EP0888569A1 - Process of manufacturing a microsystem module - Google Patents

Process of manufacturing a microsystem module

Info

Publication number
EP0888569A1
EP0888569A1 EP96943897A EP96943897A EP0888569A1 EP 0888569 A1 EP0888569 A1 EP 0888569A1 EP 96943897 A EP96943897 A EP 96943897A EP 96943897 A EP96943897 A EP 96943897A EP 0888569 A1 EP0888569 A1 EP 0888569A1
Authority
EP
European Patent Office
Prior art keywords
functional
microsystem
module
optical
designed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP96943897A
Other languages
German (de)
French (fr)
Inventor
Vitalij Lissotschenko
Joachim Hentze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HENTZE, JOACHIM
LISSOTSCHENKO, VITALIJ
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0888569A1 publication Critical patent/EP0888569A1/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/022Mountings, adjusting means, or light-tight connections, for optical elements for lenses lens and mount having complementary engagement means, e.g. screw/thread
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/423Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Definitions

  • the invention relates to a micro system block, insbeson ⁇ particular for use m the micro-optical systems, consisting of a body, ametrisflacne and nozzle surfaces are provided for attachment to adjoining components of a micro-system at the surface at least.
  • microsystem modules are primarily intended to be used in micro-optics to connect light sources and light guides to one another or to shape the light beam at the end of a light guide or at the exit of a light source in a special way, for example to collimate it, to bend or diverge.
  • Such microsystem modules can also be used elsewhere in microstructure systems, where it is important to have certain functional areas, e.g. B. scanning areas, m an exact spatial relation to the adjacent components.
  • micro-optic lens consists of an elongated glass fiber formed flattened on three sides and rounded at the fourth longitudinal side zylindermantelformig
  • the cylindrical jacket-shaped rounded surface serves as an optically effective boundary surface, while the surface opposite the cylindrical jacket-shaped rounded surface serves as a flat support surface for connecting the adjacent components, which are designed here as diode lasers whose emitted light is to be collimated.
  • the diode lasers are glued to the support surface of the micro-optical lens with a suitable adhesive or optical cement.
  • the micro-optical lens will not be positioned correctly in relation to the diode lasers.
  • the sensitive emitter surface of the diode laser can easily be damaged when gluing or cementing.
  • micro-optical lenses which are intended as collimators for diode lasers, are known, for example, from US Pat. No. 5,181,224. These known collimators can be connected to a diode laser, for example, only with considerable measuring effort and, if necessary, with the aid of adapters or adapters. It is of course just as difficult to connect such micro-optical lenses to other micro-optical components with a precise fit elsewhere. Finally, with these micro-optical lenses there is a risk that the convexly projecting, optically effective boundary surfaces, which are very sensitive, will be damaged during transport, handling and assembly of the micro-optical lens.
  • the invention relates to a microsystem module, in particular for the use of microoptical systems, consisting of a body, on the upper surface of which at least one functional surface and support surfaces are provided for attachment to adjoining components of a microsystem, this microsystem module being characterized in that
  • the sensitive functional surfaces are nowhere outward beyond the outer contour of the module, but are arranged behind the support surfaces and are accordingly well protected against damage by contact. They also do not come into contact with the adjacent components during assembly, so that damage to the adjoining components, for example damage to the sensitive emitter of diode lasers, is reliably avoided.
  • the fact that the support surfaces are already dimensionally arranged with the tightest tolerances in relation to the functional surfaces means that the dimensionally stable assembly days of the building block extremely relieved. For this purpose, only the support surfaces on the module need to be arranged in the correct relation to the counter surfaces on the adjoining components. If this dimensional relationship is correct, the arrangement of the functional surface relative to the adjacent components is also automatically correct, provided, of course, that their counter-support surfaces are also arranged correspondingly true to size.
  • An expedient development of the invention provides that form-fitting elements are provided in the support surfaces for engagement in corresponding form-fitting elements on the adjacent components.
  • Such positive locking elements e.g. B. m shape of recesses and protrusions and / or grooves and tongues make it possible to set the microsystem module m precisely adjusted in all directions without requiring complex measurements for the adjustment.
  • the invention provides that the functional surfaces and / or the support surfaces are smooth polished. By polishing these surfaces, dimensional deviations resulting from the roughness of the surfaces are avoided.
  • the dimensional relationships between such polished surfaces could be designed to within a few nanometers.
  • a particularly preferred embodiment of the invention provides that the body consists of optically transparent material and the functional surfaces are designed as optically effective boundary surfaces.
  • optics are understood to mean all systems which work with electromagnetic waves in the range of visible and invisible (ultraviolet, infrared) light, right down to the microwaves (millimeter waves).
  • Optically permeable material is understood to mean materials such as optical glass, quartz, germanium, ruby, optical plastics, etc., which are suitable for transmitting and influencing electromagnetic waves of the type mentioned.
  • the light is refracted at the optically effective boundary surfaces, reflected by total reflection or by a reflective coating, or diffracted by diffraction lines or gratings.
  • the functional surfaces on the microsystem module suitable for micro-optical systems can be designed differently.
  • they can be designed as concave or convex curved lens surfaces, it being possible to produce all lens shapes known from macro-optics.
  • planar surfaces that are inclined relative to one another can be arranged in the functional surfaces to form prisms that refract or reflect the light.
  • Diffraction lines or diffraction gratings can also be arranged in the functional surface, which diffract the light passing through.
  • the functional surfaces can be completely or partially covered with a reflective coating.
  • lens arrays can be produced on a single micro-optical component.
  • a microoptical module designed according to the teaching of the invention can be designed, for example, as a refractive collimator that can be connected to a diode laser.
  • the functional surface facing the emitter of the diode laser is a prism, the apex of which runs parallel to the longitudinal extension of the emitter of the diode laser and is rounded off in the vicinity of the emitter.
  • the apex angle of the prism is larger than the emission angle orthogonal to the longitudinal extension of the emitter of the diode laser.
  • the functional surface opposite the emitter of the diode laser is designed as a cylindrical surface, the cylindrical axis of which extends orthogonally to the apex of the prism.
  • Such a refractive collimator is able to absorb and collimate the light band emitted by the emitter of the diode laser with very little loss.
  • This collimator has a particularly high numerical aperture of, for example, 0.68 when quartz glass is used and, as a result, can almost completely collimate the light emitted by the diode laser.
  • This refractive collimator also advantageously has support surfaces protruding beyond the functional surfaces. The special design and mutual assignment of the functional surfaces has the stated advantages even without the support surfaces. The protection of the patent should therefore also relate to collimators of the latter type, in which the support surfaces mentioned in claim 1 are missing.
  • Another micro-optical module designed according to the teaching of the invention can be designed, for example, as a reflective optical coupler which is connected between a diode laser and an adjoining one can be used.
  • Two functional elements are arranged on the functional surfaces of the optical coupler, namely, a first aspherical cylindrical lens and offset a flat mirror on the first functional surface and an aspherical cylindrical mirror and offset a second aspherical cylindrical lens on the second functional surface.
  • the cylinder axes of the ooid cylinder lenses run orthogonally to one another. In contrast, their optical axes are arranged parallel to one another.
  • the emitter of the diode laser is arranged in front of the first aspherical cylindrical lens.
  • a reflective optical coupler is able to receive the light band emitted by the emitter of the diode laser with very little loss and to couple it in a focused manner into an optical waveguide.
  • This reflective optical coupler advantageously has support surfaces protruding beyond the functional surfaces. The special design and mutual assignment of the functional surfaces has the stated advantages, however, even without these support surfaces.
  • the protection of the patent should therefore also relate to reflective optical couplers of the latter type, in which the support surfaces mentioned in claim 1 are missing.
  • Another microsystem module designed according to the teaching of the invention can be designed, for example, as an optical circuit board, by means of which at least two optoelectronic semiconductor modules can be connected to one another.
  • the functional surfaces are designed, on the one hand, as lenses for emitting and decoupling light beams and, on the other hand, as mirrors for guiding beams within the optical printed circuit board.
  • Such an optical Printed circuit board is able to receive a light beam emitted by an optoelectronic semiconductor component (IOE chip) connected on the input side via an first lens and to steer the course of the light beam inside the optical printed circuit board by means of the mirrors in such a way that the light beam passes through a second lens emerges from the optical circuit board and meets a second optoelectronic semiconductor device connected on the output side.
  • the two optoelectronic semiconductor systems smd optically interconnected for the purpose of data exchange. By using corresponding wave-selective beam switches, it is possible to interconnect several optoelectronic semiconductor modules bidirectionally. By using a number of lenses and mirrors in the optical circuit boards, more complicated three-dimensional optical connection structures can also be realized.
  • This optical circuit board advantageously has support surfaces protruding beyond the functional surfaces.
  • the special design and mutual assignment of the functional surfaces has the stated advantages even without these support surfaces.
  • the protection of the patent should therefore also relate to optical circuit boards of the latter type, in which the support surfaces mentioned in claim 1 are missing.
  • a micro-optical module likewise designed according to the teaching of the invention can be connected, for example, as a wave-selective beam splitter to a light source, a light receiver and an optical waveguide.
  • a light beam emerging from the optical waveguide is refracted by the same wave-selective functional element in such a way that it strikes the light receiver.
  • Such waves ⁇ selective beam splitter allows eme bidirectional optical data transmission, but an optical fiber.
  • a diode laser is usually used as the light source, the focused light band of which is coupled in via the wave-selective functional element of the beam splitter and a spherical lens m the optical waveguide.
  • the light rays emerging from the optical waveguide are refracted at the wave-selective functional element, pass through the beam splitter, emerge from the opposite side and hit the light receiver, for example a photodiode.
  • This wave-selective beam switch advantageously has support areas protruding beyond the functional areas.
  • the special design and mutual assignment of the functional surfaces has the stated advantages, however, even without these support surfaces.
  • the protection of the patent should therefore also relate to wave-selective beam switches of the latter type, in which the support surfaces mentioned in claim 1 are missing.
  • the invention further relates to a method for producing microsystem modules of the type mentioned above, which method is characterized in that the support surfaces and the depressions with the surface contours of the functional surfaces assigned to these support surfaces are formed on a substrate by ultrasonic oscillating flaps with an appropriately shaped, one-piece Lappform herge ⁇ .
  • the microstructures to be produced on the substrate namely the support surfaces and the depressions with the surface contours of the functional surfaces.
  • a lapping mold made of hard metal which vibrates mechanically with an ultrasound frequency and has a negative impression of the microstructure to be produced, is pressed against the substrate using a sufficiently hard lapping agent (hard material powder or paste).
  • a positive impression of the Lappform is formed on the surface of the substrate with high dimensional accuracy and relatively low surface roughness.
  • the fact that a one-piece Lappform is used makes it possible in a simple manner to maintain the dimensional relationship between the support surfaces and the functional surfaces with the greatest accuracy.
  • the surface roughness is so small that it can easily be polished by polishing with an electron beam.
  • the energy density of the electron beam is adjusted so that only the surface of the surface to be polished is melted, so that the surface tension creates an absolutely smooth surface.
  • This polishing with an electron beam is the subject of a German patent application DE 42 34 740 AI which goes back to the same applicants.
  • the invention proposes that the negative contours of a large number of microsystem components be formed on a large-area Lapp mold, that the Lapp mold is molded on a correspondingly large-sized substrate and that the substrate is finally divided into the individual micro system components becomes.
  • I shows a vertical longitudinal section through a microsystem module designed as a refractive collimator with a connected diode laser
  • FIG. 2 shows a horizontal longitudinal section through the microsystem module according to FIG. 1;
  • FIGS. 1 and 2 shows a perspective representation of the microsystem construction element according to FIGS. 1 and 2;
  • FIG. 4 shows a perspective illustration of a microsystem component with form-fit elements in the support surfaces for engagement m corresponding form-fit elements on adjacent components;
  • FIG. 5 shows a perspective representation of two cylindrical lens arrays arranged one behind the other
  • FIG. 6 shows a perspective representation of a microsyster component with optically correlated diametrically opposite functional surfaces
  • FIG. 7 shows a side view of a micro system component designed as a reflective optical coupler
  • FIG. 8 shows a top view of the microsystem construction from FIG. 7; 9 shows a longitudinal section through a microsystem module designed as an optical conductor plate;
  • FIG. 10 shows a longitudinal section through a microsystem module designed as a wave-selective beam switch
  • FIG. 13 schematically shows in section the polishing of the optically active boundary surfaces by means of an electron beam.
  • a microsystem module according to the invention for the use of m micro-optical systems in its entirety is designated by the reference number 1.
  • the microsystem module 1 is designed as a refractive collimator. It consists of a body 2, for example quartz glass or another optically transparent material. In the body 2 recesses 3 and 4 are incorporated, at the bottom of which functional surfaces 5 and 6 are arranged smd.
  • the functional surface 6 has an approximately cylindrical jacket-shaped curvature, the axis of this cylindrical jacket-shaped curvature extending perpendicular to the longitudinal extension of the apex of the prism at the opposite optically effective boundary plate 5.
  • the body 2 is provided with support surfaces 7 and 8 which are used for connection to adjacent optical components 9, for example for connection to a diode laser which is provided with counter support surfaces 10 corresponding to the support surfaces 7.
  • support surfaces 7 and 8 are provided with form-locking elements ⁇ a and 8a protruding from the surface, for example in the form of projections, which m m corresponding counter-shape locking elements 10a m the counter-support faces 10 on the adjacent optical components 9.
  • the support surfaces 7 and 8 m are located in a precisely defined dimensional relation to the functional surfaces 5 and 6. Because the functional surfaces 5 and 6 are opposite the support surfaces 7 and 8 in the direction of the Stand back inside the body 2, they are arranged well protected. With the help of the support surfaces 7 and 8 on the body 2 and the counter support surfaces 10 on the adjacent optical component 9, the microsystem module 1 can be positioned very precisely on the diode laser 11 in a simple manner, and in such a way that the apex of the prism in the Functional surface 5 is exactly opposite the emitter of the diode laser 11 and is aligned exactly parallel to its longitudinal extension.
  • the microsystem module 1 described above is shown in perspective. 4 shows a microsystem module 1 designed as a refractive collimator, the support surfaces 7 of which, which adjoin an optical component 9, are provided with projections 50. These projections 50 engage in corresponding depressions 51 on the adjacent component 9 em. This makes it possible to fix the micro system 1 m in the y and z directions precisely adjusted on the adjoining component 9 without the need for complex measurements for the adjustment.
  • the two microsystem modules 1 each form a cylindrical lens array 60 and 61.
  • the cylinder axes of the individual cylindrical lenses of the cylindrical lens arrays 60 and 61 run parallel to one another.
  • the two cylindrical lens arrays 60 and 61 adjoin one another at their support surfaces 7 with functional surfaces facing one another.
  • the cylinder axes of the two cylinder lens arrays 60 and 61 run at a right angle to one another.
  • Such cylinder lens arrays 60 and 61 are often arranged one behind the other in order to achieve an optimal transformation and shaping of a beam of light rays passing therethrough.
  • FIG. 6 shows a microsystem module 1, on the body 2 of which cylindrical lens arrays 70 and 71 are arranged on diametrically opposite sides, which are optically correlated through the body 2.
  • the cylinder axes of the two cylinder lens arrays 70 and 71 run at a right angle to one another.
  • FIG. 7 shows a microsystem module 1 designed as a reflective optical coupler.
  • Functional surfaces 5 on its body 2 smd on diametrically opposite sides and 6, the functional elements 80 to 83 of which are optically correlated through the body 2.
  • the emitter of a diode laser (not shown), which emits a light band, is arranged in front of an aspherical cylindrical lens 80.
  • This enters the body 2 through the cylindrical lens 80 strikes an aspherical cylindrical mirror 81, is reflected by the latter onto a flat mirror 82 and from there onto a second aspherical cylindrical lens 83.
  • the light band then emerges from the body 2 through the cylindrical lens 83 and is finally coupled into an optical waveguide, also not shown, which is arranged in front of the cylindrical lens 83.
  • FIG. 8 shows a top view of the reflective optical coupler from FIG. 7.
  • FIG. 9 shows a microsystem module 1 designed as an optical circuit board, which is connected to two optoelectronic semiconductor modules 90 and 91 and optically interconnects them.
  • the functional surfaces of the optical printed circuit board are designed on the one hand as lenses 93 and 96 for coupling in and out light beams and on the other hand as mirrors 94 and 95 for beam guidance within the optical printed circuit board.
  • the optical interconnection takes place in such a way that the first optoelectronic semiconductor component 90 emits a light beam 92 which is coupled into the body 2 of the optical circuit board via a first lens 93.
  • the light beam 92 is guided via mirrors 94 and 95 in such a way that it is coupled out of the body 2 again via a second lens 96 and onto the second optoelectronic semiconductor module 91 meets. It is also possible to connect the two optoelectronic semiconductor components 90 and 91 in the opposite direction, ie the semiconductor component 91 emits a light beam 92 which the semiconductor component 90 then receives.
  • a bidirectional connection of the two optoelectronic semiconductor modules 90 and 91 can be implemented by the interest rate of suitable beam switches.
  • FIG. 10 shows a microsystem module 1 designed as a wave-selective beam splitter. This is connected to a light source 102, a light receiver 107 and a light waveguide 105.
  • the functional surface 6 facing the light source 102 and the optical waveguide 105 has a functional element 101 with wave-selective behavior.
  • a diode laser is used as the light source 102.
  • the emitter of the diode laser 102 emits a light band 103, which is reflected on the wave-selective functional element 101 and the optical waveguide 105 is coupled in via a spherical lens 104 m.
  • a light beam 106 is now coupled out of the optical waveguide 105, it is refracted at the wave-selective functional element 101 and an opposite functional element 100 such that it strikes the light receiver 107.
  • This is designed as a photodiode.
  • Such a wave-selective beam splitter enables bidirectional optical data transmission via an optical waveguide 105.
  • the first step of the manufacturing process is based on, for example, a cuboid substrate 20 made of optically transparent material, for example quartz glass.
  • the recesses 3 and 4 in the cuboid quartz glass body are produced by ultrasound Rocking rag. These are non-machined embossing with loose, m emer liquids or emer paste finely distributed hard material, which are activated by a Lappform made of hard metal vibrating with ultrasound frequency.
  • FIG. 11 schematically shows this ultrasonic rocking flap for producing a raw form of an individual microsystem module 1.
  • the Lappform is designated by the reference 21.
  • On its surface facing the substrate 20 it has a negative impression of the recess 3 and 4 to be produced and functional surfaces 5 and 6.
  • the lap shape 21 is coated on the side facing the substrate 20 with a layer 22 of abrasive.
  • This abrasive is preferably an abrasive powder that contains hard-grain particles in finely divided form.
  • the lapping mold 21 provided with the abrasive layer 22 is excited with mechanical vibrations in the ultrasound range and pressed against the substrate 20.
  • the material of the substrate 20 is removed by undirected machining.
  • the removal process is stopped.
  • an exact positive impression of the Lappform 21 is formed on the substrate 20. In this way it is possible to produce the required structures on the surface of the microsystem construction element 1 to be produced with great dimensional accuracy.
  • a large-area Lappform 31 is on a large area Provide substrate 30 facing surface with a negative impression of several adjacent depressions and optically effective boundary surfaces.
  • the Lappform is coated on the side facing the substrate 30 with a layer 32 of abrasive.
  • the material of the substrate 30 is now removed by means of non-directional machining with mechanical vibrations in the ultrasound range directed perpendicular to the substrate. In this way, so-called lens arrays can be produced on a single micro-optical component or the individual functional elements can be divided into individual microsystem components 1 along the lines 33 after production.
  • the functional surfaces 5 and 6 are polished with a high-energy electron beam 43.
  • This step is shown in FIG. 13.
  • the electron gun shown there for producing an energy-rich electron beam 43 has a cathode 40 serving as an electron source, an anode 41 serving to accelerate the electron beam 43 and a slit diaphragm 42 serving to shape the electron beam 43.
  • the very high-energy electron beam 43 generated in this way which has the shape of a flat rectangular band, is directed onto the surfaces to be polished on the substrate 2.
  • the substrate 2 is then moved transversely to the plane of the band-shaped electron beam 43.
  • the supply of energy in the surface to be polished is controlled by suitable measures so that only the surface is melted over the depth of the existing roughness, in each case to such an extent that the existing surface which roughness is compensated for by the surface tensions of the melt.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

The invention concerns a microsystem module (1), in particular for use in microoptical systems, the module consisting of a body (2) on the surface of which at least one functional area (5, 6) and support areas (7, 8) for attachment to adjacent microsystem components (9) are provided. According to the invention, in order to provide a microsystem module (1) of this type which can be connected to adjacent microstructure system components (9) with an extremely good fit and in an exactly reproducible manner and preventing damage to the adjacent components (9) and the sensitive functional areas (5, 6) of the microsystem module (1), the support areas (7, 8) are disposed in the region of outwardly projecting surface regions of the body (2), and the functional areas (5, 6) are disposed in surface regions of the body (2) which are set back relative to the support areas (7, 8) in the direction towards the interior of the body (2). The functional areas (5, 6) are disposed with very narrow tolerances in a dimensionally accurate manner relative to the support areas (7, 8).

Description

Mikrosystembaustein Microsystem module
Die Erfindung betrifft einen Mikrosystembaustein, insbeson¬ dere für die Verwendung m mikrooptischen Systemen, beste- hend aus einem Korper, an dessen Oberflache mindestens eine Funktionsflacne und Stutzflachen zum Anbau an angrenzende Komponenten eines Mikrosystemes vorgesehen sind.The invention relates to a micro system block, insbeson ¬ particular for use m the micro-optical systems, consisting of a body, a Funktionsflacne and nozzle surfaces are provided for attachment to adjoining components of a micro-system at the surface at least.
Diese Mikrosystembausteine sollen m erster Linie m der Mikrooptik verwendet werden, um Lichtquellen und Lichtlei- ter miteinander zu verbinden oder den Lichtstrahl am Ende eines Lichtleiters oder am Austritt einer Lichtquelle in besonderer Art und Weise zu formen, beispielsweise zu bun¬ dein, zu kollimieren, zu beugen oder divergieren zu lassen. Solche Mikrosystembausteine können aber auch anderswo m MiKrostruktursystemen zum Einsatz kommen, wo es darauf ankommt, bestimmte Funktionsflachen, z. B. Abtastflachen, m einer genauen räumlichen Relation zu den angrenzenden Komponenten festzulegen.These microsystem modules are primarily intended to be used in micro-optics to connect light sources and light guides to one another or to shape the light beam at the end of a light guide or at the exit of a light source in a special way, for example to collimate it, to bend or diverge. Such microsystem modules can also be used elsewhere in microstructure systems, where it is important to have certain functional areas, e.g. B. scanning areas, m an exact spatial relation to the adjacent components.
Ein solches Problem auf dem Gebiet der Mikrooptik ist bei- spielsweise aus der WO 92/06046 AI bekannt. Eine dort be¬ schriebene mikrooptische Linse besteht aus einer länglichen Glasfaser, die an drei Längsseiten abgeflacht ausgebildet und an der vierten Längsseite zylindermantelformig gerundetSuch a problem in the field of micro-optics is known, for example, from WO 92/06046 AI. A ¬ there be required micro-optic lens consists of an elongated glass fiber formed flattened on three sides and rounded at the fourth longitudinal side zylindermantelformig
ORIGINAL UNTERLAGEN Bei dieser voroekannten mikrooptischen Linse dient die zylindermantelformig gerundete Flache als optisch wirksame Grenzflache, wahrend die der zylindermantelformig gerun¬ deten Flache gegenüberliegende Flache als ebene Stutzflache zum Anschluß der angrenzenden Komponenten dient, die hier als Diodenlaser ausgebildet sind, deren emittiertes Licht kollimiert werden soll. Die Diodenlaser sind hier mit einem geeigneten Kleber oder optischen Zement an der Stutzflache der mikrooptischen Linse angeklebt. Dabei besteht die Gefahr einer nicht genau funktionsgerechten Positionierung der mikrooptischen Linse relativ zu den Diodenlasern. Außerdem kann beim Ankleben oder Anzementieren leicht die empfindliche Emitterflache des Diodenlasers beschädigt werden.ORIGINAL DOCUMENTS In this previously known micro-optical lens, the cylindrical jacket-shaped rounded surface serves as an optically effective boundary surface, while the surface opposite the cylindrical jacket-shaped rounded surface serves as a flat support surface for connecting the adjacent components, which are designed here as diode lasers whose emitted light is to be collimated. The diode lasers are glued to the support surface of the micro-optical lens with a suitable adhesive or optical cement. There is a risk that the micro-optical lens will not be positioned correctly in relation to the diode lasers. In addition, the sensitive emitter surface of the diode laser can easily be damaged when gluing or cementing.
Die lagegerechte Positionierung einer mikrooptischen Linse relativ zum Emitter eines Diodenlasers wird noch wesentlich schwieriger, wenn auch die dem Diodenlaser zugewandte Seite der mikrooptischen Linse eine von der Ebene abweichende Ge¬ stalt hat. Solche mikrooptischen Linsen, die als Kollimato- ren für Diodenlaser gedacht sind, sind beispielsweise aus der US-PS 5 181 224 bekannt. Diese vorbekannten Kollimato¬ ren lassen sich beispielsweise nur mit erheblichem Meßauf¬ wand und gegebenenfalls unter Zuhilfenahme von Adaptern oder Paßstucken an einen Diodenlaser anschließen. Ebenso schwierig ist es natürlich, solche mikrooptischen Linsen auch anderswo paßgenau an angrenzende mikrooptische Kompo¬ nenten anzuschließen. Schließlich besteht bei diesen mi¬ krooptischen Linsen die Gefahr, daß die konvex vorstehen¬ den, optisch wirksamen Grenzflachen, die sehr empfindlich sind, beim Transport, der Handhabung und der Montage der mikrooptischen Linse beschädigt werden.The correct positioning of a micro-optical lens relative to the emitter of a diode laser becomes even more difficult if the side of the micro-optical lens facing the diode laser has a shape deviating from the plane. Such micro-optical lenses, which are intended as collimators for diode lasers, are known, for example, from US Pat. No. 5,181,224. These known collimators can be connected to a diode laser, for example, only with considerable measuring effort and, if necessary, with the aid of adapters or adapters. It is of course just as difficult to connect such micro-optical lenses to other micro-optical components with a precise fit elsewhere. Finally, with these micro-optical lenses there is a risk that the convexly projecting, optically effective boundary surfaces, which are very sensitive, will be damaged during transport, handling and assembly of the micro-optical lens.
Es ist deshalb Aufgabe der Erfindung, einen Mikrosystembau¬ stein der eingangs genannten Art zu schaffen, der äußerst paßgenau und exakt reproduzierbar an angrenzenden Komponen¬ ten eines Mikrostruktursystems angeschlossen werden kann, wobei Beschädigungen αer angrenzenden Komponenten und der empfindlichen Funktionsflachen des Mikrosystemoausteines vermieden werden.It is therefore an object of the invention to provide a microsystem module of the type mentioned at the outset which is extremely snugly and precisely reproduced on adjacent Components ¬ th can connect a microstructure system, damage αer adjacent components and the sensitive functional areas to avoid the Mikrosystemoausteines.
Gegenstand der Erfindung ist ein Mikrosystembaustein, ins¬ besondere für die Verwendung m mikrooptischen Systemen, bestehend aus einem Korper, an dessen Oberflacne mindestens eine Funktionsflache und Stutzflachen zum Anbau an angren- zende Komponenten eines Mikrosystemes vorgesehen sind, wobei sich dieser Mikrosystembaustein dadurch kennzeichnet,The invention relates to a microsystem module, in particular for the use of microoptical systems, consisting of a body, on the upper surface of which at least one functional surface and support surfaces are provided for attachment to adjoining components of a microsystem, this microsystem module being characterized in that
- daß die Stutzflachen im Bereich von nach außen verstehen¬ den Oberflachenbereichen des Korpers angeordnet sind,that the support surfaces are arranged in the region of the surface regions of the body that understand the outside,
- daß die Funktionsflachen m gegenüber den Stutzflachen in Richtung auf das Innere des Korpers zurückstehenden- That the functional surfaces m protrude from the support surfaces in the direction of the inside of the body
Bereichen der Oberflache des Korpers angeordnet sind undAreas of the surface of the body are arranged and
- daß die Funktionsflachen m Bezug auf die Stutzflachen mit engsten Toleranzen maßhaltig angeordnet sind.- That the functional surfaces m are arranged true to size with the narrowest tolerances.
Beim Mikrosystembaustein gemäß der Erfindung stehen die empfindlichen Funktionsflachen nirgendwo nach außen über die Außenkontur des Bausteines hinaus, sondern sind hinter den Stutzflachen zurückliegend angeordnet und dementspre¬ chend gut gegen Beschädigung durch Berührung geschützt. Sie kommen bei der Montage auch nicht mit den angrenzenden Kom- ponenten m Berührung, so daß Beschädigungen der angrenzen¬ den Komponenten, beispielsweise Beschädigungen am empfind¬ lichen Emitter von Diodenlaser, zuverlässig vermieden wer¬ den. Dadurch, daß die Stutzflachen in Bezug auf die Funkti¬ onsflachen bereits von der Fertigung her mit engsten Tole- ranzen maßhaltig angeordnet sind, wird die maßhaltige Mon- tage des Bausteines außerordentlich erleichtert. Hierzu brauchen namlich lediglich die Stutzflachen an dem Baustein in der richtigen Relation zu den Gegenflachen an den an¬ grenzenden Komponenten angeordnet zu werden. Stimmt diese maßliche Relation, so stimmt automatisch auch αie Anordnung der Funktionsflache relativ zu den angrenzenden Komponen¬ ten, vorausgesetzt natürlich, daß deren Gegenstutzflachen ebenfalls entsprechend maßhaltig angeordnet sind.In the microsystem module according to the invention, the sensitive functional surfaces are nowhere outward beyond the outer contour of the module, but are arranged behind the support surfaces and are accordingly well protected against damage by contact. They also do not come into contact with the adjacent components during assembly, so that damage to the adjoining components, for example damage to the sensitive emitter of diode lasers, is reliably avoided. The fact that the support surfaces are already dimensionally arranged with the tightest tolerances in relation to the functional surfaces means that the dimensionally stable assembly days of the building block extremely relieved. For this purpose, only the support surfaces on the module need to be arranged in the correct relation to the counter surfaces on the adjoining components. If this dimensional relationship is correct, the arrangement of the functional surface relative to the adjacent components is also automatically correct, provided, of course, that their counter-support surfaces are also arranged correspondingly true to size.
Eine zweckmäßige Weiterbildung der Erfindung sieht vor, daß m den Stutzflachen Formschlußelemente zum Eingriff in kor¬ respondierende Formschlußelemente an den angrenzenden Kom¬ ponenten vorgesehen sind. Solche Formschlußelemente, z. B. m Form von Vertiefungen und Vorsprungen und/oder Nuten und Federn machen es möglich, den Mikrosystembaustein m allen Richtungen genau justiert festzulegen, ohne daß es für die Justage aufwendiger Messungen bedarf.An expedient development of the invention provides that form-fitting elements are provided in the support surfaces for engagement in corresponding form-fitting elements on the adjacent components. Such positive locking elements, e.g. B. m shape of recesses and protrusions and / or grooves and tongues make it possible to set the microsystem module m precisely adjusted in all directions without requiring complex measurements for the adjustment.
Weiterhin sieht die Erfindung vor, daß die Funktionsflachen und/oder die Stutzflachen glatt poliert ausgebildet sind. Durch Polieren dieser Flachen werden aus Rauhigkeit der Oberflachen herrührende Maßabweichungen vermieden. Die Maß- relationen zwischen solchen polierten Flachen konnten bis auf wenige Nanometer genau gestaltet werden.Furthermore, the invention provides that the functional surfaces and / or the support surfaces are smooth polished. By polishing these surfaces, dimensional deviations resulting from the roughness of the surfaces are avoided. The dimensional relationships between such polished surfaces could be designed to within a few nanometers.
Eine besonders bevorzugte Ausführungsform der Erfindung sieht vor, daß der Korper aus optisch durchlassigem Materi- al besteht und die Funktionsflachen als optisch wirksame Grenzflachen ausgebildet sind. Unter Optik werden nachste¬ hend alle Systeme verstanden, die mit elektromagnetischen Wellen im Bereich des sichtbaren und des unsichtbaren (Ultraviolett, Infrarot) Lichts arbeiten, bis hin zu den Mikrowellen (Millimeterwellen) . Unter optisch durcnlassigem Material werden Materialien wie optisches Glas, Quarz, Ger¬ manium, Rubin, optische Kunststoffe etc. verstanden, die dazu geeignet sind, elektromagnetische Wellen der genannten Art durchzulassen und zu beeinflussen. An den optisch wirksamen Grenzflachen wird das Licht gebrochen, durch Totalreflektion oder durch eine Reflektionsbeschichtung reflektiert oder durch Beugungslinien oder Beugungsgitter gebeugt. Die an dem für mikrooptische Systeme geeigneten Mikrosystembaustein vorhandenen Funktionsflachen können unterschiedlich ausgestaltet sein. Sie können bei¬ spielsweise als konkav oder konvex gewölbte Lmsenoberfla- chen ausgebildet sein, wobei alle aus der Makrooptik be¬ kannten Linsenformen hergestellt werden können. Ebenso können in den Funktionsflächen gegeneinander geneigte, ebene Flächen zur Bildung von Prismen angeordnet sein, die das Licht brechen oder reflektieren. Ebenso können in der Funktionsfläche Beugungslinien oder Beugungsgitter angeord¬ net sein, die das durchtretende Licht beugen. Schließlich können die Funktionsflächen ganz oder teilweise mit einer spiegelnden Beschichtung überzogen sein.A particularly preferred embodiment of the invention provides that the body consists of optically transparent material and the functional surfaces are designed as optically effective boundary surfaces. In the following, optics are understood to mean all systems which work with electromagnetic waves in the range of visible and invisible (ultraviolet, infrared) light, right down to the microwaves (millimeter waves). Optically permeable material is understood to mean materials such as optical glass, quartz, germanium, ruby, optical plastics, etc., which are suitable for transmitting and influencing electromagnetic waves of the type mentioned. The light is refracted at the optically effective boundary surfaces, reflected by total reflection or by a reflective coating, or diffracted by diffraction lines or gratings. The functional surfaces on the microsystem module suitable for micro-optical systems can be designed differently. For example, they can be designed as concave or convex curved lens surfaces, it being possible to produce all lens shapes known from macro-optics. Likewise, planar surfaces that are inclined relative to one another can be arranged in the functional surfaces to form prisms that refract or reflect the light. Diffraction lines or diffraction gratings can also be arranged in the functional surface, which diffract the light passing through. Finally, the functional surfaces can be completely or partially covered with a reflective coating.
Gegebenenfalls ist es auch möglich, in jeder Funktionsfla- ehe eine Vielzahl von Funktionselementen in Form von Linsen und/oder Prismen und/oder Beugungslinien und/oder reflek¬ tierenden Flächen anzuordnen. Auf diese Weise können soge¬ nannte Linsenarrays auf einem einzigen mikrooptischen Bau¬ stein hergestellt werden.If necessary, it is also possible to arrange a large number of functional elements in the form of lenses and / or prisms and / or diffraction lines and / or reflecting surfaces in each functional area. In this way, so-called lens arrays can be produced on a single micro-optical component.
Besondere Vorteile ergeben sich, wenn an dem Körper an dia¬ metral gegenüberliegenden Seiten Funktionsflächen angeord¬ net sind, deren Funktionselemente durch den Körper hindurch optisch korreliert sind. Hierdurch ist es möglich, an einem solchen mikrooptischen Baustein optische Systeme zu mstal- lieren, die das durchtretende Licht auf die verschiedenste Art und Weise formen und weiterleiten. Ein nach der Lehre der Erfindung ausgebildeter mikroopti¬ scher Baustein kann beispielsweise als refraktiver Kolli¬ mator ausgebildet sein, der an einen Diodenlaser anschlie߬ bar ist. Bei diesem Kollimator b_idet die dem Emitter des Diodenlasers zugewandte Funktionsflache ein Prisma, dessen Scheitel parallel zur Langserstreckung des Emitters des Diodenlasers verlauft und im Nahbereich des Emitters abge¬ rundet ist. Weiterhin ist der Scheitelwinkel des Prismas großer als der Emissionswmkel orthogonal zur Langser- Streckung des Emitters des Diodenlasers. Schließlich ist die dem Emitter des Diodenlasers gegenüberliegende Funk- tionsflache als Zylmderflache ausgebildet, deren Zylin¬ derachse orthogonal zum Scheitel αes Prismas verlauft. Ein solcher refraktiver Kollimator ist dazu m der Lage, das von dem Emitter des Diodenlasers ausgesanαte Lichtband mit sehr geringen Verlusten aufzunehmen und zu kollimieren. Dieser Kollimator hat eine besonders hohe numerische Aper¬ tur von beispielsweise 0,68 bei αer Verwendung von Quarz¬ glas und kann infolgedessen das von dem Diodenlaser ausge- strahlte Licht fast vollständig kollimieren. Auch dieser refraktive Kollimator hat vorteilhafterweise über die Funktionsflachen vorstehende Stutzflachen. Die besondere Ausgestaltung und gegenseitige Zuordnung der Funktions- flachen hat die angegebenen Vorteile aber auch ohne die Stutzflachen. Der Schutz des Patentes soll sich deshalb auch auf Kollimatoren der zuletzt genannten Art beziehen, bei denen die im Patentanspruch 1 genannten Stutzflachen fehlen.Particular advantages result if functional surfaces are arranged on the body on diametrically opposite sides, the functional elements of which are optically correlated through the body. This makes it possible to install optical systems on such a micro-optical module, which shape and transmit the light passing through in a wide variety of ways. A microoptical module designed according to the teaching of the invention can be designed, for example, as a refractive collimator that can be connected to a diode laser. In this collimator, the functional surface facing the emitter of the diode laser is a prism, the apex of which runs parallel to the longitudinal extension of the emitter of the diode laser and is rounded off in the vicinity of the emitter. Furthermore, the apex angle of the prism is larger than the emission angle orthogonal to the longitudinal extension of the emitter of the diode laser. Finally, the functional surface opposite the emitter of the diode laser is designed as a cylindrical surface, the cylindrical axis of which extends orthogonally to the apex of the prism. Such a refractive collimator is able to absorb and collimate the light band emitted by the emitter of the diode laser with very little loss. This collimator has a particularly high numerical aperture of, for example, 0.68 when quartz glass is used and, as a result, can almost completely collimate the light emitted by the diode laser. This refractive collimator also advantageously has support surfaces protruding beyond the functional surfaces. The special design and mutual assignment of the functional surfaces has the stated advantages even without the support surfaces. The protection of the patent should therefore also relate to collimators of the latter type, in which the support surfaces mentioned in claim 1 are missing.
Ein anderer nach der Lehre der Erfindung ausgebildeter mikrooptischen Baustein kann beispielsweise als reflektiver optischer Koppler ausgebildet sein, der zwischen einem Diodenlaser und einem sich anschl_eßenden einsetzbar ist. An den Funktionsflachen des optischen Kopplers sind jeweils zwei Funktionselemente angeordnet, namlich eine erste aspharische Zylmderlmse und versetzt dazu ein planer Spiegel an der ersten Funktionsflache und ein aspharischer Zylmderspiegel und versetzt dazu eine zweite aspharische Zylmderlmse an der zweiten Funktions- flache. Die Zylinderachsen der oeiden Zylinderlmsen ver¬ laufen orthogonal zueinander. Ihre optischen Achsen sind demgegenüber parallel zueinander angeordnet. Vor der ersten asphaπschen Zylmderlmse ist der Emitter des Diodenlasers angeordnet. Ein von dem Emitter ausgesandtes Lichtband fallt durch die erste Zylmderlmse m den Mikrosystembau¬ stein ein, trifft auf den gegenüber angeordneten asphari- schen Zylmderspiegel, wird von dort auf den planen Spiegel gelenkt und tritt dann durch die zweite aspharische Zylmderlmse aus dem Mikrosystembaustein heraus. Ein solcher reflektiver optischer Koppler ist bei extrem kurzer Baulange in der Lage, das von dem Emitter des Diodenlasers ausgesandte Lichtband mit sehr geringen Verlusten aufzu¬ nehmen und fokussiert in einen Lichtwellenleiter einzukup¬ peln. Dieser reflektive optische Koppler hat vorteilhaf- terweise über die Funktionsflachen vorstehende Stütz¬ flachen. Die besondere Ausgestaltung und gegenseitige Zuordnung der Funktionsflachen hat die angegebenen Vorteile allerdings auch ohne diese Stutzflachen. Der Schutz des Patentes soll sich deshalb auch auf reflektive optische Koppler der zuletzt genannten Art beziehen, bei denen die im Patentanspruch 1 genannten Stutzflachen fehlen.Another micro-optical module designed according to the teaching of the invention can be designed, for example, as a reflective optical coupler which is connected between a diode laser and an adjoining one can be used. Two functional elements are arranged on the functional surfaces of the optical coupler, namely, a first aspherical cylindrical lens and offset a flat mirror on the first functional surface and an aspherical cylindrical mirror and offset a second aspherical cylindrical lens on the second functional surface. The cylinder axes of the ooid cylinder lenses run orthogonally to one another. In contrast, their optical axes are arranged parallel to one another. The emitter of the diode laser is arranged in front of the first aspherical cylindrical lens. A light band emitted by the emitter enters the microsystem module through the first cylinder lens, strikes the aspherical cylinder mirror arranged opposite, is directed from there onto the flat mirror and then emerges from the microsystem module through the second aspherical cylinder lens. With an extremely short overall length, such a reflective optical coupler is able to receive the light band emitted by the emitter of the diode laser with very little loss and to couple it in a focused manner into an optical waveguide. This reflective optical coupler advantageously has support surfaces protruding beyond the functional surfaces. The special design and mutual assignment of the functional surfaces has the stated advantages, however, even without these support surfaces. The protection of the patent should therefore also relate to reflective optical couplers of the latter type, in which the support surfaces mentioned in claim 1 are missing.
Ein weiterer nach der Lehre der Erfindung ausgebildeter Mikrosystembaustein kann beispielsweise als optische Lei¬ terplatte ausgebildet sein, αurch die mindestens zwei optoelektronische Halbleiterbausteme aneinander anschlie߬ bar smd. Dazu sind die Funktionsflachen einerseits als Linsen zum Em- und Auskoppeln von Lichtstrahlen und andererseits als Spiegel zur Strahlfuhrung innerhalb der optischen Leiterplatte ausgebildet. Eine solche optische Leiterplatte ist in der Lage, einen von einem emgangs- seitig angeschlossenen optoelektronischen Halbleiterbau- stem (IOE Chip) emittierten Lichtstrahl über eme erste Linse aufzunehmen und den Verlauf des Lichtstrahls mner- halb der optischen Leiterplatte mittels der Spiegel derart zu lenken, daß der Lichtstrahl durch eine zweite Linse aus der optischen Leiterplatte heraustritt und auf einen aus¬ gangsseitig angeschlossenen zweiten optoelektronischen Halbleiterbaustem trifft. Die beiden optoelektronischen Halbleiterbausteme smd so zum Zwecke des Datenaustausches miteinander optisch verschaltet. Durch den Einsatz ent¬ sprechender wellenselektiver Strahlweichen ist es möglich, mehrere optoelektronische Halbleiterbausteme bidirektional miteinander zu verschalten. Durch αen Einsatz e.ner Vier¬ zahl von Linsen und Spiegem m den optischen Leiterplatten können auch kompliziertere dreidimensionale optische Ver¬ bindungsstrukturen realisiert werden. Diese optische Lei¬ terplatte hat vorteilhafterweise über die Funktionsflachen vorstehende Stutzflachen. Die besondere Ausgestaltung und gegenseitige Zuordnung der Funktionsflachen hat αie ange¬ gebenen Vorteile allerdings auch ohne diese Stutzflachen. Der Schutz des Patentes soll sich deshalb auch auf optische Leiterplatten der zuletzt genannten Art beziehen, bei denen die im Patentanspruch 1 genannten Stutzflachen fehlen.Another microsystem module designed according to the teaching of the invention can be designed, for example, as an optical circuit board, by means of which at least two optoelectronic semiconductor modules can be connected to one another. For this purpose, the functional surfaces are designed, on the one hand, as lenses for emitting and decoupling light beams and, on the other hand, as mirrors for guiding beams within the optical printed circuit board. Such an optical Printed circuit board is able to receive a light beam emitted by an optoelectronic semiconductor component (IOE chip) connected on the input side via an first lens and to steer the course of the light beam inside the optical printed circuit board by means of the mirrors in such a way that the light beam passes through a second lens emerges from the optical circuit board and meets a second optoelectronic semiconductor device connected on the output side. The two optoelectronic semiconductor systems smd optically interconnected for the purpose of data exchange. By using corresponding wave-selective beam switches, it is possible to interconnect several optoelectronic semiconductor modules bidirectionally. By using a number of lenses and mirrors in the optical circuit boards, more complicated three-dimensional optical connection structures can also be realized. This optical circuit board advantageously has support surfaces protruding beyond the functional surfaces. However, the special design and mutual assignment of the functional surfaces has the stated advantages even without these support surfaces. The protection of the patent should therefore also relate to optical circuit boards of the latter type, in which the support surfaces mentioned in claim 1 are missing.
Em ebenfalls nach der Lehre der Erfindung ausgebildeter mikrooptischer Baustein kann beispielsweise als wellense¬ lektive Strahlweiche an eine Lichtquelle, einen Lichtem- pfanger und einen Lichtwellenleiter angeschlossen werden. Hierzu weist die der Lichtquelle und dem Lichtwellenleiter zugewandte Funktionsflache em Funktionselement mit wellen¬ selektiven Eigenschaften auf, die dazu fuhren, daß das Funktionselement je nach Wellenlange der einfallenden Lichtstrahlen reflektives oder refraktives Verhalten auf¬ weist. Em von der Lichtquelle ausgehender Lichtstrahl wird von dem welienseiektiven Funktionselement derart reflek¬ tiert, daß er auf den Lichtwellenleiter trifft. Em aus dem Lichtwellenleiter heraustretender Lichtstrahl wird von dem selben wellenselektiven Funktionselement derart gebrochen, daß er auf den Lichtempfanger trifft. Eine solche wellen¬ selektive Strahlweiche ermöglicht eme bidirektionale optische Datenübertragung aber einen Lichtwellenleiter. Als Lichtquelle wird üblicherweise em Diodenlaser eingesetzt, dessen fokussiertes Lichtband über das wellenselektive Funktionselement der Strahlweiche und eine Kugellmse m den Lichtwellenleiter eingekoppelt wird. Die aus dem Lichtwellenleiter heraustretenden Lichtstrahlen werden an dem wellenselektiven Funktionselement gebrochen, verlaufen durch die Strahlweiche, treten auf der gegenüberliegenden Seite aus dieser aus und treffen auf den Lichtempfanger, beispielsweise eme Fotodiode. Diese wellenselektive Strahlweiche hat vorteilhafterweise über die Funk- tionsflachen vorstehende Stutzflachen. Die besondere Ausge¬ staltung und gegenseitige Zuordnung der Funktionsflachen hat die angegebenen Vorteile allerdings auch ohne diese Stützflächen. Der Schutz des Patentes soll sich deshalb auch auf wellenselektive Strahlweichen der zuletzt genann¬ ten Art beziehen, bei denen die im Patentanspruch 1 genannten Stutzflachen fehlen.A micro-optical module likewise designed according to the teaching of the invention can be connected, for example, as a wave-selective beam splitter to a light source, a light receiver and an optical waveguide. For this purpose, the light source and the optical waveguide facing surface to function em functional element with wellen¬ selective properties, which lead to that the functional element comprises reflective or refractive behavior ¬ depending on the wavelength of the incident light beams. A beam of light emanating from the light source reflected from the welie-active functional element in such a way that it strikes the optical waveguide. A light beam emerging from the optical waveguide is refracted by the same wave-selective functional element in such a way that it strikes the light receiver. Such waves ¬ selective beam splitter allows eme bidirectional optical data transmission, but an optical fiber. A diode laser is usually used as the light source, the focused light band of which is coupled in via the wave-selective functional element of the beam splitter and a spherical lens m the optical waveguide. The light rays emerging from the optical waveguide are refracted at the wave-selective functional element, pass through the beam splitter, emerge from the opposite side and hit the light receiver, for example a photodiode. This wave-selective beam switch advantageously has support areas protruding beyond the functional areas. The special design and mutual assignment of the functional surfaces has the stated advantages, however, even without these support surfaces. The protection of the patent should therefore also relate to wave-selective beam switches of the latter type, in which the support surfaces mentioned in claim 1 are missing.
Gegenstand der Erfindung ist weiterhin em Verfahren zur Herstellung von Mikrosystembausteinen der obengenannten Art, wobei sich dieses Verfahren dadurch kennzeichnet, daß an einem Substrat die Stutzflachen und die Vertiefungen mit den Oberflachenkonturen der diesen Stutzflachen zugeordne- ten Funktionsflachen durch Ultraschall-Schwinglappen mit emer entsprechend geformten, einteiligen Lappform herge¬ stellt werden. Mit dem erfindungsgemaß vorgeschlagenen Ver¬ fahren lassen sich die auf dem Substrat herzustellenden Mi- krostrukturen, namlich die Stutzflachen und die Vertiefun- gen mit den Oberflachenkonturen der Funktionsflachen sehr maßgenau herstellen. Dabei wird eine mit mechanisch mit Ul¬ traschall-Frequenz schwingende Lappform aus Hartmetall, die einen Negativabdruck der herzustellenden MikroStruktur auf- weist, unter Verwendung eines ausreichend harten Lappmit- tels (Hartstoffpulver oder -paste) gegen das Substrat ge¬ druckt. Dabei bildet sich an der Oberflache des Substrates mit hoher Maßgenauigkeit und verhältnismäßig geringer Ober- flachenrauhigkeit em positiver Abdruck der Lappform aus. Dadurch, daß eme einteilige Lappform verwendet wird, ist es auf einfache Weise möglich, die Maßrelation zwischen den Stutzflachen und den Funktionsflachen mit größter Genauig¬ keit einzuhalten.The invention further relates to a method for producing microsystem modules of the type mentioned above, which method is characterized in that the support surfaces and the depressions with the surface contours of the functional surfaces assigned to these support surfaces are formed on a substrate by ultrasonic oscillating flaps with an appropriately shaped, one-piece Lappform herge¬. With the method proposed according to the invention, the microstructures to be produced on the substrate, namely the support surfaces and the depressions with the surface contours of the functional surfaces. In this case, a lapping mold made of hard metal, which vibrates mechanically with an ultrasound frequency and has a negative impression of the microstructure to be produced, is pressed against the substrate using a sufficiently hard lapping agent (hard material powder or paste). A positive impression of the Lappform is formed on the surface of the substrate with high dimensional accuracy and relatively low surface roughness. The fact that a one-piece Lappform is used makes it possible in a simple manner to maintain the dimensional relationship between the support surfaces and the functional surfaces with the greatest accuracy.
Die Oberflachenrauhigkeiten smd so gering, daß sie ohne weiteres durch Polieren mit einem Elektronenstrahl poliert werden können. Dabei wird die Energiedichte des Elektronen¬ strahls so eingestellt, daß nur die Oberflache der zu po¬ lierenden Flache angeschmolzen wird, so daß die Oberfla¬ chenspannung eines absolut glatte Oberflache herstellt. Dieses Polieren mit Elektronenstrahl ist Gegenstand einer auf die gleichen Anmelder zurückgehenden deutschen Patent¬ anmeldung DE 42 34 740 AI.The surface roughness is so small that it can easily be polished by polishing with an electron beam. The energy density of the electron beam is adjusted so that only the surface of the surface to be polished is melted, so that the surface tension creates an absolutely smooth surface. This polishing with an electron beam is the subject of a German patent application DE 42 34 740 AI which goes back to the same applicants.
Für die Massenfertigung von Mikrosystembaustemen der oben erläuterten Art schlagt die Erfindung vor, daß an einer großflächigen Lappform die Negativkonturen einer Vielzahl von Mikrosystembaustemen ausgebildet ist, daß die Lappform an einem entsprechend großformatigen Substrat abgeformt wird und daß abschließend das Substrat in die einzelnen Mi¬ krosystembausteine zerteilt wird. Im folgenden wird em Ausführungsbeispiel der Erfindung an¬ hand der Zeichnungen naher erläutert. Es zeigen:For the mass production of microsystem components of the type described above, the invention proposes that the negative contours of a large number of microsystem components be formed on a large-area Lapp mold, that the Lapp mold is molded on a correspondingly large-sized substrate and that the substrate is finally divided into the individual micro system components becomes. An exemplary embodiment of the invention is explained in more detail below with reference to the drawings. Show it:
Fig. i einen senkrechten Längsschnitt durch einen als refraktiver Kollimator ausgebildeten Mikro¬ systembaustein mit angeschlos¬ senem Diodenlaser;I shows a vertical longitudinal section through a microsystem module designed as a refractive collimator with a connected diode laser;
Fig. 2 einen horizontalen Längsschnitt durch den Mikrosystembaustein gemäß Fig. 1;FIG. 2 shows a horizontal longitudinal section through the microsystem module according to FIG. 1;
Fig. 3 eme perspektivische Darstel¬ lung des Mikrosystembaustemes gemäß Fig. 1 und Fig. 2;3 shows a perspective representation of the microsystem construction element according to FIGS. 1 and 2;
Fig. 4 eine perspektivische Darstel- lung eines Mikrosystembaustei- nes mit Formschlußelementen m den Stutzflachen zum Eingriff m korrespondierende Form¬ schlußelemente an angrenzenden Komponenten;4 shows a perspective illustration of a microsystem component with form-fit elements in the support surfaces for engagement m corresponding form-fit elements on adjacent components;
Fig. 5 eine perspektivische Darstel¬ lung zweier hintereinander an¬ geordneter Zylinderlinsenar- rays;5 shows a perspective representation of two cylindrical lens arrays arranged one behind the other;
Fig. 6 eine perspektivische Darstel¬ lung eines Mikrosysterαbaustei- nes mit optisch korrelierten diametral gegenüberliegenden Funktionsflachen;6 shows a perspective representation of a microsyster component with optically correlated diametrically opposite functional surfaces;
Fig. 7 eine Seitenansicht eines als reflektiver optischer Koppler ausgebildeten Mikro-systembau- stemes;FIG. 7 shows a side view of a micro system component designed as a reflective optical coupler; FIG.
Fig. 8 eine Draufsicht des Mikrosy- stembaustemes aus Fig. 7; Fig. 9 einen Längsschnitt durch einen als optische Leiterpxatte aus¬ gebildeten Mikrosystembaustein;8 shows a top view of the microsystem construction from FIG. 7; 9 shows a longitudinal section through a microsystem module designed as an optical conductor plate;
Fig. 10 einen Längsschnitt durch einen als wellenselektive Strahl¬ weiche ausgebildeten Mikrosy¬ stembaustein;10 shows a longitudinal section through a microsystem module designed as a wave-selective beam switch;
Fig. 11 schematisch im Schnitt denFig. 11 schematically in section
Lappvorgang zum Herstellen emer Rohform eines Mikrosy- stembaustemes aus einem Substrat;Lapping process for producing a raw form of a microsystem construction from a substrate;
Fig. 12 schematisch im Schnitt denFig. 12 schematically in section
Lappvorgang zum Herstellen ei- ner Rohform mehrerer auf der optisch wirksamen Grenzflachen nebeneinander angeordneter Funktionselemente aus einem Substrat undLapping process for producing a raw form of a plurality of functional elements from a substrate and arranged side by side on the optically effective boundary surfaces
Fig. 13 schematisch im Schnitt das Po¬ lieren der optisch wirksamen Grenzflachen mittels Ξlektro- nenstrahl .13 schematically shows in section the polishing of the optically active boundary surfaces by means of an electron beam.
In der folgenden Beschreibung der Zeichnungen werden für gleiche Bauteile übereinstimmende Bezugszeichen verwendet.In the following description of the drawings, the same reference numerals are used for the same components.
In Fig. 1 ist em Mikrosystembaustein gemäß der Erfindung für die Verwendung m mikrooptischen Systemen m seiner Ge¬ samtheit mit dem Bezugszeichen 1 bezeichnet. Der Mikro¬ systembaustein 1 ist als refraktiver Kollimator ausge- bildet. Er besteht aus einem Korper 2, z.B. aus Quarzglas oder einem anderen optisch durchlassigen Material. In den Korper 2 sind Vertiefungen 3 und 4 eingearbeitet, an deren Boden jeweils Funktionsflachen 5 und 6 angeordnet smd. Die Funktionsflache 5 hat die Form eines Prismas mit einem Scheitelwinkel α = 85°. Im Bereich seines Scheitels ist das Prisma mit einer Abrundung 5a versehen. Die Funktionsflache 6 weist eme etwa zylmdermantelformige Wölbung auf, wobei die Achse dieser zylmdermantelformige Wölbung senkrecht zur Langserstreckung des Scheitels des Prismas an der gegenüberliegenden optisch wirksamen Grenzflacne 5 verlauft.In FIG. 1, a microsystem module according to the invention for the use of m micro-optical systems in its entirety is designated by the reference number 1. The microsystem module 1 is designed as a refractive collimator. It consists of a body 2, for example quartz glass or another optically transparent material. In the body 2 recesses 3 and 4 are incorporated, at the bottom of which functional surfaces 5 and 6 are arranged smd. The functional surface 5 has the shape of a prism with an apex angle α = 85 °. That is in the area of its crown Prism with a rounding 5a. The functional surface 6 has an approximately cylindrical jacket-shaped curvature, the axis of this cylindrical jacket-shaped curvature extending perpendicular to the longitudinal extension of the apex of the prism at the opposite optically effective boundary plate 5.
Weiterhin ist der Korper 2 mit Stutzflachen 7 und 8 verse¬ hen, die zum Anschluß an angrenzende optische Komponenten 9 dienen, z.B. zum Anschluß an einen Diodenlaser, der mit den Stutzflachen 7 entsprechenden Gegenstutzflachen 10 versehen ist. Die Stutzflachen 7 und 8 smd mit aus der Flache vorstehenden Formschlußelementen ηa bzw. 8a z.B. in Form von Vorsprungen versehen, die m entsprechende Gegenform- schlußelemente 10a m den Gegenstutzflachen 10 an den an- grenzenden optischen Komponenten 9 eingreifen.Furthermore, the body 2 is provided with support surfaces 7 and 8 which are used for connection to adjacent optical components 9, for example for connection to a diode laser which is provided with counter support surfaces 10 corresponding to the support surfaces 7. Provide the support faces 7 and 8 smd with form-locking elements η a and 8a protruding from the surface, for example in the form of projections, which m m corresponding counter-shape locking elements 10a m the counter-support faces 10 on the adjacent optical components 9.
Wie aus den Fig. 1 und 2 ersichtlich ist, befinden sich die Stutzflachen 7 und 8 m einer genau definierten Maßrelation zu den Funktionsflachen 5 und 6. Dadurch, daß die Funk- tionsflachen 5 und 6 gegenüber den Stutzflachen 7 und 8 in Richtung auf das Innere des Korpers 2 zurückstehen, sind sie gut geschützt angeordnet. Mit Hilfe der Stutzflachen 7 und 8 an dem Korper 2 und der Gegenstutzflachen 10 an der anliegenden optischen Komponente 9 kann der Mikrosystembau¬ stein 1 auf einfache Weise sehr genau an dem Diodenlaser 11 positioniert werden, und zwar so, daß der Scheitel des Prismas in der Funktionsflache 5 genau dem Emitter des Diodenlasers 11 gegenüberliegt und dabei exakt parallel zu dessen Langserstreckung ausgerichtet ist.As can be seen from FIGS. 1 and 2, the support surfaces 7 and 8 m are located in a precisely defined dimensional relation to the functional surfaces 5 and 6. Because the functional surfaces 5 and 6 are opposite the support surfaces 7 and 8 in the direction of the Stand back inside the body 2, they are arranged well protected. With the help of the support surfaces 7 and 8 on the body 2 and the counter support surfaces 10 on the adjacent optical component 9, the microsystem module 1 can be positioned very precisely on the diode laser 11 in a simple manner, and in such a way that the apex of the prism in the Functional surface 5 is exactly opposite the emitter of the diode laser 11 and is aligned exactly parallel to its longitudinal extension.
In Fig. 3 ist der oben beschriebene Mikrosystembaustein 1 perspektivisch dargestellt. In Fig. 4 ist em als refraktiver Kollimator ausgebildeter Mikrosystembaustein 1 dargestellt, dessen Stutzflachen 7, die an eme optische Komponente 9 grenzen, mit Vor- sprungen 50 versehen smd. Diese Vorsprunge 50 greifen in korrespondierende Vertiefungen 51 an der angrenzenden Kom¬ ponente 9 em. Dies ermöglicht es, den Mikrcsysteπuoau- stem 1 m y- und z-Richtung genau justiert an der angren¬ zenden Komponente 9 festzulegen, ohne daß es für die Justage aufwendiger Messungen bedarf.3, the microsystem module 1 described above is shown in perspective. 4 shows a microsystem module 1 designed as a refractive collimator, the support surfaces 7 of which, which adjoin an optical component 9, are provided with projections 50. These projections 50 engage in corresponding depressions 51 on the adjacent component 9 em. This makes it possible to fix the micro system 1 m in the y and z directions precisely adjusted on the adjoining component 9 without the need for complex measurements for the adjustment.
In Fig. 5 sind zwei Mikrosystembausteine 1 dargestellt, auf deren Funktionsflachen jeweils eme Vielzahl von Funktions- elementen m Form von Zylmderlinsen angeordnet smd. Die beiden Mikrosystembausteine 1 bilden je em Zylmderlm- senarray 60 und 61. Die Zylinderachsen der einzelnen Zylm- derlmsen der Zylinderlmsenarrays 60 und 61 verlaufen parallel zueinander. An ihren Stutzflachen 7 grenzen die beiden Zylinderlmsenarrays 60 und 61 mit einander zuge¬ wandten Funktionsflachen aneinander. Die Zylinderachsen der beiden Zylinderlmsenarrays 60 und 61 verlaufen m einem rechten Winkel zueinander. Solche Zylinderlmsenarrays 60 und 61 werden häufig hintereinander angeordnet, um dadurch eme optimale Transformation und Formung eines hindurchtre¬ tenden Lichtstrahlenbundels zu erzielen.5 shows two microsystem modules 1, on the functional surfaces of which a large number of functional elements in the form of cylindrical lenses are arranged. The two microsystem modules 1 each form a cylindrical lens array 60 and 61. The cylinder axes of the individual cylindrical lenses of the cylindrical lens arrays 60 and 61 run parallel to one another. The two cylindrical lens arrays 60 and 61 adjoin one another at their support surfaces 7 with functional surfaces facing one another. The cylinder axes of the two cylinder lens arrays 60 and 61 run at a right angle to one another. Such cylinder lens arrays 60 and 61 are often arranged one behind the other in order to achieve an optimal transformation and shaping of a beam of light rays passing therethrough.
Fig. 6 zeigt einen Mikrosystembaustein 1, an dessen Kor- per 2 an diametral gegenüberliegenden Seiten Zylinderlm¬ senarrays 70 bzw. 71 angeordnet smd, die durch den Kor¬ per 2 hindurch optisch korreliert sind. Die Zylinderachsen der beiden Zylinderlmsenarrays 70 und 71 verlaufen in ei¬ nem rechten Winkel zueinander.6 shows a microsystem module 1, on the body 2 of which cylindrical lens arrays 70 and 71 are arranged on diametrically opposite sides, which are optically correlated through the body 2. The cylinder axes of the two cylinder lens arrays 70 and 71 run at a right angle to one another.
Fig. 7 zeigt einen als reflektiven optischen Koppler ausge¬ bildeten Mikrosystembaustein 1. An seinem Korper 2 smd an diametral gegenüberliegenden Seiten Funktionsflachen 5 und 6 angeordnet, deren Funktionselemente 80 bis 83 durch den Körper 2 hindurch optisch korreliert sind. Vor einer asphärischen Zylinderlinse 80 ist der Emitter eines nicht dargestellten Diodenlasers angeordnet, der ein Lichtband aussendet. Dieses tritt durch die Zylinderlinse 80 in den Körper 2 ein, trifft auf einen asphärischen Zylinder¬ spiegel 81, wird von diesem auf einen planen Spiegel 82 und von dort auf eine zweite asphärische Zylinderlinse 83 reflektiert. Dann tritt das Lichtband durch die Zylinder- linse 83 aus dem Körper 2 heraus und wird schließlich in einen ebenfalls nicht dargestellten Lichtwellenleiter ein¬ gekoppelt, der vor der Zylinderlinse 83 angeordneten ist. Die Zylinderachsen der beiden Zylinderlinsen 80 und 83 verlaufen orthogonal, und ihre optischen Achsen 84 und 85 verlaufen parallel zueinander. Ein solcher reflektiver optischer Koppler dient dazu, das von dem Diodenlaser emit¬ tierte Lichtband zu fokussieren und in den Lichtwellen¬ leiter einzukoppeln. In Fig. 8 ist eine Draufsicht des reflektiven optischen Kopplers aus Fig. 7 dargestellt.7 shows a microsystem module 1 designed as a reflective optical coupler. Functional surfaces 5 on its body 2 smd on diametrically opposite sides and 6, the functional elements 80 to 83 of which are optically correlated through the body 2. The emitter of a diode laser (not shown), which emits a light band, is arranged in front of an aspherical cylindrical lens 80. This enters the body 2 through the cylindrical lens 80, strikes an aspherical cylindrical mirror 81, is reflected by the latter onto a flat mirror 82 and from there onto a second aspherical cylindrical lens 83. The light band then emerges from the body 2 through the cylindrical lens 83 and is finally coupled into an optical waveguide, also not shown, which is arranged in front of the cylindrical lens 83. The cylinder axes of the two cylindrical lenses 80 and 83 are orthogonal and their optical axes 84 and 85 are parallel to one another. Such a reflective optical coupler is used to focus the light band emitted by the diode laser and to couple it into the optical waveguide. FIG. 8 shows a top view of the reflective optical coupler from FIG. 7.
Fig. 9 zeigt einen als optische Leiterplatte ausgebildeten Mikrosystembaustein 1, der an zwei optoelektronische Halb¬ leiterbausteine 90 und 91 angeschlossen ist und diese mit¬ einander optisch verschaltet. Die Funktionsflächen der optischen Leiterplatte sind einerseits als Linsen 93 und 96 zum Ein- und Auskoppeln von Lichtstrahlen und andererseits als Spiegel 94 und 95 zur Strahlführung innerhalb der opti¬ schen Leiterplatte ausgebildet. Die optische Verschaltung geht derart vor sich, daß der erste optoelektronische Halb¬ leiterbaustein 90 einen Lichtstrahl 92 aussendet, der über eine erste Linse 93 in den Körper 2 der optischen Lei¬ terplatte eingekoppelt wird. Der Lichtstrahl 92 wird über Spiegel 94 und 95 so geführt, daß er über eine zweite Linse 96 wieder aus dem Körper 2 ausgekoppelt wird und auf den zweiten optoelektronischen Halbleiterbaustein 91 trifft. Em Verschalten der beiden optoelektronischen Halb¬ leiterbausteme 90 und 91 in umgekehrter Richtung, d.h. der Halbleiterbaustem 91 sendet einen Lichtstrahl 92 aus, den der Halbleiterbaustem 90 dann empfangt, ist ebenfalls möglich. Durch den Zinsatz geeigneter Strahlweichen ist eine bidirektionale Verschaltung der beiden optoelektroni¬ schen Halbleiterbausteme 90 und 91 realisierbar.9 shows a microsystem module 1 designed as an optical circuit board, which is connected to two optoelectronic semiconductor modules 90 and 91 and optically interconnects them. The functional surfaces of the optical printed circuit board are designed on the one hand as lenses 93 and 96 for coupling in and out light beams and on the other hand as mirrors 94 and 95 for beam guidance within the optical printed circuit board. The optical interconnection takes place in such a way that the first optoelectronic semiconductor component 90 emits a light beam 92 which is coupled into the body 2 of the optical circuit board via a first lens 93. The light beam 92 is guided via mirrors 94 and 95 in such a way that it is coupled out of the body 2 again via a second lens 96 and onto the second optoelectronic semiconductor module 91 meets. It is also possible to connect the two optoelectronic semiconductor components 90 and 91 in the opposite direction, ie the semiconductor component 91 emits a light beam 92 which the semiconductor component 90 then receives. A bidirectional connection of the two optoelectronic semiconductor modules 90 and 91 can be implemented by the interest rate of suitable beam switches.
Fig. 10 zeigt einen als wellenselektive Strahlweiche ausge¬ bildeten Mikrosystembaustein 1. Dieser ist an eine Lichtquelle 102, einen Lichtempfanger 107 und einen Licht¬ wellenleiter 105 angeschlossen. Die der Lichtquelle 102 und dem Lichtwellenleiter 105 zugewandte Funktionsflache 6 weist ein Funktionselement 101 mit wellenselektivem Ver¬ halten auf. Als Lichtquelle 102 wird em Diodenlaser einge- setzt. Der Emitter des Diodenlasers 102 sendet ein Licht¬ band 103 aus, welches an dem wellenselektiven Funktions¬ element 101 reflektiert und über eine Kugellmse 104 m den Lichtwellenleiter 105 eingekoppelt wird. Wird nun ein Lichtstrahl 106 aus dem Lichtwellenleiter 105 ausgekoppelt, so wird er an dem wellenselektiven Funktionselement 101 und einem gegenüberliegenden Funktionselement 100 derart gebrochen, daß er auf den Lichtempfanger 107 trifft. Dieser ist als Fotodiode ausgebildet. Durch eme solche wellen- selktive Strahlweiche wird eine bidirektionale optische Datenübertragung über einen Lichtwellenleiter 105 ermög¬ licht.10 shows a microsystem module 1 designed as a wave-selective beam splitter. This is connected to a light source 102, a light receiver 107 and a light waveguide 105. The functional surface 6 facing the light source 102 and the optical waveguide 105 has a functional element 101 with wave-selective behavior. A diode laser is used as the light source 102. The emitter of the diode laser 102 emits a light band 103, which is reflected on the wave-selective functional element 101 and the optical waveguide 105 is coupled in via a spherical lens 104 m. If a light beam 106 is now coupled out of the optical waveguide 105, it is refracted at the wave-selective functional element 101 and an opposite functional element 100 such that it strikes the light receiver 107. This is designed as a photodiode. Such a wave-selective beam splitter enables bidirectional optical data transmission via an optical waveguide 105.
In den Fig. 11 bis 13 ist das Herstellungsverfahren für die Herstellung von Mikrosystembaustemen 1 gemäß der Erfindung schematisch dargestellt. Der erste Schritt des Herstel- lungsverfahrens geht von einem z.B. quaderformigen Substrat 20 aus optisch durchlassigem Material aus, z.B. von Quarzglas. Die Herstellung der Vertiefungen 3 bzw. 4 in dem quaderformigen Quarzglaskorper erfolgt durch Ultraschall- Schwinglappen. Dabei handelt es sich um em ungeπchtetes Spanen mit losen, m emer Flüssigkeiten bzw. emer Paste fein verteilten Hartstoffkornern, die durcn eine mit Ultraschall-Frequenz schwingende Lappform aus Hartmetall aktiviert werden.11 to 13 the production method for the production of microsystem building blocks 1 according to the invention is shown schematically. The first step of the manufacturing process is based on, for example, a cuboid substrate 20 made of optically transparent material, for example quartz glass. The recesses 3 and 4 in the cuboid quartz glass body are produced by ultrasound Rocking rag. These are non-machined embossing with loose, m emer liquids or emer paste finely distributed hard material, which are activated by a Lappform made of hard metal vibrating with ultrasound frequency.
In Fig. 11 ist dieses Ultraschall-Schwinglappen zur Her¬ stellung emer Rohform eines einzelnen Mikrosystembaustei- nes 1 schematisch dargestellt. Die Lappform ist mit dem Be¬ zugszeichen 21 bezeichnet. Sie weist an ihrer dem Substrat 20 zugewandten Oberflache einen Negativabdruck der herzu¬ stellenden Vertiefung 3 und 4 und Funktionsflachen 5 und 6 auf. Die Lappform 21 ist an der dem Substrat 20 zugewandten Seite mit einer Schicht 22 aus Schleifmittel Deschichtet. Bei diesem Schleifmittel handelt es sich vorzugsweise um ein Schleifpulver, das in fein verteilter Form Hartstoff- korner enthalt.FIG. 11 schematically shows this ultrasonic rocking flap for producing a raw form of an individual microsystem module 1. The Lappform is designated by the reference 21. On its surface facing the substrate 20 it has a negative impression of the recess 3 and 4 to be produced and functional surfaces 5 and 6. The lap shape 21 is coated on the side facing the substrate 20 with a layer 22 of abrasive. This abrasive is preferably an abrasive powder that contains hard-grain particles in finely divided form.
Für den Lappvorgang wird die mit der Schleifmittelschicht 22 versehene Lappform 21 mit mecnanischen Schwingungen im Ultraschallbereich angeregt und gegen das Substrat 20 ge- druckt. Dabei wird das Material des Substrates 20 durch ei¬ ne ungerichtete Zerspanung abgetragen. Sobald die Lappform 21 mit den Flachenbereichen 7, 8 des Substrates 20 in Be¬ rührung kommt, wird der Abtragungsvorgang abgebrochen. Im Ergebnis bildet sich an dem Substrat 20 em exakter positi- ver Abdruck der Lappform 21 aus. Auf diese Weise ist es möglich, die geforderten Strukturen an der Oberflache des herzustellenden Mikrosystembaustemes 1 mit großer Maßhal¬ tigkeit herzustellen.For the lapping process, the lapping mold 21 provided with the abrasive layer 22 is excited with mechanical vibrations in the ultrasound range and pressed against the substrate 20. The material of the substrate 20 is removed by undirected machining. As soon as the Lappform 21 comes into contact with the flat areas 7, 8 of the substrate 20, the removal process is stopped. As a result, an exact positive impression of the Lappform 21 is formed on the substrate 20. In this way it is possible to produce the required structures on the surface of the microsystem construction element 1 to be produced with great dimensional accuracy.
Fig. 12 zeigt die Herstellung mehrerer auf einem großfla- chigen Substrat nebeneinander angeordneter Funktionsele¬ mente mittels des Ultraschall-Schwmglappverfahrens . Eme großflächige Lappform 31 ist an inrer einem großflächigem Substrat 30 zugewandten Oberflache mit einem Negativabdruck mehrerer nebenemanderliegender Vertiefungen und optisch wirksamer Grenzflachen versehen. Die Lappform ist an der dem Substrat 30 zugewandten Seite mit einer Schicht 32 aus Schleifmittel beschichtet. Wie bei der Herstellung eines einzelnen Mikrosystembaustemes geschildert, wird nun mit senkrecht auf das Substrat gerichteten mechanischen Schwin¬ gungen im Ultraschallbereich das Material des Substrates 30 durch eme ungerichtete Zerspanung abgetragen. Auf diese Weise können sogenannte Lmsenarrays auf einem einzigen mikrooptischen Baustein hergestellt werden oder die einzelnen Funktionselemente nach der Herstellung entlang der Linien 33 in einzelne Mikrosystembausteine 1 zerteilt werden.12 shows the production of a plurality of functional elements arranged next to one another on a large-area substrate by means of the ultrasound spongy flap method. A large-area Lappform 31 is on a large area Provide substrate 30 facing surface with a negative impression of several adjacent depressions and optically effective boundary surfaces. The Lappform is coated on the side facing the substrate 30 with a layer 32 of abrasive. As described in the production of a single microsystem construction, the material of the substrate 30 is now removed by means of non-directional machining with mechanical vibrations in the ultrasound range directed perpendicular to the substrate. In this way, so-called lens arrays can be produced on a single micro-optical component or the individual functional elements can be divided into individual microsystem components 1 along the lines 33 after production.
In einem zweiten Verfahrensschritt werden dann abschließend die Funktionsflachen 5 und 6 mit einem Hochenergie-Elek- tronenstrahl 43 poliert. Dieser Schritt ist in Fig. 13 dar¬ gestellt. Die dort abgebildete Elektronenkanone zur Her¬ stellung eines energiereichen Elektronenstrahles 43 weist eine als Elektronenquelle dienende Kathode 40, eine zur Beschleunigung des Elektronenstrahles 43 dienende Anode 41 und eme zur Formung des Elektronenstrahles 43 dienende Schlitzblende 42 auf. Der so erzeugte, sehr energiereiche Elektronenstrahl 43, der die Form eines flachen Rechteck- bandes hat, wird auf die zu polierenden Oberflachen am Substrat 2 gerichtet. Das Substrat 2 wird dann quer zur Ebene des bandförmigen Elektronenstrahles 43 bewegt. Die Energiezufuhr m die zu polierende Oberflache wird dabei durch geeignete Maßnahmen so gesteuert, daß nur die Ober- flache über die Tiefe der vorhandenen Rauhigkeiten ange¬ schmolzen wird, und zwar jeweils so weit, daß die vorhan denen Rauhigkeiten sich durch die Oberflachenspannungen der Schmelze ausgleichen.Finally, in a second process step, the functional surfaces 5 and 6 are polished with a high-energy electron beam 43. This step is shown in FIG. 13. The electron gun shown there for producing an energy-rich electron beam 43 has a cathode 40 serving as an electron source, an anode 41 serving to accelerate the electron beam 43 and a slit diaphragm 42 serving to shape the electron beam 43. The very high-energy electron beam 43 generated in this way, which has the shape of a flat rectangular band, is directed onto the surfaces to be polished on the substrate 2. The substrate 2 is then moved transversely to the plane of the band-shaped electron beam 43. The supply of energy in the surface to be polished is controlled by suitable measures so that only the surface is melted over the depth of the existing roughness, in each case to such an extent that the existing surface which roughness is compensated for by the surface tensions of the melt.
- Ansprüche - Expectations

Claims

P a t e n t a n s p r ü c h e Patent claims
1. Mikrosystembaustein (1), insbesondere für die Verwendung m mikrooptischen Systemen, bestehend aus einem Korper (2), an dessen Oberflachen mindestens eme Funkti¬ onsflache (5, 6) und Stutzflachen (7, 8) zum Anbau an an¬ grenzende Komponenten (9) eines Mikrosystems vorgesehen smd, d a d u r c h g e k e n n z e i c h n e t , daß die Stutzflachen (7, 8^ im Bereich von nach außen vor¬ stehenden Oberflachenbereichen des Korpers (2) angeordnet smd,1. microsystem module (1), in particular for the use of m micro-optical systems, consisting of a body (2), on the surfaces of which at least one functional surface (5, 6) and support surfaces (7, 8) for attachment to adjoining components (9) of a microsystem, smd, characterized in that the support surfaces (7, 8 ^ are arranged in the region of outwardly projecting surface regions of the body (2),
daß die Funktionsflachen (5, 6) m gegenüber den Stutzfla¬ chen (7, 8) m Richtung auf das Innere des Korpers (2) zu- ruckstehenden Bereichen der Oberflache des Körpers (2) an¬ geordnet sind undthat the functional surfaces (5, 6) m are arranged in relation to the support surfaces (7, 8) m in the direction of the interior of the body (2) areas of the surface of the body (2) and
daß die Funktionsflachen (5, 6) in Bezug auf die Stutzfla¬ chen (7, 8) mit engsten Toleranzen maßhaltig angeordnet sind.that the functional surfaces (5, 6) with respect to the support surfaces (7, 8) are arranged with the closest tolerances.
2. Mikrosystembaustein (1) nach Anspruch 1, dadurch gekennzeichnet, daß m den Stutzflachen (7, 8) Formschlu߬ elemente (7a, 8a; 50) zum Eingriff in korrespondierende Formschlußelemente (10a; 51) an den angrenzenden Komponen¬ ten (9) vorgesehen sind. 2. microsystem module (1) according to claim 1, characterized in that m the support surfaces (7, 8) positive locking elements (7a, 8a; 50) for engagement in corresponding positive locking elements (10a; 51) on the adjacent components (9th ) are provided.
3. Mikrosystembaustein (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Funktionsflachen (5, 6) und/oder die Stutzflachen (7, 8) glatt poliert ausgebildet smd.3. microsystem module (1) according to claim 1 or 2, characterized in that the functional surfaces (5, 6) and / or the support surfaces (7, 8) formed smooth polished smd.
4. Mikrosystembaustein (1) nach Anspruch 1, dadurch gekennzeichnet, daß der Korper (2) aus optisch durchlassi¬ gem Material besteht und die Funktionsflachen (5, 6) als optisch wirksame Grenzflachen ausgebildet smd.4. microsystem module (1) according to claim 1, characterized in that the body (2) consists of optically transmissive material and the functional surfaces (5, 6) are formed as optically effective interfaces smd.
5. Mikrosystembaustein (1) nach Anspruch 4, dadurch gekennzeichnet, daß m den Funktionsflachen konkav oder konvex gewölbte Lmsenoberflachen ausgebildet smd.5. microsystem module (1) according to claim 4, characterized in that m the functional surfaces concave or convex curved lens surfaces smd.
6. Mikrosystembaustein (1) nach Anspruch 4, dadurch gekennzeichnet, daß m den Funktionsflachen gegeneinander geneigte ebene Flachen zur Bildung von Prismen angeordnet sind.6. microsystem module (1) according to claim 4, characterized in that m the functional surfaces are mutually inclined flat surfaces to form prisms are arranged.
7. Mikrosystembaustein (1) nach Anspruch 4, dadurch gekennzeichnet, daß in den Funktionsflachen Beugungslinien oder Beugungsgitter angeordnet sind.7. microsystem module (1) according to claim 4, characterized in that diffraction lines or diffraction gratings are arranged in the functional areas.
8. Mikrosystembaustein (1) nach einem oder mehreren der Ansprüche 4 bis 7, dadurch gekennzeichnet, daß die8. microsystem module (1) according to one or more of claims 4 to 7, characterized in that the
Funktionsflachen ganz oder teilweise mit einer spiegelnden Beschichtung überzogen smd.Functional surfaces completely or partially covered with a reflective coating smd.
9. Mikrosystembaustein (1) nach einem oder mehreren der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß m jeder Funktionsflache eme Vielzahl von Funktionselementen m Form von Linsen und/oder Prismen und/oder Beugungslinien und/oder reflektierenden Flachen angeordnet ist. 9. microsystem module (1) according to one or more of claims 4 to 8, characterized in that m each functional surface eme multitude of functional elements m shape of lenses and / or prisms and / or diffraction lines and / or reflecting surfaces is arranged.
10. Mikrosystembaustein (1) nach einem oder mehreren der Ansprüche 4 bis 9, dadurch gekennzeichnet, daß an dem Korper (2) an diametral gegenüberliegenden Seiten Funkti¬ onsflachen (5, 6) angeordnet sind, deren Funktionselemente durch den Korper (2) hindurch optisch korreliert smd.10. microsystem module (1) according to one or more of claims 4 to 9, characterized in that on the body (2) on diametrically opposite sides Funkti¬ onsflachen (5, 6) are arranged, the functional elements through the body (2) optically correlated smd.
11. Mikrosystembaustein (1) insbesondere nach An¬ spruch 10, dadurch gekennzeichnet,11. microsystem component (1) in particular according to claim 10, characterized in that
daß er als refraktiver Kollimator ausgebildet ist, der an einen Diodenlaser (11) anschließbar ist,that it is designed as a refractive collimator that can be connected to a diode laser (11),
daß die dem Emitter des Diodenlasers (11) zugewandte Funk¬ tionsflache (5) als Prisma ausgebildet ist, dessen Scheitel parallel zur Langserstreckung des Emitters des Diodenlasers (11) verlauft und im Nahbereich des Emitters abgerundetthat the function surface (5) facing the emitter of the diode laser (11) is designed as a prism, the apex of which runs parallel to the longitudinal extension of the emitter of the diode laser (11) and is rounded off in the vicinity of the emitter
daß der Scheitelwinkel des Prismas großer als der Emissi- onswmkel orthogonal zur Langserstreckung des Emitters des Diodenlasers (11) ist undthat the apex angle of the prism is larger than the emission angle orthogonal to the longitudinal extension of the emitter of the diode laser (11) and
daß die dem Emitter des Diodenlasers (11) gegenüberliegende Funktionsflache (6) als Zylinαerflache ausgebildet ist, deren Zylinderachse orthogonal zum Scheitel des Prismas verlauft .that the functional surface (6) opposite the emitter of the diode laser (11) is designed as a cylindrical surface, the cylinder axis of which extends orthogonally to the apex of the prism.
12. Mikrosystembaustein (1) insbesondere nach An¬ spruch 10, dadurch gekennzeichnet,12. microsystem module (1) in particular according to claim 10, characterized in that
daß er als reflektiver optischer Koppler ausgebildet ist, der zwischen einen Diodenlaser und einen sich anschließen¬ den Lichtwellenleiter einsetzbar ist, daß an den Funktionsflachen (5, 6) jeweils zwei Funktions¬ elemente angeordnet smd, namlich eme erste aspharische Zylmderlmse (80) und versetzt dazu em planer Spiegel (82) an der ersten Funktionsflache (5> und em aspharischer Zylmderspiegel (81) und versetzt dazu eine zweite aspharische Zylmderlmse (83) an der zweiten Funk¬ tionsflache ( 6) .that it is designed as a reflective optical coupler that can be used between a diode laser and a connecting optical waveguide, that are added to the functional surfaces (5, 6) each have two functional ¬ elements arranged smd, namely eme first aspherical Zylmderlmse (80) and offset therefrom em plane mirror (82) at the first functional surface (5> and em aspharischer Zylmderspiegel (81) and a second aspherical cylindrical lens (83) on the second functional surface (6).
daß die Zylinderachsen der beiden Zylinderlmsen (80, 83) orthogonal zueinander verlaufen undthat the cylinder axes of the two cylinder lenses (80, 83) are orthogonal to each other and
daß die optischen Achsen der beiden Zylinderlmsen (80, 83) parallel zueinander angeordnet sind.that the optical axes of the two cylindrical lenses (80, 83) are arranged parallel to one another.
13. Mikrosystembaustein (1) insbesondere nach An¬ spruch 10, dadurch gekennzeichnet,13. microsystem module (1) in particular according to claim 10, characterized in that
daß er als optische Leiterplatte ausgebildet ist, durch die mindestens zwei optoelektronische Halbleiterbausteme (90, 91) aneinander anschließbar sind undthat it is designed as an optical circuit board through which at least two optoelectronic semiconductor modules (90, 91) can be connected to one another and
daß die Funktionsflachen (5, 6) einerseits als Linsen (93, 96) zum Em- und Auskoppeln von Lichtstrahlen (92) und andererseits als Spiegel (94, 95) zur Strahlfuhrung mner- halb der optischen Leiterplatte ausgebildet sind.that the functional surfaces (5, 6) are designed on the one hand as lenses (93, 96) for emitting and decoupling light rays (92) and on the other hand as mirrors (94, 95) for guiding the rays within the optical circuit board.
14. Mikrosystembaustein (1) insbesondere nach An¬ spruch 10, dadurch gekennzeichnet,14. Microsystem module (1), in particular according to claim 10, characterized in that
daß er als wellenselektive Strahlweiche ausgebildet ist, die an eine Lichtquelle (102), einen Lichtempfanger (107) und einen Lichtwellenleiter (105) anschließbar ist und daß die der Lichtquelle (102) und dem Lichtwellenleiter (105) zugewandte Funktionsflache (6) em Funktionselement (101) mit wellenselektiven Eigenschaften aufweist.that it is designed as a wave-selective beam switch which can be connected to a light source (102), a light receiver (107) and an optical waveguide (105) and that the light source (102) and the optical waveguide (105) facing functional surface (6) em functional element (101) with wave-selective properties.
15. Verfahren zur Herstellung von Mikrosystembau- steinen (1) nach einem oder mehreren der Ansprüche 1 bis15. A method for producing microsystem components (1) according to one or more of claims 1 to
11, dadurch gekennzeichnet, daß an einem Substrat die Stutzflachen (7, 8) und die Vertiefungen mit den Oberfla¬ chenkonturen der diesen Stutzflachen (7, 8) zugeordneten Funktionsflachen (5, 6) durch Ultraschall-Schwmglappen mit einer entsprechend geformten, einteiligen Lappform (21) hergestellt werden.11, characterized in that the support surfaces (7, 8) and the depressions with the surface contours of the functional surfaces (5, 6) assigned to these support surfaces (7, 8) on a substrate by ultrasonic sponges with a correspondingly shaped, one-piece lobed shape (21) can be produced.
16. Verfahren nach Anspruch 15, dadurch gekennzeich¬ net, daß an einer großflächigen Lappform (21) die Negativ¬ kontur einer Vielzahl von Mikrosystembaustemen ausgebildet ist, daß die Lappform an em entsprechend großflächiges Substrat abgeformt wird und abschließend das Substrat m die einzelnen Mikrobausteme zerteilt wird.16. The method according to claim 15, characterized gekennzeich¬ net that the negative contour of a plurality of microsystem construction elements is formed on a large-area Lappform (21), that the Lappform is molded on a correspondingly large-area substrate and finally the substrate m divides the individual micro-construction elements becomes.
17. Verfahren nach Anspruch 15, dadurch gekennzeich¬ net, daß in einem nachfolgenden Verfahrensschritt die Funk- tionsflachen (5, 6) und/oder die Stutzflachen (7, 8) mit einem Elektronenstrahl poliert werden. 17. The method according to claim 15, characterized gekennzeich¬ net that in a subsequent process step, the functional surfaces (5, 6) and / or the support surfaces (7, 8) are polished with an electron beam.
EP96943897A 1995-12-07 1996-12-06 Process of manufacturing a microsystem module Ceased EP0888569A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19545606 1995-12-07
DE19545606 1995-12-07
DE19610881 1996-03-20
DE19610881A DE19610881B4 (en) 1995-12-07 1996-03-20 Microsystem module
PCT/EP1996/005471 WO1997021126A1 (en) 1995-12-07 1996-12-06 Microsystem module

Publications (1)

Publication Number Publication Date
EP0888569A1 true EP0888569A1 (en) 1999-01-07

Family

ID=26021016

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96943897A Ceased EP0888569A1 (en) 1995-12-07 1996-12-06 Process of manufacturing a microsystem module

Country Status (10)

Country Link
US (2) US6416237B2 (en)
EP (1) EP0888569A1 (en)
JP (1) JP3995026B2 (en)
KR (1) KR19990071946A (en)
CN (1) CN1152270C (en)
AU (1) AU1368897A (en)
CA (1) CA2239866A1 (en)
DE (1) DE19610881B4 (en)
IL (1) IL124796A0 (en)
WO (1) WO1997021126A1 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046625A1 (en) * 1998-03-10 1999-09-16 Vitaly Lissotschenko Device for deviating electromagnetic rays or radiation beams in the optical spectral domain
US6095697A (en) * 1998-03-31 2000-08-01 Honeywell International Inc. Chip-to-interface alignment
DE10058074A1 (en) * 2000-11-23 2002-06-06 Vitalij Lissotschenko Method for producing a micro-optical functional unit
JP2002314188A (en) * 2001-04-13 2002-10-25 Hamamatsu Photonics Kk Semiconductor laser device
US7145724B2 (en) * 2001-05-09 2006-12-05 Hamamatsu Photonics K.K. Optical lens and semiconductor laser device
EP1396735B1 (en) 2001-05-09 2009-01-28 Hamamatsu Photonics K.K. Method of producing an optical lens
CN1324330C (en) 2001-05-09 2007-07-04 浜松光子学株式会社 Optical lens-use base material, optical lens, and production method for optical lens
US7743631B2 (en) * 2001-05-09 2010-06-29 Hamamatsu Photonics K.K. Method of forming an optical lens by drawing material with curved surface parts
US6863531B2 (en) * 2001-06-28 2005-03-08 Itac Ltd. Surface modification process on metal dentures, products produced thereby, and the incorporated system thereof
US6850669B2 (en) * 2002-10-31 2005-02-01 Avanex Corporation Package for optical filter device
JP4704126B2 (en) * 2005-06-23 2011-06-15 富士通株式会社 Optical module
CN102314096B (en) * 2006-02-17 2014-05-21 卡尔蔡司Smt有限责任公司 Method for manufacturing a long micro lens array
TWI545352B (en) 2006-02-17 2016-08-11 卡爾蔡司Smt有限公司 Illumination system for a microlithographic projection exposure apparatus
US7537395B2 (en) 2006-03-03 2009-05-26 Lockheed Martin Corporation Diode-laser-pump module with integrated signal ports for pumping amplifying fibers and method
US7524988B2 (en) * 2006-08-01 2009-04-28 Lyondell Chemical Technology, L.P. Preparation of acetic acid
US7208625B1 (en) 2006-08-04 2007-04-24 Lyondell Chemical Technology, L.P. Removing permanganate-reducing impurities from acetic acid
DE102008030254A1 (en) * 2008-06-25 2009-12-31 Osram Opto Semiconductors Gmbh Semiconductor laser module
US8450821B2 (en) * 2009-03-26 2013-05-28 Micron Technology, Inc. Method and apparatus providing combined spacer and optical lens element
DE102009055080B4 (en) 2009-12-21 2019-11-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for producing a structure, molding tool
DE102009055088B4 (en) 2009-12-21 2015-04-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a structure, optical component, optical layer stack
DE102009055083B4 (en) * 2009-12-21 2013-12-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optical layer stack and method for its production
US8434892B2 (en) 2011-03-30 2013-05-07 Varroccorp Holding Bv Collimator assembly
CN103062704B (en) * 2011-10-24 2017-01-18 欧司朗股份有限公司 Lens and lighting device with lens
US8888320B2 (en) 2012-01-27 2014-11-18 Hubbell Incorporated Prismatic LED module for luminaire
EP2870115A1 (en) * 2012-07-07 2015-05-13 LIMO Patentverwaltung GmbH & Co. KG Device for producing an electron beam
TWI609206B (en) * 2012-10-10 2017-12-21 Enplas Corp Optical coupling element and optical module having the same
US20180315894A1 (en) * 2017-04-26 2018-11-01 Advanced Semiconductor Engineering, Inc. Semiconductor device package and a method of manufacturing the same
US20180323354A1 (en) * 2017-05-07 2018-11-08 Yang Wang Light emitting device and method for manufacturing light emitting device
CN110421430A (en) * 2019-08-16 2019-11-08 东莞市银泰丰光学科技有限公司 A kind of making apparatus and manufacture craft of glass diffuser plate
US11446776B2 (en) * 2020-08-27 2022-09-20 Northrop Grumman Systems Corporation Method for assembling a hollow core optical fiber array launcher
CN113777768A (en) * 2021-10-13 2021-12-10 大连理工大学 Microscopic imaging and optical sensing Internet of things system based on 3D printing and manufacturing

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE385419B (en) * 1974-03-22 1976-06-28 Asea Ab LED DISPLAY FOR RADIATION OF RADIATION IN A PRESERVED DIRECTION
JPS581553B2 (en) * 1974-11-29 1983-01-11 株式会社日立製作所 Hikari Ketsugo Handoutaisouchi
JPS54133696A (en) * 1978-04-07 1979-10-17 Matsushita Electric Ind Co Ltd Supersonic grinding method
JPS54133697A (en) * 1978-04-07 1979-10-17 Matsushita Electric Ind Co Ltd Supersonic method
JPS55132076A (en) 1979-04-02 1980-10-14 Nippon Telegr & Teleph Corp <Ntt> Photoreceptor
JPS5624983A (en) * 1979-08-08 1981-03-10 Nec Corp Photo coupler
JPS575380A (en) * 1980-06-11 1982-01-12 Kokusai Denshin Denwa Co Ltd <Kdd> Output light coupling system for semiconductor laser
JPS57121285A (en) * 1981-01-20 1982-07-28 Fujitsu General Ltd Light coupling device
US4528446A (en) * 1982-06-30 1985-07-09 Honeywell Inc. Optoelectronic lens array with an integrated circuit
US4611884A (en) * 1982-11-24 1986-09-16 Magnetic Controls Company Bi-directional optical fiber coupler
EP0117606A1 (en) * 1983-01-28 1984-09-05 Xerox Corporation Collector for a LED array
US4767172A (en) * 1983-01-28 1988-08-30 Xerox Corporation Collector for an LED array
DE3316236A1 (en) * 1983-02-22 1984-08-23 Aetna Telecommunications Laboratories, Westboro, Mass. Optical coupler for fibre-optic circuits
JPS61121014A (en) * 1984-11-16 1986-06-09 Nec Corp Optical and electric hybrid integrated circuit
JPS61125759A (en) * 1984-11-20 1986-06-13 Olympus Optical Co Ltd Grinding method for non-spherical surface
JPS61164774A (en) * 1985-01-09 1986-07-25 Canon Inc Vibration polishing machine
SE455237B (en) * 1986-10-28 1988-06-27 Philips Norden Ab MONOLITIC MIRROR OBJECTIVE AND OPTICAL ARRANGEMENT INCLUDING TWO SADANA MIRROR OBJECTIVES
JP2859327B2 (en) * 1989-10-26 1999-02-17 旭光学工業株式会社 Real image type finder
US5644431A (en) * 1990-05-18 1997-07-01 University Of Arkansas, N.A. Directional image transmission sheet and method of making same
JPH04207091A (en) * 1990-11-30 1992-07-29 Toshiba Corp Semiconductor laser device
US5149958A (en) * 1990-12-12 1992-09-22 Eastman Kodak Company Optoelectronic device component package
CH683870A5 (en) * 1991-01-22 1994-05-31 Tesa Sa Opto-electronic sensor for measuring linear values.
JPH0553057A (en) * 1991-08-26 1993-03-05 Nikon Corp Reflection optical system
JP2830591B2 (en) * 1992-03-12 1998-12-02 日本電気株式会社 Semiconductor optical function device
JP3411340B2 (en) * 1992-09-09 2003-05-26 シャープ株式会社 Optical coupling device and method of manufacturing the same
DE4311530A1 (en) * 1992-10-02 1994-04-07 Telefunken Microelectron Optoelectronic component with a narrow opening angle
DE4240950C1 (en) * 1992-12-07 1994-03-31 Bosch Gmbh Robert Method for producing a cover for an integrated optical circuit and cover for an integrated optical circuit
US5359190A (en) * 1992-12-31 1994-10-25 Apple Computer, Inc. Method and apparatus for coupling an optical lens to an imaging electronics array
JPH071302A (en) * 1993-03-12 1995-01-06 Toshiba Corp Surface processing method
US5345725A (en) * 1993-04-06 1994-09-13 Anthony Frank H Variable pitch lapping block for polishing lenses
JPH0799339A (en) * 1993-04-30 1995-04-11 Sharp Corp Optically coupled device
JP3009981B2 (en) * 1993-07-30 2000-02-14 シャープ株式会社 Manufacturing method of tilt angle detector
US5537503A (en) * 1993-10-25 1996-07-16 Matsushita Electric Industrial Co., Ltd. Optical semiconductor module and method of fabricating the same
JP3253439B2 (en) * 1993-12-24 2002-02-04 シャープ株式会社 Manufacturing method of liquid crystal display element
JPH07251357A (en) * 1994-03-15 1995-10-03 Iba Kogyo Kk Engraving
US5500540A (en) * 1994-04-15 1996-03-19 Photonics Research Incorporated Wafer scale optoelectronic package
US5886332A (en) * 1994-04-19 1999-03-23 Geo Labs, Inc. Beam shaping system with surface treated lens and methods for making same
US5623181A (en) * 1995-03-23 1997-04-22 Iwasaki Electric Co., Ltd. Multi-layer type light emitting device
US5515253A (en) * 1995-05-30 1996-05-07 Sjobom; Fritz C. L.E.D. light assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9721126A1 *

Also Published As

Publication number Publication date
CA2239866A1 (en) 1997-06-12
CN1203675A (en) 1998-12-30
US20010043779A1 (en) 2001-11-22
JP3995026B2 (en) 2007-10-24
AU1368897A (en) 1997-06-27
WO1997021126A1 (en) 1997-06-12
JP2000501518A (en) 2000-02-08
US20020102071A1 (en) 2002-08-01
IL124796A0 (en) 1999-01-26
US6416237B2 (en) 2002-07-09
DE19610881B4 (en) 2008-01-10
DE19610881A1 (en) 1997-06-12
US6621631B2 (en) 2003-09-16
KR19990071946A (en) 1999-09-27
CN1152270C (en) 2004-06-02

Similar Documents

Publication Publication Date Title
WO1997021126A1 (en) Microsystem module
EP3535615B1 (en) Method for producing an optical system and optical system
EP0735397B1 (en) Micro-optical device for transforming beams of a laser diode array and method for the production of such a device
DE19932430C2 (en) Opto-electronic assembly and component for this assembly
DE60214186T2 (en) Process for making optical fiber collimators in the array
DE10238741A1 (en) Planar optical component and coupling device for coupling light between a planar optical component and an optical component
DE10043985A1 (en) Optical modifier and manufacturing method therefor
DE4440976A1 (en) Optical transmitter and receiver with a surface emitting laser
EP0815479B1 (en) Optical transceiver
EP1715368A1 (en) Component for optical coupling
DE10320152A1 (en) Optical fiber coupler with a relaxed alignment tolerance
DE69727343T2 (en) Optoelectronic module
DE102004038530B3 (en) Method and device for producing an optical connection between an optoelectronic component and an optical waveguide
DE19810624A1 (en) Electro-optical module
DE102018214803B4 (en) Device for coupling electromagnetic waves into a chip
CH694707A5 (en) Means for generating parallel collimated Strahlenbuendel from fiber-coupled laser diodes, and methods for their preparation.
CA2358219A1 (en) Collimator, collimator array and method of producing those member
DE19515688C1 (en) Optical transmission/reception module for bidirectional wavelength multiplex transmissions
DE102012025565B4 (en) An optical coupling system comprising an optical coupler and a translucent outer medium, and making and using such a system
EP1315992B1 (en) Coupling device and method for production thereof
DE19751650A1 (en) Optical component
DE102004059945A1 (en) Transmitter and receiver for high-tolerance optical fiber transmission
DE19721257A1 (en) Light beam formation device
EP1146570A1 (en) Semiconductor light emitting device and method for the manufacture of a carrier
EP0806684A1 (en) Optical transmitting and receiving module

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980527

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19990128

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: PROCESS OF MANUFACTURING A MICROSYSTEM MODULE

RTI1 Title (correction)

Free format text: PROCESS OF MANUFACTURING A MICROSYSTEM MODULE

RBV Designated contracting states (corrected)

Designated state(s): CH DE ES FR GB IT LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HENTZE, JOACHIM

Owner name: LISSOTSCHENKO, VITALIJ

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HENTZE, JOACHIM

Inventor name: LISSOTSCHENKO, VITALIJ

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20000402