JP2001194825A - Electrostatic charge image developing toner external additive - Google Patents

Electrostatic charge image developing toner external additive

Info

Publication number
JP2001194825A
JP2001194825A JP2000272172A JP2000272172A JP2001194825A JP 2001194825 A JP2001194825 A JP 2001194825A JP 2000272172 A JP2000272172 A JP 2000272172A JP 2000272172 A JP2000272172 A JP 2000272172A JP 2001194825 A JP2001194825 A JP 2001194825A
Authority
JP
Japan
Prior art keywords
silica fine
fine particles
toner
group
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000272172A
Other languages
Japanese (ja)
Other versions
JP3930236B2 (en
Inventor
Muneo Kudo
宗夫 工藤
Masaki Tanaka
正喜 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2000272172A priority Critical patent/JP3930236B2/en
Publication of JP2001194825A publication Critical patent/JP2001194825A/en
Priority to US09/946,330 priority patent/US7083888B2/en
Application granted granted Critical
Publication of JP3930236B2 publication Critical patent/JP3930236B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an external additive for toner which causes no reaction and no interaction with an organic photoreceptor and consequently causes no deterioration and no crack of the photoreceptor, which has excellent flowability and consequently causes no sticking of the toner to the photoreceptor and which has electrostatic chargeability independing on environmental condition. SOLUTION: The electrostatic charge image developing toner external additive is distinguished by being consisting of fine silica particles obtained by treatment of spherical hydrophobic fine silica particles which satisfies conditions (i) and (ii) described below, of which average grain size of primary particles is 0.01 to 5 μm, by a compound selected from a group composed of a quaternary ammonium salt compound, a floroalkyl group-containing betaine compound and a silicone oil. (i) When the fine silica particles are blended with an organic compound which is liquid at room temperature and has 1 to 40 F/m dielectric constant at 5:1 weight ratio and are shacked, the fine silica particles uniformly disperse into the organic compound. (ii) When the fine silica particles are kept at 100 deg.C for 2 hours after evaporating metyanol by an evaporator under heating from a dispersion obtained by dispersing the fine silica particles into methanol, ratio of primary particle quantity left as the primary particle to primary particle quantity present at first is >=20%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子写真法、静電
記録法等における静電荷像を現像するために使用する静
電荷像現像用トナー外添剤に関する。高画質化のために
用いる少粒径トナー用の外添剤に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic image developing toner external additive used for developing an electrostatic image in electrophotography, electrostatic recording and the like. The present invention relates to an external additive for a small particle size toner used for improving image quality.

【0002】[0002]

【従来の技術】電子写真法等で使用する乾式現像剤は、
結着樹脂中に着色剤を分散したトナーそのものを用いる
一成分現像剤と、そのトナーにキャリアを混合した二成
分現像剤とに大別でき、そしてこれらの現像剤を用いて
コピー操作を行う場合、プロセス適合性を有するために
は、現像剤が流動性、耐ケーキング性、定着性、帯電
性、クリーニング性等に優れていることが必要である。
そして特に、流動性、耐ケーキング性、定着性、クリー
ニング性を高めるために、無機微粉末をトナーに添加す
ることがしばしば行われている。
2. Description of the Related Art Dry developers used in electrophotography and the like are:
When one component developer uses a toner in which a colorant is dispersed in a binder resin itself and a two-component developer in which a carrier is mixed with the toner, and a copying operation is performed using these developers. In order to have process compatibility, it is necessary that the developer has excellent fluidity, anti-caking properties, fixing properties, charging properties, cleaning properties, and the like.
In particular, in order to improve fluidity, anti-caking properties, fixing properties, and cleaning properties, inorganic fine powders are often added to toners.

【0003】しかしながら、無機微粉末は、帯電に大き
な影響を与えてしまう。例えば、一般に使用されている
シリカ系微粉末の場合、負極性が強く、特に、低温低湿
下において負帯電性トナーの帯電性を過度に増大させ、
一方、高温高湿下においては水分を取り込んで帯電性を
減少させるため、両者の帯電性に大きな差を生ぜしめて
しまうという問題があった。その結果、濃度再現不良、
背景カブリの原因となることがあった。また、無機微粉
末の分散性もトナー特性に大きな影響を与え、そして分
散性が不均一な場合、流動性、耐ケーキング性に所望の
特性が得られなかったり、クリーニングが不十分になっ
て、感光体上にトナー固着などが発生し、黒点状の画像
欠陥の生じる原因となることがあった。
[0003] However, the inorganic fine powder has a large effect on charging. For example, in the case of a silica fine powder that is generally used, the negative polarity is strong, and particularly, the chargeability of the negatively chargeable toner is excessively increased under low temperature and low humidity,
On the other hand, under high temperature and high humidity, there is a problem that a large difference is caused between the two types of chargeability because the chargeability is reduced by taking in moisture. As a result, poor density reproduction,
Sometimes it caused background fog. In addition, the dispersibility of the inorganic fine powder also has a large effect on the toner properties, and when the dispersibility is non-uniform, the desired properties cannot be obtained for the fluidity and anti-caking properties, or the cleaning becomes insufficient. In some cases, toner sticking or the like occurs on the photoreceptor, causing black spot-shaped image defects.

【0004】これらの点を改善する目的で、無機微粉末
を表面処理したものを用いることが種々提案されてい
る。例えば、特開昭46-5782号公報、特開昭48-47345号
公報、特開昭48-47346号公報には、シリカ微粉末の表面
を疎水化処理することが記載されている。しかしなが
ら、これらの無機微粉末を用いるだけでは必ずしも十分
な効果が得られない。
For the purpose of improving these points, various proposals have been made to use inorganic fine powders which have been surface-treated. For example, JP-A-46-5782, JP-A-48-47345, and JP-A-48-47346 describe that the surface of silica fine powder is subjected to a hydrophobic treatment. However, a sufficient effect is not necessarily obtained only by using these inorganic fine powders.

【0005】また、特開昭49-42354号公報、特開昭55-2
6518号公報において、シリカ等の粉体にシリコーンオイ
ルを処理することが記載されている。しかしながら、こ
のような表面処理シリカを添加したトナーは、耐オフセ
ット性が低下しトナーが加熱ロールに付着して次の複写
物を汚すという問題が発生する。これは、トナーへ離型
性を付与するために添加されたワックスとシリコーンオ
イル処理シリカ微粉末が混合したときワックスが増粘し
離型効果を阻害するために生じる。
Also, Japanese Patent Application Laid-Open Nos. 49-42354 and 55-2
No. 6518 describes that a powder of silica or the like is treated with silicone oil. However, the toner to which such surface-treated silica is added has a problem in that the offset resistance is reduced and the toner adheres to the heating roll to stain the next copy. This occurs because when the wax added to impart releasability to the toner and the silica-treated silica fine powder are mixed, the wax thickens and inhibits the releasing effect.

【0006】また、シリカ微粉末の強い負帯電性を緩和
する方法としては、シリカ微粉末をアミノ変性シリコー
ンオイルで表面処理する方法(特開昭64-73354号公報)、
シリカ微粉末をアミノシラン及び/又はアミノ変性シリ
コーンオイルで表面処理する方法(特開平−237561号公
報)、シリカ微粉末を4級アンモニウム塩で表面処理する
方法(特開平5-100471号公報)、シリカ微粉末を両性界面
活性剤で表面処理する方法(特開平6-95426号公報)が知
られている。しかし、これらの化合物による処理では、
負帯電性トナーの過剰な帯電上昇は抑制できるものの、
シリカ微粉末自身の持つ環境依存性を充分に改善するこ
とはできない。すなわち、低温低湿下で長時間使用後の
シリカ微粉末の過剰な負帯電性を若干抑制することはで
きるが、高温高湿下での長時間使用においても同様な電
荷の中和が起こるため、相変わらず環境依存性は改善さ
れない。また、処理剤にシリコーンオイルを用いた場
合、その粘度が高いために処理時にシリカの凝集がおこ
り、粉体流動性が悪化するという欠点がある。
As a method for relaxing the strong negative charging property of the silica fine powder, a method of treating the surface of the silica fine powder with an amino-modified silicone oil (JP-A-64-73354),
A method of surface-treating silica fine powder with aminosilane and / or amino-modified silicone oil (JP-A-237561), a method of surface-treating silica fine powder with a quaternary ammonium salt (JP-A-5-004711), silica There is known a method of surface treating fine powder with an amphoteric surfactant (Japanese Patent Application Laid-Open No. 6-95426). However, treatment with these compounds
Although excessive charging rise of the negatively chargeable toner can be suppressed,
The environmental dependency of the silica fine powder itself cannot be sufficiently improved. In other words, although it is possible to slightly suppress the excessive negative chargeability of the silica fine powder after long-term use under low temperature and low humidity, similar charge neutralization occurs even during long-time use under high temperature and high humidity, As always, the environment dependency is not improved. In addition, when silicone oil is used as a treating agent, there is a disadvantage that silica is agglomerated during the treatment due to its high viscosity and powder fluidity is deteriorated.

【0007】さらに、より高画質化を図るために有機感
光体を使用したり、より小粒径のトナーを使用する場合
には、上記の無機微粉末では十分な性能が得られなくな
っている。有機感光体は無機感光体に比べその表面が柔
らかくかつ反応性が高いので寿命が短くなりやすい。し
たがって、このような有機感光体を用いた場合には、ト
ナーに添加された無機微粉末によって感光体の変質や削
れが生じ易い。また、トナーを小粒径にした場合には、
通常用いられている粒径のトナーと比較して粉体流動性
が悪いので無機微粉末を多量に添加使用しなければなら
なくなるが、その結果無機微粉末が感光体へのトナー付
着の原因となることがあった。
Further, when an organic photoreceptor is used or a toner having a smaller particle size is used to achieve higher image quality, sufficient performance cannot be obtained with the above-mentioned inorganic fine powder. The organic photoreceptor has a softer surface and higher reactivity than the inorganic photoreceptor, so that its life is likely to be shortened. Therefore, when such an organic photoreceptor is used, the photoreceptor is liable to be deteriorated or scraped by the inorganic fine powder added to the toner. When the toner has a small particle size,
Since the powder fluidity is poor compared to the toner of the commonly used particle size, a large amount of inorganic fine powder must be added and used, but as a result, the inorganic fine powder may cause toner adhesion to the photoconductor. There was something.

【0008】[0008]

【発明が解決しようとする課題】本発明の課題は、有機
感光体との反応や相互作用がないため感光体の変質や削
れの原因とならず、また、流動性が良好であるため感光
体へのトナー付着が生じない、環境状態に依存されない
帯電性を持つシリカ微粒子からなるトナー用外添剤を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to prevent the photoreceptor from being deteriorated or chipped because there is no reaction or interaction with the organic photoreceptor. It is an object of the present invention to provide an external additive for toner composed of silica fine particles having a chargeability that is not dependent on environmental conditions and does not cause toner adhesion to the toner.

【0009】[0009]

【課題を解決するための手段】本発明者らは、前記の課
題を解決するため鋭意検討の結果、下記の条件(i)およ
び(ii)を満たす、1次粒子の平均粒径が0.01〜5μmであ
る球状の疎水性シリカ微粒子を、4級アンモニウム塩化
合物、フロロアルキル基含有ベタイン化合物、及びシリ
コーンオイルからなる群から選ばれる化合物で処理して
なるシリカ微粒子からなることを特徴とする静電荷像現
像用トナー外添剤がこの課題を解決することを見いだし
た。 (i)室温で液体であり、誘電率が1〜40F/mである有機
化合物とシリカ微粒子とを5対1の重量比で混合し振とう
した際に、該シリカ微粒子が前記有機化合物中に均一に
分散する。 (ii)該シリカ微粒子をメタノールに分散した分散液から
メタノールをエバポレータで加熱下留去した後、100℃
の温度で2時間保持した際に、1次粒子として残存する1
次粒子量の当初存在した1次粒子量に対する比率が20%
以上である。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, the average particle size of the primary particles satisfying the following conditions (i) and (ii) is 0.01 to 0.01. An electrostatic charge comprising silica fine particles obtained by treating spherical hydrophobic silica fine particles of 5 μm with a compound selected from the group consisting of a quaternary ammonium salt compound, a fluoroalkyl group-containing betaine compound, and silicone oil. It has been found that a toner external additive for image development solves this problem. (i) When an organic compound which is liquid at room temperature and has a dielectric constant of 1 to 40 F / m and silica fine particles are mixed at a weight ratio of 5: 1 and shaken, the silica fine particles are contained in the organic compound. Disperse evenly. (ii) After the methanol was distilled off from the dispersion in which the silica fine particles were dispersed in methanol by heating with an evaporator, 100 ° C
At the same temperature for 2 hours, remain as primary particles 1
20% ratio of primary particles to primary particles
That is all.

【0010】また、本発明の表面処理シリカ系微粒子
は、表面が高度に疎水化され、シラノール基等の反応性
基が残存せず、また、高分散性、低凝集性で流動性が良
いため本発明の目的、効果に良好な結果を与えるもので
ある。
Further, the surface-treated silica-based fine particles of the present invention have a highly hydrophobic surface, do not have any reactive groups such as silanol groups, and have high dispersibility, low cohesion and good fluidity. An object of the present invention is to give good results to the effects.

【0011】[0011]

【発明の実施の形態】本発明で用いる疎水性シリカ微粒
子は、SiO2単位からなる親水性シリカ微粒子表面にR2Si
03/2単位(但し、R2は置換または非置換の炭素原子数1〜
20の1価炭化水素基)を導入する工程によって得られた
疎水性シリカ微粒子表面にR1 3SiO1/2単位(但し、R1は同
一または異種の置換または非置換の炭素原子数1〜6の1
価炭化水素基)を導入することによって得られた平均粒
径がO.01〜5μmである球状の疎水性シリカ微粒子であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The hydrophobic silica fine particles used in the present invention have R 2 Si on the surface of hydrophilic silica fine particles comprising SiO 2 units.
0 3/2 units (where R 2 is a substituted or unsubstituted carbon atom having 1 to
20 monovalent hydrocarbon group) introduced R 1 3 SiO 1/2 to the resulting hydrophobic silica fine particle surface by the steps of units (wherein, R 1 is a substituted or unsubstituted carbon atoms 1 to the same or different 6 in 1
(Hydrogenated hydrocarbon group) and spherical hydrophobic silica fine particles having an average particle size of 0.01 to 5 μm.

【0012】上記疎水性シリカ微粒子の製法の1例は以
下の通りである。 一般式(I) Si(OR3)4 (但し、R3は同一または異種の炭素原子数1〜6の1価炭化
水素基)で示されるシラン化合物またはその加水分解物
から選択される1種または2種以上の化合物をメタノール
やエタノールなどの親水性溶媒、水およびアンモニア或
いは有機アミンなどの塩基性化合物の混合溶液中で加水
分解、縮合することによって親水性シリカ微粒子分散液
を得る工程;得られた親水性シリカ微粒子分散液に水を
添加し親水性溶媒を留去し水性分散液に変換し微粒子表
面に残存するアルコキシ基を完全に加水分解する工程;
このようにして処理された親水性シリカ微粒子水性分散
液に 一般式(II) R2Si(OR4)3 (但し、R2は炭素原子数1〜20の1価炭化水素基、R4は同
一または異種の炭素原子数1〜6の1価炭化水素基)で示さ
れるシラン化合物またはその加水分解物から選択される
1種または2種以上の化合物を添加し親水性シリカ微粒子
表面をコーティングし、疎水性シリカ微粒子を得る工
程;該疎水性シリカ微粒子水性分散液にケトン系溶媒を
添加し水を留去し疎水性シリカ微粒子ケトン系溶媒分散
液に変換する工程;並びに、該疎水性シリカ微粒子ケト
ン系溶媒分散液に、 一般式(III): R1 3SiNHSiR1 3 (但し、R1は同一または異種の炭素原子数1〜6の1価炭化
水素基)で示されるシラザン化合物、および、 一般式(IV): R1 3SiX (但し、R1は一般式(III)に同じ。XはOH基または加水分
解性基)で示されるシラン化合物から選ばれる化合物を
添加し、反応させてシリカ微粒子表面に残存するシラノ
ール基をトリアルキルシリル化しさらに高度に疎水化す
る工程によって得られる。
One example of a method for producing the above-mentioned hydrophobic silica fine particles is as follows. One selected from silane compounds represented by the general formula (I) Si (OR 3 ) 4 (where R 3 is the same or different and is a monovalent hydrocarbon group having 1 to 6 carbon atoms) or a hydrolyzate thereof; Or a step of obtaining a dispersion of hydrophilic silica fine particles by hydrolyzing and condensing two or more compounds in a mixed solution of a hydrophilic solvent such as methanol or ethanol, water and a basic compound such as ammonia or an organic amine; Adding water to the resulting dispersion of hydrophilic silica fine particles, distilling off the hydrophilic solvent, converting the dispersion to an aqueous dispersion, and completely hydrolyzing the alkoxy groups remaining on the surface of the fine particles;
The aqueous dispersion of hydrophilic silica fine particles treated in this manner has the general formula (II) R 2 Si (OR 4 ) 3 (where R 2 is a monovalent hydrocarbon group having 1 to 20 carbon atoms, and R 4 is The same or different monovalent hydrocarbon groups having 1 to 6 carbon atoms) or a hydrolyzate thereof.
Adding one or more compounds to coat the surface of the hydrophilic silica fine particles to obtain hydrophobic silica fine particles; adding a ketone-based solvent to the hydrophobic silica fine particle aqueous dispersion and distilling water to obtain a hydrophobic silica fine particle; step into a silica fine particle ketone solvent dispersion; and a hydrophobic fine silica particles ketone solvent dispersion, the general formula (III): R 1 3 SiNHSiR 1 3 ( where the carbon atom of R 1 may be the same or different silazane compound represented by the number 1 to 6 monovalent hydrocarbon group), and the general formula (IV): R 1 3 SiX ( where, R 1 is the general formula (III) the same .X the OH group or a hydrolyzable The compound is selected from the group consisting of a silane compound represented by the formula (I) and a step of trialkylsilation of the silanol group remaining on the surface of the silica fine particles, followed by a highly hydrophobic treatment.

【0013】一般式(I)で示される4官能性シラン化合物
の具体例としては、テトラメトキシシラン、テトラエト
キシシラン、テトライソプロポキシシラン、テトラブト
キシシラン等のアルコキシシランが挙げられる。また、
一般式(I)で示される4官能性シラン化合物の部分加水分
解縮合物の具体例としては、メチルシリケート、エチル
シリケート等が挙げられる。
Specific examples of the tetrafunctional silane compound represented by the general formula (I) include alkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, and tetrabutoxysilane. Also,
Specific examples of the partially hydrolyzed condensate of the tetrafunctional silane compound represented by the general formula (I) include methyl silicate, ethyl silicate and the like.

【0014】親水性有機溶媒は一般式(I)の化合物また
はその部分加水分解縮合物および水を溶解するものであ
れば特に制限はなく、アルコール類、メチルセロソル
ブ、エチルセロソルブ、ブチルセロソルブ、酢酸セロソ
ルブ等のセロソルブ類、アセトン、メチルエチルケトン
等のケトン類、ジオキサン、テトラヒドロフラン等のエ
ーテル類等が挙げられ、好ましくはアルコール類が良
い。アルコール類としては、一般式(V): R60H (但し、R6は炭素原子数1〜6の1価炭化水素基)で示され
るアルコール溶媒が挙げられ、具体例としては、メタノ
ール、エタノール、イソプロパノール、ブタノール等が
挙げられる。アルコールの炭素原子数が増すと生成する
シリカ微粒子の粒径が大きくなるため目的とするシリカ
微粒子の粒径によりアルコールの種類を選択することが
望ましい。
The hydrophilic organic solvent is not particularly limited as long as it can dissolve the compound of the formula (I) or its partially hydrolyzed condensate and water. Examples thereof include alcohols, methyl cellosolve, ethyl cellosolve, butyl cellosolve and cellosolve acetate. And ketones such as acetone and methyl ethyl ketone, and ethers such as dioxane and tetrahydrofuran. Alcohols are preferable. The alcohols of the general formula (V): R 6 0H (where, R 6 is a monovalent hydrocarbon group having 1 to 6 carbon atoms) include an alcohol solvent represented by the specific examples include methanol, ethanol , Isopropanol, butanol and the like. When the number of carbon atoms in the alcohol increases, the particle size of the silica fine particles increases, so it is desirable to select the type of alcohol according to the target particle size of the silica fine particles.

【0015】また、上記の塩基性化合物としては、アン
モニア、ジメチルアミン、ジエチルアミン等が挙げら
れ、好ましくはアンモニアである。これら塩基性化合物
は水に所要量溶解したのち、得られた水溶液(塩基性の
水)を親水性有機溶媒と混合すればよい。
Examples of the basic compound include ammonia, dimethylamine, diethylamine and the like, with ammonia being preferred. After dissolving a required amount of these basic compounds in water, the resulting aqueous solution (basic water) may be mixed with a hydrophilic organic solvent.

【0016】このとき使用される水の量は一般式(I)の
シラン化合物またはその部分加水分解縮合物に含まれる
アルコキシ基1モル当り0.5〜5モル量であることが好ま
しく、水と親水性有機溶媒の比率は重量比で0.5〜10で
あることが好ましく、塩基性化合物の量は一般式(I)の
シラン化合物またはその部分加水分解縮合物に含まれる
アルコキシ基1モル当り0.O1〜1モルであることが好ま
しい。
The amount of water used at this time is preferably 0.5 to 5 mol per 1 mol of the alkoxy group contained in the silane compound of the general formula (I) or the partial hydrolysis condensate thereof. The ratio of the organic solvent is preferably 0.5 to 10 by weight, and the amount of the basic compound is 0.01 to 1 per mol of the alkoxy group contained in the silane compound of the general formula (I) or the partial hydrolysis condensate thereof. Preferably it is 1 mole.

【0017】一般式(I)の4官能性シラン化合物等の加水
分解、縮合は塩基性化合物を含む親水性有機溶媒と水の
混合物中へ一般式(I)の4官能性シラン化合物を滴下する
周知の方法よって行われる。
For hydrolysis and condensation of the tetrafunctional silane compound of the general formula (I), the tetrafunctional silane compound of the general formula (I) is dropped into a mixture of water and a hydrophilic organic solvent containing a basic compound. This is performed by a known method.

【0018】シリカ微粒子混合溶液分散液の分散媒を水
に変換するには、例えば、該分散液に水を添加し親水性
有機溶媒を留去する操作(必要に応じこの操作を繰り返
す)により行うことができる。このときに添加される水
量は、使用した親水性有機溶媒および生成したアルコー
ル量の合計に対して重量比でO.5〜2倍量、好ましくはほ
ぼ1倍量用いるのが良い。
In order to convert the dispersion medium of the silica fine particle mixed solution dispersion into water, for example, an operation of adding water to the dispersion and distilling off the hydrophilic organic solvent is performed (this operation is repeated as necessary). be able to. The amount of water added at this time is 0.5 to 2 times, preferably almost 1 time, in terms of the weight ratio of the total amount of the used hydrophilic organic solvent and the generated alcohol.

【0019】一般式(II)で示される3官能性シラン化合
物の具体例としては、メチルトリメトキシシラン、メチ
ルトリエトキシシラン、エチルトリメトキシシラン、エ
チルトリエトキシシラン、n−プロピルトリメトキシシ
ラン、n−プロピルトリエトキシシラン、i−プロピル
トリメトキシシラン、i−プロピルトリエトキシシラ
ン、ブチルトリメトキシシラン、ブチルトリエトキシシ
ラン、ヘキシルトリメトキシシラン等のトリアルコキシ
シランが挙げられ、また、これらの部分加水分解縮合物
を用いてもよい。
Specific examples of the trifunctional silane compound represented by the general formula (II) include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, and n-propyltrimethoxysilane. Trialkoxysilanes such as -propyltriethoxysilane, i-propyltrimethoxysilane, i-propyltriethoxysilane, butyltrimethoxysilane, butyltriethoxysilane, hexyltrimethoxysilane, and partial hydrolysis thereof. Condensates may be used.

【0020】一般式(II)で示される3官能性シラン化合
物の添加量は、使用された親水性シリカ微粒子が含有す
るSi02単位1モル当たり1〜O.001モル、好ましくは0.1〜
O.01モル用いるのが良い。
The amount of trifunctional silane compound represented by the general formula (II), Si0 2 units per mole 1~O.001 mole of hydrophilic silica fine particles used contains, preferably 0.1
It is better to use O.01 mol.

【0021】疎水性シリカ微粒子水性分散液の分散媒を
ケトン系溶媒に変換する工程では、該分散液にケトン系
溶媒を添加し水を留去する操作(必要に応じこの操作を
繰り返す)が行われる。このとき添加されるケトン系溶
媒量は、使用した親水性シリカ微粒子に対して重量比で
0.5〜5倍量、好ましくは1〜2倍量用いるのが良い。ここ
で用いられるケトン系溶媒の具体例としては、メチルエ
チルケトン、メチルイソブチルケトン、アセチルアセト
ン等が挙げられ、好ましくはメチルイソブチルケトンが
良い。
In the step of converting the dispersion medium of the aqueous dispersion of hydrophobic silica fine particles into a ketone-based solvent, an operation of adding a ketone-based solvent to the dispersion and distilling off water (repeatedly, if necessary) is performed. Will be The amount of the ketone solvent added at this time is a weight ratio with respect to the hydrophilic silica fine particles used.
It is preferable to use 0.5 to 5 times, preferably 1 to 2 times. Specific examples of the ketone solvent used here include methyl ethyl ketone, methyl isobutyl ketone, acetylacetone and the like, and preferably methyl isobutyl ketone.

【0022】一般式(III)で示されるシラザン化合物の
具体例としては、ヘキサメチルジシラザンが挙げられ、
一般式(IV)で示される1官能性シラン化合物の具体例と
しては、トリメチルシラノール、トリエチルシラノール
等のモノシラノール化合物、トリメチルクロロシラン、
トリエチルクロロシラン等のモノクロロシラン、トリメ
チルメトキシシラン、トリメチルエトキシシラン等のモ
ノアルコキシシラン、トリメチルシリルジメチルアミ
ン、トリメチルシリルジエチルアミン等のモノアミノシ
ラン、トリメチルアセトキシシラン等のモノアシロキシ
シランが挙げられる。
Specific examples of the silazane compound represented by the general formula (III) include hexamethyldisilazane,
Specific examples of the monofunctional silane compound represented by the general formula (IV) include trimethylsilanol, monosilanol compounds such as triethylsilanol, trimethylchlorosilane,
Examples include monochlorosilane such as triethylchlorosilane, monoalkoxysilane such as trimethylmethoxysilane and trimethylethoxysilane, monoaminosilane such as trimethylsilyldimethylamine and trimethylsilyldiethylamine, and monoacyloxysilane such as trimethylacetoxysilane.

【0023】これらの使用量は、使用した親水性シリカ
微粒子が含有するSi02単位1モル当り0.1〜O.5モル、好
ましくは0.2〜0.3モル用いるのがよい。
[0023] These usage, Si0 2 units per mole 0.1~O.5 mol hydrophilic fine silica particles used contains, and it is preferably used 0.2 to 0.3 moles.

【0024】このようにして製造された疎水性シリカ微
粒子は、常法によって粉体として得ることができる。
The hydrophobic silica fine particles thus produced can be obtained as a powder by a conventional method.

【0025】この微粒子の粒径は、現像剤の流動性、耐
ケーキング性および定着性を良好にし、感光体への悪影
響を低減する観点から、0.01〜5μmであり、好ましく
は、0.05〜0.5μmである。粒径が0.01μmより小さい
と凝集により現像剤の流動性、耐ケーキング性、定着性
が得られず、5μmを越えると感光体の変性、削れ、ト
ナーへの付着性の低下といった不利を生ずる。
The particle size of the fine particles is from 0.01 to 5 μm, preferably from 0.05 to 0.5 μm, from the viewpoint of improving the fluidity, anti-caking property and fixing property of the developer and reducing the adverse effect on the photoreceptor. It is. If the particle size is less than 0.01 μm, the fluidity, caking resistance and fixability of the developer cannot be obtained due to agglomeration, and if it exceeds 5 μm, disadvantages such as denaturation of the photoreceptor, shaving, and reduced adhesion to the toner will occur.

【0026】上記疎水性シリカ微粒子は、4級アンモニ
ウム塩化合物、フロロアルキル基含有ベタイン化合物及
びシリコーンオイルから選ばれる処理剤で表面処理され
る。
The hydrophobic silica fine particles are surface-treated with a treating agent selected from a quaternary ammonium salt compound, a fluoroalkyl group-containing betaine compound and silicone oil.

【0027】本発明に使用する4級アンモニウム塩化合
物としては、例えば下記一般式(VI)、一般式(VII)で表
される化合物および一般式(VII)の化合物が2量体化した
ビピリジル化合物を例示することができる。
The quaternary ammonium salt compounds used in the present invention include, for example, compounds represented by the following general formulas (VI) and (VII) and bipyridyl compounds obtained by dimerizing the compound of the general formula (VII) Can be exemplified.

【0028】一般式(VI): R7R8R9R10N+X (但し、R7,R8,R9,R10は同一または異種の置換されて
もよい炭素原子数1〜20の1価炭化水素基、Xは1価のアニ
オンである。)一般式(VII):
General formula (VI): R 7 R 8 R 9 R 10 N + X (where R 7 , R 8 , R 9 and R 10 are the same or different and may have 1 to 20 carbon atoms which may be substituted) X is a monovalent anion.) General formula (VII):

【0029】[0029]

【化1】 Embedded image

【0030】(但し、R11は同一または異種の置換されて
もよい炭素原子数1〜20の1価炭化水素基、Xは1価のアニ
オンである。)さらに具体的には、ベンジルトリエチル
アンモニウムクロライド、テトラメチルアンモニウムク
ロライド、ベンジルトリメチルアンモニウムクロライ
ド、ベンジルジメチルフェニルアンモニウムクロライ
ド、ベンジルジメチルテトラデシルアンモニウムクロラ
イド、フェニルトリメチルアンモニウムクロライド、ベ
ンジルトリエチルアンモニウム 4−ヒドロキシ−1−ナ
フタリンスルフォニド、1,1'−ジオクタデシル−4,4'−
ビピリジウムジブロマイド等の化合物が例示される。こ
れらの中でも好ましい化合物は、ベンジルトリエチルア
ンモニウムクロライド、ベンジルトリエチルアンモニウ
ム4−ヒドロキシ−1−ナフタリンスルフォニドであ
る。
(Provided that R 11 is the same or different and may be substituted monovalent hydrocarbon group having 1 to 20 carbon atoms and X is a monovalent anion.) More specifically, benzyltriethylammonium Chloride, tetramethylammonium chloride, benzyltrimethylammonium chloride, benzyldimethylphenylammonium chloride, benzyldimethyltetradecylammonium chloride, phenyltrimethylammonium chloride, benzyltriethylammonium 4-hydroxy-1-naphthalenesulfonide, 1,1′-di Octadecyl-4,4'-
Compounds such as bipyridium dibromide are exemplified. Among these, preferred compounds are benzyltriethylammonium chloride and benzyltriethylammonium 4-hydroxy-1-naphthalene sulfonide.

【0031】本発明に使用するフロロアルキル基含有ベ
タイン化合物としては、例えば下記一般式(VIII)で表さ
れる化合物を例示することができる。一般式(VIII):
As the betaine compound having a fluoroalkyl group used in the present invention, for example, a compound represented by the following general formula (VIII) can be exemplified. General formula (VIII):

【0032】[0032]

【化2】 Embedded image

【0033】(但し、CnFm-はアルキル基またはアルケニ
ル基を示し、nは1〜20の整数、mは2n+1または2
n−1であり、lは1〜10の整数であり、R12およびR13
は同一または異種の置換されてもよい炭素原子数1〜20
の1価炭化水素基であり、R14は同一または異種の置換さ
れてもよい炭素原子数1〜10の1価炭化水素基であり、Y
は単結合を示すかまたは−O−、フェニレン基、−S0
2−、−CO−、−NR15−(ここで、R15はR14と同一の意
味を有する。)から選ばれる基またはこれらから選ばれ
る2種以上の基が組み合わさって形成される2価の基で
ある。
(Where CnFm- represents an alkyl group or an alkenyl group, n is an integer of 1 to 20, and m is 2n + 1 or 2
a n-1, l is an integer of 1 to 10, R 12 and R 13
Are the same or different and may be substituted with 1 to 20 carbon atoms.
R 14 is the same or different monovalent hydrocarbon group having 1 to 10 carbon atoms which may be substituted, and Y 14
Represents a single bond or -O-, a phenylene group, -S0
2 -, - CO -, - NR 15 - 2 ( wherein, R 15 is having the same meaning as R 14.) Are formed in combination of 2 or more groups selected group or from those selected from Is a valence group.

【0034】さらに具体的には、C8F17N+(CH3)2CH2CO
O-、C10F21N+(CH3)2CH2COO-、C12F25N+(CH3)2CH2COO-
の化合物が例示される。好ましくは、C8F17N+(CH3)2CH2
COO-である。
More specifically, C 8 F 17 N + (CH 3 ) 2 CH 2 CO
Compounds such as O , C 10 F 21 N + (CH 3 ) 2 CH 2 COO , and C 12 F 25 N + (CH 3 ) 2 CH 2 COO are exemplified. Preferably, C 8 F 17 N + (CH 3 ) 2 CH 2
COO - it is.

【0035】本発明で用いられるシリコーンオイルとし
ては、下記一般式(IX)で表わされるジメチルシリコーン
オイル及び変性シリコーンオイルが挙げられる。
The silicone oil used in the present invention includes dimethyl silicone oil and modified silicone oil represented by the following general formula (IX).

【0036】一般式(IX):General formula (IX):

【0037】[0037]

【化3】 Embedded image

【0038】(但し、Rは炭素原子数1〜3のアルキル基、
R'は同一又は異なり、アルキル、ハロゲン化アルキル、
フェニルまたは置換フェニル基を示し、R"は炭素数1〜
3のアルキル基またはアルコキシ基を示し、nおよびm
はそれぞれ0〜10000の整数を示すが同時に0ではない。)
(Where R is an alkyl group having 1 to 3 carbon atoms,
R ′ are the same or different, and are alkyl, alkyl halide,
A phenyl or substituted phenyl group;
3 represents an alkyl group or an alkoxy group, and n and m
Represents an integer of 0 to 10000, but not simultaneously 0. )

【0039】一般式(IX)において、Rで示されるアル
キル基としては、メチル基、エチル基、n−プロピル
基、イソプロピル基が挙げられ、ハロゲン化アルキル基
としては例えば3,3,3−トリフロロプロピル基が挙げら
れ、置換フェニル基としては例えばクロロフェニル基等
が挙げられる。R"で示されるアルキル基としてはRにつ
いて例示したものが挙げられ、アルコキシ基としてはメ
トキシ基、エトキシ基、n−プロポキシ基、イソプロポ
キシ基が挙げられる。
In the general formula (IX), examples of the alkyl group represented by R include a methyl group, an ethyl group, an n-propyl group and an isopropyl group, and examples of the halogenated alkyl group include 3,3,3-trialkyl. A fluoropropyl group may be mentioned, and a substituted phenyl group may be, for example, a chlorophenyl group. Examples of the alkyl group represented by R "include those exemplified for R, and examples of the alkoxy group include a methoxy group, an ethoxy group, an n-propoxy group, and an isopropoxy group.

【0040】一般式(IX)で示されるシリコーンオイルの
具体的例としては、ジメチルシリコーンオイル、メチル
フェニルシリコーンオイル、エチル基、プロピル基等で
置換されたアルキル変性シリコーンオイル等が挙げら
れ、中でもジメチルシリコーンオイルが好ましい。
Specific examples of the silicone oil represented by the general formula (IX) include dimethyl silicone oil, methylphenyl silicone oil, alkyl-modified silicone oil substituted with an ethyl group, propyl group and the like. Silicone oil is preferred.

【0041】変性シリコーンオイルとしては、アミノシ
リコーンオイルが好ましい。アミノシリコーンオイルは
シリコーンオイルにアミノ基を導入したものである。ア
ミノシリコーンオイルとしては、一般式(X):
As the modified silicone oil, an amino silicone oil is preferable. Amino silicone oil is obtained by introducing an amino group into silicone oil. The aminosilicone oil has the general formula (X):

【0042】[0042]

【化4】 Embedded image

【0043】(但し、Rは炭素数1〜3のアルキル基であ
り、R7はアルキレン基またはフェニレン基であり、R8
R9は同一または異なり、水素、アルキル基、アリール基
またはアミノアルキル基を示し、R"は同一または異な
り、炭素原子数1〜3のアルキル基、アルコキシ基、ま
たは式(XI): −R7−N(R8)(R9) (XI) (ここで、R7、R8およびR9は前記のとおりである。)で
表わされる基であり、lおよびpはそれぞれ0〜10000の整
数を示すが、同時に0とはならず、またlが0である場合
はR"の少なくとも1つは前記式(XI)で表わされる基で
ある。)で示されるものがあげられる。
[0043] (wherein, R is an alkyl group having 1 to 3 carbon atoms, R 7 is an alkylene group or a phenylene group, R 8,
R 9 is the same or different and represents hydrogen, an alkyl group, an aryl group or an aminoalkyl group, and R ″ is the same or different and is an alkyl group having 1 to 3 carbon atoms, an alkoxy group, or a compound represented by the formula (XI): —R 7 —N (R 8 ) (R 9 ) (XI) (where R 7 , R 8 and R 9 are as defined above), and 1 and p are each an integer of 0 to 10000 However, when l is 0, at least one of R "is a group represented by the formula (XI). ).

【0044】一般式(X)において、Rは一般式(IX)にお
けるRと同様のものが例示され、R7で示されるアルキレ
ン基としては、メチレン基、エチレン基、トリメチレン
基等が挙げられる。R8およびR9で示されるアルキル基と
しては、メチル、エチル、プロピル等が挙げられ、アリ
ール基としては例えばフェニル基等が挙げられ、アルキ
ルアミノ基としてはアミノエチル、アミノプロピル等が
挙げられる。R"で示される炭素数1〜3のアルキル基ま
たはアルコキシ基としては、一般式(IX)におけるR"と
同様のものが例示される。アミノシリコーンの代表的な
具体例としては、KF-393、KF-859、KF-860、KF861、KF8
64およびKF865の商品名(信越化学工業(株)製)で市販
の製品などが挙げられる。
In the general formula (X), R is the same as R in the general formula (IX), and examples of the alkylene group represented by R 7 include a methylene group, an ethylene group and a trimethylene group. Examples of the alkyl group represented by R 8 and R 9 include methyl, ethyl, propyl and the like, examples of the aryl group include a phenyl group and the like, and examples of the alkylamino group include aminoethyl and aminopropyl. As the alkyl group or alkoxy group having 1 to 3 carbon atoms represented by R ", those similar to R" in the general formula (IX) are exemplified. Representative examples of aminosilicones include KF-393, KF-859, KF-860, KF861, KF8
64 and KF865 (trade names, manufactured by Shin-Etsu Chemical Co., Ltd.).

【0045】4級アンモニウム塩化合物またはフロロア
ルキル基含有ベタイン化合物による疎水性シリカ微粒子
の表面処理方法としては、4級アンモニウム塩化合物ま
たはフロロアルキル基含有ベタイン化合物をアルコール
等の適当な溶剤に溶解もしくは分散し、疎水性シリカ微
粒子に添加して、表面被覆した後、溶剤を留去乾燥すれ
ばよい。この際、各成分の添加順序は特に限定されな
い。また、疎水性シリカ微粒子製造時の疎水性シリカ微
粒子ケトン系溶媒分散液に4級アンモニウム塩化合物ま
たはフロロアルキル基含有ベタイン化合物を添加して、
表面被覆した後、溶剤を留去乾燥してもよい。さらに、
必要に応じて、乾燥後に粉砕・分級を行なってもよい。
As a surface treatment method for hydrophobic silica fine particles with a quaternary ammonium salt compound or a fluoroalkyl group-containing betaine compound, a quaternary ammonium salt compound or a fluoroalkyl group-containing betaine compound is dissolved or dispersed in an appropriate solvent such as alcohol. Then, after adding to the hydrophobic silica fine particles and coating the surface, the solvent may be distilled off and dried. At this time, the order of adding each component is not particularly limited. Further, a quaternary ammonium salt compound or a fluoroalkyl group-containing betaine compound is added to the hydrophobic silica fine particle ketone-based solvent dispersion during the production of the hydrophobic silica fine particles,
After coating the surface, the solvent may be distilled off and dried. further,
If necessary, grinding and classification may be performed after drying.

【0046】上記シリコーンオイルによる処理の方法は
公知の技術が用いられ、例えばシリカ微粉体とシリコー
ンオイルとをヘンシェルミキサー等の混合機を用いて直
接混合してもよいし、べースシリカヘシリコーンオイル
を噴霧する方法によってもよい。あるいは適当な溶剤に
シリコーンオイルを溶解あるいは分散せしめた後、べー
スのシリカ微粒子とを混合した後、溶剤を除去して作製
してもよい。
A known method is used for the above-described treatment with silicone oil. For example, fine silica powder and silicone oil may be directly mixed using a mixer such as a Henschel mixer, or silicone-based silica may be used. A method of spraying oil may be used. Alternatively, it may be prepared by dissolving or dispersing a silicone oil in a suitable solvent, mixing with a base silica fine particle, and removing the solvent.

【0047】上記4級アンモニウム塩化合物、フロロア
ルキル基含有ベタイン化合物又はシリコーンオイルの処
理量は、疎水性シリカ微粒子に対して0.1〜10重量%が
好ましく、さらに好ましくはO.5〜3重量%である。処理
量が多すぎるとシリカ微粒子の凝集が生じ十分な流動性
が得られないばかりでなく経済的にも不利であり、少な
すぎると十分な帯電量が得られない。
The treatment amount of the above quaternary ammonium salt compound, fluoroalkyl group-containing betaine compound or silicone oil is preferably 0.1 to 10% by weight, more preferably 0.5 to 3% by weight, based on the hydrophobic silica fine particles. is there. If the treatment amount is too large, the silica fine particles are aggregated, so that sufficient fluidity cannot be obtained, and it is economically disadvantageous. If the treatment amount is too small, a sufficient charge amount cannot be obtained.

【0048】該トナー外添剤のトナーへの配合量は、通
常、トナー100重量部に対して、0.01〜20重量部が好ま
しく、さらに好ましくは0.1〜5重量部である。配合量が
少なすぎると、トナーへの付着量が少なく十分な流動性
が得られず、多すぎるとトナーの帯電性に悪影響を及ぼ
すばかりでなく経済的にも不利である。
The amount of the toner external additive to be added to the toner is usually preferably 0.01 to 20 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the toner. If the compounding amount is too small, the amount of toner adhering to the toner is small and sufficient fluidity cannot be obtained. If the compounding amount is too large, not only adversely affects the chargeability of the toner but also is economically disadvantageous.

【0049】トナー外添剤トナー粒子表面への付着状態
は、単に機械的な付着であってもよいし、表面にゆるく
固着されていてもよい。また、トナー粒子の全表面を覆
していても、一部を被覆していてもよい。また、表面処
理無機化合物微粒子は、一部凝集体となって被覆されて
いてもよいが、単層粒子状態で被覆されているのが好ま
しい。
The state of attachment to the toner external additive toner particle surface may be simply mechanical attachment or may be loosely fixed to the surface. Further, the toner particles may cover the entire surface or a part of the toner particles. The surface-treated inorganic compound fine particles may be partially coated as an aggregate, but are preferably coated in a single-layer particle state.

【0050】上記のトナー外添剤が添加されるトナー粒
子としては、結着樹脂と着色剤を主成分として構成され
る公知のものが使用できる。また、必要に応じて帯電制
御剤が添加されていてもよい。
As the toner particles to which the above-mentioned toner external additives are added, known toner particles mainly composed of a binder resin and a colorant can be used. Further, a charge control agent may be added as needed.

【0051】本発明のトナー外添剤が添加された正電荷
像現像用トナーは、一成分現像剤として使用できるが、
また、それをキャリアと混合して二成分現像剤として使
用することもできる。二成分現像剤として使用する場合
においては、上記トナー外添剤は予めトナー粒子に添加
せず、トナーとキャリアの混合時に添加してトナーの表
面被覆を行ってもよい。キャリアとしては、鉄粉等、あ
るいはそれらの表面に樹脂コーティングされた公知のも
のが使用される。
The positive charge image developing toner to which the toner external additive of the present invention is added can be used as a one-component developer.
It can also be mixed with a carrier and used as a two-component developer. When used as a two-component developer, the toner external additive may not be added to the toner particles in advance, but may be added at the time of mixing the toner and the carrier to coat the toner surface. As the carrier, iron powder or the like, or a known material having a surface coated with a resin is used.

【0052】[0052]

【実施例】以下に実施例および比較例を示して本発明を
具体的に説明するが、本発明は下記の実施例に制限され
るものではない。
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to the following examples.

【0053】実施例1 [球状疎水性シリカ微粒子の合成] (工程1)攪拌機、滴下ロート、温度計を備えた3リット
ルのガラス製反応器にメタノール623.7g、水41.4g、28
%アンモニア水49.8gを添加して混合した。この溶液を3
5℃に調整し攪拌しながらテトラメトキシシラン1163.7g
および5.4%アンモニア水418.1gを同時に添加開始し、
前者は6時間、そして後者は4時間かけて滴下した。テト
ラメトキシシラン滴下後もO.5時間攪拌を続け加水分解
を行いシリカ微粒子の懸濁液を得た。ガラス製反応器に
エステルアダプターと冷却管を取り付け、60〜70℃に加
熱しメタノール1132gを留去したところで、水1200gを添
加し、次いでさらに70〜90℃に加熱しメタノール273gを
留去し、シリカ微粒子の水性懸濁液を得た。
Example 1 Synthesis of Spherical Hydrophobic Silica Fine Particles (Step 1) 623.7 g of methanol, 41.4 g of water, 283.7 g of water were placed in a 3-liter glass reactor equipped with a stirrer, a dropping funnel and a thermometer.
49.8 g of aqueous ammonia was added and mixed. Add this solution to 3
1163.7g of tetramethoxysilane while adjusting to 5 ° C and stirring
And 5.4% ammonia water 418.1 g were added at the same time,
The former drip over 6 hours and the latter over 4 hours. After the dropwise addition of tetramethoxysilane, stirring was continued for 0.5 hours to carry out hydrolysis to obtain a suspension of silica fine particles. Attach an ester adapter and a cooling tube to the glass reactor, heat to 60 to 70 ° C and distill off 1132 g of methanol.Add 1200 g of water, and then further heat to 70 to 90 ° C to distill off 273 g of methanol. An aqueous suspension of fine silica particles was obtained.

【0054】(工程2)この水性懸濁液に室温でメチルト
リメトキシシラン11.6g(テトラメトキシシラン1モル当
りO.01モル量)をO.5時間かけて滴下し、滴下後も12時間
攪拌しシリカ微粒子表面の処理を行った。
(Step 2) At room temperature, 11.6 g of methyltrimethoxysilane (0.01 mol per mol of tetramethoxysilane) was added dropwise to the aqueous suspension over 0.5 hour, and the mixture was stirred for 12 hours after the addition. Then, the surface of the silica fine particles was treated.

【0055】(工程3)こうして得られた分散液にメチル
イソブチルケトン1440gを添加した後、80〜110℃に加熱
しメタノール水1163gを7時間かけて留去した。得られた
分散液に室温でヘキサメチルジシラザン357.6gを添加し
120℃に加熱し3時間反応させシリカ微粒子をトリメチル
シリル化した。その後溶媒を減圧下で留去して平均粒径
0.12μmの球状疎水性シリカ微粒子477gを得た。得られ
た疎水性シリカ微粒子について以下の試験を行った。
(Step 3) After adding 1440 g of methyl isobutyl ketone to the dispersion thus obtained, the mixture was heated to 80 to 110 ° C., and 1163 g of methanol water was distilled off over 7 hours. 357.6 g of hexamethyldisilazane was added to the obtained dispersion at room temperature.
The mixture was heated to 120 ° C. and reacted for 3 hours to trimethylsilyl fine silica particles. Then the solvent is distilled off under reduced pressure
477 g of 0.12 μm spherical hydrophobic silica fine particles were obtained. The following tests were performed on the obtained hydrophobic silica fine particles.

【0056】〈分散性試験〉室温で液体の有機化合物に
微粒子を重量比で5対1となるよう添加し、振とう機を用
いて30分振とうした後、微粒子の分散状態を目視で観察
する。微粒子の全量が分散し均一なスラリー状になるも
のを○;微粒子の全量が有機化合物で湿潤するが一部有
機化合物中に分散せず不均一なものを△;微粒子が有機
化合物で湿潤せず、両者が混合しないものを×として結
果を表1に示した。
<Dispersibility test> Fine particles were added to a liquid organic compound at room temperature in a weight ratio of 5: 1, and the mixture was shaken with a shaker for 30 minutes, and the dispersion state of the fine particles was visually observed. I do. ○: the fine particles are wet with the organic compound, but not partially dispersed in the organic compound, and Δ: the fine particles are not wetted by the organic compound. The results are shown in Table 1 as x when the two do not mix.

【0057】〈凝集促進試験〉 (1)メタノールに微粒子を重量比で5対1となるよう添加
し、振とう機を用いて30分振とうする。このように処理
した微粒子の粒度分布をレーザー回折散乱式粒度分布測
定装置(堀場製作所LA910)で粒度分布を測定する。 (2)次に(1)で得られた微粒子分散液からメタノールをエ
バポレータで加熱下留去した後、100℃で2時間保持す
る。
<Aggregation Acceleration Test> (1) Fine particles are added to methanol in a weight ratio of 5: 1, and shaken for 30 minutes using a shaker. The particle size distribution of the fine particles treated as described above is measured by a laser diffraction scattering type particle size distribution analyzer (LA910, Horiba, Ltd.). (2) Next, methanol is distilled off from the fine particle dispersion obtained in (1) by heating using an evaporator, and the mixture is kept at 100 ° C. for 2 hours.

【0058】メタノールにこのように処理した微粒子を
添加し振とう機を用いて30分振とうした後、粒度分布を
上記と同様にして測定する。(1)で得られた粒径分布を
基準として1次粒子の残存量の比率を求める。なお、一
次粒径はあらかじめ電子顕微鏡観察によって確認してお
く。結果を表1に示した。
After the fine particles treated in this manner are added to methanol and shaken for 30 minutes using a shaker, the particle size distribution is measured in the same manner as described above. The ratio of the remaining amount of the primary particles is determined based on the particle size distribution obtained in (1). The primary particle size is confirmed in advance by observation with an electron microscope. The results are shown in Table 1.

【0059】[外添剤(表面処理シリカ微粒子)の調製]
得られた疎水性シリカ微粒子40gをメタノール160gに添
加し振とうして分散させる。この分散液にベンジルトリ
エチルアンモニウムクロライド(処理剤A)O.4gを添加し
溶解させる。エバポレーターを用いて、溶剤のメタノー
ルを除き、乾燥して4級アンモニウム塩処理シリカ微粒
子を得た。
[Preparation of external additive (surface-treated silica fine particles)]
40 g of the obtained hydrophobic silica fine particles are added to 160 g of methanol and dispersed by shaking. 0.4 g of benzyltriethylammonium chloride (treatment agent A) is added to and dissolved in this dispersion. Using an evaporator, methanol as a solvent was removed and dried to obtain quaternary ammonium salt-treated silica fine particles.

【0060】〈表面処理シリカ微粒子の帯電量測定〉上
記の合成で得られた表面処理シリカ微粒子をこの濃度が
O.5重量%になるようにキャリアであるフェライトに添
加し十分混合し摩擦帯電を行った。この試料の帯電量を
ブローオフ粉体帯電量測定装置(東芝ケミカル(株)製TB-
200型)で測定した。結果を表1に示した。
<Measurement of Charge Amount of Surface-treated Silica Fine Particles>
O.5% by weight was added to ferrite as a carrier, mixed well, and triboelectrically charged. The charge amount of this sample was measured using a blow-off powder charge amount measurement device (TB-Toshiba Chemical Co., Ltd.).
200 type). The results are shown in Table 1.

【0061】[外添剤混合トナーの作製]Tg60℃、軟化点
110℃のポリエステル樹脂96重量部と色剤としてカーミ
ン6BC(住友カラー(株)製)4重量部を溶融混練、粉砕、分
級後、平均粒径7μmのトナーを得た。このトナー40gに
上記表面処理球状疎水性シリカ微粒子1gをサンプルミル
にて混合し外添剤混合トナーとした。これを用いて以下
の方法で凝集度を評価した。
[Preparation of external additive-mixed toner] Tg 60 ° C., softening point
96 parts by weight of a polyester resin at 110 ° C. and 4 parts by weight of Carmine 6BC (manufactured by Sumitomo Color Co., Ltd.) as a colorant were melt-kneaded, pulverized and classified to obtain a toner having an average particle diameter of 7 μm. To 40 g of this toner, 1 g of the above-mentioned surface-treated spherical hydrophobic silica fine particles were mixed by a sample mill to obtain an external additive-mixed toner. Using this, the degree of aggregation was evaluated by the following method.

【0062】〈凝集度の測定〉凝集度は粉体の流動性を
現す値で、ホソカワミクロン株式会社製のパウダーテス
タと200、100、60メッシュのふるいを順次重ねた三段の
ふるいとを用いて測定した。測定手段としては、5gのト
ナーからなる粉体を三段ふるいの上段の60メッシュのふ
るいの上にのせ、パウダーテスタに2.5Vの電圧を印加し
て15秒間三段ふるいを振動させ、60メッシュのふるいに
残留した粉体重量a(g)と、100メッシュのふるいに残留
した粉体重量b(g)と、200メッシュのふるいに残留した
粉体重量c(g)とから下式によって凝集度を算出する。 凝集度(%)=(a+b×0.6+c×O.2)×100/5 凝集度が小さいほど流動性が良好で、凝集度が大きいほ
ど流動性が不良となる。結果を表1に示した。
<Measurement of agglomeration degree> The agglomeration degree is a value representing the fluidity of a powder, and is measured using a three-stage sieve in which a powder tester manufactured by Hosokawa Micron Co., Ltd. and a 200, 100, and 60 mesh sieve are sequentially stacked. It was measured. As a measuring means, a powder consisting of 5 g of toner is placed on the upper 60-mesh sieve of the three-stage sieve, and a voltage of 2.5 V is applied to the powder tester, and the three-stage sieve is vibrated for 15 seconds. From the powder weight a (g) remaining on the sieve, the powder weight b (g) remaining on the 100-mesh sieve, and the powder weight c (g) remaining on the 200-mesh sieve according to the following formula. Calculate the degree. Cohesion (%) = (a + b × 0.6 + c × 0.2) × 100/5 The smaller the cohesion, the better the fluidity, and the higher the cohesion, the poorer the fluidity. The results are shown in Table 1.

【0063】[現像剤の調製]外添剤混合トナー5部と平
均粒径85μmのフェライトコアにパーフロロアルキルア
クリレート樹脂とアクリル樹脂をポリブレンドしたポリ
マーでコートしたキャリア95部とを混合して現像剤を調
製した。これを用いて以下の方法でトナー帯電量および
感光体へのトナー付着を評価した。
[Preparation of Developer] Developed by mixing 5 parts of an external additive-mixed toner and 95 parts of a carrier obtained by coating a ferrite core having an average particle diameter of 85 μm with a polymer obtained by polyblending a perfluoroalkyl acrylate resin and an acrylic resin. An agent was prepared. Using this, the toner charge amount and toner adhesion to the photoreceptor were evaluated by the following methods.

【0064】〈トナー帯電量〉上記現像剤を高温高湿(3
0℃、90%RH)または低温低湿(10℃、15%RH)条件下に1
日放置した後、同一条件下で十分混合し摩擦帯電を行っ
た。それぞれの試料の帯電量を同一条件下でブローオフ
粉体帯電量測定装置(東芝ケミカル(株)製TB-200型)を用
いて測定した。結果を表1に示した。
<Toner charge amount>
0 ° C, 90% RH) or low temperature and low humidity (10 ° C, 15% RH)
After standing for a day, they were mixed well under the same conditions and triboelectrically charged. The charge amount of each sample was measured under the same conditions using a blow-off powder charge amount measuring device (TB-200, manufactured by Toshiba Chemical Corporation). The results are shown in Table 1.

【0065】〈感光体へのトナー付着評価〉上記現像剤
を有機感光体が備えられた二成分改造現像機に入れ、30
000枚のプリントテストを実施した。このとき、感光体
へのトナーの付着は、全ベタ画像での白抜けとして感知
できる。なお、白抜けの程度は、「多い」10個以上/cm
2、「少ない」1〜9個/cm2、「なし」0個/cm2と評価し
た。結果を表1に示した。
<Evaluation of Adhesion of Toner to Photoconductor> The above developer was put into a two-component remodeled developing machine equipped with an organic photoconductor, and
A 000 print test was performed. At this time, the adhesion of the toner to the photoreceptor can be sensed as white spots in all solid images. The degree of white spots is "many" 10 or more / cm
2, "little" one to nine / cm 2, was evaluated as 0 / cm 2 or "none". The results are shown in Table 1.

【0066】実施例2 球状疎水性シリカ微粒子の合成の際にテトラメトキシシ
ランの加水分解温度を35℃の代わりに20℃とした以外は
実施例1と同様にして平均粒径0.30μmの球状疎水性シ
リカ微粒子467gを得た。これを用いて実施例1と同様に
評価した。結果を表1に示した。
Example 2 Spherical hydrophobic particles having an average particle size of 0.30 μm were prepared in the same manner as in Example 1 except that the hydrolysis temperature of tetramethoxysilane was changed to 20 ° C. instead of 35 ° C. in the synthesis of the spherical hydrophobic silica fine particles. 467 g of functional silica fine particles were obtained. Using this, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

【0067】実施例3 球状疎水性シリカ微粒子の合成の際にテトラメトキシシ
ランの加水分解温度を35℃の代わりに40℃とした以外は
実施例1と同様にして平均粒径0.09μmの球状疎水性シ
リカ微粒子469gを得た。これを用いて実施例1と同様に
評価した。結果を表1に示した。
Example 3 Spherical hydrophobic particles having an average particle size of 0.09 μm were prepared in the same manner as in Example 1 except that the hydrolysis temperature of tetramethoxysilane was changed to 40 ° C. instead of 35 ° C. in the synthesis of spherical hydrophobic silica fine particles. 469 g of functional silica fine particles were obtained. Using this, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

【0068】実施例4〜11 球状疎水性シリカ微粒子の処理剤をベンジルトリエチル
アンモニウムクロライド(処理剤A)の代わりに下記の処
理剤を用いた以外は実施例1と同様にして評価した。結
果を表1に示した。 処理剤B:テトラメチルアンモニウムクロライド 処理剤C:ベンジルトリメチルアンモニウムクロライド 処理剤D:ベンジルジメチルフェニルアンモニウムクロ
ライド 処理剤E:ベンジルジメチルテトラデシルアンモニウム
クロライド 処理剤F:フェニルトリメチルアンモニウムクロライド 処理剤G:ベンジルトリエチルアンモニウム 4−ヒドロ
キシ−1−ナフタリンスルフォニド 処理剤H:1,1'−ジオクタデシル−4,4'−ビピリジウム
ジブロマイド 処理剤I:フルオロアルキルベタイン((株)ネオス製、商
品名:フタージェント400S) 処理剤J:パーフロロアルキルトリメチルアンモニウム
塩(大日本インキ化学工業(株)製、商品名:メガファッ
クF-150) 処理剤K:フロロアルキルアンモニウムヨージド((株)ネ
オス製、商品名:フタージェントFT-300)
Examples 4 to 11 Evaluations were made in the same manner as in Example 1 except that the treating agent for spherical hydrophobic silica fine particles used was the following treating agent instead of benzyltriethylammonium chloride (treating agent A). The results are shown in Table 1. Treatment agent B: Tetramethylammonium chloride Treatment agent C: Benzyltrimethylammonium chloride Treatment agent D: Benzyldimethylphenylammonium chloride Treatment agent F: Benzyldimethyltetradecylammonium chloride Treatment agent F: Phenyltrimethylammonium chloride Treatment agent G: Benzyltriethylammonium 4-Hydroxy-1-naphthaline sulfonide Treatment agent H: 1,1'-dioctadecyl-4,4'-bipyridium dibromide Treatment agent I: Fluoroalkylbetaine (manufactured by Neos Co., Ltd., trade name: Footer) Gent 400S) Treatment agent J: Perfluoroalkyltrimethylammonium salt (manufactured by Dainippon Ink and Chemicals, Inc., trade name: Megafac F-150) Treatment agent K: Fluoroalkylammonium iodide (manufactured by Neos Co., Ltd.) (Name: Futuregent FT-300)

【0069】比較例1 実施例1における(工程3)のヘキサメチルジシラザンを
用いたシリカ微粒子のトリメチルシリル化工程を省略す
る以外は実施例1と同様にして平均粒径O.12μmの球状
シリカ微粒子451gを得た。これを用いて実施例1と同様
に評価した。結果を表2に示した。
Comparative Example 1 Spherical silica fine particles having an average particle diameter of 0.12 μm were prepared in the same manner as in Example 1 except that the step of trimethylsilylating silica fine particles using hexamethyldisilazane in (Step 3) in Example 1 was omitted. 451 g was obtained. Using this, evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.

【0070】比較例2 実施例1における(工程1)の水1200gの代わりに水1000g
およびメチルイソブチルケトン1000gの混合物を用いた
以外は実施例1と同様にして平均粒径0.12μmの球状疎
水性シリカ微粒子468gを得た。これを用いて実施例1と
同様に評価した。結果を表2に示した。
Comparative Example 2 1000 g of water was used instead of 1200 g of water in (Step 1) in Example 1.
468 g of spherical hydrophobic silica fine particles having an average particle size of 0.12 μm were obtained in the same manner as in Example 1 except that a mixture of 1,000 g of methyl isobutyl ketone was used. Using this, evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.

【0071】比較例3〜5 実施例1における球状疎水性シリカ微粒子の処理剤とし
てベンジルトリエチルアンモニウムクロライド(処理剤
A)の代わりに下記の処理剤とした以外は実施例1と同様
にして評価した。結果を表1に示した。 処理剤L:ジブチルアミノプロピルトリメトキシシラン 処理剤M:ベタイン 処理剤N:ステアリルジメチルベタイン
Comparative Examples 3 to 5 Benzyltriethylammonium chloride (treatment agent) was used as a treatment agent for the spherical hydrophobic silica fine particles in Example 1.
Evaluation was performed in the same manner as in Example 1 except that the following treating agents were used instead of A). The results are shown in Table 1. Treatment agent L: dibutylaminopropyltrimethoxysilane Treatment agent M: betaine Treatment agent N: stearyl dimethyl betaine

【0072】比較例6 実施例1の球状疎水性シリカ微粒子の代わりに沈降法シ
リカ表面を有機ケイ素化合物で処理したニプシルSS50F
(日本シリカ(株)製)を用いた以外は実施例1と同様にし
て評価した。
Comparative Example 6 Nipsil SS50F prepared by treating the surface of a precipitated silica with an organosilicon compound instead of the spherical hydrophobic silica fine particles of Example 1.
Evaluation was performed in the same manner as in Example 1 except that Nippon Silica Co., Ltd. was used.

【0073】比較例7 実施例1の球状疎水性シリカ微粒子の代わりにフューム
ドシリカを疎水化処理したアエロジルR972(日本アエロ
ジル(株)製)を用いた以外は実施例1と同様にして評価
した。
Comparative Example 7 Evaluation was performed in the same manner as in Example 1 except that Aerosil R972 (manufactured by Nippon Aerosil Co., Ltd.) obtained by hydrophobizing fumed silica was used instead of the spherical hydrophobic silica fine particles of Example 1. .

【0074】比較例8 実施例1の球状疎水性シリカ微粒子を添加しなかったこ
と以外は実施例1と同様にしてトナーを得た。これを実
施例1と同様にして評価した。
Comparative Example 8 A toner was obtained in the same manner as in Example 1 except that the spherical hydrophobic silica fine particles of Example 1 were not added. This was evaluated in the same manner as in Example 1.

【0075】[0075]

【表1】 [Table 1]

【0076】[0076]

【表2】 [Table 2]

【0077】実施例14 [外添剤(表面処理シリカ微粒子)の調製]実施例1で合
成した疎水性球状シリカ微粒子100gをトルエン400gに分
散させた後、ジメチルシリコーンオイル(式(IX)にお
ける、R、R"がメチル基で、mが80〜100の範囲にある整
数であり、nが0である構造を有する。)(処理剤O)
5gを添加し、混合した。トルエンを加熱留去し表面処理
シリカ微粒子を105g得た。
Example 14 [Preparation of External Additive (Surface Treated Silica Fine Particles)] After dispersing 100 g of the hydrophobic spherical silica fine particles synthesized in Example 1 in 400 g of toluene, dimethyl silicone oil (formula (IX)) R and R "are methyl groups, m is an integer in the range of 80 to 100, and n is 0.) (Treatment agent O)
5 g was added and mixed. The toluene was distilled off by heating to obtain 105 g of surface-treated silica fine particles.

【0078】こうして得られた表面処理シリカ微粒子を
使用した以外は実施例1と同様にして外添剤混合トナー
を作製し同様に凝集度を測定した。さらに、実施例1と
同様にして現像剤を調製し同様の方法で感光体へのトナ
ー付着を評価した。これらの結果を表3に示す。
An external additive-mixed toner was prepared in the same manner as in Example 1 except that the thus obtained surface-treated silica fine particles were used, and the degree of aggregation was measured in the same manner. Further, a developer was prepared in the same manner as in Example 1, and toner adhesion to the photoreceptor was evaluated in the same manner. Table 3 shows the results.

【0079】実施例15 球状疎水性シリカ微粒子の合成の際にテトラメトキシシ
ランの加水分解温度を35℃の代わりに20℃とした以外は
実施例1と同様にして平均粒径0.30μmの球状疎水性シ
リカ微粒子469gを得た。これを用いて実施例14と同様
にジメチルシリコーンで表面処理を行い、得られた表面
処理シリカ微粒子を実施例14と同様に評価した。結果
を表3に示した。
Example 15 Spherical hydrophobic silica having an average particle diameter of 0.30 μm was prepared in the same manner as in Example 1 except that the hydrolysis temperature of tetramethoxysilane was changed to 20 ° C. instead of 35 ° C. in the synthesis of spherical hydrophobic silica fine particles. 469 g of functional silica fine particles were obtained. Using this, surface treatment was performed with dimethyl silicone in the same manner as in Example 14, and the obtained surface-treated silica fine particles were evaluated in the same manner as in Example 14. The results are shown in Table 3.

【0080】実施例16 球状疎水性シリカ微粒子の合成の際にテトラメトキシシ
ランの加水分解温度を35℃の代わりに40℃とした以外は
実施例1と同様にして平均粒径0.09μmの球状疎水性シ
リカ微粒子469gを得た。これを用いて実施例14と同様
にジメチルシリコーンで表面処理を行い、得られた表面
処理シリカ微粒子を実施例14と同様に評価した。結果
を表3に示した。
Example 16 Spherical hydrophobic particles having an average particle size of 0.09 μm were prepared in the same manner as in Example 1 except that the hydrolysis temperature of tetramethoxysilane was changed to 40 ° C. instead of 35 ° C. in the synthesis of the spherical hydrophobic silica fine particles. 469 g of functional silica fine particles were obtained. Using this, surface treatment was performed with dimethyl silicone in the same manner as in Example 14, and the obtained surface-treated silica fine particles were evaluated in the same manner as in Example 14. The results are shown in Table 3.

【0081】実施例17 実施例14における処理剤ジメチルシリコーンをアミノ
シリコーン(式(X)における、Rがメチル基で、R"がメト
キシ基、R7がプロピレン基、R8が水素原子、R 9がアミノ
エチル基であり、lが2で、pが38である構造を有す
る。)(処理剤P)に変えた以外は実施例14と同様に
して表面処理シリカ微粒子を得た。これを用いて実施例
14と同様に評価した。結果を表3に示した。
Example 17 The treating agent dimethyl silicone of Example 14 was replaced with amino
Silicone (R in formula (X) is a methyl group and R "is
Xy group, R7Is a propylene group, R8Is a hydrogen atom, R 9Is amino
An ethyl group, having a structure in which 1 is 2 and p is 38
You. ) (Processing agent P)
Thus, surface-treated silica fine particles were obtained. Example using this
The evaluation was performed in the same manner as in No. 14. The results are shown in Table 3.

【0082】比較例9 実施例1における(工程3)のヘキサメチルジシラザン
を用いたシリカ微粒子のトリメチルシリル化工程を省略
する以外は実施例14と同様にして平均粒径0.12μmの
球状シリカ微粒子451gを得た。これを用いて実施例1と
同様にジメチルシリコーンで表面処理を行い、得られた
表面処理シリカ微粒子を実施例14と同様に評価した。
結果を表4に示した。
Comparative Example 9 451 g of spherical silica fine particles having an average particle size of 0.12 μm were prepared in the same manner as in Example 14 except that the step of trimethylsilylation of silica fine particles using hexamethyldisilazane in (Step 3) in Example 1 was omitted. I got Using this, surface treatment was performed with dimethyl silicone in the same manner as in Example 1, and the obtained surface-treated silica fine particles were evaluated in the same manner as in Example 14.
The results are shown in Table 4.

【0083】比較例10 実施例1の(工程1)において60〜70℃に加熱してメタ
ノールを留去した後に添加した水1200gの代わりに水100
0gとメチルイソブチルケトン1000gの混合物を用いた以
外は実施例1と同様にして平均粒径0.12μmの球状疎水
性シリカ微粒子468gを得た。これを用いて実施例14と
同様にジメチルシリコーンで表面処理を行い、得られた
表面処理シリカ微粒子を実施例14と同様に評価した。
結果を表4に示した。
COMPARATIVE EXAMPLE 10 In step 1 of Example 1, the mixture was heated to 60 to 70 ° C. to distill off methanol, and instead of 1200 g of water added, 100 g of water was added.
468 g of spherical hydrophobic silica fine particles having an average particle size of 0.12 μm were obtained in the same manner as in Example 1 except that a mixture of 0 g and 1000 g of methyl isobutyl ketone was used. Using this, surface treatment was performed with dimethyl silicone in the same manner as in Example 14, and the obtained surface-treated silica fine particles were evaluated in the same manner as in Example 14.
The results are shown in Table 4.

【0084】比較例11 実施例1で合成した球状疎水性シリカ微粒子の代わりに
沈降法シリカ表面を有機ケイ素化合物で処理したニプシ
ルSS50F(日本シリカ(株)製)を用いた以外は実施
例14と同様にジメチルシリコーンで表面処理を行い、
得られた表面処理シリカ微粒子を実施例14と同様に評
価した。結果を表4に示した。
Comparative Example 11 The procedure of Example 14 was repeated except that the spherical hydrophobic silica fine particles synthesized in Example 1 were replaced with Nipsil SS50F (manufactured by Nippon Silica Co., Ltd.) in which the precipitated silica surface was treated with an organosilicon compound. Similarly, perform surface treatment with dimethyl silicone,
The obtained surface-treated silica fine particles were evaluated in the same manner as in Example 14. The results are shown in Table 4.

【0085】比較例12 実施例1で合成した球状疎水性シリカ微粒子の代わりに
沈降法シリカ表面を有機ケイ素化合物で処理したニプシ
ルSS50F(日本シリカ(株)製)を用い、実施例17
と同様にアミノシリコーンで表面処理を行い、得られた
表面処理シリカ微粒子を実施例14と同様に評価した。
結果を表4に示した。
Comparative Example 12 Instead of the spherical hydrophobic silica fine particles synthesized in Example 1, Nipsil SS50F (manufactured by Nippon Silica Co., Ltd.) whose precipitated silica surface was treated with an organosilicon compound was used instead of Example 17 in place of the spherical hydrophobic silica fine particles.
Surface treatment was carried out with aminosilicone in the same manner as described above, and the obtained surface-treated silica fine particles were evaluated in the same manner as in Example 14.
The results are shown in Table 4.

【0086】比較例13 実施例1で合成した球状疎水性シリカ微粒子の代わりに
フュームドシリカを疎水化処理したアエロジルR972
(日本アエロジル(株)製)を用いた以外は実施例14と
同様にジメチルシリコーンで表面処理を行い、得られた
表面処理シリカ微粒子を実施例14と同様に評価した。
結果を表4に示した。
Comparative Example 13 Aerosil R972 obtained by hydrophobizing fumed silica in place of the spherical hydrophobic silica fine particles synthesized in Example 1.
A surface treatment was performed with dimethyl silicone in the same manner as in Example 14 except that (Nippon Aerosil Co., Ltd.) was used, and the obtained surface-treated silica fine particles were evaluated in the same manner as in Example 14.
The results are shown in Table 4.

【0087】比較例14 実施例14で調製した表面処理シリカ微粒子を添加しな
かった以外は実施例14と同様にしてトナーを得た。こ
れを実施例14と同様に評価した。結果を表4に示し
た。
Comparative Example 14 A toner was obtained in the same manner as in Example 14, except that the surface-treated fine silica particles prepared in Example 14 were not added. This was evaluated in the same manner as in Example 14. The results are shown in Table 4.

【0088】[0088]

【表3】 [Table 3]

【0089】注: MIBK:メチルイソブチルケトン、 THF:テトラヒドロフラン、 D5:デカメチルシクロペンタシロキサン 処理剤O:ジメチルシリコーン(式(IX)における、R'、
R"がメチル基で、mが80〜100の範囲にある整数であ
り、nが0である構造を有する。) 処理剤P:アミノシリコーン(式(X)における、Rがメチ
ル基で、R"がメトキシ基、R7がプロピレン基、R8が水
素、R9がアミノエチル基であり、lが2で、pが38であ
る構造を有する。)
Note: MIBK: methyl isobutyl ketone, THF: tetrahydrofuran, D 5 : decamethylcyclopentasiloxane Treatment agent O: dimethyl silicone (R ′, R ′ in formula (IX))
R "is a methyl group, m is an integer in the range of 80 to 100, and n is 0.) Treatment agent P: aminosilicone (R in the formula (X) is a methyl group and R "Is a methoxy group, R 7 is a propylene group, R 8 is hydrogen, R 9 is an aminoethyl group, and has a structure in which 1 is 2 and p is 38.)

【0090】[0090]

【表4】 [Table 4]

【0091】[0091]

【発明の効果】本発明の静電荷像現像用トナー外添剤に
より、現像剤の流動性、耐ケーキング性、定着性、クリ
ーニング性を高めるばかりでなく、感光体の変質や削れ
および感光体へのトナー付着が生じず、また、環境状態
に影響されない帯電性を付与するといった効果が得られ
る。
The toner external additive for developing an electrostatic image of the present invention not only enhances the fluidity, anti-caking properties, fixability and cleaning properties of the developer, but also deteriorates and scrapes the photoreceptor and removes it from the photoreceptor. The toner has an effect that the toner is not attached to the toner and the chargeability is not affected by the environmental condition.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】下記の条件(i)および(ii)を満たす、1次粒
子の平均粒径が0.01〜5μmである球状の疎水性シリカ
微粒子を、4級アンモニウム塩化合物、フロロアルキル
基含有ベタイン化合物、及びシリコーンオイルからなる
群から選ばれる化合物で処理してなるシリカ微粒子から
なることを特徴とする静電荷像現像用トナー外添剤。
(i)室温で液体であり、誘電率が1〜40F/mである有機
化合物とシリカ微粒子とを5対1の重量比で混合し振とう
した際に、該シリカ微粒子が前記有機化合物中に均一に
分散する。(ii)該シリカ微粒子をメタノールに分散した
分散液からメタノールをエバポレータで加熱下留去した
後、100℃の温度で2時間保持した際に、1次粒子として
残存する1次粒子量の当初存在した1次粒子量に対する比
率が20%以上である。
1. A method for preparing spherical hydrophobic silica fine particles having an average primary particle size of 0.01 to 5 .mu.m, which satisfies the following conditions (i) and (ii), comprising a quaternary ammonium salt compound and a fluoroalkyl group-containing betaine. A toner external additive for electrostatic image development, comprising silica fine particles treated with a compound selected from the group consisting of a compound and silicone oil.
(i) When an organic compound which is liquid at room temperature and has a dielectric constant of 1 to 40 F / m and silica fine particles are mixed at a weight ratio of 5: 1 and shaken, the silica fine particles are contained in the organic compound. Disperse evenly. (ii) After methanol is distilled off from a dispersion obtained by dispersing the silica fine particles in methanol by heating with an evaporator, when the mixture is kept at a temperature of 100 ° C. for 2 hours, an initial amount of primary particles remaining as primary particles is present. The ratio to the obtained primary particle amount is 20% or more.
【請求項2】上記疎水性シリカ微粒子がSiO2単位からな
る親水性シリカ微粒子表面にR2Si03 /2単位(但し、R2
置換または非置換の炭素原子数1〜20の1価炭化水素基)
を導入する工程によって得られた疎水性シリカ微粒子表
面にR1 3SiO1/2単位(但し、R1は同一または異種の置換ま
たは非置換の炭素原子数1〜6の1価炭化水素基)を導入す
ることによって得られた平均粒径がO.01〜5μmである
球状の疎水性シリカ微粒子であることを特徴とする請求
項1記載の静電荷像現像用トナー外添剤。
Wherein said R 2 hydrophobic silica fine particles to the hydrophilic silica fine particle surface made of SiO 2 units Si0 3/2 units (wherein, monovalent R 2 is a substituted or unsubstituted 1 to 20 carbon atoms carbide Hydrogen group)
Hydrophobic silica fine particle surface in R 1 3 SiO 1/2 units obtained by introducing a (however, monovalent hydrocarbon group of R 1 may be the same or a substituted or unsubstituted 1-6 carbon atoms heterologous) 2. The toner external additive for electrostatic image development according to claim 1, wherein the particles are spherical hydrophobic silica fine particles having an average particle diameter of 0.01 to 5 [mu] m obtained by introducing the fine particles.
【請求項3】前記シリコーンオイルがジメチルシリコー
ンオイルである請求項1又は2記載のトナー外添剤。
3. The toner external additive according to claim 1, wherein the silicone oil is dimethyl silicone oil.
【請求項4】前記シリコーンオイルがアミノシリコーン
オイルである請求項1又は2記載のトナー外添剤。
4. The toner external additive according to claim 1, wherein the silicone oil is an amino silicone oil.
JP2000272172A 1999-10-27 2000-09-07 Toner external additive for electrostatic image development Expired - Lifetime JP3930236B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000272172A JP3930236B2 (en) 1999-10-27 2000-09-07 Toner external additive for electrostatic image development
US09/946,330 US7083888B2 (en) 2000-09-07 2001-09-06 External additive for electrostatically charged image developing toner

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-305500 1999-10-27
JP30550099 1999-10-27
JP2000272172A JP3930236B2 (en) 1999-10-27 2000-09-07 Toner external additive for electrostatic image development

Publications (2)

Publication Number Publication Date
JP2001194825A true JP2001194825A (en) 2001-07-19
JP3930236B2 JP3930236B2 (en) 2007-06-13

Family

ID=26564327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000272172A Expired - Lifetime JP3930236B2 (en) 1999-10-27 2000-09-07 Toner external additive for electrostatic image development

Country Status (1)

Country Link
JP (1) JP3930236B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149855A (en) * 2001-11-14 2003-05-21 Denki Kagaku Kogyo Kk Hydrophobic silica fine powder, method for manufacturing the same and its use
KR100644631B1 (en) 2004-10-01 2006-11-10 삼성전자주식회사 Organophotoreceptor containing silicon based additive and electrophotographic imaging apparatus employing the organophotoreceptor
US7413838B2 (en) 2001-12-14 2008-08-19 Ricoh Company, Ltd. External additives for electrophotographic toner, electrophotographic toner, electrophotographic developer, image forming method and image forming apparatus
US11866340B2 (en) 2020-03-24 2024-01-09 Fujifilm Business Innovation Corp. Silica particle and method for producing the same

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185405A (en) * 1982-04-26 1983-10-29 Nippon Aerojiru Kk Fine powder of surface-modified metal oxide
JPS6374911A (en) * 1986-09-19 1988-04-05 Shin Etsu Chem Co Ltd Production of fine spherical silica
JPS63101854A (en) * 1986-10-20 1988-05-06 Toshiba Silicone Co Ltd Electrostatic charge image developer
JPS63101857A (en) * 1986-10-20 1988-05-06 Toshiba Silicone Co Ltd Surface-treated true spherical polymethylsilsesquioxane powder
JPH01189660A (en) * 1988-01-26 1989-07-28 Canon Inc Positive electrostatic chargeable toner composition
JPH01189659A (en) * 1988-01-26 1989-07-28 Canon Inc Negative electrostatic chargeable toner composition
JPH0258066A (en) * 1988-07-01 1990-02-27 Xerox Corp Manufacture of silica containing charging property upgrading agent
JPH02160613A (en) * 1988-09-13 1990-06-20 Shin Etsu Chem Co Ltd Production of surface-modified silica
JPH02188421A (en) * 1989-01-13 1990-07-24 Shin Etsu Chem Co Ltd Spherical fine particle of silica and production thereof
JPH05224456A (en) * 1992-02-14 1993-09-03 Fuji Xerox Co Ltd Electrostatic charge image developer, its production, and image forming method
JPH05232745A (en) * 1991-11-25 1993-09-10 Xerox Corp Colored particle
JPH05323652A (en) * 1992-05-15 1993-12-07 Shin Etsu Chem Co Ltd Electrostatic charge image developer
JPH0651554A (en) * 1992-06-04 1994-02-25 Canon Inc Developer for developing electrostatic charge image and image forming method
JPH08194330A (en) * 1995-01-18 1996-07-30 Fuji Xerox Co Ltd Electrostatic charge image developing negative charge type toner composition and image forming method
JPH09152738A (en) * 1995-11-29 1997-06-10 Fuji Xerox Co Ltd Toner composition, developer using the composition and image forming method
JPH09197705A (en) * 1996-01-11 1997-07-31 Nippon Shokubai Co Ltd Organic-inorganic composite particles, their production and use
JPH09311499A (en) * 1996-05-21 1997-12-02 Mitsubishi Chem Corp One-component developer and image forming method using the same

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185405A (en) * 1982-04-26 1983-10-29 Nippon Aerojiru Kk Fine powder of surface-modified metal oxide
JPS6374911A (en) * 1986-09-19 1988-04-05 Shin Etsu Chem Co Ltd Production of fine spherical silica
JPS63101854A (en) * 1986-10-20 1988-05-06 Toshiba Silicone Co Ltd Electrostatic charge image developer
JPS63101857A (en) * 1986-10-20 1988-05-06 Toshiba Silicone Co Ltd Surface-treated true spherical polymethylsilsesquioxane powder
JPH01189660A (en) * 1988-01-26 1989-07-28 Canon Inc Positive electrostatic chargeable toner composition
JPH01189659A (en) * 1988-01-26 1989-07-28 Canon Inc Negative electrostatic chargeable toner composition
JPH0258066A (en) * 1988-07-01 1990-02-27 Xerox Corp Manufacture of silica containing charging property upgrading agent
JPH02160613A (en) * 1988-09-13 1990-06-20 Shin Etsu Chem Co Ltd Production of surface-modified silica
JPH02188421A (en) * 1989-01-13 1990-07-24 Shin Etsu Chem Co Ltd Spherical fine particle of silica and production thereof
JPH05232745A (en) * 1991-11-25 1993-09-10 Xerox Corp Colored particle
JPH05224456A (en) * 1992-02-14 1993-09-03 Fuji Xerox Co Ltd Electrostatic charge image developer, its production, and image forming method
JPH05323652A (en) * 1992-05-15 1993-12-07 Shin Etsu Chem Co Ltd Electrostatic charge image developer
JPH0651554A (en) * 1992-06-04 1994-02-25 Canon Inc Developer for developing electrostatic charge image and image forming method
JPH08194330A (en) * 1995-01-18 1996-07-30 Fuji Xerox Co Ltd Electrostatic charge image developing negative charge type toner composition and image forming method
JPH09152738A (en) * 1995-11-29 1997-06-10 Fuji Xerox Co Ltd Toner composition, developer using the composition and image forming method
JPH09197705A (en) * 1996-01-11 1997-07-31 Nippon Shokubai Co Ltd Organic-inorganic composite particles, their production and use
JPH09311499A (en) * 1996-05-21 1997-12-02 Mitsubishi Chem Corp One-component developer and image forming method using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149855A (en) * 2001-11-14 2003-05-21 Denki Kagaku Kogyo Kk Hydrophobic silica fine powder, method for manufacturing the same and its use
US7413838B2 (en) 2001-12-14 2008-08-19 Ricoh Company, Ltd. External additives for electrophotographic toner, electrophotographic toner, electrophotographic developer, image forming method and image forming apparatus
KR100644631B1 (en) 2004-10-01 2006-11-10 삼성전자주식회사 Organophotoreceptor containing silicon based additive and electrophotographic imaging apparatus employing the organophotoreceptor
US11866340B2 (en) 2020-03-24 2024-01-09 Fujifilm Business Innovation Corp. Silica particle and method for producing the same

Also Published As

Publication number Publication date
JP3930236B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
JP4781769B2 (en) Highly hydrophobic spherical sol-gel silica fine particles, process for producing the same, toner external additive for developing electrostatic images comprising the fine particles, and developer using the toner external additive
JP3927741B2 (en) Toner external additive for electrostatic image development
JP3988936B2 (en) Silane surface-treated spherical silica titania fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same
JP4579265B2 (en) Hydrophobic spherical silica fine particles having high fluidity, method for producing the same, toner external additive for developing electrostatic image using the same, and organic resin composition containing the same
JP5631699B2 (en) Method for producing irregular shaped silica fine particles and toner external additive for developing electrostatic image
JP2011185998A (en) Electrostatic image-developing toner and electric charge-controlling particle for external addition
JP2008174430A (en) Hydrophobic spherical silica fine particle, its manufacturing method and toner external additive for electrostatic charge image development
JP2011032114A (en) Hydrophobic spherical silica fine particle, method for producing the same and toner external additive for electrostatic charge image development using the same
JP3327125B2 (en) Electrostatic latent image developer and image forming method
JP4060241B2 (en) Hydrophobic spherical silica-based fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same
TWI804672B (en) Positively charged hydrophobic spherical silica particles, method for producing same, and positively charged toner composition using the positively charged hydrophobic spherical silica particles
JP4347201B2 (en) Toner external additive and toner for developing electrostatic image
US7083888B2 (en) External additive for electrostatically charged image developing toner
JP3767788B2 (en) Toner external additive for electrostatic image development
JP3930236B2 (en) Toner external additive for electrostatic image development
JP3856744B2 (en) Toner external additive for electrostatic image development
JPH07187647A (en) Hydrophobic silica powder, its production and electrophotographic developer containing the same
JP4628760B2 (en) Spherical hydrophobic polydiorganosiloxane-containing silica fine particles, toner additive for developing electrostatic image and toner
JPS63101855A (en) Electrostatic charge image developer
JP3871297B2 (en) Toner external additive for electrostatic image development
JPH10186715A (en) Electrophotographic toner composite and image forming method
JPH0132161B2 (en)
JP4611006B2 (en) Spherical silica fine particles, toner external additive for developing electrostatic image and toner
JP4198108B2 (en) Toner external additive and toner for developing electrostatic image
JP2022150873A (en) Surface-modified inorganic oxide powder and production method therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3930236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160316

Year of fee payment: 9

EXPY Cancellation because of completion of term