EP2864618B1 - Piston for an internal combustion engine - Google Patents

Piston for an internal combustion engine Download PDF

Info

Publication number
EP2864618B1
EP2864618B1 EP13745565.5A EP13745565A EP2864618B1 EP 2864618 B1 EP2864618 B1 EP 2864618B1 EP 13745565 A EP13745565 A EP 13745565A EP 2864618 B1 EP2864618 B1 EP 2864618B1
Authority
EP
European Patent Office
Prior art keywords
piston
cooling channel
coolant
bore
low melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13745565.5A
Other languages
German (de)
French (fr)
Other versions
EP2864618A2 (en
Inventor
Ulrich Bischofberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle International GmbH
Original Assignee
Mahle International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle International GmbH filed Critical Mahle International GmbH
Publication of EP2864618A2 publication Critical patent/EP2864618A2/en
Application granted granted Critical
Publication of EP2864618B1 publication Critical patent/EP2864618B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/16Pistons  having cooling means
    • F02F3/20Pistons  having cooling means the means being a fluid flowing through or along piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/06Arrangements for cooling pistons
    • F01P3/10Cooling by flow of coolant through pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/16Pistons  having cooling means
    • F02F3/18Pistons  having cooling means the means being a liquid or solid coolant, e.g. sodium, in a closed chamber in piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/26Pistons  having combustion chamber in piston head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/16Pistons  having cooling means
    • F02F3/20Pistons  having cooling means the means being a fluid flowing through or along piston
    • F02F3/22Pistons  having cooling means the means being a fluid flowing through or along piston the fluid being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0448Steel

Definitions

  • the present invention relates to a piston for an internal combustion engine, having a piston head and a piston skirt, wherein the piston head has a circumferential annular portion and in the region of the annular part a circumferential cooling channel, wherein the piston skirt has hub bores provided with piston bosses, which have hub connections on the underside of the piston head are arranged, wherein the piston hubs are interconnected via running surfaces.
  • a generic piston for an internal combustion engine with a piston head and a piston skirt, wherein the piston head has a circumferential annular portion and in the region of the annular part a circumferential cooling channel and wherein the piston shaft provided with hub bores piston hubs arranged via hub connections on the underside of the piston head are.
  • the piston hubs are connected to one another via running surfaces, wherein at least one outwardly closed bore is provided, which is arranged between a running surface and a hub bore.
  • the object of the present invention is to develop a generic piston so that sets a more uniform temperature distribution between the piston head and the piston skirt during operation.
  • the solution consists in that the wall of the cooling channel extending in the area of the ring section has an inclination and forms an acute angle with the piston center axis, that four outwardly closed bores are provided, which are arranged between a running surface and a hub bore, in order to achieve a particularly uniform Temperature distribution in the piston to achieve that the holes open into the cooling channel, that the cooling channel and the holes contain a coolant in the form of a low-melting metal or a low-melting metal alloy.
  • the piston according to the invention is characterized in that the heat generated in the region of the piston crown is guided via the piston head into the piston and discharged via the comparatively large-area running surfaces.
  • a more even heat distribution over the entire piston is achieved during operation.
  • a more effective cooling of the entire piston is achieved.
  • the inventively provided inclination of running in the region of the ring wall wall of the cooling channel causes the coolant during engine operation during its downward movement this area largely not touched and in the upward movement only to a small extent. Instead, the coolant will move substantially linearly upwards or downwards.
  • the inclination forms a blind spot between the coolant moving during engine operation and the wall of the cooling channel extending in the region of the annular part, so that the moving coolant has no or only little contact with the wall region lying in the blind spot.
  • the additional heating of the area between the piston hub and the piston shaft causes an additional thermal expansion of the piston shaft and thereby reduces the warm play between piston and cylinder. This is particularly advantageous when a crankcase made of a light metal material, for example. An aluminum-based material, with a higher coefficient of thermal expansion than that of the piston material is used.
  • the angle enclosed by the wall of the cooling passage extending in the region of the annular part with the piston center axis is preferably not more than 10 ° in order to avoid an excessive narrowing of the cooling passage and a concomitant reduction of the cooling power.
  • the inclination of this wall preferably begins at the level of the upper edge of the lowest annular groove of the ring part. If a combustion bowl is provided, it is advantageous if the wall of the cooling channel extending in the region of the combustion bowl runs parallel to the contour of the wall of the combustion bowl in order to optimize the heat transfer between the combustion bowl and the coolant accommodated in the cooling duct.
  • Low melting metals suitable for use as refrigerants are especially sodium or potassium.
  • low-melting metal alloys in particular Galinstan® alloys, low melting bismuth alloys and sodium-potassium alloys can be used.
  • Galinstan® alloys are gallium, indium and tin alloy systems that are liquid at room temperature. These alloys consist of 65 wt% to 95 wt% gallium, 5 wt% to 26 wt% indium and 0 wt% to 16 wt% tin. Preferred alloys are, for example, those with 68% by weight to 69% by weight of gallium, 21% by weight to 22% by weight of indium and 9.5% by weight to 10.5% by weight of tin ( Mp.
  • Low melting bismuth alloys are well known. These include, for example, LBE (eutectic bismuth-lead alloy, mp. 124 ° C), Roses metal (50 wt .-% bismuth, 28 wt .-% lead and 22 wt .-% tin, mp.
  • Orion metal 42 wt% bismuth, 42 wt% lead and 16 wt% tin, mp 108 ° C
  • Quick solder 52 weight percent bismuth, 32 weight percent lead and 16 weight percent tin, mp 96 ° C
  • d'Arcets metal 50 weight percent bismuth, 25 weight percent lead and 25 wt% tin
  • Wood's metal 50 wt% bismuth, 25 wt% lead, 12.5 wt% tin and 12.5 wt% cadmium, mp 71 ° C
  • Lipowitz metal 50 wt% bismuth, 27 wt% lead, 13 wt% tin and 10 wt% cadmium, mp 70 ° C
  • Harper's metal 44 wt% bismuth, 25 wt%).
  • Suitable sodium-potassium alloys may contain from 40% to 90% by weight of potassium. Particularly suitable is the eutectic alloy NaK with 78 wt .-% potassium and 22 wt .-% sodium (mp. -12.6 ° C).
  • the coolant may additionally contain lithium and / or lithium nitride. If nitrogen is used as a protective gas during filling, this can react with the lithium to lithium nitride and be removed in this way from the cooling channel.
  • the coolant may further contain sodium oxides and / or potassium oxides if, during filling, any existing dry air has reacted with the coolant.
  • the amount of coolant taken up in the cooling channel or holes depends on its thermal conductivity and the degree of desired temperature control.
  • the coolant has a filling level up to half the height of the cooling channel in order to achieve the desired shaker effect and thus a particularly effective heat distribution in the piston.
  • FIGS. 1 to 5 show an embodiment of a piston 10 according to the invention.
  • the piston 10 may be a one-piece or multi-piece piston.
  • the piston 10 can be made of an iron-based material and / or a light metal material, wherein the iron-based material is preferred.
  • FIGS. 1 to 3 show by way of example a one-piece box piston 10.
  • the piston 10 has a piston head 11 with a combustion bowl 13 having a piston head 12, a peripheral land 14 and a ring portion 15 for receiving piston rings (not shown). In the amount of the ring section 15, a circumferential cooling channel 23 is provided.
  • the piston 10 further includes a piston stem 16 with piston bosses 17 and hub bores 18 for receiving a piston pin (not shown).
  • the piston hubs 17 are connected via hub connections 19 with the bottom 11 a of the piston head.
  • the piston hubs 17 are connected to one another via running surfaces 21, 22 (cf. FIG. 2 ).
  • the extending in the region of the ring portion 15 wall 23a of the cooling channel 23 has an inclination and closes with the piston center axis M an acute angle ⁇ of up to 10 °.
  • the inclination begins approximately in the region of the upper edge of the lowermost annular groove 15a of the annular part 15 and continues up to the upper end of the cooling channel 23.
  • the extending in the combustion bowl 13 wall 23b of the cooling channel 23 extends parallel to the contour of the wall 13a of the combustion bowl thirteenth
  • the piston shaft 16 has four holes 24a, 24b, 24c, 24d in the exemplary embodiment.
  • the bores 24a-d in the exemplary embodiment extend approximately axially and parallel to the piston center axis M.
  • the bores 24a-d may, however, also extend inclined at an angle to the piston center axis M.
  • the bores 24a-d are arranged between a running surface 21, 22 and a hub bore 18. The bores 24a-d open into the cooling channel 23rd
  • the piston 10 may for example be cast in a conventional manner, wherein the cooling channel 23 and the bores 24a-d can be introduced in a conventional manner by means of a salt core. It is essential that at least one bore 24a has an opening 25 to the outside.
  • the coolant 27, namely a low-melting metal or a low-melting metal alloy, as enumerated by way of example above is filled through the opening 25 into the bore 24a. From there, the coolant 27 is distributed in the cooling channel 23 and in the further holes 24b-d.
  • the opening 25 is then sealed, in the embodiment by means of a pressed-steel ball 26.
  • the opening 25 can also be closed, for example. By welding a lid or pressing a cap (not shown).
  • the size of the holes 24a-d and the filling amount of the coolant 27 depend on the size and the material of the piston 10. On average, about. 10g to 40g coolant 27 per piston 10 required.
  • the cooling capacity can be controlled by the amount of the added coolant 27 in consideration of its thermal conductivity coefficient. For example. is a level in the cooling channel 23 suitable, which corresponds approximately to half the height of the cooling channel 23. In this case, during operation, the known shaker effect can additionally be used for a particularly effective heat distribution in the piston. For sodium as coolant 27 with a temperature in operation of 220 ° C results in a cooling capacity of 350kW / m 2, a maximum surface temperature of the piston 10 of about 260 ° C.
  • the underside 11a of the piston head 11 can be cooled by injection with cooling oil.
  • a lance is inserted through the opening 25 and purged by means of nitrogen or other suitable inert gas or by means of dry air.
  • a lance is passed through the opening 25 under protective gas (for example nitrogen, inert gas or dry air), so that the coolant 27 is received in the bore 24a or the cooling channel 23.
  • Another method for filling the bore 24a is characterized in that after flushing with nitrogen, inert gas or dry air, the bores 24a-d and the cooling channel 23 are evacuated and the coolant 27 is introduced in a vacuum.
  • the coolant 27 can move more easily in the cooling channel 23 back and forth and in the bores 24a-d in and out, since it is not hindered by existing inert gas.
  • Another possibility for removing the protective gas from the cooling channel 23 or the bores 24a-d is to use nitrogen or dry air (ie essentially a mixture of nitrogen and oxygen) as protective gas and a small amount of the coolant 27 Lithium, according to experience about 1.8mg to 2.0mg lithium per cubic centimeter gas space (ie volume of the cooling channel 23 plus volume of the holes 24a-d). While, for example, sodium and potassium react with oxygen to form oxides, the lithium reacts with nitrogen to form lithium nitride. The protective gas is thus almost completely bound as a solid in the coolant 27.
  • nitrogen or dry air ie essentially a mixture of nitrogen and oxygen

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Description

Die vorliegende Erfindung betrifft einen Kolben für einen Verbrennungsmotor, mit einem Kolbenkopf und einem Kolbenschaft, wobei der Kolbenkopf eine umlaufende Ringpartie sowie im Bereich der Ringpartie einen umlaufenden Kühlkanal aufweist, wobei der Kolbenschaft mit Nabenbohrungen versehene Kolbennaben aufweist, die über Nabenanbindungen an der Unterseite des Kolbenkopfes angeordnet sind, wobei die Kolbennaben über Laufflächen miteinander verbunden sind.The present invention relates to a piston for an internal combustion engine, having a piston head and a piston skirt, wherein the piston head has a circumferential annular portion and in the region of the annular part a circumferential cooling channel, wherein the piston skirt has hub bores provided with piston bosses, which have hub connections on the underside of the piston head are arranged, wherein the piston hubs are interconnected via running surfaces.

Aus der DE 726 685 C ist ein gattungsgemäßer Kolben für einen Verbrennungsmotor bekannt, mit einem Kolbenkopf und einem Kolbenschaft, wobei der Kolbenkopf eine umlaufende Ringpartie sowie im Bereich der Ringpartie einen umlaufenden Kühlkanal aufweist und wobei der Kolbenschaft mit Nabenbohrungen versehene Kolbennaben aufweist, die über Nabenanbindungen an der Unterseite des Kolbenkopfes angeordnet sind. Die Kolbennaben sind über Laufflächen miteinander verbunden, wobei mindestens eine nach außen verschlossene Bohrung vorgesehen ist, die zwischen einer Lauffläche und einer Nabenbohrung angeordnet ist.From the DE 726 685 C a generic piston for an internal combustion engine is known, with a piston head and a piston skirt, wherein the piston head has a circumferential annular portion and in the region of the annular part a circumferential cooling channel and wherein the piston shaft provided with hub bores piston hubs arranged via hub connections on the underside of the piston head are. The piston hubs are connected to one another via running surfaces, wherein at least one outwardly closed bore is provided, which is arranged between a running surface and a hub bore.

Aus der FR 2 901 577 A3 ist ein weiterer Kolben bekannt.From the FR 2 901 577 A3 Another piston is known.

In modernen Verbrennungsmotoren sind die Kolben im Bereich der Kolbenböden immer höheren Temperaturbelastungen ausgesetzt. Dies führt im Betrieb zu erheblichen Temperaturunterschieden zwischen dem Kolbenkopf und dem Kolbenschaft. Damit ist auch das Einbauspiel der Kolben im kalten Motor unterschiedlich zum Einbauspiel im warmen Motor.In modern internal combustion engines, the pistons in the region of the piston crowns are exposed to ever higher temperature loads. This results in operation to significant temperature differences between the piston head and the piston skirt. Thus, the installation play of the pistons in the cold engine is different to the installation play in the warm engine.

Die Aufgabe der vorliegenden Erfindung besteht darin, einen gattungsgemäßen Kolben so weiterzuentwickeln, dass sich im Betrieb eine gleichmäßigere Temperaturverteilung zwischen dem Kolbenkopf und dem Kolbenschaft einstellt.The object of the present invention is to develop a generic piston so that sets a more uniform temperature distribution between the piston head and the piston skirt during operation.

Die Lösung besteht darin, dass die im Bereich der Ringpartie verlaufende Wand des Kühlkanals eine Neigung aufweist und mit der Kolbenmittelachse einen spitzen Winkel einschließt, dass vier nach außen verschlossene Bohrungen vorgesehen sind, die zwischen einer Lauffläche und einer Nabenbohrung angeordnet sind, um eine besonders gleichmäßige Temperaturverteilung im Kolben zu erreichen, dass die Bohrungen in den Kühlkanal münden, dass der Kühlkanal und die Bohrungen ein Kühlmittel in Form eines niedrig schmelzenden Metalls oder einer niedrig schmelzenden Metalllegierung enthalten.The solution consists in that the wall of the cooling channel extending in the area of the ring section has an inclination and forms an acute angle with the piston center axis, that four outwardly closed bores are provided, which are arranged between a running surface and a hub bore, in order to achieve a particularly uniform Temperature distribution in the piston to achieve that the holes open into the cooling channel, that the cooling channel and the holes contain a coolant in the form of a low-melting metal or a low-melting metal alloy.

Der erfindungsgemäße Kolben zeichnet sich dadurch aus, dass die im Bereich des Kolbenbodens erzeugte Wärme über den Kolbenkopf in den Kolben geleitet und über die vergleichsweise großflächigen Laufflächen abgegeben wird. Damit wird im Betrieb eine gleichmäßigere Wärmeverteilung über den gesamten Kolben erreicht. Ferner wird eine effektivere Kühlung des gesamten Kolbens erzielt.The piston according to the invention is characterized in that the heat generated in the region of the piston crown is guided via the piston head into the piston and discharged via the comparatively large-area running surfaces. Thus, a more even heat distribution over the entire piston is achieved during operation. Furthermore, a more effective cooling of the entire piston is achieved.

Die erfindungsgemäß vorgesehene Neigung der im Bereich der Ringpartie verlaufenden Wand des Kühlkanals bewirkt, dass das Kühlmittel im Motorbetrieb bei seiner Abwärtsbewegung diesen Bereich weitgehend nicht und bei der Aufwärtsbewegung nur in einem geringen Ausmaß berührt. Das Kühlmittel wird sich vielmehr im Wesentlichen linear nach oben bzw. unten bewegen. Die erfindungsgemäß vorgesehene Neigung bildet also zwischen dem im Motorbetrieb bewegten Kühlmittel und der im Bereich der Ringpartie verlaufenden Wand des Kühlkanals einen toten Winkel, so dass das sich bewegende Kühlmittel mit den im toten Winkel liegenden Wandbereich keinen oder nur wenig Kontakt hat. Dadurch werden eine Überhitzung der Ringpartie und die damit einhergehende Gefahr der Ölkohlebildung im Bereich der Ringnuten und Ringstege vermieden.The inventively provided inclination of running in the region of the ring wall wall of the cooling channel causes the coolant during engine operation during its downward movement this area largely not touched and in the upward movement only to a small extent. Instead, the coolant will move substantially linearly upwards or downwards. Thus, according to the invention, the inclination forms a blind spot between the coolant moving during engine operation and the wall of the cooling channel extending in the region of the annular part, so that the moving coolant has no or only little contact with the wall region lying in the blind spot. As a result, overheating of the ring and the associated risk of carbon formation in the ring grooves and ring lands are avoided.

Wenn zusätzlich die Unterseite des Kolbenkopfes mit Kühlöl gekühlt wird, wird die Bildung von Ölkohle vermieden. Insgesamt ist außerdem der Kühlölverbrauch reduziert.In addition, if the bottom of the piston head is cooled with cooling oil, the formation of oil carbon is avoided. Overall, the cooling oil consumption is also reduced.

Durch die zusätzliche Erwärmung des Bereiches zwischen Kolbennabe und Kolbenschaft wird eine zusätzliche thermische Ausdehnung des Kolbenschafts bewirkt und dadurch das Warmspiel zwischen Kolben und Zylinder reduziert. Dies ist insbesondere dann von Vorteil, wenn ein Kurbelgehäuse aus einem Leichtmetallwerkstoff, bspw. einem aluminiumbasierten Werkstoff, mit einem höheren Wärmeausdehnungskoeffizienten als dem des Kolbenwerkstoffs verwendet wird.The additional heating of the area between the piston hub and the piston shaft causes an additional thermal expansion of the piston shaft and thereby reduces the warm play between piston and cylinder. This is particularly advantageous when a crankcase made of a light metal material, for example. An aluminum-based material, with a higher coefficient of thermal expansion than that of the piston material is used.

Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen.Advantageous developments emerge from the subclaims.

Der Winkel, den die im Bereich der Ringpartie verlaufende Wand des Kühlkanals mit der Kolbenmittelachse einschließt, beträgt vorzugsweise nicht mehr als 10°, um eine übermäßige Verengung des Kühlkanals und eine damit einhergehende Reduzierung der Kühlleistung zu vermeiden. Aus demselben Grund beginnt die Neigung dieser Wand vorzugsweise in Höhe der Oberkante der untersten Ringnut der Ringpartie. Wenn eine Verbrennungsmulde vorgesehen ist, ist es von Vorteil, wenn die im Bereich der Verbrennungsmulde verlaufende Wand des Kühlkanals zur Kontur der Wand der Verbrennungsmulde parallel verläuft, um den Wärmeübergang zwischen der Verbrennungsmulde und dem im Kühlkanal aufgenommenen Kühlmittel zu optimieren.The angle enclosed by the wall of the cooling passage extending in the region of the annular part with the piston center axis is preferably not more than 10 ° in order to avoid an excessive narrowing of the cooling passage and a concomitant reduction of the cooling power. For the same reason, the inclination of this wall preferably begins at the level of the upper edge of the lowest annular groove of the ring part. If a combustion bowl is provided, it is advantageous if the wall of the cooling channel extending in the region of the combustion bowl runs parallel to the contour of the wall of the combustion bowl in order to optimize the heat transfer between the combustion bowl and the coolant accommodated in the cooling duct.

Niedrig schmelzende Metalle, die zur Verwendung als Kühlmittel geeignet sind, sind insbesondere Natrium oder Kalium. Als niedrig schmelzende Metalllegierungen können insbesondere Galinstan®-Legierungen, niedrig schmelzende Bismut-Legierungen und Natrium-Kalium-Legierungen eingesetzt werden.Low melting metals suitable for use as refrigerants are especially sodium or potassium. As low-melting metal alloys in particular Galinstan® alloys, low melting bismuth alloys and sodium-potassium alloys can be used.

Als sog. Galinstan®-Legierungen werden Legierungssysteme aus Gallium, Indium und Zinn bezeichnet, die bei Raumtemperatur flüssig sind. Diese Legierungen bestehen aus 65 Gew.-% bis 95 Gew.-% Gallium, 5 Gew.-% bis 26 Gew.-% Indium und 0 Gew.-% bis 16 Gew.-% Zinn. Bevorzugte Legierungen sind bspw. solche mit 68 Gew.-% bis 69 Gew.-% Gallium, 21 Gew.-% bis 22 Gew.-% Indium und 9,5 Gew.-% bis 10,5 Gew.-% Zinn (Schmp. -19°C), 62 Gew.-% Gallium, 22 Gew.-% Indium und 16 Gew.-% Zinn (Schmp.10,7°C) sowie 59,6 Gew.-% Gallium, 26 Gew.-% Indium und 14,4 Gew.%- Zinn (ternäres Eutektikum, Schmp. 11°C).Galinstan® alloys are gallium, indium and tin alloy systems that are liquid at room temperature. These alloys consist of 65 wt% to 95 wt% gallium, 5 wt% to 26 wt% indium and 0 wt% to 16 wt% tin. Preferred alloys are, for example, those with 68% by weight to 69% by weight of gallium, 21% by weight to 22% by weight of indium and 9.5% by weight to 10.5% by weight of tin ( Mp. -19 ° C), 62 wt .-% gallium, 22 wt .-% indium and 16% by weight tin (mp 10.7 ° C.) and 59.6% by weight gallium, 26% by weight indium and 14.4% by weight tin (ternary eutectic, mp 11 ° C.) ,

Niedrig schmelzende Bismut-Legierungen sind zahlreich bekannt. Dazu gehören bspw. LBE (eutektische Bismut-Blei-Legierung, Schmp. 124°C), Roses Metall (50 Gew.-% Bismut, 28 Gew.-% Blei und 22 Gew.-% Zinn, Schmp. 98°C), Orionmetall (42 Gew.-% Bismut, 42 Gew.-% Blei und 16 Gew.-% Zinn, Schmp. 108°C); Schnelllot (52 Gew.-% Bismut, 32 Gew.-% Blei und 16 Gew.-% Zinn, Schmp. 96°C), d'Arcets-Metall (50 Gew.-% Bismut, 25 Gew.-% Blei und 25 Gew.-% Zinn), Woodsches Metall (50 Gew.-% Bismut, 25 Gew.-% Blei, 12,5 Gew.-% Zinn und 12,5 Gew.-% Cadmium, Schmp. 71°C), Lipowitzmetall (50 Gew.-% Bismut, 27 Gew.-% Blei, 13 Gew.-% Zinn und 10 Gew.-% Cadmium, Schmp. 70°C), Harpers Metall (44 Gew.-% Bismut, 25 Gew.-% Blei, 25 Gew.-% Zinn und 6 Gew.-% Cadmium, Schmp. 75°C), Cerrolow 117 (44,7 Gew.-% Bismut, 22,6 Gew.-% Blei, 19,1 Gew.-% Indium, 8,3 Gew.-% Zinn und 5,3 Gew.-% Cadmium, Schmp. 47°C); Cerrolow 174 (57 Gew.-% Bismut, 26 Gew.-% Indium, 17 Gew.-% Zinn, Schmp. 78,9°C), Fields Metall (32 Gew.-% Bismut, 51 Gew.-% Indium, 17 Gew.-% Zinn, Schmp. 62°C) sowie die Walkerlegierung (45 Gew.-% Bismut, 28 Gew.-% Blei, 22 Gew.-% Zinn und 5 Gew.-% Antimon).Low melting bismuth alloys are well known. These include, for example, LBE (eutectic bismuth-lead alloy, mp. 124 ° C), Roses metal (50 wt .-% bismuth, 28 wt .-% lead and 22 wt .-% tin, mp. 98 ° C) Orion metal (42 wt% bismuth, 42 wt% lead and 16 wt% tin, mp 108 ° C); Quick solder (52 weight percent bismuth, 32 weight percent lead and 16 weight percent tin, mp 96 ° C), d'Arcets metal (50 weight percent bismuth, 25 weight percent lead and 25 wt% tin), Wood's metal (50 wt% bismuth, 25 wt% lead, 12.5 wt% tin and 12.5 wt% cadmium, mp 71 ° C), Lipowitz metal (50 wt% bismuth, 27 wt% lead, 13 wt% tin and 10 wt% cadmium, mp 70 ° C), Harper's metal (44 wt% bismuth, 25 wt%). -% lead, 25 wt .-% tin and 6 wt .-% cadmium, mp. 75 ° C), Cerrolow 117 (44.7 wt .-% bismuth, 22.6 wt .-% lead, 19.1 wt Indium, 8.3 wt% tin, and 5.3 wt% cadmium, mp 47 ° C); Cerrolow 174 (57 wt% bismuth, 26 wt% indium, 17 wt% tin, mp 78.9 ° C), Fields metal (32 wt% bismuth, 51 wt% indium, 17 wt .-% tin, mp 62 ° C) and the Walker alloy (45 wt .-% bismuth, 28 wt .-% lead, 22 wt .-% tin and 5 wt .-% antimony).

Geeignete Natrium-Kalium-Legierungen können 40 Gew.-% bis 90 Gew.-% Kalium enthalten. Besonders geeignet ist die eutektische Legierung NaK mit 78 Gew.-% Kalium und 22 Gew.-% Natrium (Schmp. -12,6°C).Suitable sodium-potassium alloys may contain from 40% to 90% by weight of potassium. Particularly suitable is the eutectic alloy NaK with 78 wt .-% potassium and 22 wt .-% sodium (mp. -12.6 ° C).

Das Kühlmittel kann zusätzlich Lithium und/oder Lithiumnitrid enthalten. Falls beim Befüllen Stickstoff als Schutzgas verwendet wird, kann dieses mit dem Lithium zu Lithiumnitrid abreagieren und auf diese Weise aus dem Kühlkanal entfernt werden.The coolant may additionally contain lithium and / or lithium nitride. If nitrogen is used as a protective gas during filling, this can react with the lithium to lithium nitride and be removed in this way from the cooling channel.

Das Kühlmittel kann ferner Natriumoxide und/oder Kaliumoxide enthalten, falls während des Befüllens ggf. vorhandene trockene Luft mit dem Kühlmittel reagiert hat. Die Menge des im Kühlkanal bzw. in den Bohrungen aufgenommenen Kühlmittels hängt von seiner Wärmeleitfähigkeit und dem Grad der gewünschten Temperatursteuerung ab. Vorzugsweise weist das Kühlmittel eine Füllhöhe bis zur halben Höhe des Kühlkanals auf, um den erwünschten Shaker-Effekt und damit eine besonders wirksame Wärmeverteilung im Kolben zu erzielen.The coolant may further contain sodium oxides and / or potassium oxides if, during filling, any existing dry air has reacted with the coolant. The amount of coolant taken up in the cooling channel or holes depends on its thermal conductivity and the degree of desired temperature control. Preferably, the coolant has a filling level up to half the height of the cooling channel in order to achieve the desired shaker effect and thus a particularly effective heat distribution in the piston.

Insbesondere wenn der Anteil der Verbrennungswärme, welcher während des Motorbetriebs in den Kolben abfließt, begrenzt werden soll, kann dies mit der Menge an eingefülltem Kühlmittel gesteuert werden. Es hat sich gezeigt, dass mitunter bereits eine Füllung von 3% bis 10% des Kühlkanalvolumens mit dem Kühlmittel ausreicht, um die Funktion des Kolbens sicherzustellen.In particular, if the proportion of the heat of combustion, which flows into the piston during engine operation, should be limited, this can be controlled by the amount of coolant introduced. It has been found that sometimes even a filling of 3% to 10% of the cooling channel volume with the coolant is sufficient to ensure the function of the piston.

Ein Ausführungsbeispiel der vorliegenden Erfindung wird im Folgenden anhand der beigefügten Zeichnungen näher erläutert. Es zeigen in einer schematischen, nicht maßstabsgetreuen Darstellung:

Fig. 1
ein Ausführungsbeispiel eines erfindungsgemäßen Kolbens, teilweise im Schnitt;
Fig. 2
einen Schnitt entlang der Linie II - II in Figur 1;
Fig. 3
einen Schnitt entlang der Linie III - III in Figur 2;
Fig. 4
eine vergrößerte Teildarstellung einer Bohrung gemäß Figur 3 im Schnitt;
Fig. 5
eine vergrößerte Teildarstellung des Kühlkanals gemäß Figur 3 im Schnitt.
An embodiment of the present invention will be explained in more detail below with reference to the accompanying drawings. In a schematic, not to scale representation:
Fig. 1
an embodiment of a piston according to the invention, partially in section;
Fig. 2
a section along the line II - II in FIG. 1 ;
Fig. 3
a section along the line III - III in FIG. 2 ;
Fig. 4
an enlarged partial view of a bore according to FIG. 3 on average;
Fig. 5
an enlarged partial view of the cooling channel according to FIG. 3 on average.

Die Figuren 1 bis 5 zeigen ein Ausführungsbeispiel eines erfindungsgemäßen Kolbens 10. Der Kolben 10 kann ein einteiliger oder mehrteiliger Kolben sein. Der Kolben 10 kann aus einem eisenbasierten Werkstoff und/oder einem Leichtmetallwerkstoff hergestellt sein, wobei der eisenbasierte Werkstoff bevorzugt ist.The FIGS. 1 to 5 show an embodiment of a piston 10 according to the invention. The piston 10 may be a one-piece or multi-piece piston. The piston 10 can be made of an iron-based material and / or a light metal material, wherein the iron-based material is preferred.

Die Figuren 1 bis 3 zeigen beispielhaft einen einteiligen Kastenkolben 10. Der Kolben 10 weist einen Kolbenkopf 11 mit einem eine Verbrennungsmulde 13 aufweisenden Kolbenboden 12, einem umlaufenden Feuersteg 14 und einer Ringpartie 15 zur Aufnahme von Kolbenringen (nicht dargestellt) auf. In Höhe der Ringpartie 15 ist ein umlaufender Kühlkanal 23 vorgesehen. Der Kolben 10 weist ferner einen Kolbenschaft 16 mit Kolbennaben 17 und Nabenbohrungen 18 zur Aufnahme eines Kolbenbolzens (nicht dargestellt) auf. Die Kolbennaben 17 sind über Nabenanbindungen 19 mit der Unterseite 11a des Kolbenkopfes verbunden. Die Kolbennaben 17 sind über Laufflächen 21, 22 miteinander verbunden (vgl. insbesondere Figur 2).The FIGS. 1 to 3 show by way of example a one-piece box piston 10. The piston 10 has a piston head 11 with a combustion bowl 13 having a piston head 12, a peripheral land 14 and a ring portion 15 for receiving piston rings (not shown). In the amount of the ring section 15, a circumferential cooling channel 23 is provided. The piston 10 further includes a piston stem 16 with piston bosses 17 and hub bores 18 for receiving a piston pin (not shown). The piston hubs 17 are connected via hub connections 19 with the bottom 11 a of the piston head. The piston hubs 17 are connected to one another via running surfaces 21, 22 (cf. FIG. 2 ).

Die im Bereich der Ringpartie 15 verlaufende Wand 23a des Kühlkanals 23 weist eine Neigung auf und schließt mit der Kolbenmittelachse M einen spitzen Winkel α von bis zu 10° ein. Die Neigung beginnt etwa im Bereich der Oberkante der untersten Ringnut 15a der Ringpartie 15 und setzt bis zum oberen Ende des Kühlkanals 23 fort. Die im Bereich der Verbrennungsmulde 13 verlaufende Wand 23b des Kühlkanals 23 verläuft parallel zur Kontur der Wand 13a der Verbrennungsmulde 13.The extending in the region of the ring portion 15 wall 23a of the cooling channel 23 has an inclination and closes with the piston center axis M an acute angle α of up to 10 °. The inclination begins approximately in the region of the upper edge of the lowermost annular groove 15a of the annular part 15 and continues up to the upper end of the cooling channel 23. The extending in the combustion bowl 13 wall 23b of the cooling channel 23 extends parallel to the contour of the wall 13a of the combustion bowl thirteenth

Der Kolbenschaft 16 weist im Ausführungsbeispiel vier Bohrungen 24a, 24b, 24c, 24d auf. Die Bohrungen 24a-d verlaufen im Ausführungsbeispiel in etwa axial und parallel zur Kolbenmittelachse M. Die Bohrungen 24a-d können aber auch geneigt unter einem Winkel zur Kolbenmittelachse M verlaufen. Die Bohrungen 24a-d sind zwischen einer Lauffläche 21, 22 und einer Nabenbohrung 18 angeordnet. Die Bohrungen 24a-d münden in den Kühlkanal 23.The piston shaft 16 has four holes 24a, 24b, 24c, 24d in the exemplary embodiment. The bores 24a-d in the exemplary embodiment extend approximately axially and parallel to the piston center axis M. The bores 24a-d may, however, also extend inclined at an angle to the piston center axis M. The bores 24a-d are arranged between a running surface 21, 22 and a hub bore 18. The bores 24a-d open into the cooling channel 23rd

Im Ausführungsbeispiel kann der Kolbens 10 bspw. in an sich bekannter Weise gegossen sein, wobei der Kühlkanal 23 und die Bohrungen 24a-d in an sich bekannter Weise mittels eines Salzkerns eingebracht werden können. Wesentlich ist, dass zumindest eine Bohrung 24a eine Öffnung 25 nach außen aufweist. Erfindungsgemäß wird das Kühlmittel 27, nämlich ein niedrig schmelzendes Metall oder eine niedrig schmelzende Metalllegierung, wie sie weiter oben beispielhaft aufgezählt sind, durch die Öffnung 25 in die Bohrung 24a gefüllt. Von dort aus verteilt sich das Kühlmittel 27 im Kühlkanal 23 sowie in den weiteren Bohrungen 24b-d. Die Öffnung 25 wird anschließend dicht verschlossen, im Ausführungsbeispiel mittels einer eingepressten Stahlkugel 26. Die Öffnung 25 kann auch bspw. durch Aufschweißen eines Deckels oder Einpressen einer Kappe verschlossen werden (nicht dargestellt).In the exemplary embodiment, the piston 10 may for example be cast in a conventional manner, wherein the cooling channel 23 and the bores 24a-d can be introduced in a conventional manner by means of a salt core. It is essential that at least one bore 24a has an opening 25 to the outside. According to the invention, the coolant 27, namely a low-melting metal or a low-melting metal alloy, as enumerated by way of example above, is filled through the opening 25 into the bore 24a. From there, the coolant 27 is distributed in the cooling channel 23 and in the further holes 24b-d. The opening 25 is then sealed, in the embodiment by means of a pressed-steel ball 26. The opening 25 can also be closed, for example. By welding a lid or pressing a cap (not shown).

Die Größe der Bohrungen 24a-d und die Füllmenge des Kühlmittels 27 richten sich nach der Größe und dem Werkstoff des Kolbens 10. Durchschnittlich werden etwa. 10g bis 40g Kühlmittel 27 pro Kolben 10 benötigt. Die Kühlleistung kann über die Menge des zugegebenen Kühlmittels 27 unter Berücksichtigung seines Wärmeleitfähigkeitskoeffizienten gesteuert werden. Bspw. ist ein Füllstand im Kühlkanal 23 geeignet, der in etwa der halben Höhe des Kühlkanals 23 entspricht. In diesem Fall kann im Betrieb der an sich bekannte Shaker-Effekt für eine besonders wirksame Wärmeverteilung im Kolben zusätzlich genutzt werden. Für Natrium als Kühlmittel 27 mit einer Temperatur im Betrieb von 220°C ergibt sich bei einer Kühlleistung von 350kW/m2 eine maximale Oberflächentemperatur des Kolbens 10 von etwa 260°C.The size of the holes 24a-d and the filling amount of the coolant 27 depend on the size and the material of the piston 10. On average, about. 10g to 40g coolant 27 per piston 10 required. The cooling capacity can be controlled by the amount of the added coolant 27 in consideration of its thermal conductivity coefficient. For example. is a level in the cooling channel 23 suitable, which corresponds approximately to half the height of the cooling channel 23. In this case, during operation, the known shaker effect can additionally be used for a particularly effective heat distribution in the piston. For sodium as coolant 27 with a temperature in operation of 220 ° C results in a cooling capacity of 350kW / m 2, a maximum surface temperature of the piston 10 of about 260 ° C.

Zusätzlich kann die Unterseite 11a des Kolbenkopfes 11 durch Anspritzen mit Kühlöl gekühlt werden.In addition, the underside 11a of the piston head 11 can be cooled by injection with cooling oil.

Zum Befüllen der Bohrung 24a wird durch die Öffnung 25 eine Lanze eingeführt und mittels Stickstoff oder mittels eines anderen geeigneten Inertgases oder mittels trockener Luft gespült. Zur Einführung des Kühlmittels 27 wird dieses unter Schutzgas (bspw. Stickstoff, Inertgas oder trockene Luft) durch die Öffnung 25 geleitet, so dass das Kühlmittel 27 in die Bohrung 24a bzw. den Kühlkanal 23 aufgenommen wird.To fill the bore 24a, a lance is inserted through the opening 25 and purged by means of nitrogen or other suitable inert gas or by means of dry air. To introduce the coolant 27, it is passed through the opening 25 under protective gas (for example nitrogen, inert gas or dry air), so that the coolant 27 is received in the bore 24a or the cooling channel 23.

Ein weiteres Verfahren zum Befüllen der Bohrung 24a zeichnet sich dadurch aus, dass nach dem Spülen mit Stickstoff, Inertgas oder trockener Luft die Bohrungen 24a-d und der Kühlkanal 23 evakuiert werden und das Kühlmittel 27 im Vakuum eingebracht wird. Damit kann sich das Kühlmittel 27 leichter im Kühlkanal 23 hin und her und in den Bohrungen 24a-d hinein und hinaus bewegen, da es nicht durch vorhandenes Schutzgas behindert wird.Another method for filling the bore 24a is characterized in that after flushing with nitrogen, inert gas or dry air, the bores 24a-d and the cooling channel 23 are evacuated and the coolant 27 is introduced in a vacuum. Thus, the coolant 27 can move more easily in the cooling channel 23 back and forth and in the bores 24a-d in and out, since it is not hindered by existing inert gas.

Eine andere Möglichkeit, das Schutzgas aus dem Kühlkanal 23 bzw. den Bohrungen 24a-d zu entfernen, besteht darin, dass Stickstoff oder trockene Luft (d.h. im Wesentlichen eine Mischung aus Stickstoff und Sauerstoff) als Schutzgas zu verwenden und dem Kühlmittel 27 eine kleine Menge Lithium zuzusetzen, erfahrungsgemäß etwa 1,8mg bis 2,0mg Lithium pro Kubikzentimeter Gasraum (d.h. Volumen des Kühlkanal 23 plus Volumen der Bohrungen 24a-d). Während bspw. Natrium und Kalium mit Sauerstoff zu Oxiden reagieren, reagiert das Lithium mit Stickstoff zu Lithiumnitrid. Das Schutzgas wird somit praktisch vollständig als Feststoff im Kühlmittel 27 gebunden.Another possibility for removing the protective gas from the cooling channel 23 or the bores 24a-d is to use nitrogen or dry air (ie essentially a mixture of nitrogen and oxygen) as protective gas and a small amount of the coolant 27 Lithium, according to experience about 1.8mg to 2.0mg lithium per cubic centimeter gas space (ie volume of the cooling channel 23 plus volume of the holes 24a-d). While, for example, sodium and potassium react with oxygen to form oxides, the lithium reacts with nitrogen to form lithium nitride. The protective gas is thus almost completely bound as a solid in the coolant 27.

Claims (10)

  1. Piston (10) for an internal combustion engine, comprising a piston head (11) and a piston skirt (16), the piston head (11) having a peripheral annular part (15) and, in the region of the annular part (15), a peripheral cooling channel (23), wherein the piston skirt (16) comprises piston hubs (17) provided with hub bores (18), which are arranged over the hub connections (19) on the underside (11a) of the piston head (11), wherein the piston hubs (17) are interconnected via running surfaces (21, 22), wherein the wall (23a) of the cooling channel (23) which extends in the region of the annular part (15) comprises an inclined portion and together with the central axis of the piston (M) forms an acute angle (α), wherein at least one bore (24a, 24b, 24c, 24d) which is closed towards the outside is arranged between a running surface (21, 22) and a hub bore (18), wherein the at least one bore (24a, 24b, 24c, 24d) opens into the cooling channel (23), and wherein the cooling channel (23) and the at least one bore (24a, 24b, 24c, 24d) contain a coolant (27) in the form of a low melting point metal or a low melting point metal alloy, characterised in that four bores (24a, 24b, 24c, 24d) are provided, which are arranged between a running surface (21, 22) and a hub bore (18).
  2. Piston according to claim 1, characterised in that the angle (α) has a maximum value of 10°.
  3. Piston according to claim 1, characterised in that the inclined portion of the wall (23a) begins at the height of the upper edge of the lower most annular groove (15a) of the annular part (15).
  4. Piston according to claim 1, characterised in that a combustion bowl (13) is provided in the piston head (11) and in that the wall (23b) of the cooling channel (23) extending in the region of the combustion bowl (13) runs parallel to the contour of the wall (13a) of the combustion bowl (13).
  5. System according to claim 1, characterised in that sodium or calcium is included as the low melting point metal.
  6. Piston according to claim 1, characterised in that the low melting point metal alloy is selected from the group comprising Galinstan® alloy, low melting point bismuth alloys and sodium-calcium alloys.
  7. Piston according to claim 1, characterised in that the coolant (27) contains lithium and/or lithium nitride.
  8. Piston according to claim 1, characterised in that the coolant (27) contains sodium oxide and/or calcium oxide.
  9. Piston according to claim 1, characterised in that coolant (27) has a fill level up to half the height of the cooling channel (23).
  10. Piston according to claim 1, characterised in that the coolant (27) has a fill quantity comprising 3% to 10% of the volume of the cooling channel (23).
EP13745565.5A 2012-05-05 2013-05-03 Piston for an internal combustion engine Not-in-force EP2864618B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012008945A DE102012008945A1 (en) 2012-05-05 2012-05-05 Piston for an internal combustion engine
PCT/DE2013/000239 WO2013167103A2 (en) 2012-05-05 2013-05-03 Piston for an internal combustion engine

Publications (2)

Publication Number Publication Date
EP2864618A2 EP2864618A2 (en) 2015-04-29
EP2864618B1 true EP2864618B1 (en) 2017-01-04

Family

ID=48918211

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13745565.5A Not-in-force EP2864618B1 (en) 2012-05-05 2013-05-03 Piston for an internal combustion engine

Country Status (8)

Country Link
US (1) US9494106B2 (en)
EP (1) EP2864618B1 (en)
JP (1) JP6293121B2 (en)
KR (1) KR20150006860A (en)
CN (1) CN104379917B (en)
BR (1) BR112014027523A2 (en)
DE (1) DE102012008945A1 (en)
WO (1) WO2013167103A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11022065B2 (en) 2015-12-03 2021-06-01 Tenneco Inc. Piston with sealed cooling gallery containing a thermally conductive composition
USD886155S1 (en) * 2015-12-18 2020-06-02 Mahle International Gmbh Piston for an internal combustion engine
DE102016001926A1 (en) * 2016-02-18 2017-08-24 Man Truck & Bus Ag Piston for a reciprocating internal combustion engine
DE102016221352A1 (en) * 2016-10-28 2018-05-03 Mahle International Gmbh Method for producing a piston
DE102017210282A1 (en) * 2017-06-20 2018-12-20 Mahle International Gmbh Piston for a combustion engine with liquid metal cooling
US10648425B2 (en) * 2017-08-23 2020-05-12 Tenneco Inc. Piston with broad ovate gallery
RU2675974C1 (en) * 2017-11-03 2018-12-25 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Брянский государственный технический университет" Piston of forced diesel engine
CN112196689B (en) * 2020-10-09 2021-09-21 马勒汽车技术(中国)有限公司 High-level salt core and piston

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB517713A (en) * 1939-03-17 1940-02-07 Arthur Villeneuve Nicolle Improvements in or relating to the cylinders and pistons of internal combustion engines
FR2901577A3 (en) * 2006-05-29 2007-11-30 Renault Sas Internal combustion engine`s piston, has transverse wall with internal cavity containing refrigerant fluid, and including annular part that extends skirt continuously on assembly of its circumference, in plan normal to translation axis

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1678957A (en) * 1925-01-29 1928-07-31 Busch Sulzer Bros Diesel Engine Co Piston cooling
US1841796A (en) * 1929-02-04 1932-01-19 Packard Motor Car Co Internal combustion engine
DE726685C (en) * 1939-09-01 1942-10-19 Versuchsanstalt Fuer Luftfahrt Pistons for internal combustion engines
DE762820C (en) * 1943-04-25 1952-11-04 Richard Holzaepfel Fa Process for the manufacture of flasks with a temperature-compensating filling
FR1574352A (en) * 1967-07-15 1969-07-11
JPS5179239U (en) * 1975-11-26 1976-06-23
DE2613059A1 (en) 1975-12-01 1977-06-08 Kioritz Corp PISTONS FOR COMBUSTION ENGINES
JPS5292034A (en) * 1976-01-28 1977-08-03 Kyoritsu Kk Piston for engine
JPS5266126A (en) * 1975-12-01 1977-06-01 Kyoritsu Kk Piston for engine
JPS5281508U (en) * 1976-11-22 1977-06-17
US5266228A (en) * 1991-08-29 1993-11-30 Basf Corporation Corrosion-inhibiting automotive coolant solutions containing effective amounts of sodium silicate having a low ratio of silica to sodium oxide
JP2592985Y2 (en) * 1992-02-13 1999-03-31 日野自動車工業株式会社 Piston cooling system
DE19846152A1 (en) * 1998-10-07 2000-04-13 Mahle Gmbh Piston with piston base made of forged steel and a cooling channel
IT1316223B1 (en) * 2000-09-28 2003-04-03 Carlo Rubbia METHOD AND DEVICE FOR HEATING GAS FROM A THIN NUCLEAR DUCTILE FUEL LAYER AND SPATIAL PROPULSER USING SUCH METHOD.
JP2002250251A (en) * 2001-02-21 2002-09-06 Toyota Motor Corp Piston for internal combustion engine
DE10244513A1 (en) 2002-09-25 2004-04-08 Mahle Gmbh Multi-part cooled piston for an internal combustion engine and method for its production
KR20050039320A (en) * 2003-10-24 2005-04-29 현대자동차주식회사 Piston for internal combustion engine
CN101305168B (en) * 2005-11-15 2010-05-12 日锻汽门株式会社 Hollow lifting valve for embedding with refrigerant and manufacturing method thereof
JP2007270813A (en) * 2006-03-31 2007-10-18 Yamaha Motor Co Ltd Piston for internal combustion engine
DE102009032941A1 (en) 2009-07-14 2011-01-20 Mahle International Gmbh Multi-part piston for an internal combustion engine and method for its production
DE102010033882A1 (en) * 2010-08-10 2012-02-16 Mahle International Gmbh Piston for an internal combustion engine
US8671905B2 (en) * 2011-07-12 2014-03-18 Mahle International Gmbh Piston for an internal combustion engine and method for its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB517713A (en) * 1939-03-17 1940-02-07 Arthur Villeneuve Nicolle Improvements in or relating to the cylinders and pistons of internal combustion engines
FR2901577A3 (en) * 2006-05-29 2007-11-30 Renault Sas Internal combustion engine`s piston, has transverse wall with internal cavity containing refrigerant fluid, and including annular part that extends skirt continuously on assembly of its circumference, in plan normal to translation axis

Also Published As

Publication number Publication date
US9494106B2 (en) 2016-11-15
JP6293121B2 (en) 2018-03-14
DE102012008945A1 (en) 2013-11-07
WO2013167103A3 (en) 2014-02-13
WO2013167103A2 (en) 2013-11-14
CN104379917A (en) 2015-02-25
BR112014027523A2 (en) 2017-06-27
JP2015516050A (en) 2015-06-04
CN104379917B (en) 2017-07-14
US20150128892A1 (en) 2015-05-14
KR20150006860A (en) 2015-01-19
EP2864618A2 (en) 2015-04-29

Similar Documents

Publication Publication Date Title
EP2864618B1 (en) Piston for an internal combustion engine
EP2758651B1 (en) Piston for an internal combustion engine and method for producing same
EP2652302B1 (en) Piston for an internal combustion engine and method for the production thereof
EP2748452A1 (en) Piston for an internal combustion engine
DE102012017217A1 (en) Piston for an internal combustion engine
DE3922473C2 (en) COOLED TWO PIECE PISTON
WO2011107079A2 (en) Piston for an internal combustion engine
DE102012014200A1 (en) Piston for internal combustion engine, has cavity that is made of low melting metal or metal alloy and is provided adjacent to combustion bowl, for receiving coolant in circulating cooling passage of piston head
WO2014190962A1 (en) Piston for an internal combustion engine
WO2013131937A1 (en) Cast light metal piston, in particular an aluminium piston
DE19900386C1 (en) Reciprocating machine
WO2013004218A1 (en) Piston for an internal combustion engine
EP2864617B1 (en) Piston and crankcase assembly for an internal combustion engine
DE102012022906A1 (en) Piston for internal combustion engine, has piston head, which has circumferential ring section with piston rings, where running surfaces of piston rings are partially provided with coating based on chromium nitride
DE102004029926B4 (en) Piston for an internal combustion engine
DE3509103A1 (en) PISTON FOR INTERNAL COMBUSTION ENGINES
DE102012017218A1 (en) Piston for internal combustion engine, comprises piston head with piston top and annular portion, where outer wall of cavity adjacent to annular portion is formed inclined partially to piston central axis in direction of piston top
WO2018234014A1 (en) Piston for an internal combustion engine having liquid metal cooling
DD243530A1 (en) IRONING PISTONS FOR PISTON PISTON ENGINES
DE19733814A1 (en) Piston for internal combustion engine
DE1964742A1 (en) Pistons for internal combustion engines
DE3723469A1 (en) Cylinder head for an internal combustion engine
DD205719A1 (en) INPUT ELEMENT FOR THE HEADPARTY OF PISTONS
DEP0052005DA (en) Piston ring carrier inserted in light alloy pistons
DE102004026767A1 (en) Two-stroke internal combustion engine for hand-held powered tools has inner wall of cylinder casing forming guide section in region of which inner wall is encased in first light metal and in areas encased by second light metal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141205

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160304

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160929

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 859477

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013005992

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: MP

Effective date: 20170104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170504

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170404

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170504

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170404

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013005992

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

26N No opposition filed

Effective date: 20171005

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130503

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 859477

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180503

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190731

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013005992

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201