EP0950148B1 - Method and device for controlling a drive unit of a vehicle - Google Patents

Method and device for controlling a drive unit of a vehicle Download PDF

Info

Publication number
EP0950148B1
EP0950148B1 EP98941245A EP98941245A EP0950148B1 EP 0950148 B1 EP0950148 B1 EP 0950148B1 EP 98941245 A EP98941245 A EP 98941245A EP 98941245 A EP98941245 A EP 98941245A EP 0950148 B1 EP0950148 B1 EP 0950148B1
Authority
EP
European Patent Office
Prior art keywords
torque
function
drive unit
driver
maximum permitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98941245A
Other languages
German (de)
French (fr)
Other versions
EP0950148A1 (en
Inventor
Berthold Steinmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0950148A1 publication Critical patent/EP0950148A1/en
Application granted granted Critical
Publication of EP0950148B1 publication Critical patent/EP0950148B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/007Electric control of rotation speed controlling fuel supply
    • F02D31/009Electric control of rotation speed controlling fuel supply for maximum speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/26Control of the engine output torque by applying a torque limit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up

Definitions

  • the invention relates to a method and a device to control the drive unit of a motor vehicle according to the preambles of the independent claims.
  • DE-A 195 36 038 describes a method and a device to control the drive unit of a motor vehicle known, in which a torque of the drive unit is dependent controlled by a setpoint for this torque becomes.
  • a torque of the drive unit is dependent controlled by a setpoint for this torque becomes.
  • a maximum permissible torque Drive unit formed, this with an actual Drive unit torque compared and fault response measures initiated when the actual torque the drive unit exceeds the maximum permissible torque.
  • the maximum permissible torque depends on the target torque value educated. This in turn is based on the Position of a control element that can be actuated by the driver, for example of an accelerator pedal, or depending on that of others Control systems or functions predetermined target torque, for example depending on a target torque an engine drag torque control and / or an idle speed control calculated.
  • the maximum allowable torque becomes dependent on the target torque value using a characteristic curve or a map is formed.
  • a consideration of Tolerances of the drive unit, which e.g. through internal friction is not described. This is also permissible Moment depending on the driver's desired torque, so that at a theoretically conceivable error in the calculation of this Moments the permissible torque is also incorrect.
  • Torque base Monitoring a control of a drive unit Torque base is significantly improved because the Formation of the maximum permissible torque, which of the monitoring underlying, tolerances are taken into account, too when external intervention works.
  • driver's desired torque is not in the calculation of the permissible torque is received.
  • FIG. 1 is a control device for a multi-cylinder Internal combustion engine 10 shown.
  • the control device comprises an electronic control unit 12, which consists of at least a microcomputer 14, an input 16 and one Output unit 18 exists.
  • Input unit 16, output unit 18 and the at least one microcomputer 14 are via one Communication bus 20 for mutual data exchange with one another connected.
  • the input unit 16 are the input lines 22, 24, 28 and 30 fed.
  • the line 22 comes a measuring device 32 for detecting the pedal position, the line 24 from a measuring device 34 for detection the engine speed, the line 28 from a measuring device 38 for detecting a motor load representative Size and line 30 of at least one other Control device 40, for example a control device for traction control for transmission control, for engine drag torque control, for driving speed control, etc.
  • the quantity representing the engine load are air mass, air flow meter depending on the embodiment or pressure sensors to record the intake manifold pressure intended.
  • the Control unit other sizes essential for engine control like engine temperature, driving speed, the time after Start, intake air temperature, etc.
  • An output line 42 is connected to the output unit 18, on an electrically operated throttle valve 44, which is arranged in the air intake system 46 of the internal combustion engine is leads.
  • the under the described by programs of the microcomputer realized engine control takes place through coordination the filling intervention (air intervention), the ignition angle setting and the change in fuel metering (Blanking of individual cylinders, displacement of the air / fuel composition) based on the torque the drive unit.
  • the filling intervention air intervention
  • the ignition angle setting and the change in fuel metering (Blanking of individual cylinders, displacement of the air / fuel composition) based on the torque the drive unit.
  • a target torque Control of the drive unit selected This target torque is converted into a setpoint for the filling to be set, in an ignition angle and / or a fuel metering correction converted. In this way, the torque of the drive unit approximates the specified target torque.
  • the maximum permissible torque When determining the maximum permissible torque, how shown below using the flow diagram according to FIG. 2, based on accelerator pedal position and engine speed from at least one map in which the essential Tolerances are taken into account, the maximum permissible Moment read. Furthermore, in a preferred embodiment another map is provided, which according to Start of the drive unit, especially when the drive unit is cold increased tolerances, for example as a result of Friction considered. This maximum allowable moment in Post-start also depends on the accelerator pedal position and Engine speed determined according to another map. This map is switched to if after Start certain conditions exist, for example the Temperature of the engine, the intake air temperature and / or the elapsed time after the start within specified value ranges lie.
  • the maximum allowable moment determined in this way becomes for the above-mentioned torque monitoring and / or for limitation of the target torque.
  • the maximum allowable The moment depends on the driver's request. Are functions active, which replace the driver's request or the torque versus that increases or decreases the driver's request maximum permissible moment, which in the above-mentioned way is formed, the actual situation of the controller not again. This is particularly important for interventions, which is the moment of the drive unit versus the driver's request increase, such as in a cruise control or an engine drag torque control.
  • reliable torque monitoring (and / or limitation) too ensure is provided based on the driver's request formed maximum permissible moment with that of the to compare external interventions with the target torque.
  • the larger of the two values is considered permissible Moment of monitoring and / or limitation supplied.
  • an additional offset value is formed, that from a map depending on the resulting permissible torque and the engine speed is formed. This Offset value takes into account depending on the operating state different tolerance and leads to change in the resulting maximum permissible moments and therefore to be taken into account that depend on the operating condition of the engine Tolerance.
  • the torque setpoints formed by external interventions such as engine drag torque control (mimsr) or a vehicle speed control (mifgr) and the moment of the drive unit compared to the driver's request a maximum value selection 100 fed.
  • the target torque value for the external interventions is then in a maximum value selection 102 with that depending on the driver's request formed maximum permissible torque compared.
  • the each larger of the two moment values is the resultant maximum permissible torque with torque monitoring fed.
  • the maximum permissible depending on the driver's wishes Moment is either in a first map 104 or in determines a second map 106, depending on which operating state is present.
  • the accelerator pedal position becomes the two maps wped and the engine speed nmot supplied.
  • the maximum permissible torque is above the two maps stored these two input values, the map values be applied.
  • the post-start phase which by the solid position of the switching element 108 is represented, the one read from the map 104 maximum permissible torque value during the post-start phase the maximum permissible value read from the map 106 to the maximum value selection 102.
  • the switching element 108 becomes dependent on the condition for the post-start B_next start switched.
  • the post-start phase is preferred Embodiment before when a certain time the engine temperature has not expired since the start indicates a cold drive unit and / or the intake air temperature is in a certain range of values.
  • the resultant determined in the maximum value selection 102 maximum permissible moment is in a link 110 mizul corrected to the maximum permissible moment.
  • the latter is fed to a comparator 112.
  • An actual torque miist is supplied, which depends on input variables in 114 like the actual filling depending on the measured air mass rl, the engine speed nmot, the current ignition angle and Engine fueling setting is formed becomes.
  • the actual torque miist is compared with that in the comparator 112 maximum permissible moment mizul compared.
  • Exceeds it the maximum permissible torque is particularly by switching off the fuel supply a safety reaction (SKA) triggered. The fuel supply remains switched off until until the actual torque falls below the maximum permissible torque falls.
  • SKA safety reaction
  • the resulting point becomes maximum in the junction 110 admissible torque corrected with a torque offset value mioff.
  • a map 116 this is dependent on the engine speed and the resulting maximum allowable moment, the initial value of the maximum value selection 102.
  • the Map values are also applied.
  • the map 116 shows the tolerance values (e.g. due to friction generated tolerances, component tolerances, etc.) filed depend on the operating state of the drive unit.
  • There one Input variable of the map 116 even with external interventions represents the maximum permissible torque these tolerance values are also taken into account when external Interventions work.
  • the offset value the tolerances is not dependent on the accelerator pedal position formed so that the torque monitoring even during the Intervention of external functions is guaranteed. Further goes the target torque is not in the formation of the maximum allowable Moments so that theoretically occurring errors in the The calculation of the target torque should not be included in the monitoring.
  • the input variable for the map 116 is not the maximum permissible torque that is called a measure of the torque request considered, but the filling request derived therefrom, i.e. the maximum permissible to be set via the throttle valve Should fill. Monitoring then becomes the basis of Fill values carried out. With this in mind, use the term moment also the filling as a monitoring variable to understand.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

The invention relates to a method and a device for controlling a drive unit of a vehicle. A maximum allowable moment is predetermined and if this maximum allowable moment is exceeded, the moment of the drive unit is reduced. The maximum allowable moment is determined in dependence on at least the position of the operating element and in dependence on the nominal moment of at least one external function if this nominal moment is greater than the allowable moment determined according to the position of the operating element.

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Steuerung der Antriebseinheit eines Kraftfahrzeugs gemäß den Oberbegriffen der unabhängigen Patentansprüche.The invention relates to a method and a device to control the drive unit of a motor vehicle according to the preambles of the independent claims.

Aus der DE-A 195 36 038 ist ein Verfahren und eine Vorrichtung zur Steuerung der Antriebseinheit eines Kraftfahrzeugs bekannt, bei welchem ein Drehmoment der Antriebseinheit abhängig von einem Sollwert für dieses Drehmoment gesteuert wird. Zur Sicherstellung der Betriebssicherheit dieses Steuersystems wird ferner ein maximal zulässiges Drehmoment der Antriebseinheit gebildet, dieses mit einem tatsächlichen Drehmoment der Antriebseinheit verglichen und Fehlerreaktionsmaßnahmen eingeleitet, wenn das tatsächliche Drehmoment der Antriebseinheit das maximal zulässige Drehmoment überschreitet. In einem dort beschriebenen Ausführungsbeispiel wird das maximal zulässige Drehmoment abhängig vom Sollmomentenwert gebildet. Dieser wiederum wird auf der Basis der Stellung eines vom Fahrer betätigbaren Bedienelements, beispielsweise eines Fahrpedals, oder abhängig von den von anderen Steuersystemen bzw. -funktionen vorgegebenen Solldrehmoment, beispielsweise abhängig von einem Solldrehmoment einer Motorschleppmomentenregelung und/oder einer Leerlaufdrehzahlregelung berechnet. Das maximal zulässige Drehmoment wird abhängig vom Sollmomentenwert mittels einer Kennlinie oder eines Kennfeldes gebildet. Eine Berücksichtigung von Toleranzen der Antriebseinheit, die z.B. durch innere Reibung bedingt sind, ist nicht beschrieben. Ferner ist das zulässige Moment abhängig vom Fahrerwunschmoment, so daß bei einem theoretisch denkbaren Fehler bei der Berechnung dieses Moments das zulässige Moment ebenfalls fehlerhaft ist.DE-A 195 36 038 describes a method and a device to control the drive unit of a motor vehicle known, in which a torque of the drive unit is dependent controlled by a setpoint for this torque becomes. To ensure the operational safety of this control system is also a maximum permissible torque Drive unit formed, this with an actual Drive unit torque compared and fault response measures initiated when the actual torque the drive unit exceeds the maximum permissible torque. In an embodiment described there the maximum permissible torque depends on the target torque value educated. This in turn is based on the Position of a control element that can be actuated by the driver, for example of an accelerator pedal, or depending on that of others Control systems or functions predetermined target torque, for example depending on a target torque an engine drag torque control and / or an idle speed control calculated. The maximum allowable torque becomes dependent on the target torque value using a characteristic curve or a map is formed. A consideration of Tolerances of the drive unit, which e.g. through internal friction is not described. This is also permissible Moment depending on the driver's desired torque, so that at a theoretically conceivable error in the calculation of this Moments the permissible torque is also incorrect.

Es ist Aufgabe der Erfindung, Maßnahmen zur Überwachung einer Motorsteuerung auf der Basis eines maximal zulässigen Moments anzugeben, durch welche diese Überwachung optimiert wird.It is an object of the invention to take measures to monitor a Motor control based on a maximum allowable Specify moments by which this monitoring is optimized becomes.

Dies wird durch die kennzeichnenden Merkmale der unabhängigen Patentansprüche erreicht.This is due to the distinctive features of the independent Claims reached.

Vorteile der ErfindungAdvantages of the invention

Die Überwachung einer Steuerung einer Antriebseinheit auf Drehmomentenbasis wird wesentlich verbessert, weil bei der Bildung des maximal zulässigen Moments, welches der Überwachung zugrundeliegt, Toleranzen berücksichtigt sind, auch wenn externe Eingriffe wirken.Monitoring a control of a drive unit Torque base is significantly improved because the Formation of the maximum permissible torque, which of the monitoring underlying, tolerances are taken into account, too when external intervention works.

Durch die Heranziehung der von externen Funktionen vorgegebenen Sollmomenten bei der Bildung des maximal zulässigen Moments wird eine von der Pedalcharakteristik unabhängige Bildung des maximal zulässigen Moments erreicht, so daß die Momentenüberwachung unter Berücksichtigung der Toleranzen auch dann ermöglicht ist, wenn externe Funktionen wirken und der Fahrer das Pedal im Extremfall losgelassen hat (z.B. Fahrgeschwindigkeitsregelbetrieb, Motorschleppmomentenregelbetrieb, etc.). By using external functions Target torques when forming the maximum permissible Moments becomes independent of the pedal characteristics Formation of the maximum allowable torque reached so that the Torque monitoring taking into account the tolerances is also possible when external functions work and in extreme cases the driver has released the pedal (e.g. Driving speed control mode, engine drag torque control mode, Etc.).

Ferner ist vorteilhaft, daß das Fahrerwunschmoment nicht in die Berechnung des zulässigen Moments eingeht.It is also advantageous that the driver's desired torque is not in the calculation of the permissible torque is received.

Weitere Vorteile ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen bzw. aus den abhängigen Patentansprüchen.Further advantages result from the description below from exemplary embodiments or from the dependent ones Claims.

Zeichnungdrawing

Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsformen näher erläutert. Dabei zeigt Figur 1 eine Übersichtsdarstellung einer Steuereinheit zur Steuerung des Drehmoments der Antriebseinheit, während in Figur 2 ein bevorzugtes Ausführungsbeispiel in Form eines Ablaufdiagramms zur Überwachung der Steuerung auf Drehmomentenbasis dargestellt ist.The invention is described below with reference to the drawing illustrated embodiments explained in more detail. It shows 1 shows an overview of a control unit for Control the torque of the drive unit while in Figure 2 shows a preferred embodiment in the form of a Flow diagram for monitoring the control on a torque basis is shown.

Beschreibung von AusführungsbeispielenDescription of exemplary embodiments

In Figur 1 ist eine Steuervorrichtung für eine mehrzylindrige Brennkraftmaschine 10 dargestellt. Die Steuervorrichtung umfaßt ein elektronisches Steuergerät 12, welches aus wenigstens einem Mikrocomputer 14, einer Eingabe- 16 und einer Ausgabeeinheit 18 besteht. Eingabeeinheit 16, Ausgabeeinheit 18 und der wenigstens eine Mikrocomputer 14 sind über einen Kommunikationsbus 20 zum gegenseitigen Datenaustausch miteinander verknüpft. Der Eingabeeinheit 16 sind die Eingangsleitungen 22, 24, 28 und 30 zugeführt. Die Leitung 22 stammt dabei von einer Meßeinrichtung 32 zur Erfassung der Pedalstellung, die Leitung 24 von einer Meßeinrichtung 34 zur Erfassung der Motordrehzahl, die Leitung 28 von einer Meßeinrichtung 38 zur Erfassung einer die Motorlast repräsentierenden Größe und die Leitung 30 von wenigstens einem weiteren Steuergerät 40, beispielsweise einem Steuergerät zur Antriebsschlupfregelung, zur Getriebesteuerung, zur Motorschleppmomentenregelung, zur Fahrgeschwindigkeitsregelung, etc.. Zur Erfassung der die Motorlast repräsentierenden Größe sind je nach Ausführungsbeispiel Luftmassen-, Luftmengenmesser oder Drucksensoren zur Erfassung des Saugrohrdrucks vorgesehen. Neben der dargestellten Betriebsgröße erfaßt die Steuereinheit weitere zur Motorsteuerung wesentliche Größen wie Motortemperatur, Fahrgeschwindigkeit, die Zeit nach Start, Ansauglufttemperatur, etc..In Figure 1 is a control device for a multi-cylinder Internal combustion engine 10 shown. The control device comprises an electronic control unit 12, which consists of at least a microcomputer 14, an input 16 and one Output unit 18 exists. Input unit 16, output unit 18 and the at least one microcomputer 14 are via one Communication bus 20 for mutual data exchange with one another connected. The input unit 16 are the input lines 22, 24, 28 and 30 fed. The line 22 comes a measuring device 32 for detecting the pedal position, the line 24 from a measuring device 34 for detection the engine speed, the line 28 from a measuring device 38 for detecting a motor load representative Size and line 30 of at least one other Control device 40, for example a control device for traction control for transmission control, for engine drag torque control, for driving speed control, etc. To record the quantity representing the engine load are air mass, air flow meter depending on the embodiment or pressure sensors to record the intake manifold pressure intended. In addition to the farm size shown, the Control unit other sizes essential for engine control like engine temperature, driving speed, the time after Start, intake air temperature, etc.

An der Ausgabeeinheit 18 ist eine Ausgangsleitung 42 angeschlossen, die auf eine elektrisch betätigbare Drosselklappe 44, die im Luftansaugsystem 46 der Brennkraftmaschine angeordnet ist, führt. Ferner sind Ausgangsleitungen 48,50, 52, 54, usw. dargestellt, welche mit Stelleinrichtungen zur Kraftstoffzumessung in jedem Zylinder der Brennkraftmaschine 10 verbunden sind bzw. zur Einstellung des Zündwinkels in jedem Zylinder dienen.An output line 42 is connected to the output unit 18, on an electrically operated throttle valve 44, which is arranged in the air intake system 46 of the internal combustion engine is leads. Output lines 48, 50, 52, 54, etc. shown, which with actuators for Fuel metering in each cylinder of the internal combustion engine 10 are connected or for setting the ignition angle in serve each cylinder.

Die im Rahmen der beschriebenen, durch Programme des Mikrocomputers realisierten Motorsteuerung erfolgt durch Koordination des Füllungseingriffs (Lufteingriff), der Zündwinkeleinstellung und der Veränderung der Kraftstoffzumessung (Ausblendung einzelner Zylinder, Verschiebung des Luft-/Kraftstoffzusammensetzung) auf der Basis des Drehmoments der Antriebseinheit. Abhängig vom Fahrerwunsch, ermittelt durch die Stellung des Pedals, sowie entsprechenden Signalen der weiteren Steuereinheiten 40 wird ein Sollmoment zur Steuerung der Antriebseinheit ausgewählt. Dieses Sollmoment wird in einen Sollwert für die einzustellende Füllung, in eine Zündwinkel- und/oder eine Kraftstoffzumessungskorrektur umgerechnet. Auf diese Weise wird das Drehmoment der Antriebseinheit dem vorgegebenen Sollmoment angenähert. The under the described by programs of the microcomputer realized engine control takes place through coordination the filling intervention (air intervention), the ignition angle setting and the change in fuel metering (Blanking of individual cylinders, displacement of the air / fuel composition) based on the torque the drive unit. Depending on the driver's request, determined by the position of the pedal and corresponding signals of the further control units 40 becomes a target torque Control of the drive unit selected. This target torque is converted into a setpoint for the filling to be set, in an ignition angle and / or a fuel metering correction converted. In this way, the torque of the drive unit approximates the specified target torque.

Zur Sicherstellung der Betriebssicherheit ist ferner vorgesehen, auf der Basis von Betriebsgrößen wie Motordrehzahl, der die Last repräsentierenden Größe, der aktuellen Zündwinkel- und Kraftstoffzumessungseinstellung wie im eingangs genannten Stand der Technik beschrieben das Istmoment der Antriebseinheit zu ermitteln. Ferner wird ein maximal zulässiges Moment gebildet, mit dem Istmoment verglichen und eine Momentenreduzierung durchgeführt, wenn das Istmoment das maximal zulässige Moment überschreitet. In einem bevorzugten Ausführungsbeispiel sind im Mikrocomputer 14 wenigstens zwei Programmebenen vorgesehen, die voneinander getrennt arbeiten. Die beschriebene Momentenüberwachung findet dabei in einer übergeordneten Überwachungsebene statt, während die oben dargestellte Motorsteuerung selbst in einer sogenannten Funktionsebene berechnet wird. Ferner ist vorgesehen, um die aufgrund des Momentenvergleichs ausgelöste Sicherheitsfunktion, die vorzugsweise als Abschalten der Kraftstoffzufuhr realisiert ist, solange das Istmoment das zulässige Moment überschreitet, zu vermeiden, den Sollmomentenwert zur Steuerung des Moments der Antriebseinheit abhängig von einem maximalen Moment zu begrenzen. Dieses maximale Moment ist in der Regel betragsmäßig kleiner als das maximal zulässige Moment, so daß die Sicherheitsreaktion nur dann stattfindet, wenn tatsächlich ein Fehlerzustand vorliegt.To ensure operational safety, it is also provided that on the basis of operating variables such as engine speed, the quantity representing the load, the current ignition angle and fuel metering setting as in the aforementioned State of the art describes the actual torque of the drive unit to investigate. It also becomes a maximum allowable Torque formed, compared with the actual torque and one Torque reduction carried out when the actual torque is the maximum permissible torque exceeds. In a preferred one Embodiment are at least two in the microcomputer 14 Program levels provided that work separately from each other. The described torque monitoring takes place in a higher level monitoring, while the Motor control shown above itself in a so-called Functional level is calculated. It is also provided to the safety function triggered due to the torque comparison, which preferably as switching off the fuel supply is realized as long as the actual torque is the permissible torque exceeds, to avoid the target torque value for control the torque of the drive unit depending on a maximum Limit moment. This maximum moment is in usually less than the maximum permissible torque, so the security response only happens if an error condition actually exists.

Bei der Bestimmung des maximal zulässigen Moments wird, wie nachfolgend anhand des Ablaufdiagramms nach Figur 2 dargestellt, auf der Basis der Fahrpedalstellung und der Motordrehzahl aus wenigstens einem Kennfeld, in dem die wesentlichen Toleranzen berücksichtigt sind, das maximal zulässige Moment ausgelesen. Ferner ist in einer bevorzugten Ausführungsform ein weiteres Kennfeld vorgesehen, welches die nach Start der Antriebseinheit insbesondere bei kalter Antriebseinheit erhöhten Toleranzen beispielsweise infolge von Reibung berücksichtigt. Dieses maximal zulässige Moment im Nachstart wird ebenfalls abhängig von Fahrpedalstellung und Motordrehzahl nach Maßgabe eines weiteren Kennfeldes bestimmt. Auf dieses Kennfeld wird umgeschaltet, wenn nach Start bestimmte Bedingungen vorliegen, beispielsweise die Temperatur des Motors, die Ansauglufttemperatur und/oder die nach dem Start vergangene Zeit innerhalb vorgegebener Wertebereiche liegen.When determining the maximum permissible torque, how shown below using the flow diagram according to FIG. 2, based on accelerator pedal position and engine speed from at least one map in which the essential Tolerances are taken into account, the maximum permissible Moment read. Furthermore, in a preferred embodiment another map is provided, which according to Start of the drive unit, especially when the drive unit is cold increased tolerances, for example as a result of Friction considered. This maximum allowable moment in Post-start also depends on the accelerator pedal position and Engine speed determined according to another map. This map is switched to if after Start certain conditions exist, for example the Temperature of the engine, the intake air temperature and / or the elapsed time after the start within specified value ranges lie.

Das auf diese Weise bestimmte maximal zulässige Moment wird zu der obengenannten Momentenüberwachung und/oder zur Begrenzung des Sollmoments herangezogen. Das maximal zulässige Moment ist dabei abhängig vom Fahrerwunsch. Sind Funktionen aktiv, die den Fahrerwunsch ersetzen oder das Drehmoment gegenüber dem Fahrerwunsch erhöhen oder verringern, gibt das maximal zulässige Moment, welches auf die obengenannte Weise gebildet wird, die tatsächliche Situation der Steuerung nicht wieder. Besonders bedeutsam ist dies bei Eingriffen, die das Moment der Antriebseinheit gegenüber dem Fahrerwunsch erhöhen, wie beispielsweise bei einer Fahrgeschwindigkeitsregelung oder einer Motorschleppmomentenregelung. Um auch während der Wirkungszeit solcher externer Eingriffe eine zuverlässige Momentenüberwachung (und/oder Begrenzung) zu gewährleisten, ist vorgesehen, das auf der Basis des Fahrerwunsches gebildete maximal zulässige Moment mit dem von den externen Eingriffen gebildeten Sollmoment zu vergleichen. Der jeweils größere der beiden Werte wird dabei als zulässiges Moment der Überwachung und/oder der Begrenzung zugeführt. Darüber hinaus wird ein zusätzlicher Offsetwert gebildet, der aus einem Kennfeld abhängig vom resultierenden zulässigen Moment und der Motordrehzahl gebildet wird. Dieser Offsetwert berücksichtigt die je nach Betriebszustand unterschiedliche Toleranz und führt zur Veränderung des resultierenden maximal zulässigen Moments und somit zur Berücksichtigung der vom Betriebszustand des Motors abhängigen Toleranz. The maximum allowable moment determined in this way becomes for the above-mentioned torque monitoring and / or for limitation of the target torque. The maximum allowable The moment depends on the driver's request. Are functions active, which replace the driver's request or the torque versus that increases or decreases the driver's request maximum permissible moment, which in the above-mentioned way is formed, the actual situation of the controller not again. This is particularly important for interventions, which is the moment of the drive unit versus the driver's request increase, such as in a cruise control or an engine drag torque control. Around even during the effectiveness of such external interventions reliable torque monitoring (and / or limitation) too ensure is provided based on the driver's request formed maximum permissible moment with that of the to compare external interventions with the target torque. The larger of the two values is considered permissible Moment of monitoring and / or limitation supplied. In addition, an additional offset value is formed, that from a map depending on the resulting permissible torque and the engine speed is formed. This Offset value takes into account depending on the operating state different tolerance and leads to change in the resulting maximum permissible moments and therefore to be taken into account that depend on the operating condition of the engine Tolerance.

Die entsprechende Lösung ist in Figur 2 als Ablaufdiagramm dargestellt, welches ein im Mikrocomputer 14 ablaufendes Programm repräsentiert.The corresponding solution is shown in Figure 2 as a flow chart shown, which is running in the microcomputer 14 Program represents.

Die Momentensollwerte, die von externen Eingriffen gebildet werden, wie beispielsweise einer Motorschleppmomentenregelung (mimsr) oder einer Fahrgeschwindigkeitsregelung (mifgr) und die das Moment der Antriebseinheit gegenüber dem Fahrerwunsch erhöhen können, werden einer Maximalwertauswahl 100 zugeführt. Dort wird der jeweils größere dieser Sollmomente als Sollmoment miext der externen Eingriffe weitergeführt. Der Sollmomentenwert für die externen Eingriffe wird dann in einer Maximalwertauswahl 102 mit dem abhängig vom Fahrerwunsch gebildeten maximal zulässigen Moment verglichen. Der jeweils größere der beiden Momentenwerte wird als resultierendes maximal zulässiges Moment mizul der Momentenüberwachung zugeführt. Das fahrerwunschabhängige maximal zulässige Moment wird entweder in einem ersten Kennfeld 104 oder in einem zweiten Kennfeld 106 bestimmt, je nachdem, welcher Betriebszustand vorliegt. Beiden Kennfeldern wird die Fahrpedalstellung wped und die Motordrehzahl nmot zugeführt. In den beiden Kennfeldern ist das maximal zulässige Moment über diesen beiden Eingangswerten abgelegt, wobei die Kennfeldwerte appliziert werden. Außerhalb der Nachstartphase, welche durch die durchgezogene Stellung des Schaltelements 108 repräsentiert ist, wird der aus dem Kennfeld 104 ausgelesene maximal zulässige Momentenwert, während der Nachstartphase der aus dem Kennfeld 106 ausgelesene maximal zulässige Wert der Maximalwertauswahl 102 zugeführt. Das Schaltelememt 108 wird abhängig von der Bedingung für den Nachstart B_nachstart umgeschaltet. Die Nachstartphase liegt im bevorzugten Ausführungsbeispiel vor, wenn eine bestimmte Zeit seit Start noch nicht abgelaufen ist, die Motortemperatur auf eine kalte Antriebseinheit hinweist und/oder die Ansauglufttemperatur in einem bestimmten Wertebereich liegt.The torque setpoints formed by external interventions such as engine drag torque control (mimsr) or a vehicle speed control (mifgr) and the moment of the drive unit compared to the driver's request a maximum value selection 100 fed. There the larger of these nominal torques becomes external interventions must be continued as the target torque. The target torque value for the external interventions is then in a maximum value selection 102 with that depending on the driver's request formed maximum permissible torque compared. The each larger of the two moment values is the resultant maximum permissible torque with torque monitoring fed. The maximum permissible depending on the driver's wishes Moment is either in a first map 104 or in determines a second map 106, depending on which operating state is present. The accelerator pedal position becomes the two maps wped and the engine speed nmot supplied. In The maximum permissible torque is above the two maps stored these two input values, the map values be applied. Outside the post-start phase, which by the solid position of the switching element 108 is represented, the one read from the map 104 maximum permissible torque value during the post-start phase the maximum permissible value read from the map 106 to the maximum value selection 102. The switching element 108 becomes dependent on the condition for the post-start B_next start switched. The post-start phase is preferred Embodiment before when a certain time the engine temperature has not expired since the start indicates a cold drive unit and / or the intake air temperature is in a certain range of values.

Das in der Maximalwertauswahl 102 bestimmte resultierende maximal zulässige Moment wird in einer Verknüpfungsstelle 110 zum maximal zulässigen Moment mizul korrigiert. Letzteres wird einem Vergleicher 112 zugeführt. Diesem wird ferner ein Istmoment miist zugeführt, das in 114 abhängig von Eingangsgrößen wie die von der erfaßte Luftmasse abhängige Istfüllung rl, die Motordrehzahl nmot, die aktuelle Zündwinkelund Kraftstoffzumessungseinstellung des Motors gebildet wird. Das Istmoment miist wird im Vergleicher 112 mit dem maximal zulässigen Moment mizul verglichen. Überschreitet es das maximal zulässige Moment, wird insbesondere durch Abschalten der Kraftstoffzufuhr eine Sicherheitsreaktion (SKA) ausgelöst. Die Kraftstoffzufuhr bleibt solange abgeschaltet, bis das Istmoment wieder unter das maximal zulässige Moment fällt.The resultant determined in the maximum value selection 102 maximum permissible moment is in a link 110 mizul corrected to the maximum permissible moment. The latter is fed to a comparator 112. This will further An actual torque miist is supplied, which depends on input variables in 114 like the actual filling depending on the measured air mass rl, the engine speed nmot, the current ignition angle and Engine fueling setting is formed becomes. The actual torque miist is compared with that in the comparator 112 maximum permissible moment mizul compared. Exceeds it the maximum permissible torque is particularly by switching off the fuel supply a safety reaction (SKA) triggered. The fuel supply remains switched off until until the actual torque falls below the maximum permissible torque falls.

In der Verknüpfungsstelle 110 wird das resultierende maximal zulässige Moment mit einem Momentenoffsetwert mioff korrigiert. Dieser wird in einem Kennfeld 116 abhängig von Motordrehzahl und dem resultierenden maximal zulässigen Moment, dem Ausgangswert der Maximalwertauswahl 102, ausgelesen. Die Kennfeldwerte sind dabei ebenfalls appliziert.The resulting point becomes maximum in the junction 110 admissible torque corrected with a torque offset value mioff. In a map 116, this is dependent on the engine speed and the resulting maximum allowable moment, the initial value of the maximum value selection 102. The Map values are also applied.

Im Kennfeld 116 sind die Toleranzwerte (z.B. durch Reibung erzeugte Toleranzen, Bauteiletoleranzen, etc.) abgelegt, die vom Betriebszustand der Antriebseinheit abhängen. Da eine Eingangsgröße des Kennfelds 116 das auch bei externen Eingriffen vorgegebene maximal zulässige Moment darstellt, werden diese Toleranzwerte auch dann berücksichtigt, wenn externe Eingriffe wirken. Der Offsetwert, der die Toleranzen beinhaltet, wird nicht abhängig von der Fahrpedalstellung gebildet, so daß die Momentenüberwachung auch während dem Eingriff externer Funktionen gewährleistet ist. Ferner geht das Sollmoment nicht in die Bildung des maximal zulässigen Moments ein, so daß theoretisch auftretende Fehler bei der Berechnung des Sollmoment nicht in die Überwachung mit eingehen.The map 116 shows the tolerance values (e.g. due to friction generated tolerances, component tolerances, etc.) filed depend on the operating state of the drive unit. There one Input variable of the map 116, even with external interventions represents the maximum permissible torque these tolerance values are also taken into account when external Interventions work. The offset value, the tolerances is not dependent on the accelerator pedal position formed so that the torque monitoring even during the Intervention of external functions is guaranteed. Further goes the target torque is not in the formation of the maximum allowable Moments so that theoretically occurring errors in the The calculation of the target torque should not be included in the monitoring.

In einem anderen Ausführungsbeispiel wird als Eingangsgröße für das Kennfeld 116 nicht das maximal zulässige Moment, das heißt ein Maß des Momentenwunsches berücksichtigt, sondern der daraus ggf. abgeleitete Füllungswunsch, das heißt die über die Drosselklappe einzustellende maximal zulässige Sollfüllung. Die Überwachung wird dann auch der Basis von Füllungswerte durchgeführt. In diesem Sinne ist bei der Verwendung des Begriffs Moment auch die Füllung als Überwachungsgröße zu verstehen.In another embodiment, the input variable for the map 116 is not the maximum permissible torque that is called a measure of the torque request considered, but the filling request derived therefrom, i.e. the maximum permissible to be set via the throttle valve Should fill. Monitoring then becomes the basis of Fill values carried out. With this in mind, use the term moment also the filling as a monitoring variable to understand.

Claims (8)

  1. Method for controlling the drive unit of a vehicle, the torque of the drive unit [lacuna] as a function of a driver's desired torque derived from the position of an operator control which can be activated by the driver, and as a function of at least one setpoint torque which is predefined by at least one external function which influences the torque instead of or in addition to the driver's prescription, a maximum permitted torque being predefined and the torque being reduced when this maximum permitted torque is exceeded by the corresponding actual value, characterized in that the maximum permitted torque is formed at least as a function of the position of the operator control independently of the driver's desired torque and the maximum permitted torque is formed as a function of the setpoint torque of the at least one external function if said setpoint torque is greater than the permitted torque which is dependent on the position of the operator control.
  2. Method according to Claim 1, characterized in that the at least one external function increases the torque with respect to the driver's requirement in the manner of an engine torque control and/or a driving speed control.
  3. Method according to one of the preceding claims, characterized in that a maximum permitted torque is predefined as a function of the driver's requirement, in particular the position of the accelerator pedal, and of the engine speed as a function of the operating state of the drive unit.
  4. Method according to one of the preceding claims, characterized in that in the post-starting phase a different maximum permitted moment is predefined from the one outside this phase.
  5. Method according to one of the preceding claims, characterized in that tolerances which are applied to the permitted torque as an offset value are taken into account in the maximum permitted torque.
  6. Method according to Claim 5, characterized in that the offset value is dependent on variables which directly describe the engine torque.
  7. Method according to Claim 5 or 6, characterized in that the offset value is dependent on the rotational speed and the resulting maximum permitted torque.
  8. Device for controlling the drive unit of a vehicle, having a control unit which [lacuna] the torque of the drive unit as a function of at least one driver's desired torque derived from the position of an operator control which can be activated by the driver, and as a function of at least one setpoint torque which is predefined by at least one external function, the control unit has at least one microcomputer (14) which predefines a maximum permitted torque and, when this maximum permitted torque is exceeded by the torque of the drive unit, reduces the torque of the drive unit, characterized in that the microcomputer is embodied in such a way that the maximum permitted torque is formed at least as a function of the position of the operator control independently of the driver's desired torque, and the maximum permitted torque is formed as a function of the setpoint torque of the at least one external function if this said setpoint torque is greater than the permitted torque which is dependent on the position of the operator control.
EP98941245A 1997-11-03 1998-06-29 Method and device for controlling a drive unit of a vehicle Expired - Lifetime EP0950148B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19748355 1997-11-03
DE19748355A DE19748355A1 (en) 1997-11-03 1997-11-03 Method and device for controlling the drive unit of a vehicle
PCT/DE1998/001778 WO1999023379A1 (en) 1997-11-03 1998-06-29 Method and device for controlling a drive unit of a vehicle

Publications (2)

Publication Number Publication Date
EP0950148A1 EP0950148A1 (en) 1999-10-20
EP0950148B1 true EP0950148B1 (en) 2003-05-07

Family

ID=7847342

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98941245A Expired - Lifetime EP0950148B1 (en) 1997-11-03 1998-06-29 Method and device for controlling a drive unit of a vehicle

Country Status (6)

Country Link
US (1) US6285946B1 (en)
EP (1) EP0950148B1 (en)
JP (1) JP4121159B2 (en)
KR (1) KR20000069859A (en)
DE (2) DE19748355A1 (en)
WO (1) WO1999023379A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19900740A1 (en) * 1999-01-12 2000-07-13 Bosch Gmbh Robert Method and device for operating an internal combustion engine
DE19932309A1 (en) * 1999-07-10 2001-01-11 Bosch Gmbh Robert Control of vehicle drive unit involves increasing maximum permissible output value if component or additional function is switched on as determined from parameters representing status
DE19953767C2 (en) * 1999-11-09 2002-03-28 Mtu Friedrichshafen Gmbh Control system for protecting an internal combustion engine against overload
JP2001295677A (en) * 2000-03-29 2001-10-26 Robert Bosch Gmbh Control method and device for vehicle speed
DE10036282A1 (en) 2000-07-26 2002-02-07 Bosch Gmbh Robert Method and device for controlling a drive unit
DE10040251A1 (en) * 2000-08-14 2002-03-07 Bosch Gmbh Robert Method, computer program and control and / or regulating device for operating an internal combustion engine
DE10230828B4 (en) * 2002-07-09 2012-06-21 Robert Bosch Gmbh Method and device for regulating the output of a drive unit of a vehicle
DE10232875B4 (en) * 2002-07-19 2012-05-03 Robert Bosch Gmbh Method and control unit for controlling the drive unit of a vehicle
DE10233578B4 (en) * 2002-07-24 2006-06-14 Robert Bosch Gmbh Method and device for controlling the drive unit of a vehicle
DE10315410A1 (en) * 2003-04-04 2004-10-14 Robert Bosch Gmbh Method for operating an internal combustion engine with torque monitoring
US7306542B2 (en) * 2004-04-23 2007-12-11 General Motors Corporation Electronic throttle control (ETC) drag torque request security
DE102005040783A1 (en) 2005-08-29 2007-03-08 Robert Bosch Gmbh Method for controlling a vehicle drive unit
DE102005040786A1 (en) 2005-08-29 2007-03-01 Robert Bosch Gmbh Drive unit e.g. petrol engine, controlling method for motor vehicle, involves transmitting message related to possible torque to control engine that is assigned to one control device, when provided possibility has positive result
DE102005040780B4 (en) 2005-08-29 2018-11-22 Robert Bosch Gmbh Method and engine control unit for increasing the availability of motor vehicle engines
DE102005040778A1 (en) 2005-08-29 2007-03-08 Robert Bosch Gmbh Method for limiting setpoint torques in engine control
DE102005040784A1 (en) 2005-08-29 2007-03-08 Robert Bosch Gmbh Method for controlling a vehicle drive unit
JP4525587B2 (en) * 2005-12-22 2010-08-18 株式会社デンソー Engine control device
DE102006004280A1 (en) * 2006-01-31 2007-08-02 Robert Bosch Gmbh Process for continually monitoring the momentum of a hybrid drive comprises reducing the permissible total momentum by the actual momentum of an electric drive and creating a permissible momentum of an internal combustion engine
DE102006057743B4 (en) * 2006-12-07 2015-07-30 Continental Automotive Gmbh Method for monitoring the functional software of control units in a control unit network
US9475388B2 (en) * 2008-05-14 2016-10-25 GM Global Technology Operations LLC Drag torque request security diagnostic systems and methods
DE102011080859A1 (en) * 2011-08-11 2013-02-14 Robert Bosch Gmbh Method and device for monitoring a control device for operating an engine system
DE102011086360A1 (en) * 2011-11-15 2013-05-16 Robert Bosch Gmbh Method for determining torque maximum realizable with drive motor of motor system, involves simulating allowable torque, where allowable torque is impinged with offset for maximum realizable torque
JP6350371B2 (en) * 2015-04-15 2018-07-04 トヨタ自動車株式会社 Vehicle drive device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224078A (en) * 1988-07-12 1990-01-26 Mitsubishi Heavy Ind Ltd Manipulator controller
JP2806038B2 (en) * 1990-11-29 1998-09-30 三菱自動車工業株式会社 Drive-by-wire vehicle with output torque change limiting speed controller
DE4313746C2 (en) * 1993-04-27 2002-11-07 Bosch Gmbh Robert Method and device for controlling the power of a drive unit of a vehicle
US5457633A (en) 1994-02-24 1995-10-10 Caterpillar Inc. Apparatus for limiting horsepower output of an engine and method of operating same
DE19536038B4 (en) 1995-09-28 2007-08-16 Robert Bosch Gmbh Method and device for controlling the drive unit of a motor vehicle
JP3505895B2 (en) * 1996-02-20 2004-03-15 日産自動車株式会社 Control device for continuously variable transmission
JPH10229170A (en) 1997-02-18 1998-08-25 Oki Electric Ind Co Ltd Semiconductor memory

Also Published As

Publication number Publication date
DE59808271D1 (en) 2003-06-12
US6285946B1 (en) 2001-09-04
KR20000069859A (en) 2000-11-25
JP4121159B2 (en) 2008-07-23
DE19748355A1 (en) 1999-05-06
JP2001508152A (en) 2001-06-19
EP0950148A1 (en) 1999-10-20
WO1999023379A1 (en) 1999-05-14

Similar Documents

Publication Publication Date Title
EP0950148B1 (en) Method and device for controlling a drive unit of a vehicle
DE19536038B4 (en) Method and device for controlling the drive unit of a motor vehicle
EP0937198B1 (en) Method and device for controlling a drive unit of a vehicle
DE19739565B4 (en) Method and device for controlling the torque of a drive unit of a motor vehicle
EP1062417B1 (en) Method and device for operating an internal combustion engine
DE19739567B4 (en) Method and device for controlling the torque of the drive unit of a motor vehicle
DE19913272B4 (en) Method and device for controlling an internal combustion engine
DE19836845B4 (en) Method and device for controlling a drive unit of a motor vehicle
EP0437559A1 (en) Process and device for controlling and/or regulating the output of an internal combustion engine in a motor vehicle.
EP0875673B1 (en) Method for controlling an internal combustion engine
EP1242733B1 (en) Method and device for controlling the drive unit of a vehicle
DE19928477A1 (en) Control method for vehicle drive unit involves detecting signal representing vehicle acceleration, determining actual torque of drive unit depending upon acceleration signal
EP1005609B1 (en) Method for controlling exhaust gas recirculation in an internal combustion engine
EP0814251B1 (en) Safety system for a motor vehicle
DE4223253C2 (en) Control device for a vehicle
DE10032110C2 (en) Diagnostic system for an internal combustion engine
DE3919108C2 (en) Method for controlling an operating parameter of a motor vehicle in dynamic operating states
EP0814252B1 (en) Safety system for a motor vehicle
DE19851457B4 (en) Method and device for controlling the torque of a drive unit
WO2012019995A1 (en) Method for driveaway assistance of a vehicle
DE4426972B4 (en) Method and device for controlling an internal combustion engine
EP0814250B1 (en) Safety system for a motor vehicle
DE19932309A1 (en) Control of vehicle drive unit involves increasing maximum permissible output value if component or additional function is switched on as determined from parameters representing status
DE10015320A1 (en) Controling vehicle drive unit involves operating speed governor in at least one operating state, deactivating governor in this state(s) depending on at least engine revolution rate
DE10305092B4 (en) Method for automatic adaptation of a torque model and circuit arrangement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT SE

17P Request for examination filed

Effective date: 19991115

17Q First examination report despatched

Effective date: 20020418

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR IT SE

REF Corresponds to:

Ref document number: 59808271

Country of ref document: DE

Date of ref document: 20030612

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

EUG Se: european patent has lapsed
EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050629

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030630

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160810

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170621

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59808271

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103