JP2011185998A - Electrostatic image-developing toner and electric charge-controlling particle for external addition - Google Patents

Electrostatic image-developing toner and electric charge-controlling particle for external addition Download PDF

Info

Publication number
JP2011185998A
JP2011185998A JP2010048189A JP2010048189A JP2011185998A JP 2011185998 A JP2011185998 A JP 2011185998A JP 2010048189 A JP2010048189 A JP 2010048189A JP 2010048189 A JP2010048189 A JP 2010048189A JP 2011185998 A JP2011185998 A JP 2011185998A
Authority
JP
Japan
Prior art keywords
particles
toner
charge control
mass
spherical silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010048189A
Other languages
Japanese (ja)
Inventor
Toshihiko Oguchi
壽彦 小口
Atsushi Suga
淳 須賀
Takashi Iimura
貴司 飯村
Muneo Kudo
宗夫 工藤
Masaki Tanaka
正喜 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Morimura Chemicals Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Morimura Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Morimura Chemicals Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2010048189A priority Critical patent/JP2011185998A/en
Publication of JP2011185998A publication Critical patent/JP2011185998A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrostatic image-developing toner which keeps the amount of triboelectric charges, which is generated between the toner itself and a carrier, at a prescribed range to hardly cause the deterioration of an image even if it is used for a long period of time. <P>SOLUTION: Electric charge-controlling particles for external addition, which control the amount of triboelectric charges of the electrostatic image-developing toner, comprises: conveyance particles which consist of hydrophobic spherical silica microparticles having an average particle size of 20-500 nm which are obtained by subjecting the surfaces of hydrophilic spherical silica microparticles obtained by a sol-gel method to hydrophobic processing; and an electric charge-controlling agent with which the surfaces of the conveyance particles are coated. In addition, the electric charge-controlling particles for external addition have the electric charge-controlling agent of 1×10<SP>-3</SP>to 1×10<SP>-1</SP>pts.mass to the conveyance particles of 1 pts.mass, and the electric charge-controlling particles for external addition of 0.001-0.05 pts.mass is mixed with the toner of 1 pts.mass in the electrostatic image-developing toner. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電子写真法、静電記録法等における静電像を現像するために使用する静電像現像トナーおよびこのトナーの摩擦帯電量を制御するための外添用電荷制御粒子に関する。   The present invention relates to an electrostatic image developing toner used for developing an electrostatic image in an electrophotographic method, an electrostatic recording method, and the like, and charge control particles for external addition for controlling the triboelectric charge amount of the toner.

従来から、電子写真においては、帯電した着色粒子(以下、トナーという。)を、静電潜像を有する光導電体表面や誘電体表面に接触させ、帯電したトナーを静電潜像の電荷量に応じて光導電体表面や誘電体表面に付着せしめることによって可視像を形成しており、通常この可視化操作は現像と呼ばれる。   Conventionally, in electrophotography, charged colored particles (hereinafter referred to as toner) are brought into contact with a photoconductor surface or dielectric surface having an electrostatic latent image, and the charged toner is charged in the electrostatic latent image. Accordingly, a visible image is formed by adhering to a photoconductor surface or a dielectric surface, and this visualization operation is usually called development.

最も一般的に用いられる粉砕型トナーは、熱可塑性のトナー用樹脂バインダーと顔料、電荷制御剤(以下、CCAという。)、ワックスなどを熱混練し、これを粉砕して、平均粒径5〜10μmに分級した着色粒子として得られる。   The most commonly used pulverized toner is a thermoplastic resin binder for a toner, a pigment, a charge control agent (hereinafter referred to as CCA), a wax and the like, which are kneaded and pulverized to obtain an average particle size of 5 to 5. Obtained as colored particles classified to 10 μm.

また、最近多用されはじめた懸濁重合型のケミカルトナーは、バインダー樹脂モノマー、顔料、CCA、ワックスを混合・分散した平均粒径5〜10μmの液滴を水中に分散させ、バインダー樹脂モノマーを重合せしめて得られる。また、乳化重合凝集型ケミカルトナーは、熱可塑性樹脂エマルション、ワックスエマルションと、顔料粒子およびCCA粒子を粒径5〜10μmに凝集せしめて得られる。   In addition, suspension polymerization type chemical toners that have recently started to be used frequently are prepared by dispersing droplets with an average particle diameter of 5 to 10 μm mixed and dispersed in water, and polymerizing the binder resin monomer. Get it at least. The emulsion polymerization aggregation type chemical toner is obtained by aggregating a thermoplastic resin emulsion, a wax emulsion, pigment particles and CCA particles to a particle size of 5 to 10 μm.

これらのトナーを用いて鮮明な現像画像が得られるための最も重要な条件は、トナーが同一極性で均一に帯電していることである。従来、このように均一帯電したトナーは、トナー中にCCAを含有させておき、このトナーを静電潜像面に搬送するためのキャリア粒子、現像ロールあるいは現像ロール上に取り付けた帯電ブレードなどの帯電部材と混合あるいは摩擦することによって得られている。   The most important condition for obtaining a clear developed image using these toners is that the toners are uniformly charged with the same polarity. Conventionally, such uniformly charged toner contains CCA in the toner, such as carrier particles for transporting the toner to the electrostatic latent image surface, a developing roll or a charging blade attached on the developing roll. It is obtained by mixing or rubbing with the charging member.

トナーが獲得する摩擦帯電量は、トナー表面に存在するCCA粒子によって支配される。このため、CCAはトナー中に練り込むよりは所望量をトナー表面に存在させようとする試みがなされている。   The amount of triboelectric charge that the toner acquires is governed by the CCA particles present on the toner surface. For this reason, an attempt has been made to allow a desired amount of CCA to be present on the toner surface rather than kneading into the toner.

例えば、特開平2−73371号公報および特開平2−161471号公報においては、ヘンシェルミキサあるいはハイブリダイザーなどを用いてCCAをトナー表面に機械的に埋め込む試みがなされている(特許文献1および2参照)。   For example, in JP-A-2-73371 and JP-A-2-161471, an attempt is made to mechanically embed CCA in the toner surface using a Henschel mixer or a hybridizer (see Patent Documents 1 and 2). ).

また、特開平5−127423号公報および特開2004−220005号公報においては微細化したCCA粒子をトナー表面に固着せしめる試みがなされている(特許文献3および4参照)。また、特開平5−134457号公報においてはCCA溶液をトナー表面に析出させてさらに微細化しCCA粒子を被覆する方法を開示している(特許文献5参照)。   In JP-A-5-127423 and JP-A-2004-220005, an attempt is made to fix the fine CCA particles to the toner surface (see Patent Documents 3 and 4). Japanese Patent Application Laid-Open No. 5-134457 discloses a method in which a CCA solution is deposited on the surface of a toner and further refined to coat CCA particles (see Patent Document 5).

また、特開平5−341570号公報においては、トナーと水分散性の平均粒径0.01〜0.2μmの小粒子とCCAの水性分散液を混合し、この分散体を用いて、トナー表面に強く付着せしめたCCA含有の小粒子層を形成することを試みている(特許文献6参照)。さらに、特開2004−109406号公報においては、トナー表面に平均粒径が0.1〜0.8μmの小粒子中に電荷制御剤を分散させるか、あるいは該小粒子表面に電荷制御剤を付着させた小粒子をトナー表面に固定化せしめた静電像現像トナーを開示している(特許文献7参照)。   In JP-A-5-341570, a toner, water-dispersible small particles having an average particle diameter of 0.01 to 0.2 [mu] m and an aqueous CCA dispersion are mixed, and this dispersion is used to produce a toner surface. An attempt has been made to form a CCA-containing small particle layer strongly adhered to the surface (see Patent Document 6). Furthermore, in Japanese Patent Application Laid-Open No. 2004-109406, a charge control agent is dispersed in small particles having an average particle diameter of 0.1 to 0.8 μm on the toner surface, or the charge control agent is attached to the surface of the small particles. An electrostatic image developing toner in which the small particles thus fixed are fixed on the toner surface is disclosed (see Patent Document 7).

一般に現像トナーは、静電潜像面と接触して静電潜像を現像することによって、消費される。現像工程で消費されたトナーは新たに補給され、再び帯電部材と摩擦し、現像されるプロセスを繰り返す。すなわち、上記の現像・補給の操作が定常的に続く間、トナーは常に一定の帯電量を獲得して現像を続けることができる。   In general, developing toner is consumed by developing an electrostatic latent image in contact with the electrostatic latent image surface. The toner consumed in the development process is newly replenished, rubs against the charging member again, and the development process is repeated. In other words, while the above-described development / replenishment operation continues constantly, the toner can always acquire a constant charge amount and continue development.

ところで、電子写真法等で使用する乾式現像剤は、結着樹脂中に着色剤を分散したトナーそのものを用いる一成分現像剤と、そのトナーにキャリアを混合した二成分現像剤とに大別できる。これらの現像剤を用いてコピー操作を行う場合、プロセス適合性を有するためには、帯電性だけではなく、現像剤が流動性、耐ケーキング性、定着性、クリーニング性等にも優れていることが必要である。   By the way, dry developers used in electrophotography and the like can be roughly classified into a one-component developer using a toner itself in which a colorant is dispersed in a binder resin and a two-component developer in which a carrier is mixed with the toner. . When performing copy operations using these developers, in order to have process compatibility, not only the chargeability but also the developer is excellent in fluidity, caking resistance, fixing properties, cleaning properties, etc. is required.

特に、流動性、耐ケーキング性、定着性、クリーニング性を高めるために、外添剤として無機微粒子をトナー表面に添加することがしばしば行われている。しかしながら、無機微粒子の分散性がトナー特性に大きな影響を与え、分散性が不均一な場合には、流動性、耐ケーキング性、定着性に所望の特性が得られなかったり、クリーニング性が不十分になって、感光体上にトナー固着等が発生し、黒点状の画像欠陥が生じたりする原因となることがあった。これらの問題点を改善する目的で、表面を疎水化処理した無機微粒子が種々提案されているが、表面を疎水化処理したシリカ微粒子が特に多く提案されている。   In particular, in order to improve fluidity, caking resistance, fixability, and cleaning properties, inorganic fine particles are often added to the toner surface as an external additive. However, the dispersibility of the inorganic fine particles has a great influence on the toner characteristics, and when the dispersibility is not uniform, desired characteristics cannot be obtained in the fluidity, caking resistance, and fixability, or the cleaning properties are insufficient. As a result, toner sticking or the like may occur on the photoconductor, which may cause black spot image defects. For the purpose of improving these problems, various inorganic fine particles whose surface has been subjected to a hydrophobic treatment have been proposed, and many silica fine particles whose surface has been subjected to a hydrophobic treatment have been proposed.

この疎水化処理したシリカ微粒子の原体となる合成シリカ微粒子は、その製法によって、シラン化合物を燃焼させて得られる燃焼法シリカ(即ち、ヒュームドシリカ)、金属珪素粉を爆発的に燃焼させて得られる爆燃法シリカ、珪酸ナトリウムと鉱酸との中和反応によって得られる湿式シリカ(このうち、アルカリ条件で合成し凝集させたものを沈降法シリカ、酸性条件で合成し凝集させたものをゲル法シリカという。)、珪酸ナトリウムからイオン交換樹脂で脱ナトリウムして得られた酸性珪酸をアルカリ性にして重合することで得られるコロイダルシリカ(シリカゾル)、ヒドロカルビルオキシシランの加水分解によって得られるゾルゲル法シリカ(いわゆるStoeber法シリカ)に大別される。   The synthetic silica fine particles, which are the base of the hydrophobized silica fine particles, are produced by combusting the combustion method silica (that is, fumed silica) obtained by burning the silane compound and the metal silicon powder explosively. Decombustion silica obtained, wet silica obtained by neutralization reaction between sodium silicate and mineral acid (of which, silica gel synthesized and aggregated under alkaline conditions is precipitated silica, silica gel synthesized and aggregated under acidic conditions is gel Silica method), colloidal silica (silica sol) obtained by polymerizing acidic silicic acid obtained by sodium removal from sodium silicate with an ion exchange resin, and sol-gel method obtained by hydrolysis of hydrocarbyloxysilane (So-called Stober method silica).

疎水化処理方法としては、シリカ微粒子粉体に、疎水化剤、例えば界面活性剤、シリコーンオイル、またはアルキルハロゲノシラン、アルキルアルコキシシラン、アルキルジシラザンなどのシリル化剤の気体を接触させ疎水化処理する方法、水と親水性有機混合溶媒中でシリル化剤に接触させ疎水化処理する方法などがある。   As a hydrophobizing method, hydrophobizing treatment is performed by bringing a silica fine particle powder into contact with a hydrophobizing agent such as a surfactant, silicone oil, or a silylating agent such as alkylhalogenosilane, alkylalkoxysilane, or alkyldisilazane. And a hydrophobization treatment by contacting with a silylating agent in a mixed solvent of water and a hydrophilic organic solvent.

そして、シリカ原体として沈降法シリカ、フュームドシリカを用いる疎水化処理が以下説明するように知られている。   And the hydrophobization process which uses a precipitation method silica and a fumed silica as a silica raw material is known so that it may demonstrate below.

親水性沈降シリカの水性懸濁液を触媒量の酸およびオルガノシラン化合物と、有機ケイ素化合物と親水性沈降シリカとの反応を促進させるのに十分な量の水−混和性有機溶媒の共存下で接触させて、疎水性沈降シリカを生成させる方法(特許文献8参照)、平均一次粒子径が5〜50nmのヒュームドシリカを、ヘキサメチルジシラザンで表面処理して粒子表面のシラノール基を40%以上封鎖し、かつ残存シラノール基濃度が1.5個/nm以下である酸化ケイ素粒子を得る方法(特許文献9参照)、フュームドシリカをヘキサメチルジシラザン等の有機珪素化合物で疎水化処理して、80〜300g/lの嵩密度を有し、単位表面積あたりのOH基が0.5個/nm以下であり、且つ粒子径45μm以上の凝集粒子が2000ppm以下である疎水性フュームドシリカを得る方法(特許文献10参照)、フュームドシリカを、ポリシロキサンで処理した後、トリメチルシリル化剤で処理して疎水性シリカ粉体を得る方法(特許文献11参照)、フュームドシリカにシリコーンオイル系処理剤による一次表面処理、一次表面処理後の解砕、および解砕後のアルキルシラザン系処理剤による二次表面処理を行うことによって高分散疎水性シリカ粉体を得る方法(特許文献12参照)がある。 An aqueous suspension of hydrophilic precipitated silica is prepared in the presence of a catalytic amount of an acid and an organosilane compound and a sufficient amount of a water-miscible organic solvent to promote the reaction between the organosilicon compound and the hydrophilic precipitated silica. A method for producing hydrophobic precipitated silica by contact (refer to Patent Document 8), fumed silica having an average primary particle diameter of 5 to 50 nm is surface-treated with hexamethyldisilazane, and 40% of silanol groups on the particle surface are formed. A method of obtaining silicon oxide particles that are blocked as described above and having a residual silanol group concentration of 1.5 particles / nm 2 or less (see Patent Document 9), and fumed silica is hydrophobized with an organosilicon compound such as hexamethyldisilazane. The aggregated particles having a bulk density of 80 to 300 g / l, OH groups per unit surface area of 0.5 / nm 2 or less, and a particle diameter of 45 μm or more are 2000 ppm. A method of obtaining hydrophobic fumed silica as described below (see Patent Document 10), a method of treating fumed silica with polysiloxane, and then treating with a trimethylsilylating agent (see Patent Document 11) ) Highly dispersed hydrophobic silica powder by subjecting fumed silica to a primary surface treatment with a silicone oil-based treatment agent, pulverization after the primary surface treatment, and secondary surface treatment with an alkylsilazane-based treatment agent after pulverization There is a method of obtaining (see Patent Document 12).

しかしいずれの疎水化方法においても沈降法シリカ、フュームドシリカを用いた場合には、シリカ原体の一次粒子径と疎水化処理後の凝集粒子径の関係について述べたものはなく、また、シリカ原体自体が凝集しているため、優れた流動性、分散性を有する疎水性シリカ粉体を得ることはできなかった。   However, in any of the hydrophobization methods, when precipitated silica or fumed silica is used, there is no description of the relationship between the primary particle size of the silica raw material and the aggregated particle size after the hydrophobization treatment. Since the active ingredient itself is aggregated, a hydrophobic silica powder having excellent fluidity and dispersibility could not be obtained.

一方、シリカ原体として分散性の良いシリカゾルを出発原料として疎水化を行う方法も知られている。シリカゾルをアルコールなどの有機溶媒あるいは水中に分散し、アルキルハロゲノシラン、アルキルアルコキシシラン、アルキルジシラザンなどのシリル化剤を反応させた後に有機溶媒あるいは水を除去し、疎水性シリカ粉体が得られている。具体的には、以下に開示されている技術の例を挙げることができる。   On the other hand, a method of hydrophobizing a silica sol as a starting material using a silica sol having a good dispersibility is also known. Silica sol is dispersed in an organic solvent such as alcohol or water and reacted with a silylating agent such as alkylhalogenosilane, alkylalkoxysilane, or alkyldisilazane, and then the organic solvent or water is removed to obtain hydrophobic silica powder. ing. Specifically, examples of the technology disclosed below can be given.

水分が10%以下のブタノール分散シリカゾルにシリル化剤を添加し、反応させた後溶媒を留去して、コロイドシリカ粒子表面に炭素原子数1〜36のシリル基が1〜100/10nm結合した、有機溶媒に再分散可能なシリカ粉体を得る方法(特許文献13参照)、平均粒子直径が4nmより大きい親水性コロイドシリカを濃塩酸、イソプロパノール、ヘキサメチルジシロキサンの混合溶媒に添加して疎水化処理し、次いで疎水性コロイドシリカを疎水性有機溶媒で抽出し加熱還流後、シラン化合物を添加し、加熱還流して疎水化処理を行い、疎水性非凝集コロイダルシリカを得る方法(特許文献14参照)、親水性コロイド状シリカを含有する水性シリカゾルにジシラザン化合物を添加し、50〜100℃の温度範囲で加温して熟成することにより疎水化処理コロイド状シリカのスラリー状分散液を得、これを乾燥することで疎水性シリカ粉体を得る方法(特許文献15参照)がある。 A silylating agent is added to butanol-dispersed silica sol having a water content of 10% or less, and after the reaction, the solvent is distilled off, and the silyl group having 1 to 36 carbon atoms is bonded to the surface of the colloidal silica particle by 1 to 100/10 nm 2 A method for obtaining silica powder redispersible in an organic solvent (see Patent Document 13), adding hydrophilic colloidal silica having an average particle diameter larger than 4 nm to a mixed solvent of concentrated hydrochloric acid, isopropanol and hexamethyldisiloxane. Hydrophobic treatment, followed by extraction of hydrophobic colloidal silica with a hydrophobic organic solvent, heating and refluxing, adding a silane compound, heating and refluxing to perform hydrophobic treatment, and obtaining hydrophobic non-aggregated colloidal silica (Patent Document) 14), a disilazane compound is added to an aqueous silica sol containing hydrophilic colloidal silica, and the mixture is aged by heating in a temperature range of 50 to 100 ° C. There is a method of obtaining a hydrophobic silica powder by obtaining a slurry dispersion of hydrophobized colloidal silica and drying it (see Patent Document 15).

しかしいずれの疎水化方法においてもこれらのシリカゾルを用いた場合には、粉体として得たときに疎水化処理後の粒子径がシリカ原体の一次粒子径を維持しておらず凝集してしまい、優れた流動性、分散性を有する疎水性シリカ粉体を得ることはできなかった。なお、特許文献14で得られたコロイダルシリカは透過型電子顕微鏡での観察によって凝集の有無を判断している。通常この観察に用いるサンプルは大希釈された凝集が起こらない条件でシリカを乾燥しているので、トルエン分散状態での凝集の有無は判断できるが、シリカが高濃度となる工業的な乾燥工程で得られた粉体が凝集しているかどうかは判断できない。従って、このコロイダルシリカはトルエン分散状態では一次粒子径を維持しているが、粉体として取り出した時には特許文献15の場合のように凝集していると考えられる。   However, when these silica sols are used in any of the hydrophobization methods, the particle size after the hydrophobization treatment does not maintain the primary particle size of the silica raw material and is agglomerated when obtained as a powder. Thus, hydrophobic silica powder having excellent fluidity and dispersibility could not be obtained. In addition, the colloidal silica obtained by patent document 14 judges the presence or absence of aggregation by observation with a transmission electron microscope. Usually, the sample used for this observation is dried under the condition that the agglomeration does not occur at a large dilution, so the presence or absence of agglomeration in the toluene dispersion state can be judged, but in an industrial drying process where the silica is at a high concentration. It cannot be determined whether the obtained powder is agglomerated. Therefore, although this colloidal silica maintains the primary particle diameter in the toluene dispersion state, it is considered that the colloidal silica is aggregated as in Patent Document 15 when taken out as a powder.

上記シリカ粒子粉体のトナー外添剤としての性能は、近年、より高画質化を図るために有機感光体を使用したり、より小粒径のトナーを使用したりしているので、十分なものではない。また、有機感光体は無機感光体に比べてその表面が柔らかく、反応性も高いので寿命が短くなりやすい。したがって、このような有機感光体を用いた場合には、トナーに添加された無機微粒子によって感光体の変質や削れが生じ易い。さらに、トナーを小粒径にした場合には、通常用いられる粒子径のトナーと比較して粉体流動性が悪いので、無機微粒子をより多量に添加しなければならなくなり、その結果、無機微粒子が感光体へのトナー付着の原因となることがあった。   In recent years, the performance of the silica particle powder as a toner external additive has been sufficient because an organic photoreceptor or a toner having a smaller particle diameter is used in order to achieve higher image quality. It is not a thing. In addition, organic photoreceptors have a softer surface and higher reactivity than inorganic photoreceptors, so their lifetime is likely to be shortened. Therefore, when such an organic photoreceptor is used, the photoreceptor is easily altered or scraped by the inorganic fine particles added to the toner. Furthermore, when the toner has a small particle size, the powder fluidity is poor as compared with a toner having a particle size that is usually used, so a larger amount of inorganic fine particles must be added. May cause toner adhesion to the photoreceptor.

また、さらにシリカ原体として分散性の良いゾルゲル法シリカを出発原料として疎水化を行う方法も知られている。ゾルゲル法シリカをアルコールなどの有機溶媒あるいは水中に分散し、アルキルハロゲノシラン、アルキルアルコキシシラン、アルキルジシラザンなどのシリル化剤を反応させた後に有機溶媒あるいは水を除去し、疎水性シリカ粉体が得られている。具体的には、以下に開示されている技術の例を挙げることができる。   In addition, a method is also known in which a sol-gel silica having good dispersibility is used as a silica raw material to perform hydrophobicity. Solgel silica is dispersed in an organic solvent such as alcohol or water, and after reacting with a silylating agent such as alkylhalogenosilane, alkylalkoxysilane, or alkyldisilazane, the organic solvent or water is removed, and hydrophobic silica powder is obtained. Has been obtained. Specifically, examples of the technology disclosed below can be given.

テトラメトキシシランをメタノール中でアンモニア水存在下加水分解して得られた球状シリカ粒子メタノール分散液に、メトキシトリメチルシランあるいはヘキサメチルジシラザンを添加し、過剰のシリル化剤を回収した後、乾燥して疎水化球状シリカ微粒子粉体を得る方法(特許文献16、特許文献17参照)、テトラアルコキシシラン化合物を塩基性物質の存在下で加水分解することにより、親水性球状シリカ微粒子水性分散液を調製し、アルコールを除去し、次いでアルキルトリアルコキシシラン化合物で球状シリカ微粒子を疎水化し、溶媒をケトン系溶媒に置換し、シラザン化合物あるいはトリアルキルアルコキシシラン化合物で球状シリカ微粒子表面に残存する反応性基をトリオルガノシリル化し、最後に溶媒を減圧留去して表面処理球状シリカ微粒子を得る方法(特許文献18、特許文献19参照)が知られている。   To the spherical silica particle methanol dispersion obtained by hydrolyzing tetramethoxysilane in methanol in the presence of ammonia water, methoxytrimethylsilane or hexamethyldisilazane is added, and the excess silylating agent is recovered and dried. To obtain hydrophobized spherical silica fine particle powder (see Patent Literature 16 and Patent Literature 17), and hydrolyzing a tetraalkoxysilane compound in the presence of a basic substance to prepare an aqueous dispersion of hydrophilic spherical silica fine particles. The alcohol is removed, the spherical silica fine particles are hydrophobized with an alkyltrialkoxysilane compound, the solvent is replaced with a ketone solvent, and the reactive groups remaining on the surface of the spherical silica fine particles are replaced with a silazane compound or a trialkylalkoxysilane compound. Triorganosilylation, and finally the solvent is distilled off under reduced pressure. Management spherical silica microparticles process for obtaining (Patent Document 18, Patent Document 19) are known.

いずれの疎水化方法においてもこれらのゾルゲル法シリカを用いた場合には、粉体として得たときに疎水化処理後の粒子径がシリカ原体の一次粒子径を維持したものが得られ、優れた流動性、分散性を有する疎水性球状シリカ微粒子粉体が得られた。   When these sol-gel silicas are used in any of the hydrophobization methods, when the powder is obtained as a powder, it is possible to obtain a product in which the particle size after the hydrophobization treatment maintains the primary particle size of the silica raw material. A hydrophobic spherical silica fine particle powder having excellent fluidity and dispersibility was obtained.

特開平2−73371号公報JP-A-2-73371 特開平2−161471号公報JP-A-2-161471 特開平5−127423号公報Japanese Patent Laid-Open No. 5-127423 特開2004−220005号公報JP 2004-220005 A 特開平5−134457号公報JP-A-5-134457 特開平5−341570号公報Japanese Patent Laid-Open No. 5-341570 特開2004−109406号公報JP 2004-109406 A 特開2000−327321号公報JP 2000-327321 A 特開平07−286095号公報Japanese Patent Application Laid-Open No. 07-286095 特開2000−256008号公報JP 2000-256008 A 特開2002−256170号公報JP 2002-256170 A 特開2004−168559号公報JP 2004-168559 A 特開昭58−145614号公報JP 58-145614 A 特開2000−80201号公報JP 2000-80201 A 特開2006−169096号公報JP 2006-169096 A 特開平03−187913号公報Japanese Patent Laid-Open No. 03-187913 特開2001−194824号公報JP 2001-194824 A 特開2000−44226号公報JP 2000-44226 A 特開2000−330328号公報JP 2000-330328 A

しかしながら実際には、CCAを添加調整した特許文献1〜7の技術を用いた場合でも、摩擦はされたものの現像されずに現像器内に残るトナーや、トナーとの摩擦操作による帯電部材表面の汚染、などによってトナー帯電量が徐々に変化し、現像操作を重ねると現像画質が徐々に劣化するという問題があった。   However, in actuality, even when the techniques of Patent Documents 1 to 7 in which CCA is added and adjusted are used, the toner that is rubbed but remains undeveloped and remains in the developing unit, and the surface of the charging member by the frictional operation with the toner There has been a problem that the toner charge amount gradually changes due to contamination and the like, and when developing operations are repeated, the developed image quality gradually deteriorates.

これらの現像画像劣化には、現像・摩擦工程を繰り返すことによる、トナー表面や帯電部材表面の組成変化が影響を与えていることが考えられる。すなわち、トナーが摩擦混合・現像・補給を繰り返しても常に一定量の摩擦帯電量を維持するためには、トナーの表面組成中で、とりわけCCAの量が常に一定量に維持されている必要があるからである。   It is considered that the deterioration of the developed image is affected by the change in the composition of the toner surface and the charging member surface by repeating the development / friction process. In other words, in order to always maintain a constant amount of triboelectric charge even if the toner is repeatedly subjected to frictional mixing, development, and replenishment, it is necessary that the amount of CCA in the surface composition of the toner is always maintained constant. Because there is.

実際に、(1)トナーが現像操作や、現像器内でのトナーと帯電部材との摩擦・混合操作によって、トナー表面のCCA量に過不足が生ずる、(2)トナー表面のCCAが帯電部材表面に移行して汚染する、(3)トナー表面のCCAがトナーの内部に埋没する、などのため、トナー表面のCCA量を常に一定に保つことが困難となっている。この結果、トナーを長期間使用すると、トナー帯電量は徐々に変化し、画像が劣化する問題は必然的におこり、これらの問題は未だ完全に解決されるに至っていない。   Actually, (1) the amount of CCA on the toner surface becomes excessive or insufficient due to the toner developing operation or the friction / mixing operation between the toner and the charging member in the developing unit. (2) The CCA on the toner surface is charged by the charging member. It is difficult to always keep the CCA amount on the toner surface constant because it migrates to the surface and becomes contaminated, or (3) the CCA on the toner surface is buried inside the toner. As a result, when the toner is used for a long period of time, the charge amount of the toner gradually changes and the problem that the image deteriorates inevitably occurs, and these problems have not yet been completely solved.

一方、特許文献8〜19記載のように、上記球状シリカ微粒子粉体のトナー外添剤としての性能は、分散性、流動性が良好で、トナーに必要な流動性、耐ケーキング性を付与することができたが、シリカそのものが強い負帯電性を示すため、これを正帯電性に替える表面処理などを行った後トナーに添加しても、トナーに正帯電性で所望する帯電量を安定に維持するための電荷付与機能を持たせることが難しく、特に、長期に亘り現像剤混合した場合には、シリカ粉が研磨剤として働くために発生するトナー微粉により、帯電量が大きく変化する原因となっていた。   On the other hand, as described in Patent Documents 8 to 19, the spherical silica fine particle powder has good dispersibility and fluidity as a toner external additive, and imparts necessary fluidity and caking resistance to the toner. However, since silica itself exhibits a strong negative chargeability, even if it is added to the toner after a surface treatment that replaces it with the positive chargeability, the desired charge amount can be stabilized with the positive chargeability of the toner. It is difficult to provide a charge imparting function to maintain the charge amount, and particularly when the developer is mixed for a long period of time, the charge amount largely changes due to the toner fine powder generated because the silica powder acts as an abrasive. It was.

そこで、本発明は、従来の静電像現像トナーにおいて、優れた流動性、優れた分散性を維持しつつ、CCAが有している帯電制御機能を付加して、摩擦帯電極性のみならず摩擦帯電量を高精度で調節できるようにすることで、トナー表面に存在するCCA粒子の量を一定範囲に保ち、以ってキャリアなどとの間に発生する摩擦帯電量を一定範囲に保つことで、長期間の使用によっても画像の劣化が生じにくく、さらにトナーとして優れた流動性、耐ケーキング性をも付与できる静電像現像トナーを提供することを目的とする。   Therefore, the present invention adds the charge control function of the CCA while maintaining excellent fluidity and excellent dispersibility in the conventional electrostatic image developing toner, so that the friction charge polarity as well as the friction charge polarity is added. By making it possible to adjust the charge amount with high accuracy, the amount of CCA particles existing on the toner surface is kept within a certain range, and thus the frictional charge amount generated between the toner and the carrier is kept within a certain range. An object of the present invention is to provide an electrostatic image developing toner which is less likely to deteriorate even when used for a long period of time, and which can impart excellent fluidity and anti-caking property as a toner.

本発明者らは、上記の課題を解決するため鋭意検討した結果、ゾルゲル法によって得られる親水性球状シリカ微粒子の表面を疎水化処理することにより得られた搬送粒子の表面に、所定量のCCAを被着せしめてなる外添用電荷制御粒子およびこの外添用電荷制御粒子をトナーに対して所定量添加した静電像現像トナーが上記の課題を解決することができることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have determined that a predetermined amount of CCA is applied to the surface of the carrier particles obtained by hydrophobizing the surface of the hydrophilic spherical silica fine particles obtained by the sol-gel method. The present invention has found that an externally added charge control particle and a toner for electrostatic image development in which a predetermined amount of the externally added charge control particle is added to the toner can solve the above problems. completed.

すなわち、本発明の静電像現像トナーは、トナー粒子と、前記トナー粒子の摩擦帯電量を制御するために用いられる、平均粒径20〜500nmの搬送粒子の表面に電荷制御剤(CCA)を被着せしめた外添用電荷制御粒子と、を混合してなる静電像現像トナーであって、前記外添用電荷制御粒子が、ゾルゲル法によって得られる親水性球状シリカ微粒子の表面を疎水化処理することにより得られた平均粒径20〜500nmの疎水性球状シリカ微粒子からなる搬送粒子と、該搬送粒子の表面に被着せしめた電荷制御剤と、から構成された静電像現像トナーの摩擦帯電量を制御するための外添用電荷制御粒子であり、前記搬送粒子1質量部に対して前記電荷制御剤(CCA)を1×10−3〜1×10−1質量部の範囲で有するものであって、かつ、前記トナー粒子1質量部に対して、前記外添用電荷制御粒子を0.001〜0.05質量部混合してなることを特徴とするものである。 That is, in the electrostatic image developing toner of the present invention, a charge control agent (CCA) is applied to the surface of toner particles and carrier particles having an average particle diameter of 20 to 500 nm, which is used for controlling the triboelectric charge amount of the toner particles. An electrostatic image developing toner obtained by mixing a charge control particle for external addition that has been applied, wherein the charge control particle for external addition hydrophobizes the surface of hydrophilic spherical silica fine particles obtained by a sol-gel method. An electrostatic image developing toner comprising transport particles made of hydrophobic spherical silica fine particles having an average particle diameter of 20 to 500 nm obtained by the treatment, and a charge control agent deposited on the surfaces of the transport particles. Charge control particles for external addition for controlling the triboelectric charge amount, and the charge control agent (CCA) is in a range of 1 × 10 −3 to 1 × 10 −1 parts by mass with respect to 1 part by mass of the transport particles. Have In addition, 0.001 to 0.05 parts by mass of the charge control particles for external addition are mixed with 1 part by mass of the toner particles.

また、本発明の外添用電荷制御粒子は、ゾルゲル法によって得られる親水性球状シリカ微粒子の表面を疎水化処理することにより得られた平均粒径20〜500nmの疎水性球状シリカ微粒子からなる搬送粒子と、該搬送粒子の表面に被着せしめた電荷制御剤と、から構成された静電像現像トナーの摩擦帯電量を制御するための外添用電荷制御粒子であって、前記電荷制御剤を、前記搬送粒子1質量部に対して1×10−3〜1×10−1質量部の範囲で有することを特徴とするものである。 The externally added charge control particles of the present invention are transported of hydrophobic spherical silica fine particles having an average particle diameter of 20 to 500 nm obtained by hydrophobizing the surface of hydrophilic spherical silica fine particles obtained by the sol-gel method. Charge control particles for external addition for controlling the triboelectric charge amount of electrostatic image developing toner comprising particles and a charge control agent deposited on the surface of the carrier particles, the charge control agent In the range of 1 × 10 −3 to 1 × 10 −1 parts by mass with respect to 1 part by mass of the carrier particles.

本発明の搬送粒子表面に微量のCCAを被着してなる外添用電荷制御粒子は、優れた流動性、撥水性、研磨性低減効果、電荷付与効果、を併せ持つ電荷制御用微粒子であり、これを添加した静電像現像トナーに優れた流動性、耐ケーキング性を与えるだけでなく、トナーに所望の帯電極性と所望の帯電量を付与することができる。   The charge control particles for external addition formed by depositing a small amount of CCA on the surface of the carrier particles of the present invention are fine particles for charge control having both excellent fluidity, water repellency, abrasiveness reducing effect, charge imparting effect, In addition to imparting excellent fluidity and anti-caking property to the electrostatic image developing toner to which the toner is added, it is possible to impart a desired charge polarity and a desired charge amount to the toner.

また、これにより、本発明の外添用電荷制御粒子を添加した静電像現像トナーは、優れた帯電量の立ち上がりと一定帯電量の維持を実現し、高湿度下で現像剤と帯電部材との混合攪拌操作あるいは現像・補給操作を繰り返した後も一定の帯電量を維持し、現像の質の劣化を生じさせずに現像操作を行うことができる。   In addition, the electrostatic image developing toner to which the externally added charge control particles of the present invention are added realizes an excellent rise in charge amount and maintenance of a constant charge amount, and the developer and the charging member under high humidity. Even after repeating the mixing and stirring operation or the development / replenishment operation, the constant charge amount can be maintained, and the development operation can be performed without causing deterioration of the development quality.

実施例1〜7および比較例1,2のトナーの混合時間とトナー帯電量との関係を示した図である。FIG. 6 is a diagram illustrating a relationship between toner mixing time and toner charge amount in Examples 1 to 7 and Comparative Examples 1 and 2. 実施例8〜13および比較例1,2のトナーの混合時間とトナー帯電量との関係を示した図である。FIG. 6 is a diagram illustrating a relationship between toner mixing time and toner charge amount in Examples 8 to 13 and Comparative Examples 1 and 2. 実施例14〜19および比較例1,2のトナーの混合時間とトナー帯電量との関係を示した図である。FIG. 6 is a graph showing the relationship between toner mixing time and toner charge amount in Examples 14 to 19 and Comparative Examples 1 and 2. 実施例20〜24および比較例2,3のトナーの混合時間とトナー帯電量との関係を示した図である。FIG. 6 is a graph showing the relationship between toner mixing time and toner charge amount in Examples 20 to 24 and Comparative Examples 2 and 3;

本発明で用いる疎水性球状シリカ微粒子は、ゾルゲル法によって得られる親水性球状シリカ微粒子の表面を疎水化処理することにより得られた平均粒径20〜500nmの疎水性球状シリカ微粒子である。   The hydrophobic spherical silica fine particles used in the present invention are hydrophobic spherical silica fine particles having an average particle diameter of 20 to 500 nm obtained by hydrophobizing the surface of hydrophilic spherical silica fine particles obtained by the sol-gel method.

この疎水性球状シリカ微粒子は、4官能性シラン化合物および/またはその部分加水分解縮合生成物を加水分解および縮合することによって得られたSiO単位からなる親水性球状シリカ微粒子の表面にRSiO3/2単位(式中、Rは置換または非置換の炭素原子数1〜20の1価炭化水素基である)およびR SiO1/2単位(式中、Rは同一または異種の炭素原子数1〜6の1価炭化水素基である。)を導入する疎水化処理により得られたものである。 The hydrophobic spherical silica microparticles, tetrafunctional silane compound and / or R 2 SiO its partial hydrolysis condensation product on the surface of the hydrophilic spherical silica microparticles composed of the obtained SiO 2 units by hydrolysis and condensation 3/2 units (wherein R 2 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms) and R 1 3 SiO 1/2 units (wherein R 1 is the same or different) And a monovalent hydrocarbon group having 1 to 6 carbon atoms.) Obtained by hydrophobic treatment.

この疎水性球状シリカ微粒子のより具体的な製法の1例は以下に記載する通りである。   An example of a more specific method for producing the hydrophobic spherical silica fine particles is as described below.

まず、一般式(I):Si(OR(但し、Rは同一または異種の炭素原子数1〜6の1価炭化水素基である。)で示されるシラン化合物およびその加水分解縮合物から選択される1種または2種以上の化合物をメタノールやエタノールなどの親水性溶媒、水、並びにアンモニア、有機アミンなどの塩基性化合物の混合溶液中で加水分解、縮合することによって親水性球状シリカ微粒子分散液を得る工程を行う。 First, a silane compound represented by the general formula (I): Si (OR 3 ) 4 (wherein R 3 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms) and hydrolytic condensation thereof. Hydrophilic spheres by hydrolyzing and condensing one or more compounds selected from the products in a mixed solution of hydrophilic compounds such as methanol and ethanol, water, and basic compounds such as ammonia and organic amines A step of obtaining a silica fine particle dispersion is performed.

得られた親水性球状シリカ微粒子分散液に水を添加し、親水性溶媒を留去し水性分散液に変換し、微粒子表面に残存するアルコキシ基を完全に加水分解する工程を行う。   A step of adding water to the obtained hydrophilic spherical silica fine particle dispersion, distilling off the hydrophilic solvent and converting it into an aqueous dispersion, and completely hydrolyzing the alkoxy groups remaining on the surface of the fine particles is performed.

次いで、このようにして処理された親水性球状シリカ微粒子水性分散液に、一般式(II):RSi(OR(但し、Rは炭素原子数1〜20の1価炭化水素基、Rは同一または異種の炭素原子数1〜6の1価炭化水素基)で示されるシラン化合物およびその加水分解縮合物から選択される1種または2種以上の化合物を添加し親水性球状シリカ微粒子表面をコーティングし、疎水性球状シリカ微粒子を得る工程を行う。 Next, the hydrophilic spherical silica fine particle aqueous dispersion thus treated is added to the general formula (II): R 2 Si (OR 4 ) 3 (where R 2 is a monovalent hydrocarbon having 1 to 20 carbon atoms). Group, R 4 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms) and one or two or more compounds selected from hydrolytic condensates thereof are added to make hydrophilic A step of coating the surface of the spherical silica fine particles to obtain hydrophobic spherical silica fine particles is performed.

さらに、該疎水性球状シリカ微粒子水性分散液にケトン系溶媒を添加し水を留去し疎水性球状シリカ微粒子ケトン系溶媒分散液に変換する工程を行う。   Further, a step of adding a ketone solvent to the hydrophobic spherical silica fine particle aqueous dispersion and distilling off water to convert it into a hydrophobic spherical silica fine particle ketone solvent dispersion is performed.

最後に、該疎水性球状シリカ微粒子ケトン系溶媒分散液に、一般式(III):R SiNHSiR (但し、Rは同一または異種の炭素原子数1〜6の1価炭化水素基である。)で示されるシラザン化合物、および一般式(IV):R SiX(但し、Rは一般式(III)に同じ。XはOH基または加水分解性基である。)で示されるシラン化合物から選ばれる化合物を添加し、反応させてシリカ微粒子表面に残存するシラノール基をトリアルキルシリル化しさらに高度に疎水化する工程を行うことによって、本発明に適した疎水性球状シリカ微粒子が得られる。 Finally, in the hydrophobic spherical silica fine particle ketone solvent dispersion, the general formula (III): R 1 3 SiNHSiR 1 3 (wherein R 1 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms) And a general formula (IV): R 1 3 SiX (where R 1 is the same as in general formula (III), X is an OH group or a hydrolyzable group). Hydrophobic spherical silica fine particles suitable for the present invention can be obtained by adding a compound selected from silane compounds and reacting them to make the silanol groups remaining on the surface of the silica fine particles trialkylsilylated and further hydrophobized. can get.

ここで、一般式(I)で示される4官能性シラン化合物の具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン等のテトラアルコキシシランが挙げられる。また、一般式(I)で示される4官能性シラン化合物の部分加水分解縮合物の具体例としては、メチルシリケート、エチルシリケート等が挙げられる。   Here, specific examples of the tetrafunctional silane compound represented by the general formula (I) include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, and tetrabutoxysilane. Specific examples of the partial hydrolysis-condensation product of the tetrafunctional silane compound represented by the general formula (I) include methyl silicate and ethyl silicate.

親水性有機溶媒は、一般式(I)の化合物またはその部分加水分解縮合物および水を溶解するものであれば特に制限はなく、アルコール類、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、酢酸セロソルブ等のセロソルブ類、アセトン、メチルエチルケトン等のケトン類、ジオキサン、テトラヒドロフラン等のエーテル類等が挙げられ、好ましくはアルコール類が良い。   The hydrophilic organic solvent is not particularly limited as long as it dissolves the compound of the general formula (I) or a partially hydrolyzed condensate thereof and water, and cellosolves such as alcohols, methyl cellosolve, ethyl cellosolve, butyl cellosolve, and cellosolve acetate. , Ketones such as acetone and methyl ethyl ketone, ethers such as dioxane and tetrahydrofuran, and alcohols are preferable.

アルコール類としては、一般式(V):ROH(V)(但し、Rは炭素原子数1〜6の一価炭化水素基である。)で示されるアルコール溶媒が挙げられ、具体例としては、メタノール、エタノール、イソプロパノール、ブタノール等が挙げられる。アルコールの炭素原子数が増すと生成するシリカ微粒子の粒子径が大きくなるため目的とするシリカ微粒子の粒径によりアルコールの種類を選択することが望ましい。 Examples of alcohols include alcohol solvents represented by the general formula (V): R 6 OH (V) (where R 6 is a monovalent hydrocarbon group having 1 to 6 carbon atoms), and specific examples thereof. Examples include methanol, ethanol, isopropanol, and butanol. As the number of carbon atoms in the alcohol increases, the particle size of the silica fine particles to be generated increases, so it is desirable to select the type of alcohol according to the particle size of the target silica fine particles.

また、上記の塩基性化合物としてはアンモニア、ジメチルアミン、ジエチルアミン等が挙げられ、好ましくはアンモニアである。これら塩基性化合物は水に所要量溶解したのち、得られた水溶液(塩基性の水)を親水性有機溶媒と混合すればよい。   Examples of the basic compound include ammonia, dimethylamine, diethylamine and the like, and preferably ammonia. These basic compounds may be dissolved in water in a required amount, and the obtained aqueous solution (basic water) may be mixed with a hydrophilic organic solvent.

このとき使用される水の量は一般式(I)のシラン化合物またはその部分加水分解縮合物のアルコキシ基1モルに対して0.5〜5モルであることが好ましく、水と親水性有機溶媒の比率は質量比で0.5〜10であることが好ましく、塩基性化合物の量は一般式(I)のシラン化合物またはその部分加水分解縮合物のアルコキシ基1モルに対して0.01〜1モルであることが好ましい。   The amount of water used at this time is preferably 0.5 to 5 mol with respect to 1 mol of the alkoxy group of the silane compound of the general formula (I) or a partially hydrolyzed condensate thereof, and water and a hydrophilic organic solvent Is preferably 0.5 to 10 in terms of mass ratio, and the amount of the basic compound is 0.01 to 1 mol per 1 mol of the alkoxy group of the silane compound of the general formula (I) or its partial hydrolysis condensate. It is preferably 1 mole.

一般式(I)の4官能性シラン化合物等の加水分解、縮合は塩基性化合物を含む親水性有機溶媒と水の混合物中へ一般式(I)の4官能性シラン化合物を滴下する周知の方法によって行われる。シリカ微粒子混合溶液分散液の分散媒を水に変換するには、例えば、該分散液に水を添加し親水性有機溶媒を留去する操作(必要に応じこの操作を繰り返す)により行うことができる。このときに添加される水量は、使用した親水性有機溶媒および生成したアルコール量の合計に対して質量比で0.5〜2倍量、好ましくはほぼ1倍量用いるのが良い。   Hydrolysis and condensation of a tetrafunctional silane compound or the like of the general formula (I) is a well-known method in which the tetrafunctional silane compound of the general formula (I) is dropped into a mixture of a hydrophilic organic solvent containing a basic compound and water. Is done by. In order to convert the dispersion medium of the silica fine particle mixed solution dispersion into water, for example, an operation of adding water to the dispersion and distilling off the hydrophilic organic solvent (repeating this operation as necessary) can be performed. . The amount of water added at this time is 0.5 to 2 times, preferably about 1 time, in terms of mass ratio with respect to the total amount of the hydrophilic organic solvent used and the amount of alcohol produced.

一般式(II)で示される3官能性シラン化合物の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、i−プロピルトリメトキシシラン、i−プロピルトリエトキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ヘキシルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン等のトリアルコキシシランが挙げられ、また、これらの部分加水分解縮合物を用いても良い。   Specific examples of the trifunctional silane compound represented by the general formula (II) include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, and n-propyltrimethoxysilane. Trialkoxy such as ethoxysilane, i-propyltrimethoxysilane, i-propyltriethoxysilane, butyltrimethoxysilane, butyltriethoxysilane, hexyltrimethoxysilane, trifluoropropyltrimethoxysilane, heptadecafluorodecyltrimethoxysilane Silane may be mentioned, and these partially hydrolyzed condensates may be used.

一般式(II)で示される3官能性シラン化合物の添加量は、使用された親水性球状シリカ微粒子のSiO単位1モル当り1〜0.001モル、好ましくは0.1〜0.01モル用いるのが良い。 The addition amount of the trifunctional silane compound represented by the general formula (II) is 1 to 0.001 mol, preferably 0.1 to 0.01 mol, per 1 mol of SiO 2 unit of the hydrophilic spherical silica fine particles used. It is good to use.

疎水性球状シリカ微粒子水性分散液の分散媒をケトン系溶媒に変換する工程では、該分散液にケトン系溶媒を添加し水を留去する操作(必要に応じてこの操作を繰り返す)が行われる。このとき添加されるケトン系溶媒量は、使用した親水性球状シリカ微粒子に対して質量比で0.5〜5倍量、好ましくは1〜2倍量用いるのが良い。ここで用いられるケトン系溶媒の具体例としては、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン等が挙げられ、好ましくはメチルイソブチルケトンが良い。   In the step of converting the dispersion medium of the hydrophobic spherical silica fine particle aqueous dispersion into the ketone solvent, an operation of adding the ketone solvent to the dispersion and distilling off the water (repeating this operation as necessary) is performed. . The amount of the ketone solvent added at this time is 0.5 to 5 times, preferably 1 to 2 times the mass ratio of the hydrophilic spherical silica fine particles used. Specific examples of the ketone solvent used here include methyl ethyl ketone, methyl isobutyl ketone, acetylacetone and the like, preferably methyl isobutyl ketone.

一般式(III)で示されるシラザン化合物の具体例としては、ヘキサメチルジシラザンが挙げられ、一般式(IV)で示される1官能性シラン化合物の具体例としては、トリメチルシラノール、トリエチルシラノール等のモノシラノール化合物、トリメチルクロロシラン、トリエチルクロロシラン等のモノクロロシラン、トリメチルメトキシシラン、トリメチルエトキシシラン等のモノアルコキシシラン、トリメチルシリルジメチルアミン、トリメチルシリルジエチルアミン等のモノアミノシラン、トリメチルアセトキシシラン等のモノアシロキシシランが挙げられる。   Specific examples of the silazane compound represented by the general formula (III) include hexamethyldisilazane. Specific examples of the monofunctional silane compound represented by the general formula (IV) include trimethylsilanol and triethylsilanol. Monosilanol compounds, monochlorosilanes such as trimethylchlorosilane and triethylchlorosilane, monoalkoxysilanes such as trimethylmethoxysilane and trimethylethoxysilane, monoaminosilanes such as trimethylsilyldimethylamine and trimethylsilyldiethylamine, and monoacyloxysilanes such as trimethylacetoxysilane .

これらの使用量は、使用した親水性球状シリカ微粒子のSiO単位1モルに対して0.1〜0.5モル、好ましくは0.2〜0.3モル用いるのがよい。 These are used in an amount of 0.1 to 0.5 mol, preferably 0.2 to 0.3 mol, based on 1 mol of SiO 2 units of the used hydrophilic spherical silica fine particles.

このようにして製造された疎水性球状シリカ微粒子は、常法によって粉体として得ることができる。   The hydrophobic spherical silica fine particles thus produced can be obtained as a powder by a conventional method.

本発明で用いる疎水性球状シリカ微粒子は、表面が高度に疎水化され、シラノール基等の反応性基が残存しておらず、また、高分散性、低凝集性で流動性が良いため本発明の目的、効果に良好な結果を与えるものである。   The hydrophobic spherical silica fine particles used in the present invention have a highly hydrophobic surface, no reactive groups such as silanol groups remain, high dispersibility, low agglomeration, and good fluidity. It gives good results to the purpose and effect.

この微粒子の粒子径は、現像剤の流動性、耐ケーキング性および定着性を良好にし、感光体への悪影響を低減する観点から、20〜500nmであり、好ましくは50〜200nmである。粒径が20nmより小さいと凝集により現像剤の流動性、耐ケーキング性、定着性が得られず、500nmを越えると感光体の変性、削れ、トナーへの付着性の低下といった不利を生ずる。なお、ここで「粒子径」とは体積基準メジアン径を意味し、本明細書における搬送粒子の平均粒径は、動的光散乱法/レーザードップラー法による粒度分布測定により求められる。   The particle size of the fine particles is 20 to 500 nm, preferably 50 to 200 nm, from the viewpoint of improving the flowability, caking resistance and fixability of the developer and reducing the adverse effect on the photoreceptor. If the particle size is smaller than 20 nm, the fluidity, caking resistance, and fixing property of the developer cannot be obtained due to aggregation, and if it exceeds 500 nm, there are disadvantages such as modification of the photoreceptor, scraping, and reduction in adhesion to the toner. Here, “particle diameter” means a volume-based median diameter, and the average particle diameter of the carrier particles in the present specification is determined by particle size distribution measurement by a dynamic light scattering method / laser Doppler method.

この微粒子は、テトラアルコキシシランのアルコキシ基炭素原子数が小さいシランを用いること、溶媒として炭素原子数の小さいアルコールを用いること、加水分解温度を高めること、テトラアルコキシシランの加水分解時の濃度を低くすること、加水分解触媒の濃度を低くすることなど、反応条件を変更することでより小さい粒径で得ることができる。   This fine particle uses a silane having a small number of carbon atoms in the tetraalkoxysilane, uses an alcohol having a small number of carbon atoms as a solvent, raises the hydrolysis temperature, and lowers the concentration during hydrolysis of the tetraalkoxysilane. It can be obtained with a smaller particle size by changing reaction conditions such as reducing the concentration of the hydrolysis catalyst.

本発明で用いる疎水性球状シリカ微粒子について、「球状」とは、真球だけでなく、若干歪んだ球も含む。なおこのような粒子の形状は、粒子を二次元に投影した時の円形度で評価し、円形度が0.8〜1の範囲にあるものとする。ここで円形度とは、(粒子面積と等しい円の周囲長)/(粒子周囲長)である。この円形度は電子顕微鏡等で得られる粒子像を画像解析することにより測定することができる。   With respect to the hydrophobic spherical silica fine particles used in the present invention, “spherical” includes not only true spheres but also slightly distorted spheres. Note that the shape of such particles is evaluated by the circularity when the particles are projected two-dimensionally, and the circularity is in the range of 0.8 to 1. Here, the circularity is (peripheral length of a circle equal to the particle area) / (peripheral length of particle). This circularity can be measured by image analysis of a particle image obtained with an electron microscope or the like.

また、この微粒子は、必要に応じて種々のシランカップリング剤、ジメチルジメトキシシラン等のシラン類でさらに表面処理をされていてもよい。   The fine particles may be further surface-treated with various silane coupling agents and silanes such as dimethyldimethoxysilane as necessary.

本発明に用いられるCCAは、分子中にスルホン基、カルボキシル基、フェノール性水酸基、燐酸基、ニトロ基、シアノ基などの電子受容性基、あるいはアミノ基、アルキルアミノ基、第4アンモニウム基などの電子供与性基、を有する有機化合物、またはこれらの極性基との塩あるいは錯体を形成した有機化合物である。電子供与性あるいは電子受容性の極性基と塩あるいは錯体を形成するための対抗イオンは有機物イオンに限定されることはなく、金属イオン、金属酸化物イオン、ハロゲンイオン、第4アンモニウムイオン、などであっても良い。   The CCA used in the present invention has an electron accepting group such as a sulfone group, a carboxyl group, a phenolic hydroxyl group, a phosphoric acid group, a nitro group, and a cyano group in the molecule, or an amino group, an alkylamino group, a quaternary ammonium group, and the like. An organic compound having an electron donating group, or an organic compound formed with a salt or complex with these polar groups. Counter ions for forming salts or complexes with electron donating or electron accepting polar groups are not limited to organic ions, such as metal ions, metal oxide ions, halogen ions, quaternary ammonium ions, etc. There may be.

このCCAは、粒子状のCCA粒子となって後述する搬送粒子に被着されるもので、このCCA粒子としては分子サイズまたは分子サイズに近い大きさのものも含まれる。従来CCAとして市販されているもののほとんどは上記の有機化合物に含まれるが、本発明のCCAはこれらに限定されない。たとえば主鎖あるいは側鎖に電子供与性あるいは電子受容性の極性基が0.01ミリモル%以上導入された分子量1×10〜1×10の樹脂、あるいはこれら樹脂分子の極性基が塩または錯体を形成している樹脂や、分子量100以上1000以下の低分子量の有機化合物であって、電子供与性あるいは電子受容性の極性基を少なくとも1個有する有機化合物、またはこれらの極性基と塩あるいは錯体構造を有する有機化合物、なども本発明のCCAとして使用できる。 This CCA becomes particulate CCA particles and is deposited on carrier particles described later, and the CCA particles include those having a molecular size or a size close to the molecular size. Although most of those conventionally marketed as CCA are contained in the above organic compounds, the CCA of the present invention is not limited thereto. For example, a resin having a molecular weight of 1 × 10 3 to 1 × 10 5 in which 0.01 mmol% or more of an electron donating or electron accepting polar group is introduced into the main chain or side chain, or the polar group of these resin molecules is a salt or A resin forming a complex, a low molecular weight organic compound having a molecular weight of 100 to 1,000, and having at least one electron-donating or electron-accepting polar group, or a polar group and a salt thereof; An organic compound having a complex structure can also be used as the CCA of the present invention.

本発明の外添用電荷制御粒子は、上記のような疎水性球状シリカ微粒子(以下、搬送粒子という。)1質量部に対して、CCA粒子が、1×10−3〜1×10−1質量部の範囲で搬送粒子表面に被着され、静電像現像トナーの流動性、耐ケーキング性および定着性を良好にし、感光体への悪影響を低減し、さらに、摩擦帯電量制御するための外添用電荷制御粒子として用いられる。 In the externally added charge control particles of the present invention, the CCA particles are 1 × 10 −3 to 1 × 10 −1 with respect to 1 part by mass of the hydrophobic spherical silica fine particles (hereinafter referred to as carrier particles). It adheres to the surface of the transport particles in the range of part by mass, improves the flowability, caking resistance and fixability of the electrostatic image developing toner, reduces the adverse effect on the photoreceptor, and further controls the triboelectric charge amount. Used as external charge control particles.

本発明の外添用電荷制御粒子は、これをトナー粒子(着色樹脂微粒子)と混合することで静電像現像トナーとするものである。ここで用いるトナー粒子は、熱可塑性樹脂粒子中に着色微粒子を含有させてなる粒径2〜20μm、体積平均粒径が5〜10μm程度の着色樹脂粒子であって、熱溶融特性や離型性を改良するためにワックスなどを含み、また流動性を改良するためにその表面に超微粒のシリカ粉が外添された粒子もこの範疇に含まれる。着色樹脂粒子は、熱可塑性粒子と着色剤およびワックスなどを溶融混練したのち粉砕・分級して所望粒度の粒子を得、これにシリカ粉などを添加して得られる粉砕法によって得ることができる。また、最近ケミカルトナーと呼ばれる粒子のように、着色剤とワックスなどをモノマー中に分散し、分散液を水中にて懸濁重合する、水中に分散した微粒の熱可塑性樹脂や着色剤およびワックスを凝集させる、あるいは乳化した樹脂粒子およびワックス粒子と着色剤を凝集させる、などの方法によっても得ることができる。なお、本明細書における着色樹脂粒子の粒径はコールターカウンター法により求められる。   The charge control particles for external addition according to the present invention are mixed with toner particles (colored resin fine particles) to form an electrostatic image developing toner. The toner particles used here are colored resin particles having a particle diameter of 2 to 20 μm and a volume average particle diameter of about 5 to 10 μm formed by containing colored fine particles in thermoplastic resin particles. Also included in this category are particles containing a wax or the like to improve the fluidity, and to which ultrafine silica powder is externally added to the surface to improve fluidity. The colored resin particles can be obtained by a pulverization method obtained by melt-kneading thermoplastic particles, a colorant, wax, and the like, and then pulverizing and classifying them to obtain particles of a desired particle size, and adding silica powder or the like thereto. In addition, like particles called chemical toners, a colorant and wax are dispersed in a monomer, and the dispersion is suspended and polymerized in water. Fine particles of thermoplastic resin, colorant and wax dispersed in water are used. It can also be obtained by agglomerating or emulsifying resin particles and wax particles and a colorant. In addition, the particle size of the colored resin particles in the present specification is determined by a Coulter counter method.

本発明の静電像現像トナーにおける外添用電荷制御粒子は、トナー粒子1質量部に対して0.001〜0.05質量部の範囲で添加されるのが望ましい。添加した外添用電荷制御粒子が0.001質量部より少ない場合は、外添用電荷制御粒子がトナー粒子表面にごくまばらにしか被着していないため、所望の流動性が得られない。また外添用電荷制御粒子の添加量が0.05質量部を超えると、トナー粒子表面に被着し得ない遊離の外添用電荷制御粒子が現像部材、感光体、あるいは機内汚染の原因となるだけでなく、トナーの帯電制御性能を劣化させる。   The charge control particles for external addition in the electrostatic image developing toner of the present invention are desirably added in the range of 0.001 to 0.05 parts by mass with respect to 1 part by mass of the toner particles. When the added external charge control particles are less than 0.001 part by mass, the external charge control particles are only sparsely deposited on the surface of the toner particles, so that the desired fluidity cannot be obtained. When the amount of the externally added charge control particles exceeds 0.05 parts by mass, free externally added charge control particles that cannot be deposited on the surface of the toner particles may cause contamination of the developing member, photoconductor, or in-machine. In addition, the charge control performance of the toner is deteriorated.

本発明の外添用電荷制御粒子では、搬送粒子1質量部の表面に被着せしめるCCA粒子は1×10−3〜1×10−1質量部の範囲とし、トナー粒子1質量部に搬送粒子が運ぶCCA粒子は1×10−6〜5×10−3質量部、望ましくは1×10−5〜1×10−3質量部の範囲になるように選択される。搬送粒子はこのような極微量のCCAをトナー粒子表面に精度良く供給するために働いていると見ることができる。このような極微量のCCAでトナーの帯電量が支配される理由は、本発明の外添用電荷制御粒子では、搬送粒子表面に被着した分子サイズに限りなく近い大きさのCCAをトナー粒子表面に供給できることに起因していると考えられる。たとえば、搬送粒子表面に被着した分子量10000のCCAを1×10−5質量部としたとき、被着CCA分子がすべてイオン化された状態でトナー表面に供給されると仮定すると、この分子イオンはトナー粒子1質量部の帯電量を100μC/g負あるいは正方向にシフトさせることができる。後述の実施例に示されるように、本発明の外添用CCA粒子をトナーに添加した場合この理論電荷付与量に近い値が確認できている。 In the charge control particles for external addition of the present invention, the CCA particles to be deposited on the surface of 1 part by mass of the carrier particles are in the range of 1 × 10 −3 to 1 × 10 −1 parts by mass, and the carrier particles are added to 1 part by mass of the toner particles. The CCA particles carried by are selected in the range of 1 × 10 −6 to 5 × 10 −3 parts by mass, preferably 1 × 10 −5 to 1 × 10 −3 parts by mass. It can be seen that the carrier particles work to supply such a very small amount of CCA to the toner particle surface with high accuracy. The reason why the charge amount of the toner is governed by such a very small amount of CCA is that the charge control particles for external addition according to the present invention use CCA having a size close to the molecular size deposited on the surface of the carrier particles as the toner particles. It is thought that it originates in being able to supply to the surface. For example, assuming that the CCA having a molecular weight of 10,000 deposited on the surface of the carrier particle is 1 × 10 −5 parts by mass, assuming that all the deposited CCA molecules are supplied to the toner surface in an ionized state, this molecular ion is The charge amount of 1 part by mass of toner particles can be shifted in the negative or positive direction by 100 μC / g. As shown in Examples described later, when the external addition CCA particles of the present invention are added to the toner, a value close to the theoretical charge application amount can be confirmed.

トナー粒子表面に搬送粒子が運ぶ極微量のCCA粒子は、トナー粒子1質量部に対して1×10−6〜5×10−3質量部の範囲が望ましく、その一部もしくはほとんどが搬送粒子より粒径が小さいか、分子サイズに近い粒子として、搬送粒子の表面に被着するか、搬送粒子の表面を被覆していることが望ましいが、1部のCCA粒子は搬送粒子に被着せず遊離の粒子として存在していても良い。このような搬送粒子とCCAからなる外添用電荷制御粒子は、搬送粒子を水、有機溶剤などの液体中に微分散乃至溶解させるなどした後、コアセルベーション法を適用して搬送粒子表面にCCAを被覆することによって得られる。また、流動状態の搬送粒子にCCA溶液あるいは分散液を霧化して吹き付ける、搬送粒子の分散液を攪拌しつつCCAの溶液あるいは分散液を添加する、CCA溶液あるいは分散液と搬送粒子とを混合した後乾燥・解砕する、または、CCAと搬送粒子との混合体に圧縮あるいはずり応力を加えながら混合するメカノケミカル法などを適用して作製することができる。 The extremely small amount of CCA particles carried by the carrier particles on the surface of the toner particles is preferably in the range of 1 × 10 −6 to 5 × 10 −3 parts by mass with respect to 1 part by mass of the toner particles, and part or most of the CCA particles are more than the carrier particles. It is desirable that the particle size is small or close to the molecular size, either deposited on the surface of the carrier particle or coated on the surface of the carrier particle, but one part of the CCA particle is not deposited on the carrier particle and is free May be present as particles. The charge control particles for external addition consisting of such carrier particles and CCA are finely dispersed or dissolved in a liquid such as water or an organic solvent, and then applied to the surface of the carrier particles by applying a coacervation method. Obtained by coating CCA. Also, the CCA solution or dispersion is atomized and sprayed on the carrier particles in a fluid state, the CCA solution or dispersion is added while stirring the carrier particle dispersion, and the CCA solution or dispersion and carrier particles are mixed. It can be produced by applying a mechanochemical method such as post-drying and crushing, or mixing while applying compression or shear stress to the mixture of CCA and carrier particles.

このようにして得られた外添用電荷制御粒子中には、時として搬送粒子表面に被着していない遊離のCCA粒子が存在し、搬送粒子と混合した状態となることがある。このような場合であっても、本発明に外添用電荷制御粒子としての機能を十分に発揮する。この理由については明らかになっていないが、外添用電荷制御粒子がトナー粒子表面に供給され、帯電部材と摩擦・混合する過程において、トナー粒子と帯電部材の界面に存在する遊離のCCA粒子は、帯電部材や搬送粒子によって摩砕され、小さい粒子となり、時には分子サイズに近い粒子に変わってゆくためと考えられる。   In the externally added charge control particles thus obtained, there are sometimes free CCA particles that are not deposited on the surface of the carrier particles and may be mixed with the carrier particles. Even in such a case, the present invention sufficiently exhibits the function as the charge control particles for external addition. Although the reason for this has not been clarified, in the process in which the charge control particles for external addition are supplied to the surface of the toner particles and are rubbed and mixed with the charging member, the free CCA particles present at the interface between the toner particles and the charging member are This is probably because the particles are ground by charging members and carrier particles to become small particles, and sometimes change to particles close to the molecular size.

上記したようにトナー粒子1質量部に搬送粒子が運ぶCCA粒子は1×10−6〜5×10−3質量部、望ましくは1×10−5〜1×10−3質量部の範囲になるように選択され、外添用電荷制御粒子の形態で供給されることで本発明の効果を発揮する。本発明者らによれば、トナー粒子1質量部に対して1×10−6〜5×10−3質量部と言う極微量のCCAを単に外添するだけでトナー帯電量を安定に制御することは不可能であることが確認された。 As described above, the CCA particles carried by the carrier particles to 1 part by mass of the toner particles are in the range of 1 × 10 −6 to 5 × 10 −3 parts by mass, preferably 1 × 10 −5 to 1 × 10 −3 parts by mass. Thus, the effect of the present invention is exhibited by being supplied in the form of externally added charge control particles. According to the present inventors, the toner charge amount is stably controlled simply by externally adding a very small amount of CCA of 1 × 10 −6 to 5 × 10 −3 parts by mass with respect to 1 part by mass of toner particles. It was confirmed that it was impossible.

本発明における搬送粒子が供給するCCA粒子が、トナー帯電を支配する機構は未だ完全には解明されていない。しかし、帯電制御機構は以下のように考えると理解できる。先ず、搬送粒子により搬送されたCCA粒子の一部は、キャリアなど帯電部材表面と接触し、キャリア表面と電荷交換を行って帯電(イオン化)する。帯電した粒子イオンは、単独または搬送粒子表面に付着した状態でトナー粒子表面に移行し、トナー粒子表面に再被着してトナーを帯電せしめる。この際、イオン化したCCA粒子の数は、CCA分子数に近いものとなり搬送粒子の数より圧倒的に多いため搬送粒子が帯電部材と摩擦した際獲得した搬送粒子の摩擦帯電量は無視できる。このためトナー帯電量は、搬送粒子の重量にはよらず、搬送粒子表面に被着した搬送粒子の数量をはるかに上回るCCA粒子の数に支配されると考えられる。   The mechanism by which the CCA particles supplied by the carrier particles in the present invention dominate the toner charging has not been completely elucidated. However, the charge control mechanism can be understood when considered as follows. First, some of the CCA particles transported by the transport particles come into contact with the surface of a charging member such as a carrier, and are charged (ionized) by exchanging charges with the carrier surface. The charged particle ions move to the toner particle surface alone or in a state of adhering to the surface of the carrier particle, and are re-deposited on the toner particle surface to charge the toner. At this time, since the number of ionized CCA particles is close to the number of CCA molecules and is overwhelmingly larger than the number of transport particles, the triboelectric charge amount of the transport particles obtained when the transport particles rub against the charging member can be ignored. Therefore, it is considered that the toner charge amount is governed by the number of CCA particles far exceeding the number of transport particles deposited on the surface of the transport particles, regardless of the weight of the transport particles.

上記の外添用電荷制御粒子が添加されるトナー粒子としては、結着樹脂と着色剤を主成分として構成される公知のものが使用できる。外添用電荷制御粒子のトナー粒子表面への被着状態は、単に機械的に付着していても、ゆるく固着していてもよい。また、この付着した粒子は、トナー粒子の表面全体を覆っていても、一部だけを覆っていてもよい。さらに、該粒子は、その一部が凝集体を形成してトナー粒子の表面を覆っていてもよいが、単層粒子の状態で覆っていることが好ましい。   As the toner particles to which the above externally added charge control particles are added, known toner particles composed mainly of a binder resin and a colorant can be used. The externally added charge control particles may be adhered to the surface of the toner particles simply by mechanical adhesion or by loose adhesion. Further, the adhered particles may cover the entire surface of the toner particles or only a part thereof. Further, the particles may partially form aggregates and cover the surface of the toner particles, but it is preferable that the particles are covered in the form of single layer particles.

本発明の外添用電荷制御粒子が添加された静電像現像用トナーは、一成分現像剤として使用できる。また、それをキャリアと混合して二成分現像剤として使用することもできる。二成分現像剤として使用する場合においては、上記外添用電荷制御粒子は予めトナー粒子に添加せず、トナーとキャリアの混合時に添加してトナーの表面被覆を行っても良い。キャリアとしては、粒径20μm〜100μmの鉄粉あるいはフェライト粉か、これらの表面に樹脂コーティングされた公知のものが使用される。   The electrostatic image developing toner to which the externally added charge control particles of the present invention are added can be used as a one-component developer. It can also be mixed with a carrier and used as a two-component developer. When used as a two-component developer, the charge control particles for external addition may not be added to the toner particles in advance, but may be added when the toner and the carrier are mixed to cover the surface of the toner. As the carrier, iron powder or ferrite powder having a particle diameter of 20 μm to 100 μm, or a known one whose surface is resin-coated is used.

このようにして得られた本発明の外添用電荷制御粒子によれば、これを外添剤として静電像現像トナーとすることにより、ゾルゲル法によって得られる疎水性球状シリカ微粒子の優れた流動性、優れた分散性を維持しつつ、これにCCAが有している帯電制御機能を付加して、摩擦帯電極性のみならず摩擦帯電量を高精度で調節し、以って、トナー粒子表面に存在するCCA粒子の数を一定に保ち、以って所望の摩擦帯電量を安定に維持できる静電像現像トナーを提供することができる。   According to the externally added charge control particles of the present invention thus obtained, an excellent flow of the hydrophobic spherical silica fine particles obtained by the sol-gel method is obtained by using this as an external additive as an electrostatic image developing toner. The charge control function of CCA is added to the toner particle surface while maintaining the properties of the toner and the excellent dispersibility. Thus, it is possible to provide an electrostatic image developing toner in which the number of CCA particles present in the toner can be kept constant, and the desired triboelectric charge amount can be stably maintained.

また、本発明は、搬送粒子の表面に高精度に所望量のCCA粒子を被着し、高い流動性と撥水性を有する外添用電荷制御粒子を使用することによって、トナー粒子表面に極めて容易に一定量のCCA粒子を供給するだけでなく、高湿度雰囲気で使用しても一定帯電量を維持できる静電像現像トナーを提供することができる。   In addition, the present invention makes it possible to very easily apply the external charge control particles having high fluidity and water repellency to the surface of the toner particles by depositing a desired amount of CCA particles on the surface of the carrier particles with high accuracy. In addition to supplying a constant amount of CCA particles, an electrostatic image developing toner that can maintain a constant charge amount even when used in a high humidity atmosphere can be provided.

本発明はさらにまた、トナー表面に、分子サイズに限りなく近く、単位重量当たりの発生帯電量が著しく大きい極微量のCCA粒子を均一且つ極めて高精度に供給できる外添用電荷制御粒子を使用することにより、2成分現像剤、1成分現像剤の双方において帯電の立ち上がりが著しく早く、摩擦操作によって帯電量が変化しない静電像現像トナーを提供することができる。   Furthermore, the present invention uses externally added charge control particles that can uniformly and extremely accurately supply a very small amount of CCA particles having an extremely large amount of generated charge per unit weight on the toner surface. As a result, it is possible to provide an electrostatic image developing toner in which the rising of charge is remarkably fast in both the two-component developer and the one-component developer, and the charge amount is not changed by the friction operation.

さらに、本発明の静電像現像トナーにおいては、外添用電荷制御粒子は、トナー粒子と静電的に吸引し合ってトナー表面に物理的に付着した状態で存在するが、固着されていない。したがって、外添用電荷制御粒子とトナー粒子の混合体をキャリア粒子などの帯電部材と摩擦する際には、外添用電荷制御粒子は容易に別のトナー粒子表面、あるいはキャリア粒子などの帯電部材表面に自由に移行できることに特徴がある。このため、本発明の外添用電荷制御粒子は、複数のトナー粒子に対してCCA粒子を移行させることができ、この自由度が均一の電荷制御に寄与しているものと考えられる。   Further, in the electrostatic image developing toner of the present invention, the charge control particles for external addition exist in a state where they are electrostatically attracted to the toner particles and physically adhered to the toner surface, but are not fixed. . Therefore, when the mixture of externally added charge control particles and toner particles is rubbed against a charging member such as carrier particles, the externally added charge control particles are easily separated from another toner particle surface or charging member such as carrier particles. It is characterized by being able to move freely to the surface. For this reason, the externally added charge control particles of the present invention can transfer CCA particles to a plurality of toner particles, and this degree of freedom is considered to contribute to uniform charge control.

さらに、このような自由度は、トナーの帯電制御のみならず、従来の外添剤と同様にトナーの搬送性の向上やトナー表面の耐摩耗性の向上に寄与することができる。   Further, such a degree of freedom can contribute not only to toner charge control, but also to improved toner transportability and improved toner surface wear resistance, as with conventional external additives.

以下、実施例および比較例を用いて本発明を具体的に説明する。なお、説明中、測定サンプル番号は実施例番号に対応するものである。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. In the description, the measurement sample number corresponds to the example number.

<実施例1>
[疎水性球状シリカ微粒子(1)の合成]
(1)撹拌機、滴下ロート、温度計を備えた30リットルのガラス製反応器にメタノール6237g、水414g、28%アンモニア水498gを添加して混合した。この溶液を35℃に調整し、撹拌しながらテトラメトキシシラン11637gおよび5.4%アンモニア水4181gを同時に添加開始し、前者は6時間、そして後者は4時間かけて滴下した。テトラメトキシシラン滴下後も0.5時間撹拌を続け加水分解を行いシリカ微粒子の懸濁液を得た。ガラス製反応器にエステルアダプターと冷却管を取り付け、60〜70℃に加熱しメタノール11320gを留去したところで水12000gを添加し、次いでさらに70〜90℃に加熱しメタノール2730gを留去し、シリカ微粒子の水性懸濁液を得た。
<Example 1>
[Synthesis of hydrophobic spherical silica fine particles (1)]
(1) 6237 g of methanol, 414 g of water, and 498 g of 28% ammonia water were added to and mixed with a 30 liter glass reactor equipped with a stirrer, a dropping funnel and a thermometer. The solution was adjusted to 35 ° C., and 11637 g of tetramethoxysilane and 4181 g of 5.4% aqueous ammonia were simultaneously added while stirring. The former was added dropwise over 6 hours and the latter over 4 hours. After the tetramethoxysilane was dropped, the mixture was stirred for 0.5 hours for hydrolysis to obtain a silica fine particle suspension. Attach an ester adapter and a condenser to a glass reactor, heat to 60 to 70 ° C. and distill off 11320 g of methanol, add 12000 g of water, then heat to 70 to 90 ° C. to distill away 2730 g of methanol, An aqueous suspension of fine particles was obtained.

(2)この水性懸濁液に室温でメチルトリメトキシシラン116g(テトラメトキシシランに対してモル比で0.1相当量)を0.5時間かけて滴下し、滴下後も12時間撹拌しシリカ微粒子表面の処理を行った。   (2) To this aqueous suspension, 116 g of methyltrimethoxysilane (equivalent to 0.1 molar ratio with respect to tetramethoxysilane) was added dropwise at room temperature over 0.5 hours, and after the addition, the mixture was stirred for 12 hours to obtain silica. The surface of the fine particles was treated.

(3)こうして得られた分散液にメチルイソブチルケトン14400gを添加した後、80〜110℃に加熱しメタノール水を7時間かけて留去した。得られた分散液に室温でヘキサメチルジシラザン3576gを添加し120℃に加熱し3時間反応させ、トリメチルシリル化した疎水性シリカ微粒子(1)とし、その後溶媒を減圧下で留去して搬送粒子4770gを得た。   (3) After adding 14400 g of methyl isobutyl ketone to the dispersion thus obtained, the mixture was heated to 80 to 110 ° C. and methanol water was distilled off over 7 hours. To the obtained dispersion, 3576 g of hexamethyldisilazane was added at room temperature, heated to 120 ° C. and reacted for 3 hours to form trimethylsilylated hydrophobic silica fine particles (1), and then the solvent was distilled off under reduced pressure to convey the particles. 4770 g was obtained.

[搬送粒子の粒子径測定]
得られた疎水性球状シリカ微粒子(1)の粒子径測定はメタノールに同シリカ微粒子を、0.5質量%となるように添加し、10分間超音波にかけて、該微粒子を分散させた。このように処理した微粒子の粒度分布を、動的光散乱法/レーザードップラー法ナノトラック粒度分布測定装置(日機装株式会社製、商品名:UPA−EX150)により測定し、その体積基準メジアン径(粒度分布を累積分布として表した時の累積50%相当の粒子径)を粒子径とした。測定の結果、得られたメジアン径は120nmであった。
[Measurement of particle size of carrier particles]
The obtained hydrophobic spherical silica fine particles (1) were measured for particle size by adding the silica fine particles to methanol so that the amount was 0.5% by mass and applying ultrasonic waves for 10 minutes to disperse the fine particles. The particle size distribution of the fine particles treated in this way was measured by a dynamic light scattering method / laser Doppler nanotrack particle size distribution measuring device (trade name: UPA-EX150, manufactured by Nikkiso Co., Ltd.), and the volume-based median diameter (particle size) The particle diameter corresponding to 50% cumulative when the distribution was expressed as a cumulative distribution) was taken as the particle diameter. As a result of the measurement, the median diameter obtained was 120 nm.

[搬送粒子の形状測定]
電子顕微鏡(日立製作所製、商品名:S−4700型、倍率:10万倍)によって観察を行い、形状を確認した。本発明の搬送粒子(疎水性球状粒子)における形状は、粒子を二次元に投影した時の(粒子面積と等しい円の周囲長)/(粒子周囲長)を円形度と定義し、円形度が0.8〜1の範囲にあるものを球状と呼ぶことにした。測定の結果、得られた搬送粒子は球状であることを確認した。
[Measurement of shape of carrier particles]
The shape was confirmed by observation with an electron microscope (manufactured by Hitachi, trade name: S-4700 type, magnification: 100,000 times). The shape of the carrier particles (hydrophobic spherical particles) of the present invention is defined as (circumference of a circle equal to the particle area) / (peripheral length of the particle) when projecting the particles in two dimensions, and the circularity is Those in the range of 0.8 to 1 were called spherical. As a result of the measurement, it was confirmed that the obtained carrier particles were spherical.

[外添用電荷制御粒子の製造]
ヘンシェルミキサ中に疎水性球状シリカ微粒子(1)(搬送粒子)1kgとヘプタン1kgを投入して混合した後、CCA(1)(サートマー社製、商品名:PRO7058)のメタノール溶液(濃度10.0質量%液)1kgを混合した。
[Manufacture of charge control particles for external addition]
Into a Henschel mixer, 1 kg of hydrophobic spherical silica fine particles (1) (carrier particles) and 1 kg of heptane were added and mixed, and then a methanol solution (concentration 10.0) of CCA (1) (manufactured by Sartomer, trade name: PRO7058). 1 kg of a mass% liquid) was mixed.

ついでニーダーを60℃に加温し、減圧下で混練してヘプタンおよびメタノールを完全に除去した。得られた乾燥粉はジェットミルで解砕して、搬送粒子に1質量部あたり1×10−1質量部のCCA(1)粒子を被着させた外添用電荷制御粒子CCP1−1を得た。 The kneader was then heated to 60 ° C. and kneaded under reduced pressure to completely remove heptane and methanol. The obtained dried powder was crushed by a jet mill to obtain externally added charge control particles CCP1-1 in which 1 × 10 −1 parts by mass of CCA (1) particles per 1 part by mass were deposited on the carrier particles. It was.

[電荷制御剤微粒子配合トナーの調製およびトナー帯電量測定サンプルの調整]
スチレンアクリル樹脂モデルトナー1質量部と外添用電荷制御粒子CCP1−1の0.01質量部をヘンシェルミキサに投入し、攪拌羽の周速を40m/秒で30秒攪拌することにより、外添用電荷制御粒子配合トナー1を得た。ついで、それぞれの外添用電荷制御粒子配合トナー1質量部と、フェライトキャリア19質量部をVブレンダーに投入して5分間混合して、トナー帯電量測定サンプル1を調製した。
[Preparation of toner containing charge control agent fine particles and adjustment of toner charge measurement sample]
1 part by mass of styrene acrylic resin model toner and 0.01 part by mass of charge control particles CCP1-1 for external addition were put into a Henschel mixer, and the peripheral speed of the stirring blade was agitated for 30 seconds at 40 m / sec. Toner 1 for charge control particles was obtained. Next, 1 part by mass of each externally added charge control particle-containing toner and 19 parts by mass of ferrite carrier were put into a V blender and mixed for 5 minutes to prepare a toner charge measurement sample 1.

[トナー帯電量の測定]
調製された測定サンプル1を、日本画像学会標準のトナーの帯電量測定基準(日本画像学会誌37,461(1998))にしたがって調湿、混合を行い、混合時間を変えたときのトナー帯電量を測定した。なお、混合にはペイントコンディショナー(東洋精機製)を用い、トナー帯電量測定にはブローオフ帯電量測定装置(株式会社東芝製、商品名:TB203型)を用いた。
[Measurement of toner charge amount]
Toner charge amount when the prepared measurement sample 1 was conditioned and mixed according to the standard of charge measurement of toner of the Imaging Society of Japan (Journal of Imaging Society of Japan 37, 461 (1998)) and the mixing time was changed. Was measured. A paint conditioner (manufactured by Toyo Seiki) was used for mixing, and a blow-off charge amount measuring device (trade name: TB203 type, manufactured by Toshiba Corporation) was used for toner charge amount measurement.

<実施例2〜7>
実施例1で述べたCCP1−1粒子の作製プロセスと全く同様のプロセスで、疎水性球形シリカ粒子(1)1kgと混合するメタノール溶液1kg中のCCA(1)の濃度を5.0質量%,2.0質量%,1.0質量%,0.5質量%,0.25質量%,0.12質量%として作製した外添用電荷制御粒子CCP1−2,CCP1−3,CCP1−4,CCP1−5,CCP1−6,CCP1−7をそれぞれ作製した。それぞれは、搬送粒子1質量部の表面にCCA(1)粒子を0.05,0.02,0.01,0.005,0.0025および0.0012質量部のそれぞれ被着した外添用電荷制御粒子となっている。
<Examples 2 to 7>
The concentration of CCA (1) in 1 kg of a methanol solution mixed with 1 kg of hydrophobic spherical silica particles (1) is 5.0% by mass, exactly the same as the process for producing CCP1-1 particles described in Example 1. External control charge control particles CCP1-2, CCP1-3, CCP1-4 prepared as 2.0 mass%, 1.0 mass%, 0.5 mass%, 0.25 mass%, 0.12 mass%. CCP1-5, CCP1-6, and CCP1-7 were prepared. Each is for external addition in which 0.05, 0.02, 0.01, 0.005, 0.0025 and 0.0012 parts by mass of CCA (1) particles are respectively deposited on the surface of 1 part by mass of the carrier particles. Charge control particles.

[電荷制御剤微粒子配合トナーの調製およびトナー帯電量測定サンプルの調整]
スチレンアクリル樹脂モデルトナー1質量部と外添用電荷制御粒子CCP1−2〜CCP1−7のそれぞれを0.01質量部をヘンシェルミキサに投入し、攪拌羽の周速を40m/秒で30秒攪拌することにより、外添用電荷制御粒子配合トナー2〜7を得た。ついで、それぞれの外添用電荷制御粒子配合トナー1質量部と、フェライトキャリア19質量部をVブレンダーに投入して5分間混合して、トナー帯電量測定サンプル2〜7を調製した。この現像剤を用いて、実施例1と同様の手順でトナー帯電量を測定した。
[Preparation of toner containing charge control agent fine particles and adjustment of toner charge measurement sample]
1 part by mass of styrene acrylic resin model toner and 0.01 part by mass of charge control particles CCP1-2 to CCP1-7 for external addition were put into a Henschel mixer, and the peripheral speed of the stirring blade was agitated for 30 seconds at 40 m / sec. Thus, toners 2 to 7 containing charge control particles for external addition were obtained. Next, 1 part by mass of each externally added charge control particle-containing toner and 19 parts by mass of ferrite carrier were put into a V blender and mixed for 5 minutes to prepare toner charge measurement samples 2 to 7. Using this developer, the toner charge amount was measured in the same procedure as in Example 1.

<比較例1>
[比較測定サンプル1の調整]
上記トナー帯電量測定サンプルにおいて、外添用電荷制御粒子CCP1−1〜CCP1−7の替わりに搬送粒子0.01質量部を添加して比較測定サンプル1(以下比較サンプル1という。)とした。この現像剤を用いて、実施例1と同様の手順でトナー帯電量を測定した。
<Comparative Example 1>
[Adjustment of comparative measurement sample 1]
In the toner charge amount measurement sample, 0.01 parts by mass of carrier particles were added in place of the externally added charge control particles CCP1-1 to CCP1-7 to obtain Comparative Measurement Sample 1 (hereinafter referred to as Comparative Sample 1). Using this developer, the toner charge amount was measured in the same procedure as in Example 1.

<比較例2>
[比較測定サンプル2の調整]
上記トナー帯電量測定サンプルにおいて、外添用電荷制御粒子も搬送粒子も添加しないものを比較測定サンプル2(以下比較サンプル2という。)とした。この現像剤を用いて、実施例1と同様の手順でトナー帯電量を測定した。
<Comparative example 2>
[Adjustment of comparative measurement sample 2]
In the toner charge amount measurement sample, the sample to which neither the external charge control particles nor the carrier particles were added was designated as Comparative measurement sample 2 (hereinafter referred to as Comparative sample 2). Using this developer, the toner charge amount was measured in the same procedure as in Example 1.

[外添用電荷制御粒子のSEM観察および測定サンプルの評価]
得られた外添用電荷制御粒子CCP1−1〜CCP1−7の表面を走査型電子顕微鏡で観察したところ、コアとして用いた球形疎水性シリカ粒子(搬送粒子)と変わらない平滑度を維持しており、遊離のCCA(1)粒子は見当たらなかった。また、得られたいずれの外添用電荷制御粒子も撥水性を維持しており、メタノール/水を重量比率50/50混合液に投入して液面に浮遊して液中に分散できなかった。
[SEM observation of charge control particles for external addition and evaluation of measurement sample]
When the surfaces of the obtained charge control particles CCP1-1 to CCP1-7 for external addition were observed with a scanning electron microscope, the same smoothness as the spherical hydrophobic silica particles (carrier particles) used as the core was maintained. No free CCA (1) particles were found. Further, any of the externally added charge control particles obtained maintained water repellency, and methanol / water was added to a 50/50 weight ratio liquid mixture and floated on the liquid surface and could not be dispersed in the liquid. .

また、得られた外添用電荷制御粒子のそれぞれとモデルトナーを混合して得られた粒子をSEM観察したところ、外添用電荷制御粒子はトナー表面に単分散した状態で均一に被着していることを確認した。さらにこの混合粉体の流動性は搬送粒子とモデルトナーとの混合粉体とほぼ同等の流動性を示し、外添用電荷制御粒子を添加しないモデルトナーに比較して流動性が著しく改善されていることが確認できた。   Further, when the particles obtained by mixing each of the obtained external charge control particles and the model toner were observed by SEM, the external charge control particles were uniformly deposited on the toner surface in a monodispersed state. Confirmed that. Furthermore, the fluidity of the mixed powder is almost the same as that of the mixed powder of the carrier particles and the model toner, and the fluidity is remarkably improved compared to the model toner without adding the external charge control particles. It was confirmed that

[トナー帯電量測定結果]
各測定サンプルおよび比較サンプルで得られたトナーの帯電量測定結果を図1に示す。
[Toner charge measurement result]
FIG. 1 shows the charge amount measurement results of the toners obtained from each measurement sample and the comparative sample.

図1から、比較サンプル1と比較サンプル2で得られたトナー帯電量を比較すると、比較サンプル1のトナー帯電量は比較サンプル2のトナー帯電量より大きく負に帯電し、モデルトナー1質量部にわずか0.01質量部の疎水性球形シリカ粒子(搬送粒子)を外添することにより、トナーの負帯電量が増大していることがわかった。   From FIG. 1, when comparing the toner charge amounts obtained in Comparative Sample 1 and Comparative Sample 2, the toner charge amount of Comparative Sample 1 is negatively charged larger than the toner charge amount of Comparative Sample 2 and is added to 1 part by mass of model toner. It was found that the negative charge amount of the toner was increased by externally adding only 0.01 part by mass of hydrophobic spherical silica particles (carrier particles).

次に、測定サンプル1〜7で得たトナー帯電量と、比較サンプル1および比較サンプル2で得られたトナー帯電量を比較すると、測定サンプル1〜7で得られたトナー帯電量は比較サンプル1および2の帯電量より大きく正に帯電していることがわかった。この結果から、外添用電荷制御粒子(CCP1−1〜CCP1−7)のすべては、モデルトナーに大きな正帯電量を付与していることが確認できた。この結果は、モデルトナーに搬送粒子1質量部に1×10−3〜1×10−1質量部のCCA(1)を被着せしめた外添用電荷制御粒子を添加した場合は、モデルトナーに搬送粒子のみを添加した場合に比較して、トナーに対する電荷付与効果が全く異なり、外添用電荷制御粒子を添加した場合は、搬送粒子表面に被着した搬送粒子よりはるかに微量のCCA(1)粒子により帯電特性が支配されていることが確認できた。言い換えれば、外添用電荷制御粒子(CCP1−1〜CCP1−7)を添加した測定サンプル1〜7においては、トナー1質量部に対して、搬送粒子がトナー表面に運ぶわずか1×10−3〜1.2×10−5質量部のCCA(1)粒子が、トナーに十分な正帯電量を付与し、トナーの帯電特性を支配していることが確認できた。すなわち、図1の結果は、本発明における外添用電荷制御粒子が、いかに高効率且つ高精度にCCA(1)の電荷付与効果を発現させているかを示している。 Next, when the toner charge amounts obtained in the measurement samples 1 to 7 are compared with the toner charge amounts obtained in the comparison sample 1 and the comparison sample 2, the toner charge amounts obtained in the measurement samples 1 to 7 are the comparison sample 1. It was found that the positive charge was larger than the charge amount of 2 and 2. From this result, it was confirmed that all of the externally added charge control particles (CCP1-1 to CCP1-7) imparted a large positive charge amount to the model toner. This result shows that when the charge control particles for external addition in which 1 × 10 −3 to 1 × 10 −1 parts by mass of CCA (1) is applied to 1 part by mass of the transport particles are added to the model toner, the model toner is added. Compared with the case where only the carrier particles are added to the toner, the charge imparting effect on the toner is completely different. When the charge control particles for external addition are added, a much smaller amount of CCA (than the carrier particles deposited on the surface of the carrier particles) 1) It was confirmed that the charging characteristics were governed by the particles. In other words, in the measurement samples 1 to 7 to which the charge control particles for external addition (CCP1-1 to CCP1-7) are added, the carrier particles carry only 1 × 10 −3 to the toner surface with respect to 1 part by mass of the toner. It was confirmed that ˜1.2 × 10 −5 parts by mass of CCA (1) particles impart a sufficient positive charge amount to the toner and dominate the charging characteristics of the toner. That is, the result of FIG. 1 shows how the charge control particles for external addition according to the present invention exhibit the charge imparting effect of CCA (1) with high efficiency and high accuracy.

図1からいずれの外添用電荷制御粒子を添加した場合もキャリアとの混合時間が2分ですでにピーク値に近い帯電量に達しており、帯電の立ち上がりが著しく早いことがわかった。また、この帯電の立ち上がりは搬送粒子表面へのCCA被着量が少ない粒子ほど早く、被着量が搬送粒子1質量部に対して0.0012質量部(トナー1質量部に対して1.2×10−5質量部)の外添用の外添用電荷制御粒子を添加した配合トナーでは混合時間2分ですでに帯電量の減少がはじまっており、ピーク値に達する混合時間はさらに短いことが確認できた。 It can be seen from FIG. 1 that when any of the externally added charge control particles is added, the charge amount is already close to the peak value when the mixing time with the carrier is 2 minutes, and the rise of the charge is remarkably fast. Further, the rising of the charge is earlier with particles having a smaller CCA deposition amount on the surface of the carrier particles, and the deposition amount is 0.0012 parts by mass with respect to 1 part by mass of the carrier particles (1.2 parts by mass with respect to 1 part by mass of toner). X10 −5 parts by mass) In the blended toner to which external charge control particles for external addition were added, the charge amount started to decrease in 2 minutes of mixing time, and the mixing time to reach the peak value was even shorter. Was confirmed.

混合時間を増すとトナーの負帯電量はわずかながら増加したが、この増加は混合操作で発生するトナー微粉の帯電によるもので、曲線の勾配が搬送粒子も外添用電荷制御粒子も添加しなかったトナーのみの摩擦帯電(比較サンプル2)と同じことからもこれが確認できた。   When the mixing time is increased, the negative charge amount of the toner slightly increases, but this increase is due to the charging of the toner fine powder generated by the mixing operation, and the gradient of the curve does not add the carrier particles or the external charge control particles. This was also confirmed from the same thing as the frictional charging of the toner only (Comparative Sample 2).

<実施例8〜13>
実施例1における被着工程と全く同じプロセスで、実施例1に用いたのと同じ搬送粒子の表面に電荷制御剤CCA(2)(オリエント化学工業社製、商品名:ボントロンP−51)を0.05質量部,0.02質量部,0.01質量部,0.005質量部,0.002質量部,0.001質量部をそれぞれ被着せしめた電荷制御用超微粒子CCP2−1〜CCP2−6を得た。
<Examples 8 to 13>
Charge control agent CCA (2) (trade name: Bontron P-51, manufactured by Orient Chemical Industry Co., Ltd.) is applied to the surface of the same carrier particles used in Example 1 in the same process as the deposition step in Example 1. Charge control ultrafine particles CCP2-1 coated with 0.05 parts by mass, 0.02 parts by mass, 0.01 parts by mass, 0.005 parts by mass, 0.002 parts by mass and 0.001 parts by mass, respectively. CCP2-6 was obtained.

[外添用電荷制御粒子のSEM観察および測定サンプルの評価]
得られた外添用電荷制御粒子CCP2−1〜CCP2−6の表面を走査型電子顕微鏡で観察したところ、コアとして用いた球形疎水性シリカ粒子(搬送粒子)と変わらない平滑度を維持していたが、わずかに遊離のCCA(2)粒子が存在することが確認できた。また、得られたいずれの外添用電荷制御粒子も撥水性を維持しており、メタノール/水を重量比率50/50混合液に投入して液面に浮遊してメタノール/水中には分散できなかった。
[SEM observation of charge control particles for external addition and evaluation of measurement sample]
When the surfaces of the obtained charge control particles CCP2-1 to CCP2-6 for external addition were observed with a scanning electron microscope, the same smoothness as the spherical hydrophobic silica particles (carrier particles) used as the core was maintained. However, it was confirmed that slightly free CCA (2) particles were present. Also, any of the externally added charge control particles obtained maintained water repellency, and was able to disperse in methanol / water by adding methanol / water to a 50/50 weight ratio and floating on the liquid surface. There wasn't.

また、得られた外添用電荷制御粒子のそれぞれとモデルトナーを混合して得られた粒子をSEM観察したところ、外添用電荷制御粒子はトナー表面に単分散した状態で均一に被着していることを確認した。さらにこの混合粉体の流動性は搬送粒子とモデルトナーとの混合粉体とほぼ同等の流動性を示し、外添用電荷制御粒子を添加しないモデルトナーに比較して流動性が著しく改善されていることが確認できた。   Further, when the particles obtained by mixing each of the obtained external charge control particles and the model toner were observed by SEM, the external charge control particles were uniformly deposited on the toner surface in a monodispersed state. Confirmed that. Furthermore, the fluidity of the mixed powder is almost the same as that of the mixed powder of the carrier particles and the model toner, and the fluidity is remarkably improved compared to the model toner without adding the external charge control particles. It was confirmed that

[トナー帯電量測定結果]
トナー帯電量の測定結果は図2に示すごとくであった。搬送粒子に微量のCCA(2)粒子を被着せしめた外添用電荷制御粒子(CCP2−1〜CCP2−6)を添加した測定サンプル8〜13で得られたトナー帯電量は、搬送粒子のみを添加した比較サンプル1および、いずれの粒子も添加しない比較サンプル2のトナー帯電量より大きな正帯電量を示し、搬送粒子および6種の外添用電荷制御粒子がトナーに正電荷を付与していることが確認できた。外添用電荷制御粒子(CCP2−1〜CCP2−6)が測定サンプル8〜13中のトナーの正帯電量は混合時間とともにわずかに減少して負帯電量が増す傾向にあるものの、この負帯電量増加率は比較サンプル2における負帯電量増加率より小さく、実施例1〜7と同様に、外添用電荷制御粒子(CCP2−1〜CCP2−6)を添加した測定サンプル8〜13においては、トナー1質量部に対して、搬送粒子がトナー表面に運ぶわずか5×10−4〜1×10−5質量部のCCA(2)粒子が、トナーに所望量の正帯電量を付与し、トナーの帯電特性を支配していることが確認できた。
[Toner charge measurement result]
The measurement result of the toner charge amount was as shown in FIG. The toner charge amount obtained from the measurement samples 8 to 13 in which the charge control particles for external addition (CCP2-1 to CCP2-6) in which a small amount of CCA (2) particles are deposited on the carrier particles is added is only the carrier particles. The positive charge amount of the comparative sample 1 to which the toner is added and the comparative sample 2 to which no particles are added is larger than the toner charge amount, and the carrier particles and the six kinds of externally added charge control particles impart a positive charge to the toner. It was confirmed that Although the charge control particles for external addition (CCP2-1 to CCP2-6) tend to slightly decrease the positive charge amount of the toner in the measurement samples 8 to 13 with the mixing time and increase the negative charge amount, this negative charge The amount increase rate is smaller than the negative charge amount increase rate in the comparative sample 2, and in the measurement samples 8 to 13 to which the charge control particles for external addition (CCP2-1 to CCP2-6) are added, as in Examples 1 to 7. , Only 5 × 10 −4 to 1 × 10 −5 parts by mass of CCA (2) particles conveyed to the toner surface with respect to 1 part by mass of toner impart a desired amount of positive charge to the toner, It was confirmed that it dominates the charging characteristics of the toner.

<実施例14〜19>
実施例1における被着工程と全く同じプロセスで、実施例1に用いたと搬送粒子同じ搬送粒子の表面に電荷制御剤CCA(3)(藤倉化成株式会社製、商品名:FCA−201−PS)を0.05質量部,0.02質量部,0.01質量部,0.005質量部,0.002質量部,0.001質量部をそれぞれ被着せしめた電荷制御用超微粒子CCP3−1〜CCP3−6を得た。
<Examples 14 to 19>
Charge control agent CCA (3) (manufactured by Fujikura Kasei Co., Ltd., trade name: FCA-201-PS) on the surface of the same carrier particles as used in Example 1, in exactly the same process as the deposition step in Example 1. Charge control ultrafine particles CCP3-1 coated with 0.05 parts by mass, 0.02 parts by mass, 0.01 parts by mass, 0.005 parts by mass, 0.002 parts by mass, and 0.001 parts by mass, respectively ~ CCP3-6 was obtained.

[外添用電荷制御粒子のSEM観察および測定サンプルの評価]
得られた外添用電荷制御粒子CCP3−1〜CCP3−6の表面を走査型電子顕微鏡で観察したところ、コアとして用いた球形疎水性シリカ粒子(搬送粒子)と変わらない平滑度を維持していたが、わずかに遊離のCCA(3)粒子が存在することが確認できた。また、得られたいずれの外添用電荷制御粒子も撥水性を維持しており、メタノール/水を質量比率50/50混合液に投入して液面に浮遊してメタノール/水中には分散できなかった。
[SEM observation of charge control particles for external addition and evaluation of measurement sample]
When the surfaces of the obtained charge control particles CCP3-1 to CCP3-6 for external addition were observed with a scanning electron microscope, the same smoothness as the spherical hydrophobic silica particles (carrier particles) used as the core was maintained. However, it was confirmed that slightly free CCA (3) particles were present. In addition, any of the externally added charge control particles obtained maintained water repellency, and was able to disperse in methanol / water by adding methanol / water to a 50/50 mass ratio and floating on the liquid surface. There wasn't.

また、得られた外添用電荷制御粒子のそれぞれとモデルトナーを混合して得られた粒子をSEM観察したところ、外添用電荷制御粒子はトナー表面に均一に被着していることを確認した。さらにこの混合粉体の流動性は搬送粒子とモデルトナーとの混合粉体とほぼ同等の流動性を示し、外添用電荷制御粒子を添加しないモデルトナーに比較して流動性が著しく改善されていることが確認できた。   Also, SEM observation of the particles obtained by mixing each of the obtained external charge control particles with the model toner confirmed that the external charge control particles were uniformly deposited on the toner surface. did. Furthermore, the fluidity of the mixed powder is almost the same as that of the mixed powder of the carrier particles and the model toner, and the fluidity is remarkably improved compared to the model toner without adding the external charge control particles. It was confirmed that

[トナー帯電量測定結果]
トナー帯電量の測定結果は図3に示すごとくであった。図から、搬送粒子のみを添加した比較サンプル1で得られたトナー帯電量と、搬送粒子および外添用電荷制御粒子のいずれも添加しない比較サンプル(2)とを比較すると、比較サンプル1はわずかに大きな負帯電量を示し、搬送粒子がトナーに負の電荷量を付与していることが確認できた。
[Toner charge measurement result]
The measurement result of the toner charge amount was as shown in FIG. From the figure, when the toner charge amount obtained in Comparative Sample 1 to which only carrier particles are added is compared with Comparative Sample (2) in which neither the carrier particles nor the external charge control particles are added, Comparative Sample 1 shows a slight amount. The toner particles showed a large negative charge amount, and it was confirmed that the carrier particles imparted a negative charge amount to the toner.

一方、搬送粒子に微量のCCA(3)粒子を被着せしめた外添用電荷制御粒子(CCP3−1〜CCP3−6)を添加した測定サンプル14〜19で得られたトナー帯電量は、いずれの粒子も添加しない比較サンプル2のトナー帯電量より大きな正帯電量を示し、6種の外添用電荷制御粒子がトナーに正電荷を付与していることが確認できた。外添用電荷制御粒子(CCP3−1〜CCP3−6)が測定サンプル14〜19中のトナーの正帯電量は混合時間とともに全く変化しないか、わずかに減少して負帯電量が増す傾向にあるが、この負帯電量増加率は比較サンプル2におけるトナーの負帯電量増加率より小さく、実施例1〜7と同様に、外添用電荷制御粒子(CCP3−1〜CCP3−6)を添加した測定サンプル14〜19においては、トナー1質量部に対して、搬送粒子がトナー表面に運ぶわずか5×10−4〜1×10−5質量部のCCA(2)粒子が、トナーに所望量の正帯電量を付与し、トナーの帯電特性を支配していることが確認できた。 On the other hand, the toner charge amount obtained in the measurement samples 14 to 19 in which the charge control particles for external addition (CCP3-1 to CCP3-6) in which a small amount of CCA (3) particles are deposited on the carrier particles is added, The positive charge amount was larger than the toner charge amount of Comparative Sample 2 to which no other particles were added, and it was confirmed that the six types of externally added charge control particles imparted a positive charge to the toner. The charge control particles for external addition (CCP3-1 to CCP3-6) have no tendency to change the positive charge amount of the toner in the measurement samples 14 to 19 at all with the mixing time or slightly decrease and increase the negative charge amount. However, the increase rate of the negative charge amount is smaller than the increase rate of the negative charge amount of the toner in Comparative Sample 2, and the charge control particles for external addition (CCP3-1 to CCP3-6) were added in the same manner as in Examples 1-7. In measurement samples 14 to 19, only 5 × 10 −4 to 1 × 10 −5 parts by mass of CCA (2) particles carried by the carrier particles on the toner surface with respect to 1 part by mass of the toner are in a desired amount. It was confirmed that the toner was given a positive charge amount and dominates the charging characteristics of the toner.

<実施例20〜24>
実施例1におけると同様の搬送粒子の製造工程で作製した平均粒径300nmの搬送粒子(2)(疎水性球形シリカ微粒子)を1質量部の表面に以下の化学式で示されるCCA(4)粒子(日本カーリット株式会社製、商品名:LR147)を0.05質量部,0.02質量部,0.01質量部,0.005質量部,0.001質量部それぞれ被着せしめた外添用電荷制御粒子CCP4−1〜CCP4−5を得た。
<Examples 20 to 24>
CCA (4) particles represented by the following chemical formula on the surface of 1 part by mass of carrier particles (2) (hydrophobic spherical silica fine particles) having an average particle diameter of 300 nm prepared in the same production steps of carrier particles as in Example 1 (Nippon Carlit Co., Ltd., trade name: LR147) 0.05 parts by mass, 0.02 parts by mass, 0.01 parts by mass, 0.005 parts by mass, and 0.001 parts by mass for external addition Charge control particles CCP4-1 to CCP4-5 were obtained.

得られたそれぞれの外添用電荷制御粒子をSEM観察したところ、CCA(4)粒子は搬送粒子表面を均一に被覆していることが確認できた。   When the obtained charge control particles for external addition were observed by SEM, it was confirmed that the CCA (4) particles uniformly covered the surface of the carrier particles.

次いで実施例1〜7と同様にしてスチレンアクリル樹脂系モデルトナー1gに、標準キャリアN−02(日本画像学会配布)19gとCCP4−1〜CCP4−5の10mgをそれぞれ混合した測定サンプル20〜24を調製したのち、同様にして混合時間を変えたときのブローオフトナー帯電量を測定した。   Next, in the same manner as in Examples 1 to 7, measurement samples 20 to 24 were prepared by mixing 19 g of standard carrier N-02 (distributed by the Imaging Society of Japan) and 10 mg of CCP4-1 to CCP4-5 with 1 g of styrene acrylic resin model toner. In the same manner, the charge amount of blow-off toner when the mixing time was changed was measured.

帯電量測定結果は図4に示すごとくであり、搬送粒子(2)のみを添加した比較サンプル3で得られたトナー帯電量、および搬送粒子(2)に微量のCCA(4)粒子を被着せしめた外添用電荷制御粒子CCP4−1〜CCP4−5を添加した測定サンプル20〜24で得られたトナー帯電量と比較サンプル2で得られたトナー帯電量を比較すると、前者はいずれの粒子も添加しない比較サンプル2に対して混合時間を増すにつれて大きな負電荷付与剤として働くことが確認できた。一方、外添用電荷制御粒子CCP4−1〜CCP4−5を添加した測定サンプル20〜24で得られたトナー帯電量は、外添用電荷制御粒子の添加量によって比較サンプル2より負帯電量が大きくなる場合と小さくなる場合が生じた。しかしながらこれらの測定サンプル20〜24で得られたトナー帯電量は、混合時間を変えた時の変化率が比較サンプル2あるいは比較サンプル3で見られた変化率より著しく小さく、外添用電荷制御粒子の被着量を調節することによって高精度に所望の負帯電量をトナーに付与できることが確認できた。   The charge amount measurement results are as shown in FIG. 4. The toner charge amount obtained in Comparative Sample 3 to which only the carrier particles (2) were added, and a small amount of CCA (4) particles were deposited on the carrier particles (2). When the toner charge amount obtained in the measurement samples 20 to 24 to which the externally added charge control particles CCP4-1 to CCP4-5 are added and the toner charge amount obtained in the comparative sample 2 are compared, the former is any particle. It was confirmed that the sample acted as a large negative charge imparting agent as the mixing time was increased with respect to the comparative sample 2 to which no addition was made. On the other hand, the toner charge amount obtained in the measurement samples 20 to 24 to which the charge control particles for external addition CCP4-1 to CCP4-5 are added has a negative charge amount from the comparison sample 2 depending on the amount of charge control particles for external addition. There were cases where it became larger and smaller. However, the charge amounts of toner obtained in these measurement samples 20 to 24 are much smaller than the change rate observed in the comparative sample 2 or the comparative sample 3 when the mixing time is changed, and the externally added charge control particles. It was confirmed that a desired negative charge amount can be imparted to the toner with high accuracy by adjusting the amount of toner deposited.

すなわち、図4の結果からは、外添用電荷制御粒子(CCP4−1〜CCP4−5)を添加した測定サンプル20〜24においては、トナー1質量部に対して搬送粒子(2)がトナー表面に運ぶわずか5×10−4〜1×10−5質量部のCCA(4)粒子が、モデルトナーにさほど大きくは無いが一定の負帯電量を付与し、混合時間を変えてもこの負帯電量を安定に維持し、トナー帯電量を高精度に制御せしめていることを確認できた。 That is, from the results of FIG. 4, in the measurement samples 20 to 24 to which the charge control particles for external addition (CCP4-1 to CCP4-5) are added, the transport particles (2) are present on the toner surface with respect to 1 part by mass of the toner. Only 5 × 10 −4 to 1 × 10 −5 parts by mass of CCA (4) particles conveyed to the toner give a small negative charge amount to the model toner, but this negative charge even when the mixing time is changed. It was confirmed that the toner amount was kept stable and the toner charge amount was controlled with high accuracy.

以上より、CCAを搬送粒子表面に被着させた本発明の外添用電荷制御粒子は、トナーに対する十分な帯電量を付与し、トナーの電気特性を制御することができることがわかった。このとき、本発明の外添用電荷制御粒子によれば、トナーの混合時間が増大しても帯電量の変化率が小さく、長期間の使用においても安定した静電像の現像を行うことができる静電像現像トナーとすることができる。   From the above, it has been found that the externally added charge control particles of the present invention in which CCA is deposited on the surface of the carrier particles can impart a sufficient amount of charge to the toner and control the electrical characteristics of the toner. At this time, according to the externally added charge control particles of the present invention, the change rate of the charge amount is small even when the mixing time of the toner is increased, and stable electrostatic image development can be performed even during long-term use. An electrostatic image developing toner can be obtained.

Claims (5)

トナー粒子と、前記トナー粒子の摩擦帯電量を制御するために用いられる、平均粒径20〜500nmの搬送粒子の表面に電荷制御剤(CCA)を被着せしめた外添用電荷制御粒子と、を混合してなる静電像現像トナーであって、
前記外添用電荷制御粒子が、ゾルゲル法によって得られる親水性球状シリカ微粒子の表面を疎水化処理することにより得られた平均粒径20〜500nmの疎水性球状シリカ微粒子からなる搬送粒子と、該搬送粒子の表面に被着せしめた電荷制御剤と、から構成された静電像現像トナーの摩擦帯電量を制御するための外添用電荷制御粒子であり、前記搬送粒子1質量部に対して前記電荷制御剤(CCA)を1×10−3〜1×10−1質量部の範囲で有するものであって、かつ、前記トナー粒子1質量部に対して、前記外添用電荷制御粒子を0.001〜0.05質量部混合してなることを特徴とする静電像現像トナー。
Toner particles, and charge control particles for external addition in which a charge control agent (CCA) is deposited on the surface of carrier particles having an average particle diameter of 20 to 500 nm, used to control the triboelectric charge amount of the toner particles; An electrostatic image developing toner obtained by mixing
The external charge control particles are transport particles composed of hydrophobic spherical silica fine particles having an average particle diameter of 20 to 500 nm obtained by hydrophobizing the surface of hydrophilic spherical silica fine particles obtained by a sol-gel method, Charge control particles for external addition for controlling the triboelectric charge amount of the electrostatic image developing toner composed of a charge control agent deposited on the surface of the carrier particles, and with respect to 1 part by mass of the carrier particles The charge control agent (CCA) is in the range of 1 × 10 −3 to 1 × 10 −1 parts by mass, and the externally added charge control particles are added to 1 part by mass of the toner particles. An electrostatic image developing toner obtained by mixing 0.001 to 0.05 parts by mass.
前記静電像現像トナー中の電荷制御剤が、トナー粒子1質量部に対して、1×10−5〜1×10−3質量部であることを特徴とする請求項1記載の静電像現像トナー。 The electrostatic image according to claim 1, wherein the charge control agent in the electrostatic image developing toner is 1 × 10 −5 to 1 × 10 −3 parts by mass with respect to 1 part by mass of toner particles. Development toner. ゾルゲル法によって得られる親水性球状シリカ微粒子の表面を疎水化処理することにより得られた平均粒径20〜500nmの疎水性球状シリカ微粒子からなる搬送粒子と、該搬送粒子の表面に被着せしめた電荷制御剤と、から構成された静電像現像トナーの摩擦帯電量を制御するための外添用電荷制御粒子であって、
前記電荷制御剤を、前記搬送粒子1質量部に対して1×10−3〜1×10−1質量部の範囲で有することを特徴とする外添用電荷制御粒子。
Carrier particles composed of hydrophobic spherical silica fine particles having an average particle diameter of 20 to 500 nm obtained by hydrophobizing the surface of hydrophilic spherical silica fine particles obtained by the sol-gel method, and the surfaces of the carrier particles were deposited. Charge control particles for external addition for controlling the triboelectric charge amount of the electrostatic image developing toner composed of a charge control agent,
Charge control particles for external addition, comprising the charge control agent in a range of 1 × 10 −3 to 1 × 10 −1 parts by mass with respect to 1 part by mass of the carrier particles.
前記疎水性球状シリカ微粒子が、4官能性シラン化合物および/またはその部分加水分解縮合生成物を加水分解および縮合することによって得られたSiO単位からなる親水性球状シリカ微粒子の表面にRSiO3/2単位(式中、Rは置換または非置換の炭素原子数1〜20の1価炭化水素基である。)を導入し、さらに、R SiO1/2単位(式中、Rは同一または異種の炭素原子数1〜6の1価炭化水素基である。)を導入する疎水化処理により得られた疎水性球状シリカ微粒子であることを特徴とする請求項3記載の外添用電荷制御粒子。 The hydrophobic spherical silica microparticles, tetrafunctional silane compound and / or R 2 SiO its partial hydrolysis condensation product on the surface of the hydrophilic spherical silica microparticles composed of the obtained SiO 2 units by hydrolysis and condensation 3/2 units (wherein R 2 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms) and further R 1 3 SiO 1/2 units (wherein R 1 is a monovalent hydrocarbon group having 1 to 6 carbon atoms, which is the same or different, and is a hydrophobic spherical silica fine particle obtained by a hydrophobizing treatment into which R 1 is introduced. Charge control particles for external addition. 前記疎水性球状シリカ微粒子が、
一般式(I):Si(OR(但し、Rは同一または異なる、炭素原子数1〜6の1価炭化水素基)で示されるシラン化合物およびその加水分解縮合物から選択される1種または2種以上の化合物を親水性溶媒、水、並びに塩基性化合物の混合溶液中で加水分解、縮合することによって親水性球状シリカ微粒子分散液を得る工程;
得られた親水性球状シリカ微粒子分散液に水を添加し、親水性溶媒を留去し水性分散液に変換し、微粒子表面に残存するアルコキシ基を完全に加水分解する工程;
このようにして処理された親水性球状シリカ微粒子水性分散液に、一般式(II):RSi(OR(但し、Rは炭素原子数1〜20の1価炭化水素基、Rは同一または異種の炭素原子数1〜6の1価炭化水素基)で示されるシラン化合物およびその加水分解縮合物から選択される1種または2種以上の化合物を添加し親水性球状シリカ微粒子表面をコーティングし、疎水性球状シリカ微粒子を得る工程;
該疎水性球状シリカ微粒子水性分散液にケトン系溶媒を添加し水を留去し疎水性球状シリカ微粒子ケトン系溶媒分散液に変換する工程;および
該疎水性球状シリカ微粒子ケトン系溶媒分散液に、一般式(III):R SiNHSiR (但し、Rは同一または異種の炭素原子数1〜6の1価炭化水素基)で示されるシラザン化合物、および一般式(IV):R SiX(但し、Rは一般式(III)に同じ。XはOH基または加水分解性基)で示されるシラン化合物を添加し、反応させてシリカ微粒子表面に残存するシラノール基をトリアルキルシリル化し、さらに高度に疎水化する工程;
によって得られた疎水性球形シリカ粒子であることを特徴とする請求項3または4記載の外添用電荷制御粒子。
The hydrophobic spherical silica fine particles are
It is selected from silane compounds represented by the general formula (I): Si (OR 3 ) 4 (wherein R 3 is the same or different and a monovalent hydrocarbon group having 1 to 6 carbon atoms) and hydrolysis condensates thereof. A step of obtaining a hydrophilic spherical silica fine particle dispersion by hydrolyzing and condensing one or more compounds in a mixed solution of a hydrophilic solvent, water, and a basic compound;
A step of adding water to the obtained hydrophilic spherical silica fine particle dispersion, distilling off the hydrophilic solvent to convert it into an aqueous dispersion, and completely hydrolyzing the alkoxy groups remaining on the surface of the fine particles;
In the hydrophilic spherical silica fine particle aqueous dispersion thus treated, the general formula (II): R 2 Si (OR 4 ) 3 (where R 2 is a monovalent hydrocarbon group having 1 to 20 carbon atoms, R 4 is a hydrophilic spherical silica to which one or two or more compounds selected from silane compounds represented by the same or different monovalent hydrocarbon groups having 1 to 6 carbon atoms and hydrolytic condensates thereof are added. Coating the surface of the fine particles to obtain hydrophobic spherical silica fine particles;
Adding a ketone solvent to the hydrophobic spherical silica fine particle aqueous dispersion and distilling off water to convert it into a hydrophobic spherical silica fine particle ketone solvent dispersion; and the hydrophobic spherical silica fine particle ketone solvent dispersion; Silazane compound represented by the general formula (III): R 1 3 SiNHSiR 1 3 (wherein R 1 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms), and the general formula (IV): R 1 3 SiX (where R 1 is the same as in general formula (III), X is an OH group or a hydrolyzable group) is added and reacted to convert the silanol group remaining on the surface of the silica fine particles to a trialkylsilyl group. And further hydrophobizing;
The charge control particles for external addition according to claim 3 or 4, wherein the particles are hydrophobic spherical silica particles obtained by the above method.
JP2010048189A 2010-03-04 2010-03-04 Electrostatic image-developing toner and electric charge-controlling particle for external addition Pending JP2011185998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010048189A JP2011185998A (en) 2010-03-04 2010-03-04 Electrostatic image-developing toner and electric charge-controlling particle for external addition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010048189A JP2011185998A (en) 2010-03-04 2010-03-04 Electrostatic image-developing toner and electric charge-controlling particle for external addition

Publications (1)

Publication Number Publication Date
JP2011185998A true JP2011185998A (en) 2011-09-22

Family

ID=44792401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010048189A Pending JP2011185998A (en) 2010-03-04 2010-03-04 Electrostatic image-developing toner and electric charge-controlling particle for external addition

Country Status (1)

Country Link
JP (1) JP2011185998A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006781A (en) * 2010-06-23 2012-01-12 Fuji Xerox Co Ltd Method of producing silica particle
JP2012006789A (en) * 2010-06-24 2012-01-12 Fuji Xerox Co Ltd Silica particles, and method for producing the same
JP2012006796A (en) * 2010-06-25 2012-01-12 Fuji Xerox Co Ltd Silica particle and method of producing the same
JP2013067545A (en) * 2011-09-26 2013-04-18 Fuji Xerox Co Ltd Sol-gel silica particle, electrostatic charge image developing toner, electrostatic charge image developing agent, toner cartridge, process cartridge, image forming apparatus, and method for forming image
JP2014162678A (en) * 2013-02-25 2014-09-08 Fuji Xerox Co Ltd Sol-gel silica particles and method of producing the same
JP2015000830A (en) * 2013-06-14 2015-01-05 電気化学工業株式会社 Spherical silica composition and use of the same
US8962139B2 (en) 2011-01-20 2015-02-24 Fuji Xerox Co., Ltd. Resin particle and method for producing the same
US9243145B2 (en) 2013-01-28 2016-01-26 Fuji Xerox Co., Ltd. Silica composite particles and method of preparing the same
US9394413B2 (en) 2011-01-19 2016-07-19 Fuji Xerox Co., Ltd. Resin particle and method for producing the same
US9708191B2 (en) 2011-12-01 2017-07-18 Fuji Xerox Co., Ltd. Silica composite particles and method of preparing the same
JP2018045004A (en) * 2016-09-13 2018-03-22 キヤノン株式会社 Toner and method for manufacturing toner
US10228630B2 (en) 2016-09-13 2019-03-12 Canon Kabushiki Kaisha Toner and method of producing toner
JP2020033223A (en) * 2018-08-29 2020-03-05 信越化学工業株式会社 Positive charge type hydrophobic spherical silica particle, method for producing the same, and positive charge toner composition using the same
US11866340B2 (en) 2020-03-24 2024-01-09 Fujifilm Business Innovation Corp. Silica particle and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142660A (en) * 1987-11-06 1989-06-05 Xerox Corp Toner composition containing modified charge promoting additive
JPH11212299A (en) * 1998-01-29 1999-08-06 Fuji Xerox Co Ltd Image forming method
JP2004109634A (en) * 2002-09-19 2004-04-08 Fuji Xerox Co Ltd Electrostatic charge image dry type toner composition, developer for developing electrostatic latent image and method for forming image
JP2008273757A (en) * 2007-04-25 2008-11-13 Shin Etsu Chem Co Ltd Hydrophobic spherical silica fine particles having high flowability, its method for producing the same, toner external additive for electrostatic charge image development using the same and organic resin composition containing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142660A (en) * 1987-11-06 1989-06-05 Xerox Corp Toner composition containing modified charge promoting additive
JPH11212299A (en) * 1998-01-29 1999-08-06 Fuji Xerox Co Ltd Image forming method
JP2004109634A (en) * 2002-09-19 2004-04-08 Fuji Xerox Co Ltd Electrostatic charge image dry type toner composition, developer for developing electrostatic latent image and method for forming image
JP2008273757A (en) * 2007-04-25 2008-11-13 Shin Etsu Chem Co Ltd Hydrophobic spherical silica fine particles having high flowability, its method for producing the same, toner external additive for electrostatic charge image development using the same and organic resin composition containing the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006781A (en) * 2010-06-23 2012-01-12 Fuji Xerox Co Ltd Method of producing silica particle
US9416015B2 (en) 2010-06-23 2016-08-16 Fuji Xerox Co., Ltd. Method of producing silica particles
JP2012006789A (en) * 2010-06-24 2012-01-12 Fuji Xerox Co Ltd Silica particles, and method for producing the same
US9187502B2 (en) 2010-06-24 2015-11-17 Fuji Xerox Co., Ltd. Silica particles and method for producing the same
JP2012006796A (en) * 2010-06-25 2012-01-12 Fuji Xerox Co Ltd Silica particle and method of producing the same
US8871344B2 (en) 2010-06-25 2014-10-28 Fuji Xerox Co., Ltd. Hydrophobization treatment of silica particles
US9394413B2 (en) 2011-01-19 2016-07-19 Fuji Xerox Co., Ltd. Resin particle and method for producing the same
US8962139B2 (en) 2011-01-20 2015-02-24 Fuji Xerox Co., Ltd. Resin particle and method for producing the same
JP2013067545A (en) * 2011-09-26 2013-04-18 Fuji Xerox Co Ltd Sol-gel silica particle, electrostatic charge image developing toner, electrostatic charge image developing agent, toner cartridge, process cartridge, image forming apparatus, and method for forming image
US9708191B2 (en) 2011-12-01 2017-07-18 Fuji Xerox Co., Ltd. Silica composite particles and method of preparing the same
US9243145B2 (en) 2013-01-28 2016-01-26 Fuji Xerox Co., Ltd. Silica composite particles and method of preparing the same
JP2014162678A (en) * 2013-02-25 2014-09-08 Fuji Xerox Co Ltd Sol-gel silica particles and method of producing the same
JP2015000830A (en) * 2013-06-14 2015-01-05 電気化学工業株式会社 Spherical silica composition and use of the same
JP2018045004A (en) * 2016-09-13 2018-03-22 キヤノン株式会社 Toner and method for manufacturing toner
US10228630B2 (en) 2016-09-13 2019-03-12 Canon Kabushiki Kaisha Toner and method of producing toner
JP2020033223A (en) * 2018-08-29 2020-03-05 信越化学工業株式会社 Positive charge type hydrophobic spherical silica particle, method for producing the same, and positive charge toner composition using the same
WO2020045037A1 (en) * 2018-08-29 2020-03-05 信越化学工業株式会社 Positive charge type hydrophobic spherical silica particles, method for producing same and positively charged toner composition using same
US11866340B2 (en) 2020-03-24 2024-01-09 Fujifilm Business Innovation Corp. Silica particle and method for producing the same

Similar Documents

Publication Publication Date Title
JP2011185998A (en) Electrostatic image-developing toner and electric charge-controlling particle for external addition
JP4781769B2 (en) Highly hydrophobic spherical sol-gel silica fine particles, process for producing the same, toner external additive for developing electrostatic images comprising the fine particles, and developer using the toner external additive
JP4579265B2 (en) Hydrophobic spherical silica fine particles having high fluidity, method for producing the same, toner external additive for developing electrostatic image using the same, and organic resin composition containing the same
JP3988936B2 (en) Silane surface-treated spherical silica titania fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same
JP3927741B2 (en) Toner external additive for electrostatic image development
JP5631699B2 (en) Method for producing irregular shaped silica fine particles and toner external additive for developing electrostatic image
JP2008174430A (en) Hydrophobic spherical silica fine particle, its manufacturing method and toner external additive for electrostatic charge image development
JP2011032114A (en) Hydrophobic spherical silica fine particle, method for producing the same and toner external additive for electrostatic charge image development using the same
JP5644789B2 (en) Powder composition
JP2003176122A (en) Silica with low silanol group content
JP4578400B2 (en) Toner external additive for electrophotography
JP2014114175A (en) Surface-hydrophobized spherical silica fine particle, method for producing the same, and toner external additive, obtained by using the particle, for developing electrostatic charge image
JP2012025596A (en) Method for producing agglomerated silica microparticle
JP5655800B2 (en) Method for producing associated silica
JP4060241B2 (en) Hydrophobic spherical silica-based fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same
TWI804672B (en) Positively charged hydrophobic spherical silica particles, method for producing same, and positively charged toner composition using the positively charged hydrophobic spherical silica particles
JP2020033224A (en) Positive charge type hydrophobic spherical silica particle, method for producing the same, and positive charge toner composition using the same
JP4347201B2 (en) Toner external additive and toner for developing electrostatic image
JP4346403B2 (en) Surface-treated silica particles and uses thereof
JP6008137B2 (en) Surface organic resin-coated hydrophobic spherical silica fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same
JP2014136670A (en) Strongly negative charge granted, hydrophobic, and spherical silica fine particle, method for producing the particle, and charge control agent obtained by using the particle for developing electrostatic charge image
JP3767788B2 (en) Toner external additive for electrostatic image development
JP4628760B2 (en) Spherical hydrophobic polydiorganosiloxane-containing silica fine particles, toner additive for developing electrostatic image and toner
JP3871297B2 (en) Toner external additive for electrostatic image development
JP3856744B2 (en) Toner external additive for electrostatic image development

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140520