JP2002092867A - Method of manufacturing glass substrate for information recording medium and method of manufacturing information recording medium - Google Patents

Method of manufacturing glass substrate for information recording medium and method of manufacturing information recording medium

Info

Publication number
JP2002092867A
JP2002092867A JP2000287370A JP2000287370A JP2002092867A JP 2002092867 A JP2002092867 A JP 2002092867A JP 2000287370 A JP2000287370 A JP 2000287370A JP 2000287370 A JP2000287370 A JP 2000287370A JP 2002092867 A JP2002092867 A JP 2002092867A
Authority
JP
Japan
Prior art keywords
glass substrate
recording medium
information recording
polishing
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000287370A
Other languages
Japanese (ja)
Inventor
Toshio Takizawa
利雄 滝澤
Masaaki Ueda
政明 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2000287370A priority Critical patent/JP2002092867A/en
Publication of JP2002092867A publication Critical patent/JP2002092867A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a glass substrate for an information recording medium which allows the exact control of the microwaving of its surface and is usable as a substrate for the information recording medium (low glide height and low modulation) dealing with high-density recording and the glass substrate for the information recording medium as well as a method of manufacturing the information recording medium and the information recording medium. SOLUTION: When the glass substrate 4 for the information recording medium is set between upper and lower surface plates 53 and 54 stuck with polishing pads 53a and 54a of a soft polisher and both main surfaces are polished, the surface roughness of a polishing pad surface 4 to be used in a polishing process step is selected by utilizing the phenomenon that the value of the microwaving of the main surface of the glass substrate 4 for the information recording medium after the polishing process step depends on the value of the surface roughness on the surface of the polishing pad 4 used in the polishing process step, by which the microwaving of the main surface 4 of the glass substrate for the information recording medium after the polishing process step is made to attain the prescribed value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は情報処理機器の記録
媒体として使用される情報記録媒体用ガラス基板の製造
方法及び情報記録媒体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a glass substrate for an information recording medium used as a recording medium of an information processing device and a method of manufacturing an information recording medium.

【0002】[0002]

【従来の技術】情報記録媒体の一つとして磁気ディスク
が知られている。磁気ディスクは、基板上に磁性層等の
薄膜を形成して構成され、その基板として、アルミ基板
やガラス基板が用いられてきた。しかし、最近では、高
記録密度化の要請に呼応して、アルミ基板と比べて磁気
ヘッドと磁気ディスクとの間隔をより狭くすることが可
能なガラス基板の占める比率が次第に高くなってきてい
る。
2. Description of the Related Art A magnetic disk is known as one of information recording media. A magnetic disk is formed by forming a thin film such as a magnetic layer on a substrate, and an aluminum substrate or a glass substrate has been used as the substrate. However, recently, in response to a demand for higher recording density, the ratio of a glass substrate capable of making the distance between a magnetic head and a magnetic disk narrower than that of an aluminum substrate has been gradually increasing.

【0003】このようなガラス基板は、磁気ディスクド
ライブに装着された際の衝撃に耐え得るように、化学強
化して化学強化ガラスが製造される。また,ガラス基板
表面を加熱処理して結晶化させて強度を向上させた結晶
化ガラス基板が製造される。また、ガラス基板表面は磁
気ヘッドの浮上高さを極力下げることができるように、
高精度に研磨して高記録密度化を実現している。
[0003] Such a glass substrate is chemically strengthened to produce a chemically strengthened glass so that it can withstand an impact when mounted on a magnetic disk drive. In addition, a crystallized glass substrate whose strength is improved by heat treatment and crystallization of the glass substrate surface is manufactured. In addition, the surface of the glass substrate can reduce the flying height of the magnetic head as much as possible,
Polishing with high precision realizes high recording density.

【0004】しかし、いくら高精度に研磨して表面粗さ
(Rmax(最大高さ)、Ra(中心線平均粗さ))を
小さくしても、磁気ヘッドの浮上高さを下げることがで
きないという問題が生じた。その原因が、基板表面に存
在する微小うねり(Microwaviness)であ
ることに付きとめ、基板表面の微小うねりを所定の値に
した情報記録媒体用基板を既に出願している(特願20
00−99720)。
However, even if the surface roughness (Rmax (maximum height), Ra (center line average roughness)) is reduced by polishing with high precision, the flying height of the magnetic head cannot be reduced. A problem arose. It has been found that the cause is microwaves existing on the substrate surface, and an information recording medium substrate in which the microwaves on the substrate surface are set to a predetermined value has already been filed (Japanese Patent Application No. 20-210).
00-99720).

【0005】[0005]

【発明が解決しようとする課題】一般に情報記録媒体用
ガラス基板は、研削工程、研磨工程を経て製造される
が、製造工程におけるさまざまなパラメータの中で、微
小うねりを決定する要因が把握されていなかったため
に、基板表面の微小うねりを制御することは困難であっ
た。
Generally, a glass substrate for an information recording medium is manufactured through a grinding process and a polishing process. Among various parameters in the manufacturing process, a factor which determines a minute waviness is grasped. Therefore, it was difficult to control minute undulations on the substrate surface.

【0006】本発明は、表面の微小うねりを正確に制御
することができ、高密度記録に対応した情報記録媒体
(低グライドハイト、低モジュレーション)の基板とし
て用いることができる情報記録媒体用ガラス基板の製造
方法及び情報記録媒体用ガラス基板並びに情報記録媒体
の製造方法及び情報記録媒体を提供することを目的とす
る。
[0006] The present invention provides a glass substrate for an information recording medium, which is capable of accurately controlling minute waviness on the surface and which can be used as a substrate of an information recording medium (low glide height, low modulation) corresponding to high density recording. It is an object of the present invention to provide a method of manufacturing a glass substrate for an information recording medium, a method of manufacturing an information recording medium, and an information recording medium.

【0007】[0007]

【課題を解決するための手段】上述の課題を解決するた
めに第1の手段は、軟質ポリシャの研磨パッドを貼りつ
けた上下定盤の間に情報記録媒体用ガラス基板をセット
して両主表面を研磨する研磨工程を有する情報記録媒体
用ガラス基板の製造方法において、前記研磨工程後の情
報記録媒体用ガラス基板主表面の微小うねりの値が、前
記研磨工程で用いる研磨パッド表面の表面粗さの値に依
存するという現象を利用し、前記研磨工程で用いる研磨
パッド表面の表面粗さを選定することによって、前記研
磨工程後の情報記録媒体用ガラス基板主表面の微小うね
りが所定の値になるようにしたことを特徴とする情報記
録媒体用ガラス基板の製造方法である。但し、前記微小
うねりの値Ra’は、微小うねりの周期が2μm〜4m
mのものであって、以下の数式によって表されるもので
ある。
In order to solve the above-mentioned problems, the first means is to set a glass substrate for an information recording medium between an upper and lower platen on which a polishing pad of a soft polisher is stuck. In the method for manufacturing a glass substrate for an information recording medium having a polishing step of polishing the surface, the value of the minute waviness of the main surface of the glass substrate for an information recording medium after the polishing step is such that the surface roughness of the polishing pad surface used in the polishing step is reduced. Utilizing the phenomenon that depends on the value of the polishing pad, by selecting the surface roughness of the polishing pad surface used in the polishing step, the fine waviness of the information recording medium glass substrate main surface after the polishing step is a predetermined value. A method for manufacturing a glass substrate for an information recording medium, characterized in that: However, the value of the minute undulation Ra ′ is such that the period of the minute undulation is 2 μm to 4 m.
m, which is represented by the following equation.

【数2】 第2の手段は、 前記研磨パッド表面の表面粗さRzが20μm以下であ
ることを特徴とする第1の手段にかかる情報記録媒体用
ガラス基板の製造方法である。但し、Rzは、十点平均
粗さとする。第3の手段は、 前記研磨パッドは、定盤側から基材とナップ層とを有
し、前記ナップ層の厚さを、所定の範囲にすることを特
徴とする第1〜第2のいずれかの手段にかかる情報記録
媒体用ガラス基板の製造方法である。第4の手段は、 前記ナップ層の厚さは、430〜620μmであること
を特徴とする第3の手段にかかる情報記録媒体用ガラス
基板の製造方法である。第5の手段は、 ダイヤモンド砥粒のパッドドレッサーによって前記ナッ
プ層表面を修正することを特徴とする第1〜第4のいず
れかの手段にかかる情報記録媒体用ガラス基板の製造方
法である。第6の手段は、 情報記録媒体用ガラス基板は、磁気ディスク用ガラス基
板であることを特徴とする第1〜第5のいずれかの手段
にかかる情報記録媒体用ガラス基板の製造方法である。
第7の手段は、 第1〜第6のいずれかの手段にかかる情報記録媒体用ガ
ラス基板の主表面上に少なくとも記録層を形成すること
を特徴とする情報記録媒体の製造方法である。第8の手
段は、 前記記録層は磁性層であることを特徴とする第7の手段
にかかる情報記録媒体の製造方法である。
(Equation 2) A second means is the method for manufacturing a glass substrate for an information recording medium according to the first means, wherein the surface roughness Rz of the polishing pad surface is 20 μm or less. Here, Rz is a ten-point average roughness. Third means, wherein the polishing pad has a substrate and a nap layer from the side of the platen, and the thickness of the nap layer is set to a predetermined range, any of the first and second, A method for producing a glass substrate for an information recording medium according to the above means. A fourth means is the method for manufacturing a glass substrate for an information recording medium according to the third means, wherein the thickness of the nap layer is 430 to 620 µm. A fifth means is a method for manufacturing a glass substrate for an information recording medium according to any one of the first to fourth means, wherein the surface of the nap layer is corrected by a pad dresser of diamond abrasive grains. A sixth means is the method for manufacturing a glass substrate for an information recording medium according to any one of the first to fifth means, wherein the glass substrate for an information recording medium is a glass substrate for a magnetic disk.
A seventh means is a method for manufacturing an information recording medium, wherein at least a recording layer is formed on a main surface of a glass substrate for an information recording medium according to any one of the first to sixth means. Eighth means is the method for manufacturing an information recording medium according to the seventh means, wherein the recording layer is a magnetic layer.

【0008】[0008]

【発明の実施の形態】図1は上下定盤を有する研磨装置
の主要部断面図、図2は研磨装置の駆動機構部の説明
図、図3は研磨パッドの部分断面図、図4は情報記録媒
体用ガラス基板の主表面の微小うねりと研磨パッドの表
面粗さとの関係を示すグラフである。以下、これらの図
面を参照にしながら、本発明の実施の形態にかかる情報
記録媒体用ガラス基板の製造方法、情報記録媒体用ガラ
ス基板並びに情報記録媒体の製造方法及び情報記録媒体
を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a sectional view of a main part of a polishing apparatus having upper and lower platens, FIG. 2 is an explanatory view of a driving mechanism of the polishing apparatus, FIG. 3 is a partial sectional view of a polishing pad, and FIG. 4 is a graph showing a relationship between a fine waviness on a main surface of a glass substrate for a recording medium and a surface roughness of a polishing pad. Hereinafter, a method for manufacturing a glass substrate for an information recording medium, a glass substrate for an information recording medium, a method for manufacturing an information recording medium, and an information recording medium according to an embodiment of the present invention will be described with reference to these drawings.

【0009】実施の形態にかかる情報記録媒体用ガラス
基板の製造方法は、軟質ポリシャの研磨パッドを貼りつ
けた上下定盤の間に情報記録媒体用ガラス基板をセット
して両主表面を研磨する研磨工程を有する情報記録媒体
用ガラス基板の製造方法において、前記研磨工程後の情
報記録媒体用ガラス基板主表面の微小うねりの値が、前
記研磨工程で用いる研磨パッド表面の表面粗さの値に依
存するという現象を利用し、前記研磨工程で用いる研磨
パッド表面の表面粗さを選定することによって、前記研
磨工程後の情報記録媒体用ガラス基板主表面の微小うね
りが所定の値になるようにしたことを特徴とする。
In the method of manufacturing a glass substrate for an information recording medium according to the embodiment, a glass substrate for an information recording medium is set between upper and lower platens to which a polishing pad of a soft polisher is attached, and both main surfaces are polished. In the method of manufacturing a glass substrate for an information recording medium having a polishing step, the value of the fine undulation of the main surface of the glass substrate for the information recording medium after the polishing step, the value of the surface roughness of the polishing pad surface used in the polishing step Utilizing the phenomenon of dependence, by selecting the surface roughness of the polishing pad surface used in the polishing step, so that the micro-undulation of the glass substrate main surface for the information recording medium after the polishing step becomes a predetermined value. It is characterized by having done.

【0010】上述の構成において、「軟質ポリシャの研
磨パッドを貼りつけた上下定盤の間に情報記録媒体用ガ
ラス基板をセットして両主表面を研磨する研磨工程」を
行う研磨装置は、次のような構成を有する。すなわち、
図1及び図2において、研磨装置5は、それぞれ所定の
回転比率で回転駆動されるインターナルギア51及びサ
ンギア52を有する研磨用キャリア装着部と、この研磨
用キャリア装着部を挟んで互いに逆回転駆動される上定
盤53及び下定盤54とを有する。
In the above-described configuration, the polishing apparatus for performing the "polishing step of setting the glass substrate for the information recording medium between the upper and lower platens to which the polishing pad of the soft polisher is attached and polishing the two main surfaces" is as follows. It has the following configuration. That is,
1 and 2, a polishing apparatus 5 includes a polishing carrier mounting portion having an internal gear 51 and a sun gear 52 that are driven to rotate at a predetermined rotation ratio, respectively, and the polishing device 5 is driven to rotate in opposite directions with respect to the polishing carrier mounting portion. An upper surface plate 53 and a lower surface plate 54 are provided.

【0011】研磨用キャリア装着部に、複数の研磨用キ
ャリア1をセットすると、これら研磨用キャリア1のギ
アがインターナルギア51及びサンギア52と噛合され
るようになっている。各研磨用キャリア1の被研磨体保
持孔2a〜2gに被研磨体である情報記録媒体用ガラス
基板4をセットし、研磨を開始すると、研磨用キャリア
1はインターナルギア51及びサンギア52との回転数
の差により遊星運動を行う。同時に、上定盤53及び下
定盤54は互いに逆回転し、それらに設けられた研磨パ
ッド53a,54aによって情報記録媒体用ガラス基板
4の表裏の面がポリッシングされる。
When a plurality of polishing carriers 1 are set in the polishing carrier mounting portion, the gears of these polishing carriers 1 mesh with the internal gear 51 and the sun gear 52. When the information recording medium glass substrate 4 which is the object to be polished is set in the object holding holes 2a to 2g of each of the polishing carriers 1 and polishing is started, the polishing carrier 1 rotates with the internal gear 51 and the sun gear 52. The planetary motion is performed by the number difference. At the same time, the upper platen 53 and the lower platen 54 rotate in opposite directions, and the front and back surfaces of the glass substrate 4 for information recording medium are polished by the polishing pads 53a and 54a provided on them.

【0012】本実施の形態では、上記研磨装置による研
磨工程後の情報記録媒体用ガラス基板主表面の微小うね
りの値を所定の値にするために、上記研磨工程で用いる
研磨パッド表面の表面粗さの値を所定の値にする。すな
わち、研磨パッド53a(研磨パッド53bも同じ)
は、図3に示されるように、基体530aの上に、基材
531aが形成され、その上にNAP(ナップ)層53
2aが形成されたものである。このNAP層532aの
表面533aの表面粗さを所定の値にする。これによ
り、上記研磨装置による研磨工程後の情報記録媒体用ガ
ラス基板主表面の微小うねりの値を所定の値にすること
ができる。
In the present embodiment, the surface roughness of the polishing pad surface used in the polishing step is set so that the value of the minute waviness on the main surface of the glass substrate for the information recording medium after the polishing step by the polishing apparatus is set to a predetermined value. To a predetermined value. That is, the polishing pad 53a (the same applies to the polishing pad 53b)
As shown in FIG. 3, a base material 531a is formed on a base material 530a, and a NAP (nap) layer 53 is formed thereon.
2a is formed. The surface roughness of the surface 533a of the NAP layer 532a is set to a predetermined value. Thereby, the value of the minute waviness on the main surface of the glass substrate for the information recording medium after the polishing step by the polishing apparatus can be set to a predetermined value.

【0013】研磨工程後の情報記録媒体用ガラス基板主
表面の微小うねりの値が、その研磨工程で用いる研磨パ
ッド表面の表面粗さの値に依存するという現象は、本願
発明者らがはじめて発見したものである。すなわち、図
4に示したように、研磨パッドの表面粗さを横軸にとり
(Rz=十点平均粗さ;単位μm)、基板主表面の微小
うねりの値を縦軸にとる(95%PV値;単位μm)
と、両者は、ほぼ所定の勾配をもつ直線で表される。
The inventors of the present invention discovered for the first time that the fine waviness value of the main surface of the glass substrate for an information recording medium after the polishing step depends on the value of the surface roughness of the polishing pad surface used in the polishing step. It was done. That is, as shown in FIG. 4, the horizontal axis represents the surface roughness of the polishing pad (Rz = ten-point average roughness; unit: μm), and the vertical axis represents the value of minute waviness on the substrate main surface (95% PV). Value; unit μm)
And both are represented by a straight line having a substantially predetermined gradient.

【0014】本実施の形態にかかる情報記録媒体用ガラ
ス基板の微小うねりは、フェイス・シフトテクノロジー
社製の多機能表面解析装置(MicroXAM)などに
よって測定したもので規定される。従来の触針式の表面
粗さ計とは異なり、白色光をコヒーレントフィルターを
等して得られた光(波長:552.8nm)を用いて基
板面の所定領域を走査し、基板面からの反射光と基準面
からの反射光とを合成し、合成点に生じた干渉縞より、
微小うねりを計算して得られる。図5は多機能表面解析
装置の測定原理説明図である。図5に示されるように、
干渉計の原理により、光波を二つに分け、その後に合成
するもので、干渉縞は、A→Bの光路と、C→Dの光路
の光路差によって現れる。なお、その測定の原理を逸脱
しない範囲で測定に使用する光を変えることもできる。
The minute undulation of the glass substrate for an information recording medium according to the present embodiment is defined by a value measured by a multifunctional surface analyzer (MicroXAM) manufactured by Face Shift Technology. Unlike a conventional stylus-type surface roughness meter, white light is scanned over a predetermined area of the substrate surface using light (wavelength: 552.8 nm) obtained by using a coherent filter or the like, and the white light is scanned from the substrate surface. The reflected light and the reflected light from the reference plane are combined, and from the interference fringe generated at the combined point,
It can be obtained by calculating minute undulations. FIG. 5 is a diagram illustrating the measurement principle of the multifunctional surface analysis apparatus. As shown in FIG.
According to the principle of the interferometer, light waves are divided into two and then synthesized, and interference fringes appear due to an optical path difference between an optical path of A → B and an optical path of C → D. The light used for the measurement can be changed without departing from the principle of the measurement.

【0015】多機能表面解析装置の微小うねりの測定
は、基板の任意の領域(記録再生領域)、好ましくは中
心部又は、端部から所定距離だけ離間した領域に50μ
m□〜4mm□の範囲内の中から適宜矩形領域を選択す
る。例えば、ヘッドスライダーのスライダー面の面積よ
りも小さい領域であって、約500μm×約600μm
の矩形領域(約250,000ピクセル)を選択する。
この装置によって測定されるうねりの周期(山と山、又
は谷と谷との距離)は、2μm〜4mm程度のもので、
微小うねりは下記式によって得られる。
The measurement of minute waviness by the multifunctional surface analysis apparatus is performed by measuring 50 μm in an arbitrary area (recording / reproducing area) of the substrate, preferably in an area separated from the center or an end by a predetermined distance.
A rectangular area is appropriately selected from the range of m □ to 4 mm □. For example, the area is smaller than the area of the slider surface of the head slider, and is about 500 μm × about 600 μm
Is selected (approximately 250,000 pixels).
The swell period (distance between peaks and valleys or valleys and valleys) measured by this device is about 2 μm to 4 mm,
The fine undulation is obtained by the following equation.

【0016】[0016]

【数3】 ここで、Ra’は、中心線から測定曲線までの偏差の絶
対値の平均の差、xiは、測定ポイントにおける測定ポ
イント値(測定ポイントにおいてある基準線から測定曲
線までの高さ)、xは、上記測定ポイント値の平均値n
は、測定ポイント数とする。
(Equation 3) Here, Ra ′ is the difference between the averages of the absolute values of the deviations from the center line to the measurement curve, xi is the measurement point value at the measurement point (the height from a certain reference line to the measurement curve at the measurement point), and x is , Average value n of the above measurement point values
Is the number of measurement points.

【0017】また、微小うねりの最大高さwaは、測定
エリアにおいて全測定ポイントにおける測定曲線の最高
点と最低点の高さとの差の値である。しかし、基板表面
には、基板自体の表面状態を直接的には関係のないパー
ティクルなど異常突起が含まれることがあり、微小うね
りの測定の際には、このような異常突起の点を含むかた
ちで測定されることがあるので、それを最大高さwaと
してしまうと大きな誤差が生じてしまう。
The maximum height wa of the minute undulation is a value of the difference between the heights of the highest point and the lowest point of the measurement curve at all the measurement points in the measurement area. However, the substrate surface may include abnormal protrusions such as particles that are not directly related to the surface state of the substrate itself. In some cases, if the maximum height wa is used, a large error occurs.

【0018】このような、異常突起の測定値を除外する
手法として、全部の測定点について、測定値を横軸に、
その測定値が得られた測定個数を縦軸に表したヒストグ
ラム(測定値とその対応個数との関係を示す分布図であ
り、通常は正規分布曲線となる)をとったときに、その
分布曲線において、測定値を最小値から次第に大きくし
ていきながら各測定値に対応する測定の個数を累積して
いったとき、その累積個数が全個数の95%になったと
きの測定値を有効な測定値の最大値とする手法を用い
る。この手法による最大値を「95%PV値」とし、こ
の「95%PV値」を最大高さwaとし、この最大高さ
waを微小うねりと表現することもできる。尚、上述の
Ra’と95%PV値には、相関関係があることもわか
っている(詳しくは、特願2000−99720号明細
書参照)。
As a method for excluding the measured value of the abnormal projection, the measured value is plotted on all the measuring points on the horizontal axis.
When a histogram (a distribution diagram showing the relationship between the measured values and the corresponding number, which is usually a normal distribution curve) is displayed on the vertical axis of the measured number at which the measured value is obtained, the distribution curve is obtained. In the above, when the number of measurements corresponding to each measured value is accumulated while gradually increasing the measured value from the minimum value, the measured value when the accumulated number becomes 95% of the total number is effective. Use the method that sets the maximum value of the measured values. The maximum value obtained by this method is defined as “95% PV value”, the “95% PV value” is defined as the maximum height wa, and the maximum height wa can be expressed as a minute undulation. It is also known that there is a correlation between the above-mentioned Ra ′ and the 95% PV value (for details, refer to Japanese Patent Application No. 2000-99720).

【0019】本発明において、研磨パッド表面の表面粗
さと相関関係のある基板表面の微小うねりは、上述のR
a’、95%PV値どちらを採用してもかまわない。ま
た、本発明で使用する軟質ポリシャの研磨パッドは、特
に限定されない。軟質ポリシャの研磨パッドは、発泡構
造により、独立発泡系と連続発泡系に大別される。独立
発泡系は、発泡形態から研磨スラリーが研磨布の内部に
浸透せず被加工物と研磨布の間にあるいは接触界面のみ
存在するため、一般的に同一加工圧力下ではスラリーの
流量を少なくすることができるとされている。独立発泡
系としては、気泡混入タイプ、無気泡タイプとがある。
In the present invention, the fine waviness on the substrate surface, which is correlated with the surface roughness of the polishing pad surface, is the above-mentioned R
Either a 'or the 95% PV value may be adopted. The polishing pad of the soft polisher used in the present invention is not particularly limited. Polishing pads made of a soft polisher are roughly classified into an independent foaming system and a continuous foaming system according to a foaming structure. In the independent foaming system, since the polishing slurry does not penetrate into the inside of the polishing cloth from the foaming form and exists only between the workpiece and the polishing cloth or only at the contact interface, the flow rate of the slurry is generally reduced under the same processing pressure. It is said that it can be. As the independent foaming system, there are a bubble-mixing type and a bubble-free type.

【0020】また、連続発泡系は、一般に不織布を基材
とし、その遷移交絡体中に含浸された種々の樹脂が繊維
同士のバインダーとして働くとともに、その樹脂相自体
が連続発泡構造をもつ。連続発泡系は、独立発泡系と異
なり、研磨布内部へのスラリーの浸透は起こる。独立発
泡系としては、スウェードタイプ、不織布を基材とした
研磨布(凝固ポリマータイプ、凝固・光かタイプ)があ
る。
In the continuous foaming system, a nonwoven fabric is generally used as a base material, and various resins impregnated in the transition entangled body serve as a binder between fibers, and the resin phase itself has a continuous foamed structure. In the continuous foaming system, unlike the closed foaming system, penetration of the slurry into the polishing cloth occurs. As the independent foam type, there are a suede type and a polishing cloth (coagulated polymer type, coagulated / light type) based on a nonwoven fabric.

【0021】中でも、ガラス基板の精密研磨用の研磨パ
ッドとしては、スウェードタイプのものが使われてい
る。スウェードタイプの研磨布は、例えば、天然繊維、
再生繊維又は合成繊維からなる編織布又は、不織布、あ
るいはこれらのスチレンブタジエンゴム、ニトリルブタ
ジエンゴム等のゴム状物質又はポリウレタンエラストマ
ー等の樹脂を充填して得られる基材に、ポリウレタンエ
ラストマーの溶液を塗布し、これを凝固液で処理し湿式
凝固を行って多孔質銀面層を形成せしめ、水洗い乾燥
後、該銀面層表面をサンドペーパーなどの研磨機などで
研磨して、表面孔形状が均一で、且つ断面孔形状が基体
面に垂直で均一な紡錘状気孔を有するスウェードタイプ
の研磨布が製造される。
Among them, a suede type polishing pad is used as a polishing pad for precision polishing of a glass substrate. Suede type polishing cloth, for example, natural fibers,
A polyurethane elastomer solution is applied to a base material obtained by filling a woven or nonwoven fabric made of recycled fibers or synthetic fibers, or a rubber-based substance such as styrene-butadiene rubber or nitrile-butadiene rubber, or a resin such as polyurethane elastomer. This is treated with a coagulating liquid, and wet coagulation is performed to form a porous silver surface layer. After washing with water and drying, the surface of the silver surface layer is polished with a sanding machine or the like to obtain a uniform surface pore shape. Thus, a suede-type polishing pad having uniform spindle-shaped pores having a uniform cross-sectional hole shape perpendicular to the substrate surface is manufactured.

【0022】基材、ナップ層の材料には特に限定されな
い。ナップ層としては、ポリウレタンが一般的である。
また、研磨パッド表面の表面粗さ数値化できる測定方法
であれば何でも良い。例えば、触針式の計測機による方
法、原子間力顕微鏡、研磨パッドの断面を光学顕微鏡に
より写真を取り測定する方法などである。
The materials of the substrate and the nap layer are not particularly limited. Polyurethane is generally used as the nap layer.
In addition, any measurement method can be used as long as it can quantify the surface roughness of the polishing pad surface. For example, there are a method using a stylus-type measuring instrument, an atomic force microscope, and a method for measuring a cross section of a polishing pad by taking a photograph with an optical microscope.

【0023】本発明の実施例においては、研磨パッド表
面の表面粗さがガラス基板表面の表面粗さに比べ粗いこ
とから、触針式の表面粗さ計を用いて測定した表面粗さ
とした。表面粗さのパラメータとしては、Rz(十点平
均粗さ)を採用した。なぜなら、95%PV値と最も相
関性がよいからである。
In the examples of the present invention, since the surface roughness of the polishing pad surface was larger than the surface roughness of the glass substrate surface, the surface roughness was measured using a stylus type surface roughness meter. As a parameter of the surface roughness, Rz (ten-point average roughness) was adopted. This is because it has the best correlation with the 95% PV value.

【0024】Rzは、以下のように定義される値であ
る。すなわち、断面曲線から、その平均線の方向に評価
長さを抜き取り、平均線に平行かつ断面曲線を横切らな
い直線から縦倍率の方向に測定したとき、断面曲線の山
の最高から5番目までの山頂の標高の平均値と、断面曲
線の谷の最深から5番目までの谷底の標高の平均値との
差をRzとする。
Rz is a value defined as follows. That is, when the evaluation length is extracted from the cross-sectional curve in the direction of the average line and measured in the direction of the longitudinal magnification from a straight line parallel to the average line and not crossing the cross-sectional curve, the highest to fifth peaks of the cross-sectional curve are obtained. Let Rz be the difference between the average value of the altitude of the peak and the average value of the altitude of the bottom of the cross-sectional curve from the deepest to the fifth.

【0025】ただし、断面曲線の山とは、断面曲線を平
均線で切断したとき、それらの交差点の隣り合う2点を
結ぶ断面曲線のうち平均線に対し実体が突出している部
分をいう。また、山頂とは、断面曲線の山におけるもっ
とも高いところをいう。さらに、断面曲線の谷とは、断
面曲線を平均線で切断したとき、それらの交差点の隣り
合う2点を結ぶ断面曲線のうち平均線に対し実体がへこ
んでいる部分をいう。そして、谷底とは、断面曲線の谷
におけるもっとも低いところをいう。
However, the peak of the cross-sectional curve means a portion of the cross-sectional curve connecting two points adjacent to each other at the intersection where the substance protrudes from the average line when the cross-sectional curve is cut along the average line. The peak is the highest point in the peak of the sectional curve. Further, the valley of the cross-sectional curve means a portion of the cross-sectional curve connecting two adjacent points of the intersection where the substance is depressed with respect to the average line when the cross-sectional curve is cut by the average line. The valley bottom is the lowest point in the valley of the sectional curve.

【0026】表面粗さを示すパラメータとしてRzを採
用したとき、研磨パッド表面の表面粗さは、Rzで20
μm以下、好ましくは、15μm以下、さらに好ましく
は、10μm以下とすることが望ましい。Rzが20μ
mを超えると研磨後に得られるガラス基板表面の微小う
ねりが大きくなり好ましくない。研磨パッド表面の表面
粗さを低減するには、粒度の細かいサンドペーパーなど
によってバフィングを行うことによって達成される。
When Rz is adopted as a parameter indicating the surface roughness, the surface roughness of the polishing pad surface is 20
μm or less, preferably 15 μm or less, more preferably 10 μm or less. Rz is 20μ
If it exceeds m, the fine waviness on the surface of the glass substrate obtained after polishing is undesirably large. The surface roughness of the polishing pad surface can be reduced by buffing with a fine-grained sandpaper or the like.

【0027】また、研磨パッドが、定盤側から基材とナ
ップ層とを有する構造としたときに、ナップ層の厚さも
研磨後のガラス基板表面の微小うねりを決定する一つの
要因である。好ましい、ナップ層の厚さは、430〜6
20μm、さらに好ましくは480〜530μmが望ま
しい。
When the polishing pad has a structure having a base material and a nap layer from the side of the surface plate, the thickness of the nap layer is also one factor that determines the minute waviness on the surface of the glass substrate after polishing. The preferable thickness of the nap layer is 430 to 6
20 μm, more preferably 480-530 μm.

【0028】また、研磨パッドは、研磨加工を繰り返し
ていくに従って磨耗するので、研磨レートの確保、得ら
れる基板表面の平滑性などの目的によって、研磨パッド
表面をなるべく使用する前の表面状態と同じようにする
ために修正が行われる。修正方法としては、ダイヤモン
ド砥粒が埋め込まれたパッドドレッサーや、ダイヤモン
ドペレット、リングドレッサーなどがある。その中で
も、定盤との密着性が尤も良いという理由により、ダイ
ヤモンドと粒のパッドドレッサーにより、ナップ層表面
を修正することが好ましい。修正する回数、時間等につ
いては特に限定されない。
Since the polishing pad wears as the polishing process is repeated, the surface condition of the polishing pad is preferably the same as that before the polishing pad is used, depending on the purpose of securing the polishing rate and the smoothness of the obtained substrate surface. Modifications are made to make it so. As a correction method, there are a pad dresser in which diamond abrasive grains are embedded, a diamond pellet, a ring dresser, and the like. Among them, it is preferable to modify the surface of the nap layer with a pad dresser made of diamond and grains because the adhesion to the surface plate is likely to be good. The number of times of correction, the time, and the like are not particularly limited.

【0029】本発明のガラス基板は、磁気ディスク用ガ
ラス基板、光ディスク用ガラス基板、光磁気ディスク用
ガラス基板等の各種用途に使用できる。ガラス基板の硝
種、サイズ等については特に限定されない。硝種として
は、例えば、アルミノシリケートガラス、ソーダライム
ガラス、ソーダアルミノ珪酸ガラス、アルミノボロシリ
ケートガラス、ボロシリケートガラス、石英ガラス、結
晶化ガラスなどが上げられる。平滑性の点では、一般に
結晶化ガラスよりもアモルファスガラスが良く、特に、
機械的強度や、耐衝撃性、耐振動性等の点からアルミノ
シリケートガラスなどの化学強化ガラスが好ましい。
The glass substrate of the present invention can be used for various purposes such as a glass substrate for a magnetic disk, a glass substrate for an optical disk, and a glass substrate for a magneto-optical disk. The glass type, size, and the like of the glass substrate are not particularly limited. Examples of glass types include aluminosilicate glass, soda lime glass, sodaaluminosilicate glass, aluminoborosilicate glass, borosilicate glass, quartz glass, crystallized glass, and the like. In terms of smoothness, amorphous glass is generally better than crystallized glass.
Chemically strengthened glass such as aluminosilicate glass is preferred from the viewpoint of mechanical strength, impact resistance, vibration resistance and the like.

【0030】アルミノシリケートガラスとしては、Si
O2:58〜75重量%、Al2O3:5〜23重量
%、Li2O:3〜10重量%、Na2O:4〜13重量
%を主成分として含有する化学強化ガラスなどが好まし
い。
As the aluminosilicate glass, Si
O2: fifty-eight to seventy-five wt%, Al2 O3: 5 to 23 wt%, Li 2 O: 3~10 wt%, Na 2 O: 4~13 like chemically tempered glass containing by weight% as a main component is preferable.

【0031】また、近年では、高い平滑性を有する基板
が求められていることから、結晶化ガラスの結晶粒径が
100nm以下の結晶化ガラス基板の開発が行われてい
る。結晶化ガラスは、機械的強度がアモルファスガラス
と比べて大きく、また製造工程上、ダイヤモンドペレッ
トによる研削加工を行うなどの利点から平坦性に優れ、
且つ高い平滑性の基板が得られるので好ましい。
In recent years, since a substrate having high smoothness has been required, a crystallized glass substrate having a crystal grain diameter of 100 nm or less has been developed. Crystallized glass has higher mechanical strength than amorphous glass, and has excellent flatness due to the advantage of grinding using diamond pellets in the manufacturing process.
In addition, a substrate with high smoothness can be obtained, which is preferable.

【0032】上述の情報記録媒体用ガラス基板の種表面
に少なくとも記録層を形成することにより、高密度記録
に対応した情報記録媒体を得ることができる。特に、記
録層が磁性層である磁気ディスクの場合、微小うねりが
小さい磁気ディスクが得られるので、低グライドハイ
ト、低モジュレーションが達成できる。
By forming at least a recording layer on the seed surface of the glass substrate for an information recording medium, an information recording medium compatible with high-density recording can be obtained. In particular, in the case of a magnetic disk in which the recording layer is a magnetic layer, a magnetic disk with small undulations can be obtained, so that low glide height and low modulation can be achieved.

【0033】例えば、磁気ディスクでは、記録再生方式
(CSSタイプ、ロードアンロードタイプ)、使用する
磁気ヘッドに応じ、基板の表面粗さを研磨条件(研磨砥
粒の種類、粒径、加工条件など)や研磨後の化学的処理
条件等を制御することによって、所望の表面粗さ(Rm
ax、Ra、Rp等)となるように制御する。CSSタ
イプの磁気ディスク用ガラス基板の表面粗さは、Rma
x=5〜12nm、Ra=0.5〜1.2nm、Rp=
2.5〜6nm、ロードアンロードタイプの磁気ディス
ク用ガラス基板の表面粗さは、Rmax=8nm以下、
Ra=0.8nm以下、Rp=4nm以下となるように
する。
For example, in the case of a magnetic disk, the surface roughness of the substrate is adjusted according to the recording / reproducing method (CSS type, load / unload type) and the magnetic head to be used under polishing conditions (type of abrasive grains, particle size, processing conditions, etc.). ) And the chemical treatment conditions after polishing are controlled to obtain the desired surface roughness (Rm
ax, Ra, Rp, etc.). The surface roughness of the glass substrate for CSS type magnetic disks is Rma
x = 5 to 12 nm, Ra = 0.5 to 1.2 nm, Rp =
2.5 to 6 nm, the surface roughness of the glass substrate for a magnetic disk of a load / unload type is Rmax = 8 nm or less;
Ra = 0.8 nm or less and Rp = 4 nm or less.

【0034】また、ガラス基板上に形成する磁性層の材
料には特に制限はない。磁性層としては、例えば、Co
を主成分とするCoPt、CoCr、CoNi、CoN
iCr、CoCrTa、CoPtCr、CoNiPt、
CoNiCrPt、CoNiCrTa、CoCrPtT
a、CoCrPtB、CoCrPtTaBなどの磁性膜
が挙げられる。磁性層は、磁性膜を非磁性膜(例えば、
Cr、CrMo、CrV、CrMnCなど)で分割して
ノイズの低減を図った多層構造としても良い。また、必
要に応じ、ガラス基板と磁性層との間に、シード層や下
地層を、磁性層上に保護層や潤滑層を設けても良い。
The material of the magnetic layer formed on the glass substrate is not particularly limited. As the magnetic layer, for example, Co
, CoPt, CoCr, CoNi, CoN containing
iCr, CoCrTa, CoPtCr, CoNiPt,
CoNiCrPt, CoNiCrTa, CoCrPtT
a, CoCrPtB, CoCrPtTaB and the like. The magnetic layer is formed by converting the magnetic film to a non-magnetic film (for example,
(Cr, CrMo, CrV, CrMnC, etc.) to reduce noise. If necessary, a seed layer or an underlayer may be provided between the glass substrate and the magnetic layer, and a protective layer or a lubricating layer may be provided on the magnetic layer.

【0035】シード層としては、その上に形成される下
地層や磁性層の結晶粒径を制御する役割があり、例え
ば、NiAl、CrNi、CrTiなどの材料が挙げら
れる。下地層としては、磁気特性の向上を目的として設
けられ、例えば、Cr、Mo、V、Ta、Ti、W、
B、Al、Niなどの非磁性金属から選ばれる少なくと
も一種以上の材料からなる非磁性膜が挙げられる。下地
層は単層でも複数層でもかまわない。
The seed layer has a role of controlling the crystal grain size of the underlayer and the magnetic layer formed thereon, and examples thereof include materials such as NiAl, CrNi, and CrTi. The underlayer is provided for the purpose of improving the magnetic characteristics, and is, for example, Cr, Mo, V, Ta, Ti, W,
A non-magnetic film made of at least one or more materials selected from non-magnetic metals such as B, Al, and Ni. The underlayer may be a single layer or a plurality of layers.

【0036】保護層としては、機械的耐久性、耐食性等
のために設けられ、例えば、Cr、Cr合金、カーボ
ン、水素化カーボン、窒化カーボン、ジルコニア、Si
O2などが挙げられる。潤滑層としては、磁気ヘッドと
の吸着防止、摩擦係数の低減のために設けられ、パーフ
ルオロポリエーテル潤滑剤などが一般的に使用される。
The protective layer is provided for mechanical durability, corrosion resistance, and the like. For example, Cr, Cr alloy, carbon, hydrogenated carbon, carbon nitride, zirconia, Si
O2 and the like. The lubricating layer is provided for preventing adsorption to the magnetic head and reducing the coefficient of friction, and a perfluoropolyether lubricant or the like is generally used.

【0037】次に、本発明の実施例を掲げて本発明をよ
り具体的に説明する。実施例1 この実施例は、(1)粗ラッピング工程、(2)形状加
工程、(3)端面研磨工程、(4)精ラッピング工程、
(5)第一ポリッシング工程、(6)第二ポリッシング
工程、(7)洗浄工程、(8)化学強化工程、(9)洗
浄工程、(10)磁気ディスクの製造工程、の各工程を
有する。以下、各工程を詳細に説明する。
Next, the present invention will be described more specifically with reference to examples of the present invention. Example 1 In this example, (1) a rough lapping step, (2) a shaping step, (3) an end face polishing step, (4) a fine lapping step,
(5) a first polishing step, (6) a second polishing step, (7) a cleaning step, (8) a chemical strengthening step, (9) a cleaning step, and (10) a magnetic disk manufacturing step. Hereinafter, each step will be described in detail.

【0038】(1) 粗ラッピング工程 まず、溶融ガラスを、上型、下型、胴型を用いたダイレ
クトプレスして、直径66mmφ、厚さ1.2mmの円
盤状のアルミノシリケートガラスからなるガラス基板を
得た。この場合、ダイレクトプレス以外に、ダウンドロ
ー法やフロート法で形成したシートガラスから研削砥石
で切り出して円盤状のガラス基板を得ても良い。なお、
アルミノシリケートガラスとしては、SiO2:58〜
75重量%、Al2O3:5〜23重量%、Li2O:
3〜10重量%、Na2O:4〜13重量%を主成分と
して含有する化学強化ガラスを使用した。
(1) Rough lapping step First, the molten glass is directly pressed using an upper mold, a lower mold, and a body mold, and a glass substrate made of a disk-shaped aluminosilicate glass having a diameter of 66 mm and a thickness of 1.2 mm. I got In this case, in addition to the direct press, a disk-shaped glass substrate may be obtained by cutting out a sheet glass formed by a down-draw method or a float method with a grinding wheel. In addition,
As aluminosilicate glass, SiO2: 58-
75% by weight, Al2O3: 5 to 23% by weight, Li2O:
A chemically strengthened glass containing 3 to 10% by weight and Na2O: 4 to 13% by weight as a main component was used.

【0039】次いで、ガラス基板にラッピング工程を施
した。このラッピング工程は、寸法制度及び形状制度の
向上を目的としている。ラッピング工程は、両面ラッピ
ング装置を用いて行い、砥粒の粒度を#400で行っ
た。詳しくは、粒度#400のアルミナ砥粒を用い、荷
重Lを100kg程度に設定して、内転ギアと外転ギア
を回転させることによって、キャリア内に収納したガラ
ス基板の両面を面精度0〜1μm、表面粗さRmaxで
6μm程度に仕上げた。
Next, a lapping step was performed on the glass substrate. This lapping process aims at improving the dimensional accuracy and the shape accuracy. The lapping process was performed using a double-sided lapping apparatus, and the grain size of the abrasive grains was performed at # 400. Specifically, by using alumina abrasive grains having a grain size of # 400, setting the load L to about 100 kg, and rotating the internal rotation gear and the external rotation gear, both surfaces of the glass substrate housed in the carrier can have a surface accuracy of 0 to 0. Finished to about 1 μm and surface roughness Rmax of about 6 μm.

【0040】(2) 形状加工工程 次に,円筒状の砥石を用いてガラス基板の中央部分に孔
を開けると共に、外周端面も研削して直径65mmφと
した後、外周端面及び内周面に所定の面取り加工を施し
た。このときのガラス基板端面(内周、外周)の表面粗
さは、Rmaxで4μm程度であった。
(2) Shape processing step Next, a hole is made in the center of the glass substrate using a cylindrical grindstone, and the outer peripheral end surface is also ground to a diameter of 65 mmφ. Chamfered. At this time, the surface roughness of the glass substrate end face (inner circumference, outer circumference) was about 4 μm in Rmax.

【0041】(3) 端面研磨工程 次いで、ブラシ研磨により、ガラス基板を回転させなが
らガラス基板の端面(内周、外周)の表面粗さをRma
xで1μm、Raで0.3μm程度に研磨した。上記端
面研磨工程を終えたガラス基板の表面を水洗浄した。
(3) End Face Polishing Step Next, the surface roughness of the end face (inner circumference, outer circumference) of the glass substrate is adjusted to Rma by rotating the glass substrate by brush polishing.
Polishing was performed to about 1 μm with x and about 0.3 μm with Ra. The surface of the glass substrate after the end face polishing step was washed with water.

【0042】(4) 精ラッピング工程 次に、砥粒の粒度を#1000に変え、ガラス基板表面
をラッピングすることにより、平坦度3μm、表面粗さ
Rmaxが2μm程度、Raが0.2μm程度とした。
尚、Rmax、Raは原子間力顕微鏡(AFM)で測
定、平坦度は、平坦度測定装置で測定したもので、基板
表面の最も高い部位と、もっとも低い部位との上下方向
(表面に垂直な方向)の距離(高低差)である。上記精
ラッピング工程を終えたガラス基板を、中性洗剤、水の
各洗浄槽に順次浸漬して洗浄した。
(4) Fine Lapping Step Next, the grain size of the abrasive grains is changed to # 1000, and the glass substrate surface is wrapped, so that the flatness is 3 μm, the surface roughness Rmax is about 2 μm, and Ra is about 0.2 μm. did.
Note that Rmax and Ra are measured by an atomic force microscope (AFM), and the flatness is measured by a flatness measuring device, and the vertical direction (vertical to the surface) of the highest portion and the lowest portion of the substrate surface is measured. Direction) (distance). The glass substrate after the above-described fine lapping step was washed by sequentially immersing it in a washing tank of a neutral detergent and water.

【0043】(5) 第一ポリッシング工程 次に、ポリッシング工程を施した。このポリッシング工
程は、上述したラッピング工程で残留した傷や歪みの除
去を目的とするもので、両面研磨装置を用いて行った。
詳しくは、ポリシャとして硬質ポリシャを用い、以下の
研磨条件で実施した。 研磨液:酸化セリウム(平均粒径1.3μm)+水 荷重:80〜100g/cm2 研磨時間:30〜50分 除去量:35〜45μm
(5) First Polishing Step Next, a polishing step was performed. This polishing step is for the purpose of removing scratches and distortions remaining in the above-described lapping step, and was performed using a double-side polishing apparatus.
Specifically, a hard polisher was used as a polisher, and the polishing was performed under the following polishing conditions. Polishing liquid: cerium oxide (average particle size: 1.3 μm) + water Load: 80-100 g / cm 2 Polishing time: 30-50 minutes Removal amount: 35-45 μm

【0044】上記ポリッシング工程を終えたガラス基板
を、中性洗剤、純水、純水、IPA、IPA(蒸気乾
燥)の各洗浄槽に順次浸漬して、洗浄した。尚、各洗浄
槽には超音波を印加した。また、この洗浄工程は、次の
第二ポリッシング工程において使用する研磨液が同一の
ものである場合、省略することもできる。また、第一ポ
リッシング工程で使用する硬質ポリシャは、特に限定さ
れず、目標とする表面粗さ、基板の端部形状等によって
適宜選択することが可能である。
The glass substrate after the polishing step was washed by sequentially immersing it in a washing bath of a neutral detergent, pure water, pure water, IPA, and IPA (steam drying). In addition, ultrasonic waves were applied to each cleaning tank. This cleaning step can be omitted when the polishing liquid used in the next second polishing step is the same. Further, the hard polisher used in the first polishing step is not particularly limited, and can be appropriately selected depending on a target surface roughness, an end shape of the substrate, and the like.

【0045】(6) 第二ポリッシング工程(ファイナ
ルポリッシング) 次に、第一ポリッシング工程で使用した両面研磨装置を
用い、ポリシャとして硬質ポリシャから軟質ポリシャに
変えて第二ポリッシング工程を実施した。使用した軟質
ポリシャの表面粗さRzを、触針式の表面粗さ計である
小型表面粗さ測定機(サーフテストSJ−401:ミツ
トヨ社製)で測定したところ、12.2μmであった。
また、ナップ層は、480μmのものを使用した。研磨
条件は、 研磨液:酸化セリウム(平均粒径0.8μm)+水 荷重:80〜100g/cm2 研磨時間:10〜15分 除去量:3〜5μm とした。
(6) Second Polishing Step (Final Polishing) Next, using the double-side polishing apparatus used in the first polishing step, a second polishing step was performed by changing the polisher from a hard polisher to a soft polisher. The surface roughness Rz of the used soft polisher was measured by a small surface roughness measuring device (Surftest SJ-401: manufactured by Mitutoyo Corporation) as a stylus type surface roughness meter, and it was 12.2 μm.
The nap layer used was 480 μm. The polishing conditions were as follows: polishing liquid: cerium oxide (average particle diameter 0.8 μm) + water load: 80 to 100 g / cm 2 polishing time: 10 to 15 minutes removal amount: 3 to 5 μm

【0046】(7) 洗浄工程 上記第二ポリッシング工程を終えたガラス基板を、濃度
50wt%の硫酸(温度:70℃×3分)に浸漬したの
ち、ケイフッ酸(濃度:6.5mS(wt%)、温度:
38℃×100秒)に浸漬して、洗浄を行った。尚、各
洗浄槽には超音波を印加した。さらに、中性洗剤、純
水、純水、IPA、IPA(蒸気乾燥)の各洗浄槽に順
次浸漬して、洗浄した。
(7) Cleaning Step After the glass substrate after the second polishing step has been immersed in sulfuric acid having a concentration of 50 wt% (temperature: 70 ° C. × 3 minutes), citric hydrofluoric acid (concentration: 6.5 mS (wt%) ),temperature:
(38 ° C. × 100 seconds) for washing. In addition, ultrasonic waves were applied to each cleaning tank. Further, it was washed by sequentially immersing it in a washing tank of a neutral detergent, pure water, pure water, IPA, and IPA (steam drying).

【0047】(8) 化学強化工程 次に、上記ラッピング、ポリッシング、洗浄工程を終え
たガラス基板に化学強化を施した。化学強化には、硝酸
カリウム(60%)と硝酸ナトリウム(40%)を混合
した化学強化塩を用意し、この化学強化塩を375℃に
加熱し、300℃に予熱された洗浄済みのガラス基板を
約3時間浸漬して行った。この浸漬の際に、ガラス基板
の表面全体が化学強化するように、複数のガラス基板が
端面で保持されるようにホルダーに収納した状態で行っ
た。
(8) Chemical Strengthening Step Next, the glass substrate after the lapping, polishing and cleaning steps was chemically strengthened. For the chemical strengthening, a chemically strengthened salt prepared by mixing potassium nitrate (60%) and sodium nitrate (40%) is prepared, and the chemically strengthened salt is heated to 375 ° C., and the cleaned glass substrate preheated to 300 ° C. The immersion was performed for about 3 hours. At the time of this immersion, a plurality of glass substrates were housed in a holder so as to be held at the end faces so that the entire surface of the glass substrate was chemically strengthened.

【0048】このように、化学強化塩に浸漬処理するこ
とによって、ガラス基板表層のリチウムイオン、ナトリ
ウムイオンは、化学強化塩中のナトリウムイオン、カリ
ウムイオンにそれぞれ置換されガラス基板は強化され
る。ガラス基板の表層に形成された圧縮応力層の厚さ
は、約100〜200μmであった。上記化学強化を終
えたガラス基板を20℃の水槽に浸漬して急冷し、約1
0分維持した。
As described above, by performing the immersion treatment in the chemically strengthened salt, lithium ions and sodium ions in the surface layer of the glass substrate are replaced by sodium ions and potassium ions in the chemically strengthened salt, and the glass substrate is strengthened. The thickness of the compressive stress layer formed on the surface layer of the glass substrate was about 100 to 200 μm. The glass substrate that has been chemically strengthened is immersed in a water bath at 20 ° C. and rapidly cooled.
Maintained 0 minutes.

【0049】(9) 洗浄工程 上記急冷を終えたガラス基板を、約40℃に加熱した硫
酸に浸漬し、超音波をかけながら洗浄を行った。このよ
うにして得られたガラス基板表面の表面粗さをAFMで
測定したところ、Rmax=6.12nm、Ra=0.
56nmであり、微小うねりの平均粗さRa’は、0.
58nm、95%PV値は、2.79nmで良好な結果
が得られた。
(9) Washing Step The glass substrate that had been quenched was immersed in sulfuric acid heated to about 40 ° C., and washed while applying ultrasonic waves. When the surface roughness of the surface of the glass substrate thus obtained was measured by AFM, Rmax = 6.12 nm and Ra = 0.
The average roughness Ra ′ of the fine undulation is 0.5 nm.
Good results were obtained at 58 nm and 95% PV value of 2.79 nm.

【0050】(10)磁気ディスクの製造工程 上述した工程を経て得られた磁気ディスク用ガラス基板
に対し、インライン型スパッタリング装置にて、NiA
lシード層、CrV下地層、CoPtCrB磁性層、水
素化カーボン保護層を成膜し、ディップ法によりパーフ
ルオロポリエーテル潤滑層を形成して磁気ディスクを作
製した。
(10) Manufacturing Process of Magnetic Disk The glass substrate for a magnetic disk obtained through the above-described process is subjected to NiA by an in-line sputtering apparatus.
A 1-layer seed layer, a CrV underlayer, a CoPtCrB magnetic layer, and a hydrogenated carbon protective layer were formed, and a perfluoropolyether lubricating layer was formed by a dipping method to produce a magnetic disk.

【0051】この得られた磁気ディスクに対しAEセン
サーを用いたグライド高さ、CSS試験(10万回)、
ロードアンロード試験(40万回)を行ったところ、ヘ
ッド浮上量17nmまでは、ヘッドー媒体間に接触が発
生しないことが確認できた(即ちこの磁気ディスクのグ
ライド高さは7〜8nmであった。)。また、CSS試
験、ロードアンロード試験においてもクラッシュが発生
せずに両試験とも良好な結果が得られた。
For the obtained magnetic disk, the glide height using an AE sensor, a CSS test (100,000 times),
When a load / unload test (400,000 times) was performed, it was confirmed that contact did not occur between the head and the medium until the head flying height reached 17 nm (that is, the glide height of this magnetic disk was 7 to 8 nm). .). In the CSS test and the load / unload test, good results were obtained in both tests without crash.

【0052】実施例2〜4(パッド表面粗さRzと95
%PV値との関係) 次に、上述の実施例1において、第二ポリッシング工程
で使用した軟質パッドとして、パッドの表面粗さがRz
で22μm(実施例2)、16.5μm(実施例3)、
9.8μm(実施例4)のものを使用した(バフィング
処理の条件を適宜調整)以外は、実施例1と同様にして
磁気ディスク用ガラス基板、及び磁気ディスクを作製し
た。
Examples 2 to 4 (pad surface roughness Rz and 95
% PV value) Next, in Example 1 described above, as the soft pad used in the second polishing step, the surface roughness of the pad was Rz.
22 μm (Example 2), 16.5 μm (Example 3),
A glass substrate for a magnetic disk and a magnetic disk were produced in the same manner as in Example 1 except that a substrate having a thickness of 9.8 μm (Example 4) was used (buffering conditions were appropriately adjusted).

【0053】得られたガラス基板表面の微小うねりの9
5%PV値と、パッド表面の表面粗さRzとの関係を図
6に示す。図6に示すように、最終研磨工程で使用する
研磨パッド表面(NAP層表面)の粗さRzと、研磨後
得られるガラス基板表面の微小うねりとの間に相関関係
があることがわかる。従って、この結果からもわかるよ
うに、所定の基板表面の微小うねりを達成するために、
良好な研磨パッド表面の表面粗さの研磨パッドを選定す
ることで、微小うねりを正確に制御できることができ
る。尚、これらの得られた基板表面の表面粗さは、実施
例1と同等であった。
9 of minute undulation on the surface of the obtained glass substrate
FIG. 6 shows the relationship between the 5% PV value and the surface roughness Rz of the pad surface. As shown in FIG. 6, it can be seen that there is a correlation between the roughness Rz of the polishing pad surface (NAP layer surface) used in the final polishing step and the fine waviness of the glass substrate surface obtained after polishing. Therefore, as can be seen from this result, in order to achieve a small undulation on the predetermined substrate surface,
By selecting a polishing pad having a good surface roughness of the polishing pad surface, fine waviness can be accurately controlled. In addition, the surface roughness of the obtained substrate surface was equivalent to that of Example 1.

【0054】また、得られた磁気ディスクについて、A
Eセンサーを用いたグライド高さ、CSS試験(10万
回)、ロードアンロード試験(40万回)を行ったとこ
ろ、ヘッド浮上量17nmまでは、ヘッドー媒体間に接
触が発生しないことが確認できた(即ちこの磁気ディス
クのグライド高さは7〜8nmであった。)。また、C
SS試験、ロードアンロード試験においてもクラッシュ
が発生せずに両試験とも良好な結果が得られた。
Further, regarding the obtained magnetic disk, A
Glide height, CSS test (100,000 times), and load / unload test (400,000 times) were performed using the E sensor. As a result, it was confirmed that contact between the head and the medium did not occur up to the head flying height of 17 nm. (That is, the glide height of this magnetic disk was 7 to 8 nm.) Also, C
Also in the SS test and the load / unload test, no crash occurred and good results were obtained in both tests.

【0055】実施例5(パッド修正) 上記実施例1に記載された磁気ディスク用ガラス基板の
製造工程を終えた後、第二ポリッシング工程で使用した
研磨パッドの修正を行った。研磨パッドの修正は、ま
ず、ガラス基板をセットするキャリアから、パッドドレ
ッサー用のキャリアに替え、このキャリアの保持孔にス
テンレス製の円板状の基板表面に数十μmのダイヤモン
ド砥粒が固定されたパッドドレッサーをセットする。
Example 5 (Modification of Pad) After the manufacturing process of the glass substrate for a magnetic disk described in Example 1 was completed, the polishing pad used in the second polishing process was modified. To correct the polishing pad, first, the carrier for setting the glass substrate is changed to a carrier for pad dresser, and several tens of μm diamond abrasive grains are fixed to the stainless steel disk-shaped substrate surface in the holding holes of this carrier. Set the pad dresser.

【0056】その後、通常ガラス基板を研磨するのと同
様にパッドドレッサーに対し荷重をかけながら、上下定
盤、内ギア、外ギアを回転させ、研磨パッドを修正す
る。なお、このとき、研磨液のかりに水を供給する。所
定の時間が経過し、研磨パッドを修正を終えたら、再
度、ガラス基板をせっとするキャリアに替え、実施例1
と同様に磁気ディスク用ガラス基板を作製した。
Thereafter, while applying a load to the pad dresser in the same manner as for polishing a glass substrate, the upper and lower platens, the inner gear, and the outer gear are rotated to correct the polishing pad. At this time, water is supplied to the polishing liquid reservoir. After a predetermined period of time has passed and the polishing pad has been repaired, the glass substrate is replaced again with the carrier to be shy.
In the same manner as in the above, a glass substrate for a magnetic disk was produced.

【0057】その結果、磁気ディスク用ガラス基板の製
造工程を繰り返し行っても、実施例1とほぼ同じ表面粗
さ(Rmax,Ra)、微小うねりの平均高さRa’、
95%PV値を得た。このように、定期的に研磨パッド
の修正を行うことによって、研磨パッド表面の表面粗さ
が維持されるので、安定してほぼ同じ基板表面を有する
磁気ディスク用ガラス基板が得られる。
As a result, even when the manufacturing process of the glass substrate for a magnetic disk was repeatedly performed, the surface roughness (Rmax, Ra), the average height Ra 'of the minute undulations were almost the same as those of the first embodiment,
A 95% PV value was obtained. Since the polishing pad is periodically repaired as described above, the surface roughness of the polishing pad surface is maintained, so that a magnetic disk glass substrate having substantially the same substrate surface can be obtained stably.

【0058】実施例6(ガラス基板変化) 次に、上述の実施例1におけるアルミノシリケートガラ
スから、結晶化ガラス(実施例6)に変えたこと以外
は、実施例1と同様にして磁気ディスク用ガラス基板、
および磁気ディスクを作製した。その結果、得られる基
板の表面粗さは実施例1と同等であったが、微小うねり
の95%PV値は、2.23nm(実施例6)となり、
化学強化ガラス基板の場合と比較して良くなった。
Example 6 (Change of Glass Substrate) Next, the same procedure as in Example 1 was repeated except that the aluminosilicate glass in Example 1 was changed to crystallized glass (Example 6). Glass substrate,
And a magnetic disk was produced. As a result, the surface roughness of the obtained substrate was the same as that of Example 1, but the 95% PV value of the fine waviness was 2.23 nm (Example 6).
It is better than the case of the chemically strengthened glass substrate.

【0059】また、得られた磁気ディスクについて、A
Eセンサーを用いたグライド高さ、CSS試験(10万
回)、ロードアンロード試験(40万回)を行ったとこ
ろ、ヘッド浮上量15nmまでは、ヘッドー媒体間に接
触が発生しないことが確認できた。(即ちこの磁気ディ
スクのグライド高さは5〜6nmであった。)また、C
SS試験、ロードアンロード試験においてもクラッシュ
が発生せずに両試験とも良好な結果が得られた。
Further, regarding the obtained magnetic disk, A
The glide height, CSS test (100,000 times), and load / unload test (400,000 times) using the E sensor were performed. As a result, it was confirmed that there was no contact between the head and the medium up to the head flying height of 15 nm. Was. (That is, the glide height of this magnetic disk was 5 to 6 nm.)
Also in the SS test and the load / unload test, no crash occurred and good results were obtained in both tests.

【0060】なお、上述の実施例1〜4においては、研
磨パッド表面の表面粗さRzを触針式粗さ計によって求
めたが、このRzは、光学顕微鏡によるパッド断面写真
から以下のようにして求めてもい。 ナップ層の表面に近い場所を通るように直線を引
く。 任意の10点を決める。 の直線とナップ層の表面の距離を計る。 の平均値を求める。
In the above Examples 1 to 4, the surface roughness Rz of the polishing pad surface was determined by a stylus type roughness meter. You can ask for it. Draw a straight line so that it passes near the surface of the nap layer. Determine any 10 points. Measure the distance between the straight line and the surface of the nap layer. Find the average value of

【0061】図7は光学顕微鏡によるパッド断面写真か
ら求めたRzとガラス基板の微小うねり殿関係を示すグ
ラフである。図7に示されるように、光学顕微鏡による
パッド断面写真より求めた結果と、基板表面の微小うね
りとの間にも、相関関係があることがわかる。但し、測
定精度や、測定時間等から、触針式粗さ計によって、パ
ッド表面の表面粗さを決定したほうが良い。
FIG. 7 is a graph showing the relationship between Rz and micro undulations of the glass substrate obtained from a pad cross-sectional photograph by an optical microscope. As shown in FIG. 7, it can be seen that there is also a correlation between the result obtained from the pad cross-sectional photograph by the optical microscope and the minute waviness on the substrate surface. However, it is better to determine the surface roughness of the pad surface with a stylus roughness meter from the measurement accuracy, measurement time, and the like.

【0062】[0062]

【発明の効果】以上詳述したように、本発明は、軟質ポ
リシャの研磨パッドを貼りつけた上下定盤の間に情報記
録媒体用ガラス基板をセットして両主表面を研磨する研
磨工程を有する情報記録媒体用ガラス基板の製造方法に
おいて、研磨工程後の情報記録媒体用ガラス基板主表面
の微小うねりの値が、前記研磨工程で用いる研磨パッド
表面の表面粗さの値に依存するという現象を利用し、研
磨工程で用いる研磨パッド表面の表面粗さを選定するこ
とによって、研磨工程後の情報記録媒体用ガラス基板主
表面の微小うねりが所定の値になるようにしたことを特
徴とするもので、これにより、表面の微小うねりを正確
に制御することができ、高密度記録に対応した情報記録
媒体(低グライドハイト、低モジュレーション)の基板
として用いることができる情報記録媒体用ガラス基板の
製造方法及び情報記録媒体用ガラス基板並びに情報記録
媒体の製造方法及び情報記録媒体を得ている。
As described above in detail, the present invention provides a polishing step of setting a glass substrate for an information recording medium between upper and lower platens to which a polishing pad of a soft polisher is attached and polishing both main surfaces. In the method for manufacturing a glass substrate for an information recording medium having the above, a phenomenon that the value of minute waviness on the main surface of the glass substrate for an information recording medium after the polishing step depends on the value of the surface roughness of the polishing pad surface used in the polishing step. By using, the surface roughness of the polishing pad surface used in the polishing step is selected, so that the micro waviness of the glass substrate main surface for the information recording medium after the polishing step is set to a predetermined value. This allows precise control of minute waviness on the surface and can be used as a substrate for information recording media (low glide height, low modulation) compatible with high-density recording. To obtain a manufacturing method and information recording medium can recording method of manufacturing a glass substrate for a medium and an information recording medium glass substrate and the information recording medium.

【図面の簡単な説明】[Brief description of the drawings]

【図1】上下定盤を有する研磨装置の主要部断面図であ
る。
FIG. 1 is a sectional view of a main part of a polishing apparatus having upper and lower stools.

【図2】研磨装置の駆動機構部の説明図である。FIG. 2 is an explanatory diagram of a driving mechanism of the polishing apparatus.

【図3】研磨パッドの部分断面図である。FIG. 3 is a partial cross-sectional view of a polishing pad.

【図4】情報記録媒体用ガラス基板の主表面の微小うね
りと研磨パッド表面(NAP層表面)の表面粗さとの関
係を示すグラフである。
FIG. 4 is a graph showing the relationship between the fine waviness on the main surface of the glass substrate for an information recording medium and the surface roughness of the polishing pad surface (NAP layer surface).

【図5】多機能表面解析装置の測定原理説明図である。FIG. 5 is a diagram illustrating the measurement principle of the multifunctional surface analysis apparatus.

【図6】実施例2〜4についての基板表面の微小うねり
の95%PV値と研磨パッド表面(NAP層表面)の表
面粗さRzとの関係を示すグラフである。
FIG. 6 is a graph showing the relationship between 95% PV value of minute waviness on the substrate surface and surface roughness Rz of the polishing pad surface (NAP layer surface) for Examples 2 to 4.

【図7】光学顕微鏡によるパッド断面写真から求めたR
zとガラス基板の微小うねりとの関係を示すグラフであ
る。
FIG. 7 shows R determined from a photograph of a cross section of a pad by an optical microscope
5 is a graph showing a relationship between z and minute waviness of a glass substrate.

【符号の説明】[Explanation of symbols]

4…情報記録媒体用ガラス基板、5…研磨装置、53…
上定盤、53a…研磨パッド、54…下定盤、54a…
研磨パッド。
4 glass substrate for information recording medium, 5 polishing machine, 53
Upper surface plate, 53a: polishing pad, 54: lower surface plate, 54a ...
Polishing pad.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 軟質ポリシャの研磨パッドを貼りつけた
上下定盤の間に情報記録媒体用ガラス基板をセットして
両主表面を研磨する研磨工程を有する情報記録媒体用ガ
ラス基板の製造方法において、 前記研磨工程後の情報記録媒体用ガラス基板主表面の微
小うねりの値が、前記研磨工程で用いる研磨パッド表面
の表面粗さの値に依存するという現象を利用し、 前記研磨工程で用いる研磨パッド表面の表面粗さを選定
することによって、前記研磨工程後の情報記録媒体用ガ
ラス基板主表面の微小うねりが所定の値になるようにし
たことを特徴とする情報記録媒体用ガラス基板の製造方
法。但し、前記微小うねりの値Ra’は、微小うねりの
周期が2μm〜4mmのものであって、以下の数式によ
って表されるものである。 【数1】
1. A method for manufacturing a glass substrate for an information recording medium, comprising: a polishing step of setting a glass substrate for an information recording medium between an upper and lower platen to which a polishing pad of a soft polisher is attached and polishing both main surfaces. Utilizing the phenomenon that the value of minute waviness on the main surface of the glass substrate for an information recording medium after the polishing step depends on the value of the surface roughness of the polishing pad surface used in the polishing step; Manufacturing a glass substrate for an information recording medium, wherein the fine waviness on the main surface of the glass substrate for an information recording medium after the polishing step is set to a predetermined value by selecting the surface roughness of the pad surface. Method. However, the value of the minute undulation Ra 'has a period of the minute undulation of 2 μm to 4 mm, and is represented by the following equation. (Equation 1)
【請求項2】 前記研磨パッド表面の表面粗さRzが2
0μm以下であることを特徴とする請求項1記載の情報
記録媒体用ガラス基板の製造方法。但し、Rzは、十点
平均粗さとする。
2. A polishing pad having a surface roughness Rz of 2
2. The method for manufacturing a glass substrate for an information recording medium according to claim 1, wherein the thickness is 0 μm or less. Here, Rz is a ten-point average roughness.
【請求項3】 前記研磨パッドは、定盤側から基材とナ
ップ層とを有し、前記ナップ層の厚さを、所定の範囲に
することを特徴とする請求項1又は2記載の情報記録媒
体用ガラス基板の製造方法。
3. The information according to claim 1, wherein the polishing pad has a base material and a nap layer from a surface plate side, and the thickness of the nap layer is set to a predetermined range. A method for manufacturing a glass substrate for a recording medium.
【請求項4】 前記ナップ層の厚さは、430〜620
μmであることを特徴とする請求項3記載の情報記録媒
体用ガラス基板の製造方法。
4. The nap layer has a thickness of 430 to 620.
4. The method for manufacturing a glass substrate for an information recording medium according to claim 3, wherein the glass substrate has a thickness of μm.
【請求項5】 ダイヤモンド砥粒のパッドドレッサーに
よって前記ナップ層表面を修正することを特徴とする請
求項1乃至4の何れか一に記載の情報記録媒体用ガラス
基板の製造方法。
5. The method for manufacturing a glass substrate for an information recording medium according to claim 1, wherein the surface of the nap layer is modified by a pad dresser of diamond abrasive grains.
【請求項6】 情報記録媒体用ガラス基板は、磁気ディ
スク用ガラス基板であることを特徴とする請求項1乃至
5の何れか一に記載の情報記録媒体用ガラス基板の製造
方法。
6. The method for producing a glass substrate for an information recording medium according to claim 1, wherein the glass substrate for an information recording medium is a glass substrate for a magnetic disk.
【請求項7】 請求項1〜6の情報記録媒体用ガラス基
板の主表面上に少なくとも記録層を形成することを特徴
とする情報記録媒体の製造方法。
7. A method for manufacturing an information recording medium, comprising forming at least a recording layer on the main surface of the glass substrate for an information recording medium according to claim 1.
【請求項8】 前記記録層は磁性層であることを特徴と
する請求項7記載の情報記録媒体の製造方法。
8. The method according to claim 7, wherein the recording layer is a magnetic layer.
JP2000287370A 2000-09-21 2000-09-21 Method of manufacturing glass substrate for information recording medium and method of manufacturing information recording medium Pending JP2002092867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000287370A JP2002092867A (en) 2000-09-21 2000-09-21 Method of manufacturing glass substrate for information recording medium and method of manufacturing information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000287370A JP2002092867A (en) 2000-09-21 2000-09-21 Method of manufacturing glass substrate for information recording medium and method of manufacturing information recording medium

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008010493A Division JP4615027B2 (en) 2008-01-21 2008-01-21 Manufacturing method of glass substrate for information recording medium and manufacturing method of information recording medium

Publications (1)

Publication Number Publication Date
JP2002092867A true JP2002092867A (en) 2002-03-29

Family

ID=18771124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000287370A Pending JP2002092867A (en) 2000-09-21 2000-09-21 Method of manufacturing glass substrate for information recording medium and method of manufacturing information recording medium

Country Status (1)

Country Link
JP (1) JP2002092867A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004213716A (en) * 2002-12-26 2004-07-29 Nippon Sheet Glass Co Ltd Method for manufacturing glass substrate for information recording medium, and glass substrate for information recording medium manufactured by the method
US6852003B2 (en) 2003-03-28 2005-02-08 Hoya Corporation Method of manufacturing glass substrate for data recording medium
WO2006022443A1 (en) * 2004-08-27 2006-03-02 Showa Denko K.K. Magnetic disk substrate and production method of magnetic disk
US7300335B2 (en) 2003-02-12 2007-11-27 Hoya Corporation Glass substrate for data recording medium, manufacturing method thereof and polishing pad used in the method
JP2009012164A (en) * 2007-06-05 2009-01-22 Asahi Glass Co Ltd Method for polishing glass substrate
WO2010044325A1 (en) * 2008-10-17 2010-04-22 コニカミノルタオプト株式会社 Process for producing glass substrate, and process for producing magnetic recording medium
US8038512B2 (en) 2002-10-23 2011-10-18 Hoya Corporation Glass substrate for information recording medium and method for manufacturing same
JP2012027976A (en) * 2010-07-22 2012-02-09 Asahi Glass Co Ltd Method for manufacturing glass substrate for magnetic recording medium
JP2013020688A (en) * 2011-05-20 2013-01-31 Ohara Inc Manufacturing method of substrate for information recording medium
WO2014045653A1 (en) * 2012-09-20 2014-03-27 Hoya株式会社 Method for manufacturing glass substrate for information recording medium
CN103978422A (en) * 2013-02-08 2014-08-13 旭硝子株式会社 Method for manufacturing glass substrate for magnetic recording medium, and glass substrate for magnetic recording medium
WO2014123236A1 (en) * 2013-02-08 2014-08-14 Hoya株式会社 Method for manufacturing magnetic disk substrate, and polishing pad used in manufacture of magnetic disk substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589459A (en) * 1991-09-30 1993-04-09 Hoya Corp Production of glass substrate for magnetic disk and magnetic disk as well as glass substrate for magnetic disk and magnetic disk
JPH07244947A (en) * 1994-03-08 1995-09-19 Hitachi Ltd Magnetic disk device, magnetic disk and production of magnetic disk
JPH1086056A (en) * 1996-09-11 1998-04-07 Speedfam Co Ltd Management method and device for polishing pad
JPH10337650A (en) * 1997-04-09 1998-12-22 Hitachi Ltd Manufacture, polishing method and polishing device of semiconductor device
JP2000207733A (en) * 1999-01-11 2000-07-28 Nippon Sheet Glass Co Ltd Magnetic disc, production thereof and magnetic recorder employing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589459A (en) * 1991-09-30 1993-04-09 Hoya Corp Production of glass substrate for magnetic disk and magnetic disk as well as glass substrate for magnetic disk and magnetic disk
JPH07244947A (en) * 1994-03-08 1995-09-19 Hitachi Ltd Magnetic disk device, magnetic disk and production of magnetic disk
JPH1086056A (en) * 1996-09-11 1998-04-07 Speedfam Co Ltd Management method and device for polishing pad
JPH10337650A (en) * 1997-04-09 1998-12-22 Hitachi Ltd Manufacture, polishing method and polishing device of semiconductor device
JP2000207733A (en) * 1999-01-11 2000-07-28 Nippon Sheet Glass Co Ltd Magnetic disc, production thereof and magnetic recorder employing the same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8038512B2 (en) 2002-10-23 2011-10-18 Hoya Corporation Glass substrate for information recording medium and method for manufacturing same
US9437235B2 (en) 2002-10-23 2016-09-06 Hoya Corporation Glass substrate for information recording medium and method for manufacturing the same
US9214180B2 (en) 2002-10-23 2015-12-15 Hoya Corporation Glass substrate for information recording medium and method for manufacturing the same
US8740671B2 (en) 2002-10-23 2014-06-03 Hoya Corporation Glass substrate for information recording medium and method for manufacturing the same
US8480454B2 (en) 2002-10-23 2013-07-09 Hoya Corporation Glass substrate for information recording medium and method for manufacturing the same
US7500904B2 (en) 2002-12-26 2009-03-10 Hoya Corporation Glass substrate for information recording medium and method for producing same
JP2004213716A (en) * 2002-12-26 2004-07-29 Nippon Sheet Glass Co Ltd Method for manufacturing glass substrate for information recording medium, and glass substrate for information recording medium manufactured by the method
US7300335B2 (en) 2003-02-12 2007-11-27 Hoya Corporation Glass substrate for data recording medium, manufacturing method thereof and polishing pad used in the method
US6852003B2 (en) 2003-03-28 2005-02-08 Hoya Corporation Method of manufacturing glass substrate for data recording medium
WO2006022443A1 (en) * 2004-08-27 2006-03-02 Showa Denko K.K. Magnetic disk substrate and production method of magnetic disk
JP2009012164A (en) * 2007-06-05 2009-01-22 Asahi Glass Co Ltd Method for polishing glass substrate
JP5321594B2 (en) * 2008-10-17 2013-10-23 コニカミノルタ株式会社 Manufacturing method of glass substrate and manufacturing method of magnetic recording medium
WO2010044325A1 (en) * 2008-10-17 2010-04-22 コニカミノルタオプト株式会社 Process for producing glass substrate, and process for producing magnetic recording medium
US9190096B2 (en) 2008-10-17 2015-11-17 Hoya Corporation Method for producing glass substrate and method for producing magnetic recording medium
JP2012027976A (en) * 2010-07-22 2012-02-09 Asahi Glass Co Ltd Method for manufacturing glass substrate for magnetic recording medium
JP2013020688A (en) * 2011-05-20 2013-01-31 Ohara Inc Manufacturing method of substrate for information recording medium
WO2014045653A1 (en) * 2012-09-20 2014-03-27 Hoya株式会社 Method for manufacturing glass substrate for information recording medium
CN103978422A (en) * 2013-02-08 2014-08-13 旭硝子株式会社 Method for manufacturing glass substrate for magnetic recording medium, and glass substrate for magnetic recording medium
WO2014123236A1 (en) * 2013-02-08 2014-08-14 Hoya株式会社 Method for manufacturing magnetic disk substrate, and polishing pad used in manufacture of magnetic disk substrate
JP2014154187A (en) * 2013-02-08 2014-08-25 Asahi Glass Co Ltd Manufacturing method of glass substrate for magnetic recording medium, and glass substrate for magnetic recording medium
JP6039698B2 (en) * 2013-02-08 2016-12-07 Hoya株式会社 Manufacturing method of magnetic disk substrate and polishing pad used for manufacturing magnetic disk substrate
JP2017037701A (en) * 2013-02-08 2017-02-16 Hoya株式会社 Method for manufacturing substrate for magnetic disk and polishing pad

Similar Documents

Publication Publication Date Title
US20070003796A1 (en) Method for manufacturing magnetic disk glass substrate and method for manufacturing magnetic disk
JP5297321B2 (en) Manufacturing method of glass substrate for magnetic disk
JP5297549B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP4199645B2 (en) Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
JP2002092867A (en) Method of manufacturing glass substrate for information recording medium and method of manufacturing information recording medium
JP4190398B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
US7255943B2 (en) Glass substrate for a magnetic disk, magnetic disk, and methods of producing the glass substrate and the magnetic disk
JP5037975B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2000132829A (en) Glass substrate for magnetic recording medium, magnetic recording medium and their production
JP2007118172A (en) Polishing device, polishing method, manufacturing method for glass substrate for magnetic disk, and method for magnetic method
JP4615027B2 (en) Manufacturing method of glass substrate for information recording medium and manufacturing method of information recording medium
JP6031593B2 (en) Method of manufacturing glass substrate for magnetic disk, method of manufacturing magnetic disk, and polishing pad
JP3639277B2 (en) Glass substrate for magnetic recording medium, magnetic recording medium, and manufacturing method thereof
JP3801568B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JPWO2004042709A1 (en) Glass substrate for information recording medium and manufacturing method thereof
JP3616610B2 (en) GLASS SUBSTRATE FOR MAGNETIC RECORDING MEDIUM, MAGNETIC RECORDING MEDIUM, AND METHOD FOR PRODUCING THEM
JP2004335081A (en) Cleaning method of magnetic disk glass substrate, manufacturing method of the substrate and manufacturing method of magnetic disk
JP3156265U (en) Polishing brush, brush adjusting jig, glass substrate for magnetic disk, and magnetic disk
JP3590562B2 (en) Glass substrate for magnetic disk, magnetic disk, method for manufacturing glass substrate for magnetic disk, and method for manufacturing magnetic disk
JP5242015B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2007111852A (en) Manufacturing method for glass substrate for magnetic disk, manufacturing method for magnetic disk, and abrasive cloth
JP5518166B2 (en) Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
JP5695068B2 (en) Method for manufacturing glass substrate for information recording medium and method for manufacturing information recording medium
JP2004086930A (en) Method of manufacturing magnetic disk glass substrate and magnetic disk
JP2008103062A (en) Process for producing glass substrate for magnetic disk and process for manufacturing magnetic disk

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050421

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050520