JP2000140589A - Porous polysulfone film - Google Patents

Porous polysulfone film

Info

Publication number
JP2000140589A
JP2000140589A JP10341165A JP34116598A JP2000140589A JP 2000140589 A JP2000140589 A JP 2000140589A JP 10341165 A JP10341165 A JP 10341165A JP 34116598 A JP34116598 A JP 34116598A JP 2000140589 A JP2000140589 A JP 2000140589A
Authority
JP
Japan
Prior art keywords
film
membrane
ratio
pore area
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10341165A
Other languages
Japanese (ja)
Other versions
JP4265701B2 (en
Inventor
Masako Ikenaga
正子 池永
Masakazu Yamada
雅一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Priority to JP34116598A priority Critical patent/JP4265701B2/en
Publication of JP2000140589A publication Critical patent/JP2000140589A/en
Application granted granted Critical
Publication of JP4265701B2 publication Critical patent/JP4265701B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent bacterial lump pieces contained in a dialysis liquid from penetrating into the inside of a hollow fiber film which consists of a polysulfone resin and a hydrophilic polymer and has a dense layer at the inner surface side and a porous part on the outer surface by setting the ratio of pores each having a specified pore area, the average pore area, and the ratio of opening, each in a specified ratio. SOLUTION: In a hollow fiber film which is suitably used for blood dialysis, blood filtration, and blood dialysis filtration, consists of a polysulfone resin and a hydrophilic polymer, and has a dense layer at the inner surface side and a porous part on the outer surface, the ratio of opening of the porous part on the outer surface is set at 10-30%; the ratio of pores each having a pore area of 0.5 μm2 or higher, at 10% or lower; the ratio of pores each having a pore area of 0.1 μm2 or lower, at 75% or lower; and/or the average pore area on the outer surface, in a range of 0.05-0.35 μm2. Thus, hollow fibers are prevented from adhering to each other, and simultaneously the penetration of bacterial lump pieces from a contaminated dialysis liquid into the inside of the film can be inhibited. Polyvinylpyrrolidone is preferable as the hydrophilic polymer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、体外循環による血
中老廃物の除去を目的とした医療用分離膜に関するもの
で、血液浄化、特に腎機能を代用するための血液透析、
血液濾過、および血液濾過透析の分野で利用されるもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a medical separation membrane for removing blood wastes by extracorporeal circulation, and relates to blood purification, particularly hemodialysis for substituting renal function.
It is used in the fields of hemofiltration and hemodiafiltration.

【0002】[0002]

【従来の技術】近年、腎機能の低下により血液中の老廃
物除去能力が低い患者に対し、透析膜を用いた透析療法
が行われ患者の延命がなされいる。一方、このような透
析療法の長期化に伴い、透析アミロイド−シスと呼ばれ
る合併症が出現している。これはアミロイドと呼ばれる
繊維蛋白が靭帯、腱、関節などに沈着し、さまざまな臨
床症状をもたらす疾患である。このアミロイドを構成す
る蛋白の一つとしてβ2−ミクログロブリンが同定され
て以来、これら低分子蛋白の除去が治療目標の一つとな
り、それを可能とする高性能透析膜の市場要求が高まっ
た。高性能透析膜に求められる特性としては、β2 −ミ
クログロブリンに代表される低分子蛋白の高い除去性
能、および優れた生体適合性であるが、これらを満足す
る膜素材として合成高分子であるポリスルホン系樹脂が
注目されており、ポリスルホン系樹脂を主体とする高性
能透析膜の開発が積極的に進められている。
2. Description of the Related Art In recent years, dialysis therapy using a dialysis membrane has been performed on a patient having a low ability to remove waste products in blood due to a decrease in renal function, thereby extending the life of the patient. On the other hand, with such prolonged dialysis therapy, a complication called dialysis amyloidosis has appeared. It is a disease in which fiber proteins called amyloid deposit on ligaments, tendons, joints, and the like, causing various clinical symptoms. Β One protein 2 constituting the amyloid - since microglobulin have been identified, removal of these low molecular proteins is one of the therapeutic target, increased the market demand for high-performance dialysis membrane to enable it . The properties required for the high-performance dialysis membrane, beta 2 - high removal performance of low-molecular proteins typified microglobulin, and is an excellent biocompatibility, a synthetic polymer as a membrane material satisfying these Polysulfone-based resins have attracted attention, and the development of high-performance dialysis membranes mainly composed of polysulfone-based resins has been actively promoted.

【0003】ところが、ポリスルホン系樹脂は疎水性が
高く、そのままでは水濡れ性が悪いため濾過性能が十分
に発揮できない。さらに、本発明のように血液浄化分野
で使用される場合、血液凝固系の活性化を抑制する必要
もあり、膜表面を親水化するために親水性高分子やグリ
セリン等の親水化剤が添加される場合が多い。これらの
親水化剤は膜表面に存在するため、製造プロセスにおけ
る乾燥時に親水化剤が糊の役目を果たし、隣接する膜同
士で固着が生じる結果、ポッティング剤の浸透不良によ
る成型不良が発生することがあった。
[0003] However, polysulfone resins have high hydrophobicity and, as they are, have poor water wettability, so that they cannot exhibit sufficient filtration performance. Furthermore, when used in the field of blood purification as in the present invention, it is necessary to suppress the activation of the blood coagulation system, and a hydrophilic agent such as a hydrophilic polymer or glycerin is added to make the membrane surface hydrophilic. Often done. Since these hydrophilizing agents are present on the surface of the membrane, the hydrophilizing agent serves as a glue during drying in the manufacturing process, and sticks between adjacent films, resulting in poor molding due to poor penetration of the potting agent. was there.

【0004】この欠点を改善する試みは、例えば、中空
糸膜の外表面に大きな開孔部を作って隣接する膜同士の
接触面積を軽減する技術として、特開平7−28986
3に開示されている。しかしながら、エンドトキシンカ
ットフィルターの使用によって透析液の水質管理状況が
飛躍的に向上した一方で、透析液供給カプラー等の構造
因による透析液汚染は依然として発生しており、使用時
にカプラーからはがれ落ちた菌塊片が、膜外表面の開孔
部から膜内部の多孔質部に侵入してくる可能性があっ
た。しかも、これら高性能透析膜においては、侵入時の
物理的ショックで菌塊片から遊離したエンドトキシンが
緻密層を透過し、血液側に移行して生体を刺激するおそ
れがあった。
[0004] Attempts to remedy this drawback include, for example, Japanese Patent Application Laid-Open No. 7-28986 discloses a technique for reducing the contact area between adjacent membranes by forming a large opening in the outer surface of a hollow fiber membrane.
3. However, while the use of endotoxin cut filters has dramatically improved the quality control of dialysate water, dialysate contamination due to structural factors such as dialysate supply couplers has still occurred, and bacteria that have detached from the coupler during use have been used. There was a possibility that lumps entered the porous portion inside the membrane from the opening on the outer surface of the membrane. In addition, in these high-performance dialysis membranes, endotoxin released from the bacterial mass due to physical shock at the time of invasion may permeate the dense layer, migrate to the blood side, and stimulate the living body.

【0005】[0005]

【発明が解決しようとする課題】本発明は、製造時に膜
固着による成型不良を起こすことなく、しかも、透析液
に含まれる菌塊片が膜内部へ侵入しないポリスルホン系
多孔質膜を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a polysulfone-based porous membrane which does not cause molding defects due to membrane sticking during production and does not allow the bacterial mass contained in the dialysate to enter the inside of the membrane. With the goal.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意研究した結果、ポリスルホン系樹
脂と親水性高分子からなり、内表面側に緻密層、外表面
に開孔部を持った中空糸膜において、特定の孔面積の存
在率、平均孔面積、および開孔率を特定の範囲にする
と、中空糸同士の固着が防止できるのみでなく、汚染透
析液から由来する菌塊片の膜内部への侵入を高率に阻止
できることを見出し、本発明を完成すに至った。すなわ
ち、本発明は、ポリスルホン系樹脂と親水性高分子から
なり、内表面側に緻密層、外表面に開孔部を有する中空
糸膜であって、外表面における開孔部の開孔率が10〜
30%、外表面における孔面積が0.5μm2 以上の孔
の存在率が10%以下で、かつ、孔面積が0.1μm2
以下の孔の存在率が75%以下であること、および/ま
たは外表面における平均孔面積が0.05〜0.35μ
2 であることを特徴とするポリスルホン系多孔質膜に
関するものである。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and as a result, have been made of a polysulfone-based resin and a hydrophilic polymer. In the hollow fiber membrane having a portion, when the abundance ratio of the specific pore area, the average pore area, and the opening rate are in the specific ranges, not only can the fixation of the hollow fibers be prevented, but also from the contaminated dialysate. The present inventors have found that invasion of bacterial mass pieces into the inside of the membrane can be prevented at a high rate, and have completed the present invention. That is, the present invention is a hollow fiber membrane comprising a polysulfone-based resin and a hydrophilic polymer, a dense layer on the inner surface side, and an opening on the outer surface, wherein the opening ratio of the opening on the outer surface is lower. 10
30%, the abundance of pores having a pore area of 0.5 μm 2 or more on the outer surface is 10% or less, and the pore area is 0.1 μm 2
And the average pore area on the outer surface is 0.05 to 0.35 μm.
The present invention relates to a polysulfone-based porous membrane characterized by having m 2 .

【0007】本発明の膜は、ポリスルホン系樹脂と親水
性高分子からなるが、膜を構成する主な成分はポリスル
ホン系樹脂であり、下記に示す化学構造式(1)、もし
くは(2)のユニットの繰り返し構造からなる。これ以
外にも芳香環上に官能基やアルキル基が結合した、いわ
ゆるポリスルホン誘導体も本発明の範疇に含まれる。な
お、式中のArはパラ置換の二価フェニル基を示す。 −O−Ar−C(CH3)3−Ar−O−Ar−SO3−Ar− (1) −O−Ar−SO3−Ar− (2)
The membrane of the present invention comprises a polysulfone resin and a hydrophilic polymer. The main component of the membrane is a polysulfone resin, which is represented by the following chemical structural formula (1) or (2). It consists of a repeating unit. In addition, a so-called polysulfone derivative in which a functional group or an alkyl group is bonded to an aromatic ring is also included in the scope of the present invention. Ar in the formula represents a para-substituted divalent phenyl group. -O-Ar-C (CH3) 3-Ar-O-Ar-SO3-Ar- (1) -O-Ar-SO3-Ar- (2)

【0008】膜を構成する第二の成分は親水性高分子で
あり、主に膜の親水化と孔形成を目的として添加されて
いる。親水性高分子はポリスルホン系樹脂と共通の溶剤
に溶解し、相溶性を有するという点からビニル系高分子
が好ましく、例えば、ポリビニルピロリドン、ポリエチ
レングリコール、ポリアミド、ポリビニルアルコール、
エチレンビニルアルコール共重合体から選択することが
できる。中でも、ポリビニルピロリドンはポリスルホン
系樹脂と適度な親和性を有し、膜表面に残って親水化に
よる抗血栓化や濾過性能に寄与できるため、もっとも好
ましい。これらの親水性高分子の含有率については、最
終的に膜表面を親水化できていればよいので、3〜12
重量%であれば十分である。より好ましくは5〜9重量
%である。したがって、膜の残りの部分、88〜97重
量%がポリスルホン系樹脂である。
[0008] The second component constituting the membrane is a hydrophilic polymer, and is added mainly for the purpose of making the membrane hydrophilic and forming pores. The hydrophilic polymer is preferably dissolved in a common solvent with the polysulfone-based resin, and is preferably a vinyl-based polymer in terms of compatibility, for example, polyvinylpyrrolidone, polyethylene glycol, polyamide, polyvinyl alcohol,
It can be selected from ethylene vinyl alcohol copolymer. Among them, polyvinylpyrrolidone is most preferable because it has a moderate affinity with the polysulfone-based resin and can remain on the membrane surface and contribute to antithrombosis and filtration performance due to hydrophilicity. The content of these hydrophilic polymers may be 3 to 12 as long as the membrane surface can be finally made hydrophilic.
Weight percent is sufficient. More preferably, it is 5 to 9% by weight. Therefore, the remaining portion of the membrane, 88-97% by weight, is polysulfone-based resin.

【0009】本発明の多孔質膜の構造は、内径が80〜
400μmの中空部と厚みが35〜85μmの膜厚部を
持つ中空糸状であり、血液浄化用途として十分な耐圧性
と引っ張り強度を兼ね備えている。内径がこれ以下に小
さいと血流抵抗が高まって血流速度が確保できないが、
必要以上に大きくなっても血中の物質移動効率が低下し
て治療効果の低下につながる。また、膜厚は薄すぎると
強度が保てずに潰れやリークの原因となり、厚すぎると
膜中の物質移動抵抗が大きくなって透過性能が低下す
る。この中空糸膜は、内表面側に分離機能を有する緻密
層、外表面側に支持体としての粗密層からなる非対称構
造をなし、しかも、透析液と接する外表面には制御され
た孔分布を持った開孔部を有して本発明の効果を発揮し
ている。
The structure of the porous membrane of the present invention has an inner diameter of 80 to 80.
It is a hollow fiber having a hollow part of 400 μm and a film part with a thickness of 35 to 85 μm, and has both sufficient pressure resistance and tensile strength for blood purification applications. If the inner diameter is smaller than this, blood flow resistance increases and blood flow velocity cannot be secured,
Even if the size becomes larger than necessary, the efficiency of mass transfer in the blood decreases, leading to a decrease in the therapeutic effect. On the other hand, if the film thickness is too thin, the strength cannot be maintained, causing crushing or leaking. If the film thickness is too thick, the mass transfer resistance in the film increases and the permeation performance decreases. This hollow fiber membrane has an asymmetric structure consisting of a dense layer having a separation function on the inner surface side and a dense layer as a support on the outer surface side, and has a controlled pore distribution on the outer surface in contact with the dialysate. It has the opening part which has the effect of the present invention.

【0010】本発明の膜の孔分布は、乾燥膜の外表面の
走査型電子顕微鏡写真を画像解析することで数値化され
る。具体的には膜に付着した孔径保持材や充填液を水洗
後、冷エタノールから凍結乾燥した膜を銀蒸着し、電子
顕微鏡で倍率6000倍における膜の外表面写真を撮影
する。これを90mm×70mmの大きさにプリント
し、写真の全範囲を画像解析ソフトを用いてパソコンに
取り込み、画像を二値化することで、外表面の各々の開
孔部について孔面積を求めることができる。その結果、
本発明者らは、孔面積の分布や平均孔面積と透析液中の
菌塊片侵入量や成型性との間に一定の関係があること、
および開孔率と成形性との間にも一定の関係があって、
いずれをも制御する必要性があることを見出した。
[0010] The pore distribution of the membrane of the present invention is quantified by image analysis of a scanning electron micrograph of the outer surface of the dried membrane. Specifically, after washing the pore-diameter retaining material and the filling liquid attached to the film with water, the film freeze-dried from cold ethanol is silver-deposited, and a photograph of the outer surface of the film at a magnification of 6000 is taken with an electron microscope. This is printed in a size of 90 mm x 70 mm, the entire area of the photograph is taken into a personal computer using image analysis software, and the image is binarized to determine the hole area for each hole on the outer surface. Can be. as a result,
The present inventors have a certain relationship between the distribution of pore area and the average pore area and the amount of mold infiltration in the dialysate and moldability,
And there is a certain relationship between the open area ratio and moldability,
We found that there was a need to control both.

【0011】まず第一に、特定の孔面積を有する孔の存
在率について説明するが、本発明でいう存在率とは、取
り込んだ画像中の孔の総数に対する任意の孔面積の孔の
総数の百分率と定義され、下記の式(3)で与えられ
る。なお、10ピクセル以下はノイズと見なして計数か
ら除外した。 存在率(%)=(任意の孔面積の孔の総数/画像中の孔の総数)×100 (3)
First, the abundance ratio of holes having a specific hole area will be described. The abundance ratio in the present invention refers to the ratio of the total number of holes having an arbitrary hole area to the total number of holes in a captured image. It is defined as a percentage and is given by the following equation (3). In addition, 10 pixels or less were considered as noise and excluded from the count. Abundance (%) = (total number of holes with arbitrary hole area / total number of holes in image) × 100 (3)

【0012】通常、透析液の一部は膜の外表面の開孔部
から膜内部の多孔部に流れ込むが、その透析液にカプラ
ー等由来の菌塊片が含まれると菌塊片が膜内部まで侵入
し、侵入時の物理的なショックで菌塊片から遊離したエ
ンドトキシンの一部が、緻密層を通過して血液側に移行
してくることがある。一般に、菌体の大きさは長径が1
〜3μmであるため、孔面積が0.5μm2 以下では菌
塊片の侵入は殆ど起こらない。菌塊片の侵入を事実上阻
止するには、孔面積0.5μm2 以上の孔の存在率を1
0%以下に抑えることが必要であり、7%以下に抑える
とさらに好ましい。もっとも好ましくは5%以下であ
る。一方、孔面積が小さな孔が増えすぎると今度は成型
上の問題が起こりやすい。特に、孔面積が0.1μm2
以下の孔が増えると隣接する膜同士で固着が生じ、膜間
へのポッティング剤の浸透不良によって中空糸膜内外の
分離が不完全になる。このような固着による成型不良を
無くすには、孔面積が0.1μm2 以下の孔の存在率を
75%以下におさえる必要がある。より好ましくは60
%以下、もっとも好ましくは45%以下である。
Normally, a part of the dialysate flows from the pores on the outer surface of the membrane into the porous portion inside the membrane. In some cases, part of the endotoxin released from the bacterial mass due to physical shock at the time of invasion may pass through the dense layer and move to the blood side. In general, the size of the cells is 1
Since the pore area is 0.5 μm 2 or less, penetration of bacterial mass pieces hardly occurs. To effectively block the invasion of Kinkatamarihen is the abundance of open area 0.5 [mu] m 2 or more holes 1
It is necessary to keep it to 0% or less, and it is more preferred to keep it to 7% or less. Most preferably, it is 5% or less. On the other hand, if the number of holes having a small hole area is too large, problems in molding are likely to occur. In particular, the pore area is 0.1 μm 2
When the number of the following holes increases, fixation occurs between adjacent membranes, and incomplete separation of the inside and outside of the hollow fiber membrane due to poor penetration of the potting agent between the membranes. In order to eliminate molding defects due to such adhesion, it is necessary to reduce the abundance ratio of holes having a hole area of 0.1 μm 2 or less to 75% or less. More preferably 60
%, Most preferably 45% or less.

【0013】第二に平均孔面積について説明するが、本
発明でいう平均孔面積とは、取り込んだ画像中の全ての
孔の孔面積の平均値と定義され、下記の式(4)で与え
られる。ここでも、10ピクセル以下はノイズと見なし
て計数から除外した。 平均孔面積=画像中の孔面積の総和/画像中の孔総数 (4) 平均孔面積も菌塊片の侵入だけではなく、成型性、特に
膜同士の固着にも関係している。これは、小さいほど隣
接する膜同士が固着する傾向が強くなり、成型不良を生
じやすい。反対に大きいほど菌塊片の侵入が起こるた
め、0.05〜0.35μm2 の範囲に抑える必要があ
る。より好ましくは0.10〜0.30μm2 、もっと
も好ましくは0.10〜0.20μm2 の範囲である。
Second, the average pore area will be described. The average pore area in the present invention is defined as the average value of the pore areas of all the pores in a captured image, and is given by the following equation (4). Can be Again, less than 10 pixels were considered as noise and excluded from the count. Average pore area = sum of pore areas in image / total number of pores in image (4) The average pore area is related not only to the invasion of bacterial mass pieces but also to the moldability, particularly to the adhesion between membranes. This is because the smaller the smaller, the stronger the tendency of the adjacent films to adhere to each other, and the more likely the molding failure is. Conversely, the larger the size, the more intrusion of the bacterial mass occurs, so it is necessary to keep the size within the range of 0.05 to 0.35 μm 2 . It is more preferably in the range of 0.10 to 0.30 μm 2 , and most preferably in the range of 0.10 to 0.20 μm 2 .

【0014】一方、これらのパラメーターに加えて外表
面の開孔率も成形上、重要なパラメーターである。本発
明でいう開孔率とは、取り込んだ画像の面積に対する開
孔部の孔面積の総和の百分率と定義され、下記の式
(5)で与えられる。ここでも、10ピクセル以下はノ
イズとみなして計数から除外した。 開孔率(%)=(開孔部の孔面積の総和/取り込んだ画像の面積)×100 (5)
On the other hand, in addition to these parameters, the porosity of the outer surface is also an important parameter in molding. The aperture ratio in the present invention is defined as a percentage of the sum of the aperture area of the aperture portion with respect to the area of the captured image, and is given by the following equation (5). Again, less than 10 pixels were considered as noise and excluded from the count. Perforation rate (%) = (total of perforated area of perforated part / area of captured image) × 100 (5)

【0015】開孔率は膜同士の固着への寄与に大きく関
与し、開孔率が小さいと隣接する膜同士の接触面積が増
えて固着が起こり、ひどい場合は、束全体が棒状に固着
することさえある。このため、開孔率は10%以上を確
保する必要がある。しかし、開孔率を不必要に大きくす
ると、今度は膜の長軸方向へのしなり、すなわち、腰の
強さが損なわれる結果、成型時にポッティング部での糸
流れによる成型不良が多発する。腰の強さを損なわない
ために開孔率は30%を上限とするべきで、したがっ
て、外表面の開孔率の範囲は10〜30%であることが
必要である。より好ましい範囲は15〜30%である。
The porosity greatly contributes to the adhesion of the films. If the porosity is small, the contact area between the adjacent films increases, and the film sticks. If the porosity is severe, the whole bundle sticks in a rod shape. There are even things. For this reason, it is necessary to secure a hole opening rate of 10% or more. However, if the opening ratio is unnecessarily increased, the film is bent in the longitudinal direction, that is, the stiffness is impaired. As a result, molding failure due to the yarn flow in the potting portion during molding frequently occurs. The upper limit of the porosity should be 30% in order not to impair the strength of the waist, and therefore, the range of the porosity of the outer surface needs to be 10 to 30%. A more preferred range is 15 to 30%.

【0016】次に、本発明のポリスルホン系多孔質膜を
製造する方法として、親水性高分子にポリビニルピロリ
ドン(以下、PVPという)を用いる場合について例示
する。該膜を製造するために用いる製膜原液は、ポリス
ルホン系樹脂、PVP、および溶媒の3成分を基本構成
成分とする。製膜原液の組成として、ポリスルホン系樹
脂の濃度は製膜可能な粘度を有し、かつ、膜としての特
徴を発揮できる範囲であればよく、通常10〜25重量
%、好ましくは15〜20重量%である。10重量%未
満では膜としての十分な強度を得ることができず、25
重量%を超えるとポリマー密度が高まって慣通孔が減少
し、十分な透過性能が得られないため実用的ではない。
これらのポリスルホン系樹脂は、重量平均分子量が1〜
5万のものが市販されており、それを使用すれば十分で
ある。特に、限定はしない。
Next, as a method for producing the polysulfone-based porous membrane of the present invention, a case where polyvinylpyrrolidone (hereinafter, referred to as PVP) is used as a hydrophilic polymer will be exemplified. The stock solution used for manufacturing the membrane has three basic components, a polysulfone resin, PVP, and a solvent. The concentration of the polysulfone-based resin as the composition of the film-forming stock solution may be within a range that has a viscosity capable of forming a film and can exhibit characteristics as a film. %. If it is less than 10% by weight, sufficient strength as a film cannot be obtained,
If the content is more than 10% by weight, the density of the polymer increases, the number of through holes decreases, and sufficient permeability cannot be obtained, which is not practical.
These polysulfone resins have a weight average molecular weight of 1 to 1.
50,000 are commercially available and it is sufficient to use them. There is no particular limitation.

【0017】PVPは主としてポリスルホン系多孔質膜
の孔形成、および残存して親水性を付与させるために使
用される。驚くべきことに、PVPとポリスルホン系樹
脂の割合が孔形成、特に膜の外表面における孔形成に関
与していることが、本発明者らの鋭意研究の結果、見出
された。詳細な原理は未だ不明な部分もあるが、ポリス
ルホン系樹脂に対してPVPの分子サイズがはるかに大
きいことが主な要因ではないかと思われる。すなわち、
ポリスルホン系樹脂に対するPVPの割合がある範囲で
低くなると、吐出された原液粘度が低下してPVPの拡
散によるミクロ相分離速度が早まって、PVPの小胞同
志の融合が進む。その結果、数としては少ないが、比較
的面積の大きい孔が形成される。反対にPVPの割合が
高くなると、原液粘度の上昇のためにPVPの小胞同志
の融合速度が低下し、その一方でポリスルホン系樹脂の
析出が進行する結果として、面積の小さい孔が多数形成
されて開孔率も高くなるものと考えられる。
PVP is mainly used for forming pores in a polysulfone-based porous membrane and for remaining the polymer to impart hydrophilicity. Surprisingly, the inventors of the present invention have found that the ratio of PVP to the polysulfone-based resin is involved in pore formation, particularly pore formation on the outer surface of the membrane. Although the detailed principle is still unknown, it seems that the main factor is that the molecular size of PVP is much larger than that of the polysulfone resin. That is,
When the ratio of PVP to the polysulfone resin becomes lower within a certain range, the viscosity of the discharged stock solution decreases, the microphase separation speed due to the diffusion of PVP increases, and the fusion of PVP vesicles progresses. As a result, a small number of holes having a relatively large area are formed. Conversely, when the proportion of PVP increases, the fusion speed of PVP vesicles decreases due to an increase in the viscosity of the stock solution, while the deposition of polysulfone-based resin proceeds, and as a result, a large number of small-area pores are formed. It is considered that the porosity is also increased.

【0018】このように膜の外表面に面積の大きい孔が
ある場合、たとえその数が少なくても、透析液中の菌塊
片が孔から膜内部に侵入し、侵入時の物理的ショックで
遊離したエンドトキシンが緻密層を通過して血液側に移
行する可能性が生じてくる。反対に面積の小さい孔が増
えると膜同士の固着が増えたり、開孔率が上がりすぎて
膜の腰の強さが低下して、成型不良の要因となってく
る。したがって、以上を満たすには、製膜原液における
PVPのポリスルホン系樹脂に対する割合が0.25〜
0.45が好ましく、0.30〜0.40であればさら
に好ましい。
In the case where pores having a large area are present on the outer surface of the membrane as described above, even if the number of pores is small, bacterial mass in the dialysate enters the membrane through the pores, and is caused by physical shock at the time of penetration. There is a possibility that the released endotoxin passes through the dense layer and moves to the blood side. Conversely, if the number of holes having a small area increases, the adhesion between the films increases, or the porosity becomes too high, and the stiffness of the film decreases, resulting in poor molding. Therefore, in order to satisfy the above, the ratio of PVP to the polysulfone-based resin in the film-forming stock solution was 0.25 to 0.25.
0.45 is preferred, and 0.30 to 0.40 is more preferred.

【0019】PVPは分子量別に様々な種類が市販され
ているので、それらを使用すればよく、特に限定はしな
い。ただし、上述のように外表面の開孔に重要であると
同時に、膜表面を親水化する目的もある。この観点か
ら、製膜時に膜表面に残存しやすいものが好ましく、分
子量が大きいほどその傾向にあるので、重量平均分子量
が少なくとも10万以上のものを使用するとよい。溶媒
はポリスルホン系樹脂、およびPVPを共に溶解する溶
媒であり、ジメチルスルホキシンド、N,N−ジメチル
アセトアミド、N,N−ジメチルホルムアミド、N−メ
チル−2−ピロリドン、スルホラン、ジオキサン等から
選択されるが、これらの各々の組み合わせは任意であ
る。また、凝固速度を制御する目的で少量の水や塩類を
添加することもできる。
Since various types of PVP are commercially available according to their molecular weight, they may be used without any particular limitation. However, as mentioned above, it is important for the opening of the outer surface and also has the purpose of making the membrane surface hydrophilic. From this viewpoint, it is preferable that the material easily remains on the film surface at the time of film formation. The larger the molecular weight is, the more the tendency tends to be. Therefore, it is preferable to use a material having a weight average molecular weight of at least 100,000 or more. The solvent is a solvent that dissolves both the polysulfone resin and PVP, and is selected from dimethylsulfoxin, N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, sulfolane, dioxane, and the like. However, each of these combinations is optional. Also, a small amount of water or salts can be added for the purpose of controlling the solidification rate.

【0020】以上の系からなる製膜原液を用いてポリス
ルホン系多孔質膜を得るには、公知の乾湿式法を用いれ
ばよい。製膜原液と内部凝固液とを30〜60℃に保温
された2重管構造の環状ノズル(二重紡糸口金)より同
時に吐出し、凝固浴に導入する。その際、ノズル吐出か
ら凝固浴に導入する前に空中走行させる。このノズルの
吐出面と凝固浴表面の空中走行長は、通常10〜100
cm、特に30〜85cmが好ましい。10cmより短
いと凝固が不完全なまま凝固浴に達する結果、外表面に
も緻密層が形成されるので本発明の膜が得られない。反
対に100cmを超えると糸揺れが生じて凝固不完全な
糸同士の接着が起こる可能性があり、製造プロセス上好
ましくない。
In order to obtain a polysulfone-based porous membrane using the membrane-forming stock solution comprising the above system, a known dry-wet method may be used. The film forming stock solution and the internal coagulation solution are simultaneously discharged from an annular nozzle (double spinneret) having a double tube structure kept at 30 to 60 ° C., and introduced into a coagulation bath. At this time, the nozzle is caused to travel in the air before being introduced from the nozzle discharge into the coagulation bath. The air running length of the discharge surface of this nozzle and the surface of the coagulation bath is usually 10 to 100.
cm, particularly preferably 30 to 85 cm. If it is shorter than 10 cm, the solidification layer is formed on the outer surface as a result of reaching the coagulation bath with incomplete coagulation, so that the film of the present invention cannot be obtained. On the other hand, if it exceeds 100 cm, the yarn may oscillate and the incompletely coagulated yarn may adhere to each other, which is not preferable in the production process.

【0021】また、空中走行部の雰囲気も、本発明を達
成する上で重要であり、走行部周辺をフードで囲って密
閉し、内部を湿潤状態に保持する。湿潤状態は下部の凝
固浴から発生する水蒸気を利用し、凝固浴の温度を30
〜70℃の範囲で調整して、フード内を水蒸気で飽和さ
せればよい。より好ましくは45〜60℃の範囲であ
る。内部凝固液は製膜原液に対して凝固性の高いものよ
り、低いものを用いた方が紡糸安定性は良く、水と溶剤
の混合液を用いることが好ましい。溶剤としてN,N−
ジメチルアセトアミド、N,N−ジメチルホルムアミ
ド、N−メチル−2−ピロリドン、ジメチルスルホキシ
ド等から選択される。内部凝固液の好ましい組成は、溶
剤が5〜40重量%であり、残りが水である。水の割合
がこれ以上高まると、膜として十分な透水性能が達成で
きない可能性がある。より好ましくは溶剤が10〜25
重量%である。
The atmosphere of the aerial traveling section is also important for achieving the present invention, and the periphery of the traveling section is enclosed by a hood, and the interior is kept wet. The wet state utilizes water vapor generated from the lower coagulation bath, and the temperature of the coagulation bath is set at 30.
It is sufficient to adjust the temperature in the range of -70 ° C and saturate the inside of the hood with steam. More preferably, it is in the range of 45 to 60 ° C. As for the internal coagulation liquid, it is better to use a low coagulation liquid than a liquid having a high coagulation property with respect to the spinning solution. N, N- as solvent
It is selected from dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, dimethylsulfoxide and the like. The preferred composition of the internal coagulation liquid is 5 to 40% by weight of solvent and the balance water. If the proportion of water is further increased, sufficient water permeability may not be achieved as a membrane. More preferably, the solvent is 10 to 25.
% By weight.

【0022】上記のように凝固させた中空糸は、内表面
側に緻密層、外表面に開孔部を有する非対称の多孔質構
造を有している。この中空糸膜をカセに巻き取って一定
束長にカットした後、残存している溶剤を水洗し、次い
で、乾燥処理前に孔径保持剤として、例えば、グリセリ
ン水溶液を付着させ、70〜80℃で10時間以上乾燥
処理を行えば、本発明の膜が得られる。当該膜を使用す
る際には、両端をポリウレタン等でポッティングして所
定の膜面積を有するモジュ−ルに成型し、必要に応じて
滅菌処理を行う。モジュ−ル化は公知の方法に従えばよ
く、特に限定はしない。滅菌方法も用途に応じて公知の
方法から選択すればよく、例えばエチレンオキサイトガ
ス滅菌、高圧蒸気滅菌、放射線滅菌等の処理をすればよ
い。
The hollow fiber solidified as described above has an asymmetric porous structure having a dense layer on the inner surface side and an opening on the outer surface side. After winding this hollow fiber membrane into a cassette and cutting it into a fixed bundle length, the remaining solvent is washed with water, and then, for example, a glycerin aqueous solution is adhered as a pore diameter retaining agent before drying treatment, and the resulting mixture is heated to 70 to 80 ° C. If the drying treatment is performed for 10 hours or more, the film of the present invention can be obtained. When using the membrane, both ends are potted with polyurethane or the like, molded into a module having a predetermined membrane area, and sterilized if necessary. Modulation may be performed according to a known method, and is not particularly limited. The sterilization method may be selected from known methods according to the application. For example, treatment such as ethylene oxide gas sterilization, high-pressure steam sterilization, and radiation sterilization may be performed.

【0023】[0023]

【発明の実施の形態】次に、実施例および参考例によっ
て本発明を詳細に説明するが、本発明は、それに限定さ
れるものではない。なお、実施例で用いた諸数値は、以
下の手順によって測定した。(外表面の孔面積、孔の存
在率、および開孔率)膜を流水下で1時間水洗後、ドラ
イアイス含有エタノールで凍結乾燥させた。この膜を専
用の試料台に固定して銀蒸着後、走査型電子顕微鏡(日
立製:S−2460N、以下、SEMという)にて倍率
6000倍の外表面写真を撮影した。画像処理は、この
写真(90mm×70mm)をイメージスキャナ−で取
り込み、処理ソフト(コーシン・グラフィク・シスタム
ズ社製:カラーマジシャン7、バージョン1.0)を用
いて、取り込み範囲を写真全面、解像度320、明るさ
2、256階調で実施した。この画像を処理ソフト(N
IHイメージ、バージョン1.57)により二値化し、
各々の孔の孔面積を算出した。なお、10ピクセル以下
の画像はノイズと見なし、計数から除外した。また、電
子線照射により孔径の揃ったメンブレンフィルタ−(ミ
リポア社製:アイソポア、孔直径2μm)における真円
の孔を同時測定して、キャリブリーションを行った。
Next, the present invention will be described in detail with reference to Examples and Reference Examples, but the present invention is not limited thereto. Various numerical values used in the examples were measured by the following procedures. (Pore area on the outer surface, abundance ratio of pores, and porosity) The membrane was washed with running water for 1 hour and freeze-dried with ethanol containing dry ice. After fixing this film on a dedicated sample stage and depositing silver, a photograph of the outer surface at a magnification of 6000 times was taken with a scanning electron microscope (S-2460N manufactured by Hitachi, hereinafter referred to as SEM). In image processing, the photograph (90 mm × 70 mm) was captured by an image scanner, and the processing area (Color Magician 7, version 1.0, manufactured by Kosin Graphic Systems Ltd.) was used to cover the entire photograph with a resolution of 320. The brightness was 2, 256 gradations. This image is processed by processing software (N
Binarization by IH image, version 1.57)
The hole area of each hole was calculated. Note that an image of 10 pixels or less was regarded as noise and excluded from counting. In addition, calibration was performed by simultaneously measuring true circular holes in a membrane filter (manufactured by Millipore: Isopore, pore diameter 2 μm) having uniform pore diameters by electron beam irradiation.

【0024】(菌塊逆濾過試験)自家作成した高菌塊含
有水溶液を用いて、透析液(AK−ソリタ・DL、清水
製薬株式会社製)を調製した。用いた菌塊量は、エンド
トキシンの含有量を測定することで代用した。エンドト
キシン濃度として15800EU/リットルの菌塊汚染
透析液を含む回路をモジュ−ル透析液入側に接続し、透
析液出側には栓をした。モジュ−ルの血液出側に回路を
接続、血液入側には栓をした。透析液入側回路にポンプ
をセットし、流速200cc/分にて2リットルを血液
出側に逆濾過させて排出後、血液出側より逆濾過液を採
取した。採取した逆濾過液中に含まれるエンドトキシン
量をエンドスペシ−(生化学工業社製:ES−50セッ
ト)により定量し、下記の式(6)から逆濾過率を算出
した。なお、式中のC0は透析液中のエンドトキシン濃
度、C1は逆濾過液中のエンドトキシン濃度を示す。 逆濾過率(%)=(C1/C0)×100 (6)
(Bacterial Lump Reverse Filtration Test) A dialysate (AK-Solita DL, manufactured by Shimizu Pharmaceutical Co., Ltd.) was prepared using an in-house prepared high bacterial mass-containing aqueous solution. The bacterial mass used was substituted by measuring the endotoxin content. A circuit containing a dialysate contaminated with a bacterial mass having an endotoxin concentration of 15800 EU / liter was connected to the inlet of the module dialysate, and the outlet of the dialysate was plugged. The circuit was connected to the blood outlet side of the module, and the blood inlet side was plugged. A pump was set in the dialysate inlet circuit, and 2 liters were back-filtered to the blood outlet side at a flow rate of 200 cc / min and discharged, and then the back filtrate was collected from the blood outlet side. The amount of endotoxin contained in the collected back-filtration solution was quantified by Endospecy (manufactured by Seikagaku Corporation: ES-50 set), and the back-filtration rate was calculated from the following equation (6). In the equation, C0 represents the endotoxin concentration in the dialysate, and C1 represents the endotoxin concentration in the back filtrate. Reverse filtration rate (%) = (C1 / C0) × 100 (6)

【0025】[0025]

【実施例1】ポリスルホン系樹脂(Amoco社製:P
−1700)17重量%、PVP(BASF社製:K9
0)7重量%、N,N−ジメチルアセトアミド(以下、
DMACという)76重量%を50℃で8時間攪拌溶
解、脱泡し製膜原液を得た。内部凝固液はDMAC15
重量%と水85重量%とを混和して調製した。この製膜
原液と内部凝固液を55度に保温した二重紡糸口金から
吐出させ、フードで密閉した60cmの空中走行部を経
て凝固浴に導入した。凝固浴は52.5℃の温水とし、
フード内部は水蒸気の飽和状態にあった。凝固浴を通過
させ、カセに巻き取った膜を熱水で洗浄した。さらに孔
径保持剤として15重量%のグリセリン水溶液を付着さ
せ、70℃で12時間乾燥処理を行った。得られた膜を
膜面積1.5m2 のモジュ−ルにポリウレタンを用いて
成型し、水を充填して25KGyのγ線を照射した。こ
の膜を図1に示すSEM写真をもとに画像処理した結
果、外表面における孔面積0.5μm2 以上の孔の割合
が3.0%、孔面積0.1μm2 以下の孔の割合が4
2.9%で、平均孔面積は0.16μm2 、開孔率は1
5.5%であった。この膜は固着がなく、成形性は良好
であった。また、逆濾過液中のエンドトキシン濃度は検
出限界以下(9.0EU/リットル以下)であったた
め、事実上侵入を認めなかった。
Example 1 Polysulfone resin (Amoco: P
-1700) 17% by weight, PVP (manufactured by BASF: K9
0) 7% by weight of N, N-dimethylacetamide (hereinafter, referred to as
76 wt% (referred to as DMAC) was stirred and dissolved at 50 ° C. for 8 hours, followed by defoaming to obtain a film forming stock solution. Internal coagulation liquid is DMAC15
% By weight and 85% by weight of water. The film forming stock solution and the internal coagulation solution were discharged from a double spinneret kept at 55 ° C., and introduced into a coagulation bath through a 60 cm air-running section sealed with a hood. The coagulation bath is warm water of 52.5 ° C,
The inside of the hood was saturated with steam. After passing through a coagulation bath, the membrane wound around the cassette was washed with hot water. Further, a 15% by weight aqueous glycerin solution was adhered as a pore diameter retaining agent, and dried at 70 ° C. for 12 hours. The obtained film was molded into a module having a film area of 1.5 m 2 using polyurethane, filled with water, and irradiated with 25 KGy of γ rays. As a result of image processing the SEM photograph showing the film 1 on the basis of 3.0% the percentage of open area 0.5 [mu] m 2 or more holes in the outer surface, the percentage of open area 0.1 [mu] m 2 or less holes 4
2.9%, an average pore area of 0.16 μm 2 and a porosity of 1
It was 5.5%. This film had no sticking and had good moldability. In addition, since the endotoxin concentration in the back filtrate was below the detection limit (9.0 EU / liter or less), virtually no intrusion was observed.

【0026】[0026]

【実施例2】ポリスルホン系樹脂(Amoco社製:P
−1700)17重量%、PVP(BASF社製:K9
0)4.5重量%、DMAC78.5重量%を混合し、
50℃で8時間攪拌溶解、脱泡し製膜原液を得た。内部
凝固液はDMAC20重量%と水80重量%とを混和し
て調製した。空中走行長を45cm、凝固浴温度を65
℃とした以外は、実施例1と同条件で乾燥膜を得た。得
られた膜を膜面積1.5m2 のモジュ−ルにポリウレタ
ンを用いて成型し、水を充填して25KGyのγ線を照
射した。実施例1と同様に、SEM写真をもとに画像処
理した結果、外表面における孔面積0.5μm2 以上の
孔の割合が9.3%、孔面積0.1μm2 以下の孔の割
合が39.6%で、平均孔面積が0.19μm2 、開孔
率が10.6%であった。この膜も固着はなく、良好に
成型できた。また、逆濾過液中のエンドトキシン濃度は
検出限界以下(9.0EU/リットル以下)であったた
め、事実上侵入を認めなかった。
[Example 2] Polysulfone resin (Amoco: P
-1700) 17% by weight, PVP (manufactured by BASF: K9
0) 4.5% by weight of DMAC and 78.5% by weight of DMAC are mixed,
The mixture was stirred and dissolved at 50 ° C. for 8 hours and defoamed to obtain a film forming stock solution. The internal coagulation liquid was prepared by mixing 20% by weight of DMAC and 80% by weight of water. Air running length 45cm, coagulation bath temperature 65
A dried film was obtained under the same conditions as in Example 1 except that the temperature was changed to ° C. The obtained film was molded into a module having a film area of 1.5 m 2 using polyurethane, filled with water, and irradiated with 25 KGy γ rays. As a result of performing image processing based on the SEM photograph in the same manner as in Example 1, the ratio of pores having a pore area of 0.5 μm 2 or more on the outer surface was 9.3%, and the proportion of pores having a pore area of 0.1 μm 2 or less was found. 39.6%, the average pore area was 0.19 μm 2 , and the porosity was 10.6%. This film also did not adhere and could be molded well. In addition, since the endotoxin concentration in the reverse filtrate was below the detection limit (9.0 EU / liter or less), virtually no intrusion was observed.

【0027】[0027]

【比較例1】ポリスルホン系樹脂(Amoco社製:P
−1700)17重量%、PVP(BASF社製:K9
0)9.0重量%、DMAC74.0重量%を混合し、
50℃で8時間攪拌溶解、脱泡し製膜原液を得た。内部
凝固液はDMAC20重量%と水80重量%とを混和し
て調製した。空中走行長を60cm、凝固浴温度を55
℃とした以外は、実施例1と同条件で乾燥膜を得た。得
られた膜を膜面積1.5m2 のモジュ−ルにポリウレタ
ンを用いて成型し、水を充填して25KGyのγ線を照
射した。この膜は、外表面における孔面積0.5μm2
以上の孔の割合が0.8%、孔面積0.1μm2 以下の
孔の割合が88.5%であり、平均孔面積は0.03μ
2 、開孔率は3.3%であった。乾燥後は膜固着が激
しく、そのままでは成型することができなかった。補修
して成型後、菌塊逆濾過試験を実施したところ、逆濾過
液中のエンドトキシン濃度は検出限界以下(9.0EU
/リットル以下)と、事実上侵入を認めなかった。
[Comparative Example 1] Polysulfone resin (manufactured by Amoco: P
-1700) 17% by weight, PVP (manufactured by BASF: K9
0) 9.0% by weight of DMAC and 74.0% by weight of DMAC are mixed,
The mixture was stirred and dissolved at 50 ° C. for 8 hours and defoamed to obtain a film forming stock solution. The internal coagulation liquid was prepared by mixing 20% by weight of DMAC and 80% by weight of water. Air running length 60 cm, coagulation bath temperature 55
A dried film was obtained under the same conditions as in Example 1 except that the temperature was changed to ° C. The obtained film was molded into a module having a film area of 1.5 m 2 using polyurethane, filled with water, and irradiated with 25 KGy γ rays. This membrane has a pore area of 0.5 μm 2 on the outer surface.
The proportion of the above holes is 0.8%, the proportion of the pores having a pore area of 0.1 μm 2 or less is 88.5%, and the average pore area is 0.03 μm.
m 2 , and the porosity was 3.3%. After drying, the film was strongly adhered and could not be molded as it was. After repair and molding, the bacterial mass was subjected to a reverse filtration test. The endotoxin concentration in the reverse filtrate was below the detection limit (9.0 EU).
Per liter or less), and virtually no intrusion was observed.

【0028】[0028]

【比較例2】ポリスルホン系樹脂(Amoco社製:P
−1700)17重量%、PVP(BASF社製:K9
0)3.5重量%、DMAC79.5重量%を混合し、
50℃で8時間攪拌溶解、脱泡し製膜原液を得た。内部
凝固液はDMAC15重量%と水85重量%とを混和し
て調製した。空中走行長を45cm、凝固浴温度を25
℃とした以外は、実施例1と同条件で乾燥膜を得た。得
られた膜を膜面積1.5m2 のモジュ−ルにポリウレタ
ンを用いて成型し、水を充填して25KGyのγ線を照
射した。この膜は、外表面における孔面積が0.5μm
2 以上の孔の割合が47.5%、孔面積が0.1μm2
以下の孔の割合が18.8%で、平均孔面積は0.59
μm2 、開孔率は35.8%であった。乾燥後の膜固着
はなく、成型はできたが、ポッティング部全体に渡って
糸流れが見られた。菌塊逆濾過試験を実施したところ、
逆濾過率は0.13%であり、菌塊片の侵入によるエン
ドトキシンの逆濾過が認められた。
[Comparative Example 2] Polysulfone resin (Amoco: P
-1700) 17% by weight, PVP (manufactured by BASF: K9
0) 3.5% by weight and 79.5% by weight of DMAC are mixed,
The mixture was stirred and dissolved at 50 ° C. for 8 hours and defoamed to obtain a film forming stock solution. The internal coagulation liquid was prepared by mixing 15% by weight of DMAC and 85% by weight of water. Air running length 45cm, coagulation bath temperature 25
A dried film was obtained under the same conditions as in Example 1 except that the temperature was changed to ° C. The obtained film was molded into a module having a film area of 1.5 m 2 using polyurethane, filled with water, and irradiated with 25 KGy γ rays. This membrane has a pore area of 0.5 μm on the outer surface.
The ratio of two or more holes is 47.5% and the hole area is 0.1 μm 2
The ratio of the following pores is 18.8%, and the average pore area is 0.59.
μm 2 and the porosity was 35.8%. There was no film sticking after drying and molding was possible, but yarn flow was observed over the entire potting portion. When the fungus back filtration test was performed,
The back filtration rate was 0.13%, and back filtration of endotoxin due to invasion of bacterial mass was observed.

【0029】[0029]

【発明の効果】本発明のポリスルホン系多孔質膜は、製
造時に膜固着による成型不良を起こすことなく、しか
も、透析液に含まれる菌塊片が膜内部へ侵入してエンド
トキシンの逆濾過が事実上起こらないため、血液浄化分
野で好適に使用できる。
According to the present invention, the polysulfone porous membrane of the present invention does not cause molding failure due to membrane sticking during the production, and the bacterial mass contained in the dialysate penetrates into the inside of the membrane, and the endotoxin is reversely filtered. Since it does not occur, it can be suitably used in the blood purification field.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で得られる膜の一例として、実施例1で
得られた膜のSEM写真(倍率6000倍)を示す。
FIG. 1 shows an SEM photograph (magnification: 6000 times) of a film obtained in Example 1 as an example of a film obtained by the present invention.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4C077 AA05 BB01 BB02 KK09 LL05 LL14 LL16 LL17 NN20 PP15 PP18 4D006 GA13 LA06 MA01 MA23 MA25 MA26 MA31 MA33 MA40 MC33 MC34 MC40X MC45 MC54 MC62X MC83 MC88 NA04 NA10 NA27 NA28 NA64 NA71 PA01 PB09 PB54 PC41 PC47 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4C077 AA05 BB01 BB02 KK09 LL05 LL14 LL16 LL17 NN20 PP15 PP18 4D006 GA13 LA06 MA01 MA23 MA25 MA26 MA31 MA33 MA40 MC33 MC34 MC40X MC45 MC54 MC62X MC83 MC88 NA04 NA10 NA27 NA28 NA64 NA64 NA09 PB54 PC41 PC47

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ポリスルホン系樹脂と親水性高分子から
なり、内表面側に緻密層、外表面に開孔部を有する中空
糸膜であって、外表面における開孔部の開孔率が10〜
30%、外表面における孔面積が0.5μm2 以上の孔
の存在率が10%以下、かつ、孔面積が0.1μm2
下の孔の存在率が75%以下であること、および/また
は外表面における平均孔面積が0.05〜0.35μm
2 であることを特徴とするポリスルホン系多孔質膜。
1. A hollow fiber membrane comprising a polysulfone-based resin and a hydrophilic polymer, having a dense layer on the inner surface side and an opening on the outer surface, wherein the opening ratio of the opening on the outer surface is 10%. ~
30%, the abundance of pores with a pore area of 0.5 μm 2 or more on the outer surface is 10% or less, and the abundance of pores with a pore area of 0.1 μm 2 or less is 75% or less, and / or The average pore area on the outer surface is 0.05 to 0.35 μm
2. A polysulfone-based porous membrane, which is 2 .
【請求項2】 親水性高分子がポリビニルピロリドンで
あることを特徴とする請求項1に記載のポリスルホン系
多孔質膜。
2. The polysulfone-based porous membrane according to claim 1, wherein the hydrophilic polymer is polyvinylpyrrolidone.
JP34116598A 1998-11-16 1998-11-16 Polysulfone porous membrane Expired - Lifetime JP4265701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34116598A JP4265701B2 (en) 1998-11-16 1998-11-16 Polysulfone porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34116598A JP4265701B2 (en) 1998-11-16 1998-11-16 Polysulfone porous membrane

Publications (2)

Publication Number Publication Date
JP2000140589A true JP2000140589A (en) 2000-05-23
JP4265701B2 JP4265701B2 (en) 2009-05-20

Family

ID=18343852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34116598A Expired - Lifetime JP4265701B2 (en) 1998-11-16 1998-11-16 Polysulfone porous membrane

Country Status (1)

Country Link
JP (1) JP4265701B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005021068A1 (en) * 2003-08-29 2005-03-10 Toyo Boseki Kabushiki Kaisha Highly water-permeable blood purifier of hollow-fiber membrane type
JP2005329087A (en) * 2004-05-20 2005-12-02 Toyobo Co Ltd Polysulfone base permselective hollow fiber membrane excellent in hemocompatibility
JP2005328982A (en) * 2004-05-19 2005-12-02 Toyobo Co Ltd Highly water-permeable hollow fiber membrane type hemocatharsis apparatus
JP2005334318A (en) * 2004-05-27 2005-12-08 Toyobo Co Ltd High strength and high water permeability hollow fiber membrane type hemocatharsis apparatus
JP2005334428A (en) * 2004-05-28 2005-12-08 Toyobo Co Ltd High water permeability hollow fiber membrane type hemocatharsis apparatus with superior hemocompatibility
JP2005342095A (en) * 2004-06-01 2005-12-15 Toyobo Co Ltd High water-permeable hollow fiber membrane type blood purifier
JP2005342102A (en) * 2004-06-01 2005-12-15 Toyobo Co Ltd Polysulfone based permselective hollow yarn membrane with excellent blood compatibility
JP2005348874A (en) * 2004-06-09 2005-12-22 Toyobo Co Ltd Polysulfone based permselective hollow yarn membrane
JP2006051094A (en) * 2004-08-10 2006-02-23 Toyobo Co Ltd Hollow fiber membrane module
JP2006204876A (en) * 2004-12-27 2006-08-10 Toyobo Co Ltd Method of manufacturing polysulfone-based hollow fiber membrane
JP2006304825A (en) * 2005-04-26 2006-11-09 Toyobo Co Ltd Blood purifier
JP2007105262A (en) * 2005-10-14 2007-04-26 Asahi Kasei Medical Co Ltd Continuous hemofiltration apparatus
US7638052B2 (en) 2003-11-26 2009-12-29 Toyo Boseki Kabushiki Kaisha Polysulfone-based hollow-fiber membrane with selective permeability
JP2010525932A (en) * 2007-04-23 2010-07-29 フレゼニウス メディカル ケア ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Hollow fiber capillary membrane and method for producing the same
US7837042B2 (en) 2004-08-10 2010-11-23 Nipro Corporation Polysulfone type selectively permeable hollow fiber membrane module and process for manufacturing the same
US7922007B2 (en) 2004-03-22 2011-04-12 Toyo Boseki Kabushiki Kaisha Separation membrane with selective permeability and process for producing the same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7442302B2 (en) 2003-08-29 2008-10-28 Toyo Boseki Kabushiki Kaisha Highly water-permeable blood purifier of hollow-fiber membrane type
WO2005021068A1 (en) * 2003-08-29 2005-03-10 Toyo Boseki Kabushiki Kaisha Highly water-permeable blood purifier of hollow-fiber membrane type
US7638052B2 (en) 2003-11-26 2009-12-29 Toyo Boseki Kabushiki Kaisha Polysulfone-based hollow-fiber membrane with selective permeability
US7922007B2 (en) 2004-03-22 2011-04-12 Toyo Boseki Kabushiki Kaisha Separation membrane with selective permeability and process for producing the same
JP2005328982A (en) * 2004-05-19 2005-12-02 Toyobo Co Ltd Highly water-permeable hollow fiber membrane type hemocatharsis apparatus
JP4501530B2 (en) * 2004-05-19 2010-07-14 東洋紡績株式会社 Highly permeable hollow fiber membrane blood purifier
JP2005329087A (en) * 2004-05-20 2005-12-02 Toyobo Co Ltd Polysulfone base permselective hollow fiber membrane excellent in hemocompatibility
JP4587024B2 (en) * 2004-05-20 2010-11-24 東洋紡績株式会社 Polysulfone-based selectively permeable hollow fiber membrane with excellent blood compatibility
JP2005334318A (en) * 2004-05-27 2005-12-08 Toyobo Co Ltd High strength and high water permeability hollow fiber membrane type hemocatharsis apparatus
JP4666248B2 (en) * 2004-05-27 2011-04-06 東洋紡績株式会社 High strength high water permeability hollow fiber membrane blood purifier
JP2005334428A (en) * 2004-05-28 2005-12-08 Toyobo Co Ltd High water permeability hollow fiber membrane type hemocatharsis apparatus with superior hemocompatibility
JP2005342102A (en) * 2004-06-01 2005-12-15 Toyobo Co Ltd Polysulfone based permselective hollow yarn membrane with excellent blood compatibility
JP4587025B2 (en) * 2004-06-01 2010-11-24 東洋紡績株式会社 Polysulfone-based selectively permeable hollow fiber membrane with excellent blood compatibility
JP2005342095A (en) * 2004-06-01 2005-12-15 Toyobo Co Ltd High water-permeable hollow fiber membrane type blood purifier
JP4706194B2 (en) * 2004-06-01 2011-06-22 東洋紡績株式会社 Highly permeable hollow fiber membrane blood purifier
JP2005348874A (en) * 2004-06-09 2005-12-22 Toyobo Co Ltd Polysulfone based permselective hollow yarn membrane
US7837042B2 (en) 2004-08-10 2010-11-23 Nipro Corporation Polysulfone type selectively permeable hollow fiber membrane module and process for manufacturing the same
JP2006051094A (en) * 2004-08-10 2006-02-23 Toyobo Co Ltd Hollow fiber membrane module
JP4599934B2 (en) * 2004-08-10 2010-12-15 東洋紡績株式会社 Hollow fiber membrane module
JP2006204876A (en) * 2004-12-27 2006-08-10 Toyobo Co Ltd Method of manufacturing polysulfone-based hollow fiber membrane
JP2006304825A (en) * 2005-04-26 2006-11-09 Toyobo Co Ltd Blood purifier
JP2007105262A (en) * 2005-10-14 2007-04-26 Asahi Kasei Medical Co Ltd Continuous hemofiltration apparatus
JP4493097B2 (en) * 2005-10-14 2010-06-30 旭化成クラレメディカル株式会社 Continuous blood filtration device
JP2010525932A (en) * 2007-04-23 2010-07-29 フレゼニウス メディカル ケア ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Hollow fiber capillary membrane and method for producing the same

Also Published As

Publication number Publication date
JP4265701B2 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
US5232601A (en) High flux hollow fiber membrane
US6042783A (en) Hollow yarn membrane used for blood purification and blood purifier
JP4265701B2 (en) Polysulfone porous membrane
WO2004024216A1 (en) Plasma purification membrane and plasma purification system
EP1572330A1 (en) Perm selective asymmetric hollow fibre membrane for the separation of toxic mediators from blood
AU672856B2 (en) High flux hollow fiber membrane
JPH06238139A (en) Polysulfone semipermeable membrane and its production
JP3714686B2 (en) Polysulfone-based hollow fiber membrane and method for producing the same
JP5212837B2 (en) Permselective hollow fiber membrane
US6632359B1 (en) Blood purifying apparatus
JP2703266B2 (en) Polysulfone hollow fiber membrane and method for producing the same
JPH053335B2 (en)
JP3253861B2 (en) Permselective hollow fiber membrane
JPH09308685A (en) Hollow fiber membrane for blood purification and blood purifying device
JP4190361B2 (en) Hollow fiber type body fluid treatment device, hollow fiber bundle used therefor, and method for producing them
JPH0970431A (en) Production of polysulfone hollow fiber type artificial kidney and artificial kidney
JP3334705B2 (en) Polysulfone-based selectively permeable hollow fiber membrane
JP2001038171A (en) Hollow fiber membrane
JP4386607B2 (en) Polysulfone blood purification membrane production method and polysulfone blood purification membrane
JP2000210544A (en) Production of semipermeable membrane
JPH09308684A (en) Selective separating membrane
JP2005058906A (en) Porous polymer membrane, blood purification device and production method for porous polymer membrane
JPH1147567A (en) Separation membrane and its preparation
JP3295314B2 (en) Permselective hollow fiber membrane
JPS59209611A (en) Hollow yarn like membrane and preparation thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

EXPY Cancellation because of completion of term