下端接合部24の下側に形成された集
水部28に集水された後、外筒26の上記原水導入路兼
気体導入路27の外側に二重管構造にて、あるいは上下
方向に延びる複数の通路構造にて形成された、濾過水集
水路29を介して上方の上室3内へ送られ、上述の上部
開口からの濾過水と合流されるようになっている。図2
には、下部スカート部30内から原水導入路兼スクラビ
ング用気体導入路25内へと送られる原水および外筒2
6に設けられた上下の貫通孔からなる原水導入口31を
通して原水導入路兼スクラビング用気体導入路27内へ
と送られる原水の流れ32を実線矢印で示し、中空糸膜
束22で濾過され上室3へと送られる濾過水の流れ33
を破線矢印で示してある。
Each hollow fiber membrane of the hollow fiber membrane bundle 22 is opened at both ends in the extending direction, and the filtered water flowing out from the upper opening is sent to the upper chamber 3 as it is. The filtered water that has flowed out from the lower opening is collected in a water collecting portion 28 formed below the lower end joining portion 24, and then doubled outside the raw water introducing passage / gas introducing passage 27 of the outer cylinder 26. The water is sent into the upper chamber 3 through the filtered water collecting passage 29 formed in a pipe structure or a plurality of passage structures extending in the vertical direction, and is combined with the filtered water from the above-described upper opening. It has become. FIG.
The raw water and the outer cylinder 2 sent from the lower skirt portion 30 into the raw water introduction passage and the scrubbing gas introduction passage 25 are provided.
The flow 32 of the raw water sent into the raw water introduction path and the scrubbing gas introduction path 27 through the raw water introduction port 31 composed of the upper and lower through holes provided in 6 is indicated by a solid line arrow. Flow 33 of filtered water sent to chamber 3
Are indicated by dashed arrows.

【0019】スクラビング時には、図3に示すように、
スカート部30の下方の下部仕切板6に設けられたスク
ラビング用気体噴出口34から噴出されたスクラビング
用の気体35が、原水導入路兼スクラビング用気体導入
路25と、外筒26の下端近傍に設けられたスクラビン
グ用気体導入孔36を通して原水導入路兼スクラビング
用気体導入路27とに、分散して導入される。各導入路
25、27に導入された気体は、中空糸膜束22の各中
空糸膜の外表面をスクラビング、洗浄しながら浮上さ
れ、外筒26の上部貫通孔31(上部原水導入口)から
モジュール21外に排出され、前述のベント口11から
外部へ排出される。
At the time of scrubbing, as shown in FIG.
The scrubbing gas 35 jetted from the scrubbing gas jet port 34 provided on the lower partition plate 6 below the skirt portion 30 is provided near the lower end of the raw water introduction / scrubbing gas introduction channel 25 and the outer cylinder 26. The gas is dispersed and introduced into the raw water introduction path and the scrubbing gas introduction path 27 through the provided scrubbing gas introduction hole 36. The gas introduced into each of the introduction passages 25 and 27 floats while scrubbing and washing the outer surface of each hollow fiber membrane of the hollow fiber membrane bundle 22, and flows through the upper through hole 31 (upper raw water inlet) of the outer cylinder 26. It is discharged out of the module 21 and discharged out of the vent port 11 described above.

【0020】このように構成された第1実施態様に係る
中空糸膜モジュール21においては、濾過処理時には、
図2に示したように、中空糸膜束22の中央部と周囲部
の両方から原水導入路(原水導入路兼スクラビング用気
体導入路25、27)を通して原水が導入されるので、
ある程度濾過を継続した後にあっても、中空糸膜束22
の横断面方向に全域にわたってほぼ均一に原水を送り込
むことができ、中空糸膜束22の全体が濾過処理に有効
に使用される。したがって、中空糸膜束22が局部的に
あるいは中央部側に集束する現象は防止される。中空糸
膜束22の全体が濾過処理に有効に使用される結果、各
中空糸膜は均等に寿命に至ることになり、中空糸膜束2
2全体としての濾過寿命が大幅に延長される。また、濾
過寿命の延長により、洗浄頻度も大幅に減少する。
In the hollow fiber membrane module 21 according to the first embodiment configured as described above, during the filtration process,
As shown in FIG. 2, raw water is introduced from both the central part and the peripheral part of the hollow fiber membrane bundle 22 through the raw water introduction path (raw water introduction path and gas introduction paths 25 and 27 for scrubbing).
Even after the filtration has been continued to some extent, the hollow fiber membrane bundle 22
The raw water can be almost uniformly fed over the entire area in the cross-sectional direction of the hollow fiber membrane, and the entire hollow fiber membrane bundle 22 is effectively used for the filtration treatment. Therefore, the phenomenon that the hollow fiber membrane bundle 22 is locally or centrally bundled is prevented. As a result of the entire hollow fiber membrane bundle 22 being effectively used for the filtration treatment, each of the hollow fiber membranes reaches an even life, and the hollow fiber membrane bundle 2
2. The overall filtration life is greatly extended. Further, the cleaning frequency is greatly reduced due to the extension of the filtration life.

【0021】また、スクラビング洗浄時においては、図
3に示したように、スクラビング用気体が中空糸膜束2
2の中央部と周囲部の両方から気体導入路(原水導入路
兼スクラビング用気体導入路25、27)を通して供給
されるので、中空糸膜束22の全体にわたって良好にス
クラビングされることになり、各中空糸膜の外表面に捕
捉されていた微粒子が効率よく除去される。したがっ
て、スクラビングによる洗浄効果も大幅に高められる。
During scrubbing cleaning, as shown in FIG. 3, scrubbing gas is supplied to the hollow fiber membrane bundle 2.
2 is supplied from both the central portion and the peripheral portion through the gas introduction passages (raw water introduction passages and scrubbing gas introduction passages 25 and 27), so that the entire hollow fiber membrane bundle 22 is scrubbed satisfactorily. The fine particles trapped on the outer surface of each hollow fiber membrane are efficiently removed. Therefore, the cleaning effect by scrubbing can be greatly enhanced.

【0022】さらに、原水導入路を中空糸膜束22の中
央部と周囲部の両方に設けることにより、導入されてく
る原水は中空糸膜束22のいずれかの中空糸膜に流入し
やすくなり、かつ、導入流量が分散されるため、圧力損
失の小さい中空糸膜モジュール21となる。また、中空
糸膜束22の濾過水流出方向を両方向とし、下方に流出
した濾過水を集水路29を介して上室3へ集水するよう
にしているので、中空糸膜中および上室3までの濾過水
の流れに伴う圧力損失も低減され、中空糸膜モジュール
21全体としての圧力損失が大幅に低減される。
Further, by providing the raw water introduction passages at both the central part and the peripheral part of the hollow fiber membrane bundle 22, the introduced raw water can easily flow into any one of the hollow fiber membranes of the hollow fiber membrane bundle 22. In addition, since the introduction flow rate is dispersed, the hollow fiber membrane module 21 having a small pressure loss is obtained. Further, since the filtered water outflow direction of the hollow fiber membrane bundle 22 is set to both directions, and the filtered water flowing downward is collected into the upper chamber 3 through the water collecting passage 29, the inside of the hollow fiber membrane and the upper chamber 3 are collected. The pressure loss associated with the flow of filtered water up to this point is also reduced, and the pressure loss of the entire hollow fiber membrane module 21 is greatly reduced.

【0023】図4は、本発明の第2実施態様に係る濾過
装置の中空糸膜モジュール部を示している。本実施態様
では、図2に示した第1実施態様に比べ、中空糸膜束2
2の中央部に設けられる原水導入路兼スクラビング用気
体導入路が多孔パイプ41を用いて形成されている。こ
のように多孔パイプ41を用いることにより、中央部の
原水導入路兼スクラビング用気体導入路の径等の寸法が
決めやすくなり、また、多孔パイプ41の孔のサイズや
ピッチを調整することにより、中央部から導入される原
水の流れや流量を制御しやすくなる。その他の構成、作
用、効果は第1実施態様に準じる。
FIG. 4 shows a hollow fiber membrane module part of a filtration device according to a second embodiment of the present invention. In this embodiment, compared to the first embodiment shown in FIG.
A raw water introduction path and a scrubbing gas introduction path provided at the center of the second 2 are formed using a porous pipe 41. By using the porous pipe 41 in this way, it becomes easy to determine the dimensions such as the diameter of the raw water introduction path and the gas introduction path for scrubbing at the center, and by adjusting the size and pitch of the holes of the porous pipe 41, It becomes easier to control the flow and flow rate of raw water introduced from the center. Other configurations, operations, and effects are the same as those of the first embodiment.

【0024】図5は、本発明の第3実施態様に係る濾過
装置の中空糸膜モジュール部を示している。本実施態様
では、図2に示した第1実施態様に比べ、中空糸膜束2
2の中央部に設けられた原水導入路兼スクラビング用気
体導入路25の下端に、スクラビング用気体偏流防止ノ
ズル51が下方に向けて延設されている。ノズル51の
長さは、供給されてくるスクラビング用気体の量や勢い
等に応じて、このノズル51内を通して浮上される気体
と、スクラビング用気体導入孔36を通して導入され浮
上される気体が、所望の量バランスとなるように設定さ
れればよい。また、ノズル51の外周面には、適当なサ
イズ、ピッチで貫通孔を設け、該貫通孔を通してもノズ
ル51内に気体が導入されるようにしてもよい。このよ
うにスクラビング用気体偏流防止ノズル51を設けるこ
とにより、供給気体の偏流を防止してより適切に中空糸
膜束22の中央部と周囲部とに振り分けることが可能に
なり、スクラビング洗浄処理の均一性、処理効果をより
高めることが可能となる。
FIG. 5 shows a hollow fiber membrane module part of a filtration device according to a third embodiment of the present invention. In this embodiment, compared to the first embodiment shown in FIG.
At the lower end of the raw water introduction passage and scrubbing gas introduction passage 25 provided at the center of the nozzle 2, a scrubbing gas drift preventing nozzle 51 extends downward. The length of the nozzle 51 depends on the amount and momentum of the supplied scrubbing gas, and the gas floated through the nozzle 51 and the gas introduced and floated through the scrubbing gas introduction hole 36 are desired. What is necessary is just to set so that it may become the amount balance. Further, through holes may be provided on the outer peripheral surface of the nozzle 51 at an appropriate size and pitch, and gas may be introduced into the nozzle 51 through the through holes. By providing the gas drift preventing nozzle 51 for scrubbing in this way, it is possible to prevent the drift of the supply gas and to more appropriately distribute the gas into the central portion and the peripheral portion of the hollow fiber membrane bundle 22, and to perform the scrubbing cleaning process. It is possible to further enhance the uniformity and processing effect.

【0025】図6は、本発明の第4実施態様に係る濾過
装置の中空糸膜モジュール部およびスクラビング用気体
噴出口部を示している。本実施態様においては、図2に
示した第1実施態様に比べ、下部仕切板6に、スクラビ
ング用気体噴出口61、62が1モジュール当たり複数
設けられている。図示例では2個の気体噴出口61、6
2であるが、3個以上設けてもよい。このように気体噴
出口61、62を適当な位置に複数配置しておけば、供
給気体をより容易にかつ適切に、中央部の原水導入路兼
スクラビング用気体導入路25と周囲部の原水導入路兼
スクラビング用気体導入路27とに割り振ることが可能
になり、より望ましいスクラビング洗浄処理が可能とな
る。
FIG. 6 shows a hollow fiber membrane module portion and a gas outlet for scrubbing of a filtration device according to a fourth embodiment of the present invention. In this embodiment, a plurality of scrubbing gas outlets 61 and 62 are provided for each module in the lower partition plate 6 as compared with the first embodiment shown in FIG. In the illustrated example, two gas ejection ports 61 and 6 are provided.
2, but three or more may be provided. By arranging a plurality of gas outlets 61 and 62 at appropriate positions in this manner, the supply gas can be more easily and appropriately supplied to the raw water introduction / cum scrubbing gas introduction passage 25 in the central portion and the raw water introduction in the peripheral portion. The scrubbing cleaning process can be more desirably assigned to the passage and the scrubbing gas introduction passage 27.

【0026】図7は、本発明の第5実施態様に係る濾過
装置の中空糸膜モジュール部を示している。本実施態様
は、図5に示した第3実施態様と図6に示した第4実施
態様を組み合わせたものであり、中空糸膜束22の中央
部の原水導入路兼スクラビング用気体導入路25の下端
にスクラビング用気体偏流防止ノズル51が延設されて
いるとともに、下部仕切板6に、1モジュール当たり複
数のスクラビング用気体噴出口61、62が設けられて
いる。このような構成を採ることにより、より一層良好
に供給気体の偏流防止と均一な振り分けが可能になる。
FIG. 7 shows a hollow fiber membrane module part of a filtration device according to a fifth embodiment of the present invention. This embodiment is a combination of the third embodiment shown in FIG. 5 and the fourth embodiment shown in FIG. 6, and has a raw water introduction passage and a scrubbing gas introduction passage 25 at the center of the hollow fiber membrane bundle 22. A gas drift preventing nozzle 51 for scrubbing is extended at the lower end, and a plurality of scrubbing gas outlets 61 and 62 are provided per module in the lower partition plate 6. By adopting such a configuration, it is possible to more effectively prevent the supply gas from drifting and to uniformly distribute the supply gas.

【0027】図8は、本発明の第6実施態様に係る濾過
装置の中空糸膜モジュール部を示している。本実施態様
においては、図2に示した第1実施態様と同等の構成を
有し、中空糸膜モジュール71、72が、コネクター部
73を介して上下方向に2段直列に接続されている。コ
ネクター部73は、中央部の原水導入路兼スクラビング
用気体導入路74、75を連通する内管部76と、周囲
部に設けられた濾過水の集水路77、78を連通する外
管部79とからなる。その他の構成は第1実施態様に準
じるので、図2に付したのと同一の符号を付すことによ
り説明を省略する。接続段数は3段以上とすることも可
能である。このように本発明においては、必要に応じ
て、適宜中空糸膜モジュールを連接した構成を採用する
ことが可能である。
FIG. 8 shows a hollow fiber membrane module part of a filtration device according to a sixth embodiment of the present invention. In this embodiment, the hollow fiber membrane modules 71 and 72 have a configuration equivalent to that of the first embodiment shown in FIG. The connector part 73 includes an inner pipe part 76 communicating the raw water introduction path and scrubbing gas introduction paths 74 and 75 at the center part, and an outer pipe part 79 communicating the filtered water collecting paths 77 and 78 provided at the peripheral part. Consists of Other configurations are the same as those in the first embodiment, and the description thereof will be omitted by retaining the same reference numerals as in FIG. The number of connection stages can be three or more. As described above, in the present invention, it is possible to adopt a configuration in which hollow fiber membrane modules are appropriately connected as necessary.

【0028】[0028]

【発明の効果】以上説明したように、本発明に係る濾過
装置によれば、中空糸膜モジュールの中空糸膜束の全体
を濾過処理に有効使用できるとともに、スクラビング洗
浄時にも中空糸膜束の全体にわたって望ましい洗浄効果
を奏することができ、濾過と洗浄の両処理の性能を共に
大幅に高めることができる。とくに長時間継続して濾過
処理を行っている場合にあっても、単位捕捉微粒子量当
たりの差圧上昇変化率を最小に抑えることができ、濾過
寿命を延長するとともに洗浄頻度を低減でき、同時に洗
浄性能も向上するので濾過装置全体としての長寿命化を
はかることができる。
As described above, according to the filtering device of the present invention, the entire hollow fiber membrane bundle of the hollow fiber membrane module can be effectively used for the filtration treatment, and the hollow fiber membrane bundle can be used for scrubbing and washing. A desired cleaning effect can be obtained throughout, and both the performances of the filtration and the cleaning can be greatly improved. In particular, even when the filtration process is performed continuously for a long time, the rate of change of the differential pressure rise per unit trapped fine particle amount can be minimized, and the filtration life can be extended and the cleaning frequency can be reduced. Since the cleaning performance is also improved, the service life of the entire filtering device can be extended.

【0029】また、中空糸膜束を全域にわたって有効に
使うことができるため、従来装置に比べ1モジュール当
たりの中空糸膜充填本数を増やしても各中空糸膜の膜面
を濾過処理に有効に使用することが可能となり、濾過装
置のコンパクト化が可能となる。
Also, since the hollow fiber membrane bundle can be used effectively over the entire area, the membrane surface of each hollow fiber membrane can be effectively used for filtration even if the number of hollow fiber membranes filled per module is increased as compared with the conventional apparatus. It can be used, and the size of the filtration device can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用可能な濾過装置の概略縦断面図で
ある。
FIG. 1 is a schematic longitudinal sectional view of a filtration device to which the present invention can be applied.

【図2】本発明の第1実施態様に係る濾過装置の中空糸
膜モジュール部の縦断面図である。
FIG. 2 is a longitudinal sectional view of a hollow fiber membrane module part of the filtration device according to the first embodiment of the present invention.

【図3】図2の装置のスクラビング時の様子を示す縦断
面図である。
FIG. 3 is a longitudinal sectional view showing a state of scrubbing of the apparatus of FIG. 2;

【図4】本発明の第2実施態様に係る濾過装置の中空糸
膜モジュール部の縦断面図である。
FIG. 4 is a longitudinal sectional view of a hollow fiber membrane module part of a filtration device according to a second embodiment of the present invention.

【図5】本発明の第3実施態様に係る濾過装置の中空糸
膜モジュール部の縦断面図である。
FIG. 5 is a longitudinal sectional view of a hollow fiber membrane module part of a filtration device according to a third embodiment of the present invention.

【図6】本発明の第4実施態様に係る濾過装置の中空糸
膜モジュール部の縦断面図である。
FIG. 6 is a longitudinal sectional view of a hollow fiber membrane module part of a filtration device according to a fourth embodiment of the present invention.

【図7】本発明の第5実施態様に係る濾過装置の中空糸
膜モジュール部の縦断面図である。
FIG. 7 is a longitudinal sectional view of a hollow fiber membrane module part of a filtration device according to a fifth embodiment of the present invention.

【図8】本発明の第6実施態様に係る濾過装置の中空糸
膜モジュール部の縦断面図である。
FIG. 8 is a longitudinal sectional view of a hollow fiber membrane module part of a filtration device according to a sixth embodiment of the present invention.

【図9】従来の中空糸膜モジュール部の縦断面図であ
る。
FIG. 9 is a longitudinal sectional view of a conventional hollow fiber membrane module.

【図10】図9の装置のスクラビング時の様子を示す縦
断面図である。
FIG. 10 is a longitudinal sectional view showing a state of the apparatus of FIG. 9 during scrubbing.

【符号の説明】[Explanation of symbols]

1 濾過塔 2 仕切板 3 上室 4 下室 5 中空糸膜モジュール 6 下部仕切板 7 原水入口 8 濾過水出口 9 ドレン管 10 スクラビング用気体導入口 11 ベント口 21 中空糸膜モジュール 22 中空糸膜束 23 上端接合部 24 下端接合部 25 中央部の原水導入路兼スクラビング用気体導入路 26 外筒 27 周囲部の原水導入路兼スクラビング用気体導入路 28 集水部 29 濾過水の集水路 30 スカート部 31 原水導入口 32 原水の流れ 33 濾過水の流れ 34 スクラビング用気体噴出口 35 気体 36 スクラビング用気体導入孔 41 多孔パイプ 51 スクラビング用気体偏流防止ノズル 61、62 スクラビング用気体噴出口 71、72 中空糸膜モジュール 73 コネクター部 74、75 中央部の原水導入路兼スクラビング用気体
導入路 76 内管部 77、78 濾過水の集水路 79 外管部
REFERENCE SIGNS LIST 1 filtration tower 2 partition plate 3 upper chamber 4 lower chamber 5 hollow fiber membrane module 6 lower partition plate 7 raw water inlet 8 filtered water outlet 9 drain pipe 10 gas inlet for scrubbing 11 vent port 21 hollow fiber membrane module 22 hollow fiber membrane bundle Reference Signs List 23 Upper end joint 24 Lower end joint 25 Raw water introduction path and gas introduction path for scrubbing in the center 26 Outer cylinder 27 Peripheral raw water introduction path and gas introduction path for scrubbing 28 Water collecting part 29 Water collecting path for filtered water 30 Skirt part 31 Raw Water Inlet 32 Raw Water Flow 33 Filtration Water Flow 34 Scrubbing Gas Inlet 35 Gas 36 Scrubbing Gas Inlet 41 Perforated Pipe 51 Scrubbing Gas Drift Prevention Nozzle 61,62 Scrubbing Gas Injection 71,72 Hollow Fiber Membrane module 73 Connector 74, 75 For raw water introduction and scrubbing in the center Inner tube section body introduction passage 76 77 water collecting route 79 the outer tube portion of the filtered water

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA02 HA02 HA17 HA19 JA13A JA15A JA19A JA31A KA52 KA54 KC02 KC14 MA01 PA01 PB07 PC32  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D006 GA02 HA02 HA17 HA19 JA13A JA15A JA19A JA31A KA52 KA54 KC02 KC14 MA01 PA01 PB07 PC32

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 濾過塔内に、中空糸膜束を収容した中空
糸膜モジュールを垂設した濾過装置であって、中空糸膜
束の横断面方向における中央部と周囲部の両方に、濾過
処理時の原水導入路兼洗浄時のスクラビング用気体導入
路を設けたことを特徴とする濾過装置。
1. A filtration device in which a hollow fiber membrane module accommodating a hollow fiber membrane bundle is vertically installed in a filtration tower, wherein filtration is performed at both a central portion and a peripheral portion in a cross-sectional direction of the hollow fiber membrane bundle. A filtration device comprising a raw water introduction path during treatment and a scrubbing gas introduction path during washing.
【請求項2】 中空糸膜束の両延設方向に濾過水の流出
方向が設定されており、中空糸膜モジュールに、一方の
流出方向に流出した濾過水を他方の流出方向に流出した
濾過水に合流させる集水路が設けられている、請求項1
の濾過装置。
An outflow direction of the filtered water is set in both extending directions of the hollow fiber membrane bundle, and the filtered water flowing out in one outflow direction is filtered into the hollow fiber membrane module in the other outflow direction. 2. A water collecting channel for merging with water is provided.
Filtration equipment.
【請求項3】 前記中空糸膜束の横断面方向中央部にお
ける原水導入路兼スクラビング用気体導入路が多孔パイ
プを用いて形成されている、請求項1または2の濾過装
置。
3. The filtration device according to claim 1, wherein the raw water introduction passage and the scrubbing gas introduction passage are formed at the center of the hollow fiber membrane bundle in the cross-sectional direction using a perforated pipe.
【請求項4】 前記中空糸膜束の横断面方向中央部にお
ける原水導入路兼スクラビング用気体導入路の下端に、
スクラビング用気体偏流防止ノズルが下方に向けて延設
されている、請求項1ないし3のいずれかに記載の濾過
装置。
4. A lower end of a raw water introduction path and a scrubbing gas introduction path at the center of the hollow fiber membrane bundle in the cross-sectional direction,
The filtering device according to any one of claims 1 to 3, wherein the gas drift preventing nozzle for scrubbing extends downward.
【請求項5】 中空糸膜モジュールの下方に、スクラビ
ング用気体噴出口が複数配置されている、請求項1ない
し4のいずれかに記載の濾過装置。
5. The filtering device according to claim 1, wherein a plurality of scrubbing gas jets are arranged below the hollow fiber membrane module.
【請求項6】 中空糸膜モジュールが上下方向に2段以
上接続されている、請求項1ないし5のいずれかに記載
の濾過装置。
6. The filtration device according to claim 1, wherein the hollow fiber membrane modules are connected in two or more stages in a vertical direction.
JP2001148117A 2001-05-17 2001-05-17 Filtration device Expired - Fee Related JP4689074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001148117A JP4689074B2 (en) 2001-05-17 2001-05-17 Filtration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001148117A JP4689074B2 (en) 2001-05-17 2001-05-17 Filtration device

Publications (2)

Publication Number Publication Date
JP2002336663A true JP2002336663A (en) 2002-11-26
JP4689074B2 JP4689074B2 (en) 2011-05-25

Family

ID=18993498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001148117A Expired - Fee Related JP4689074B2 (en) 2001-05-17 2001-05-17 Filtration device

Country Status (1)

Country Link
JP (1) JP4689074B2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053157A (en) * 2001-08-09 2003-02-25 Asahi Kasei Corp External pressure type hollow fiber membrane module
JP2004008981A (en) * 2002-06-10 2004-01-15 Asahi Kasei Corp Membrane separation apparatus
JP2006082001A (en) * 2004-09-15 2006-03-30 Asahi Kasei Chemicals Corp Membrane separator
JP2006159135A (en) * 2004-12-09 2006-06-22 Japan Organo Co Ltd Hollow fiber membrane module
JP2008513187A (en) * 2004-09-14 2008-05-01 シーメンス・ウォーター・テクノロジーズ・コーポレイション Method and apparatus for removing solids from membrane modules
WO2008143292A1 (en) * 2007-05-22 2008-11-27 Asahi Kasei Chemicals Corporation Hollow fiber membrane module, process for manufacturing the same, hollow fiber membrane module assembly and method of purifying suspended water with use thereof
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
US8518256B2 (en) 2001-04-04 2013-08-27 Siemens Industry, Inc. Membrane module
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274709A (en) * 1985-05-29 1986-12-04 Ebara Corp Hollow yarn membrane filter apparatus
JPS6430604A (en) * 1987-07-27 1989-02-01 Organo Kk Hollow-yarn filter
JPH07185268A (en) * 1993-12-28 1995-07-25 Toray Ind Inc Hollow fiber filter membrane element and module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274709A (en) * 1985-05-29 1986-12-04 Ebara Corp Hollow yarn membrane filter apparatus
JPS6430604A (en) * 1987-07-27 1989-02-01 Organo Kk Hollow-yarn filter
JPH07185268A (en) * 1993-12-28 1995-07-25 Toray Ind Inc Hollow fiber filter membrane element and module

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8518256B2 (en) 2001-04-04 2013-08-27 Siemens Industry, Inc. Membrane module
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
JP2003053157A (en) * 2001-08-09 2003-02-25 Asahi Kasei Corp External pressure type hollow fiber membrane module
JP2004008981A (en) * 2002-06-10 2004-01-15 Asahi Kasei Corp Membrane separation apparatus
JP4530245B2 (en) * 2002-06-10 2010-08-25 旭化成ケミカルズ株式会社 Membrane separator
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
JP4896025B2 (en) * 2004-09-14 2012-03-14 シーメンス・ウォーター・テクノロジーズ・コーポレイション Method and apparatus for removing solids from membrane modules
JP2008513187A (en) * 2004-09-14 2008-05-01 シーメンス・ウォーター・テクノロジーズ・コーポレイション Method and apparatus for removing solids from membrane modules
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
JP2006082001A (en) * 2004-09-15 2006-03-30 Asahi Kasei Chemicals Corp Membrane separator
JP2006159135A (en) * 2004-12-09 2006-06-22 Japan Organo Co Ltd Hollow fiber membrane module
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8623202B2 (en) 2007-04-02 2014-01-07 Siemens Water Technologies Llc Infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
AU2008254000B9 (en) * 2007-05-22 2011-05-12 Asahi Kasei Chemicals Corporation Hollow fiber membrane module, process for manufacturing the same, hollow fiber membrane module assembly and method of purifying suspended water with use thereof
JP5283618B2 (en) * 2007-05-22 2013-09-04 旭化成ケミカルズ株式会社 Hollow fiber membrane module and method for producing the same, hollow fiber membrane module assembly and method for purifying suspended water using them
WO2008143292A1 (en) * 2007-05-22 2008-11-27 Asahi Kasei Chemicals Corporation Hollow fiber membrane module, process for manufacturing the same, hollow fiber membrane module assembly and method of purifying suspended water with use thereof
AU2008254000B2 (en) * 2007-05-22 2010-11-25 Asahi Kasei Chemicals Corporation Hollow fiber membrane module, process for manufacturing the same, hollow fiber membrane module assembly and method of purifying suspended water with use thereof
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8372276B2 (en) 2007-05-29 2013-02-12 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system

Also Published As

Publication number Publication date
JP4689074B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
JP2002336663A (en) Filtration apparatus
JP3349015B2 (en) Filtration device
KR100732436B1 (en) Membrane filter for water treatment
CN101039739B (en) Methods and apparatus for removing solids from a membrane module
KR102115106B1 (en) Hollow fiber membrane module and cleaning method
US20020070157A1 (en) Filter device
JP2008518748A (en) Immersion cross flow filtration
JP3248611B2 (en) Solid-liquid separation device
JPS62114609A (en) Hollow yarn membrane filter
JP2000051669A (en) Hollow fiber membrane module fitted with lower cap
JP2002524227A5 (en)
JP2010523302A (en) Membrane module protection
KR100569681B1 (en) Submerged hollow fiber membrane module
JPS624408A (en) Filtration device using hollow yarn membrane
JP2007534481A (en) Immersion membrane water treatment filtration device comprising means for preventing the filterable medium from flowing back to the filter cleaning gas injection means
JPH0810585A (en) Condensation device using hollow yarn membrane
JP2001212410A (en) Full flow and bypass composite type filter
FI109455B (en) Compact cascade scrubber for scrubbing exhaust gas
WO2005110584A1 (en) Back washing method and system of filtration membrane
WO2005056167A1 (en) A submerged hollow fiber membrane module
JPH0910561A (en) Hollow fiber membrane element and its use method and filter
JP2004525633A (en) Beer filter
JPH10137552A (en) Hollow-fiber membrane filter
CN105771664A (en) Curtain type hollow fiber membrane filtering device
JP3239922B2 (en) Solid-liquid separation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110216

R150 Certificate of patent or registration of utility model

Ref document number: 4689074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees