EP0746609A1 - Transgenic non-human animals capable of producing heterologous antibodies - Google Patents

Transgenic non-human animals capable of producing heterologous antibodies

Info

Publication number
EP0746609A1
EP0746609A1 EP93901143A EP93901143A EP0746609A1 EP 0746609 A1 EP0746609 A1 EP 0746609A1 EP 93901143 A EP93901143 A EP 93901143A EP 93901143 A EP93901143 A EP 93901143A EP 0746609 A1 EP0746609 A1 EP 0746609A1
Authority
EP
European Patent Office
Prior art keywords
human
transgene
gene
transgenic
animal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP93901143A
Other languages
German (de)
French (fr)
Other versions
EP0746609A4 (en
Inventor
Nils Lonberg
Robert M. Kay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genpharm International Inc
Original Assignee
Genpharm International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/810,279 external-priority patent/US5569825A/en
Priority claimed from US07/853,408 external-priority patent/US5789650A/en
Application filed by Genpharm International Inc filed Critical Genpharm International Inc
Priority to EP02079536A priority Critical patent/EP1288229A3/en
Publication of EP0746609A1 publication Critical patent/EP0746609A1/en
Publication of EP0746609A4 publication Critical patent/EP0746609A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0278Knock-in vertebrates, e.g. humanised vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2812Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3007Carcino-embryonic Antigens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/42Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins
    • C07K16/4283Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an allotypic or isotypic determinant on Ig
    • C07K16/4291Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an allotypic or isotypic determinant on Ig against IgE
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/44Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material not provided for elsewhere, e.g. haptens, metals, DNA, RNA, amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/15Humanized animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/01Animal expressing industrially exogenous proteins
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/035Animal model for multifactorial diseases
    • A01K2267/0381Animal model for diseases of the hematopoietic system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered

Definitions

  • the invention relates to transgenic non-human animals capable of producing heterologous antibodies
  • transgenic animals used to produce such transgenic animals
  • transgenes capable of functionally rearranging a heterologous D gene in V-D-J recombination, immortalized B-cells capable of producing heterologous antibodies, methods and transgenes for producing heterologous antibodies of multiple isotypes, methods and transgenes for inactivating or suppressing
  • variable region sequence comprises somatic mutation
  • transgenic nonhuman animals which produce antibodies having a human primary sequence and which bind to human antigens.
  • human immunoglobulins that are reactive with specific human antigens that are promising therapeutic and/or diagnostic targets.
  • producing human immunoglobulins that bind specifically with human antigens is problematic.
  • the present technology for generating monoclonal antibodies involves pre-exposing, or priming, an animal
  • idiotype and also screening for immunoglobulin class (isotype), it is possible to select hybridoma clones that secrete the desired antibody.
  • transgenic animals harboring a functional heterologous immunoglobulin transgene are a method by which antibodies reactive with self antigens may be
  • the transgenic animal must produce transgenic B cells that are capable of maturing through the B lymphocyte development pathway. Such maturation requires the presence of surface IgM on the transgenic B cells, however isotypes other than IgM are desired for therapeutic uses.
  • transgenes and transgenic animals preferably include cis-acting sequences that
  • sequences for V(D)J joining are reportedly a highly conserved, near-palindromic heptamer and a less well conserved AT-rich nanomer separated by a spacer of either 12 or 23 bp (Tonegawa (1983), Nature, 302, 575-581; Hesse, et al. (1989), Genes in Dev. , 3, 1053-1061). Efficient recombination reportedly occurs only between sites containing recombination signal sequences with different length spacer regions.
  • mice [Buchini, et al. (1987), Nature. 326, 409-411 (unrearranged chicken ⁇ transgene); Goodhart, et al. (1987) , Proc. Natl. Acad. Sci. USA, 84, 4229-4233) (unrearranged rabbit k gene); and Bruggemann, et al. (1989), Proc. Natl. Acad. Sci. USA, 86, 6709-6713 (hybrid mouse-human heavy chain)].
  • the results of such experiments have been variable, in some cases, producing incomplete or minimal rearrangement of the
  • Fc portion of molecules such as the interaction with mast cells or basophils through Fee, and binding of complement by Fc ⁇ or Fc ⁇ , it further is desirable to generate a functional diversity of antibodies of a given specificity by variation of isotype.
  • transgenic animals have been generated that incorporate transgenes encoding one or more chains of a heterologous antibody, there have been no reports of hererologous transgenes that undergo successful isotype switching.
  • Transgenic animals that cannot switch isotypes are limited to producing h-iterologous antibodies of a single isotype, and more specifically are limited to producing an isotype that is essential for B cell maturation, such as IgM and possibly IgD, which may be of limited therapeutic utility.
  • IgM and possibly IgD an isotype that is essential for B cell maturation
  • transgenes and transgenic animals that are capable of
  • heterologous antibodies e.g. antibodies encoded by genetic sequences of a first species that are produced in a second species. More particularly, there is a need in the art for heterologous immunoglobulin transgenes and transgenic animals that are capable of undergoing functional V-D-J gene rearrangement that incorporates all or a portion of a D gene segment which contributes to recombinational diversity. Further, there is a need in the art for transgenes and transgenic animals that can support V-D-J recombination and isotype switching so that (1) functional B cell development may occur, and (2)
  • therapeutically useful heterologous antibodies may be any therapeutically useful heterologous antibodies.
  • transgenic nonhuman animals which are capable of producing a heterologous antibody, such as a human antibody.
  • heterologous antibodies wherein such B-cells are immortalized to provide a source of a monoclonal antibody specific for a particular antigen.
  • a further object of the invention is to provide methods to generate an immunoglobulin variable region gene segment repertoire that is used to construct one or more transgenes of the invention.
  • Transgenic nonhuman animals are provided which are capable of producing a heterologous antibody, such as a human antibody.
  • heterologous antibodies may be of various isotypes, including: IgG1, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, IgA sec , IgD, of IgE.
  • the transgenic B cells and pre-B cells to produce surface-bound immunoglobulin, particularly of the IgM (or possibly IgD) isotype, in order to effectuate B cell development and
  • a cell of the B-cell lineage will produce only a single isotype at a time, although cis or trans
  • RNA splicing such as occurs naturally with the ⁇ s (secreted ⁇ ) and ⁇ M (membrane-bound ⁇ ) forms, and the ⁇ and ⁇ immunoglobulin chains, may lead to the contemporaneous
  • isotype switching may be classical class- switching or may result from one or more non-classical isotype switching mechanisms.
  • the invention provides heterologous immunoglobulin transgenes and transgenic nonhuman animals harboring such transgenes, wherein the transgenic animal is capable of producing heterologous antibodies of multiple isotypes by undergoing isotype switching.
  • Classical isotype switching occurs by recombination events which involve at least one switch sequence region in the transgene.
  • Non-classical isotype switching may occur by, for example, homologous recombination between human ⁇ and human ⁇ ⁇ sequences ( ⁇ - associated deletion).
  • Alternative non-classical switching mechanisms such as intertransgene and/or interchromosomal recombination, among others, may occur and effectuate isotype switching.
  • transgenic nonhuman animals produce a first immunoglobulin isotype that is necessary for antigen-stimulated B cell maturation and can switch to encode and produce one or more subsequent heterologous isotypes that have therapeutic and/or diagnostic utility.
  • nonhuman animals of the invention are thus able to produce, in one embodiment, IgG, IgA, and/or IgE antibodies that are encoded by human immunoglobulin genetic sequences and which also bind specific human antigens with high affinity.
  • the invention also encompasses B-cells from such transgenic animals that are capable of expressing heterologous antibodies of various isotypes, wherein such B-cells are immortalized to provide a source of a monoclonal antibody specific for a particular antigen.
  • Hybridoma cells that are derived from such B-cells can serve as one source of such heterologous monoclonal antibodies.
  • the invention provides heterologous unrearranged and rearranged immunoglobulin heavy and light chain transgenes capable of undergoing isotype switching in vivo in the
  • isotype switching may occur spontaneously or be induced by treatment of the transgenic animal or explanted B- lineage lymphocytes with agents that promote isotype
  • T-cell-derived lymphokines e.g., IL-4 and IFN ⁇
  • the invention includes methods to induce heterologous antibody production in the aforementioned transgenic non-human animal, wherein such antibodies may be of various isotypes.
  • These methods include producing an antigen- stimulated immune response in a transgenic nonhuman animal for the generation of heterologous antibodies, particularly heterologous antibodies of a switched isotype (i.e., IgG, IgA, and IgE).
  • heterologous immunoglobulins produced in the transgenic animal and monoclonal antibody clones derived from the B-cells of said animal may be of various isotypes.
  • This invention further provides methods that facilitate isotype switching of the transgene, so that
  • Switch regions may be grafted from various C H genes and ligated to other C H genes in a transgene construct; such grafted switch sequences will typically function independently of the
  • ⁇ -associated deletion sequences may be linked to various C H genes to effect non-classical switching by deletion of sequences between two ⁇ -associated deletion sequences.
  • a transgene may be constructed so that a particular C H gene is linked to a different switch sequence and thereby is switched to more frequently than occurs when the naturally associated switch region is used.
  • This invention also provides methods to determine whether isotype switching of transgene sequences has occurred in a transgenic animal containing an immunoglobulin transgene.
  • the invention provides immunoglobulin transgene constructs and methods for producing immunoglobulin transgene constructs, some of which contain a subset of germline
  • immunoglobulin loci sequences (which may include deletions).
  • the invention includes a specific method for facilitated cloning and construction of immunoglobulin transgenes,
  • restriction sites flanked by two unique NotI sites. This method exploits the complementary termini of Xhol and Sall restrictions sites and is useful for creating large constructs by ordered concatemerization of restriction fragments in a vector.
  • the transgenes of the invention include a heavy chain transgene comprising DNA encoding at least one variable gene segment, one diversity gene segment, one joining gene segment and one constant region gene segment.
  • immunoglobulin light chain transgene comprises DNA encoding at least one variable gene segment, one joining gene segment and one constant region gene segment.
  • the gene segments encoding the light and heavy chain gene segments are heterologous to the transgenic non-human animal in that they are derived from, or correspond to, DNA encoding immunoglobulin heavy and light chain gene segments from a species not consisting of the transgenic non-human animal.
  • the transgene is constructed such that the individual gene segments are unrearranged, i.e., not rearranged so as to encode a functional immunoglobulin light or heavy chain.
  • Such unrearranged transgenes permit recombination of the gene segments (functional rearrangement) and expression of the resultant rearranged immunoglobulin heavy and/or light chains within the transgenic non-human animal when said animal is exposed to antigen.
  • heterologous heavy and light immunoglobulin transgenes comprise relatively large fragments of unrearranged heterologous DNA. Such fragments typically comprise a substantial portion of the C, J (and in the case of heavy chain, D) segments from a heterologous immunoglobulin locus. In addition, such fragments also comprise a substantial portion of the variable gene segments.
  • regulatory sequences e.g. promoters, enhancers, class switch regions, recombination signals and the like, corresponding to sequences derived from the heterologous DNA.
  • regulatory sequences may be incorporated into the transgene from the same or a related species of the non-human animal used in the invention.
  • human immunoglobulin gene segments may be combined in a transgene with a rodent immunoglobulin enhancer sequence for use in a transgenic mouse.
  • a transgenic non-human animal containing germline unrearranged light and heavy immunoglobulin transgenes - that undergo VDJ joining during D-cell differentiation - is contacted with an antigen to induce production of a heterologous antibody in a secondary repertoire B-cell.
  • vectors and methods to disrupt the endogenous immunoglobulin loci in the non-human animal to be used in the invention utilize a transgene, preferably positive-negative selection vector, which is constructed such that it targets the functional disruption of a class of gene segments encoding a heavy and/or light immunoglobulin chain endogenous to the non-human animal used in the invention.
  • endogenous gene segments include diversity, joining and constant region gene segments.
  • the positive-negative selection vector is contacted, with at least one embryonic stem cell of a non-human animal after which cells are selected wherein the positive-negative selection vector has integrated into the genome of the non-human animal by way of homologous recombination.
  • the resultant transgenic non-human animal is substantially incapable of mounting an immunoglobulin-mediated immune response as a result of homologous integration of the vector into chromosomal DNA.
  • Such immune deficient non-human animals may thereafter be used for study of immune deficiencies or used as the recipient of heterologous immunoglobulin heavy and light chain transgenes.
  • the invention also provides vectors, methods, and compositions useful for suppressing the expression of one or more species of immunoglobulin chain(s), without disrupting an endogenous immunoglobulin locus. Such methods are useful for suppressing expression of one or more endogenous immunoglobulin chain(s), without disrupting an endogenous immunoglobulin locus. Such methods are useful for suppressing expression of one or more endogenous immunoglobulin chain(s), without disrupting an endogenous immunoglobulin locus. Such methods are useful for suppressing expression of one or more endogenous
  • immunoglobulin chains while permitting the expression of one or more transgene-encoded immunoglobulin chains.
  • suppression of immunoglobulin chain expression does not require the time-consuming breeding that is needed to
  • Ig chain suppression may be accomplished with: (1) transgenes encoding and expressing antisense RNA that specifically hybridizes to an endogenous Ig chain gene sequence, (2) antisense oligonucleotides that specifically hybridize to. an endogenous Ig chain gene
  • immunoglobulins that bind specifically to an endogenous Ig chain polypeptide.
  • Fig. 1 depicts the complementarity determining regions CDR1, CDR2 and CDR3 and framework regions FR1, FR2, FR3 and FR4 in unrearranged genomic DNA and mRNA expressed from a rearranged immunoglobulin heavy chain gene
  • Fig. 2 depicts the human ⁇ chain locus
  • Fig. 3 depicts. the human ⁇ chain locus
  • Fig. 4 depicts the human heavy chain locus
  • Fig. 5 depicts a transgene construct containing a rearranged IgM gene ligated to a 25 kb fragment that contains human ⁇ 3 and ⁇ 1 constant regions followed by a 700 bp fragment containing the rat chain 3' enhancer sequence.
  • Fig. 6 is a restriction map of the human ⁇ chain locus depicting the fragments to be used to form a light chain transgene by way of in vivo homologous recombination.
  • Fig. 7 depicts the construction of pGP1.
  • Fig. 8 depicts the construction of the polylinker contained in pGP1.
  • Fig. 9 depicts the fragments used to construct a human heavy chain transgene of the invention.
  • Fig. 10 depicts the construction of pHIG1 and pCON1.
  • Fig. 11 depicts the human C ⁇ l fragments which are inserted into pRE3 (rat enhancer 3') to form pREG2.
  • Fig. 12 depicts the construction of pHIG3' and PCON.
  • Fig. 13 depicts the fragment containing human D region segments used in construction of the transgenes of the invention.
  • Fig. 14 depicts the construction of pHIG2 (D segment. containing plasmid).
  • Fig. 15 depicts the fragments covering the human J ⁇ and human C ⁇ gene segments used in constructing a transgene of the invention.
  • Fig. 16 depicts the structure of pE ⁇ .
  • Fig. 17 depicts the construction of pKapH.
  • Figs. 18A through 18D depict the construction of a positive-negative selection vector for functionally disrupting the endogenous heavy chain immunoglobulin locus of mouse.
  • Figs. 19A through 19C depict the construction of a positive-negative selection vector for functionally disrupting the endogenous immunoglobulin light-chain loci in mouse.
  • Figs. 20 a through e depict the structure of a kappa light chain targeting vector.
  • Figs. 21 a through f depict the structure of a mouse heavy chain targeting vector.
  • Fig. 22 depicts the map of vector pGPe.
  • Fig. 23 depicts the structure of vector pJM2.
  • Fig. 24 depicts the structure of vector pCOR1.
  • Fig. 25 depicts the transgene constructs for pIGM1, pHC1 and pHC2.
  • Fig. 26 depicts the structure of p ⁇ e2.
  • Fig. 27 depicts the structure of pVGE1.
  • Fig. 28 depicts the assay results of human Ig expression in a pHC1 transgenic mouse.
  • Fig,. 29 depicts the structure of pJCK1.
  • Fig. 30 depicts the construction of a synthetic heavy chain variable region.
  • Fig. 31 is a schematic representation of the ' heavy chain minilocus constructs pIGM 1 , pHC1, and pHC2.
  • Fig. 32 is a schematic representation of the heavy chain minilocus construct pIGG1 and the ⁇ light chain
  • Fig. 33 depicts a scheme to reconstruct functionally rearranged light chain genes.
  • Fig. 34 depicts serum ELISA results
  • Fig. 35 depicts the results of an ELISA assay of serum from 8 transgenic mice.
  • Fig. 36 is a schematic representation of plasmid pBCE1.
  • Fig. 37 depicts the immune response of transgenic mice of the present invention against KLH-DNP, by measuring IgG and IgM levels specific for KLH-DNP (37A), KLH (37B) and BSA-DNP (37C).
  • Fig. 38 shows ELISA data demonstrating the presence of antibodies that bind human carcinoembryonic antigen (CEA) and comprise human ⁇ chains; each panel shows reciprocal serial dilutions from pooled serum samples obtained from mice on the indicated day following immunization.
  • CEA carcinoembryonic antigen
  • Fig. 39 shows ELISA data demonstrating the presence of antibodies that bind human carcinoembryonic antigen (CEA) and comprise human ⁇ chains; each panel shows reciprocal serial dilutions from pooled serum samples obtained from mice on the indicated day following immunization.
  • CEA carcinoembryonic antigen
  • Fig. 40 shows aligned variable region sequences of 23 randomly-chosen cDNAs generated from mRNA obtained from lymphoid tissue of HCI transgenic mice immunized, with human carcinoembryonic antigen (CEA) as compared to the germline transgene sequence (top line); on each line nucleotide changes relative to germline sequence are shown above the alteration in deduced amino acid sequence (if any); the regions
  • Non-germline encoded nucleotides are shown in capital letters.
  • Germline V H 251 and J H are shown in lower case letters.
  • Deduced amino acid changes are given beneath
  • Fig. 41 shows the data from Fig. 40 in histogram format; deduced amino acid residue position is shown as the ordinate (left is the amino-terminal direction, right is in the direction towards the carboxy-terminus) and frequency of sequence variation is shown as the abscissa.
  • Fig. . 42 show the nucleotide sequence of a human DNA fragment, designated vk65.3, containing a V ⁇ gene segment; the deduced amino acid sequences of the V ⁇ coding regions are also shown; splicing and recombination signal sequences
  • Fig. 43 show the nucleotide sequence of a human DNA fragment, designated vk65.5, containing a V ⁇ gene segment; the deduced amino acid sequences of the V ⁇ coding regions are also shown; splicing and recombination signal sequences
  • Fig. 44 show the nucleotide sequence of a human DNA fragment, designated vk65.8, containing a V ⁇ gene segment; the deduced amino acid sequences of the V ⁇ coding regions are also shown; splicing and recombination signal sequences
  • Fig. 45 show the nucleotide sequence of a human DNA fragment, designated vk65.15, containing a V ⁇ gene segment; the deduced amino acid sequences of the V ⁇ coding regions are also shown; splicing and recombination signal sequences
  • Fig. 46 shows formation of a light chain minilocus by homologous recombination between two overlapping fragments which were co-injected.
  • Table 1 depicts the sequence of vector pGPe.
  • Table 2 depicts the sequence of gene V H 4 .8.
  • Table 3 depicts the detection of human IgM and IgG in the serum of transgenic mice of this invention.
  • Table 4 depicts sequences of VDJ joints.
  • Table 5 depicts the distribution of J segments incorporated into pHC1 transgene encoded transcripts to J segments found in adult human peripheral blood lymphocytes (PBL).
  • Table 6 depicts the distribution of D segments incorporated into pHC1 transgene encoded transcripts to D segments found in adult human peripheral blood lymphocytes (PBL).
  • Table 7 depicts the length of the CDR3 peptides from transcripts with in-frame VDJ joints in the pHC1 transgenic mouse and in human PBL.
  • Table 8 depicts the predicted amino acid sequences of the VDJ regions from 30 clones analyzed from a pHC1
  • Table 9 shows transgenic mice of line 112 that were used in the indicated experiments; (+) indicates the presence of the respective transgene, (++) indicates that the animal is homozygous for the J H D knockout transgene.
  • human immunoglobulins that are reactive with specific human antigens that are promising therapeutic and/or diagnostic targets.
  • producing human immunoglobulins that bind specifically with human antigens is problematic.
  • the immunized animal that serves as the source of B cells must make an immune response against the presented antigen.
  • the antigen presented In order for an animal to make an immune response, the antigen presented must be foreign and the animal must not be tolerant to the antigen.
  • self-tolerance will prevent an immunized human from making a substantial immune response to the human protein, since the only epitopes of the antigen that may be immunogenic will be those that result from polymorphism of the protein within the human population
  • B-cells for forming a hybridoma (a human in the illustrative given example) does make an immune response against an
  • One methodology that can be used to obtain human antibodies that are specifically reactive with human antigens is the production of a transgenic mouse harboring the human immunoglobulin transgene constructs of this invention.
  • transgenes containing all or portions of the human immunoglobulin heavy and light chain loci or transgenes containing synthetic "miniloci" (described infra, and in
  • transgenic nonhuman animal which comprise essential functional elements of the human heavy and light chain loci, are employed to produce a transgenic nonhuman animal.
  • a transgenic nonhuman animal will have the capacity to produce immunoglobulin chains that are encoded by human immunoglobulin genes, and additionally will be capable of making an immune response against human antigens.
  • transgenic animals can serve as a source of immune sera reactive with specified human antigens, and B-cells from such transgenic animals can be fused with myeloma cells to produce hybridomas that secrete monoclonal antibodies that are encoded by human, immunoglobulin genes and which are specifically reactive with human antigens.
  • transgenic mice containing various forms of immunoglobulin genes has been reported previously.
  • Rearranged mouse immunoglobulin heavy or light chain genes have been used to produce transgenic mice.
  • functionally rearranged human Ig genes including the ⁇ or ⁇ 1 constant region have been expressed in transgenic mice.
  • V-D-J or V-J not rearranged immunoglobulin genes have been variable, in some cases, producing incomplete or minimal rearrangement of the transgene.
  • immunoglobulin transgenes which undergo successful isotype switching between C H genes within a transgene.
  • antibody refers to a glycoprotein comprising at least two light polypeptide chains and two heavy polypeptide chains. Each of the heavy and light polypeptide chains contains a variable region (generally the amino terminal portion of the polypeptide chain) which
  • Each of the heavy and light polypeptide chains also comprises a constant region of the polypeptide chains (generally the carboxyl terminal portion) which may mediate the binding of the immunoglobulin to host tissues or factors including
  • a heterologous antibody is defined in relation to the transgenic non-human organism producing such an antibody. It is defined as an antibody having an amino acid sequence or an encoding DNA sequence corresponding to that found in an organism not consisting of the transgenic non-human animal.
  • hybrid antibody refers to an antibody having a light and heavy chains of different organismal origins.
  • an antibody having a human heavy chain associated with a murine light chain is a
  • isotype refers to the antibody class (e.g., IgM or IgG 1 ) that is encoded by heavy chain constant region genes.
  • isotype switching refers to the phenomenon by which the class, or isotype, of an antibody changes from one Ig class to one of the other Ig classes.
  • nonswitched isotype refers to the isotypic class of heavy chain that is produced when no isotype switching has taken place; the C H gene encoding the
  • nonswitched isotype is typically the first C H gene immediately downstream from the functionally rearranged VDJ gene.
  • switch sequence refers to those DNA sequences responsible for switch recombination.
  • a "switch donor” sequence typically a ⁇ switch region, will be 5' (i.e., upstream) of the construct region to be deleted during the switch recombination.
  • the "switch acceptor” region will be between the construct region to be deleted and the replacement constant region (e.g., ⁇ , ⁇ , etc.). As there is no specific site where recombination always occurs, the final gene sequence will typically not be predictable from the construct.
  • glycosylation pattern is defined as the pattern of carbohydrate units that are covalently attached to a protein, more specifically to an immunoglobulin protein.
  • a glycosylation pattern of a heterologous antibody can be characterized as being substantially similar to
  • glycosylation patterns which occur naturally on antibodies produced by the species of the nonhuman transgenic animal, when one of ordinary skill in the art- would recognize the glycosylation pattern of the heterologous antibody as being more similar to said pattern of glycosylation in the species of the nonhuman transgenic animal than to the species from which the C H genes of the transgene were derived.
  • telomere binding refers to the property of the antibody: (1) to bind to a predetermined antigen with an affinity of at least 1 x 10 7 M -1 , and (2) to preferentially bind to the predetermined antigen with an affinity that is at least twc-fold greater than its affinity for binding to a non-specific antigen (e.g., BSA, casein) other than the predetermined antigen.
  • a non-specific antigen e.g., BSA, casein
  • naturally-occurring refers to the fact that an object can be found in nature.
  • a polypeptide or polynucleotide sequence that is present in an organism (including viruses) that can be isolated from a source in nature and which has not been intentionally modified by man in the laboratory is naturally-occurring.
  • rearranged refers to a configuration of a heavy chain or light chain immunoglobulin locus wherein a V segment is positioned immediately adjacent to a D-J or J segment in a conformation encoding essentially a complete V H or V L domain, respectively.
  • immunoglobulin gene locus can be identified by comparison to germline DNA; a rearranged locus will have at least one recombined heptamer/nonamer homology element.
  • V segment configuration refers to the configuration wherein the V segment is not recombined so as to be immediately adjacent to a D or J segment.
  • the transgenes of the invention are constructed so as to produce isotype switching and one or more of the following: (1) high level and cell-type specific expression, (2) functional gene rearrangement, (3) activation of and response to allelic exclusion, (4) expression of a sufficient primary repertoire, (5) signal transduction, (6) somatic hypermutation, and (7) domination of the transgene antibody locus during the immune response.
  • the transgene need not activate allelic exclusion.
  • the transgene comprises a
  • transgenic non-human animals contain rearranged, unrearranged or a combination of rearranged and unrearranged heterologous immunoglobulin heavy and light chain transgenes in the
  • Each of the heavy chain transgenes comprises at least one C H gene.
  • the heavy chain transgene may contain functional isotype switch sequences, which are capable of supporting isotype switching of a heterologous transgene encoding multiple C H genes in B- cells of the transgenic animal.
  • Such switch sequences may be those which occur naturally in the germline immunoglobulin locus from the species that serves as the source of the transgene C H genes, or such switch sequences may be derived from those which occur in the species that is to receive the transgene construct (the transgeneic animal).
  • a human transgene construct that is used to produce a transgenic mouse may produce a higher frequency of isotype switching events if it incorporates switch sequences similar to those that occur naturally in the mouse heavy chain locus, as presumably the mouse switch sequences are optimized to
  • Switch sequences made be isolated and cloned by conventional cloning methods, or may be synthesized de novo from overlapping synthetic oligonucleotides designed on the basis of published sequence information relating to immunoglobulin switch region sequences (Mills et al., Nucl. Acids Res. 18:7305-7316 (1991);
  • heterologous heavy and light chain immunoglobulin transgenes are found in a significant fraction of the B-cells of the transgenic animal (at least 10 percent).
  • the transgenes of the invention include a heavy chain transgene comprising DNA encoding at least one variable gene segment, one diversity gene segment, one joining gene segment and at least one constant region gene segment.
  • the immunoglobulin light chain transgene comprises DNA encoding at least one variable gene segment, one joining gene segment and at least one constant region gene segment.
  • the gene segments encoding the light and heavy chain gene segments are
  • the transgene is constructed such that the individual gene segments are unrearranged, i.e., not rearranged so as to encode a functional immunoglobulin light or heavy chain.
  • unrearranged transgenes support
  • V, D, and J gene segments preferably support incorporation of all ora portion of a D region gene segment in the resultant
  • the transgenes comprise an unrearranged "mini-locus". Such transgenes typically comprise an unrearranged "mini-locus". Such transgenes typically comprise an unrearranged "mini-locus". Such transgenes typically comprise an unrearranged "mini-locus". Such transgenes typically comprise an unrearranged "mini-locus". Such transgenes typically comprise an unrearranged "mini-locus". Such transgenes typically comprise
  • the various regulatory sequences e.g. promoters, enhancers, class switch regions, splice-donor and splice- acceptor sequences for RNA processing, recombination signals and the like, comprise corresponding sequences derived from the heterologous DNA.
  • Such regulatory sequences may be incorporated into the transgene from the same or a related species of the non-human animal used in the invention.
  • human immunoglobulin gene segments may be combined in a transgene with a rodent immunoglobulin enhancer sequence for use in a transgenic mouse.
  • synthetic regulatory sequences may be incorporated into the transgene, wherein such synthetic regulatory sequences are not homologous to a
  • Synthetic regulatory sequences are designed according to consensus rules, such as, for example, those specifying the permissible sequences of a splice- acceptor site or a promoter/enhancer motif.
  • the invention also includes transgenic animals containing germ line cells having a heavy and light transgene wherein one of the said transgenes contains rearranged gene segments with the other containing unrearranged gene segments.
  • the rearranged transgene is a light chain immunoglobulin transgene and the unrearranged transgene is a heavy chain immunoglobulin transgene.
  • the basic structure of all immunoglobulins is based upon a unit consisting of two light polypeptide chains and two heavy polypeptide chains. Each light chain comprises two regions known as the variable light chain region and the constant light chain region. Similarly, the immunoglobulin heavy chain comprises two regions designated the variable heavy chain region and the constant heavy chain region.
  • the constant region for the heavy or light chain is encoded by genomic sequences referred to as heavy or light constant region gerie (C H ) segments.
  • C H heavy or light constant region gerie
  • the use of a particular heavy chain gene segment defines the class of immunoglobulin.
  • the ⁇ constant region gene segments define the IgM class of antibody whereas the use of a ⁇ , ⁇ 2, ⁇ 3 or ⁇ 4 constant region gene segment defines the IgG class of antibodies as well as the IgG subclasses IgG1 through IgG4.
  • the use of a ⁇ 1 or ⁇ 2 constant region gene segment defines the IgA class of antibodies as well as the subclasses IgA1 and IgA2.
  • the ⁇ and e constant region gene segments define the IgD and IgE antibodv classes, respectively.
  • immunoglobulin chains together contain the antigen binding domain of the antibody. Because of the need for diversity in this region of the antibody to permit binding to a wide range of antigens, the DNA encoding the initial or primary
  • repertoire variable region comprises a number of different DNA segments derived from families of specific variable region gene segments.
  • families comprise variable (V) gene segments and joining (J) gene segments.
  • V variable
  • J joining
  • the initial variable region of the light chain is encoded by one V gene segment and one J gene segment each selected from the family of V and J gene segments contained in the genomic DNA of the organism.
  • the DNA encoding the initial or primary repertoire variable region of the heavy chain comprises one heavy chain V gene segment, one heavy chain diversity (D) gene segment and one J gene segment, each selected from the appropriate V, D and J families of
  • a heavy chain transgene include cis-acting sequences that support functional V-D-J rearrangement that can incorporate all or part of a D region gene sequence in a rearranged V-D-J gene sequence. Typically, at least about 1 percent of
  • transgene-encoded heavy chains include recognizable D region sequences in the V region.
  • at least about 10 percent of transgene-encoded V regions include recognizable D region sequences, more preferably at least about 30 percent, and most preferably more than 50 percent include recognizable D region sequences.
  • a recognizable D region sequence is generally at least about eight consecutive nucleotides corresponding to a sequence present in a D region gene segment of a heavy chain transgene and/or the amino acid sequence encoded by such D region nucleotide sequence. For example, if a transgene includes the D region gene DHQ52, a transgene-encoded mRNA containing the sequence 5'-TAACTGGG-3' located in the V region between a V gene segment sequence and a J gene segment
  • a transgene includes the D region gene DHQ52
  • a transgeneencoded heavy chain polypeptide containing the amino acid sequence -DAF- located in the V region between a V gene segment amino acid sequence and a J gene segment amino acid sequence is recognizable as containing a D region sequence, specifically a DHQ52 sequence.
  • D region sequences may be recognizable but may not correspond identically to a consecutive D region sequence in the transgene.
  • CTAAXTGGGG-3' where X is A, T, or G, and which is located in a heavy chain V region and flanked by a V region gene sequence and a J region gene sequence, can be recognized as
  • polypeptide sequences -DAFDI-, -DYFDY-, or -GAFDI- located in a V region and flanked on the amino-terminal side by an amino acid sequence encoded by a transgene V gene sequence and flanked on the carboxyterminal side by an amino acid sequence encoded by a transgene J gene sequence is recognizable as a D region sequence.
  • an amino acid sequence or nucleotide sequence is recognizable as a D region sequence if: (1) the sequence is located in a V region and is flanked on one side by a V gene sequence (nucleotide sequence or deduced amino acid sequence) and on the other side by a J gene sequence (nucleotide sequence or deduced amino acid sequence) and (2) the sequence is substantially identical or substantially similar to a known D gene sequence (nucleotide sequence or encoded amino acid sequence).
  • substantially identical denotes a characteristic of a polypeptide sequence or nucleic acid sequence, wherein the polypeptide sequence has at least 50 percent sequence identity compared to a reference sequence, and the nucleic acid sequence has at least 70 percent sequence identity compared to a reference sequence.
  • the percentage of sequence identity is calculated excluding small deletions or additions which total less than 35 percent of the reference sequence.
  • the reference sequence may be a subset of a larger sequence, such as an entire D gene; however, the reference sequence is at least 8 nucleotides long in the case of
  • the reference sequence is at least 8 to 12 nucleotides or at least 3 to 4 amino acids, and preferably the reference sequence is 12 to 15 nucleotides or more, or at least 5 amino acids.
  • substantially similarity denotes a characteristic of an polypeptide sequence, wherein the
  • polypeptide sequence has at least 80 percent similarity to a reference sequence.
  • the percentage of sequence similarity is calculated by scoring identical amino acids or positional conservative amino acid substitutions as similar.
  • positional conservative amino acid substitution is one that can result from a single nucleotide substitution; a first amino acid is replaced by a second amino acid where a codon for the first amino acid and a codon for the second amino acid can differ by a single nucleotide substitution.
  • sequence -Lys-Glu-Arg-Val- is substantially similar to the sequence -Asn-Asp-Ser-Val-, since the codon sequence -AAA-GAA-AGA-GUU- can be mutated to -AAC-GAC-AGC-GUU- by introducing only 3 substitution mutations, single
  • the reference sequence may be a subset of a larger sequence. such as an entire D gene; however, the reference sequence is at least 4 amino residues long. Typically, the reference sequence is at least 5 amino acids, and preferably the
  • reference sequence is 6 amino acids or more.
  • immunoglobulin gene segments the V, D, J and constant (C) gene segments are found, for the most part, in clusters of V, D, J and C gene segments in the precursors of primary
  • RSS's recombination signal sequences
  • V, D and J segments flank recombinationally competent V, D and J segments.
  • RSS's necessary and sufficient to direct recombination comprise a dyad-symmetric heptamer, an AT-rich nonamer and an intervening spacer region of either 12 or 23 base pairs.
  • each V and D gene segment comprises the sequence CACAGTG or its analogue followed by a spacer of unconserved sequence and then a nonamer having the sequence ACAAAAACC or its analogue. These sequences are found on the J, or downstream side, of each V and D gene segment. Immediately preceding the germline D and J segments are again two recombination signal sequences, first the nonamer and then the heptamer again separated by an unconserved sequence. The heptameric and nonameric sequences following a V L , V H or D segment are complementary to those preceding the J L , D or J H segments with which they recombine. The spacers between the heptameric and nonameric sequences are either 12 base pairs long or between 22 and 24 base pairs long.
  • variable recombination between the V and J segments in the light chain and between the D and J segments of the heavy chain.
  • Such variable recombination is generated by variation in the exact place at which such segments are joined.
  • variation in the light chain typically occurs within the last codon of the V gene segment and the first codon of the J segment.
  • Similar imprecision in joining occurs on the heavy chain chromosome between the D and J H segments and may extend over as many as 10 nucleotides.
  • nucleotides may be inserted between the D and J H and between the V H and D gene segments which are not encoded by genomic DNA.
  • the addition of these nucleotides is known as N-region diversity.
  • RNA transcript After VJ and/or VDJ rearrangement, transcription of the rearranged variable region and one or more constant region gene segments located downstream from the rearranged variable region produces a primary RNA transcript which upon
  • RNA splicing results in an mRNA which encodes a full length heavy or light immunoglobulin chain.
  • heavy and light chains include a leader signal sequence to effect secretion through and/or insertion of the immunoglobulin into the transmembrane region of the B-cell.
  • the DNA encoding this signal sequence is contained within the first exon of the V segment used to form the variable region of the heavy or light immunoglobulin chain.
  • Appropriate regulatory sequences are also present in the mRNA to control translation of the mRNA to produce the encoded heavy and light immunoglobulin
  • polypeptides which upon proper association with each other form an antibody molecule.
  • variable region gene segments and the variable recombination which may occur during such joining is the production of a primary antibody repertoire.
  • each B-cell which has differentiated to this stage produces a single primary repertoire antibody.
  • cellular events occur which suppress the functional
  • allelic exclusion The process by which diploid B-cells maintain such mono-specificity is termed allelic exclusion.
  • B-cell clones expressing immunoglobulins from within the set of sequences comprising the primary repertoire are immediately available to respond to foreign antigens. Because of the limited diversity generated by simple VJ and VDJ joining, the antibodies produced by the so-called primary response are of relatively low affinity.
  • Two different types of B-cells make up this initial response: precursors of primary antibody-forming cells and precursors of secondary repertoire B-cells (Linton et al., Cell 59:1049-1059 (1989)).
  • the first type of B-cell matures into IgM-secreting plasma cells in response to certain antigens.
  • the other B-cells respond to initial exposure to antigen by entering a T-cell dependent maturation pathway.
  • the structure of the antibody molecule on the cell surface changes in two ways: the constant region switches to a non-IgM subtype and the sequence of the variable region can be modified by multiple single amino acid substitutions to produce a higher affinity antibody molecule.
  • variable region of a heavy or light Ig chain contains an antigen binding domain. It has been determined by amino acid and nucleic acid
  • CDRl, CDR2 and CDR3 also referred to as hypervariable regions 1, 2 and 3
  • the CDR1 and CDR2 are located within the variable gene segment whereas the CDR3 is largely the result of recombination between V and J gene segments or V, D and J gene segments.
  • Those portions of the variable region which do not consist of CDR1, 2 or 3 are commonly referred to as framework regions designated FR1, FR2, FR3 and FR4. See Fig. 1.
  • framework regions designated FR1, FR2, FR3 and FR4
  • rearranged DNA is mutated to give rise to new clones with altered Ig molecules.
  • Those clones with higher affinities for the foreign antigen are selectively expanded by helper
  • Transgenic non-human animals in one aspect of the invention are produced by introducing at least one of the immunoglobulin transgenes of the invention (discussed
  • non-human animals which are used in the invention generally comprise any mammal which is capable of rearranging immunoglobulin gene segments to produce a primary antibody response.
  • nonhuman transgenic animals may include, for example, transgenic pigs, transgenic rats, transgenic rabbits, transgenic cattle, and other transgenic animal species, particularly mammalian species, known in the art.
  • particularly preferred non-human animal is the mouse or other members of the rodent family.
  • mice any non-human mammal which is capable of mounting a primary and secondary antibody response may be used.
  • Such animals include non-human primates, such as chimpanzee, bovine, ovine, and porcine species, other members of the rodent family, e.g. rat, as well as rabbit and guinea pig.
  • Particular preferred animals are mouse, rat, rabbit and guinea pig, most preferably mouse.
  • various gene segments from the human genome are used in heavy and light chain transgenes in an unrearranged form.
  • such transgenes are introduced into mice.
  • the unrearranged gene segments of the light and/or heavy chain transgene have DNA sequences unique to the human species which are
  • the transgenes comprise rearranged heavy and/or light
  • transgenes corresponding to functionally rearranged VDJ or VJ segments contain immunoglobulin DNA sequences which are also clearly distinguishable from the endogenous immunoglobulin gene segments in the mouse.
  • sequences may be detected in the transgenic non-human animals of the invention with antibodies specific for immunoglobulin epitopes encoded by human immunoglobulin gene segments.
  • Transgenic B-cells containing unrearranged transgenes from human or other species functionally recombine the appropriate gene segments to form functionally rearranged light and heavy chain variable regions. It will be readily apparent that the antibody encoded by such rearranged
  • transgenes has a DNA and/or amino acid sequence which i ⁇ heterologous to that normally encountered in the nonhuman animal used to practice the indention.
  • an "unrearranged immunoglobulin heavy chain transgene” comprises DNA encoding at least one variable gene segment, one diversity gene segment, one joining gene segment and one constant region gene segment.
  • Each of the gene segments of said heavy chain transgene are derived from, or has a sequence corresponding to, DNA encoding
  • an "unrearranged immunoglobulin light chain transgene” comprises DNA encoding at least one variable gene segment, one joining gene segment and at least one constant region gene segment wherein each gene segment of said light chain tr; nsgene is derived from, or has a sequence corresponding to, DNA encoding immunoglobulin light chain gene segments from a species not consisting of the non-human animal into which said light chain transgene is introduced.
  • Such heavy and light chain transgenes in this aspect of the invention contain the above-identified gene segments in an unrearranged form.
  • interposed between the V, D and J segments in the heavy chain transgene and between the V and J segments on the light chain transgene are appropriate.
  • transgenes also include appropriate RNA splicing signals to join a constant region gene segment with the VJ or VDJ
  • switch regions are incorporated upstream from each of the constant region gene segments and downstream from the variable region gene segments to permit recombination between such constant regions to allow for immunoglobulin class switching, e.g. from IgM to IgG.
  • switch regions are incorporated upstream from each of the constant region gene segments and downstream from the variable region gene segments to permit recombination between such constant regions to allow for immunoglobulin class switching, e.g. from IgM to IgG.
  • immunoglobulin transgenes also contain transcription control sequences including promoter regions situated upstream from the variable region gene segments which typically contain TATA motifs.
  • a promoter region can be defined approximately as a DNA sequence that, when operably linked to a downstream sequence, can produce transcription of the downstream
  • Promoters may require the presence of additional linked cis-acting sequences in order to produce efficient transcription.
  • other sequences that participate in the transcription of sterile transcripts are preferably included. Examples of sequences that participate in
  • sequences typically include about at least 50 bp immediately upstream of a switch region, preferably about at least 200 bp upstream of a switch region; and more preferably about at least 200-1000 bp or more upstream of a switch region.
  • Suitable sequences occur immediately upstream of the human S ⁇ 1 , S ⁇ 2 , S ⁇ 3 , S ⁇ 4 , S ⁇ 1 , S ⁇ 2 , and S ⁇ switch regions, although the sequences immediately upstream of the human S ⁇ 1 , and S ⁇ 3 switch regions are preferable.
  • interferon (IFN) inducible transcriptional regulatory elements such as IFN-inducible enhancers, are preferably included immediately upstream of transgene switch sequences.
  • promoters In addition to promoters, other regulatory sequences which function primarily in B-lineage cells are used. Thus, for example, a light chain enhancer sequence situated
  • regulatory enhancers are used to maximize the transcription and translation of the transgene so as to induce allelic exclusion and to provide relatively high levels of transgene expression.
  • regulatory control sequences have been generically described, such regulatory sequences may be heterologous to the nonhuman animal being derived from the genomic DNA from which the heterologous transgene immunoglobulin gene segments are obtained. Alternately, such regulatory gene segments are derived from the corresponding regulatory sequences in the genome of the non-human animal, or closely related species, which contains the heavy and light transgene.
  • gene segments are derived from human beings.
  • the transgenic non-human animals harboring such heavy and light transgenes are capable of mounting an Ig-mediated immune response to a specific antigen administered to such an animal.
  • B-cells are produced within such an animal which are capable of producing heterologous human antibody.
  • an appropriate monoclonal antibody e.g. a hybridoma
  • a source of therapeutic human monoclonal antibody is provided.
  • Such human Mabs have significantly reduced immunogenicity when therapeutically administered to humans.
  • transgenic nonhuman animals contain functionally at least one rearranged
  • heterologous heavy chain immunoglobulin transgene in the germline of the transgenic animal.
  • Such animals contain primary repertoire B-cells that express such rearranged heavy transgenes.
  • B-cells preferably are capable of undergoing somatic mutation when contacted with an antigen to form a heterologous antibody having high affinity and specificity for the antigen.
  • Said rearranged transgenes will contain at least two C H genes and the associated sequences required for isotype switching.
  • the invention also includes transgenic animals containing germ line cells having heavy and light transgenes wherein one of the said transgenes contains rearranged gene segments with the other containing unrearranged gene segments.
  • the heavy chain transgenes shall have at least two C H genes and the associated sequences required for isotype switching.
  • the invention further includes methods for generating a synthetic variable region gene segment repertoire to be used in the transgenes of the invention.
  • the method comprises generating a population of immunoglobulin V segment DNAs wherein each of the V segment DNAs encodes an
  • immunoglobulin V segment contains at each end a cleavage recognition site of a restriction endonuclease.
  • Such synthetic variable region heavy chain transgenes shall have at least two C H genes and the associated sequences required for isotype switching.
  • the cell In the development of a B lymphocyte, the cell initially produces IgM with a binding specificity determined by the productively rearranged V H and V L regions.
  • each B cell and its progeny cells synthesize antibodies with the same L and H chain V regions, but they may switch the isotype of the H chain.
  • This gene rearrangement process typically occurs by recombination between so called switch segments located immediately upstream of each heavy chain gene (except S) .
  • the individual switch segments are between 2 and 10 kb in length, and consist primarily of short repeated sequences.
  • the switch (S) region of the ⁇ gene, S ⁇ is located about 1 to 2 kb 5' to the coding sequence and is composed of numerous tandem repeats of sequences of the form
  • All the sequenced S regions include numerous occurrences of the pentamers GAGCT and GGGGT that are the basic repeated elements of the S gene (T. Nikaido et al., J. Biol. Chem. 257:7322- 7329 (1982) which is incorporated herein by reference); in the other S regions these pentamers are not precisely tandemly repeated as in S ⁇ , but instead are embedded in larger repeat units.
  • the S ⁇ 1 region has an additional higher-order
  • Switch regions of human H chain genes have been found to be very similar to their mouse homologs. Indeed, similarity between pairs of human and mouse clones 5' to the C H genes has been found to be confined to the S regions, a fact that confirms the biological significance of these regions.
  • a switch recombination between ⁇ and a genes produces a composite S ⁇ -S ⁇ sequence.
  • the switch machinery can apparently accommodate different alignments of the repeated homologous regions of germline S precursors and then join the sequences at different positions within the alignment.
  • the switch machinery can apparently accommodate different alignments of the repeated homologous regions of germline S precursors and then join the sequences at different positions within the alignment.
  • cytokines might upregulate isotype-specific recombinases, it is also possible that the same enzymatic machinery catalyzes switches to all isotypes and that specificity lies in
  • T-cell-derived lymphokines IL-4 and IFN ⁇ have been shown to specifically promote the expression of certain isotypes: IL-4 decreases IgM, IgG2a, IgG2b, and IgG3
  • IgE and IgG1 expression increases IgE and IgG1 expression; while IFN ⁇ selectively stimulates IgG2a expression and antagonizes the IL-4-induced increase in IgE and IgG1 expression (Coffman et al., J. Immunol. 136:949-954 (1986) and Snapper et al.,
  • lymphokines actually promote switch recombination.
  • the observed induction of the ⁇ I sterile transcript by IL-4 and inhibition by IFN- ⁇ correlates with the observation that IL-4 promotes class switching to ⁇ 1 in B-cells in culture, while IFN- ⁇ inhibits ⁇ 1 expression. Therefore, the inclusion of regulatory sequences that affect the transcription of sterile transcripts may also affect the rate of isotype switching. For example, increasing the transcription of a particular sterile transcript typically can be expected to enhance the frequency of isotype switch
  • transgenes incorporate transcriptional regulatory sequences within about 1-2 kb upstream of each switch region that is to be utilized for isotype switching.
  • These transcriptional regulatory sequences preferably include a promoter and an enhancer element, and more preferably include the 5' flanking (i.e., upstream) region that is naturally associated (i.e., occurs in germline configuration) with a switch region. This 5' flanking (i.e., upstream) region that is naturally associated (i.e., occurs in germline configuration) with a switch region. This 5'
  • flanking region is typically about at least 50 nucleotides in length, preferably about at least 200 nucleotides in length, and more preferably at least 500-1000 nucleotides.
  • each switch region incorporated in the transgene construct have the 5' flanking region that occurs immediately upstream in the naturally occurring germline configuration.
  • transgene function An important requirement for transgene function is the generation of a primary antibody repertoire that is diverse enough to trigger a secondary immune response for a wide range of antigens.
  • V region proximal constant regions are deleted leading to the
  • RNA splicing For each heavy chain . class, alternative patterns of RNA splicing give rise to both transmembrane and secreted immunoglobulins.
  • the human heavy chain locus consists of
  • immunoglobulin heavy and light chain transgenes comprise unrearranged genomic DNA from humans.
  • a preferred transgene comprises a NotI fragment having a length between 670 to 830 kb. The length of this fragment is ambiguous because the 3' restriction site has not been accurately mapped. It is known, however, to reside between the ⁇ l and gene segments. This fragment contains members of all six of the known V H families, the D and J gene segments, as well as the ⁇ , ⁇ , ⁇ 3 , ⁇ 1 and ⁇ 1 constant regions (Berman et al., EMBO J. 7:727-738 (1988), which is incorporated herein by reference).
  • IgM B-cell development
  • IgG 1 switched heavy chain class
  • a genomic fragment containing all of the necessary gene segments and regulatory sequences from a human light chain locus may be similarly constructed. Such transgenes are constructed as described in the Examples.
  • immunoglobulin heavy chain locus may be formed in vivo in the non-human animal during transgenesis.
  • Such in vivo transgene construction is produced by introducing two or more
  • fragments have DNA sequences which are substantially identical
  • In vivo transgene construction can be used to form any number of immunoglobulin transgenes which because of their size are otherwise difficult, or impossible, to make or manipulate by present technology.
  • in vivo transgene construction is useful to generate immunoglobulin transgenes which are larger than DNA fragments which may be manipulated by YAC vectors (Murray and Szostak, Nature 305: 189-193
  • Such in vivo transgene construction may be used to introduce into a non-human animal substantially the entire immunoglobulin loci from a species not consisting of the transgenic non-human animal.
  • in vivo homologous recombination may also be utilized to form "mini-locus" transgenes as described in the Examples.
  • portions of the DNA fragments preferably comprise about 500 bp to about 2000 bp, most preferably 1.0 kb to 2.0 kb.
  • immunoglobulin minilocus refers to a DNA sequence (which may be within a longer
  • DNA sequence usually of less than about 150 kb, typically between about 25 and 100 kb, containing at least one each of the following: a functional variable (V) gene segment, a functional joining (J) region segment, at least one functional constant (C) region gene segment, and--if it is a heavy chain minilocus--a functional diversity (D) region segment, such that said DNA sequence contains at least one substantial discontinuity (e.g., a deletion, usually of at least about 2 to 5 kb, preferably 10-25 kb or more, relative to the
  • a light chain minilocus transgene will be at least 25 kb in length, typically 50 to 60 kb.
  • a heavy chain transgene will typically be about 70 to 80 kb in length, preferably at least about 60 kb with two
  • the individual elements of the minilocus are preferably in the germline configuration and capable of undergoing gene rearrangement in the pre-B cell of a
  • transgenic animal so as to express functional antibody
  • a heavy chain minilocus comprising at least two C H genes and the requisite switching sequences is typ.cally c pable of undergoing isotype switching, so that functional antibody molecules of different immunoglobulin classes will be generated.
  • switching may occur in vivo in B-cells residing within the transgenic nonhuman animal, or may occur in cultured cells of the B-cell lineage which have been explanted from the
  • immunoglobulin heavy chain transgenes comprise one or more of each of the V H , D, and J H gene segments and two or more of the C H genes. At least one of each appropriate type gene segment is
  • the transgene contain at least one ⁇ gene segment and at least one other constant region gene segment, more preferably a ⁇ gene segment, and most preferably ⁇ 3 or ⁇ 1.
  • constant region gene segments may also be used such as those which encode for the production of IgD, IgA and IgE.
  • transgenes wherein the order of occurrence of heavy chain C H genes will be different from the naturally-occurring spatial order found in the germline of the species serving as the donor of the C H genes.
  • C H genes from more than one individual of a species (e.g., allogeneic C H genes) and incorporate said genes in the
  • the resultant transgenic nonhuman animal may then, in some embodiments, make antibodies of various classes including all of the allotypes represented in the species from which the transgene C H genes were obtained.
  • C H gene combinations will produce a transgenic nonhuman animal which may produce antibodies of various classes corresponding to C H genes from various
  • Transgenic nonhuman animals containing interspecies C H transgenes may serve as the source of B-cells for
  • the heavy chain J region segments in the human comprise six functional J segments and three pseudo genes clustered in a 3 kb stretch of DNA. Given its relatively compact size and the ability to isolate these segments
  • J region gene segments be used in the mini-locus construct. Since this fragment spans the region between the ⁇ and ⁇ genes, it is likely to contain all of the 3' cis-linked regulatory elements required for ⁇ expression. Furthermore, because this fragment includes the entire J region, it contains the heavy chain enhancer and the ⁇ switch region (Mills et al., Nature 306:809 (1983); Yancopoulos and Alt, Ann. Rev. Immunol. 4:339-368 (1986), which are incorporated herein by reference).
  • the human D region consists of 4 or 5 homologous 9 kb subregions, linked in tandem (Siebenlist, et al. (1981), Nature, 294, 631-635). Each subregion contains up to 10 individual D segments. Some of these segments have been mapped- and are shown in Fig. 4.
  • Two different strategies are used to generate a mini-locus D region. The first strategy involves using only those D segments located in a short contiguous stretch of DNA that includes one or two of the repeated D subregions. A candidate is a single 15 kb fragment that contains 12 individual D segments. This piece of DNA consists of 2 contiguous EcoRI fragments and has been
  • D segments should be sufficient for a primary repertoire.
  • an alternative strategy is to ligate together several non-contiguous D-segment containing fragments, to produce a smaller piece of DNA with a greater number of segments. Additional D-segment genes can be identified, for example, by the presence of characteristic flanking nonamer and heptamer sequences, supra, and by reference to the
  • At least one, and preferably more than one V gene segment is used to construct the heavy chain minilocus
  • V segments, D segments, J segments, and C genes, with or without flanking sequences can be isolated as described in PCT Publication No. WO 92/03918, published March 19, 1992.
  • a minilocus light chain transgene may be similarly constructed from the human ⁇ or ⁇ immunoglobulin locus.
  • an immunoglobulin heavy chain minilocus transgene construct e.g., of about 75 kb, encoding V, D, J and constant region sequences can be formed from a plurality of DNA fragments, with each sequence being substantially homologous to human gene sequences.
  • the sequences are operably linked to transcription regulatory sequences and are capable of undergoing rearrangement.
  • constant region sequences e.g., ⁇ and ⁇
  • switch regions switch recombination also occurs.
  • An exemplary light chain transgene construct can be formed similarly from a plurality of DNA fragments, substantially homologous to human DNA and capable of undergoing
  • transgene constructs that are intended to undergo class switching should include all of the cis-acting sequences necessary to regulate sterile transcripts.
  • Switch regions and upstream promoters and regulatory sequences are preferred cis-acting sequences that are included in transgene constructs capable of isotype switching.
  • switch regions can be linked upstream of (and adjacent to) C H genes that do not naturally occur next to the particular switch region.
  • a human ⁇ 1 switch region may be linked upstream from a human ⁇ 2 C H gene, or a murine ⁇ 1 switch may be linked to a human C H gene.
  • An alternative method for obtaining ⁇ on-classical isotype switching (e.g., (S-associated deletion) in transgenic mice involves the inclusion of the 400 bp direct repeat sequences ( ⁇ and e ⁇ ) that flank the human ⁇ gene (Yasui et al., Eur. J. Immunol. 19:1399 (1989)).
  • Heavy chain transgenes can be
  • V H is a heavy chain variable region gene segment
  • D is a heavy chain D (diversity) region gene segment
  • J H is a heavy chain J (joining) region gene segment
  • S D is a donor region segment capable of participating in a recombination event with the S a acceptor region
  • C 1 is a heavy chain constant region gene segment encoding an isotype utilized in for B cell development (e.g., ⁇ or ⁇ ) ,
  • T is a cis-acting transcriptional regulatory region
  • S A is an acceptor region segment capable of participating in a recombination event with selected S D donor region segments, such that isotype switching occurs
  • C 2 is a heavy chain constant region gene segment encoding an isotype other than ⁇ (e.g., ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 1 , ⁇ 2 , ⁇ ).
  • V H , D, J H , S D , C 1 , T, S A , and C Z segments may be selected from various species, preferably mammalian species, and more preferably from human and murine germline DNA.
  • V H segments may be selected from various species, but are preferably selected from V H segments that occur naturally in the human germline, such as V H251 . Typically about 2 V H gene segments are included, preferably about 4 V H segments are included, and most preferably at least about 10 V H segments are included.
  • At least one D segment is typically included, although at least 10 D segments are preferably included, and some embodiments include more than ten D segments. Some preferred embodiments include human D segments.
  • At least one J H segment is incorporated in the transgene, although it is preferable to include about six J H segments, and some preferred embodiments include more than about six J H segments. Some preferred embodiments include human J H segments, and further preferred embodiments include six human J H segments and no nonhuman J H segments.
  • S D segments are donor regions capable of
  • S D and S A are switch. regions such as S ⁇ , s ⁇ 1 , S ⁇ 2 . S ⁇ 3 , S ⁇ 4 , S ⁇ , S ⁇ 2 , and S ⁇ .
  • the switch regions are murine or human, more preferably S D is a human or murine S and S A is a human or murine S ⁇ 1 .
  • S D and S A are preferably the 400 basepair direct repeat sequences that flank the human ⁇ gene.
  • C 1 segments are typically ⁇ or ⁇ genes, preferably a ⁇ gene, and more preferably a human or murine ⁇ gene.
  • T segments typically include S' flanking sequences that are adjacent to naturally occurring (i.e., germline) switch regions. T segments typically at least about at least 50 nucleotides in length, preferably about at least 200 nucleotides in length, and more preferably at least 500-1000 nucleotides in length. Preferably T segments are 5' flanking sequences that occur immediately upstream of human or murine switch regions in a germline configuration. It is also evident to those of skill in the art that T segments may comprise cis-acting transcriptional regulatory sequences that do not occur naturally in an animal germline (e.g., viral enhancers and promoters such as those found in SV40,
  • adenovirus and other viruses that infect eukaryotic cells.
  • C 2 segments are typically a ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 1 , ⁇ 2 , or ⁇ C H gene, preferably a human C H gene of these isotypes, and more preferably a human ⁇ 1 or ⁇ 3 gene.
  • Murine ⁇ 2a and ⁇ 2b may also be used, as may downstream (i.e., switched) isotype genes form various species.
  • the total length of the transgene will be typically 150 kilo basepairs or less.
  • the transgene will be other than a native heavy chain Ig locus.
  • deletion of unnecessary regions or substitutions with corresponding regions from other species will be present.
  • transgenic nonhuman animal The occurrence of isotype switching in a transgenic nonhuman animal may be identified by any method known to those in the art. Preferred embodiments include the following, employed either singly or in combination:
  • detection of mRNA transcripts that contain a sequence homologous to at least one transgene downstream C H gene other than ⁇ and an adjacent sequence homologous to a transgene V H - D H -J H rearranged gene; such detection may be by Northern hybridization, S 1 nuclease protection assays, PCR
  • detection in DNA from B-cells of the transgenic animal or in genomic DNA from hybridoma cells, of DNA rearrangements consistent with the occurrence of isotype switching in the transgene, such detection may be accomplished by Southern blot hybridization, PCR amplification, genomic cloning, or other method; or
  • each transgenic line may represent a
  • transgenes are typically integrated into host chromosomal DNA, most usually into germline DNA and propagated by subsequent breeding of germline transgenic breeding stock animals. However, other vectors and transgenic methods known in the present art or subsequently developed may be substituted as appropriate and as desired by a
  • Endogenous Immunoglobulin Loci The expression of successfully rearranged immunoglobulin heavy and light transgenes is expected to have a dominant effect by suppressing the rearrangement of the endogenous immunoglobulin genes in the transgenic nonhuman animal.
  • Another way to generate a nonhuman that is devoid of endogenous antibodies is by mutating the endogenous immunoglobulin loci. Using embryonic stem cell technology and homologous recombination, the endogenous immunoglobulin repertoire can be readily eliminated. The following describes the functional description of the mouse immunoglobulin loci.
  • the vectors and methods disclosed, however, can be readily adapted for use in other non-human animals.
  • this technology involves the inactivation of a gene, by homologous recombination, in a pluripotent cell line that is capable of differentiating into germ cell tissue.
  • a DNA construct that contains an altered, copy of a mouse immunoglobulin gene is introduced into the nuclei of embryonic stem cells. In a portion of the cells, the introduced DNA recombines with the endogenous copy of the mouse gene,
  • the mouse ⁇ locus contributes to only 5% of the immunoglobulins, inactivation of the heavy chain and/or ⁇ -light chain loci is sufficient. There are three ways to disrupt each of these loci, deletion of the J region, deletion of the J-C intron enhancer, and disruption of constant region coding sequences by the introduction of a stop codon. The last option is the most straightforward, in terms of DNA construct design. Elimination of the ⁇ gene disrupts B-cell maturation thereby preventing class switching to any of the functional heavy chain segments. The strategy for knocking out these loci is outlined below.
  • neomycin resistance gene from the plasmid pMCIneo is inserted into the coding region of the target gene.
  • the pMCIneo insert uses a hybrid viral promoter/enhancer sequence to drive neo expression. This promoter is active in embryonic stem cells. Therefore, neo can be used as a selectable marker for integration of the knock-out construct.
  • the HSV thymidine kinase (tk) gene is added to the end of the construct as a negative selection marker against random insertion events (Zijlstra, et al., supra.).
  • a preferred strategy for disrupting the heavy chain locus is the elimination of the J region. This region is fairly compact in the mouse, spanning only 1.3 kb.
  • the heavy-chain locus is knocked out by disrupting the coding region of the ⁇ gene.
  • This approach involves the same 15 kb Kpnl fragment used in the previous approach.
  • the 1.1 kb insert from pMCIneo is inserted at a unique BamHI site in exon II, and the HSV tk gene added to the 3' Kpnl end. Double crossover events on either side of the neo insert, that eliminate the tk gene, are then selected for. These are detected from pools of selected clones by PCR amplification.
  • One of the PCR primers is derived from neo sequences and the other from mouse sequences outside of the targeting vector. The functional disruption of the mouse immunoglobulin loci is presented in the Examples.
  • an alternative method for preventing the expression of an endogenous Ig locus is suppression.
  • Suppression of endogenous Ig genes may be accomplished with antisense RNA produced from one or more integrated transgenes, by antisense oligonucleotides, and/or by administration of antisera
  • Antisense RNA transgenes can be employed to
  • Antisense polynucleotides are polynucleotides that: (1) are complementary to all or part of a reference sequence, such as a sequence of an endogenous Ig C H or C L region, and (2) which specifically hybridize to a
  • complementary target sequence such as a chromosomal gene locus- or a Ig mRNA.
  • polynucleotides may include nucleotide substitutions,
  • Complementary antisense polynucleotides include soluble antisense RNA or DNA oligonucleotides which can hybridize specifically to
  • An antisense sequence is a
  • polynucleotide sequence that is complementary to at least one immunoglobulin gene sequence of at least about 15 contiguous nucleotides in length, typically at least 20 to 30 nucleotides in length, and preferably more than about 30 nucleotides in length.
  • antisense sequences may have substitutions, additions, or deletions as compared to the complementary immunoglobulin gene sequence, so long as
  • an antisense sequence is complementary to an endogenous immunoglobulin gene sequence that encodes, or has the potential to encode after DNA
  • sense sequences corresponding to an immunoglobulin gene sequence may function to suppress expression, particularly by interfering with transcription.
  • antisense polynucleotides therefore inhibit production of the encoded polypeptide (s).
  • antisense polynucleotides that inhibit transcription and/or translation of one or more endogenous Ig loci can alter the capacity and/or specificity of a non-human animal to produce immunoglobulin chains encoded by endogenous Ig loci.
  • Antisense polynucleotides may be produced from a heterologous expression cassette in a transfectant cell or transgenic cell, such as a transgenic pluripotent
  • the antisense polynucleotides may comprise soluble oligonucleotides that are administered to the external milieu, either in culture medium in vitro or in the circulatory system or interstitial fluid in vivo. Soluble antisense polynucleotides present in the external milieu have been shown to gain access to the
  • the antisense polynucleotides comprise methylphosphonate moieties, alternatively phosphorothiolates or O-methylribonucleotides may be used, and chimeric
  • oligonucleotides may also be used (Dagle et al. (1990) Nucleic Acids Res. 18: 4751). For some applications, antisense
  • oligonucleotides may comprise polyamide nucleic acids (Nielsen et al. (1991) Science 254: 1497). For general methods
  • Antisense polynucleotides complementary to one or more sequences are employed to inhibit transcription, RNA processing, and/or translation of the cognate mRNA species andthereby effect a reduction in the amount of the respective encoded polypeptide.
  • Such antisense polynucleotides can provide a therapeutic function by inhibiting the formation of one or more endogenous Ig chains in vivo.
  • the antisense polynucleotides of this invention are selected so as to hybridize preferentially to endogenous Ig sequences at physiological conditions in vivo. Most typically, the
  • selected antisense polynucleotides will not appreciably hybridize to heterologous Ig sequences encoded by a heavy or light chain transgene of the invention (i.e., the antisense oligonucleotides will not inhibit transgene Ig expression by more than about 25 to 35 percent).
  • Partial or complete suppression of endogenous Ig chain expression can be produced by injecting mice with antisera against one or more endogenous Ig chains (Weiss et al. (1984) Proc. ⁇ atl. Acad. Sci. (U.S.A.) 81 211, which is incorporated herein by reference).
  • Antisera are selected so as to react specifically with one or more endogenous Ig chains but to have minimal or no cross-reactivity with heterologous Ig chains encoded by an Ig transgene of the invention.
  • administration of selected antisera according to a schedule as typified by that of Weiss et al. op.cit. will suppress
  • nucleic acids the term "substantial homology” indicates" that two nucleic acids, or de gnated sequences thereof, when optimally aligned and compared, are identical, with appropriate nucleotide insertions or deletions, in at least about 80% of the nucleotides, usually at least about 90% to 95%, and more preferably at least about 98 to 99.5% of the nucleotides. Alternatively, substantial homology exists when the segments will hybridize under selective hybridization conditions, to the complement of the strand.
  • the nucleic acids may be present in whole cell ⁇ , in a cell lysate, or in a partially purified or substantially pure form.
  • a nucleic acid is "isolated” or “rendered substantially pure” when purified away from other cellular components or other contaminants, e.g., other cellular nucleic acids or proteins, by standard techniques, including alkaline/SDS treatment, CsCl banding, column chromatography, agarose gel electrophoresis and others well known in the art. See, F. Ausubel, et al., ed. Current Protocols in Molecular Biology, Greene Publishing and Wiley- Interscience, New York (1987).
  • DNA sequences substantially identical to a native sequence (except for modified restriction sites and the like), from either cDNA, genomic or mixtures may be mutated, thereof in accordance with standard techniques to provide gene sequences.
  • these mutations may affect amino acid sequence as desired.
  • DNA sequences substantially identical to a native sequence (except for modified restriction sites and the like), from either cDNA, genomic or mixtures may be mutated, thereof in accordance with standard techniques to provide gene sequences.
  • these mutations may affect amino acid sequence as desired.
  • DNA sequences substantially identical to a native sequence (except for modified restriction sites and the like), from either cDNA, genomic or mixtures may be mutated, thereof in accordance with standard techniques to provide gene sequences.
  • these mutations may affect amino acid sequence as desired.
  • DNA sequences substantially identical to a native sequence (except for modified restriction sites and the like), from either cDNA, genomic or mixtures may be mutated, thereof in accordance with standard techniques to provide gene sequences.
  • these mutations may affect amino acid sequence as desired.
  • a nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence.
  • a promoter or enhancer is operably linked to a coding sequence if it affects the
  • operably linked means that the DNA sequences being linked are contiguous and, where necessary to join two protein coding regions, contiguous and in reading frame.
  • operably linked indicates that the sequences are capable of effecting switch recombination.
  • a preferred embodiment of the invention is an animal containing at least one, typically 2-10, and sometimes 25-50 or more copies of the transgene described in Example 12 (e.g., pHC1 or pHC2) bred with an animal containing a single copy of a light chain transgene described in Examples 5, 6, 8, or 14, and the offspring bred with the J H deleted animal described in Example 10. Animals are bred to homozygosity for each of these three traits.
  • Such animals have the following genotype: a single copy (per haploid set of chromosomes) of a human heavy chain unrearranged mini-locus (described in Example 12), a single copy (per haploid set of chromosomes) of a rearranged human ⁇ light chain construct (described in Example 14), and a deletion at each endogenous mouse heavy chain locus that removes all of the functional J H segments (described in
  • Example 10 Such animals are bred with mice that are
  • B cells will be monospecific with regards to human or mouse heavy chains because both endogenous mouse heavy chain gene copies are nonfunctional by virtue of the deletion spanning the J H region introduced as described in Example 9 and 12. Furthermore, a substantial fraction of the B cells will be monospecific with regards to the human or mouse light chains because expression of the single copy of the rearranged human ⁇ light chain gene will allelically and isotypically exclude the rearrangement of the endogenous mouse ⁇ and ⁇ chain genes in a significant fraction of B-cells.
  • the transgenic mouse of the preferred embodiment will exhibit immunoglobulin production with a significant repertoire, ideally substantially similar to that of a native mouse.
  • the total immunoglobulin levels will range from about 0.1 to 10 mg/ml of serum,
  • the adult mouse ratio of serum IgG to IgM is preferably about 10:1.
  • the IgG to IgM ratio will be much lower in the
  • spleen and lymph node B cells express exclusively human IgG protein.
  • the repertoire will ideally approximate that shown in a non-transgenic mouse, usually at least about 10% as high, preferably 25 to 50% or more.
  • immunoglobulins ideally IgG
  • 10 4 to 10 6 or more will be produced, depending primarily on the number of different V, J and D regions introduced into the mouse genome.
  • These immunoglobulins will typically recognize about one-half or more of highly antigenic proteins,
  • immunoglobulins will exhibit an affinity for preselected antigens of at least about 10 7 M -1 , preferably 10 8 M -1 to 10 9 M -1 or greater.
  • transgenic animal prior to rearrangement of a transgene containing various heavy or light chain gene segments, such gene segments may be readily identified, e.g. by hybridization or DNA sequencing, as being from a species of organism other than the transgenic animal.
  • transgenic animal of the invention Although the foregoing describes a preferred embodiment of the transgenic animal of the invention, other embodiments are defined by the disclosure herein and more particularly by the transgenes described in the Examples.
  • transgenic animal Four categories of transgenic animal may be defined:
  • Transgenic animals containing an unrearranged heavy and unrearranged light immunoglobulin transgene III Transgenic animal containing rearranged heavy and an unrearranged light immunoglobulin transgene, and IV.
  • the preferred order of preference is as follows II > I > III > IV where the endogenous light chain genes (or at least the ⁇ gene) have been knocked out by homologous recombination (or other method) and I > II > III >IV where the endogenous light chain genes have not been knocked out and must be dominated by allelic exclusion.
  • Transgenic mice are derived according to Hogan, et al., "Manipulating the Mouse Embryo: A Laboratory Manual", Cold Spring Harbor Laboratory, which is incorporated herein by reference.
  • Embryonic stem cells are manipulated according to published procedures (Teratocarcinomas and embryonic stem cells: a practical approach, E.J. Robertson, ed., IRL Press, Washington, D.C., 1987; Zjilstra et al., Nature 342:435-438 (1989); and Schwartzberg et al., Science 246:799-803 (1989), each of which is incorporated herein by reference).
  • Oligonucleotides are synthesized on an Applied Bio Systems oligonucleotide synthesizer according to
  • Hybridoma cells and antibodies are manipulated according to "Antibodies: A Laboratory Manual”, Ed Harlow and David Lane, Cold Spring Harbor Laboratory (1988), which is incorporated herein by reference.
  • the isolated nuclei (or PBS washed human spermatocytes) are embedded in a low melting point agarose matrix and lysed with EDTA and proteinase ⁇ to expose high molecular weight DNA, which is then digested in the agarose with the restriction enzyme NotI as described by M. Finney in Current Protocols in Molecular Biology (F. Ausubel, et al., eds. John Wiley & Sons, Supp. 4, 1988, Section 2.5.1).
  • the NotI digested DNA is then fractionated by pulsed field gel electrophoresis as described by Anand et al.,
  • Plasmid pYACNN is prepared by digestion of pYAC-4 Neo (Cook et al., Nucleic Acids Res. 16: 11817 (1988)) with EcoRI and ligation in the presence of the oligonucleotide 5' - AAT TGC GGC CGC - 3'.
  • a 450 kb Xhol to NotI fragment that includes all of C ⁇ , the 3' enhancer, all J segments, and at least five different V segments is isolated and microinjected into the nucleus of single cell embryos as described in Example 1.
  • a 750 kb Mlul to NotI fragment that includes all of the above plus at least 20 more V segments is isolated as described in Example 1 and digested with BssHII to produce a fragment of about 400 kb.
  • the 450 kb Xhol to NotI fragment plus the approximately 400 kb Mlul to BssHII fragment have sequence overlap defined by the BssHII and Xhol restriction sites.
  • pBR322 is digested with EcoRI and StyI and ligated with the following oligonucleotides to generate pGP1 which contains a 147 base pair insert containing the restriction sites shown in Fig. 8. The general overlapping of these oligos is also shown in Fig. 9.
  • the oligonucleotides are:
  • AAA AGC CCG CTC ATT AGG CGG GCT - 3'
  • This plasmid contains a large polylinker flanked by rare cutting NotI sites for building large inserts that can be isolated from vector sequences for microinjection.
  • the plasmid is based on pBR322 which is relatively low copy compared to the pUC based plasmids (pGP1 retains the pBR322 copy number control region near the origin of replication). Low copy number reduces the potential toxicity of insert sequences.
  • pGP1 contains a strong transcription terminator sequence derived from trpA (Christie et al., Proc. Natl. Acad. Sci. USA 78:4180 (1981)) inserted between the ampicillin resistance gene and the polylinker. This further reduces the toxicity associated with certain inserts by preventing readthrough transcription coming from the
  • ampicillin promoters are ampicillin promoters.
  • Plasmid pGP2 is derived from pGP1 to introduce an additional restriction site (Sfil) in the polylinker.
  • pGP1 is digested with Mlul and Spel to cut the recognition sequences in the polylinker portion of the plasmid.
  • the following adapter oligonucleotides are ligated to the thus digested pGP1 to form pGP2.
  • a 3' pGP2 is identical to pGP1 except that it contains an additional Sfi I site located between the Mlul and Spel sites. This allows inserts to be completely excised with Sfil as well as with NotI.
  • the rat IGH 3' enhancer sequence is PCR amplified by using the following oligonucleotides: 5' CAG GAT CCA GAT ATC AGT ACC TGA AAC AGG GCT TGC 3'
  • the thus formed double stranded DNA encoding the 3' enhancer is cut with BamHI and SphI and clone into BamHI/SphI cut pGP2 to yield pRE3 (rat enhancer 3').
  • pMUM is 4 kb EcoRI/Hindlll fragment isolated from human genomic DNA library with oligonucleotide:
  • pGP1 is digested with BamHI and Bglll followed by treatment with calf intestinal alkaline phosphatase.
  • Fragments (a) and (b) from Fig. 9 are cloned in the digested pGP1.
  • a clone is then isolated which is oriented such that 5' BamHI site is destroyed by BamHI/Bgl fusion. It is identified as pMU (see Fig. 10).
  • pMU is digested with BamHI and fragment (c) from Fig. 9 is inserted.
  • the resultant plasmid pHIG1 (Fig. 10) contains an 18 kb insert encoding J and C ⁇ segments.
  • pGP1 is digested with BamHI and Hindlll is followed by treatment with calf intestinal alkaline phosphatase (Fig. 14).
  • the so treated fragment (b) of Fig. 14 and fragment (c) of Fig. 14 are cloned into the BamHI/Hindlll cut pGP1.
  • Proper orientation of fragment (c) is checked by Hindlll digestion to form pCON1 containing a 12 kb insert encoding the C ⁇ region.
  • pHIGl contains J segments, switch and ⁇ sequences in its 18 kb insert with an Sfil 3' site and a Spel 5' site in a polylinker flanked by NotI sites, will be used for rearranged VDJ segments.
  • pCON1 is identical except that it lacks the J region and contains only a 12 kb insert. The use of pCON1 in the construction of fragment containing rearranged VDJ segments will be described hereinafter.
  • An intronic sequence is a nucleotide sequence of at least 15 contiguous nucleotides that occurs in an intron of a specified gene.
  • Phage clones containing the ⁇ -1 region are identified and isolated "sing the following oligonucleotide which is specific for the third exon of ⁇ -1 (CH3).
  • a 7.7 kb Hindlll to Bglll fragment (fragment (a) in Fig. 11) is cloned into Hindlll/Bglll cut pRE3 to form pREGl.
  • the upstream 5.3 kb Hindlll fragment (fragment (b) in Fig. 11) is cloned into Hindlll digested pREGl to form pREG2. Correct orientation is confirmed by BamHI/Spel digestion.
  • the previously described plasmid pHIGl contains human J segments and the C ⁇ constant region exons.
  • pHIG1 was digested with Sfil (Fig. 10).
  • the plasmid pREG2 was also digested with Sfil to produce a 13.5 kb insert containing human C ⁇ exons and the rat 3' enhancer sequence.
  • sequences were combined to produce the plasmid pHIG3' (Fig. 12) containing the human J segments, the human C ⁇ constant region, the human C ⁇ 1 constant region and the rat 3' enhancer contained on a 31.5 kb insert.
  • a second plasmid encoding human C ⁇ and human C ⁇ 1 without J segments is constructed by digesting pCON1 with Sfil and combining that with the Sfil fragment containing the human C ⁇ region and the rat 3' enhancer by digesting pREG2 with Sfil.
  • the resultant plasmid, pCON (Fig. 12) contains a 26 kb NotI/Spel insert containing human C ⁇ , human ⁇ 1 and the rat 3' enhancer sequence.
  • Fig. 13 Phage clones from the human genomic library containing D segments are identified and isolated using probes specific for diversity region sequences (Ichihara et al., EMBO J. 7:4141-4150 (1988)). The following
  • oligonucleotides are used:
  • DXP1 5' - TGG TAT TAC TAT GGT TCG GGG AGT TAT TAT
  • DXP4 5' - GCC TGA AAT GGA GCC TCA GGG CAC AGT GGG
  • CAC GGA CAC TGT - 3' DN4 5' - GCA GGG AGG ACA TGT TTA GGA TCT GAG GCC
  • a 5.2 kb Xhol fragment (fragment (b) in Fig. 13) containing DLR1, DXP1, DXP'1, and DA1 is isolated from a phage clone identified with oligo DXP1.
  • a 3.2 kb Xbal fragment (fragment (c) in Fig. 13) containing DXP4, DA4 and DK4 is isolated from a phage clone identified with oligo DXP4.
  • This plasmid contains diversity segments cloned into the polylinker with a unique 5' Sfil site and unique 3' Spel site. The entire polylinker is flanked by NotI sites.
  • a restriction map of the unrearranged V segment is determined to identify unique restriction sites which provide upon digestion a DNA fragment having a length approximately 2 kb containing the unrearranged V segment together with 5' and 3' flanking sequences.
  • the 5' prime sequences will include promoter and other regulatory sequences whereas the 3'
  • flanking sequence provides recombination sequences necessary for V-DJ joining. This approximately 3.0 kb V segment insert is cloned into the polylinker of pGB2 to form pVH1.
  • pVHl is digested with Sfil and the resultant fragment is cloned into the Sfil site of pHIG2 to form a
  • pHIG5 contains D segments only, the resultant pHIG5' plasmid contains a single V segment together with D segments.
  • the size of the insert contained in pHIG5 is 10.6 kb plus the size of the V segment insert.
  • pHIG5 The insert from pHIG5 is excised by digestion with NotI and Spel and isolated.
  • pHIG3' which contains J, C ⁇ and C ⁇ 1 segments is digested with Spel and NotI and the 3' kb fragment containing such sequences and the rat 3' enhancer sequence is isolated. These two fragments are combined and ligated into NotI digested pGP1 to produce pHIG which contains insert encoding a V segment, nine D segments, six functional J segments, C ⁇ , C ⁇ and the rat 3' enhancer.
  • the size of this insert is approximately 43 kb plus the size of the V segment insert.
  • the insert of pHIG is approximately 43 to 45 kb when a single V segment is employed. This insert size is at or near the limit of that which may be readily cloned into plasmid vectors.
  • the following describes in vivo homologous recombination of overlapping DNA fragments which upon homologous recombination within a zygote or ES cell form a transgene containing the rat 3' enhancer sequence, the human C ⁇ , the human C ⁇ 1, human J segments, human D segments and a multiplicity of human V segments.
  • a 6.3 kb BamHI/Hindlll fragment containing human J segments (see fragment (a) in Fig. 9) is cloned into Mlul/Spel digested pHIG5' using the following adapters: 5' GAT CCA AGC AGT 3'
  • the resultant is plasmid designated pHIG5'O (overlap).
  • the insert contained in this plasmid contains human V, D and J segments. When the single V segment from pVHl is used, the size of this insert is approximately 17 kb plus 2 kb.
  • This insert is isolated and combined with the insert from pHIG3' which contains the human J, C ⁇ , ⁇ 1 and rat 3' enhancer sequences. Both inserts contain human J segments which provide for approximately 6.3 kb of overlap between the two DNA fragments. When coinjected into the mouse zygote, in vivo homologous recombination occurs generating a transgene equivalent to the insert contained in pHIG.
  • This approach provides for the addition of a multiplicity of V segments into the transgene formed in vivo.
  • a multiplicity of V segments contained on (1) isolated genomic DNA, (2) ligated DNA derived from genomic DNA, or (3) DNA encoding a synthetic V segment repertoire is cloned into pHIG2 at the Sfil site to generate pHIG5' V N .
  • the J segments fragment (a) of Fig. 9 is then cloned into pHIG5' V N and the insert isolated.
  • This insert now contains a multiplicity of V segments and J segments which overlap with the J segments contained on the insert isolated from pHIG3'.
  • mouse heavy chain enhancer is isolated on the Xbal to EcoRI 678 bp fragment (Banerji et al., Cell 33:729-740 (1983)) from phage clones using oligo: 5' GAA TGG GAG TGA GGC TCT CTC ATA CCC
  • the ⁇ construct contains at least one human V ⁇ segment, all five human J ⁇ segments, the human J-C ⁇ enhancer, human ⁇ constant region exon, and, ideally, the human 3' ⁇ enhancer (Meyer et al., EMBO J. 8:1959-1964 (1989)).
  • the ⁇ enhancer in mouse is 9 kb downstream from C ⁇ . However, it is as yet unidentified in the human.
  • the construct contains a copy of the mouse heavy chain J-C ⁇ enhancers.
  • the minilocus is constructed from four component fragments:
  • this sequence is included to induce expression of the light chain construct as early as possible in B-cell development. Because the heavy chain genes are transcribed earlier than the light chain genes, this heavy chain enhancer is presumably active at an earlier stage than the intronic ⁇ enhancer); and
  • the 16 kb fraction is isolated from the Smal digested gel and the 11 kb region is similarly isolated from the gel containing DNA digested with BamHI.
  • the 11 kb BamHI fraction is cloned into ⁇ EMBL3 (Strategene, La Jolla, California) which is digested with BamHI prior to cloning.
  • the above C ⁇ specific oligonucleotide is used to probe the ⁇ EMBL3/BamHI library to identify an 11 kb clone.
  • a 5 kb Smal fragment fragment (b) in Fig. 20) is subcloned and subsequently inserted into pKapl digested with Smal.
  • Those plasmids containing the correct orientation of J segments, C ⁇ and the E ⁇ enhancer are designated pKap2.
  • V ⁇ segments are thereafter subcloned into the Mlul site of pKap2 to yield the plasmid pKapH which encodes the human V ⁇ segments, the human J ⁇ segments, the human C ⁇ segments and the human E ⁇ enhancer.
  • This insert is excised by digesting pKapH with NotI and purified by agarose gel electrophoresis. The thus purified insert is
  • the 11 kb BamHI fragment is cloned into BamHI .
  • V ⁇ segments is inserted into the polylinker between the BamHI and Spel sites in pKAPint to form pKapHV.
  • the insert of pKapHV is excised by digestion with NotI and purified.
  • the insert from pKap2 is excised by digestion with NotI and purified.
  • Each of these fragments contain regions of homology in that the fragment from pKapHV contains a 5 kb sequence of DNA that include the J ⁇ segments which is substantially homologous to the 5 kb Smal fragment contained in the insert obtained from pKap2.
  • these inserts are capable of homologously recombining when microinjected into a mouse zygote to form a transgene encoding V ⁇ , J ⁇ and C ⁇ .
  • This example describes the cloning of immunoglobulin ⁇ light chain genes from cultured cells that express an immunoglobulin of interest.
  • Such cells may contain multiple alleles of a given immunoglobulin gene.
  • a hybridoma might contain four copies of the ⁇ light chain gene, two copies from the fusion partner cell line and two copies from the original B-cell expressing the immunoglobulin of interest. Of these four copies, only one encodes the
  • immunoglobulin of interest despite the fact that several of them may be rearranged.
  • the procedure described in this example allows for the selective cloning of the expressed copy of the ⁇ light chain.
  • RNA is then used for the isolation of polyA+ RNA.
  • single-stranded cDNA is then purified and used as template for second strand synthesis (catalyzed by the enzyme DNA
  • the double stranded cDNA is isolated and used for determining the nucleotide sequence of the 5' end of the mRNAs encoding the heavy and light chains of the expressed
  • the double stranded cDNA described in part A is denatured and used as a template for a third round of DNA synthesis using the following oligonucleotide primer: 5' - GTA CGC CAT ATC AGC TGG ATG AAG TCA TCA GAT
  • This primer contains sequences specific for the constant portion of the ⁇ light chain message (TCA TCA GAT GGC GGG AAG ATG AAG ACA GAT GGT GCA) as well as unique sequences that can be used as a primer for the PCR amplification of the newly synthesized DNA strand (GTA CGC CAT ATC AGC TGG ATG AAG).
  • the sequence is amplified by PCR using the following two oligonucleotide primers: 5' - GAG GTA CAC TGA CAT ACT GGC ATG -3'
  • the PCR amplified sequence is then purified by gel electrophoresis and used as template for dideoxy sequencing reactions using the following oligonucleotide as a primer: 5' - GAG GTA CAC TGA CAT ACT GGC ATG -3'
  • the first 42 nucleotides of sequence will then be used to synthesize a unique probe for isolating the gene from which immunoglobulin message was transcribed.
  • This synthetic 42 nucleotide segment of DNA will be referred to below as o-kappa.
  • DNA from the Ig expressing cell line is then cut with Smal and second enzyme (or BamHI or Kpnl if there is Smal site inside V segment). Any resulting non-blunted ends are treated with the enzyme T4 DNA polymerase to give blunt ended DNA molecules. Then add restriction site encoding linkers (BamHI, EcoRI or Xhol depending on what site does not exist in fragment) and cut with the corresponding linker enzyme to give DNA fragments with BamHI, EcoRI or Xhol ends. The DNA is then size fractionated by agarose gel electrophoresis, and the fraction including the DNA fragment covering the expressed V segment is cloned into lambda EMBL3 or Lambda FIX (Stratagene, La Jolla, California).
  • V segment containing clones are isolated using the unique probe o-kappa.
  • DNA is isolated from positive clones and subcloned into the polylinker of pKapl. The resulting clone is called pRKL.
  • This example describes the cloning of immunoglobulin heavy chain ⁇ genes from cultured cells of expressed and immunoglobulin of interest. The procedure described in this example allows for the selective cloning of the expressed copy of a ⁇ heavy chain gene.
  • Double-stranded cDNA is prepared and isolated as described herein before.
  • the double-stranded cDNA is
  • This primer contains sequences specific for the constant portion of the ⁇ heavy chain message (ACA GGA GAC GAG GGG GAA AAG GGT TGG GGC GGA TGC) as well as unique sequences that can be used as a primer for the PCR amplification of the newly synthesized DNA strand (GTA CGC CAT ATC AGC TGG ATG AAG).
  • the sequence is amplified by PCR using the following two oligonucleotide primers:
  • PCR amplified sequence is then purified by gel electrophoresis and used as template for dideoxy sequencing reactions using the following oligonucleotide as a primer:
  • Mlul is a rare cutting enzyme that cleaves between the J segment and mu CH1
  • Mlul is a rare cutting enzyme that cleaves between the J segment and mu CH1
  • restriction endonuclease site is identified upstream of the rearranged V segment.
  • DNA from the Ig expressing cell line is then cut with Mlul and second enzyme.
  • Mlul or Spel adapter linkers are then ligated onto the ends and cut to convert the upstream site to Mlul or Spel.
  • the DNA is then size fractionated by agarose gel electrophoresis, and the fraction including the DNA fragment covering the expressed V segment is cloned directly into the plasmid pGP1.
  • V segment containing clones are isolated using the unique probe o-mu, and the insert is subcloned into Mlul or Mlul/Spel cut plasmid pCON2. The resulting plasmid is called pRMGH.
  • a human genomic DNA phage library was screened with kappa light chain specific oligonucleotide probes and isolated clones spanning the J ⁇ -C region.
  • a 5.7 kb Clal/Xhol fragment containing J ⁇ 1 together with a 13 kb Xhol fragment containing J ⁇ 2-5 and C ⁇ into pGP1d was cloned and used to create the plasmid pKcor. This plasmid contains J ⁇ 1-5, the kappa
  • V ⁇ light chain specific oligonucleotide probes were screened with V ⁇ light chain specific oligonucleotide probes and isolated clones containing human V ⁇ segments. Functional V segments were identified by DNA sequence analysis. These clones contain TATA boxes, open reading frames encoding leader and variable peptides (including 2 cysteine residues), splice sequences, and recombination heptamer-12 bp spacer-nonamer sequences. Three of the clones were mapped and sequenced.
  • Two of the clones, 65.5 and 65.8 appear to be functional, they contain TATA boxes, open reading frames encoding leader and variable peptides (including 2 cysteine residues), splice sequences, and recombination heptamer-12 bp spacer-nonamer sequences.
  • the third clone, 65.4 appears to encode a V ⁇ I pseudogene as it contains a non-canonical recombination heptamer.
  • Vk 65-8 which encodes a Vklll family gene, was used to build a light chain minilocus construct.
  • the kappa light chain minilocus transgene pKC1 (Fig. 32) was generated by inserting a 7.5 kb Xhol/Sall fragment containing V ⁇ 65.8 into the 5' Xhol site of pKcor.
  • the transgene insert was isolated by digestion with NotI prior to injection.
  • the purified insert was microinjected into the pronuclei of fertilized (C57BL/6 x CBA) F2 mouse embryos and transferred the surviving embryos into pseudopregnant females as described by Hogan et al. (in Methods of Manipulating the Mouse Embryo, 1986, Cold Spring Harbor Laboratory, New York). Mice that developed from injected embryos were analyzed for the presence of transgene sequences by Southern blot analysis of tail DNA. Transgene copy number was estimated by band intensity relative to control standards containing known quantities of cloned DNA.
  • Serum was isolated from these animals and assayed for the presence of transgene encoded human Ig kappa protein by ELISA as described by Harlow and Lane (in Antibodies: A Laboratory Manual, 1988, Cold Spring Harbor Laboratory, New York).
  • Microtiter plate wells were coated with mouse monoclonal antibodies specific for human Ig kappa (clone 6E1, #0173 , AMAC, Inc. , Westbrook, ME) , human IgM (Clone AF6, #0285, AMAC, Inc., Westbrook, ME) and human IgG1 (clone JL512, #0280, AMAC, Inc., Westbrook, ME).
  • Serum samples were serially diluted into the wells and the presence of specific immunoglobulins detected with affinity isolated alkaline phosphatase conjugated goat anti-human Ig
  • Fig. 35 shows the results of an ELISA assay of serum from 8 mice (I.D. #676, 674, 673, 670, 666, 665, 664, and 496). The first seven of these mice developed from embryos that were injected with the pKC1 transgene insert and the eighth mouse is derived from a mouse generated by
  • the kappa light chain minilocus transgene pKC2 was generated by inserting an 8 kb Xhol/Sall fragment containing V ⁇ 65.5 into the 5' Xhol site of pKC1. The resulting
  • transgene insert which contains two V ⁇ segments, was isolated prior to microinjection by digestion with NotI.
  • This construct is identical to pKCI except that it includes 1.2 kb of additional sequence 5' of J ⁇ and is missing 4.5 kb of sequence 3' of V ⁇ 65.8. In additional it contains a 0.9 kb Xbal fragment containing the mouse heavy chain J-m intronic enhancer (Banerji et al., Cell 33:729-740 (1983)) together with a 1.4 kb Mlul Hindlll fragment containing the human heavy chain J-m intronic enhancer (Hayday et al., Nature 307:334-340 (1984)) inserted downstream. This construct tests the feasibility of initiating early rearrangement of the light chain minilocus to effect allelic and isotypic exclusion.
  • enhancers i.e., the mouse or rat 3' kappa or heavy chain enhancer (Meyer and Neuberger, EMBO J. 8:1959-1964 (1989); Petterson et al. Nature 344:165-168 (1990), which are
  • a kappa light chain expression cassette was designed to reconstruct functionally rearranged light chain genes that have been amplified by PCR from human B-cell DNA.
  • the scheme is outlined in Fig. 33.
  • PCR amplified light chain genes are cloned into the vector pK5nx that includes 3.7 kb of 5' flanking sequences isolated from the kappa light chain gene 65.5.
  • the VJ segment fused to the 5' transcriptional
  • sequences are then cloned into the unique Xhol site of the vector pK31s that includes J ⁇ 2-4, the J ⁇ intronic enhancer, C ⁇ , and 9 kb of downstream sequences.
  • the resulting plasmid contains a reconstructed functionally rearranged kappa light chain transgene that can be excised with NotI for
  • the plasmids also contain unique Sall sites at the 3' end for the insertion of additional cis- acting regulatory sequences.
  • Oligonucleotide o-131 (gga ccc aga
  • Oligonucleotide o-130 (gtg caa tea att etc gag ttt gac tac aga c) is complementary to a sequence approximately 150 bp 3' of J ⁇ 1 and includes an Xhol site. These two oligonucleotides amplify a 0.7 kb DNA
  • V ⁇ III genes joined to J ⁇ 1 segments.
  • the PCR amplified DNA was digested with Ncol and Xhol and cloned individual PCR products into the plasmid pNN03.
  • the DNA sequence of 5 clones was determined and identified two with functional VJ joints (open reading frames). Additional functionally rearranged light chain clones are collected.
  • the functionally rearranged clones can be individually cloned into light chain expression
  • Transgenic mice generated with the rearranged light chain constructs can be bred with heavy chain minilocus transgenics to produce a strain of mice that express a spectrum of fully human antibodies in which all of the diversity of the primary repertoire is contributed by the heavy chain.
  • One source of light chain diversity can be from somatic mutation. Because not all light chains will be equivalent with respect to their ability to combine with a variety of different heavy chains, different strains of mice, each containing different light chain constructs can be
  • combination can result in an increased frequency of B-cells expressing fully human antibodies, and thus it can facilitate the isolation of human Ig expressing hybridomas.
  • NotI inserts of plasmids pIGM1, pHC1, pIGG1, pKC1, and pKC2 were isolated away from vector sequences by agarose gel electrophoresis. The purified inserts were microinjected into the pronuclei of fertilized (C57BL/6 x CBA) F2 mouse embryos and transferred the surviving embryos into
  • This example describes the inactivation of the mouse endogenous kappa locus by homologous recombination in
  • ES embryonic stem cells followed by introduction of the mutated gene into the mouse germ line by injection of targeted ES cells bearing an inactivated kappa allele into early mouse embryos (blastocysts).
  • the strategy is to delete J ⁇ and C ⁇ by homologous recombination with a vector containing DNA sequences
  • the plasmid pGEM7 contains the neomycin resistance gene (neo), used for drug selection of transfected ES cells, under the transcriptional control of the mouse phosphoglycerate kinase (pgk) promoter (Xbal/TaqI fragment; Adra et al., Gene 60: 65-74 (1987)) in the cloning vector pGEM- 7Zf(+).
  • the plasmid also includes a heterologous polyadenylation site for the neo gene, derived from the 3' region of the mouse pgk gene (PvulI/Hindlll fragment; Boer et al., Biochemical Genetics. 28:299-308 (1990)). This plasmid was used as the starting point for construction of the kappa targeting vector. The first step was to insert sequences homologous to the kappa locus 3' of the neo expression
  • Fig. 20a Mouse kappa chain sequences (Fig. 20a) were isolated from a genomic phage library derived from liver DNA using oligonucleotide probes specific for the C/c locus:
  • a 1.2 kb EcoRI/SphI fragment extending 5' of the J ⁇ region was also isolated from a positive phage clone.
  • An Sphl/Xbal/Bglll/EcoRI adaptor was ligated to the SphI site of this fragment, and the resulting EcoRI fragment was ligated into EcoRI digested pNEO-K3', in the same 5' to 3' orientation as the neo gene and the downstream 3' kappa sequences, to generate pNEO-K5'3' (Fig. 20c).
  • HSV Herpes Simplex Virus
  • TK thymidine kinase gene
  • the HSV TK cassette was obtained from the plasmid pGEM7 (TK), which contains the structural sequences for the HSV TK gene bracketed by the mouse pgk promoter and polyadenylation sequences as described above for pGEM7 (KJ1).
  • telomere sequences from 5' of JK and 3' of C ⁇ was inserted into pGP1b-TK to generate the targeting vector J/C KI (Fig. 20d).
  • the putative structure of the genomic kappa locus following homologous recombination with J/C Kl is shown in Fig. 20e.
  • ES cells used were the AB-1 line grown on mitotically inactive SNL76/7 cell feeder layers (McMahon and Bradley, Cell 62:1073-1085 (1990)) essentially as described (Robertson, E.J. (1987) in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach. E.J. Robertson, ed. (Oxford: IRL Press), p. 71-112).
  • Other suitable ES lines include, but are not limited to, the E14 line (Hooper et al. (1987) Nature 326: 292-295), the D3 line (Doetschman et al. (1985) J. Embrvol. Exp. Morph. 87: 27-45), and the CCE line (Robertson et al.
  • the pluripotence of any given ES cell line can vary with time in culture and the care with which it has been handled.
  • the only definitive assay for pluripotence is to determine whether the specific population of ES cells to be used for targeting can give rise to chimeras capable of germline transmission of the ES genome. For this reason, prior to gene targeting, a portion of the parental population of AB-1 cells is injected into C57B1/6J blastocysts to
  • the kappa chain inactivation vector J/C Kl was digested with NotI and electroporated into AB-1 cells by the methods described (Hasty et al., Nature. 350:243-246 (1991)). Electroporated cells were plated onto 100 mm dishes at a density of 1-2 x 10 6 cells/dish. After 24 hours, G418
  • DNA analysis was carried out by Southern blot hybridization. DNA was isolated from the clones as described (Laird et al., Nucl. Acids Res. 19:4293 (1991)) digested with Xbal and probed with the 800 bp EcoRI/Xbal fragment indicated in Fig. 20e as probe A. This probe detects a 3.7 kb Xbal fragment in the wild type locus, and a diagnostic 1.8 kb band in a locus which has homologously recombined with the
  • the AB1 ES cells are an XY cell line and a majority of these high percentage chimeras were male due to sex conversion of female embryos colonized by male ES cells.
  • Male chimeras derived from 4 of the 5 targeted clones were bred with C57BL/6J females and the offspring monitored for the presence of the dominant agouti coat color indicative of germline transmission of the ES genome.
  • mice homozygous for the mutation approximately 50 percent of the agouti offspring showed a hybridizing Bgl II band of 2.4 kb in addition to the wild-type band of 4.1 kb, demonstrating the germline transmission of the targeted kappa locus.
  • heterozygotes were bred together and the kappa genotype of the offspring determined as described above.
  • three genotypes were derived from the heterozygote matings: wild-type mice bearing two copies of a normal kappa locus, heterozygotes carrying one targeted copy of the kappa gene and one NT kappa gene, and mice homozygous for the kappa mutation. The deletion of kappa sequences from these latter mice was verified by hybridization of the Southern blots with a probe specific for J ⁇ (probe C, Fig. 20a).
  • This example describes the inactivation of the endogenous murine immunoglobulin heavy chain locus by
  • homologous recombination in embryonic stem (ES) cells The strategy is to delete the endogenous heavy chain J segments by homologous recombination with a vector containing heavy chain sequences from which the J H region has been deleted and replaced by the gene for the selectable marker neo.
  • Fig. 21a were isolated from a genomic phage library derived from the D3 ES cell line (Gossler et al., Proc. Natl. Acad. Sci. U.S.A. 83:9065-9069 (1986)) using a J H 4 specific
  • restriction fragment encompassing the mutation with the corresponding sequence from a wild-type neo clone.
  • Hindlll site in the prepared pGEM7 (KJ1) was converted to a Sall site by addition of a synthetic adaptor, and the neo expression cassette excised by digestion with Xbal/Sall. The ends of the neo fragment were then blunted by treatment with the Klenow form of DNA poll, and the neo fragment was
  • pGP1b was digested with the restriction enzyme NotI and ligated with the following oligonucleotide as an adaptor:
  • pGMT mouse immunoglobulin heavy chain targeting
  • HSV Herpes Simplex Virus
  • TK thymidine kinase
  • HSV TK gene was obtained from the plasmid pGEM7 (TK) by digestion with EcoRI and Hindlll. The TK DNA fragment was subcloned between the EcoRI and Hindlll sites of pGMT, creating the plasmid pGMT-TK (Fig. 21c).
  • genomic Xbal/Xhol fragment situated 5' of the J H region, was derived from a positive genomic phage clone by limit digestion of the DNA with Xhol, and partial digestion with Xbal.
  • this Xbal site is not present in genomic DNA, but is rather derived from phage sequences immediately flanking the cloned genomic heavy chain insert in the positive phage clone. The fragment was
  • the final step in the construction involved the excision from pUC18 J H -neo of the 2.8 kb EcoRI fragment which contained the neo gene and flanking genomic sequences 3' of J H . This fragment was blunted by Klenow polymerase and subcloned into the similarly blunted Xhol site of
  • J H KO1 contains 6.9 kb of genomic sequences flanking the J H locus, with a 2.3 kb deletion spanning the J H region into which has been inserted the neo gene.
  • Fig. 21f shows the structure of an endogenous heavy chain gene after homologous recombination with the targeting construct.
  • the heavy chain inactivation vector J H KO1 was digested with NotI and electroporated into AB-1 cells by the methods described (Hasty et al., Nature 350:243-246 (1991)). Electroporated cells were plated into 100 mm dishes at a density of 1-2 x 10 6 cells/dish. After 24 hours, G418
  • DNA analysis was carried out by Southern blot hybridization. DNA was isolated from the clones as described (Laird et al. (1991) Nucleic Acids Res. 19: 4293), digested with StuI and probed with the 500 bp EcoRI/StuI fragment designated as probe A in Fig. 2If. This probe detects a StuI fragment of 4.7 kb in the wild-type locus, whereas a 3 kb band is diagnostic of homologous recombination of endogenous sequences with the targeting vector (see Fig. 21a and f).
  • mice carrying the J H deletion were generated using a neo-specific probe (probe B, Fig. 21f) to generate mice carrying the J H deletion.
  • agouti offspring Since only one copy of the heavy chain locus was targeted in the injected ES clones, each agouti pup had a 50 percent chance of inheriting the mutated locus. Screening for the targeted gene was carried out by Southern blot analysis of stul-digested DNA from tail
  • heterozygotes were bred together and the heavy chain genotype of the offspring determined as described above.
  • three genotypes were derived from the heterozygote atings: wild-type mice bearing two copies of the normal J H locus, heterozygotes caring one targeted copy of the gene and one normal copy, and mice homozygous for the J H mutation.
  • the absence of J H sequences from these latter mice was verified by hybridization of the Southern blots of Stul-digested DNA with a probe specific for J H (probe C, Fig. 21a).
  • the plasmid pBR322 was digested with EcoRI and Styl and ligated with the following oligonucleotides: oligo-42 5'- caa gag ccc gcc taa tga gcg ggc ttt ttt ttg cat act gcg gcc get -3'
  • pGP1a The resulting plasmid, pGP1a, is designed for cloning very large DNA constructs that can be excised by the rare cutting restriction enzyme NotI. It contains a NotI restriction site downstream (relative to the ampicillin resistance gene, AmpR) of a strong transcription termination signal derived from the trpA gene (Christie et al., Proc.
  • This termination signal reduces the potential toxicity of coding sequences inserted into the NotI site by eliminating readthrough transcription from the AmpR gene.
  • this plasmid is low copy relative to the pUC plasmids because it retains the pBR322 copy number control region. The low copy number further reduces the potential toxicity of insert sequences and reduces the selection against large inserts due to DNA replication.
  • the vectors pGP1b, pGP1c, pGP1d, and pGP1f are derived from pGP1a and contain different polylinker cloning sites. The polylinker sequences are given below pGP1a
  • pGP1a was digested with NotI and ligated with the following oligonucleotides: oligo-47 5'- ggc cgc aag ctt act get gga tec tta att aat cga tag tga tct cga ggc -3'
  • oligo-48 5'- ggc cgc etc gag ate act ate gat taa tta agg ate cag cag taa get tgc -3'
  • the resulting plasmid, pGP1b contains a short polylinker region flanked by NotI sites. This facilitates the construction of large inserts that can be excised by NotI digestion.
  • oligonucleotides oligo-44 5'- etc cag gat cca gat ate agt ace tga aac agg get tgc -3'
  • oligo-45 5'- etc gag cat gca cag gac ctg gag cac aca cag cct tec -3' were used to amplify the immunoglobulin heavy chain 3'
  • pNN03 is a pUC derived plasmid that contains a polylinker with the following restriction sites, listed in order: NotI, BamHI, Ncol, Clal, EcoRV, Xbal, Sad, Xhol, SphI, PstI, Bglll, EcoRI, Smal, Kpnl, Hindlll, and NotI).
  • the resulting plasmid, pRE3 was digested with BamHI and Hindlll, and the insert containing the rat Ig heavy chain 3' enhancer cloned into BamHI/Hindlll digested pGP1b.
  • the resulting plasmid, pGPe (Fig. 22 and Table 1), contains several unique restriction sites into which sequences can be cloned and subsequently excised together with the 3' enhancer by NotI digestion.
  • a human placental genomic DNA library cloned into the phage vector XEMBL3/SP6/T7 was screened with the human heavy chain J region specific oligonucleotide: oligo-1 5'- gga ctg tgt ccc tgt gtg atg ctt ttg atg tct ggg gcc aag -3' and the phage clone ⁇ 1.3 isolated.
  • a 4 kb Xhol fragment was isolated from phage clone ⁇ 2.1 that contains sequences immediately downstream of the sequences in pJMl, including the so called ⁇ element involved in (S-associated deleteon of the ⁇ in certain IgD expressing B-cells (Yasui et al., Eur. J. Immunol. 19:1399 (1989), which is incorporated herein by reference).
  • This fragment was treated with the Klenow fragment of DNA polymerase I and ligated to Xhol cut, Klenow treated, pJMl.
  • the resulting plasmid, pJM2 (Fig. 23), had lost the internal Xhol site but retained the 3' Xhol site due to incomplete reaction by the Klenow enzyme.
  • pJM2 contains the entire human J region, the heavy chain J- ⁇ intronic enhancer, the ⁇ switch region and all of the ⁇ constant region exons, as well as the two 0.4 kb direct repeats, ⁇ and ⁇ , involved in ⁇ -associated deletion of the ⁇ gene. 3. Isolation of D region clones and construction of pDH1
  • oligonucleotide oligo-4 5'- tgg tat tac tat ggt teg ggg agt tat tat aac cac agt gtc -3' was used to screen the human placenta genomic library for D region clones. Phage clones ⁇ 4.1 and ⁇ 4.3 were isolated. A 5.5 kb Xhol fragment, that includes the D elements D ⁇ 1 , D N1 , and D M2 (Ichihara et al., EMBO J. 1:4141 (1988)), was isolated from phage clone ⁇ 4.1.
  • pDH1 contains a 10.6 kb insert that includes at least 7 D segments and can be excised with Xhol (5') and EcoRV (3'). 4. pCOR1
  • the plasmid pJM2 was digested with Asp718 (an isoschizomer of Kpnl) and the overhang filled in with the Klenow fragment of DNA polymerase I. The resulting DNA was then digested with Clal and the insert isolated. This insert was ligated to the XhoI/EcoRV insert of pDH1 and Xhol/Clal digested pGPe to generate pCORl (Fig. 24).
  • pIGM1 contains 2 functional human variable region segments, at least 8 human D segments all 6 human J H segments, the human
  • J- ⁇ enhancer the human ⁇ element, the human ⁇ switch region, all of the human ⁇ coding exons, and the human ⁇ element, together with the rat heavy chain 3' enhancer, such that all of these sequence elements can be isolated on a single
  • oligonucleotide specific for human Ig g constant region genes: oligo-29 5'- cag cag gtg cac ace caa tgc cca tga gcc cag aca ctg gac -3' was used to screen the human genomic library. Phage clones 129.4 and ⁇ 29.5 were isolated. A 4 kb Hindlll fragment of phage clone ⁇ 29.4, containing a ⁇ switch region, was used to probe a human placenta genomic DNA library cloned into the phage vector lambda FIXTM II (Stratagene, La Jolla, CA). Phage clone ⁇ Sg1.13 was isolated.
  • a 7.8 kb Hindlll fragment of phage clone ⁇ 29.5, containing the ⁇ 1 coding region was cloned into pUC18.
  • the resulting plasmid, pLT1 was digested with Xhol, Klenow treated, and religated to destroy the internal Xhol site.
  • the resulting clone, pLTlxk was digested with Hindlll and the insert isolated and cloned into pSP ⁇ 2 to generate the plasmid clone pLTlxks.
  • p ⁇ e1 contains all of the 71 constant region coding exons, together with 5 kb of downstream sequences, linked to the rat heavy chain 3' enhancer.
  • a 5.3 kb Hindlll fragment containing the 71 switch region and the first exon of the pre-switch sterile transcript (P. Sideras et al. (1989) International Immunol. 1, 631) was isolated from phage clone XS ⁇ 1.13 and cloned into pSP72 with the polylinker Xhol site adjacent to the 5' end of the insert, to generate the plasmid clone pS ⁇ 1S.
  • the Xhol/Sall insert of pS ⁇ 1S was cloned into Xhol digested p ⁇ e1 to generate the plasmid clone p ⁇ e2 (Fig. 26).
  • p ⁇ e2 contains all of the 71 constant region coding exons, and the upstream switch region and sterile transcript exons, together with 5 kb of downstream sequences, linked to the rat heavy chain 3' enhancer.
  • This clone contains a unique Xhol site at the 5' end of the insert. The entire insert, together with the Xhol site and the 3' rat enhancer can be excised from vector sequences by digestion with NotI. 4 . pHC1
  • pHC1 contains 2
  • Phage clone X49.8 was isolated and a 6.1 kb Xbal fragment containing the variable segment VH49.8 subcloned into pNN03 (such that the polylinker Clal site is downstream of VH49.8 and the polylinker Xhol site is upstream) to generate the plasmid pVH49.8.
  • An 800 bp region of this insert was sequenced, and VH49.8 found to have an open reading frame and intact splicing and recombination signals, thus indicating that the gene is functional (Table 2). 2.
  • a 4 kb Xbal genomic fragment containing the human V H IV family gene V H 4-21 (Sanz et al., EMBO J., 8:3741 (1989)), subcloned into the plasmid pUC12, was excised with Smal and Hindlll, and treated with the Klenow fragment of polymerase I. The blunt ended fragment was then cloned into Clal digested, Klenow treated, pVH49.8. The resulting plasmid, pV2, contains the human heavy chain gene VH49.8 linked upstream of VH4-21 in the same orientation, with a unique Sall site at the 3' end of the insert and a unique Xhol site at the 5' end.
  • sequences immediately upstream of, and adjacent to, the 5.3 kb ⁇ 1 switch region containing fragment in the plasmid p ⁇ e2) together with the neighboring upstream 3.1 kb Xbal fragment were isolated from the phage clone ⁇ Sg1.13 and cloned into Hindlll/Xbal digested pUC18 vector.
  • the resulting plasmid, pS ⁇ 1-5' contains a 3.8 kb insert representing sequences upstream of the initiation site of the sterile transcript found in B-cells prior to switching to the ⁇ 1 isotype (P.
  • transgene constructs to promote correct expression of the sterile transcript and the associated switch
  • the pS ⁇ 1-5' insert was excised with Smal and
  • the ligation product was digested with Sall and ligated to Sall digested pV2.
  • the resulting plasmid, pVP contains 3.8 kb of ⁇ 1 switch 5' flanking sequences linked downstream of the two human variable gene segments VH49.8 and VH4-21 (see Table 2).
  • the pVP insert is isolated by partial digestion with Sall and complete digestion with Xhol, followed by purification of the 15 kb fragment on an agarose gel. The insert is then cloned into the Xhol site of p ⁇ e2 to generate the plasmid clone pVGE1 (Fig. 27).
  • pVGEl contains two human heavy chain variable gene segments upstream of the human ⁇ 1 constant gene and associated switch region.
  • a unique Sall site between the variable and constant regions can be used to clone in D, J, and ⁇ gene segments.
  • the rat heavy chain 3' enhancer is linked to the 3' end of the ⁇ 1 gene and the entire insert is flanked by NotI sites. 5.
  • the plasmid clone pVGEl is digested with Sall and the Xhol insert of pIGMl is cloned into it.
  • the resulting clone, pHC2 contains 4 functional human variable region segments, at least 8 human D segments all 6 human J H segments, the human J-m enhancer, the human ⁇ element, the human ⁇ switch region, all of the human ⁇ coding exons, the human ⁇ element, and the human ⁇ 1 constant region, including the associated switch region and sterile transcript associated exons, together with 4 kb flanking sequences upstream of the sterile transcript initiation site.
  • These human sequences are linked to the rat heavy chain 3' enhancer, such that all of the sequence elements can be isolated on a single fragment, away from vector sequences, by digestion with NotI and
  • transgenic mice A unique Xhol site at the 5' end of the insert can be used to clone in additional human variable gene segments to further expand the recombinational diversity of this heavy chain minilocus.
  • E. Transgenic mice A unique Xhol site at the 5' end of the insert can be used to clone in additional human variable gene segments to further expand the recombinational diversity of this heavy chain minilocus.
  • the NotI inserts of plasmids pIGM1 and pHC1 were isolated from vector sequences by agarose gel electrophoresis. The purified inserts were microinjected into the pronuclei of fertilized (C57BL/6 x CBA) F2 mouse embryos and transferred the surviving embryos into pseudopregnant females as described by Hogan et al. (B. Hogan, F. Costantini, and E. Lacy, Methods of Manipulating the Mouse Embryo, 1986, Cold Spring Harbor
  • mice that developed from injected embryos were analyzed for the presence of transgene sequences by Southern blot analysis of tail DNA. Transgene copy number was estimated by band intensity relative to control standards containing known quantities of cloned DNA. At 3 to 8 weeks of age, serum was isolated from these animals and assayed for the presence of transgene encoded human IgM and IgG1 by ELISA as described by Harlow and Lane (E. Harlow and D. Lane.
  • mice were coated with mouse monoclonal antibodies specific for human IgM (clone AF6, #0285, AMAC, Inc. Westbrook, ME) and human IgG1 (clone JL512, #0280, AMAC, Inc. Westbrook, ME). Serum samples were serially diluted into the wells and the presence of specific immunoglobulins detected with affinity isolated alkaline phosphatase conjugated goat anti-human Ig (polyvalent) that had been pre-adsorbed to minimize cross-reactivity with mouse immunoglobulins. Table 3 and Fig.
  • mice 28 show the results of an ELISA assay for the presence of human IgM and IgG1 in the serum of two animals that developed from embryos injected with the transgene insert of plasmid pHC1. All of the control non- transgenic mice tested negative for expression of human IgM and IgG1 by this assay.
  • Mice from two lines containing the pIGM1 NotI insert (lines #6 and 15) express human IgM but not human IgG1.
  • mice from 6 lines that contain the pHC1 insert and found that 4 of the lines (lines #26, 38, 57 and 122) express both human IgM and human IgG1, while mice from two of the lines (lines #19 and 21) do not express detectable levels of human immunoglobulins.
  • the pHC1 transgenic mice that did not express human immunoglobulins were so-called G o mice that developed directly from microinjected embryos and may have been mosaic for the presence of the transgene.
  • Table 3 shows a correlation between the presence of integrated transgene DNA and the presence of transgene encoded immunoglobulins in the serum. Two of the animals that were found to contain the pHC1 transgene did not express detectable levels of human immunoglobulins. These were both low copy animals and may not have contained complete copies of the transgenes, or the animals may have been genetic mosaics
  • the transgene containing cells may not have populated the hematopoietic lineage.
  • the transgenes may have integrated into genomic locations that are not conducive to their expression.
  • the detection of human IgM in the serum of pIGMl transgenics, and human IgM and IgG1 in pHC1 transgenics, indicates that the transgene sequences function correctly in directing VDJ joining, transcription, and isotype switching.
  • immunoglobulin cDNA clones derived from transgenic mouse spleen mRNA were examined.
  • the overall diversity of the transgene encoded heavy chains, focusing on D and J segment usage, N region addition, CDR3 length distribution, and the frequency of joints resulting in functional mRNA molecules was examined.
  • Transcripts encoding IgM and IgG incorporating VH105 and VH251 were examined.
  • Polyadenylated RNA was isolated from an eleven week old male second generation line-57 pHC1 transgenic mouse.
  • This RNA was used to synthesize oligo-dT primed single
  • cDNA was then used as template for four individual PCR amplifications using the following four synthetic oligonucleotides as primers: VH251 specific oligo-149, eta get cga gtc caa gga gtc tgt gcc gag gtg cag ctg (g,a,t,c); VH105 specific o-150, gtt get cga gtg aaa ggt gtc cag tgt gag gtg cag ctg (g,a,t,c); human gamma1 specific oligo-151, ggc get cga gtt cca cga cac cgt cac egg ttc; and human mu specific oligo-152, cct get cga ggc age caa egg cca cgc tgc teg.
  • Reaction 1 used primers 0-149 and o-151 to amplify VH251-gammal transcripts
  • reaction 2 used o-149 and o- 152 to amplify VH251-mu transcripts
  • reaction 3 used o-150 and o-151 to amplify VH105-gammal transcripts
  • reaction 4 used o-150 and o-152 to amplify VH105-mu transcripts.
  • resulting 0.5 kb PCR products were isolated from an agarose gel; the ⁇ transcript products were more abundant than the ⁇ transcript products, consistent with the corresponding ELISA data (Fig. 34).
  • the PCR products were digested with Xhol and cloned into the plasmid pNN03. Double-stranded plasmid DNA was isolated from minipreps of nine clones from each of the four PCR amplifications and dideoxy sequencing reactions were performed. Two of the clones turned out to be deletions containing no D or J segments. These could not have been derived from normal RNA splicing products and are likely to have originated from deletions introduced during PCR
  • VH105 primer turned out not to be specific for VH105 in the reactions performed. Therefore many of the clones from reactions 3 and 4 contained VH251 transcripts.
  • Table 5 compared the distribution of J segments incorporated into pHC1 transgene encoded transcripts to J segments found in adult human PBL immunoglobulin transcripts. The distribution profiles are very similar, J4 is the dominant segment in both systems, followed by J6. J2 is the least common segment in human PBL and the transgenic animal.
  • Table 7 shows the predicted amino acid sequences of the VDJ regions from 30 clones that were analyzed from the pHC1 transgenic.
  • the translated sequences indicate that 23 of the 30 VDJ joints (77%) are in-frame with respect to the variable and J segments.
  • Table 8 compared the length of the CDR3 peptides from transcripts with in-frame VDJ joints in the pHC1
  • transgenic mouse to those in human PBL.
  • human PBL data comes from Yamada et al.
  • the profiles are similar with the transgenic profile skewed slightly toward smaller CDR3 peptides than observed from human PBL.
  • the average length of CDR3 in the transgenic mouse is 10.3 amino acids. This is substantially the same as the average size reported for authentic human CDR3 peptides by Sanz (J. Immunol. 147:1720- 1729 (1991)).
  • Two human leukocyte genomic DNA libraries cloned into the phage vector XEMBL3/SP6/T7 are screened with a 1 kb Pacl/Hindlll fragment of ⁇ 1.3 containing the human heavy chain J- ⁇ intronic enhancer.
  • Fragments containing functional VJ segments are subcloned into the plasmid vector pSP72 such that the plasmid derived Xhol site is adjacent to the 5' end of the insert seguence.
  • a subclone containing a functional VDJ segment is digested with Xhol and Pad (Pad, a rare-cutting enzyme, recognizes a site near the J-m intronic enhancer), and the insert cloned into Xhol/Pad digested pHC2 to generate a transgene construct with a
  • VDJ segment functional VDJ segment, the J- ⁇ intronic enhancer, the ⁇ switch element, the ⁇ constant region coding exons, and the ⁇ 1 constant region, including the sterile transcript associated sequences, the ⁇ 1 switch, and the coding exons.
  • transgene construct is excised with NotI and microinjected into the pronuclei of mouse embryos to generate transgenic animals as described above.
  • Plasmid vector pGP1a is digested with NotI and the following oligonucleotides ligated in: oligo-81 5'-ggc cgc ate ccg ggt etc gag gtc gac aag ctt teg agg ate cgc-3' oligo-82 5'-ggc cgc gga tec teg aaa get tgt cga cct cga gac ccg gga tgc-3'
  • the resulting plasmid, pGP1c contains a polylinker with Xmal, Xhol, Sall, Hindlll, and BamHI restriction sites flanked by NotI sites.
  • Plasmid vector pGP1a is digested with NotI and the following oligonucleotides ligated in: oligo-87 5'-ggc cgc tgt cga caa get tat cga tgg ate etc gag tgc -3' oligo-88 5'-ggc cgc act cga gga tec ate gat aag ctt gtc gac age -3'
  • the resulting plasmid, pGP1d contains a polylinker with Sall, Hindlll, Clal, BamHI, and Xhol restriction sites flanked by NotI sites.
  • a human placental genomic DNA library cloned into the phage vector ⁇ EMBL3/SP6/T7 (Clonetech Laboratories, Inc., Palo Alto, CA) was screened with the human kappa light chain J region specific oligonucleotide: oligo-36 5'- cac ctt egg cca agg gac aeg act gga gat taa acg taa gca -3' and the phage clones 136.2 and 136.5 isolated.
  • a 7.4 kb Xhol fragment that includes the J ⁇ 1 segment was isolated from
  • pCK1 a C ⁇ vector for expressing rearranged variable segments
  • the resulting clone, pCK1 can accept cloned fragments containing rearranged VJ ⁇ segments into the unique 5' Xhol site.
  • the transgene can then be excised with NotI and purified from vector sequences by gel electrophoresis.
  • the resulting transgene construct will contain the human J-C ⁇ intronic enhancer and may contain the human 3' ⁇ enhancer. 2.
  • pCK2 a C ⁇ vector with heavy chain enhancers for
  • pMHEl human heavy chain J- ⁇ intronic enhancer
  • pMHE2 BamHI/Hindlll fragment. This 2.3 kb fragment is isolated and cloned into pGP1c to generate pMHE2.
  • pMHE2 is digested with Sall and the 13 kb Xhol insert of p36.5 cloned in.
  • the resulting plasmid, pCK2 is identical to pCK1, except that the mouse and human heavy chain J- ⁇ intronic enhancers are fused to the 3' end of the transgene insert.
  • analogous constructs can be generated with different enhancers, i.e. the mouse or rat 3' kappa or heavy chain enhancer (Meyer and Neuberger, EMBO J..
  • V ⁇ specific oligonucleotide oligo-65 5'-agg ttc agt ggc agt ggg tct ggg aca gac ttc act etc ace ate age-3'
  • VJ ⁇ segment Clones that hybridized with both V and J probes are isolated and the DNA sequence of the rearranged VJ ⁇ segment determined.
  • Fragments containing functional VJ segments are subcloned into the unique Xhol sites of vectors pCK1 and pCK2 to generate
  • transgene constructs are isolated from vector sequences by digestion with NotI. Agarose gel purified insert is microinjected into mouse embryo pronuclei to generate transgenic animals.
  • Animals expressing human kappa chain are bred with heavy chain minilocus containing transgenic animals to generate mice expressing fully human antibodies.
  • VJK combinations may be capable of forming stable heavy-light chain complexes with a broad spectrum of different heavy chain VDJ combinations
  • several different light chain transgene constructs are generated, each using a different rearranged VJk clone, and transgenic mice that result from these constructs are bred with heavy chain minilocus transgene expressing mice.
  • Peripheral blood, spleen, and lymph node lymphocytes are isolated from double transgenic (both heavy and light chain constructs) animals, stained with fluorescent antibodies specific for human and mouse heavy and light chain immunoglobulins (Pharmingen, San Diego, CA) and analyzed by flow cytometry using a FACScan analyzer (Becton Dickinson, San Jose, CA).
  • Rearranged light chain transgenes constructs that result in the highest level of human heavy/light chain complexes on the surface of the highest number of B cells, and do not adversely affect the immune cell compartment (as assayed by flow cytometric
  • the 13 kb CK containing Xhol insert of p36.5 is treated with Klenow enzyme and cloned into Hindlll digested, Klenow-treated, plasmid pGPld.
  • a plasmid clone is selected such that the 5' end of the insert is adjacent to the vector derived Clal site.
  • the resulting plasmid, p36.5-ld is digested with Clal and Klenow-treated.
  • the J ⁇ l containing 7.4 kb Xhol insert of p36.2 is then Klenow-treated and cloned into the Clal, Klenow-treated p36.5-ld.
  • a clone is selected in which the p36.2 insert is in the same orientation as the p36.5 insert.
  • This clone, pJCKl (Fig. 34), contains the entire human JK region and C ⁇ , together with 7.2 kb of upstream sequences and 9 kb of downstream sequences.
  • the insert also contains the human J-C ⁇ intronic enhancer and may contain a human 3' ⁇ enhancer.
  • the insert is flanked by a unique 3' Sall site for the purpose of cloning additional 3' flanking sequences such as heavy chain or light chain enhancers.
  • a unique Xhol site is located at the 5' end of the insert for the purpose of cloning in unrearranged VK gene segments.
  • the unique Sall and Xhol sites are in turn flanked by NotI sites that are used to isolate the completed transgene construct away from vector sequences. 2. Isolation of unrearranged V ⁇ gene segments and generation of transgenic animals expressing human Ig light chain protein
  • V ⁇ specific oligonucleotide cligo-65 (discussed above), is used to probe a human placental genomic DNA library cloned into the phage vector 1EMBL3/3P6/T7 (Clonetech).
  • DNA fragments containing selected variable gene segments are cloned into the unique Xhol site of plasmid pJCK1 to generate minilocus constructs.
  • the resulting clones are digested with NotI and the inserts isolated and injected into mouse embryo pronuclei to generate transgenic animals.
  • the transgenes of these animals will undergo V to J joining in developing B-cells.
  • Animals expressing human kappa chain are bred with heavy chain minilocus containing transgenic animals to generate mice expressing fully human antibodies.
  • This Example describes the cloning of a human genomic heavy chain immunoglobulin transgene which is then introduced into the murine germline via microinjection into zygotes or integration in ES cells.
  • Nuclei are isolated from fresh human placental tissue as described by Marzluff, W.F., et al. (1985),
  • the isolated nuclei (or PBS washed human spermatocytes) are embedded in 0.5% low melting point agarose blocks and lyse with 1 mg/ml proteinase K in 500mM EDTA, 1% SDS for nuclei, or with lmg/ml proteinase K in 500mM EDTA, 1% SDS, lOmM DTT for spermatocytes at 50°C for 18 hours.
  • the proteinase K is inactivated by incubating the blocks in 40 ⁇ g/ml PMSF in TE for 30 minutes at 50°C, and then washing extensively with TE.
  • the DNA is then digested in the agarose with the restriction enzyme NotI as described by M. Finney in Current Protocols in Molecular Biology (F. Ausubel et al., eds. John Wiley & Sons, Supp. 4, 1988, e.g., Section 2.5.1).
  • the NotI digested DNA is then fractionated by pulsed field gel electrophoresis as described by Anand et al., Nuc. Acids Res. 17:3425-3433 (1989). Fractions enriched for the NotI fragment are assayed by Southern hybridization to detect one or more of the sequences encoded by this fragment. Such sequences include the heavy chain D segments, J segments, and ⁇ I constant regions together with representatives of all 6 V H families (although this fragment is identified as 670 kb fragment from HeLa cells by Berman et al. (1988), supra., we have found it to be an 830 kb fragment from human placental and sperm DNA). Those fractions containing this NotI
  • Plasmid pYACNN is prepared by digestion of pYACneo (Clontech) with EcoRI and ligation in the presence of the oligonucleotide 5' - AAT TGC GGC CGC - 3'.
  • YAC clones containing the heavy chain NotI fragment are isolated as described by Traver et al., Proc. Natl. Acad. Sci. USA. 86:5898-5902 (1989).
  • the cloned NotI insert is isolated from high molecular weight yeast DNA by pulse field gel electrophoresis as described by M. Finney, op. cit.
  • the DNA is condensed by the addition of 1 mM spermine and
  • the DNA is isolated by pulsed field gel electrophoresis and introduced into ES cells by lipofection (Gnirke et al., EMBO J. 10:1629-1634 (1991)), or the YAC is introduced into ES cells by spheroplast fusion.
  • the two fragments are coinjected into the nucleus of a mouse single cell embryo as described in Example 1.
  • An antigen of interest is used to immunize (see
  • the spleen is removed, and spleen cells used to generate hybridomas. Cells from an individual hybridoma clone that secretes
  • genomic DNA antibodies reactive with the antigen of interest are used to prepare genomic DNA.
  • a sample of the genomic DNA is digested with several different restriction enzymes that recognize unique six base pair sequences, and fractionated on an agarose gel.
  • Southern blot hybridization is used to identify two DNA fragments in the 2-10 kb range, one of which contains the single copy of the rearranged human heavy chain VDJ sequences and one of which contains the single copy of the rearranged human light chain VJ sequence. These two fragments are size fractionated on agarose gel and cloned directly into pUC18. The cloned inserts are then subcloned respectively into heavy and light chain expression cassettes that contain constant region sequences.
  • the plasmid clone p ⁇ el (Example 12) is used as a heavy chain expression cassette and rearranged VDJ sequences are cloned into the Xhol site.
  • the plasmid clone pCK1 is used as a light chain expression cassette and rearranged VJ
  • sequences are cloned into the Xhol site.
  • the resulting clones are used together to transfect SP 0 cells to produce antibodies that react with the antigen of interest (Co. et al., Proc. Natl. Acad. Sci. USA 88:2869 (1991), which is incorporated herein by reference).
  • mRNA is isolated from the cloned hybridoma cells described above, and used to synthesize cDNA.
  • the expressed human heavy and light chain VDJ and VJ sequence are then amplified by PCR and cloned (Larrick et al., Biol. Technology, 7:934-938 (1989)).
  • oligonucleotides are synthesized that encode the same polypeptides, and synthetic expression vectors generated as described by Queen et al., Proc. Natl. Acad. Sci. USA., 84: 5454-5458 (1989).
  • transgenic animals can be successfully immunized with complex antigens such as those on human red blood cells and respond with kinetics that are similar to the response kinetics observed in normal mice.
  • Blood cells generally are suitable immunogens and comprise many different types of antigens on the surface of red and white blood cells.
  • Tubes of human blood from a single donor were collected and used to immunize transgenic mice having
  • J H D functionally disrupted endogenous heavy chain loci
  • HCI human heavy chain minigene construct
  • mice are designated as line 112.
  • Blood was washed and resuspended in 50 mis Hanks' and diluted to 1x10 8 cells/ml 0.2 mis (2x10 7 cells) were then injected interperitoneally using a 28 gauge needle and 1 ce syringe. This immunization protocol was repeated approximately weekly for 6 weeks. Serum titers were monitored by taking blood from retro-orbital bleeds and collecting serum and later testing for specific antibody. A pre-immune bleed was also taken as a control. On the very last immunization, three days before these animals were sacrificed for serum and for hybridomas, a single immunization of 1 x 10 7 cells was given intravenously through the tail to enhance the production of hybridomas.
  • Mice # 2343 and 2348 have a desired phenotype: human heavy chain mini-gene transgenic on heavy chain knock-out
  • Hybridomas were generated by fusing mouse spleen cells of approximately 16 week-old transgenic mice (Table 9) that had been immunized as described (supra) to a fusion partner consisting of the non-secreting HAT-sensitive myeloma cell line, X63 Ag8.653.
  • Hybridoma clones were cultivated and hybridoma supernatants containing immunoglobulins having specific binding affinity for blood cell antigens were
  • Serum and hybridoma supernatants were tested using flow cytometry.
  • Red blood cells from the donor were washed 4X in Hanks' balanced salt solution and 50,000 cells were placed in 1.1 ml polypropylene microtubes.
  • Cells were incubated with antisera or supernatant from the hybridomas for 30 minutes on ice in staining media (lx RPMI 1640 media without phenol red or biotin (Irvine Scientific) 3% newborn calf serum, 0.1% Na azide). Controls consisted of littermate mice with other genotypes. Cells were then washed by centrifugation at 4°C in Sorvall RT600B for 5-10 minutes at 1000 rpm.
  • mice and littermate controls Serum of transgenic mice and littermate controls was incubated with either red blood cells from the donor, or white blood cells from another individual, washed and then developed with anti-human IgM FITC labeled antibody and analyzed in a flow cytometer. Results showed that serum from mice that are transgenic for the human mini-gene locus (mice 2343 and 2348) show human IgM reactivity whereas all littermate animals (2344, 2345, 2346, 2347) do not. Normal mouse serum (NS) and phosphate buffer saline (PBS) were used as negative controls. Red blood cells were ungated and white blood cells were gated to include only lymphocytes. Lines are drawn on the x and y axis to provide a reference. Flow cytometry was performed on 100 supernatants from fusion 2348. Four supernatants showed positive reactivity for blood cell antigens.
  • NS normal mouse serum
  • PBS phosphate buffer saline
  • the vector pGP1b (referred to in a previous example) is digested with Xhol and BamHI and ligated with the following oligonucleotides: 5'- gat cct cga gac cag gta cca gat ctt gtg aat teg -3'
  • This plasmid contains a polylinker that includes the following restriction sites:
  • a 0.8 kb Xbal/Bglll fragment of pVH251 (referred to in a previous example), that includes the promoter leader sequence exon, first intron, and part of the second exon of the human VH-V family immunoglobulin variable gene segment, was inserted into Xbal/Bglll digested vector pNN03 to generate the plasmid pVH251.
  • the BamHI/Hindlll fragment of pMHEl is cloned into BamHI/Hindlll cut pVhgh to generate the B-cell expression vector pBCE1.
  • This vector depicted in Fig. 36, contains unique Xhol and Asp718 cloning sites into which antisense DNA fragments can be cloned.
  • the expression of these antisense sequences is driven by the upstream heavy chain promoter- enhancer combination the downstream hGH gene sequences provide polyadenylation sequences in addition to intron sequences that promote the expression of transgene constructs.
  • Antisense transgene constructs generated from pBCEl can be separated from vector sequences by digestion with NotI.
  • PCR polymerase chain reaction
  • the resulting 0.3 kb PCR product is digested with Asp7l8 and Xhol and cloned into Asp718/XhoI digested pBCE1 to generate the antisense transgene construct pMASl.
  • the purified NotI insert of pMAS1 is microinjected into the pronuclei of half day mouse embryos-- alone or in combination with one or more other transgene constructs--to generate transgenic mice.
  • This construct expresses an RNA transcript in B-cells that hybridizes with mouse IgM mRNA, thus down-regulating the expression of mouse IgM protein.
  • Double transgenic mice containing pMAS1 and a human heavy chain transgene minilocus such as pHC1 will express the human transgene encoded Ig receptor on a higher percentage of B-cell than mice transgenic for the human heavy chain minilocus alone.
  • the ratio of human to mouse Ig receptor expressing cells is due in part to competition between the two populations for factors and cells that promoter B-cell differentiation and expansion. Because the Ig receptor plays a key role in B-cell
  • mouse Ig receptor expressing B-cells that express reduced levels of IgM on their surface (due to mouse Ig specific antisense down-regulation) during B-cell development will not compete as well as cells that express the human receptor.
  • RNA transcript in B-cells that hybridizes with mouse IgK mRNA, thus down-regulating the expression of mouse IgK protein as described above for pMAS1.
  • This example demonstrates the successful immunization and immune response in a transgenic mouse of the present invention.
  • KLH-DNP Keyhole limpet hemocyanin conjugated with greater than 400 dinitrophenyl groups per molecule (Calbiochem, La Jolla, California) (KLH-DNP) was alum precipitated according to a previously published method (Practical Immunology, L. Hudson and F.C. Hay, Blackwell Scientific (Pubs.), p. 9, 1980).
  • PBS phosphate buffered saline

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Mycology (AREA)
  • Cell Biology (AREA)
  • Oncology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention relates to transgenic non-human animals capable of producing heterologous antibodies and transgenic non-human animals having inactivated endogenous immunoglobulin genes. In one aspect of the invention, endogenous immunoglobulin genes are suppresed by antisense polynucleotides and/or by antiserum directed against endogenous immunoglobulins. Heterologous antibodies are encoded by immunoglobulin genes not normally found in the genome of that species of non-human animal. In one aspect of the invention, one or more transgenes containing sequences of unrearranged heterogolous human immunoglobulin heavy chains are introduced into a non-human animal thereby forming a transgenic animal capable of functionally rearranging transgenic immunoglobulin sequences and producing a repertoire of antibodies of various isotypes encoded by human immunoglobulin genes. Such heterologous human antibodies are produced in B-cells which are thereafter immortalized, e.g., by fusing with an immortalizing cell line such as a myeloma or by manipulating such B-cells by other techniques to perpetuate a cell line capable of producing a monoclonal heterologous antibody. The invention also relates to heavy and light chain immunoglobulin transgenes for making such transgenic non-human animals as well as methods and vectors for disrupting endogenous immunoglobulin loci in the transgenic animal.

Description

Transgenic non-human animals capable of producing heterologous antibodies
TECHNICAL FIELD
The invention relates to transgenic non-human animals capable of producing heterologous antibodies,
transgenes used to produce such transgenic animals,
transgenes capable of functionally rearranging a heterologous D gene in V-D-J recombination, immortalized B-cells capable of producing heterologous antibodies, methods and transgenes for producing heterologous antibodies of multiple isotypes, methods and transgenes for inactivating or suppressing
expression of endogenous immunoglobulin loci, methods and transgenes for producing heterologous antibodies wherein a variable region sequence comprises somatic mutation as
compared to germline rearranged variable region sequences, and transgenic nonhuman animals which produce antibodies having a human primary sequence and which bind to human antigens.
BACKGROUND OF THE INVENTION
One of the major impediments facing the development of in vivo therapeutic and diagnostic applications for
monoclonal antibodies in humans is the intrinsic
immunogenicity of non-human immunoglobulins. For example, when immunocompetent human patients are administered therapeutic doses of rodent monoclonal antibodies, the patients produce antibodies against the rodent immunoglobulin sequences; these human anti-mouse antibodies (KAMA) neutralize the therapeutic antibodies and can cause acute toxicity. Hence, it is
desirable to produce human immunoglobulins that are reactive with specific human antigens that are promising therapeutic and/or diagnostic targets. However, producing human immunoglobulins that bind specifically with human antigens is problematic.
The present technology for generating monoclonal antibodies involves pre-exposing, or priming, an animal
(usually a rat or mouse) with antigen, harvesting B-cells from that animal, and generating a library of hybridoma clones. By screening a hybridoma population for. antigen binding
specificity (idiotype) and also screening for immunoglobulin class (isotype), it is possible to select hybridoma clones that secrete the desired antibody.
However, when present methods for generating
monoclonal antibodies are applied for the purpose of
generating human antibodies that have binding specificities for human antigens, obtaining B-lymphocytes which produce human immunoglobulins a serious obstacle, since humans will typically not make immune responses against self-antigens.
Hence, present methods of generating human monoclonal antibodies that are specifically reactive with human antigens are clearly insufficient. It is evident that the same limitations on generating monoclonal antibodies to authentic self antigens apply where non-human species are used as the source of B-cells for making the hybridoma.
The construction of transgenic animals harboring a functional heterologous immunoglobulin transgene are a method by which antibodies reactive with self antigens may be
produced. However, in order to obtain expression of
therapeutically useful antibodies, or hybridoma clones
producing such antibodies, the transgenic animal must produce transgenic B cells that are capable of maturing through the B lymphocyte development pathway. Such maturation requires the presence of surface IgM on the transgenic B cells, however isotypes other than IgM are desired for therapeutic uses.
Thus, there is a need for transgenes and animals harboring such transgenes that are able to undergo functional V-D-J rearrangement to generate recombinational diversity and
junctional diversity. Further, such transgenes and transgenic animals preferably include cis-acting sequences that
facilitate isotype switching from a first isotype that is required for B cell maturation to a subsequent isotype that has superior therapeutic utility.
A number of experiments have reported the use of transfected cell lines to determine the specific DNA sequences required for Ig gene rearrangement (reviewed by Lewis and Gellert (1989), Cell, 59, 585-588). Such reports have
identified putative sequences and concluded that the
accessibility of these sequences to the recombinase enzymes used for rearrangement is modulated by transcription
(Yancopoulos and Alt (1985), Cell, 40, 271-281). The
sequences for V(D)J joining are reportedly a highly conserved, near-palindromic heptamer and a less well conserved AT-rich nanomer separated by a spacer of either 12 or 23 bp (Tonegawa (1983), Nature, 302, 575-581; Hesse, et al. (1989), Genes in Dev. , 3, 1053-1061). Efficient recombination reportedly occurs only between sites containing recombination signal sequences with different length spacer regions.
Ig gene rearrangement, though studied in tissue culture cells, has not been extensively examined in transgenic mice. Only a handful of reports have been published
describing rearrangement test constructs introduced into mice [Buchini, et al. (1987), Nature. 326, 409-411 (unrearranged chicken λ transgene); Goodhart, et al. (1987) , Proc. Natl. Acad. Sci. USA, 84, 4229-4233) (unrearranged rabbit k gene); and Bruggemann, et al. (1989), Proc. Natl. Acad. Sci. USA, 86, 6709-6713 (hybrid mouse-human heavy chain)]. The results of such experiments, however, have been variable, in some cases, producing incomplete or minimal rearrangement of the
transgene.
Further, a variety of biological functions of antibody molecules are exerted by the Fc portion of molecules, such as the interaction with mast cells or basophils through Fee, and binding of complement by Fcμ or Fcγ, it further is desirable to generate a functional diversity of antibodies of a given specificity by variation of isotype.
Although transgenic animals have been generated that incorporate transgenes encoding one or more chains of a heterologous antibody, there have been no reports of hererologous transgenes that undergo successful isotype switching. Transgenic animals that cannot switch isotypes are limited to producing h-iterologous antibodies of a single isotype, and more specifically are limited to producing an isotype that is essential for B cell maturation, such as IgM and possibly IgD, which may be of limited therapeutic utility. Thus, there is a need for heterologous immunoglobulin
transgenes and transgenic animals that are capable of
switching from an isotype needed for B cell development to an isotype that has a desired characteristic for therapeutic use.
Based on the foregoing, it is clear that a need exists for methods of efficiently producing heterologous antibodies, e.g. antibodies encoded by genetic sequences of a first species that are produced in a second species. More particularly, there is a need in the art for heterologous immunoglobulin transgenes and transgenic animals that are capable of undergoing functional V-D-J gene rearrangement that incorporates all or a portion of a D gene segment which contributes to recombinational diversity. Further, there is a need in the art for transgenes and transgenic animals that can support V-D-J recombination and isotype switching so that (1) functional B cell development may occur, and (2)
therapeutically useful heterologous antibodies may be
produced. There is also a need for a source of B cells which can be used to make hybridomas that produce monoclonal
antibodies for therapeutic or diagnostic use in the particular species for which they are designed. A heterologous
immunoglobulin transgene capable of functional V-D-J
recombination and/or capable of isotype switching could
fulfill these needs.
In accordance with the foregoing object transgenic nonhuman animals are provided which are capable of producing a heterologous antibody, such as a human antibody.
Further, it is an object to provide B-cells from such transgenic animals which are capable of expressing
heterologous antibodies wherein such B-cells are immortalized to provide a source of a monoclonal antibody specific for a particular antigen. In accordance with this foregoing object, it is a further object of the invention to provide hybridoma cells that are capable of producing such heterologous monoclonal antibodies.
Still further, it is an object herein to provide heterologous unrearranged and rearranged immunoglobulin heavy and light chain transgenes useful for producing the
aforementioned non-human transgenic animals.
Still further, it is an object herein to provide methods to disrupt endogenous immunoglobulin loci in the transgenic animals.
Still further, it is an object herein to provide methods to induce heterologous antibody production in the aforementioned transgenic non-human animal.
A further object of the invention is to provide methods to generate an immunoglobulin variable region gene segment repertoire that is used to construct one or more transgenes of the invention.
The references discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an
admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention.
SUMMARY OF THE INVENTION
Transgenic nonhuman animals are provided which are capable of producing a heterologous antibody, such as a human antibody. Such heterologous antibodies may be of various isotypes, including: IgG1, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, IgAsec, IgD, of IgE. In order for such transgenic nonhuman animals to make an immune response, it is necessary for the transgenic B cells and pre-B cells to produce surface-bound immunoglobulin, particularly of the IgM (or possibly IgD) isotype, in order to effectuate B cell development and
antigen-stimulated maturation. Such expression of an IgM (or IgD) surface-bound immunoglobulin is only required during the antigen-stimulated maturation phase of B cell development, and mature B cells may produce other isorypes, although only a single switched isotype may be produced at a time.
Typically, a cell of the B-cell lineage will produce only a single isotype at a time, although cis or trans
alternative RNA splicing, such as occurs naturally with the μs (secreted μ) and μM (membrane-bound μ) forms, and the μ and δ immunoglobulin chains, may lead to the contemporaneous
expression of multiple isotypes by a single cell. Therefore, in order to produce heterologous antibodies of multiple isotypes, specifically the therapeutically useful IgG, IgA, and IgE isotypes, it is necessary that isotype switching occur. Such isotype switching may be classical class- switching or may result from one or more non-classical isotype switching mechanisms.
The invention provides heterologous immunoglobulin transgenes and transgenic nonhuman animals harboring such transgenes, wherein the transgenic animal is capable of producing heterologous antibodies of multiple isotypes by undergoing isotype switching. Classical isotype switching occurs by recombination events which involve at least one switch sequence region in the transgene. Non-classical isotype switching may occur by, for example, homologous recombination between human σμ and human Σμ sequences (δ- associated deletion). Alternative non-classical switching mechanisms, such as intertransgene and/or interchromosomal recombination, among others, may occur and effectuate isotype switching. Such transgenes and transgenic nonhuman animals produce a first immunoglobulin isotype that is necessary for antigen-stimulated B cell maturation and can switch to encode and produce one or more subsequent heterologous isotypes that have therapeutic and/or diagnostic utility. Transgenic
nonhuman animals of the invention are thus able to produce, in one embodiment, IgG, IgA, and/or IgE antibodies that are encoded by human immunoglobulin genetic sequences and which also bind specific human antigens with high affinity.
The invention also encompasses B-cells from such transgenic animals that are capable of expressing heterologous antibodies of various isotypes, wherein such B-cells are immortalized to provide a source of a monoclonal antibody specific for a particular antigen. Hybridoma cells that are derived from such B-cells can serve as one source of such heterologous monoclonal antibodies.
The invention provides heterologous unrearranged and rearranged immunoglobulin heavy and light chain transgenes capable of undergoing isotype switching in vivo in the
aforementioned non-human transgenic animals or in explanted lymphocytes of the B-cell lineage from such transgenic
animals. Such isotype switching may occur spontaneously or be induced by treatment of the transgenic animal or explanted B- lineage lymphocytes with agents that promote isotype
switching, such as T-cell-derived lymphokines (e.g., IL-4 and IFNγ).
Still further, the invention includes methods to induce heterologous antibody production in the aforementioned transgenic non-human animal, wherein such antibodies may be of various isotypes. These methods include producing an antigen- stimulated immune response in a transgenic nonhuman animal for the generation of heterologous antibodies, particularly heterologous antibodies of a switched isotype (i.e., IgG, IgA, and IgE).
This invention provides methods whereby the transgene contains sequences that effectuate isotype
switching, so that the heterologous immunoglobulins produced in the transgenic animal and monoclonal antibody clones derived from the B-cells of said animal may be of various isotypes.
This invention further provides methods that facilitate isotype switching of the transgene, so that
switching between particular isotypes may occur at much higher or lower frequencies or in different temporal orders than typically occurs in germline immunoglobulin loci. Switch regions may be grafted from various CH genes and ligated to other CH genes in a transgene construct; such grafted switch sequences will typically function independently of the
associated CH gene so that switching in the transgene
construct will typically be a function of the origin of the associated switch regions. Alternatively, or in combination with switch sequences, δ-associated deletion sequences may be linked to various CH genes to effect non-classical switching by deletion of sequences between two δ-associated deletion sequences. Thus, a transgene may be constructed so that a particular CH gene is linked to a different switch sequence and thereby is switched to more frequently than occurs when the naturally associated switch region is used.
This invention also provides methods to determine whether isotype switching of transgene sequences has occurred in a transgenic animal containing an immunoglobulin transgene.
The invention provides immunoglobulin transgene constructs and methods for producing immunoglobulin transgene constructs, some of which contain a subset of germline
immunoglobulin loci sequences (which may include deletions). The invention includes a specific method for facilitated cloning and construction of immunoglobulin transgenes,
involving a vector that employs unique Xhol and Sall
restriction sites flanked by two unique NotI sites. This method exploits the complementary termini of Xhol and Sall restrictions sites and is useful for creating large constructs by ordered concatemerization of restriction fragments in a vector.
The transgenes of the invention include a heavy chain transgene comprising DNA encoding at least one variable gene segment, one diversity gene segment, one joining gene segment and one constant region gene segment. The
immunoglobulin light chain transgene comprises DNA encoding at least one variable gene segment, one joining gene segment and one constant region gene segment. The gene segments encoding the light and heavy chain gene segments are heterologous to the transgenic non-human animal in that they are derived from, or correspond to, DNA encoding immunoglobulin heavy and light chain gene segments from a species not consisting of the transgenic non-human animal. In one aspect of the invention, the transgene is constructed such that the individual gene segments are unrearranged, i.e., not rearranged so as to encode a functional immunoglobulin light or heavy chain. Such unrearranged transgenes permit recombination of the gene segments (functional rearrangement) and expression of the resultant rearranged immunoglobulin heavy and/or light chains within the transgenic non-human animal when said animal is exposed to antigen.
In one aspect of the invention, heterologous heavy and light immunoglobulin transgenes comprise relatively large fragments of unrearranged heterologous DNA. Such fragments typically comprise a substantial portion of the C, J (and in the case of heavy chain, D) segments from a heterologous immunoglobulin locus. In addition, such fragments also comprise a substantial portion of the variable gene segments.
In one embodiment, such transgene constructs
comprise regulatory sequences, e.g. promoters, enhancers, class switch regions, recombination signals and the like, corresponding to sequences derived from the heterologous DNA. Alternatively, such regulatory sequences may be incorporated into the transgene from the same or a related species of the non-human animal used in the invention. For example, human immunoglobulin gene segments may be combined in a transgene with a rodent immunoglobulin enhancer sequence for use in a transgenic mouse.
In a method of the invention, a transgenic non-human animal containing germline unrearranged light and heavy immunoglobulin transgenes - that undergo VDJ joining during D-cell differentiation - is contacted with an antigen to induce production of a heterologous antibody in a secondary repertoire B-cell.
Also included in the invention are vectors and methods to disrupt the endogenous immunoglobulin loci in the non-human animal to be used in the invention. Such vectors and methods utilize a transgene, preferably positive-negative selection vector, which is constructed such that it targets the functional disruption of a class of gene segments encoding a heavy and/or light immunoglobulin chain endogenous to the non-human animal used in the invention. Such endogenous gene segments include diversity, joining and constant region gene segments. In this aspect of the invention, the positive-negative selection vector is contacted, with at least one embryonic stem cell of a non-human animal after which cells are selected wherein the positive-negative selection vector has integrated into the genome of the non-human animal by way of homologous recombination. After transplantation, the resultant transgenic non-human animal is substantially incapable of mounting an immunoglobulin-mediated immune response as a result of homologous integration of the vector into chromosomal DNA. Such immune deficient non-human animals may thereafter be used for study of immune deficiencies or used as the recipient of heterologous immunoglobulin heavy and light chain transgenes.
The invention also provides vectors, methods, and compositions useful for suppressing the expression of one or more species of immunoglobulin chain(s), without disrupting an endogenous immunoglobulin locus. Such methods are useful for suppressing expression of one or more endogenous
immunoglobulin chains while permitting the expression of one or more transgene-encoded immunoglobulin chains. Unlike genetic disruption of an endogenous immunoglobulin chain locus, suppression of immunoglobulin chain expression does not require the time-consuming breeding that is needed to
establish transgenic animals homozygous for a disrupted endogenous Ig locus. An additional advantage of suppression as compared to engognous Ig gene disruption is that, in certain embodiments, chain suppression is reversible within an individual animal. For example, Ig chain suppression may be accomplished with: (1) transgenes encoding and expressing antisense RNA that specifically hybridizes to an endogenous Ig chain gene sequence, (2) antisense oligonucleotides that specifically hybridize to. an endogenous Ig chain gene
sequence, and (3) immunoglobulins that bind specifically to an endogenous Ig chain polypeptide.
The references discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an
admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention. BRIEF DESCRIPTION OF THE FIGURES
Fig. 1 depicts the complementarity determining regions CDR1, CDR2 and CDR3 and framework regions FR1, FR2, FR3 and FR4 in unrearranged genomic DNA and mRNA expressed from a rearranged immunoglobulin heavy chain gene,
Fig. 2 depicts the human λ chain locus,
Fig. 3 depicts. the human κ chain locus,
Fig. 4 depicts the human heavy chain locus, Fig. 5 depicts a transgene construct containing a rearranged IgM gene ligated to a 25 kb fragment that contains human γ3 and γ1 constant regions followed by a 700 bp fragment containing the rat chain 3' enhancer sequence.
Fig. 6 is a restriction map of the human κ chain locus depicting the fragments to be used to form a light chain transgene by way of in vivo homologous recombination.
Fig. 7 depicts the construction of pGP1.
Fig. 8 depicts the construction of the polylinker contained in pGP1.
Fig. 9 depicts the fragments used to construct a human heavy chain transgene of the invention.
Fig. 10 depicts the construction of pHIG1 and pCON1. Fig. 11 depicts the human Cγl fragments which are inserted into pRE3 (rat enhancer 3') to form pREG2.
Fig. 12 depicts the construction of pHIG3' and PCON.
Fig. 13 depicts the fragment containing human D region segments used in construction of the transgenes of the invention.
Fig. 14 depicts the construction of pHIG2 (D segment. containing plasmid).
Fig. 15 depicts the fragments covering the human Jκ and human Cκ gene segments used in constructing a transgene of the invention.
Fig. 16 depicts the structure of pEμ.
Fig. 17 depicts the construction of pKapH.
Figs. 18A through 18D depict the construction of a positive-negative selection vector for functionally disrupting the endogenous heavy chain immunoglobulin locus of mouse. Figs. 19A through 19C depict the construction of a positive-negative selection vector for functionally disrupting the endogenous immunoglobulin light-chain loci in mouse.
Figs. 20 a through e depict the structure of a kappa light chain targeting vector.
Figs. 21 a through f depict the structure of a mouse heavy chain targeting vector.
Fig. 22 depicts the map of vector pGPe.
Fig. 23 depicts the structure of vector pJM2.
Fig. 24 depicts the structure of vector pCOR1.
Fig. 25 depicts the transgene constructs for pIGM1, pHC1 and pHC2.
Fig. 26 depicts the structure of pγe2.
Fig. 27 depicts the structure of pVGE1.
Fig. 28 depicts the assay results of human Ig expression in a pHC1 transgenic mouse.
Fig,. 29 depicts the structure of pJCK1.
Fig. 30 depicts the construction of a synthetic heavy chain variable region.
Fig. 31 is a schematic representation of the'heavy chain minilocus constructs pIGM1, pHC1, and pHC2.
Fig. 32 is a schematic representation of the heavy chain minilocus construct pIGG1 and the κ light chain
minilocus construct pKC1, pKVe1, and pKC2.
Fig. 33 depicts a scheme to reconstruct functionally rearranged light chain genes.
Fig. 34 depicts serum ELISA results
Fig. 35 depicts the results of an ELISA assay of serum from 8 transgenic mice.
Fig. 36 is a schematic representation of plasmid pBCE1.
Fig. 37 depicts the immune response of transgenic mice of the present invention against KLH-DNP, by measuring IgG and IgM levels specific for KLH-DNP (37A), KLH (37B) and BSA-DNP (37C).
Fig. 38 shows ELISA data demonstrating the presence of antibodies that bind human carcinoembryonic antigen (CEA) and comprise human μ chains; each panel shows reciprocal serial dilutions from pooled serum samples obtained from mice on the indicated day following immunization.
Fig. 39 shows ELISA data demonstrating the presence of antibodies that bind human carcinoembryonic antigen (CEA) and comprise human γ chains; each panel shows reciprocal serial dilutions from pooled serum samples obtained from mice on the indicated day following immunization.
Fig. 40 shows aligned variable region sequences of 23 randomly-chosen cDNAs generated from mRNA obtained from lymphoid tissue of HCI transgenic mice immunized, with human carcinoembryonic antigen (CEA) as compared to the germline transgene sequence (top line); on each line nucleotide changes relative to germline sequence are shown above the alteration in deduced amino acid sequence (if any); the regions
corresponding to heavy chain CDR1, CDR2, and CDR3 are
indicated. Non-germline encoded nucleotides are shown in capital letters. Germline VH251 and JH are shown in lower case letters. Deduced amino acid changes are given beneath
nucleotide sequences using th conventional single-letter notation.
Fig. 41 shows the data from Fig. 40 in histogram format; deduced amino acid residue position is shown as the ordinate (left is the amino-terminal direction, right is in the direction towards the carboxy-terminus) and frequency of sequence variation is shown as the abscissa.
Fig..42 show the nucleotide sequence of a human DNA fragment, designated vk65.3, containing a Vκ gene segment; the deduced amino acid sequences of the Vκ coding regions are also shown; splicing and recombination signal sequences
(heptamer/nonamer) are shown boxed.
Fig. 43 show the nucleotide sequence of a human DNA fragment, designated vk65.5, containing a Vκ gene segment; the deduced amino acid sequences of the Vκ coding regions are also shown; splicing and recombination signal sequences
(heptamer/nonamer) are shown boxed.
Fig. 44 show the nucleotide sequence of a human DNA fragment, designated vk65.8, containing a Vκ gene segment; the deduced amino acid sequences of the Vκ coding regions are also shown; splicing and recombination signal sequences
(hεptamer/nonamer) are shewn boxed.
Fig. 45 show the nucleotide sequence of a human DNA fragment, designated vk65.15, containing a Vκ gene segment; the deduced amino acid sequences of the Vκ coding regions are also shown; splicing and recombination signal sequences
(heptamer/nonamer) are shown boxed.
Fig. 46 shows formation of a light chain minilocus by homologous recombination between two overlapping fragments which were co-injected.
Table 1 depicts the sequence of vector pGPe.
Table 2 depicts the sequence of gene VH4 .8.
Table 3 depicts the detection of human IgM and IgG in the serum of transgenic mice of this invention.
Table 4 depicts sequences of VDJ joints.
Table 5 depicts the distribution of J segments incorporated into pHC1 transgene encoded transcripts to J segments found in adult human peripheral blood lymphocytes (PBL).
Table 6 depicts the distribution of D segments incorporated into pHC1 transgene encoded transcripts to D segments found in adult human peripheral blood lymphocytes (PBL).
Table 7 depicts the length of the CDR3 peptides from transcripts with in-frame VDJ joints in the pHC1 transgenic mouse and in human PBL.
Table 8 depicts the predicted amino acid sequences of the VDJ regions from 30 clones analyzed from a pHC1
transgenic.
Table 9 shows transgenic mice of line 112 that were used in the indicated experiments; (+) indicates the presence of the respective transgene, (++) indicates that the animal is homozygous for the JHD knockout transgene. DETAILED DESCRIPTION
As has been discussed supra, it is desirable to produce human immunoglobulins that are reactive with specific human antigens that are promising therapeutic and/or diagnostic targets. However, producing human immunoglobulins that bind specifically with human antigens is problematic.
First, the immunized animal that serves as the source of B cells must make an immune response against the presented antigen. In order for an animal to make an immune response, the antigen presented must be foreign and the animal must not be tolerant to the antigen. Thus, for example, if it is desired to produce a human monoclonal antibody with an idiotype that binds to a human protein, self-tolerance will prevent an immunized human from making a substantial immune response to the human protein, since the only epitopes of the antigen that may be immunogenic will be those that result from polymorphism of the protein within the human population
(allogeneic epitopes).
Second, if the animal that serves as the source of
B-cells for forming a hybridoma (a human in the illustrative given example) does make an immune response against an
authentic self antigen, a severe autoimmune disease may result in the animal. Where humans would be used as a source of B- cells for a hybridoma, such autoimmunization would be
considered unethical by contemporary standards.
One methodology that can be used to obtain human antibodies that are specifically reactive with human antigens is the production of a transgenic mouse harboring the human immunoglobulin transgene constructs of this invention.
Briefly, transgenes containing all or portions of the human immunoglobulin heavy and light chain loci, or transgenes containing synthetic "miniloci" (described infra, and in
PCT/US91/06185 filed August 28, 1991) which comprise essential functional elements of the human heavy and light chain loci, are employed to produce a transgenic nonhuman animal. Such a transgenic nonhuman animal will have the capacity to produce immunoglobulin chains that are encoded by human immunoglobulin genes, and additionally will be capable of making an immune response against human antigens. Thus, such transgenic animals can serve as a source of immune sera reactive with specified human antigens, and B-cells from such transgenic animals can be fused with myeloma cells to produce hybridomas that secrete monoclonal antibodies that are encoded by human, immunoglobulin genes and which are specifically reactive with human antigens.
The production of transgenic mice containing various forms of immunoglobulin genes has been reported previously. Rearranged mouse immunoglobulin heavy or light chain genes have been used to produce transgenic mice. In addition, functionally rearranged human Ig genes including the μ or γ1 constant region have been expressed in transgenic mice.
However, experiments in which the transgene comprises
unrearranged (V-D-J or V-J not rearranged) immunoglobulin genes have been variable, in some cases, producing incomplete or minimal rearrangement of the transgene. However, there are no published examples of either rearranged or unrearranged immunoglobulin transgenes which undergo successful isotype switching between CH genes within a transgene.
Definitions
As used herein, the term "antibody" refers to a glycoprotein comprising at least two light polypeptide chains and two heavy polypeptide chains. Each of the heavy and light polypeptide chains contains a variable region (generally the amino terminal portion of the polypeptide chain) which
contains a binding domain which interacts with antigen. Each of the heavy and light polypeptide chains also comprises a constant region of the polypeptide chains (generally the carboxyl terminal portion) which may mediate the binding of the immunoglobulin to host tissues or factors including
various cells of the immune system, some phagocytic cells and the first component (C1q) of the classical complement system.
As used herein, a "heterologous antibody" is defined in relation to the transgenic non-human organism producing such an antibody. It is defined as an antibody having an amino acid sequence or an encoding DNA sequence corresponding to that found in an organism not consisting of the transgenic non-human animal.
As used herein, a "heterohybrid antibody" refers to an antibody having a light and heavy chains of different organismal origins. For example, an antibody having a human heavy chain associated with a murine light chain is a
heterohybrid antibody.
As used herein, "isotype" refers to the antibody class (e.g., IgM or IgG1) that is encoded by heavy chain constant region genes.
As used herein, "isotype switching" refers to the phenomenon by which the class, or isotype, of an antibody changes from one Ig class to one of the other Ig classes.
As used herein, "nonswitched isotype" refers to the isotypic class of heavy chain that is produced when no isotype switching has taken place; the CH gene encoding the
nonswitched isotype is typically the first CH gene immediately downstream from the functionally rearranged VDJ gene.
As used herein, the term "switch sequence" refers to those DNA sequences responsible for switch recombination. A "switch donor" sequence, typically a μ switch region, will be 5' (i.e., upstream) of the construct region to be deleted during the switch recombination. The "switch acceptor" region will be between the construct region to be deleted and the replacement constant region (e.g., γ, ε, etc.). As there is no specific site where recombination always occurs, the final gene sequence will typically not be predictable from the construct.
As used herein, "glycosylation pattern" is defined as the pattern of carbohydrate units that are covalently attached to a protein, more specifically to an immunoglobulin protein. A glycosylation pattern of a heterologous antibody can be characterized as being substantially similar to
glycosylation patterns which occur naturally on antibodies produced by the species of the nonhuman transgenic animal, when one of ordinary skill in the art- would recognize the glycosylation pattern of the heterologous antibody as being more similar to said pattern of glycosylation in the species of the nonhuman transgenic animal than to the species from which the CH genes of the transgene were derived.
As used herein, "specific binding" refers to the property of the antibody: (1) to bind to a predetermined antigen with an affinity of at least 1 x 107 M-1, and (2) to preferentially bind to the predetermined antigen with an affinity that is at least twc-fold greater than its affinity for binding to a non-specific antigen (e.g., BSA, casein) other than the predetermined antigen.
The term "naturally-occurring" as used herein as applied to an object refers to the fact that an object can be found in nature. For example, a polypeptide or polynucleotide sequence that is present in an organism (including viruses) that can be isolated from a source in nature and which has not been intentionally modified by man in the laboratory is naturally-occurring.
The term "rearranged" as used herein refers to a configuration of a heavy chain or light chain immunoglobulin locus wherein a V segment is positioned immediately adjacent to a D-J or J segment in a conformation encoding essentially a complete VH or VL domain, respectively. A rearranged
immunoglobulin gene locus can be identified by comparison to germline DNA; a rearranged locus will have at least one recombined heptamer/nonamer homology element.
The term "unrearranged" or "germline configuration" as used herein in reference to a V segment refers to the configuration wherein the V segment is not recombined so as to be immediately adjacent to a D or J segment.
Transgenic Nonhuman Animals Capable
of Producing Heterologous Antibodies
The design of a transgenic non-human animal that responds to foreign antigen stimulation with a heterologous antibody repertoire, requires that the heterologous
immunoglobulin transgenes contained within the transgenic animal function correctly throughout the pathway of B-cell development. In a preferred embodiment, correct function of a heterologous heavy chain transgene includes isotype switching. Accordingly, the transgenes of the invention are constructed so as to produce isotype switching and one or more of the following: (1) high level and cell-type specific expression, (2) functional gene rearrangement, (3) activation of and response to allelic exclusion, (4) expression of a sufficient primary repertoire, (5) signal transduction, (6) somatic hypermutation, and (7) domination of the transgene antibody locus during the immune response.
As will be apparent from the following disclosure, not all of the foregoing criteria need be met. For example, in those embodiments wherein the endogenous immunoglobulin loci of the transgenic animal are functionally disrupted, the transgene need not activate allelic exclusion. Further, in those embodiments wherein the transgene comprises a
functionally rearranged heavy and/or light chain
immunoglobulin gene, the second criteria of functional gene rearrangement is unnecessary, at least for that transgene which is already rearranged. For background on molecular immunology, see, Fundamental Immunology, 2nd edition (1989), Paul William E., ed. Raven Press, N.Y., which is incorporated herein by reference.
In one aspect of the invention, transgenic non-human animals are provided that contain rearranged, unrearranged or a combination of rearranged and unrearranged heterologous immunoglobulin heavy and light chain transgenes in the
germline of the transgenic animal. Each of the heavy chain transgenes comprises at least one CH gene. In addition, the heavy chain transgene may contain functional isotype switch sequences, which are capable of supporting isotype switching of a heterologous transgene encoding multiple CH genes in B- cells of the transgenic animal. Such switch sequences may be those which occur naturally in the germline immunoglobulin locus from the species that serves as the source of the transgene CH genes, or such switch sequences may be derived from those which occur in the species that is to receive the transgene construct (the transgeneic animal). For example, a human transgene construct that is used to produce a transgenic mouse may produce a higher frequency of isotype switching events if it incorporates switch sequences similar to those that occur naturally in the mouse heavy chain locus, as presumably the mouse switch sequences are optimized to
function with the mouse switch recombinase enzyme system, whereas the human switch sequences are not. Switch sequences made be isolated and cloned by conventional cloning methods, or may be synthesized de novo from overlapping synthetic oligonucleotides designed on the basis of published sequence information relating to immunoglobulin switch region sequences (Mills et al., Nucl. Acids Res. 18:7305-7316 (1991);
Sideras et al., Intl. Immunol. 1:631-642 (1989), which are incorporated herein by reference).
For each of the foregoing transgenic animals, functionally rearranged heterologous heavy and light chain immunoglobulin transgenes are found in a significant fraction of the B-cells of the transgenic animal (at least 10 percent).
The transgenes of the invention include a heavy chain transgene comprising DNA encoding at least one variable gene segment, one diversity gene segment, one joining gene segment and at least one constant region gene segment. The immunoglobulin light chain transgene comprises DNA encoding at least one variable gene segment, one joining gene segment and at least one constant region gene segment. The gene segments encoding the light and heavy chain gene segments are
heterologous to the transgenic non-human animal in that they are derived from, or correspond to, DNA encoding
immunoglobulin heavy and light chain gene segments from a species not consisting of the transgenic non-human animal. In one aspect of the invention, the transgene is constructed such that the individual gene segments are unrearranged, i.e., not rearranged so as to encode a functional immunoglobulin light or heavy chain. Such unrearranged transgenes support
recombination of the V, D, and J gene segments (functional rearrangement) and preferably support incorporation of all ora portion of a D region gene segment in the resultant
rearranged immunoglobulin heavy chain within the transgenic non-human animal when exposed to antigen.
In an alternate embodiment, the transgenes comprise an unrearranged "mini-locus". Such transgenes typically
comprise a substantial portion of the C, D, and J segments as well as a subset of the V gene segments. In such transgene constructs, the various regulatory sequences, e.g. promoters, enhancers, class switch regions, splice-donor and splice- acceptor sequences for RNA processing, recombination signals and the like, comprise corresponding sequences derived from the heterologous DNA. Such regulatory sequences may be incorporated into the transgene from the same or a related species of the non-human animal used in the invention. For example, human immunoglobulin gene segments may be combined in a transgene with a rodent immunoglobulin enhancer sequence for use in a transgenic mouse. Alternatively, synthetic regulatory sequences may be incorporated into the transgene, wherein such synthetic regulatory sequences are not homologous to a
functional DNA sequence that is known to occur naturally in the genomes of mammals. Synthetic regulatory sequences are designed according to consensus rules, such as, for example, those specifying the permissible sequences of a splice- acceptor site or a promoter/enhancer motif.
The invention also includes transgenic animals containing germ line cells having a heavy and light transgene wherein one of the said transgenes contains rearranged gene segments with the other containing unrearranged gene segments. In the preferred embodiments, the rearranged transgene is a light chain immunoglobulin transgene and the unrearranged transgene is a heavy chain immunoglobulin transgene. The Structure and Generation of Antibodies
The basic structure of all immunoglobulins is based upon a unit consisting of two light polypeptide chains and two heavy polypeptide chains. Each light chain comprises two regions known as the variable light chain region and the constant light chain region. Similarly, the immunoglobulin heavy chain comprises two regions designated the variable heavy chain region and the constant heavy chain region.
The constant region for the heavy or light chain is encoded by genomic sequences referred to as heavy or light constant region gerie (CH) segments. The use of a particular heavy chain gene segment defines the class of immunoglobulin. For example, in humans, the μ constant region gene segments define the IgM class of antibody whereas the use of a γ, γ2, γ3 or γ4 constant region gene segment defines the IgG class of antibodies as well as the IgG subclasses IgG1 through IgG4. Similarly, the use of a α1 or α2 constant region gene segment defines the IgA class of antibodies as well as the subclasses IgA1 and IgA2. The δ and e constant region gene segments define the IgD and IgE antibodv classes, respectively.
The variable regions of the heavy and light
immunoglobulin chains together contain the antigen binding domain of the antibody. Because of the need for diversity in this region of the antibody to permit binding to a wide range of antigens, the DNA encoding the initial or primary
repertoire variable region comprises a number of different DNA segments derived from families of specific variable region gene segments. In the case of the light chain variable region, such families comprise variable (V) gene segments and joining (J) gene segments. Thus, the initial variable region of the light chain is encoded by one V gene segment and one J gene segment each selected from the family of V and J gene segments contained in the genomic DNA of the organism. In the case of the heavy chain variable region, the DNA encoding the initial or primary repertoire variable region of the heavy chain comprises one heavy chain V gene segment, one heavy chain diversity (D) gene segment and one J gene segment, each selected from the appropriate V, D and J families of
immunoglobulin gene segments in genomic DNA.
In order to increase the diversity of sequences that contribute to forming antibody binding sites, it is preferable that a heavy chain transgene include cis-acting sequences that support functional V-D-J rearrangement that can incorporate all or part of a D region gene sequence in a rearranged V-D-J gene sequence. Typically, at least about 1 percent of
expressed transgene-encoded heavy chains (or mRNAsJ include recognizable D region sequences in the V region. Preferably, at least about 10 percent of transgene-encoded V regions include recognizable D region sequences, more preferably at least about 30 percent, and most preferably more than 50 percent include recognizable D region sequences. A recognizable D region sequence is generally at least about eight consecutive nucleotides corresponding to a sequence present in a D region gene segment of a heavy chain transgene and/or the amino acid sequence encoded by such D region nucleotide sequence. For example, if a transgene includes the D region gene DHQ52, a transgene-encoded mRNA containing the sequence 5'-TAACTGGG-3' located in the V region between a V gene segment sequence and a J gene segment
sequence is recognizable as containing a D region sequence, specifically a DHQ52 sequence. Similarly, for example, if a transgene includes the D region gene DHQ52, a transgeneencoded heavy chain polypeptide containing the amino acid sequence -DAF- located in the V region between a V gene segment amino acid sequence and a J gene segment amino acid sequence is recognizable as containing a D region sequence, specifically a DHQ52 sequence.
However, because of somatic mutation and N-region addition, some D region sequences may be recognizable but may not correspond identically to a consecutive D region sequence in the transgene. For example, a nucleotide sequence 5'-
CTAAXTGGGG-3', where X is A, T, or G, and which is located in a heavy chain V region and flanked by a V region gene sequence and a J region gene sequence, can be recognized as
corresponding to the DHQ52 sequence 5'-CTAACTGGG-3'.
Similarly, for example, the polypeptide sequences -DAFDI-, -DYFDY-, or -GAFDI- located in a V region and flanked on the amino-terminal side by an amino acid sequence encoded by a transgene V gene sequence and flanked on the carboxyterminal side by an amino acid sequence encoded by a transgene J gene sequence is recognizable as a D region sequence.
Therefore, because somatic mutation and N-region addition can produce mutations in sequences derived from a transgene D region, the following definition is provided as a guide for determining the presence of a recognizable D region sequence. An amino acid sequence or nucleotide sequence is recognizable as a D region sequence if: (1) the sequence is located in a V region and is flanked on one side by a V gene sequence (nucleotide sequence or deduced amino acid sequence) and on the other side by a J gene sequence (nucleotide sequence or deduced amino acid sequence) and (2) the sequence is substantially identical or substantially similar to a known D gene sequence (nucleotide sequence or encoded amino acid sequence).
The term "substantial identity" as used herein denotes a characteristic of a polypeptide sequence or nucleic acid sequence, wherein the polypeptide sequence has at least 50 percent sequence identity compared to a reference sequence, and the nucleic acid sequence has at least 70 percent sequence identity compared to a reference sequence. The percentage of sequence identity is calculated excluding small deletions or additions which total less than 35 percent of the reference sequence. The reference sequence may be a subset of a larger sequence, such as an entire D gene; however, the reference sequence is at least 8 nucleotides long in the case of
polynucleotides, and at least 3 amino residues long in the case of a polypeptide. Typically, the reference sequence is at least 8 to 12 nucleotides or at least 3 to 4 amino acids, and preferably the reference sequence is 12 to 15 nucleotides or more, or at least 5 amino acids.
The term "substantial similarity" denotes a characteristic of an polypeptide sequence, wherein the
polypeptide sequence has at least 80 percent similarity to a reference sequence. The percentage of sequence similarity is calculated by scoring identical amino acids or positional conservative amino acid substitutions as similar. A
positional conservative amino acid substitution is one that can result from a single nucleotide substitution; a first amino acid is replaced by a second amino acid where a codon for the first amino acid and a codon for the second amino acid can differ by a single nucleotide substitution. Thus, for example, the sequence -Lys-Glu-Arg-Val- is substantially similar to the sequence -Asn-Asp-Ser-Val-, since the codon sequence -AAA-GAA-AGA-GUU- can be mutated to -AAC-GAC-AGC-GUU- by introducing only 3 substitution mutations, single
nucleotide substitutions in three of the four original codons. The reference sequence may be a subset of a larger sequence. such as an entire D gene; however, the reference sequence is at least 4 amino residues long. Typically, the reference sequence is at least 5 amino acids, and preferably the
reference sequence is 6 amino acids or more.
The Primary Repertoire
The process for generating DNA encoding the heavy and light chain immunoglobulin genes occurs primarily in developing B-cells. Prior to the joining of various
immunoglobulin gene segments, the V, D, J and constant (C) gene segments are found, for the most part, in clusters of V, D, J and C gene segments in the precursors of primary
repertoire B-cells. Generally, all of the gene segments for a heavy or light chain are located in relatively close proximity on a single chromosome. Such genomic DNA prior to
recombination of the various immunoglobulin gene segments is referred to herein as "unrearranged" genomic DNA. During B-cell differentiation, one of each of the appropriate family members of the V, D, J (or only V and J in the case of light chain genes) gene segments are recombined to form functionally rearranged heavy and light immunoglobulin genes. Such
functional rearrangement is of the variable region segments to form DNA encoding a functional variable region. This gene segment rearrangement process appears to be sequential.
First, heavy chain D-to-J joints are made, followed by heavy chain V-to-DJ joints and light chain V-to-J joints. The DNA encoding this initial form of a functional variable region in a light and/or heavy chain is referred to as "functionally rearranged DNA" or "rearranged DNA". In the case of the heavy chain, such DNA. is referred to as "rearranged heavy chain DNA" and in the case of the light chain, such DNA is referred to as "rearranged light chain DNA". Similar language is used to describe the functional rearrangement of the transgenes of the invention.
The recombination of variable region gene segments to form functional heavy and light chain variable regions is mediated by recombination signal sequences (RSS's) that flank recombinationally competent V, D and J segments. RSS's necessary and sufficient to direct recombination, comprise a dyad-symmetric heptamer, an AT-rich nonamer and an intervening spacer region of either 12 or 23 base pairs. These signals are conserved among the different loci and species that carry out D-J (or V-J) recombination and are functionally
interchangeable. See Oettinger, et al. (1990), Science, 248, 1517-1523 and references cited therein. The heptamer
comprises the sequence CACAGTG or its analogue followed by a spacer of unconserved sequence and then a nonamer having the sequence ACAAAAACC or its analogue. These sequences are found on the J, or downstream side, of each V and D gene segment. Immediately preceding the germline D and J segments are again two recombination signal sequences, first the nonamer and then the heptamer again separated by an unconserved sequence. The heptameric and nonameric sequences following a VL, VH or D segment are complementary to those preceding the JL, D or JH segments with which they recombine. The spacers between the heptameric and nonameric sequences are either 12 base pairs long or between 22 and 24 base pairs long.
In addition to the rearrangement of V, D and J segments, further diversity is generated in the primary repertoire of immunoglobulin heavy and light chain by way of variable recombination between the V and J segments in the light chain and between the D and J segments of the heavy chain. Such variable recombination is generated by variation in the exact place at which such segments are joined. Such variation in the light chain typically occurs within the last codon of the V gene segment and the first codon of the J segment. Similar imprecision in joining occurs on the heavy chain chromosome between the D and JH segments and may extend over as many as 10 nucleotides. Furthermore, several
nucleotides may be inserted between the D and JH and between the VH and D gene segments which are not encoded by genomic DNA. The addition of these nucleotides is known as N-region diversity.
After VJ and/or VDJ rearrangement, transcription of the rearranged variable region and one or more constant region gene segments located downstream from the rearranged variable region produces a primary RNA transcript which upon
appropriate RNA splicing results in an mRNA which encodes a full length heavy or light immunoglobulin chain. Such heavy and light chains include a leader signal sequence to effect secretion through and/or insertion of the immunoglobulin into the transmembrane region of the B-cell. The DNA encoding this signal sequence is contained within the first exon of the V segment used to form the variable region of the heavy or light immunoglobulin chain. Appropriate regulatory sequences are also present in the mRNA to control translation of the mRNA to produce the encoded heavy and light immunoglobulin
polypeptides which upon proper association with each other form an antibody molecule.
The net effect of such rearrangements in the
variable region gene segments and the variable recombination which may occur during such joining, is the production of a primary antibody repertoire. Generally, each B-cell which has differentiated to this stage, produces a single primary repertoire antibody. During this differentiation process, cellular events occur which suppress the functional
rearrangement of gene segments other than those contained within the functionally rearranged Ig gene. The process by which diploid B-cells maintain such mono-specificity is termed allelic exclusion.
The Secondary Repertoire
B-cell clones expressing immunoglobulins from within the set of sequences comprising the primary repertoire are immediately available to respond to foreign antigens. Because of the limited diversity generated by simple VJ and VDJ joining, the antibodies produced by the so-called primary response are of relatively low affinity. Two different types of B-cells make up this initial response: precursors of primary antibody-forming cells and precursors of secondary repertoire B-cells (Linton et al., Cell 59:1049-1059 (1989)). The first type of B-cell matures into IgM-secreting plasma cells in response to certain antigens. The other B-cells respond to initial exposure to antigen by entering a T-cell dependent maturation pathway.
During the T-cell dependent maturation of antigen stimulated B-cell clones, the structure of the antibody molecule on the cell surface changes in two ways: the constant region switches to a non-IgM subtype and the sequence of the variable region can be modified by multiple single amino acid substitutions to produce a higher affinity antibody molecule.
As previously indicated, each variable region of a heavy or light Ig chain contains an antigen binding domain. It has been determined by amino acid and nucleic acid
sequencing that somatic mutation during the secondary response occurs throughout the V region including the three
complementary determining regions (CDRl, CDR2 and CDR3) also referred to as hypervariable regions 1, 2 and 3 (Kabat et al. Sequences of Proteins of Immunological Interest (1991) U.S. Department of Health and Human Services, Washington, DC, incorporated herein by reference. The CDR1 and CDR2 are located within the variable gene segment whereas the CDR3 is largely the result of recombination between V and J gene segments or V, D and J gene segments. Those portions of the variable region which do not consist of CDR1, 2 or 3 are commonly referred to as framework regions designated FR1, FR2, FR3 and FR4. See Fig. 1. During hypermutation, the
rearranged DNA is mutated to give rise to new clones with altered Ig molecules. Those clones with higher affinities for the foreign antigen are selectively expanded by helper
T-cells, giving rise to affinity maturation of the expressed antibody. Clonal selection typically results in expression of clones containing new mutation within the CDR1, 2 and/or 3 regions. However, mutations outside these regions also occur which influence the specificity and affinity of the antiggn binding domain. Transgenic Non-Human Animals Capable
of Producing Heterologous Antibody
Transgenic non-human animals in one aspect of the invention are produced by introducing at least one of the immunoglobulin transgenes of the invention (discussed
hereinafter) into a zygote or early embryo of a non-human animal. The non-human animals which are used in the invention generally comprise any mammal which is capable of rearranging immunoglobulin gene segments to produce a primary antibody response. Such nonhuman transgenic animals may include, for example, transgenic pigs, transgenic rats, transgenic rabbits, transgenic cattle, and other transgenic animal species, particularly mammalian species, known in the art. A
particularly preferred non-human animal is the mouse or other members of the rodent family.
However, the invention is not limited to the use of mice. Rather, any non-human mammal which is capable of mounting a primary and secondary antibody response may be used. Such animals include non-human primates, such as chimpanzee, bovine, ovine, and porcine species, other members of the rodent family, e.g. rat, as well as rabbit and guinea pig. Particular preferred animals are mouse, rat, rabbit and guinea pig, most preferably mouse.
In one embodiment of the invention, various gene segments from the human genome are used in heavy and light chain transgenes in an unrearranged form. In this embodiment, such transgenes are introduced into mice. The unrearranged gene segments of the light and/or heavy chain transgene have DNA sequences unique to the human species which are
distinguishable from the endogenous immunoglobulin gene segments in the mouse genome. They may be readily detected in unrearranged form in the germ line and somatic cells not consisting of B-cells and in rearranged form in B-cells.
In an alternate embodiment of the invention, the transgenes comprise rearranged heavy and/or light
immunoglobulin transgenes. Specific segments of such
transgenes corresponding to functionally rearranged VDJ or VJ segments, contain immunoglobulin DNA sequences which are also clearly distinguishable from the endogenous immunoglobulin gene segments in the mouse.
Such differences in DNA sequence are also reflected in the amino acid sequence encoded by such human
immunoglobulin transgenes as compared to those encoded by mouse B-cells. Thus, human immunoglobulin amino acid
sequences may be detected in the transgenic non-human animals of the invention with antibodies specific for immunoglobulin epitopes encoded by human immunoglobulin gene segments.
Transgenic B-cells containing unrearranged transgenes from human or other species functionally recombine the appropriate gene segments to form functionally rearranged light and heavy chain variable regions. It will be readily apparent that the antibody encoded by such rearranged
transgenes has a DNA and/or amino acid sequence which iε heterologous to that normally encountered in the nonhuman animal used to practice the indention.
Unrearranged Transgenes
As used herein, an "unrearranged immunoglobulin heavy chain transgene" comprises DNA encoding at least one variable gene segment, one diversity gene segment, one joining gene segment and one constant region gene segment. Each of the gene segments of said heavy chain transgene are derived from, or has a sequence corresponding to, DNA encoding
immunoglobulin heavy chain gene segments from a species not consisting of the non-human animal into which said transgene is introduced. Similarly, as used herein, an "unrearranged immunoglobulin light chain transgene" comprises DNA encoding at least one variable gene segment, one joining gene segment and at least one constant region gene segment wherein each gene segment of said light chain tr; nsgene is derived from, or has a sequence corresponding to, DNA encoding immunoglobulin light chain gene segments from a species not consisting of the non-human animal into which said light chain transgene is introduced.
Such heavy and light chain transgenes in this aspect of the invention contain the above-identified gene segments in an unrearranged form. Thus, interposed between the V, D and J segments in the heavy chain transgene and between the V and J segments on the light chain transgene are appropriate
recombination signal sequences (RSS's). In addition, such transgenes also include appropriate RNA splicing signals to join a constant region gene segment with the VJ or VDJ
rearranged variable region.
In order to facilitate isotype switching within a heavy chain transgene containing more than one C region gene segment, e.g. Cμ and Cγ1 from the human genome, as explained below "switch regions" are incorporated upstream from each of the constant region gene segments and downstream from the variable region gene segments to permit recombination between such constant regions to allow for immunoglobulin class switching, e.g. from IgM to IgG. Such heavy and light
immunoglobulin transgenes also contain transcription control sequences including promoter regions situated upstream from the variable region gene segments which typically contain TATA motifs. A promoter region can be defined approximately as a DNA sequence that, when operably linked to a downstream sequence, can produce transcription of the downstream
sequence. Promoters may require the presence of additional linked cis-acting sequences in order to produce efficient transcription. In addition, other sequences that participate in the transcription of sterile transcripts are preferably included. Examples of sequences that participate in
expression of sterile transcripts can be found in the
published literature, including Rothman et al., Intl. Immunol. 2:621-627 (1990); Reid et al., Proc. Natl. Acad. Sci. USA 86-840-844 (1989); Stavnezer et al., Proc. Natl. Acad. Sci. USA 85:7704-7708 (1988); and Mills et al., Nucl. Acids Res. 18:7305-7316 (1991), each of which is incorporated herein by reference. These sequences typically include about at least 50 bp immediately upstream of a switch region, preferably about at least 200 bp upstream of a switch region; and more preferably about at least 200-1000 bp or more upstream of a switch region. Suitable sequences occur immediately upstream of the human Sγ1, Sγ2, Sγ3, Sγ4, Sα1, Sα2, and Sε switch regions, although the sequences immediately upstream of the human Sγ1, and Sγ3 switch regions are preferable. In
particular, interferon (IFN) inducible transcriptional regulatory elements, such as IFN-inducible enhancers, are preferably included immediately upstream of transgene switch sequences.
In addition to promoters, other regulatory sequences which function primarily in B-lineage cells are used. Thus, for example, a light chain enhancer sequence situated
preferably between the J and constant region gene segments on the light chain transgene is used to enhance transgene
expression, thereby facilitating allelic exclusion. In the case of the heavy chain transgene, regulatory enhancers and also employed. Such regulatory sequences are used to maximize the transcription and translation of the transgene so as to induce allelic exclusion and to provide relatively high levels of transgene expression.
Although the foregoing promoter and enhancer
regulatory control sequences have been generically described, such regulatory sequences may be heterologous to the nonhuman animal being derived from the genomic DNA from which the heterologous transgene immunoglobulin gene segments are obtained. Alternately, such regulatory gene segments are derived from the corresponding regulatory sequences in the genome of the non-human animal, or closely related species, which contains the heavy and light transgene.
In the preferred embodiments, gene segments are derived from human beings. The transgenic non-human animals harboring such heavy and light transgenes are capable of mounting an Ig-mediated immune response to a specific antigen administered to such an animal. B-cells are produced within such an animal which are capable of producing heterologous human antibody. After immortalization, and the selection for an appropriate monoclonal antibody (Mab), e.g. a hybridoma, a source of therapeutic human monoclonal antibody is provided. Such human Mabs have significantly reduced immunogenicity when therapeutically administered to humans. Although the preferred embodiments disclose the construction of heavy and light transgenes containing human gene segments, the invention is not so limited. In this regard, it is to be understood that the teachings described herein may be readily adapted to utilize immunoglobulin gene segments from a species other than human beings. For example, in addition to the therapeutic treatment of humans with the antibodies of the invention, therapeutic antibodies encoded by appropriate gene segments may be utilized to generate
monoclonal antibodies for use in the veterinary sciences.
Rearranged Transgenes
In an alternative embodiment, transgenic nonhuman animals contain functionally at least one rearranged
heterologous heavy chain immunoglobulin transgene in the germline of the transgenic animal. Such animals contain primary repertoire B-cells that express such rearranged heavy transgenes. Such B-cells preferably are capable of undergoing somatic mutation when contacted with an antigen to form a heterologous antibody having high affinity and specificity for the antigen. Said rearranged transgenes will contain at least two CH genes and the associated sequences required for isotype switching.
The invention also includes transgenic animals containing germ line cells having heavy and light transgenes wherein one of the said transgenes contains rearranged gene segments with the other containing unrearranged gene segments. In such animals, the heavy chain transgenes shall have at least two CH genes and the associated sequences required for isotype switching.
The invention further includes methods for generating a synthetic variable region gene segment repertoire to be used in the transgenes of the invention. The method comprises generating a population of immunoglobulin V segment DNAs wherein each of the V segment DNAs encodes an
immunoglobulin V segment and contains at each end a cleavage recognition site of a restriction endonuclease. The
population of immunoglobulin V segment DNAs is thereafter concatenated to form the synthetic immunoglobulin V segment repertoire. Such synthetic variable region heavy chain transgenes shall have at least two CH genes and the associated sequences required for isotype switching.
Isotype Switching
In the development of a B lymphocyte, the cell initially produces IgM with a binding specificity determined by the productively rearranged VH and VL regions.
Subsequently, each B cell and its progeny cells synthesize antibodies with the same L and H chain V regions, but they may switch the isotype of the H chain.
The use of μ or δ constant regions is largely determined by alternate splicing, permitting IgM and IgD to be coexpressed in a single cell. The other heavy chain isotypes (γ, α, and ε) are only expressed natively after a gene
rearrangement event deletes the Cμ and Cδ exons. This gene rearrangement process, termed isotype switching, typically occurs by recombination between so called switch segments located immediately upstream of each heavy chain gene (except S) . The individual switch segments are between 2 and 10 kb in length, and consist primarily of short repeated sequences.
The exact point of recombination differs for individual class switching events. Investigations which have used solution hybridization kinetics or Southern blotting with cDNA-derived CH probes have confirmed that switching can be associated with loss of CH sequences from the cell.
The switch (S) region of the μ gene, Sμ, is located about 1 to 2 kb 5' to the coding sequence and is composed of numerous tandem repeats of sequences of the form
(GAGCT)n(GGGGT), where n is usually 2 to 5 but can range as high as 17. (See T. Nikaido et al. Nature 292:845-848 (1981))
Similar internally repetitive switch sequences spanning several kilobases have been found 5' of the other CH genes. The Sα region has been sequenced and found to consist of tandemly repeated 80-bp homology units, whereas Sγ2a, Sγ2b, and Sγ3 all contain repeated 49-bp homology units very similar to each other. (See. P. Szurek et al., J. Immunol 135:620-626 (1985) and T. Nikaido et al., J. Biol. Chem. 257:7322-7329 (1982), which are incorporated herein by reference.) All the sequenced S regions include numerous occurrences of the pentamers GAGCT and GGGGT that are the basic repeated elements of the S gene (T. Nikaido et al., J. Biol. Chem. 257:7322- 7329 (1982) which is incorporated herein by reference); in the other S regions these pentamers are not precisely tandemly repeated as in Sμ, but instead are embedded in larger repeat units. The Sγ1 region has an additional higher-order
structure: two direct repeat sequences flank each of two clusters of 49-bp tandem repeats. (See M. R. Mowatt et al., J. Immunol. 136:2674-2683 (1986), which is incorporated herein by reference).
Switch regions of human H chain genes have been found to be very similar to their mouse homologs. Indeed, similarity between pairs of human and mouse clones 5' to the CH genes has been found to be confined to the S regions, a fact that confirms the biological significance of these regions.
A switch recombination between μ and a genes produces a composite Sμ-Sα sequence. Typically, there is no specific site, either in S„ or in any other S region, where the recombination always occurs.
Generally, unlike the enzymatic machinery of V-J recombination, the switch machinery can apparently accommodate different alignments of the repeated homologous regions of germline S precursors and then join the sequences at different positions within the alignment. (See. T. H. Rabbits et al., Nucleic Acids Res. 9:4509-4524 (1981) and J. Ravetch et al., Proc. Natl. Acad. Sci. USA 77:6734-6738 (1980), which are incorporated herein by reference.)
The exact details of the mechanism(s) of selective activation of switching to a particular isotype are unknown. Although exogenous influences such as lymphokines and
cytokines might upregulate isotype-specific recombinases, it is also possible that the same enzymatic machinery catalyzes switches to all isotypes and that specificity lies in
targeting this machinery to specific switch regions. The T-cell-derived lymphokines IL-4 and IFNγ have been shown to specifically promote the expression of certain isotypes: IL-4 decreases IgM, IgG2a, IgG2b, and IgG3
expression and increases IgE and IgG1 expression; while IFNγ selectively stimulates IgG2a expression and antagonizes the IL-4-induced increase in IgE and IgG1 expression (Coffman et al., J. Immunol. 136:949-954 (1986) and Snapper et al.,
Science 236:944-947 (1987), which are incorporated herein by reference). A combination of IL-4 and IL-5 promotes IgA expression (Coffman et al., J. Immunol. 139:3685-3690 (1987), which is incorporated herein by reference).
Most of the experiments implicating T-cell effects on switching have not ruled out the possibility that the observed increase in cells with particular switch
recombinations might reflect selection of preswitched or precommitted cells; but the most likely explanation is that the lymphokines actually promote switch recombination.
Induction of class switching appears to be associated with sterile transcripts that initiate upstream of the switch segments (Lutzker et al., Mol. Cell. Biol. 8: 1849 (1988); Stavnezer et al., Proc. Natl. Acad. Sci. USA 85:7704 (1988); Esser and Radbruch, EMBO J. 8:483 (1989); Berton et al., Proc. Natl. Acad. Sci. USA 86:2829 (1989); Rothman et al., Int. Immunol. 2 : 621 (1990), each of which is incorporated by reference). For example, the observed induction of the γI sterile transcript by IL-4 and inhibition by IFN-γ correlates with the observation that IL-4 promotes class switching to γ1 in B-cells in culture, while IFN-γ inhibits γ1 expression. Therefore, the inclusion of regulatory sequences that affect the transcription of sterile transcripts may also affect the rate of isotype switching. For example, increasing the transcription of a particular sterile transcript typically can be expected to enhance the frequency of isotype switch
recombination involving adjacent switch sequences.
For these reasons, it is preferable that transgenes incorporate transcriptional regulatory sequences within about 1-2 kb upstream of each switch region that is to be utilized for isotype switching. These transcriptional regulatory sequences preferably include a promoter and an enhancer element, and more preferably include the 5' flanking (i.e., upstream) region that is naturally associated (i.e., occurs in germline configuration) with a switch region. This 5'
flanking region is typically about at least 50 nucleotides in length, preferably about at least 200 nucleotides in length, and more preferably at least 500-1000 nucleotides.
Although a 5' flanking sequence from one switch region can be operably linked to a different switch region for transgene construction (e.g., the 5' flanking sequence from the human Sγ1 switch can be grafted immediately upstream of the Sα1 switch), in some embodiments it is preferred that each switch region incorporated in the transgene construct have the 5' flanking region that occurs immediately upstream in the naturally occurring germline configuration.
The Transgenic Primary Repertoire
A. The Human Immunoglobulin Loci
An important requirement for transgene function is the generation of a primary antibody repertoire that is diverse enough to trigger a secondary immune response for a wide range of antigens. The rearranged heavy chain gene
consists of a signal peptide exon, a variable region exon and a tandem array of multi-domain constant region regions, each of which is encoded by several exons. Each of the constant region genes encode the constant portion of a different class of immunoglobulins. During B-cell development, V region proximal constant regions are deleted leading to the
expression of new heavy chain classes. For each heavy chain . class, alternative patterns of RNA splicing give rise to both transmembrane and secreted immunoglobulins.
The human heavy chain locus consists of
approximately 200 V gene segments spanning 2 Mb, approximately 30 D gene segments spanning about 40 kb, six J segments
clustered within a 3 kb span, and nine constant region gene segments spread out over approximately 300 kb. The entire locus spans approximately 2.5 Mb of the distal portion of the long arm of chromosome 14. B. Gene Fragment Transgenes
1. Heavy Chain Transgene
In a preferred embodiment, immunoglobulin heavy and light chain transgenes comprise unrearranged genomic DNA from humans. In the case of the heavy chain, a preferred transgene comprises a NotI fragment having a length between 670 to 830 kb. The length of this fragment is ambiguous because the 3' restriction site has not been accurately mapped. It is known, however, to reside between the αl and gene segments. This fragment contains members of all six of the known VH families, the D and J gene segments, as well as the μ, δ, γ3 , γ1 and α1 constant regions (Berman et al., EMBO J. 7:727-738 (1988), which is incorporated herein by reference). A transgenic mouse line containing this transgene correctly expresses a heavy chain class required for B-cell development (IgM) and at least one switched heavy chain class (IgG1), in conjunction with a sufficiently large repertoire of variable regions to trigger a secondary response for most antigens. 2. Light Chain Transgene
A genomic fragment containing all of the necessary gene segments and regulatory sequences from a human light chain locus may be similarly constructed. Such transgenes are constructed as described in the Examples.
C. Transgenes Generated Intracellularly
by In Vivo Recombination
It is not necessary to isolate the all or part of the heavy chain locus on a single DNA fragment. Thus, for example, the 670-830 kb NotI fragment from the human
immunoglobulin heavy chain locus may be formed in vivo in the non-human animal during transgenesis. Such in vivo transgene construction is produced by introducing two or more
overlapping DNA fragments into an embryonic nucleus of the non-human animal. The overlapping portions of the DNA
fragments have DNA sequences which are substantially
homologous. Upon exposure to the recombinases contained within the embryonic nucleus, the overlapping DNA fragments homologously recombined in proper orientation to form the 670-830 kb NotI heavy chain fragment.
In vivo transgene construction can be used to form any number of immunoglobulin transgenes which because of their size are otherwise difficult, or impossible, to make or manipulate by present technology. Thus, in vivo transgene construction is useful to generate immunoglobulin transgenes which are larger than DNA fragments which may be manipulated by YAC vectors (Murray and Szostak, Nature 305: 189-193
(1983)). Such in vivo transgene construction may be used to introduce into a non-human animal substantially the entire immunoglobulin loci from a species not consisting of the transgenic non-human animal.
In addition to forming genomic immunoglobulin transgenes, in vivo homologous recombination may also be utilized to form "mini-locus" transgenes as described in the Examples.
In the preferred embodiments utilizing in vivo
transgene construction, each overlapping DNA fragment
preferably has an overlapping substantially homologous DNA sequence between the end portion of one DNA fragment and the end portion of a second DNA fragment. Such overlapping
portions of the DNA fragments preferably comprise about 500 bp to about 2000 bp, most preferably 1.0 kb to 2.0 kb.
Homologous recombination of overlapping DNA fragments to form transgenes in vivo is further described in commonly assigned PCT Publication No. WO 92/03917 entitled "Homologous
Recombination in Mammalian Cells" published March 19, 1992. D. Minilocus Transgenes
As used herein, the term "immunoglobulin minilocus" refers to a DNA sequence (which may be within a longer
sequence), usually of less than about 150 kb, typically between about 25 and 100 kb, containing at least one each of the following: a functional variable (V) gene segment, a functional joining (J) region segment, at least one functional constant (C) region gene segment, and--if it is a heavy chain minilocus--a functional diversity (D) region segment, such that said DNA sequence contains at least one substantial discontinuity (e.g., a deletion, usually of at least about 2 to 5 kb, preferably 10-25 kb or more, relative to the
homologous genomic DNA sequence). A light chain minilocus transgene will be at least 25 kb in length, typically 50 to 60 kb. A heavy chain transgene will typically be about 70 to 80 kb in length, preferably at least about 60 kb with two
constant regions operably linked to switch regions.
Furthermore, the individual elements of the minilocus are preferably in the germline configuration and capable of undergoing gene rearrangement in the pre-B cell of a
transgenic animal so as to express functional antibody
molecules with diverse antigen specificities encoded entirely by the elements of the minilocus. Further, a heavy chain minilocus comprising at least two CH genes and the requisite switching sequences is typ.cally c pable of undergoing isotype switching, so that functional antibody molecules of different immunoglobulin classes will be generated. Such isotype
switching may occur in vivo in B-cells residing within the transgenic nonhuman animal, or may occur in cultured cells of the B-cell lineage which have been explanted from the
transgenic nonhuman animal.
In an alternate preferred embodiment, immunoglobulin heavy chain transgenes comprise one or more of each of the VH, D, and JH gene segments and two or more of the CH genes. At least one of each appropriate type gene segment is
incorporated into the minilocus transgene. With regard to the CH segments for the heavy chain transgene, it is preferred that the transgene contain at least one μ gene segment and at least one other constant region gene segment, more preferably a γ gene segment, and most preferably γ3 or γ1. This
preference is to allow for class switching between IgM and IgG forms of the encoded immunoglobulin and the production of a secretable form of high affinity non-IgM immunuglobulin.
Other constant region gene segments may also be used such as those which encode for the production of IgD, IgA and IgE.
Those skilled in the art will also construct transgenes wherein the order of occurrence of heavy chain CH genes will be different from the naturally-occurring spatial order found in the germline of the species serving as the donor of the CH genes.
Additionally, those skilled in the art can select CH genes from more than one individual of a species (e.g., allogeneic CH genes) and incorporate said genes in the
transgene as supernumerary CH genes capable of undergoing isotype switching; the resultant transgenic nonhuman animal may then, in some embodiments, make antibodies of various classes including all of the allotypes represented in the species from which the transgene CH genes were obtained.
Still further, those skilled in the art can select CH genes from different species to incorporate into the transgene. Functional switch sequences are included with each CH gene, although the switch sequences used are not
necessarily those which occur naturally adjacent to the CH gene. Interspecies CH gene combinations will produce a transgenic nonhuman animal which may produce antibodies of various classes corresponding to CH genes from various
species. Transgenic nonhuman animals containing interspecies CH transgenes may serve as the source of B-cells for
constructing hybridomas to produce monoclonals for veterinary uses.
The heavy chain J region segments in the human comprise six functional J segments and three pseudo genes clustered in a 3 kb stretch of DNA. Given its relatively compact size and the ability to isolate these segments
together with the μ gene and the 5' portion of the δ gene on a single 23 kb SFil/Spel fragment (Sado et al., Biochem.
Biophys. Res. Comm. 154:264271 (1988), which is incorporated herein by reference), it is preferred that all of the J region gene segments be used in the mini-locus construct. Since this fragment spans the region between the μ and δ genes, it is likely to contain all of the 3' cis-linked regulatory elements required for μ expression. Furthermore, because this fragment includes the entire J region, it contains the heavy chain enhancer and the μ switch region (Mills et al., Nature 306:809 (1983); Yancopoulos and Alt, Ann. Rev. Immunol. 4:339-368 (1986), which are incorporated herein by reference). It also contains the transcription start sites which trigger VDJ joining to form primary repertoire B-cells (Yancopoulos and Alt, Cell 40:271-281 (1985), which is incorporated herein by reference). Alternatively, a 36 kb BssHII/Spell fragment, which includes part on the D region, may be used in place of the 23 kb Sfil/Spell fragment. The use of such a fragment increases the amount of 5' flanking sequence to facilitate efficient D-to-J joining.
The human D region consists of 4 or 5 homologous 9 kb subregions, linked in tandem (Siebenlist, et al. (1981), Nature, 294, 631-635). Each subregion contains up to 10 individual D segments. Some of these segments have been mapped- and are shown in Fig. 4. Two different strategies are used to generate a mini-locus D region. The first strategy involves using only those D segments located in a short contiguous stretch of DNA that includes one or two of the repeated D subregions. A candidate is a single 15 kb fragment that contains 12 individual D segments. This piece of DNA consists of 2 contiguous EcoRI fragments and has been
completely sequenced (Ichihara, et al. (1988), EMBO J., 7, 4141-4150). Twelve D segments should be sufficient for a primary repertoire. However, given the dispersed nature of the D region, an alternative strategy is to ligate together several non-contiguous D-segment containing fragments, to produce a smaller piece of DNA with a greater number of segments. Additional D-segment genes can be identified, for example, by the presence of characteristic flanking nonamer and heptamer sequences, supra, and by reference to the
literature.
At least one, and preferably more than one V gene segment is used to construct the heavy chain minilocus
transgene. Rearranged or unrearranged V segments with or without flanking sequences can be isolated as described PCT Publication No. WO 92/03918, published March 19, 1992,
entitled "Transgenic Non-Human Animals Capable of Producing Heterologous Antibodies." Rearranged or unrearranged V segments, D segments, J segments, and C genes, with or without flanking sequences, can be isolated as described in PCT Publication No. WO 92/03918, published March 19, 1992.
A minilocus light chain transgene may be similarly constructed from the human λ or κ immunoglobulin locus.
Thus, for example, an immunoglobulin heavy chain minilocus transgene construct, e.g., of about 75 kb, encoding V, D, J and constant region sequences can be formed from a plurality of DNA fragments, with each sequence being substantially homologous to human gene sequences. Preferably, the sequences are operably linked to transcription regulatory sequences and are capable of undergoing rearrangement. With two or more appropriately placed constant region sequences (e.g., μ and γ) and switch regions, switch recombination also occurs. An exemplary light chain transgene construct can be formed similarly from a plurality of DNA fragments, substantially homologous to human DNA and capable of undergoing
rearrangement.
E. Transgene Constructs Capable of Isotype Switching
Ideally, transgene constructs that are intended to undergo class switching should include all of the cis-acting sequences necessary to regulate sterile transcripts.
Naturally occurring switch regions and upstream promoters and regulatory sequences (e.g., IFN-inducible elements) are preferred cis-acting sequences that are included in transgene constructs capable of isotype switching. About at least 50 basepairs, preferably about at least 200 basepairs, and more preferably at least 500 to 1000 basepairs or more of sequence immediately upstream of a switch region, preferably a human γ1 switch region, should be operably linked to a switch sequence, preferably a human γ1 switch sequence. Further, switch regions can be linked upstream of (and adjacent to) CH genes that do not naturally occur next to the particular switch region. For example, but not for limitation, a human γ1 switch region may be linked upstream from a human α2 CH gene, or a murine γ1 switch may be linked to a human CH gene. An alternative method for obtaining ήon-classical isotype switching (e.g., (S-associated deletion) in transgenic mice involves the inclusion of the 400 bp direct repeat sequences (σμ and eμ) that flank the human μ gene (Yasui et al., Eur. J. Immunol. 19:1399 (1989)). Homologous
recombination between these two sequences deletes the μ gene in IgD-only B-cells. Heavy chain transgenes can be
represented by the following formulaic description: (VH)x-(D)y-(JH)z-(SD)m-(C1)n-[(T)-(SA)p-(C2)]q where:
VH is a heavy chain variable region gene segment,
D is a heavy chain D (diversity) region gene segment, JH is a heavy chain J (joining) region gene segment,
SD is a donor region segment capable of participating in a recombination event with the Sa acceptor region
segments such that isotype switching occurs,
C1 is a heavy chain constant region gene segment encoding an isotype utilized in for B cell development (e.g., μ or δ) ,
T is a cis-acting transcriptional regulatory region
segment containing at least a promoter,
SA is an acceptor region segment capable of participating in a recombination event with selected SD donor region segments, such that isotype switching occurs, C2 is a heavy chain constant region gene segment encoding an isotype other than μ (e.g., γ1, γ2, γ3, γ4, α1, α2, ε).
x, y, z, m, n, p, and q are integers, x is 1-100, n is 0-10, y is 1-50, p is 1-10, z is 1-50, q is 0-50, m is 0-10. Typically, when he transgene is capable of isotype switching, q must be at least 1, m is at least 1, n is at least 1, and m is greater than or equal to n. VH, D, JH, SD, C1, T, SA, and CZ segments may be selected from various species, preferably mammalian species, and more preferably from human and murine germline DNA.
VH segments may be selected from various species, but are preferably selected from VH segments that occur naturally in the human germline, such as VH251. Typically about 2 VH gene segments are included, preferably about 4 VH segments are included, and most preferably at least about 10 VH segments are included.
At least one D segment is typically included, although at least 10 D segments are preferably included, and some embodiments include more than ten D segments. Some preferred embodiments include human D segments.
Typically at least one JH segment is incorporated in the transgene, although it is preferable to include about six JH segments, and some preferred embodiments include more than about six JH segments. Some preferred embodiments include human JH segments, and further preferred embodiments include six human JH segments and no nonhuman JH segments.
SD segments are donor regions capable of
participating in recombination events with the SA segment of the transgene. For classical isotype switching, SD and SA are switch. regions such as Sμ, sγ1, Sγ2. Sγ3, Sγ4, Sα, Sα2, and Sε. Preferably the switch regions are murine or human, more preferably SD is a human or murine S and SA is a human or murine Sγ1. For nonclassical isotype switching (5-associated deletion) , SD and SA are preferably the 400 basepair direct repeat sequences that flank the human μ gene.
C1 segments are typically μ or δ genes, preferably a μ gene, and more preferably a human or murine μ gene.
T segments typically include S' flanking sequences that are adjacent to naturally occurring (i.e., germline) switch regions. T segments typically at least about at least 50 nucleotides in length, preferably about at least 200 nucleotides in length, and more preferably at least 500-1000 nucleotides in length. Preferably T segments are 5' flanking sequences that occur immediately upstream of human or murine switch regions in a germline configuration. It is also evident to those of skill in the art that T segments may comprise cis-acting transcriptional regulatory sequences that do not occur naturally in an animal germline (e.g., viral enhancers and promoters such as those found in SV40,
adenovirus, and other viruses that infect eukaryotic cells).
C2 segments are typically a γ1 , γ2 , γ3 , γ4, α1, α2, or ε CH gene, preferably a human CH gene of these isotypes, and more preferably a humanγ1 or γ3 gene. Murine γ2a and γ2b may also be used, as may downstream (i.e., switched) isotype genes form various species. Where the heavy chain transgene
contains an immunoglobulin heavy chain minilocus, the total length of the transgene will be typically 150 kilo basepairs or less.
In general, the transgene will be other than a native heavy chain Ig locus. Thus, for example, deletion of unnecessary regions or substitutions with corresponding regions from other species will be present.
F. Methods for Determining Functional
Isotype Switching in Ig Transgenes
The occurrence of isotype switching in a transgenic nonhuman animal may be identified by any method known to those in the art. Preferred embodiments include the following, employed either singly or in combination:
1. detection of mRNA transcripts that contain a sequence homologous to at least one transgene downstream CH gene other than δ and an adjacent sequence homologous to a transgene VH- DH-JH rearranged gene; such detection may be by Northern hybridization, S1 nuclease protection assays, PCR
amplification, cDNA cloning, or other methods;
2. detection in the serum of the transgenic animal, or in supernatants of cultures of hybridoma cells made from B-cells of the transgenic animal, of immunoglobulin proteins encoded by downstream CH genes, where such proteins can also be shown by immunochemical methods to comprise a functional variable region;
3. detection, in DNA from B-cells of the transgenic animal or in genomic DNA from hybridoma cells, of DNA rearrangements consistent with the occurrence of isotype switching in the transgene, such detection may be accomplished by Southern blot hybridization, PCR amplification, genomic cloning, or other method; or
4. identification of other indicia of isotype switching, such as production of sterile transcripts, production of characteristic enzymes involved in switching (e.g., "switch recombinase"), or other manifestations that may be detected, measured, or observed by contemporary techniques.
Because each transgenic line may represent a
different site of integration of the transgene, and a
potentially different tandem array of transgene inserts, and because each different configuration of transgene and flanking DNA sequences can affect gene expression, it is preferable to identify and use lines of mice that express high levels of human immunoglobulins, particularly of the IgG isotype, and contain the least number of copies of the transgene. Single copy transgenics minimize the potential problem of incomplete allelic expression. Transgenes are typically integrated into host chromosomal DNA, most usually into germline DNA and propagated by subsequent breeding of germline transgenic breeding stock animals. However, other vectors and transgenic methods known in the present art or subsequently developed may be substituted as appropriate and as desired by a
practitioner.
G. Functional Disruption of
Endogenous Immunoglobulin Loci The expression of successfully rearranged immunoglobulin heavy and light transgenes is expected to have a dominant effect by suppressing the rearrangement of the endogenous immunoglobulin genes in the transgenic nonhuman animal. However, another way to generate a nonhuman that is devoid of endogenous antibodies is by mutating the endogenous immunoglobulin loci. Using embryonic stem cell technology and homologous recombination, the endogenous immunoglobulin repertoire can be readily eliminated. The following describes the functional description of the mouse immunoglobulin loci. The vectors and methods disclosed, however, can be readily adapted for use in other non-human animals.
Briefly, this technology involves the inactivation of a gene, by homologous recombination, in a pluripotent cell line that is capable of differentiating into germ cell tissue. A DNA construct that contains an altered, copy of a mouse immunoglobulin gene is introduced into the nuclei of embryonic stem cells. In a portion of the cells, the introduced DNA recombines with the endogenous copy of the mouse gene,
replacing it with the altered copy. Cells containing the newly engineered genetic lesion are injected into a host mouse embryo, which is reimplanted into a recipient female. Some of these embryos develop into chimeric mice that possess germ cells entirely derived from the mutant cell line. Therefore, by breeding the chimeric mice it is possible to obtain a new line of mice containing the introduced genetic lesion
(reviewed by Capecchi (1989), Science, 244, 1288-1292).
Because the mouse λ locus contributes to only 5% of the immunoglobulins, inactivation of the heavy chain and/or κ-light chain loci is sufficient. There are three ways to disrupt each of these loci, deletion of the J region, deletion of the J-C intron enhancer, and disruption of constant region coding sequences by the introduction of a stop codon. The last option is the most straightforward, in terms of DNA construct design. Elimination of the μ gene disrupts B-cell maturation thereby preventing class switching to any of the functional heavy chain segments. The strategy for knocking out these loci is outlined below.
To disrupt the mouse μ andκ genes, targeting
vectors are used based on the design employed by Jaenisch and co-wόrkers (Zijlstra, et al. (1989), Nature, 342, 435-438) for the successful disruption of the mouse β2-microglobulin gene. The neomycin resistance gene (neo), from the plasmid pMCIneo is inserted into the coding region of the target gene. The pMCIneo insert uses a hybrid viral promoter/enhancer sequence to drive neo expression. This promoter is active in embryonic stem cells. Therefore, neo can be used as a selectable marker for integration of the knock-out construct. The HSV thymidine kinase (tk) gene is added to the end of the construct as a negative selection marker against random insertion events (Zijlstra, et al., supra.).
A preferred strategy for disrupting the heavy chain locus is the elimination of the J region. This region is fairly compact in the mouse, spanning only 1.3 kb. To
construct a gene targeting vector, a 15 kb Kpnl fragment containing all of the secreted A constant region exons from mouse genomic library is isolated. The 1.3 kb J region is replaced with the 1.1 kb insert from pMCIneo. The HSV tk gene is then added to the 5' end of the Kpnl fragment. Correct integration of this construct, via homologous recombination, will result in the replacement of the mouse JH region with the neo gene. Recombinants are screened by PCR, using a primer based on the neo gene and a primer homologous to mouse
sequences 5' of the Kpnl site in the D region.
Alternatively, the heavy-chain locus is knocked out by disrupting the coding region of the μ gene. This approach involves the same 15 kb Kpnl fragment used in the previous approach. The 1.1 kb insert from pMCIneo is inserted at a unique BamHI site in exon II, and the HSV tk gene added to the 3' Kpnl end. Double crossover events on either side of the neo insert, that eliminate the tk gene, are then selected for. These are detected from pools of selected clones by PCR amplification. One of the PCR primers is derived from neo sequences and the other from mouse sequences outside of the targeting vector. The functional disruption of the mouse immunoglobulin loci is presented in the Examples.
G. Suppressing Expression of
Endogenous Immunoglobulin Loci
In addition to functional disruption of endogenous
Ig loci, an alternative method for preventing the expression of an endogenous Ig locus is suppression. Suppression of endogenous Ig genes may be accomplished with antisense RNA produced from one or more integrated transgenes, by antisense oligonucleotides, and/or by administration of antisera
specific for one or more endogenous Ig chains. Antisense Polynucleotides
Antisense RNA transgenes can be employed to
partially or totally knock-out expression of specific genes (Pepin et al. (1991) Nature 355: 725; Helene., C. and Toulme, J. (1990) Biochimica Biophys. Acta 1049: 99; Stout, J. and Caskey, T. (1990) Somat. Cell Mol. Genet. 16: 369; Munir et al. (1990) Somat. Cell Mol. Genet. 16: 383, each of which is incorporated herein by reference).
"Antisense polynucleotides" are polynucleotides that: (1) are complementary to all or part of a reference sequence, such as a sequence of an endogenous Ig CH or CL region, and (2) which specifically hybridize to a
complementary target sequence, such as a chromosomal gene locus- or a Ig mRNA. Such complementary antisense
polynucleotides may include nucleotide substitutions,
additions, deletions, or transpositions, so long as specific hybridization to the relevant target sequence is retained as a functional property of the polynucleotide. Complementary antisense polynucleotides include soluble antisense RNA or DNA oligonucleotides which can hybridize specifically to
individual mRNA species and prevent transcription and/or RNA processing of the mRNA species and/or translation of the encoded polypeptide (Ching et al., Proc. Natl. Acad. Sci.
U.S.A. 86:10006-10010 (1989); Broder et al., Ann. Int. Med. 113: 604-618 (1990); Loreau et al., FEBS Letters 274:53-56
(1990); Holcenberg et al., WO91/11535; WO91/09865; WO91/04753; W090/13641; and EP 386563, each of which is incorporated herein by reference). An antisense sequence is a
polynucleotide sequence that is complementary to at least one immunoglobulin gene sequence of at least about 15 contiguous nucleotides in length, typically at least 20 to 30 nucleotides in length, and preferably more than about 30 nucleotides in length. However, in some embodiments, antisense sequences may have substitutions, additions, or deletions as compared to the complementary immunoglobulin gene sequence, so long as
specific hybridization is retained as a property of the antisense polynucleotide. Generally, an antisense sequence is complementary to an endogenous immunoglobulin gene sequence that encodes, or has the potential to encode after DNA
rearrangement, an immunoglobulin chain. In some cases, sense sequences corresponding to an immunoglobulin gene sequence may function to suppress expression, particularly by interfering with transcription.
The antisense polynucleotides therefore inhibit production of the encoded polypeptide (s). In this regard, antisense polynucleotides that inhibit transcription and/or translation of one or more endogenous Ig loci can alter the capacity and/or specificity of a non-human animal to produce immunoglobulin chains encoded by endogenous Ig loci.
Antisense polynucleotides may be produced from a heterologous expression cassette in a transfectant cell or transgenic cell, such as a transgenic pluripotent
hematopoietic stem cell used to reconstitute all or part of the hematopoietic stem cell population of an individual, or a transgenic nonhuman animal. Alternatively, the antisense polynucleotides may comprise soluble oligonucleotides that are administered to the external milieu, either in culture medium in vitro or in the circulatory system or interstitial fluid in vivo. Soluble antisense polynucleotides present in the external milieu have been shown to gain access to the
cytoplasm and inhibit translation of specific mRNA species. In some embodiments the antisense polynucleotides comprise methylphosphonate moieties, alternatively phosphorothiolates or O-methylribonucleotides may be used, and chimeric
oligonucleotides may also be used (Dagle et al. (1990) Nucleic Acids Res. 18: 4751). For some applications, antisense
oligonucleotides may comprise polyamide nucleic acids (Nielsen et al. (1991) Science 254: 1497). For general methods
relating to antisense polynucleotides, see Antisense RNA and DNA, (1988), D.A. Melton, Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY).
Antisense polynucleotides complementary to one or more sequences are employed to inhibit transcription, RNA processing, and/or translation of the cognate mRNA species andthereby effect a reduction in the amount of the respective encoded polypeptide. Such antisense polynucleotides can provide a therapeutic function by inhibiting the formation of one or more endogenous Ig chains in vivo.
Whether as soluble antisense oligonucleotides or as antisense RNA transcribed from an antisense transgene, the antisense polynucleotides of this invention are selected so as to hybridize preferentially to endogenous Ig sequences at physiological conditions in vivo. Most typically, the
selected antisense polynucleotides will not appreciably hybridize to heterologous Ig sequences encoded by a heavy or light chain transgene of the invention (i.e., the antisense oligonucleotides will not inhibit transgene Ig expression by more than about 25 to 35 percent).
Antiserum Suppression
Partial or complete suppression of endogenous Ig chain expression can be produced by injecting mice with antisera against one or more endogenous Ig chains (Weiss et al. (1984) Proc. Νatl. Acad. Sci. (U.S.A.) 81 211, which is incorporated herein by reference). Antisera are selected so as to react specifically with one or more endogenous Ig chains but to have minimal or no cross-reactivity with heterologous Ig chains encoded by an Ig transgene of the invention. Thus, administration of selected antisera according to a schedule as typified by that of Weiss et al. op.cit. will suppress
endogenous Ig chain expression but permits expression of heterologous Ig chain(s) encoded by a transgene of the present invention.
Nucleic Acids
The nucleic acids, the term "substantial homology" indicates" that two nucleic acids, or de gnated sequences thereof, when optimally aligned and compared, are identical, with appropriate nucleotide insertions or deletions, in at least about 80% of the nucleotides, usually at least about 90% to 95%, and more preferably at least about 98 to 99.5% of the nucleotides. Alternatively, substantial homology exists when the segments will hybridize under selective hybridization conditions, to the complement of the strand. The nucleic acids may be present in whole cellε, in a cell lysate, or in a partially purified or substantially pure form. A nucleic acid is "isolated" or "rendered substantially pure" when purified away from other cellular components or other contaminants, e.g., other cellular nucleic acids or proteins, by standard techniques, including alkaline/SDS treatment, CsCl banding, column chromatography, agarose gel electrophoresis and others well known in the art. See, F. Ausubel, et al., ed. Current Protocols in Molecular Biology, Greene Publishing and Wiley- Interscience, New York (1987).
The nucleic acid compositions of the present
invention, while often in a native sequence (except for modified restriction sites and the like), from either cDNA, genomic or mixtures may be mutated, thereof in accordance with standard techniques to provide gene sequences. For coding sequences, these mutations, may affect amino acid sequence as desired. In particular, DNA sequences substantially
homologous to or derived from native V, D, J, constant, switches and other such sequences described herein are
contemplated (where "derived" indicates that a sequence is identical or modified from another sequence).
A nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For instance, a promoter or enhancer is operably linked to a coding sequence if it affects the
transcription of the sequence. With respect to transcription regulatory sequences, operably linked means that the DNA sequences being linked are contiguous and, where necessary to join two protein coding regions, contiguous and in reading frame. For switch sequences, operably linked indicates that the sequences are capable of effecting switch recombination.
Specific Preferred Embodiments
A preferred embodiment of the invention is an animal containing at least one, typically 2-10, and sometimes 25-50 or more copies of the transgene described in Example 12 (e.g., pHC1 or pHC2) bred with an animal containing a single copy of a light chain transgene described in Examples 5, 6, 8, or 14, and the offspring bred with the JH deleted animal described in Example 10. Animals are bred to homozygosity for each of these three traits. Such animals have the following genotype: a single copy (per haploid set of chromosomes) of a human heavy chain unrearranged mini-locus (described in Example 12), a single copy (per haploid set of chromosomes) of a rearranged humanκ light chain construct (described in Example 14), and a deletion at each endogenous mouse heavy chain locus that removes all of the functional JH segments (described in
Example 10). Such animals are bred with mice that are
homozygous for the deletion of the JH segments (Examples 10) to produce offspring that are homozygous for the JH deletion and hemizygous for the human heavy and light chain constructs. The resultant animals are injected with antigens and used for production of human monoclonal antibodies against these antigens.
B cells isolated from such an animal are
monospecific with regard to the human heavy and light chains because they contain only a single copy of each gene.
Furthermore, they will be monospecific with regards to human or mouse heavy chains because both endogenous mouse heavy chain gene copies are nonfunctional by virtue of the deletion spanning the JH region introduced as described in Example 9 and 12. Furthermore, a substantial fraction of the B cells will be monospecific with regards to the human or mouse light chains because expression of the single copy of the rearranged humanκ light chain gene will allelically and isotypically exclude the rearrangement of the endogenous mouse κ and λ chain genes in a significant fraction of B-cells.
The transgenic mouse of the preferred embodiment will exhibit immunoglobulin production with a significant repertoire, ideally substantially similar to that of a native mouse. Thus, for example, in embodiments where the endogenous Ig genes have been inactivated, the total immunoglobulin levels will range from about 0.1 to 10 mg/ml of serum,
preferably 0.5 to 5 mg/ml, ideally at least about 1.0 mg/ml. When a transgene capable of effecting a switch to IgG from IgM has been introduced into the transgenic mouse, the adult mouse ratio of serum IgG to IgM is preferably about 10:1. Of course, the IgG to IgM ratio will be much lower in the
immature mouse. In general, greater than about 10%,
preferably 40 to 80% of the spleen and lymph node B cells express exclusively human IgG protein.
The repertoire will ideally approximate that shown in a non-transgenic mouse, usually at least about 10% as high, preferably 25 to 50% or more. Generally, at least about a thousand different immunoglobulins (ideally IgG), preferably 104 to 106 or more, will be produced, depending primarily on the number of different V, J and D regions introduced into the mouse genome. These immunoglobulins will typically recognize about one-half or more of highly antigenic proteins,
including, but not limited to: pigeon cytochrome C, chicken lysozyme, pokeweed mitogen, bovine serum albumin, keyhole limpit hemocyanin, influenza hemagglutinin, staphylococcus protein A, sperm whale myoglobin, influenza neuraminidase, and lambda repressor protein. Some of the immunoglobulins will exhibit an affinity for preselected antigens of at least about 107M-1, preferably 108M-1 to 109M-1 or greater.
Thus, prior to rearrangement of a transgene containing various heavy or light chain gene segments, such gene segments may be readily identified, e.g. by hybridization or DNA sequencing, as being from a species of organism other than the transgenic animal.
Although the foregoing describes a preferred embodiment of the transgenic animal of the invention, other embodiments are defined by the disclosure herein and more particularly by the transgenes described in the Examples.
Four categories of transgenic animal may be defined:
I. Transgenic animals containing an unrearranged heavy and rearranged light immunoglobulin transgene.
II. Transgenic animals containing an unrearranged heavy and unrearranged light immunoglobulin transgene III. Transgenic animal containing rearranged heavy and an unrearranged light immunoglobulin transgene, and IV. Transgenic animals containing rearranged heavy and rearranged light immunoglobulin transgenes. Of these categories of transgenic animal, the preferred order of preference is as follows II > I > III > IV where the endogenous light chain genes (or at least the κ gene) have been knocked out by homologous recombination (or other method) and I > II > III >IV where the endogenous light chain genes have not been knocked out and must be dominated by allelic exclusion.
EXPERIMENTAL EXAMPLES METHODS AND MATERIALS
Transgenic mice are derived according to Hogan, et al., "Manipulating the Mouse Embryo: A Laboratory Manual", Cold Spring Harbor Laboratory, which is incorporated herein by reference.
Embryonic stem cells are manipulated according to published procedures (Teratocarcinomas and embryonic stem cells: a practical approach, E.J. Robertson, ed., IRL Press, Washington, D.C., 1987; Zjilstra et al., Nature 342:435-438 (1989); and Schwartzberg et al., Science 246:799-803 (1989), each of which is incorporated herein by reference).
DNA cloning procedures are carried out according to J. Sambrook, et al. in Molecular Cloning: A Laboratory
Manual, 2d ed., 1989, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., which is incorporated herein by reference.
Oligonucleotides are synthesized on an Applied Bio Systems oligonucleotide synthesizer according to
specifications provided by the manufacturer.
Hybridoma cells and antibodies are manipulated according to "Antibodies: A Laboratory Manual", Ed Harlow and David Lane, Cold Spring Harbor Laboratory (1988), which is incorporated herein by reference.
EXAMPLE 1
Genomic Heavy Chain Human Ig Transgene
This Example describes the cloning and
microinjection of a human genomic heavy chain immunoglobulin transgene which is microinjected into a murine zygote. Nuclei are isolated from fresh human placental tissue as described by Marzluff et al., "Transcription and Translation: A Practical Approach", B.D. Hammes and
S.J. Higgins, eds., pp. 89-129, IRL Press, Oxford (1985)).
The isolated nuclei (or PBS washed human spermatocytes) are embedded in a low melting point agarose matrix and lysed with EDTA and proteinaseκ to expose high molecular weight DNA, which is then digested in the agarose with the restriction enzyme NotI as described by M. Finney in Current Protocols in Molecular Biology (F. Ausubel, et al., eds. John Wiley & Sons, Supp. 4, 1988, Section 2.5.1).
The NotI digested DNA is then fractionated by pulsed field gel electrophoresis as described by Anand et al.,
Nucl. Acids Res. 17:3425-3433 (1989). Fractions enriched for the NotI fragment are assayed by Southern hybridization to detect one or more of the sequences encoded by this fragment. Such sequences include the heavy chain D segments, J segments, μ and γ1 constant regions together with representatives of all 6 VH families (although this fragment is identified as 670 kb fragment from HeLa cells by Berman et al. (1988), supra., we have found it to be as 830 kb fragment from human placental an sperm DNA). Those fractions containing this NotI fragment (see Fig; 4) are pooled and cloned into the NotI site of the vector pYACNN in Yeast cells. Plasmid pYACNN is prepared by digestion of pYAC-4 Neo (Cook et al., Nucleic Acids Res. 16: 11817 (1988)) with EcoRI and ligation in the presence of the oligonucleotide 5' - AAT TGC GGC CGC - 3'.
YAC clones containing the heavy chain NotI fragment are isolated as described by Brownstein et al., Science
244:1348-1351 (1989), and Green et al., Proc. Natl. Acad. Sci. USA 87:1213-1217 (1990), which are incorporated herein by reference. The cloned NotI insert is isolated from high molecular weight yeast DNA by pulse field gel electrophoresis as described by M. Finney, op cit. The DNA is condensed by the addition of 1 mM spermine and microinjected directly into the nucleus of single cell embryos previously described. EXAMPLE 2
Genomicκ Light Chain Human Ig Transgene
Formed by In Vivo Homologous Recombination
A map of the humanκ light chain has been described in Lorenz et al., Nucl. Acids Res. 15:9667-9677 (1987), which is incorporated herein by reference.
A 450 kb Xhol to NotI fragment that includes all of Cκ, the 3' enhancer, all J segments, and at least five different V segments is isolated and microinjected into the nucleus of single cell embryos as described in Example 1.
EXAMPLE 3
Genomicκ Light Chain Human Ig Transgene
Formed by In Vivo Homologous Recombination
A 750 kb Mlul to NotI fragment that includes all of the above plus at least 20 more V segments is isolated as described in Example 1 and digested with BssHII to produce a fragment of about 400 kb.
The 450 kb Xhol to NotI fragment plus the approximately 400 kb Mlul to BssHII fragment have sequence overlap defined by the BssHII and Xhol restriction sites.
Homologous recombination of these two fragments upon
microinjection of a mouse zygote results in a transgene containing at least an additional 15-20 V segments over that found in the 450 kb XhoI/NotI fragment (Example 2). EXAMPLE 4
Construction of Heavy Chain Mini-Locus A. Construction of pGP1 and pGP2
pBR322 is digested with EcoRI and StyI and ligated with the following oligonucleotides to generate pGP1 which contains a 147 base pair insert containing the restriction sites shown in Fig. 8. The general overlapping of these oligos is also shown in Fig. 9. The oligonucleotides are:
oligo-1 5' - CTT GAG CCC GCC TAA TGA GCG GGC TTT
TTT TTG CAT ACT GCG GCC - 3'
oligo-2 5' - GCA ATG GCC TGG ATC CAT GGC GCG CTA
GCA TCG ATA TCT AGA GCT CGA GCA -3'
oligo-3 5' - TGC AGA TCT GAA TTC CCG GGT ACC AAG
CTT ACG CGT ACT AGT GCG GCC GCT -3'
oligo-4 5' - AAT TAG CGG CCG CAC TAG TAC GCG TAA
GCT TGG TAC CCG GGA ATT - 3'
oligo-5 5' - CAG ATC TGC ATG CTC GAG CTC TAG ATA
TCG ATG CTA GCG CGC CAT GGA TCC - 3'
oligo-6 5' - AGG CCA TTG CGG CCG CAG TAT GCA AAA
AAA AGC CCG CTC ATT AGG CGG GCT - 3'
This plasmid contains a large polylinker flanked by rare cutting NotI sites for building large inserts that can be isolated from vector sequences for microinjection. The plasmid is based on pBR322 which is relatively low copy compared to the pUC based plasmids (pGP1 retains the pBR322 copy number control region near the origin of replication). Low copy number reduces the potential toxicity of insert sequences. In addition, pGP1 contains a strong transcription terminator sequence derived from trpA (Christie et al., Proc. Natl. Acad. Sci. USA 78:4180 (1981)) inserted between the ampicillin resistance gene and the polylinker. This further reduces the toxicity associated with certain inserts by preventing readthrough transcription coming from the
ampicillin promoters.
Plasmid pGP2 is derived from pGP1 to introduce an additional restriction site (Sfil) in the polylinker. pGP1 is digested with Mlul and Spel to cut the recognition sequences in the polylinker portion of the plasmid.
The following adapter oligonucleotides are ligated to the thus digested pGP1 to form pGP2.
5' CGC GTG GCC GCA ATG GCC A 3'
5' CTA GTG GCC ATT GCG GCC A 3' pGP2 is identical to pGP1 except that it contains an additional Sfi I site located between the Mlul and Spel sites. This allows inserts to be completely excised with Sfil as well as with NotI.
B. Construction of pRE3 (rat enhancer 3')
An enhancer sequence located downstream of the rat constant region is included in the heavy chain constructs.
Tue heavy chain region 3' enhancer described by Petterson et al., Nature 344:165-168 (1990), which is
incorporated herein by reference) is isolated and cloned. The rat IGH 3' enhancer sequence is PCR amplified by using the following oligonucleotides: 5' CAG GAT CCA GAT ATC AGT ACC TGA AAC AGG GCT TGC 3'
5' GAG CAT GCA CAG GAC CTG GAG CAC ACA CAG CCT TCC 3'
The thus formed double stranded DNA encoding the 3' enhancer is cut with BamHI and SphI and clone into BamHI/SphI cut pGP2 to yield pRE3 (rat enhancer 3').
C. Cloning of Human J-μ Region
A substantial portion of this region is cloned by combining two or more fragments isolated from phage lambda inserts. See Fig. 9.
A 6.3 kb BamHI/Hindlll fragment that includes all human J segments (Matsuda et al., EMBO J.. 2:1047-1051 (1988); Ravetech et al.m Cell, 27:583-591 (1981), which are
incorporated herein by reference) is isolated from human genomic DNA library using the oligonucleotide GGA CTG TGT CCC TGT GTG ATG CTT TTG ATG TCT GGG GCC AAG.
An adjacent If kb Hindlll/Bamll fragment that
contains enhancer, switch and constant region coding exons (Yasui et al., Eur. J. Immunol. 19:1399-1403 (1989)) is
similarly isolated using the oligonucleotide:
CAC CAA GTT GAC CTG CCT GGT CAC AGA CCT GAC CAC CTA TGA
An adjacent 3' 1.5 kb BamHI fragment is similarly isolated using clone pMUM insert as probe. (pMUM is 4 kb EcoRI/Hindlll fragment isolated from human genomic DNA library with oligonucleotide:
CCT GTG GAC CAC CGC CTC CAC CTT CAT CGT CCT CTT CCT CCT
mu membrane exon 1) and cloned into pUC19.
pGP1 is digested with BamHI and Bglll followed by treatment with calf intestinal alkaline phosphatase.
Fragments (a) and (b) from Fig. 9 are cloned in the digested pGP1. A clone is then isolated which is oriented such that 5' BamHI site is destroyed by BamHI/Bgl fusion. It is identified as pMU (see Fig. 10). pMU is digested with BamHI and fragment (c) from Fig. 9 is inserted. The
orientation is checked with Hindlll digest. The resultant plasmid pHIG1 (Fig. 10) contains an 18 kb insert encoding J and Cμ segments.
D. Cloning of Cμ Region
pGP1 is digested with BamHI and Hindlll is followed by treatment with calf intestinal alkaline phosphatase (Fig. 14). The so treated fragment (b) of Fig. 14 and fragment (c) of Fig. 14 are cloned into the BamHI/Hindlll cut pGP1. Proper orientation of fragment (c) is checked by Hindlll digestion to form pCON1 containing a 12 kb insert encoding the Cμ region.
Whereas pHIGl contains J segments, switch and μ sequences in its 18 kb insert with an Sfil 3' site and a Spel 5' site in a polylinker flanked by NotI sites, will be used for rearranged VDJ segments. pCON1 is identical except that it lacks the J region and contains only a 12 kb insert. The use of pCON1 in the construction of fragment containing rearranged VDJ segments will be described hereinafter.
E. Cloning of γ-1 Constant Region (pREG2)
The cloning of the human γ-1 region is depicted in Fig. 16.
Yamamura et al., Proc. Natl. Acad. Sci. USA
83:2152-2156 (1986) reported the expression of membrane bound human γ-1 from a transgene construct that had been partially deleted on integration. Their results indicate that the 3' BamHI site delineates a sequence that includes the
transmembrane rearranged and switched copy of the gamma gene with a V-C intron of less than 5kb. Therefore, in the unrearranged, unswitched gene, the entire switch region is included in a sequence beginning less than 5 kb from the 5' end of the first γ-1 constant exon. Therefore it is included in the 5' 5.3 kb Hindlll fragment (Ellison et al., Nucleic Acids Res. 10:4071-4079 (1982), which is incorporated herein by reference). Takahashi et al., Cell 29: 671-679 (1982), which is incorporated herein by reference, also reports that this fragment contains the switch sequence, and this fragment together with the 7.7 kb Hindlll to BamHI fragment must include all of the sequences we need for the transgene
construct. An intronic sequence is a nucleotide sequence of at least 15 contiguous nucleotides that occurs in an intron of a specified gene.
Phage clones containing the γ-1 region are identified and isolated "sing the following oligonucleotide which is specific for the third exon of γ-1 (CH3).
5' TGA GCC ACG AAG ACC CTG AGG
TCA AGT TCA ACT GGT ACG TGG 3'
A 7.7 kb Hindlll to Bglll fragment (fragment (a) in Fig. 11) is cloned into Hindlll/Bglll cut pRE3 to form pREGl. The upstream 5.3 kb Hindlll fragment (fragment (b) in Fig. 11) is cloned into Hindlll digested pREGl to form pREG2. Correct orientation is confirmed by BamHI/Spel digestion. F. Combining Cγ and Cμ
The previously described plasmid pHIGl contains human J segments and the Cμ constant region exons. To provide a transgene containing the Cμ constant region gene segments, pHIG1 was digested with Sfil (Fig. 10). The plasmid pREG2 was also digested with Sfil to produce a 13.5 kb insert containing human Cγ exons and the rat 3' enhancer sequence. These sequences were combined to produce the plasmid pHIG3' (Fig. 12) containing the human J segments, the human Cμ constant region, the human Cγ1 constant region and the rat 3' enhancer contained on a 31.5 kb insert.
A second plasmid encoding human Cμ and human Cγ1 without J segments is constructed by digesting pCON1 with Sfil and combining that with the Sfil fragment containing the human Cγ region and the rat 3' enhancer by digesting pREG2 with Sfil. The resultant plasmid, pCON (Fig. 12) contains a 26 kb NotI/Spel insert containing human Cμ, human γ1 and the rat 3' enhancer sequence.
G. Cloning of D Segment
The strategy for cloning the human D segments is depicted in Fig. 13. Phage clones from the human genomic library containing D segments are identified and isolated using probes specific for diversity region sequences (Ichihara et al., EMBO J. 7:4141-4150 (1988)). The following
oligonucleotides are used:
DXP1: 5' - TGG TAT TAC TAT GGT TCG GGG AGT TAT TAT
AAC CAC AGT GTC - 3'
DXP4: 5' - GCC TGA AAT GGA GCC TCA GGG CAC AGT GGG
CAC GGA CAC TGT - 3' DN4: 5' - GCA GGG AGG ACA TGT TTA GGA TCT GAG GCC
GCA CCT GAC ACC - 3'
A 5.2 kb Xhol fragment (fragment (b) in Fig. 13) containing DLR1, DXP1, DXP'1, and DA1 is isolated from a phage clone identified with oligo DXP1.
A 3.2 kb Xbal fragment (fragment (c) in Fig. 13) containing DXP4, DA4 and DK4 is isolated from a phage clone identified with oligo DXP4.
Fragments (b), (c) and (d) from Fig. 13 are combined and cloned into the Xbal/Xhol site of pGP1 to form pHIG2 which contains a 10.6 kb insert.
This cloning is performed sequentially. First, the 5.2 kb fragment (b) in Fig. 13 and the 2.2 kb fragment (d) of Fig. 13 are treated with calf intestinal alkaline phosphatase and cloned into pGP1 digested with Xhol and Xbal. The resultant clones are screened with the 5.2 and 2.2 kb insert. Half of those clones testing positive with the 5.2 and 2.2 kb inserts have the 5.2 kb insert in the proper orientation as determined by BamHI digestion. The 3.2 kb Xbal fragment from Fig. 13 is then cloned into this intermediate plasmid
containing fragments (b) and (d) to form pHIG2. This plasmid contains diversity segments cloned into the polylinker with a unique 5' Sfil site and unique 3' Spel site. The entire polylinker is flanked by NotI sites.
H. Construction of Heavy Chain Minilocus
The following describes the construction of a human heavy chain mini-locus which contain one or more V segments.
An unrearranged V segment corresponding to that identified as the V segment contained in the hybridoma of Newkirk et al., J. Clin. Invest, 81:1511-1518 (1988), which is incorporated herein by reference, is isolated using the following oligonucleotide:
5' - GAT CCT GGT TTA GTT AAA GAG GAT TTT
ATT CAC CCC TGT GTC - 3'
A restriction map of the unrearranged V segment is determined to identify unique restriction sites which provide upon digestion a DNA fragment having a length approximately 2 kb containing the unrearranged V segment together with 5' and 3' flanking sequences. The 5' prime sequences will include promoter and other regulatory sequences whereas the 3'
flanking sequence provides recombination sequences necessary for V-DJ joining. This approximately 3.0 kb V segment insert is cloned into the polylinker of pGB2 to form pVH1.
pVHl is digested with Sfil and the resultant fragment is cloned into the Sfil site of pHIG2 to form a
PHIG5 ' . Since pHIG2 contains D segments only, the resultant pHIG5' plasmid contains a single V segment together with D segments. The size of the insert contained in pHIG5 is 10.6 kb plus the size of the V segment insert.
The insert from pHIG5 is excised by digestion with NotI and Spel and isolated. pHIG3' which contains J, Cμ and Cγ1 segments is digested with Spel and NotI and the 3' kb fragment containing such sequences and the rat 3' enhancer sequence is isolated. These two fragments are combined and ligated into NotI digested pGP1 to produce pHIG which contains insert encoding a V segment, nine D segments, six functional J segments, Cμ, Cγ and the rat 3' enhancer. The size of this insert is approximately 43 kb plus the size of the V segment insert.
I. Construction of Heavy Chain Minilocus
by Homologous Recombination
As indicated in the previous section, the insert of pHIG is approximately 43 to 45 kb when a single V segment is employed. This insert size is at or near the limit of that which may be readily cloned into plasmid vectors. In order to provide for the use of a greater number of V segments, the following describes in vivo homologous recombination of overlapping DNA fragments which upon homologous recombination within a zygote or ES cell form a transgene containing the rat 3' enhancer sequence, the human Cμ, the human Cγ1, human J segments, human D segments and a multiplicity of human V segments.
A 6.3 kb BamHI/Hindlll fragment containing human J segments (see fragment (a) in Fig. 9) is cloned into Mlul/Spel digested pHIG5' using the following adapters: 5' GAT CCA AGC AGT 3'
5' CTA GAC TGC TTG 3'
5' CGC GTC GAA CTA 3'
5' AGC TTA GTT CGA 3'
The resultant is plasmid designated pHIG5'O (overlap). The insert contained in this plasmid contains human V, D and J segments. When the single V segment from pVHl is used, the size of this insert is approximately 17 kb plus 2 kb. This insert is isolated and combined with the insert from pHIG3' which contains the human J, Cμ, γ1 and rat 3' enhancer sequences. Both inserts contain human J segments which provide for approximately 6.3 kb of overlap between the two DNA fragments. When coinjected into the mouse zygote, in vivo homologous recombination occurs generating a transgene equivalent to the insert contained in pHIG.
This approach provides for the addition of a multiplicity of V segments into the transgene formed in vivo. For example, instead of incorporating a single V segment into pHIG5', a multiplicity of V segments contained on (1) isolated genomic DNA, (2) ligated DNA derived from genomic DNA, or (3) DNA encoding a synthetic V segment repertoire is cloned into pHIG2 at the Sfil site to generate pHIG5' VN. The J segments fragment (a) of Fig. 9 is then cloned into pHIG5' VN and the insert isolated. This insert now contains a multiplicity of V segments and J segments which overlap with the J segments contained on the insert isolated from pHIG3'. When
cointroduced into the nucleus of a mouse zygote, homologous recombination occurs to generate in vivo the transgene
encoding multiple V segments and multiple J segments, multiple D segments, the Cμ region, the Cγ1 region (all from human) and the rat 3' enhancer sequence.
EXAMPLE 5
Construction of Light Chain Minilocus
A. Construction of pEul
The construction of pEμl is depicted in Fig. 16.
The mouse heavy chain enhancer is isolated on the Xbal to EcoRI 678 bp fragment (Banerji et al., Cell 33:729-740 (1983)) from phage clones using oligo: 5' GAA TGG GAG TGA GGC TCT CTC ATA CCC
TAT TCA GAA CTG ACT 3' This Eμ fragment is cloned into EcoRV/Xbal digested pGP1 by blunt end filling in EcoRI site. The resultant plasmid is designated pEmul. B. Construction Of κ Light chain Minilocus
Theκ construct contains at least one human Vκ segment, all five human Jκ segments, the human J-Cκ enhancer, humanκ constant region exon, and, ideally, the human 3' κ enhancer (Meyer et al., EMBO J. 8:1959-1964 (1989)). The κ enhancer in mouse is 9 kb downstream from Cκ. However, it is as yet unidentified in the human. In addition, the construct contains a copy of the mouse heavy chain J-Cμ enhancers.
The minilocus is constructed from four component fragments:
(a) A 16 kb Smal fragment that contains the human
Cκ exon and the 3' human enhancer by analogy with the mouse locus;
(b) A 5' adjacent 5 kb Smal fragment, which
contains all five J segments;
(c) The mouse heavy chain intronic enhancer
isolated from pEμl (this sequence is included to induce expression of the light chain construct as early as possible in B-cell development. Because the heavy chain genes are transcribed earlier than the light chain genes, this heavy chain enhancer is presumably active at an earlier stage than the intronic κ enhancer); and
(d) A fragment containing one or more V segments. The preparation of this construct is as follows. Human placental DNA is digested with Smal and fractionated on agarose gel by electrophoresis. Similarly, human placental DNA is digested with BamHI and fractionated by
electrophoresis. The 16 kb fraction is isolated from the Smal digested gel and the 11 kb region is similarly isolated from the gel containing DNA digested with BamHI.
The 16 kb Smal fraction is cloned into Lambda FIX II
(Stratagene, La Jolla, California) which has been digested with Xhol, treated with klenow fragment DNA polymerase to fill in the Xhol restriction digest product. Ligation of the 16 kb Smal fraction destroys the Smal sites and lases Xhol sites intact.
The 11 kb BamHI fraction is cloned into λ EMBL3 (Strategene, La Jolla, California) which is digested with BamHI prior to cloning.
Clones from each library were probed with the CK specific oligo: 5' GAA CTG TGG CTG CAC CAT CTG TCT
TCA TCT TCC CGC CAT CTG 3'
A 16 kb Xhol insert that was subcloned into the Xhol cut pEμl so that Cκ is adjacent to the Smal site. The
resultant plasmid was designated pKapl.
The above Cκ specific oligonucleotide is used to probe the λ EMBL3/BamHI library to identify an 11 kb clone. A 5 kb Smal fragment (fragment (b) in Fig. 20) is subcloned and subsequently inserted into pKapl digested with Smal. Those plasmids containing the correct orientation of J segments, Cκ and the Eμ enhancer are designated pKap2.
One or more Vκ segments are thereafter subcloned into the Mlul site of pKap2 to yield the plasmid pKapH which encodes the human Vκ segments, the human Jκ segments, the human Cκ segments and the human Eμ enhancer. This insert is excised by digesting pKapH with NotI and purified by agarose gel electrophoresis. The thus purified insert is
microinjected into the pronucleus of a mouse zygote as
previously described. C. Construction of κ Light Chain Minilocus by
In Vivo Homologous Recombination
The 11 kb BamHI fragment is cloned into BamHI .
digested pGP1 such that the 3' end is toward the Sfil site. The resultant plasmid is designated pKAPint. One or more Vκ segments is inserted into the polylinker between the BamHI and Spel sites in pKAPint to form pKapHV. The insert of pKapHV is excised by digestion with NotI and purified. The insert from pKap2 is excised by digestion with NotI and purified. Each of these fragments contain regions of homology in that the fragment from pKapHV contains a 5 kb sequence of DNA that include the Jκ segments which is substantially homologous to the 5 kb Smal fragment contained in the insert obtained from pKap2. As such, these inserts are capable of homologously recombining when microinjected into a mouse zygote to form a transgene encoding Vκ, Jκ and Cκ.
EXAMPLE 6
Isolation of Genomic Clones
Corresponding to Rearranged and Expressed Copies of Immunoglobulin κ Light Chain Genes
This example describes the cloning of immunoglobulinκ light chain genes from cultured cells that express an immunoglobulin of interest. Such cells may contain multiple alleles of a given immunoglobulin gene. For example, a hybridoma might contain four copies of theκ light chain gene, two copies from the fusion partner cell line and two copies from the original B-cell expressing the immunoglobulin of interest. Of these four copies, only one encodes the
immunoglobulin of interest, despite the fact that several of them may be rearranged. The procedure described in this example allows for the selective cloning of the expressed copy of theκ light chain.
A. Double Stranded cDNA
Cells from human hybridoma, or lymphoma, or other cell line that synthesizes either cell surface or secreted or both forms of IgM with aκ light chain are used for the isolation of polyA+ RNA. The RNA is then used for the
synthesis of oligo dT primed cDNA using the enzyme reverse transcriptase. The single. stranded cDNA is then isolated and G residues are added to the 3' end using the enzyme
polynucleotide terminal transferase. The Gtailed
single-stranded cDNA is then purified and used as template for second strand synthesis (catalyzed by the enzyme DNA
polymerase) using the following oligonucleotide as a primer: 5' - GAG GTA CAC TGA CAT ACT GGC ATG CCC
CCC CCC CCC - 3' The double stranded cDNA is isolated and used for determining the nucleotide sequence of the 5' end of the mRNAs encoding the heavy and light chains of the expressed
immunoglobulin molecule. Genomic clones of these expressed genes are then isolated. The procedure for cloning the expressed light chain gene is outlined in part B below.
B. Light Chain
The double stranded cDNA described in part A is denatured and used as a template for a third round of DNA synthesis using the following oligonucleotide primer: 5' - GTA CGC CAT ATC AGC TGG ATG AAG TCA TCA GAT
GGC GGG AAG ATG AAG-.ACA GAT GGT GCA - 3'
This primer contains sequences specific for the constant portion of theκ light chain message (TCA TCA GAT GGC GGG AAG ATG AAG ACA GAT GGT GCA) as well as unique sequences that can be used as a primer for the PCR amplification of the newly synthesized DNA strand (GTA CGC CAT ATC AGC TGG ATG AAG). The sequence is amplified by PCR using the following two oligonucleotide primers: 5' - GAG GTA CAC TGA CAT ACT GGC ATG -3'
5' - GTA CGC CAT ATC AGC TGG ATG AAG -3'
The PCR amplified sequence is then purified by gel electrophoresis and used as template for dideoxy sequencing reactions using the following oligonucleotide as a primer: 5' - GAG GTA CAC TGA CAT ACT GGC ATG -3' The first 42 nucleotides of sequence will then be used to synthesize a unique probe for isolating the gene from which immunoglobulin message was transcribed. This synthetic 42 nucleotide segment of DNA will be referred to below as o-kappa.
A Southern blot of DNA, isolated from the Ig expressing cell line and digested individually and in pairwise combinations with several different restriction endonucleases including Smal, is then probed with the 32-P labelled unique oligonucleotide o-kappa. A unique restriction endonuclease site is identified upstream of the rearranged V segment.
DNA from the Ig expressing cell line is then cut with Smal and second enzyme (or BamHI or Kpnl if there is Smal site inside V segment). Any resulting non-blunted ends are treated with the enzyme T4 DNA polymerase to give blunt ended DNA molecules. Then add restriction site encoding linkers (BamHI, EcoRI or Xhol depending on what site does not exist in fragment) and cut with the corresponding linker enzyme to give DNA fragments with BamHI, EcoRI or Xhol ends. The DNA is then size fractionated by agarose gel electrophoresis, and the fraction including the DNA fragment covering the expressed V segment is cloned into lambda EMBL3 or Lambda FIX (Stratagene, La Jolla, California). V segment containing clones are isolated using the unique probe o-kappa. DNA is isolated from positive clones and subcloned into the polylinker of pKapl. The resulting clone is called pRKL. EXAMPLE 7
Isolation of Genomic Clones
Corresponding to Rearranged Expressed Copies of Immunoglobulin Heavy Chain μ Genes
This example describes the cloning of immunoglobulin heavy chain μ genes from cultured cells of expressed and immunoglobulin of interest. The procedure described in this example allows for the selective cloning of the expressed copy of a μ heavy chain gene.
Double-stranded cDNA is prepared and isolated as described herein before. The double-stranded cDNA is
denatured and used as a template for a third round of DNA synthesis using the following oligonucleotide primer:
5' - GTA CGC CAT ATC AGC TGG ATG AAG ACA GGA GAC
GAG GGG GAA AAG GGT TGG GGC GGA TGC - 3'
This primer contains sequences specific for the constant portion of the μ heavy chain message (ACA GGA GAC GAG GGG GAA AAG GGT TGG GGC GGA TGC) as well as unique sequences that can be used as a primer for the PCR amplification of the newly synthesized DNA strand (GTA CGC CAT ATC AGC TGG ATG AAG). The sequence is amplified by PCR using the following two oligonucleotide primers:
5' - GAG GTA CAC TGA CAT ACT GGC ATG - 3' 5' - GTA CTC CAT ATC AGC TGG ATG AAG - 3'
The PCR amplified sequence is then purified by gel electrophoresis and used as template for dideoxy sequencing reactions using the following oligonucleotide as a primer:
5' - GAG GTA CAC TGA CAT ACT GGC ATG - 3' The first 42 nucleotides of sequence are then used to synthesize a unique probe for isolating the gene from which immunoglobulin message was transcribed. This synthetic 42 nucleotide segment of DNA will be referred to below as o-mu.
A Southern blot of DNA, isolated from the Ig
expressing cell line and digested individually and in pairwise combinations with several different restriction endonucleases including Mlul (Mlul is a rare cutting enzyme that cleaves between the J segment and mu CH1), is then probed with the 32-P labelled unique oligonucleotide o-mu. A unique
restriction endonuclease site is identified upstream of the rearranged V segment.
DNA from the Ig expressing cell line is then cut with Mlul and second enzyme. Mlul or Spel adapter linkers are then ligated onto the ends and cut to convert the upstream site to Mlul or Spel. The DNA is then size fractionated by agarose gel electrophoresis, and the fraction including the DNA fragment covering the expressed V segment is cloned directly into the plasmid pGP1. V segment containing clones are isolated using the unique probe o-mu, and the insert is subcloned into Mlul or Mlul/Spel cut plasmid pCON2. The resulting plasmid is called pRMGH. EXAMPLE 8
Construction of Human κ Miniloci Transgenes
Light Chain Minilocus
A human genomic DNA phage library was screened with kappa light chain specific oligonucleotide probes and isolated clones spanning the Jκ-C region. A 5.7 kb Clal/Xhol fragment containing Jκ1 together with a 13 kb Xhol fragment containing Jκ2-5 and Cκ into pGP1d was cloned and used to create the plasmid pKcor. This plasmid contains Jκ1-5, the kappa
intronic enhancer and Cκ together with 4.5 kb of 5' and 9 kb of 3' flanking sequences. It also has a unique 5' Xhol site for cloning Vκ segments and a unique 3' Sall site for
inserting additional cis-acting regulatory sequences. V kappa genes
A human genomic DNA phage library was screened with Vκ light chain specific oligonucleotide probes and isolated clones containing human Vκ segments. Functional V segments were identified by DNA sequence analysis. These clones contain TATA boxes, open reading frames encoding leader and variable peptides (including 2 cysteine residues), splice sequences, and recombination heptamer-12 bp spacer-nonamer sequences. Three of the clones were mapped and sequenced.
Two of the clones, 65.5 and 65.8 appear to be functional, they contain TATA boxes, open reading frames encoding leader and variable peptides (including 2 cysteine residues), splice sequences, and recombination heptamer-12 bp spacer-nonamer sequences. The third clone, 65.4, appears to encode a VκI pseudogene as it contains a non-canonical recombination heptamer.
One of the functional clones, Vk 65-8, which encodes a Vklll family gene, was used to build a light chain minilocus construct. pKCI
The kappa light chain minilocus transgene pKC1 (Fig. 32) was generated by inserting a 7.5 kb Xhol/Sall fragment containing Vκ 65.8 into the 5' Xhol site of pKcor. The transgene insert was isolated by digestion with NotI prior to injection.
The purified insert was microinjected into the pronuclei of fertilized (C57BL/6 x CBA) F2 mouse embryos and transferred the surviving embryos into pseudopregnant females as described by Hogan et al. (in Methods of Manipulating the Mouse Embryo, 1986, Cold Spring Harbor Laboratory, New York). Mice that developed from injected embryos were analyzed for the presence of transgene sequences by Southern blot analysis of tail DNA. Transgene copy number was estimated by band intensity relative to control standards containing known quantities of cloned DNA. Serum was isolated from these animals and assayed for the presence of transgene encoded human Ig kappa protein by ELISA as described by Harlow and Lane (in Antibodies: A Laboratory Manual, 1988, Cold Spring Harbor Laboratory, New York). Microtiter plate wells were coated with mouse monoclonal antibodies specific for human Ig kappa (clone 6E1, #0173 , AMAC, Inc. , Westbrook, ME) , human IgM (Clone AF6, #0285, AMAC, Inc., Westbrook, ME) and human IgG1 (clone JL512, #0280, AMAC, Inc., Westbrook, ME). Serum samples were serially diluted into the wells and the presence of specific immunoglobulins detected with affinity isolated alkaline phosphatase conjugated goat anti-human Ig
(polyvalent) that had been pre-adsorbed to minimize cross- reactivity with mouse immunoglobulins.
Fig. 35 shows the results of an ELISA assay of serum from 8 mice (I.D. #676, 674, 673, 670, 666, 665, 664, and 496). The first seven of these mice developed from embryos that were injected with the pKC1 transgene insert and the eighth mouse is derived from a mouse generated by
microinjection of the pHC1 transgera (described previously). Two of the seven mice from KC1 injected embryos (I.D.#'s 666 and 664) did not contain the transgene insert as assayed by DAN Southern blot analysis, and five of the mice (I.D.#'s 676, 674, 673, 670, and 665) contained the transgene. Al! but one of the KC1 transgene positive animals express detectable levels of human Ig kappa protein, and the single non- expressing animal appears to be a genetic mosaic on the basis of DNA Southern blot analysis. The pHC1 positive transgenic mouse expresses human IgM and IgG1 but not Ig kappa,
demonstrating the specificity of the reagents used in the assay. pKC2
The kappa light chain minilocus transgene pKC2 was generated by inserting an 8 kb Xhol/Sall fragment containing Vκ 65.5 into the 5' Xhol site of pKC1. The resulting
transgene insert, which contains two Vκ segments, was isolated prior to microinjection by digestion with NotI.
pKVe2
This construct is identical to pKCI except that it includes 1.2 kb of additional sequence 5' of Jκ and is missing 4.5 kb of sequence 3' of Vκ 65.8. In additional it contains a 0.9 kb Xbal fragment containing the mouse heavy chain J-m intronic enhancer (Banerji et al., Cell 33:729-740 (1983)) together with a 1.4 kb Mlul Hindlll fragment containing the human heavy chain J-m intronic enhancer (Hayday et al., Nature 307:334-340 (1984)) inserted downstream. This construct tests the feasibility of initiating early rearrangement of the light chain minilocus to effect allelic and isotypic exclusion.
Analogous constructs can be generated with different
enhancers, i.e., the mouse or rat 3' kappa or heavy chain enhancer (Meyer and Neuberger, EMBO J. 8:1959-1964 (1989); Petterson et al. Nature 344:165-168 (1990), which are
incorporated herein by reference).
Rearranged Light Chain Transgenes
A kappa light chain expression cassette was designed to reconstruct functionally rearranged light chain genes that have been amplified by PCR from human B-cell DNA. The scheme is outlined in Fig. 33. PCR amplified light chain genes are cloned into the vector pK5nx that includes 3.7 kb of 5' flanking sequences isolated from the kappa light chain gene 65.5. The VJ segment fused to the 5' transcriptional
sequences are then cloned into the unique Xhol site of the vector pK31s that includes Jκ2-4, the Jκ intronic enhancer, Cκ, and 9 kb of downstream sequences. The resulting plasmid contains a reconstructed functionally rearranged kappa light chain transgene that can be excised with NotI for
microinjection into embryos. The plasmids also contain unique Sall sites at the 3' end for the insertion of additional cis- acting regulatory sequences.
Two synthetic oligonucleotides (o-130, o-131) were used J amplify rearranged kappa light chain genes from human spleen genomic DNA. Oligonucleotide o-131 (gga ccc aga
(g,c)gg aac cat gga a(g,a) (g,a,t,c)) is complementary to the 5' region of V^III family light chain genes and overlaps the first ATC of the leader sequence. Oligonucleotide o-130 (gtg caa tea att etc gag ttt gac tac aga c) is complementary to a sequence approximately 150 bp 3' of Jκ1 and includes an Xhol site. These two oligonucleotides amplify a 0.7 kb DNA
fragment from human spleen DNA corresponding to rearranged
VκIII genes joined to Jκ1 segments. The PCR amplified DNA was digested with Ncol and Xhol and cloned individual PCR products into the plasmid pNN03. The DNA sequence of 5 clones was determined and identified two with functional VJ joints (open reading frames). Additional functionally rearranged light chain clones are collected. The functionally rearranged clones can be individually cloned into light chain expression
cassette described above (Fig. 33). Transgenic mice generated with the rearranged light chain constructs can be bred with heavy chain minilocus transgenics to produce a strain of mice that express a spectrum of fully human antibodies in which all of the diversity of the primary repertoire is contributed by the heavy chain. One source of light chain diversity can be from somatic mutation. Because not all light chains will be equivalent with respect to their ability to combine with a variety of different heavy chains, different strains of mice, each containing different light chain constructs can be
generated and tested. The advantage of this scheme, as opposed to the use of unrearranged light chain miniloci, is the increased light chain allelic and isotypic exclusion that comes from having the light chain ready to pair with a heavy chain as soon as heavy chain VDJ joining occurs. This
combination can result in an increased frequency of B-cells expressing fully human antibodies, and thus it can facilitate the isolation of human Ig expressing hybridomas.
NotI inserts of plasmids pIGM1, pHC1, pIGG1, pKC1, and pKC2 were isolated away from vector sequences by agarose gel electrophoresis. The purified inserts were microinjected into the pronuclei of fertilized (C57BL/6 x CBA) F2 mouse embryos and transferred the surviving embryos into
pseudopregnant females as described by Hogan et al. (Hogan et al., Methods of Manipulating the Mouse Embryo. Cold Spring Harbor Laboratory, New York (1986)).
EXAMPLE 9
Inactivation of the Mouse Kappa Light Chain Gene by Homologous Recombination
This example describes the inactivation of the mouse endogenous kappa locus by homologous recombination in
embryonic stem (ES) cells followed by introduction of the mutated gene into the mouse germ line by injection of targeted ES cells bearing an inactivated kappa allele into early mouse embryos (blastocysts).
The strategy is to delete Jκ and Cκ by homologous recombination with a vector containing DNA sequences
homologous to the mouse kappa locus in which a 4.5 kb segment of the locus, spanning the Jκ gene and Cκ segments, is deleted and replaced by the selectable marker neo.
Construction of the kappa targeting vector
The plasmid pGEM7 (KJ1) contains the neomycin resistance gene (neo), used for drug selection of transfected ES cells, under the transcriptional control of the mouse phosphoglycerate kinase (pgk) promoter (Xbal/TaqI fragment; Adra et al., Gene 60: 65-74 (1987)) in the cloning vector pGEM- 7Zf(+). The plasmid also includes a heterologous polyadenylation site for the neo gene, derived from the 3' region of the mouse pgk gene (PvulI/Hindlll fragment; Boer et al., Biochemical Genetics. 28:299-308 (1990)). This plasmid was used as the starting point for construction of the kappa targeting vector. The first step was to insert sequences homologous to the kappa locus 3' of the neo expression
cassette.
Mouse kappa chain sequences (Fig. 20a) were isolated from a genomic phage library derived from liver DNA using oligonucleotide probes specific for the C/c locus:
5'- GGC TGA TGC TGC ACC AAC TGT ATC CAT CTT CCC ACC ATC CAG -3'
and for the Jκ5 gene segment:
5'- CTC ACG TTC GGT GCT GGG ACC AAG CTG GAG CTG AAA CGT AAG - 3'.
An 8 kb Bglll/SacI fragment extending 3' of the mouse Cκ segment was isolated from a positive phage clone in two pieces, as a 1.2 kb Bglll/SacI fragment and a 6.8 kb SacI fragment, and subcloned into Bglll/SacI digested pGEM7 (KJ1) to generate the plasmid pNEO-K3' (Fig. 20b).
A 1.2 kb EcoRI/SphI fragment extending 5' of the Jκ region was also isolated from a positive phage clone. An Sphl/Xbal/Bglll/EcoRI adaptor was ligated to the SphI site of this fragment, and the resulting EcoRI fragment was ligated into EcoRI digested pNEO-K3', in the same 5' to 3' orientation as the neo gene and the downstream 3' kappa sequences, to generate pNEO-K5'3' (Fig. 20c).
The Herpes Simplex Virus (HSV) thymidine kinase (TK) gene was then included in the construct in order to allow for enrichment of ES clones bearing homologous recombinants, as described by Mansour et al., Nature 336:348-352 (1988), which is incorporated herein by reference. The HSV TK cassette was obtained from the plasmid pGEM7 (TK), which contains the structural sequences for the HSV TK gene bracketed by the mouse pgk promoter and polyadenylation sequences as described above for pGEM7 (KJ1). The EcoRI site of pGEM7 (TK) was modified to a BamHI site and the TK cassette was then excised as a BamHI/Hindlll fragment and subcloned into pGFlb to generate pGP1b-TK. This plasmid was linearized at the Xhol site and the Xhol fragment from pNEO-K5'3', containing the neo gene flanked by genomic sequences from 5' of JK and 3' of Cκ, was inserted into pGP1b-TK to generate the targeting vector J/C KI (Fig. 20d). The putative structure of the genomic kappa locus following homologous recombination with J/C Kl is shown in Fig. 20e.
Generation and analysis of ES cells with targeted inactivation of a kappa allele
The ES cells used were the AB-1 line grown on mitotically inactive SNL76/7 cell feeder layers (McMahon and Bradley, Cell 62:1073-1085 (1990)) essentially as described (Robertson, E.J. (1987) in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach. E.J. Robertson, ed. (Oxford: IRL Press), p. 71-112). Other suitable ES lines include, but are not limited to, the E14 line (Hooper et al. (1987) Nature 326: 292-295), the D3 line (Doetschman et al. (1985) J. Embrvol. Exp. Morph. 87: 27-45), and the CCE line (Robertson et al.
(1986) Nature 323: 445-448). The success of generating a mouse line from ES cells bearing a specific targeted mutation depends on the pluripotence of the ES cells (i.e., their ability, once injected into a host blastocyst, to participate in embryogenesis and contribute to the germ cells of the resulting animal).
The pluripotence of any given ES cell line can vary with time in culture and the care with which it has been handled. The only definitive assay for pluripotence is to determine whether the specific population of ES cells to be used for targeting can give rise to chimeras capable of germline transmission of the ES genome. For this reason, prior to gene targeting, a portion of the parental population of AB-1 cells is injected into C57B1/6J blastocysts to
ascertain whether the cells are capable of generating chimeric mice with extensive ES cell contribution and whether the majority of these chimeras can transmit the ES genome to progeny.
The kappa chain inactivation vector J/C Kl was digested with NotI and electroporated into AB-1 cells by the methods described (Hasty et al., Nature. 350:243-246 (1991)). Electroporated cells were plated onto 100 mm dishes at a density of 1-2 x 106 cells/dish. After 24 hours, G418
(200μg/ml of active component) and FIAU (0.5μM) were added to the medium, and drug-resistant clones were allowed to develop over 10-11 days. Clones were picked, trypsinized, divided into two portions, and further expanded. Half of the cells derived from each clone were then frozen and the other half analyzed for homologous recombination between vector and target sequences.
DNA analysis was carried out by Southern blot hybridization. DNA was isolated from the clones as described (Laird et al., Nucl. Acids Res. 19:4293 (1991)) digested with Xbal and probed with the 800 bp EcoRI/Xbal fragment indicated in Fig. 20e as probe A. This probe detects a 3.7 kb Xbal fragment in the wild type locus, and a diagnostic 1.8 kb band in a locus which has homologously recombined with the
targeting vector (see Fig. 20a and e). Of 901 G418 and FIAU resistant clones screened by Southern blot analysis, 7 displayed the 1.8 kb Xbal band indicative of a homologous recombination into one of the kappa genes. These 7 clones were further digested with the enzymes Bglll, Sad, and PstI to verify that the vector integrated homologously into one of the kappa genes. When probed with the diagnostic 800 bp
EcoRI/Xbal fragment (probe A), Bglll, Sad, and PstI digests of wild type DNA produce fragments of 4.1, 5.4, and 7 kb, respectively, whereas the presence of a targeted kappa allele would be indicated by fragments of 2.4, , and 5.7 kb, respectively (see Fig. 20a and e). All positive clones detected by the Xbal digest showed the expected Bglll, Sad, and PstI restriction fragments diagnostic of a homologous recombination at the kappa light chain. In addition. Southern blot analysis of an Nsil digest of the targeted clones using a neo specific probe (probe B, Fig. 20e) generated only the predicted fragment of 4.2 kb, demonstrating that the clones each contained only a single copy of the targeting vector.
Generation of mice bearing the inactivated kappa chain
Five of the targeted ES clones described in the previous section were thawed and injected into C57B1/6J blastocysts as described (Bradley, A. (1987) in
Teratocarcinomas and Embryonic Stem Cells: A Practical
Approach. E.J. Robertson, ed. (Oxford: IRL Press), p. 113-151) and transferred into the uteri of pseudopregnant females to generate chimeric mice resulting from a mixture of cells derived from the input ES cells and the host blastocyst. The extent of ES cell contribution to the chimeras can be visually estimated by the amount of agouti coat coloration, derived from the ES cell line, on the black C57B1/6J background.
Approximately half of the offspring resulting from blastocyst injection of the targeted clones were chimeric (i.e., showed agouti as well as black pigmentation) and of these, the majority showed extensive (70 percent or greater) ES cell contribution to coat pigmentation. The AB1 ES cells are an XY cell line and a majority of these high percentage chimeras were male due to sex conversion of female embryos colonized by male ES cells. Male chimeras derived from 4 of the 5 targeted clones were bred with C57BL/6J females and the offspring monitored for the presence of the dominant agouti coat color indicative of germline transmission of the ES genome.
Chimeras from two of these clones consistently generated agouti offspring. Since only one copy of the kappa locus was targeted in the injected ES clones, each agouti pup had a 50 percent chance of inheriting the mutated locus. Screening for the targeted gene was carried out by Southern blot analysis of Bgl II-digested DNA from tail biopsies, using the probe utilized in identifying targeted ES clones (probe A, Fig.
20e). As expected, approximately 50 percent of the agouti offspring showed a hybridizing Bgl II band of 2.4 kb in addition to the wild-type band of 4.1 kb, demonstrating the germline transmission of the targeted kappa locus. In order to generate mice homozygous for the mutation, heterozygotes were bred together and the kappa genotype of the offspring determined as described above. As expected, three genotypes were derived from the heterozygote matings: wild-type mice bearing two copies of a normal kappa locus, heterozygotes carrying one targeted copy of the kappa gene and one NT kappa gene, and mice homozygous for the kappa mutation. The deletion of kappa sequences from these latter mice was verified by hybridization of the Southern blots with a probe specific for Jκ (probe C, Fig. 20a). Whereas
hybridization of the Jκ probe was observed to DNA samples from heterozygous and wild-type siblings, no hybridizing signal was present in the homozygotes, attesting to the generation of a novel mouse strain in which both copies of the kappa locus have been inactivated by deletion as a result of targeted mutation.
EXAMPLE 10
Inactivation of the Mouse Heavy Chain Gene by Homologous
Recombination
This example describes the inactivation of the endogenous murine immunoglobulin heavy chain locus by
homologous recombination in embryonic stem (ES) cells. The strategy is to delete the endogenous heavy chain J segments by homologous recombination with a vector containing heavy chain sequences from which the JH region has been deleted and replaced by the gene for the selectable marker neo.
Construction of a heavy chain targeting vector
Mouse heavy chain sequences containing the JH region
(Fig. 21a) were isolated from a genomic phage library derived from the D3 ES cell line (Gossler et al., Proc. Natl. Acad. Sci. U.S.A. 83:9065-9069 (1986)) using a JH4 specific
oligonucleotide probe:
5'- ACT ATG CTA TGG ACT ACT GGG GTC AAG GAA CCT CAG TCA CCG -3' A 3.5 kb genomic SacI/StuI fragment, spanning the JH region, was isolated from a positive phage clone and subcloned into Sacl/Smal digested pUC18. The resulting plasmid was designated pUC18 JH. The neomycin resistance gene (neo), used for drug selection of transfected ES cells, was derived from a repaired version of the plasmid pGEM7 (KJ1). A report in the literature (Yenofsky et al. (1990) Proc. Natl. Acad. Sci.
(U.S.A. ) 87: 3435-3439) documents a point mutation the neo coding sequences of several commonly used expression vectors, including the construct pMCIneo (Thomas and Cappechi (1987) Cell 51: 503-512) which served as the source of the neo gene used in pGEM7 (KJ1). This mutation reduces the activity of the neo gene product and was repaired by replacing a
restriction fragment encompassing the mutation with the corresponding sequence from a wild-type neo clone. The
Hindlll site in the prepared pGEM7 (KJ1) was converted to a Sall site by addition of a synthetic adaptor, and the neo expression cassette excised by digestion with Xbal/Sall. The ends of the neo fragment were then blunted by treatment with the Klenow form of DNA poll, and the neo fragment was
subcloned into the Nael site of pUC18 JH, generating the plasmid pUC18 JH-neo (Fig. 21b) .
Further construction of the targeting vector was carried out in a derivative of the plasmid pGP1b. pGP1b was digested with the restriction enzyme NotI and ligated with the following oligonucleotide as an adaptor:
5'- GGC CGC TCG ACG ATA GCC TCG AGG CTA TAA ATC TAG AAG AAT
TCC AGC AAA GCT TTG GC -3'
The resulting plasmid, called pGMT, was used to build the mouse immunoglobulin heavy chain targeting
construct.
The Herpes Simplex Virus (HSV) thymidine kinase (TK) gene was included in the construct in order to allow for enrichment of ES clones bearing homologous recombinants, as described by Mansour et al. (Nature 336, 348-352 (1988)). The
HSV TK gene was obtained from the plasmid pGEM7 (TK) by digestion with EcoRI and Hindlll. The TK DNA fragment was subcloned between the EcoRI and Hindlll sites of pGMT, creating the plasmid pGMT-TK (Fig. 21c).
To provide an extensive region of homology to the target sequence, a 5.9 kb genomic Xbal/Xhol fragment, situated 5' of the JH region, was derived from a positive genomic phage clone by limit digestion of the DNA with Xhol, and partial digestion with Xbal. As noted in Fig. 21a, this Xbal site is not present in genomic DNA, but is rather derived from phage sequences immediately flanking the cloned genomic heavy chain insert in the positive phage clone. The fragment was
subcloned into Xbal/Xhol digested pGMT-TK, to generate the plasmid pGMT-TK-JH5' (Fig. 21d).
The final step in the construction involved the excision from pUC18 JH-neo of the 2.8 kb EcoRI fragment which contained the neo gene and flanking genomic sequences 3' of JH. This fragment was blunted by Klenow polymerase and subcloned into the similarly blunted Xhol site of
pGMT-TK-JH5'. The resulting construct, JHKO1 (Fig. 21e), contains 6.9 kb of genomic sequences flanking the JH locus, with a 2.3 kb deletion spanning the JH region into which has been inserted the neo gene. Fig. 21f shows the structure of an endogenous heavy chain gene after homologous recombination with the targeting construct.
EXAMPLE 11
Generation and analysis of targeted ES cells
AB-1 ES cells (McMahon and Bradley, Cell
62:1073-1085 (1990)) were grown on mitotically inactive
SNL76/7 cell feeder layers essentially as described
(Robertson, E.J. (1987) Teratocarcinomas and Embryonic Stem Cells: A Practical Approach. E.J. Robertson, ed. (Oxford: IRL Press), pp. 71-112). As described in the previous example, prior to electroporation of ES cells with the targeting
construct JHKO1, the pluripotency of the ES cells was
determined by generation of AB-1 derived chimeras which were shown capable of germline transmission of the ES genome. The heavy chain inactivation vector JHKO1 was digested with NotI and electroporated into AB-1 cells by the methods described (Hasty et al., Nature 350:243-246 (1991)). Electroporated cells were plated into 100 mm dishes at a density of 1-2 x 106 cells/dish. After 24 hours, G418
(200mg/ml of active component) and FIAU (0.5mM) were added to the medium, and drug-resistant clones were allowed to develop over 8-10 days. Clones were picked, trypsinized, divided into two portions, and further expanded. Half of the cells derived from each clone were then frozen and the other half analyzed for homologous recombination between vector and target
sequences.
DNA analysis was carried out by Southern blot hybridization. DNA was isolated from the clones as described (Laird et al. (1991) Nucleic Acids Res. 19: 4293), digested with StuI and probed with the 500 bp EcoRI/StuI fragment designated as probe A in Fig. 2If. This probe detects a StuI fragment of 4.7 kb in the wild-type locus, whereas a 3 kb band is diagnostic of homologous recombination of endogenous sequences with the targeting vector (see Fig. 21a and f). Of 525 G418 and FIAU doubly-resistant clones screened by Southern blot hybridization, 12 were found to contain the 3 kb fragment diagnostic of recombination with the targeting vector. That these clones represent the expected targeted events at the JH locus (as shown in Fig. 21f) was confirmed by further
digestion with Hindlll, Spel and Hpal. Hybridization of probe A (see Fig. 21f) to Southern blots of Hindlll, Spel, and Hpal digested DNA produces bands of 2.3 kb, >10 kb, and >10kb, respectively, for the wild-type locus (see Fig. 21a), whereas bands of 5.3 kb, 3.8 kb, and 1.9 kb, respectively, are
expected for the targeted heavy chain locus (see Fig 21f). All 12 positive clones detected by the StuI digest showed the predicted Hindlll, Spel, and Hpal bands diagnostic of a targeted JH gene. In addition, Southern blot analysis of a StuI digest of all 12 clones using a neo-specific probe (probe B, Fig. 21f) generated only the predicted fragment of 3 kb, demonstrating that the clones each contained only a single copy of the targeting vector. Generation of mice carrying the JH deletion
Three of the targeted ES clones described in the previous section were thawed and injected into C57BL/6J blastocysts as described (Bradley, A. (1987) in
Teratocarcinomas and Embryonic Stem Cells: A Practical
Approach, E.J. Robertson, ed. (Oxford: IRL Press), p.113-151) and transferred into the uteri of pseudopregnant females. The extent of ES cell contribution to the chimera was visually estimated from the amount of agouti coat coloration, derived from the ES cell line, on the black C57BL/6J background. Half of the offspring resulting from blastocyst injection of two of the targeted clones were chimeric (i.e., showed agouti as well as black pigmentation); the third targeted clone did not generate any chimeric animals. The majority of the chimeras showed significant (approximately 50 percent or greater) ES cell contribution to coat pigmentation. Since the AB-1 ES cells are an XY cell line, most of the chimeras were male, due to sex conversion of female embryos colonized by male ES cells. Males chimeras were bred with C57BL/6J females and the offspring monitored for the presence of the dominant agouti coat color indicative of germline transmission of the ES genome. Chimeras from both of the clones consistently
generated agouti offspring. Since only one copy of the heavy chain locus was targeted in the injected ES clones, each agouti pup had a 50 percent chance of inheriting the mutated locus. Screening for the targeted gene was carried out by Southern blot analysis of stul-digested DNA from tail
biopsies, using the probe utilized in identifying targeted ES clones (probe A, Fig. 21f). As expected, approximately 50 percent of the agouti offspring showed a hybridizing StuI band of approximately 3 kb in addition to the wild-type band of 4.7 kb, demonstrating germline transmission of the targeted CH gene segment.
In order to generate mice homozygous for the mutation, heterozygotes were bred together and the heavy chain genotype of the offspring determined as described above. As expected, three genotypes were derived from the heterozygote atings: wild-type mice bearing two copies of the normal JH locus, heterozygotes caring one targeted copy of the gene and one normal copy, and mice homozygous for the JH mutation. The absence of JH sequences from these latter mice was verified by hybridization of the Southern blots of Stul-digested DNA with a probe specific for JH (probe C, Fig. 21a). Whereas
hybridization of the JH probe to a 4.7 kb fragment in DNA samples from heterozygous and wild-type siblings was observed, no signal was present in samples from the JH-mutant
homozygotes, attesting to the generation of a novel mouse strain in which both copies of the heavy chain gene have been mutated by deletion of the JH sequences.
EXAMPLE 12
Heavy Chain Minilocus Transgene
A. Construction of plasmid vectors for cloning large DNA sequences
1. pGPla
The plasmid pBR322 was digested with EcoRI and Styl and ligated with the following oligonucleotides: oligo-42 5'- caa gag ccc gcc taa tga gcg ggc ttt ttt ttg cat act gcg gcc get -3'
oligo-43 5'- aat tag egg ccg cag tat gca aaa aaa age ccg etc att agg egg get -3'
The resulting plasmid, pGP1a, is designed for cloning very large DNA constructs that can be excised by the rare cutting restriction enzyme NotI. It contains a NotI restriction site downstream (relative to the ampicillin resistance gene, AmpR) of a strong transcription termination signal derived from the trpA gene (Christie et al., Proc.
Natl. Acad. Sci. USA 78:4180 (1981)). This termination signal reduces the potential toxicity of coding sequences inserted into the NotI site by eliminating readthrough transcription from the AmpR gene. In addition, this plasmid is low copy relative to the pUC plasmids because it retains the pBR322 copy number control region. The low copy number further reduces the potential toxicity of insert sequences and reduces the selection against large inserts due to DNA replication. The vectors pGP1b, pGP1c, pGP1d, and pGP1f are derived from pGP1a and contain different polylinker cloning sites. The polylinker sequences are given below pGP1a
NotI
GCGGCCGC
pGP1b
NotI Xhol Clal BamHI Hindlll NotI GCggccgcctcgagatcactatcgattaattaaggatccagcagtaagcttgcGGCCGC pGIlc
NotI Smal Xhol Sall Hindlll BamHI SacII NotI
GCggccgcatcccgggtctcgaggtcgacaagctttcgaggatccgcGGCCGC pGP1d
NotI Sall Hindlll Clal BamHI Xhol NotI
GCggccgctgtcgacaagcttatcgatggatcctcgagtgcGGCCGC pGP1f
NotI Sall Hindlll EcoRI Clal Kpnl BamHI Xhol NotI GCggccgctgtcgacaagcttcgaattcagatcgatgtggtacctggatcctcgagtgcGGCC Each of these plasmids can be used for the construction of large transgene inserts that are excisable with NotI so that the transgene DNA can be purified away from vector sequences prior to microinjection. 2. pGP1b
pGP1a was digested with NotI and ligated with the following oligonucleotides: oligo-47 5'- ggc cgc aag ctt act get gga tec tta att aat cga tag tga tct cga ggc -3'
oligo-48 5'- ggc cgc etc gag ate act ate gat taa tta agg ate cag cag taa get tgc -3' The resulting plasmid, pGP1b, contains a short polylinker region flanked by NotI sites. This facilitates the construction of large inserts that can be excised by NotI digestion.
3. pGPe
The following oligonucleotides: oligo-44 5'- etc cag gat cca gat ate agt ace tga aac agg get tgc -3'
oligo-45 5'- etc gag cat gca cag gac ctg gag cac aca cag cct tec -3' were used to amplify the immunoglobulin heavy chain 3'
enhancer (S. Petterson, et al., Nature 344:165-168 (1990)) from rat liver DNA by the polymerase chain reaction technique.
The amplified product was digested with BamHI and SphI and cloned into BamHI/SphI digested pNN03 (pNN03 is a pUC derived plasmid that contains a polylinker with the following restriction sites, listed in order: NotI, BamHI, Ncol, Clal, EcoRV, Xbal, Sad, Xhol, SphI, PstI, Bglll, EcoRI, Smal, Kpnl, Hindlll, and NotI). The resulting plasmid, pRE3, was digested with BamHI and Hindlll, and the insert containing the rat Ig heavy chain 3' enhancer cloned into BamHI/Hindlll digested pGP1b. The resulting plasmid, pGPe (Fig. 22 and Table 1), contains several unique restriction sites into which sequences can be cloned and subsequently excised together with the 3' enhancer by NotI digestion. B. Construction of IgM expressing minilocus transgene. pIGM1
1. Isolation of J-μ constant region clones and construction of pJM1
A human placental genomic DNA library cloned into the phage vector XEMBL3/SP6/T7 (Clonetech Laboratories, Inc., Palo Alto, CA) was screened with the human heavy chain J region specific oligonucleotide: oligo-1 5'- gga ctg tgt ccc tgt gtg atg ctt ttg atg tct ggg gcc aag -3' and the phage clone λ1.3 isolated. A 6 kb Hindlll/Kpnl fragment from this clone, containing all six J segments as well as D segment DHQ52 and the heavy chain J-μ intronic enhancer, was isolated. The same library was screened with the human μ specific oligonucleotide: oligo-2 5'- cac caa gtt gac ctg cct ggt cac aga cct gac cac eta tga -3' and the phage clone λ2.1 isolated. A 10.5 kb Hindlll/Xhol fragment, containing the μ switch region and all of the μ constant region exons, was isolated from this clone. These two fragments were ligated together with Kpnl/Xhol digested pNN03 to obtain the plasmid pJMl. 2. pJM2
A 4 kb Xhol fragment was isolated from phage clone λ2.1 that contains sequences immediately downstream of the sequences in pJMl, including the so called ∑μ element involved in (S-associated deleteon of the μ in certain IgD expressing B-cells (Yasui et al., Eur. J. Immunol. 19:1399 (1989), which is incorporated herein by reference). This fragment was treated with the Klenow fragment of DNA polymerase I and ligated to Xhol cut, Klenow treated, pJMl. The resulting plasmid, pJM2 (Fig. 23), had lost the internal Xhol site but retained the 3' Xhol site due to incomplete reaction by the Klenow enzyme. pJM2 contains the entire human J region, the heavy chain J-μ intronic enhancer, the μ switch region and all of the μ constant region exons, as well as the two 0.4 kb direct repeats, σμ and ∑μ, involved in δ-associated deletion of the μ gene. 3. Isolation of D region clones and construction of pDH1
The following human D region specific
oligonucleotide: oligo-4 5'- tgg tat tac tat ggt teg ggg agt tat tat aac cac agt gtc -3' was used to screen the human placenta genomic library for D region clones. Phage clones λ4.1 and λ4.3 were isolated. A 5.5 kb Xhol fragment, that includes the D elements Dκ1, DN1, and DM2 (Ichihara et al., EMBO J. 1:4141 (1988)), was isolated from phage clone λ4.1. An adjacent upstream 5.2 kb Xhol fragment, that includes the D elements DLR1, DXP1, DXP'1, and DA1, was isolated from phage clone λ4.3. Each of these D region Xhol fragments were cloned into the Sall site of the plasmid vector pSP72 (Promega, Madison, WI) so as to destroy the Xhol site linking the two sequences. The upstream
fragment was then excised with Xhol and Smal, and the
downstream fragment with EcoRV and Xhol. The resulting isolated fragments were ligated together with Sall digested pSP72 to give the plasmid pDH1. pDH1 contains a 10.6 kb insert that includes at least 7 D segments and can be excised with Xhol (5') and EcoRV (3'). 4. pCOR1
The plasmid pJM2 was digested with Asp718 (an isoschizomer of Kpnl) and the overhang filled in with the Klenow fragment of DNA polymerase I. The resulting DNA was then digested with Clal and the insert isolated. This insert was ligated to the XhoI/EcoRV insert of pDH1 and Xhol/Clal digested pGPe to generate pCORl (Fig. 24).
5. pVH251
A 10.3 kb genomic Hindlll fragment containing the two human heavy chain variable region segments VH251 and VH105 (Humphries et al., Nature 331:446 (1988), which is
incorporated herein by reference) was subcloned into pSP72 to give the plasmid pVH251. 6. plGM1
The plasmid pCOR1 was partially digested with Xhol and the isolated Xhol/Sail insert of pVH251 cloned into the upstream Xhol site to generate the plasmid pIGMl (Fig. 25). pIGM1 contains 2 functional human variable region segments, at least 8 human D segments all 6 human JH segments, the human
J-μ enhancer, the human σμ element, the human μ switch region, all of the human μ coding exons, and the human ∑μ element, together with the rat heavy chain 3' enhancer, such that all of these sequence elements can be isolated on a single
fragment, away from vector sequences, by digestion with NotI and microinjected into mouse embryo pronuclei to generate transgenic animals.
C. Construction of IgM and IgG expressing minilocus
transgene, pHC1
1. Isolation of γ constant region clones
The following oligonucleotide, specific for human Ig g constant region genes: oligo-29 5'- cag cag gtg cac ace caa tgc cca tga gcc cag aca ctg gac -3' was used to screen the human genomic library. Phage clones 129.4 and λ29.5 were isolated. A 4 kb Hindlll fragment of phage clone λ29.4, containing a γ switch region, was used to probe a human placenta genomic DNA library cloned into the phage vector lambda FIX™ II (Stratagene, La Jolla, CA). Phage clone λSg1.13 was isolated. To determine the subclass of the different γ clones, dideoxy sequencing reactions were carrred out using subclones of each of the three phage clones as templates and the following oligonucleotide as a primer: oligo-67 5'- tga gcc cag aca ctg gac -3' Phage clones λ29.5 and λSγ1.13 were both determined to be of the γ1 subclass.
2. pγe1
A 7.8 kb Hindlll fragment of phage clone λ29.5, containing the γ1 coding region was cloned into pUC18. The resulting plasmid, pLT1, was digested with Xhol, Klenow treated, and religated to destroy the internal Xhol site. The resulting clone, pLTlxk, was digested with Hindlll and the insert isolated and cloned into pSPγ2 to generate the plasmid clone pLTlxks. Digestion of pLT1xks at a polylinker Xhol site and a human sequence derived BamHI site generates a 7.6 kb fragment containing the γ1 constant region coding exons. This 7.6 kb XhoI/BamHI fragment was cloned together with an
adjacent downstream 4.5 kb BamHI fragment from phage clone λ29.5 into XhoI/BamHI digested pGPe to generate the plasmid clone pγe1. pγe1 contains all of the 71 constant region coding exons, together with 5 kb of downstream sequences, linked to the rat heavy chain 3' enhancer.
3. pγe2
A 5.3 kb Hindlll fragment containing the 71 switch region and the first exon of the pre-switch sterile transcript (P. Sideras et al. (1989) International Immunol. 1, 631) was isolated from phage clone XSγ1.13 and cloned into pSP72 with the polylinker Xhol site adjacent to the 5' end of the insert, to generate the plasmid clone pSγ1S. The Xhol/Sall insert of pSγ1S was cloned into Xhol digested pγe1 to generate the plasmid clone pγe2 (Fig. 26). pγe2 contains all of the 71 constant region coding exons, and the upstream switch region and sterile transcript exons, together with 5 kb of downstream sequences, linked to the rat heavy chain 3' enhancer. This clone contains a unique Xhol site at the 5' end of the insert. The entire insert, together with the Xhol site and the 3' rat enhancer can be excised from vector sequences by digestion with NotI. 4 . pHC1
The plasmid pIGMl was digested with Xhol and the 43 kb insert isolated and cloned into Xhol digested pge2 to generate the plasmid pHC1 (Fig. 25). pHC1 contains 2
functional human variable region segments, at least 8 human D segments all 6 human JH segments, the human J-μ enhancer, the human σμ element, the human μ switch region, all of the human μ coding exons, the human ∑μ element, and the human γl constant region, including the associated switch region and sterile transcript associated exons, together with the rat heavy chain 3' enhancer, such that all of these sequence elements can be isolated on a single fragment, away from vector sequences, by digestion with NotI and microinjected into mouse embryo pronuclei to generate transgenic animals.
D. Construction of IgM and IgG expressing minilocus
transgene, pHC2
1. Isolation of human heavy chain V region gene VH49.8
The human placental genomic DNA library lambda, FIX™ II, Stratagene, La Jolla, CA) was screened with the following human VH1 family specific oligonucleotide: oligo-49 5'- gtt aaa gag gat ttt att cac ccc tgt gtc etc tec aca ggt gtc -3'
Phage clone X49.8 was isolated and a 6.1 kb Xbal fragment containing the variable segment VH49.8 subcloned into pNN03 (such that the polylinker Clal site is downstream of VH49.8 and the polylinker Xhol site is upstream) to generate the plasmid pVH49.8. An 800 bp region of this insert was sequenced, and VH49.8 found to have an open reading frame and intact splicing and recombination signals, thus indicating that the gene is functional (Table 2). 2. pV2
A 4 kb Xbal genomic fragment containing the human VHIV family gene VH4-21 (Sanz et al., EMBO J., 8:3741 (1989)), subcloned into the plasmid pUC12, was excised with Smal and Hindlll, and treated with the Klenow fragment of polymerase I. The blunt ended fragment was then cloned into Clal digested, Klenow treated, pVH49.8. The resulting plasmid, pV2, contains the human heavy chain gene VH49.8 linked upstream of VH4-21 in the same orientation, with a unique Sall site at the 3' end of the insert and a unique Xhol site at the 5' end.
3. pS-γ1-5'
A 0.7 kb Xbal/Hindlll fragment (representing
sequences immediately upstream of, and adjacent to, the 5.3 kb γ1 switch region containing fragment in the plasmid pγe2) together with the neighboring upstream 3.1 kb Xbal fragment were isolated from the phage clone λSg1.13 and cloned into Hindlll/Xbal digested pUC18 vector. The resulting plasmid, pSγ1-5', contains a 3.8 kb insert representing sequences upstream of the initiation site of the sterile transcript found in B-cells prior to switching to the γ1 isotype (P.
Sideras et al., International Immunol. 1:631 (1989)). Because the transcript is implicated in the initiation of isotype switching, and upstream cis-acting sequences are often
important for transcription regulation, these sequences are included in transgene constructs to promote correct expression of the sterile transcript and the associated switch
recombination. 4. pVGE1
The pSγ1-5' insert was excised with Smal and
Hindlll, treated with Klenow enzyme, and ligated with the following oligonucleotide linker: 5'- ccg gtc gac egg -3'
The ligation product was digested with Sall and ligated to Sall digested pV2. The resulting plasmid, pVP, contains 3.8 kb of γ1 switch 5' flanking sequences linked downstream of the two human variable gene segments VH49.8 and VH4-21 (see Table 2). The pVP insert is isolated by partial digestion with Sall and complete digestion with Xhol, followed by purification of the 15 kb fragment on an agarose gel. The insert is then cloned into the Xhol site of pγe2 to generate the plasmid clone pVGE1 (Fig. 27). pVGEl contains two human heavy chain variable gene segments upstream of the human γ1 constant gene and associated switch region. A unique Sall site between the variable and constant regions can be used to clone in D, J, and μ gene segments. The rat heavy chain 3' enhancer is linked to the 3' end of the γ1 gene and the entire insert is flanked by NotI sites. 5. pHC2
The plasmid clone pVGEl is digested with Sall and the Xhol insert of pIGMl is cloned into it. The resulting clone, pHC2 (Fig. 25), contains 4 functional human variable region segments, at least 8 human D segments all 6 human JH segments, the human J-m enhancer, the human σμ element, the human μ switch region, all of the human μ coding exons, the human∑μ element, and the human γ1 constant region, including the associated switch region and sterile transcript associated exons, together with 4 kb flanking sequences upstream of the sterile transcript initiation site. These human sequences are linked to the rat heavy chain 3' enhancer, such that all of the sequence elements can be isolated on a single fragment, away from vector sequences, by digestion with NotI and
microinjected into mouse embryo pronuclei to generate
transgenic animals. A unique Xhol site at the 5' end of the insert can be used to clone in additional human variable gene segments to further expand the recombinational diversity of this heavy chain minilocus. E. Transgenic mice
The NotI inserts of plasmids pIGM1 and pHC1 were isolated from vector sequences by agarose gel electrophoresis. The purified inserts were microinjected into the pronuclei of fertilized (C57BL/6 x CBA) F2 mouse embryos and transferred the surviving embryos into pseudopregnant females as described by Hogan et al. (B. Hogan, F. Costantini, and E. Lacy, Methods of Manipulating the Mouse Embryo, 1986, Cold Spring Harbor
Laboratory, New York). Mice that developed from injected embryos were analyzed for the presence of transgene sequences by Southern blot analysis of tail DNA. Transgene copy number was estimated by band intensity relative to control standards containing known quantities of cloned DNA. At 3 to 8 weeks of age, serum was isolated from these animals and assayed for the presence of transgene encoded human IgM and IgG1 by ELISA as described by Harlow and Lane (E. Harlow and D. Lane.
Antibodies: A Laboratory Manual, 1988, Cold Spring Harbor Laboratory, New York). Microtiter plate wells were coated with mouse monoclonal antibodies specific for human IgM (clone AF6, #0285, AMAC, Inc. Westbrook, ME) and human IgG1 (clone JL512, #0280, AMAC, Inc. Westbrook, ME). Serum samples were serially diluted into the wells and the presence of specific immunoglobulins detected with affinity isolated alkaline phosphatase conjugated goat anti-human Ig (polyvalent) that had been pre-adsorbed to minimize cross-reactivity with mouse immunoglobulins. Table 3 and Fig. 28 show the results of an ELISA assay for the presence of human IgM and IgG1 in the serum of two animals that developed from embryos injected with the transgene insert of plasmid pHC1. All of the control non- transgenic mice tested negative for expression of human IgM and IgG1 by this assay. Mice from two lines containing the pIGM1 NotI insert (lines #6 and 15) express human IgM but not human IgG1. We tested mice from 6 lines that contain the pHC1 insert and found that 4 of the lines (lines #26, 38, 57 and 122) express both human IgM and human IgG1, while mice from two of the lines (lines #19 and 21) do not express detectable levels of human immunoglobulins. The pHC1 transgenic mice that did not express human immunoglobulins were so-called Go mice that developed directly from microinjected embryos and may have been mosaic for the presence of the transgene.
Southern blot analysis indicates that many of these mice contain one or fewer copies of the transgene per cell. The detection of human IgM in the serum of pIGMl transgenics, and human IgM and IgG1 in pHC1 transgenics, provides evidence that the transgene sequences functicn correctly in directing VDJ joining, transcription, and isotyp switching. One of the animals (#18) was negative for the transgene by Southern blot analysis, and showed no detectable levels of human IgM or IgG1. The second animal (#38) contained approximately 5 copies of the transgene, as assayed by Southern blotting, and showed detectable leve's of both human IgM and IgG1. The results of ELISA assays for 11 animals that developed from transgene injected embryos is summarized in the table below (Table 3).
TABLE 3
Detection of human IgM and IgG1 in the serum of transgenic animals by ELISA assay
Table 3 shows a correlation between the presence of integrated transgene DNA and the presence of transgene encoded immunoglobulins in the serum. Two of the animals that were found to contain the pHC1 transgene did not express detectable levels of human immunoglobulins. These were both low copy animals and may not have contained complete copies of the transgenes, or the animals may have been genetic mosaics
(indicated by the <1 copy per cell estimated for animal #21), and the transgene containing cells may not have populated the hematopoietic lineage. Alternatively, the transgenes may have integrated into genomic locations that are not conducive to their expression. The detection of human IgM in the serum of pIGMl transgenics, and human IgM and IgG1 in pHC1 transgenics, indicates that the transgene sequences function correctly in directing VDJ joining, transcription, and isotype switching.
F. cDNA clones
To assess the functionality of the pHC1 transgene in VDJ joining and class switching, as well the participation of the transgene encoded human B-cell receptor in B-cell
development and allelic exclusion, the structure of
immunoglobulin cDNA clones derived from transgenic mouse spleen mRNA were examined. The overall diversity of the transgene encoded heavy chains, focusing on D and J segment usage, N region addition, CDR3 length distribution, and the frequency of joints resulting in functional mRNA molecules was examined. Transcripts encoding IgM and IgG incorporating VH105 and VH251 were examined.
Polyadenylated RNA was isolated from an eleven week old male second generation line-57 pHC1 transgenic mouse.
This RNA was used to synthesize oligo-dT primed single
stranded cDNA. The resulting cDNA was then used as template for four individual PCR amplifications using the following four synthetic oligonucleotides as primers: VH251 specific oligo-149, eta get cga gtc caa gga gtc tgt gcc gag gtg cag ctg (g,a,t,c); VH105 specific o-150, gtt get cga gtg aaa ggt gtc cag tgt gag gtg cag ctg (g,a,t,c); human gamma1 specific oligo-151, ggc get cga gtt cca cga cac cgt cac egg ttc; and human mu specific oligo-152, cct get cga ggc age caa egg cca cgc tgc teg. Reaction 1 used primers 0-149 and o-151 to amplify VH251-gammal transcripts, reaction 2 used o-149 and o- 152 to amplify VH251-mu transcripts, reaction 3 used o-150 and o-151 to amplify VH105-gammal transcripts, and reaction 4 used o-150 and o-152 to amplify VH105-mu transcripts. The
resulting 0.5 kb PCR products were isolated from an agarose gel; the μ transcript products were more abundant than the γ transcript products, consistent with the corresponding ELISA data (Fig. 34). The PCR products were digested with Xhol and cloned into the plasmid pNN03. Double-stranded plasmid DNA was isolated from minipreps of nine clones from each of the four PCR amplifications and dideoxy sequencing reactions were performed. Two of the clones turned out to be deletions containing no D or J segments. These could not have been derived from normal RNA splicing products and are likely to have originated from deletions introduced during PCR
amplification. One of the DNA samples turned out to be a mixture of two individual clones, and three additional clones did not produce readable DNA sequence (presumably because the DNA samples were not clean enough). The DNA sequences of the VDJ joints from the remaining 30 clones are compiled in Table 4. Each of the sequences are unique, indicating that no single pathway of gene rearrangement, or single clone of transgene expressing B-cells is dominant. The fact that no two sequences are alike is also an indication of the large diversity of immunoglobulins that can be expressed from a compact minilocus containing only 2 V segments, 10 D segments, and 6 J segments. Both of the V segments, all six of the J segments, and 7 of the 10 D segments that are included in the transgene are used in VDJ joints. In addition, both constant region genes (mu and gammal) are incorporated into
transcripts. The VH105 primer turned out not to be specific for VH105 in the reactions performed. Therefore many of the clones from reactions 3 and 4 contained VH251 transcripts.
Additionally, clones isolated from ligated reaction 3 PCR product turned out to encode IgM rather than IgG; however this may reflect contamination with PCR product from reaction 4 as the DNA was isolated on the same gel. An analogous
experiment, in which immunoglobulin heavy chain sequences were amplified from adult human peripheral blood lymphocytes (PBL), and the DNA sequence of the VDJ joints determined, was
recently reported by Yamada et al. (J . Exp. Med. 173 :395-407 (1991), which is incorporated herein by reference). We compared the data from human PBL with our data from the pHC1 transgenic mouse.
G. J segment choice
Table 5 compared the distribution of J segments incorporated into pHC1 transgene encoded transcripts to J segments found in adult human PBL immunoglobulin transcripts. The distribution profiles are very similar, J4 is the dominant segment in both systems, followed by J6. J2 is the least common segment in human PBL and the transgenic animal.
H. D segment choice
49% (40 of 82) of the clones analyzed by Yamada et al. incorporated D segments that are included in the pHC1 transgene. An additional 11 clones contained seguences that were not assigned by the authors to any of the known D
segments. Two of these 11 unassigned clones appear to be derived from an inversion of the DIR2 segments which is included in the pHC1 construct. This mechanism, which was predicted by Ichihara et al. (EMBO J. 7:4141 (1988)) and observed by Sanz (J. Immunol. 147:1720-1729 (1991)), was not considered by Yamada et al. (J. Exp. Med. 173:395-407 (1991)). Table 5 is a comparison of the D segment distribution for the pHC1 transgenic mouse and that observed for human PBL
transcripts by Yamada et al. The data of Yamada et al. was recompiled to include DIR2 use, and to exclude D segments that are not in the pHC1 transgene. Table 6 demonstrates that the distribution of D segment incorporation is very similar in the transgenic mouse and in human PBL. The two dominant human D segments, DXP'1 and DN1, are also found with high frequency in the transgenic mouse. The most dramatic dissimilarity between the two distributions is the high frequency of DHQ52 in the transgenic mouse as compared to the human. The high frequency of DHQ52 is reminiscent of the D segment distribution in the human fetal liver. Sanz has observed that 14% of the heavy chain transcripts contained DHQ52 sequences. If D segments not found in pHC1 are excluded from the analysis, 31% of the fetal transcripts analyzed by Sanz contain DHQ52. This is comparable to the 27% that we observe in the pHC1 transgenic mouse.
I. Functionality of VDJ joints
Table 7 shows the predicted amino acid sequences of the VDJ regions from 30 clones that were analyzed from the pHC1 transgenic. The translated sequences indicate that 23 of the 30 VDJ joints (77%) are in-frame with respect to the variable and J segments. J. CDR3 length distribution
Table 8 compared the length of the CDR3 peptides from transcripts with in-frame VDJ joints in the pHC1
transgenic mouse to those in human PBL. Again the human PBL data comes from Yamada et al. The profiles are similar with the transgenic profile skewed slightly toward smaller CDR3 peptides than observed from human PBL. The average length of CDR3 in the transgenic mouse is 10.3 amino acids. This is substantially the same as the average size reported for authentic human CDR3 peptides by Sanz (J. Immunol. 147:1720- 1729 (1991)).
EXAMPLE 13
Rearranged Heavy Chain Transgenes
A. Isolation of Rearranged Human Heavy Chain VDJ segments.
Two human leukocyte genomic DNA libraries cloned into the phage vector XEMBL3/SP6/T7 (Clonetech Laboratories, Inc., Palo Alto, CA) are screened with a 1 kb Pacl/Hindlll fragment of λ1.3 containing the human heavy chain J-μ intronic enhancer. Positive clones are tested for hybridization with a mixture of the following VH specific oligonucleotides: oligo-7 5'-tea gtg aag gtt tec tgc aag gca tct gga tac ace ttc acc-3' oligo-8 5'-tec ctg aga etc tec tgt gca gcc tct gga ttc ace ttc acc'3' Clones that hybridized with both V and J-μ probes are isolated and the DNA seguence of the rearranged VDJ segment determined. B. Construction of rearranged human heavy chain transgenes
Fragments containing functional VJ segments (open reading frame and splice signals) are subcloned into the plasmid vector pSP72 such that the plasmid derived Xhol site is adjacent to the 5' end of the insert seguence. A subclone containing a functional VDJ segment is digested with Xhol and Pad (Pad, a rare-cutting enzyme, recognizes a site near the J-m intronic enhancer), and the insert cloned into Xhol/Pad digested pHC2 to generate a transgene construct with a
functional VDJ segment, the J-μ intronic enhancer, the μ switch element, the μ constant region coding exons, and the γ1 constant region, including the sterile transcript associated sequences, the γ1 switch, and the coding exons. This
transgene construct is excised with NotI and microinjected into the pronuclei of mouse embryos to generate transgenic animals as described above.
EXAMPLE 14
Light Chain Transgenes
A. Construction of Plasmid vectors
1. Plasmid vector pGP1c
Plasmid vector pGP1a is digested with NotI and the following oligonucleotides ligated in: oligo-81 5'-ggc cgc ate ccg ggt etc gag gtc gac aag ctt teg agg ate cgc-3' oligo-82 5'-ggc cgc gga tec teg aaa get tgt cga cct cga gac ccg gga tgc-3' The resulting plasmid, pGP1c, contains a polylinker with Xmal, Xhol, Sall, Hindlll, and BamHI restriction sites flanked by NotI sites. 2. Plasmid vector pGP1d
Plasmid vector pGP1a is digested with NotI and the following oligonucleotides ligated in: oligo-87 5'-ggc cgc tgt cga caa get tat cga tgg ate etc gag tgc -3' oligo-88 5'-ggc cgc act cga gga tec ate gat aag ctt gtc gac age -3'
The resulting plasmid, pGP1d, contains a polylinker with Sall, Hindlll, Clal, BamHI, and Xhol restriction sites flanked by NotI sites. B. Isolation of Jκ and Cκ clones
A human placental genomic DNA library cloned into the phage vector λEMBL3/SP6/T7 (Clonetech Laboratories, Inc., Palo Alto, CA) was screened with the human kappa light chain J region specific oligonucleotide: oligo-36 5'- cac ctt egg cca agg gac aeg act gga gat taa acg taa gca -3' and the phage clones 136.2 and 136.5 isolated. A 7.4 kb Xhol fragment that includes the Jκ1 segment was isolated from
136.2 and subcloned into the plasmid pNN03 to generate the plasmid ulone p36.2. A neighboring 13 kb Xhol fragment that includes Jk segments 2 through 5 together with the Cκ gene segment was isolated from phage clone 136.5 and subcloned into the plasmid pNN03 to generate the plasmid clone p36.5.
Together these two clones span the region beginning 7.2 kb upstream of Jκ1 and ending 9 kb downstream of Cκ.
C. Construction of rearranged light chain transgenes
1. pCK1, a Cκ vector for expressing rearranged variable segments
The 13 kb Xhol insert of plasmid clone p36.5 containing the Cκ gene, together with 9 kb of downstream sequences, is cloned into the Sall site of plasmid vector pGP1c with the 5' end of the insert adjacent to the plasmid Xhol site. The resulting clone, pCK1 can accept cloned fragments containing rearranged VJκ segments into the unique 5' Xhol site. The transgene can then be excised with NotI and purified from vector sequences by gel electrophoresis. The resulting transgene construct will contain the human J-Cκ intronic enhancer and may contain the human 3' κ enhancer. 2. pCK2, a Cκ vector with heavy chain enhancers for
expressing rearranged variable segments
A 0.9 kb Xbal fragment of mouse genomic DNA containing the mouse heavy chain J-μ intronic enhancer (J. Banerji et al., Cell 33:729-740 (1983)) was subcloned into pUC18 to generate the plasmid pJH22 . 1. This plasmid was linearized with SphI and the ends filled in with Klenow enzyme. The Klenow treated DNA was then digested with Hindlll and a 1.4 kb Mlul/Hindlll fragment of phage clone λ1.3
(previous example), containing the human heavy chain J-μ intronic enhancer (Hayday et al., Nature 307:334-340 (1984)), to it. The resulting plasmid, pMHEl, consists of the mouse and human heavy chain J-μ intronic enhancers ligated together into pUC18 such that they are excised on a single
BamHI/Hindlll fragment. This 2.3 kb fragment is isolated and cloned into pGP1c to generate pMHE2. pMHE2 is digested with Sall and the 13 kb Xhol insert of p36.5 cloned in. The resulting plasmid, pCK2, is identical to pCK1, except that the mouse and human heavy chain J-μ intronic enhancers are fused to the 3' end of the transgene insert. To modulate expression of the final transgene, analogous constructs can be generated with different enhancers, i.e. the mouse or rat 3' kappa or heavy chain enhancer (Meyer and Neuberger, EMBO J..
8:1959-1964 (1989); Petterson et al., Nature. 344:165-168 (1990)). 3. Isolation of rearranged kappa light chain variable segments
Two human leukocyte genomic DNA libraries cloned into the phage vector λEMBL3/SP6/T7 (Clonetech Laboratories, Inc., Palo Alto, CA) were screened with the human kappa light chain J region containing 3.5 kb Xhol/Smal fragment of p36.5. Positive clones were tested for hybridization with the
following Vκ specific oligonucleotide: oligo-65 5'-agg ttc agt ggc agt ggg tct ggg aca gac ttc act etc ace ate age-3'
Clones that hybridized with both V and J probes are isolated and the DNA sequence of the rearranged VJκ segment determined.
4. Generation of transgenic mice containing rearranged human light chain constructs.
Fragments containing functional VJ segments (open reading frame and splice signals) are subcloned into the unique Xhol sites of vectors pCK1 and pCK2 to generate
rearranged kappa light chain transgenes. The transgene constructs are isolated from vector sequences by digestion with NotI. Agarose gel purified insert is microinjected into mouse embryo pronuclei to generate transgenic animals.
Animals expressing human kappa chain are bred with heavy chain minilocus containing transgenic animals to generate mice expressing fully human antibodies.
Because not all VJK combinations may be capable of forming stable heavy-light chain complexes with a broad spectrum of different heavy chain VDJ combinations, several different light chain transgene constructs are generated, each using a different rearranged VJk clone, and transgenic mice that result from these constructs are bred with heavy chain minilocus transgene expressing mice. Peripheral blood, spleen, and lymph node lymphocytes are isolated from double transgenic (both heavy and light chain constructs) animals, stained with fluorescent antibodies specific for human and mouse heavy and light chain immunoglobulins (Pharmingen, San Diego, CA) and analyzed by flow cytometry using a FACScan analyzer (Becton Dickinson, San Jose, CA). Rearranged light chain transgenes constructs that result in the highest level of human heavy/light chain complexes on the surface of the highest number of B cells, and do not adversely affect the immune cell compartment (as assayed by flow cytometric
analysis with B and T cell subset specific antibodies), are selected for the generation of human monoclonal antibodies. D. Construction of unrearranged light chain minilocus
transgenes
1. pJCKl, a JK, Cκ containing vector for constructing
minilocus transgenes
The 13 kb CK containing Xhol insert of p36.5 is treated with Klenow enzyme and cloned into Hindlll digested, Klenow-treated, plasmid pGPld. A plasmid clone is selected such that the 5' end of the insert is adjacent to the vector derived Clal site. The resulting plasmid, p36.5-ld, is digested with Clal and Klenow-treated. The Jκl containing 7.4 kb Xhol insert of p36.2 is then Klenow-treated and cloned into the Clal, Klenow-treated p36.5-ld. A clone is selected in which the p36.2 insert is in the same orientation as the p36.5 insert. This clone, pJCKl (Fig. 34), contains the entire human JK region and Cκ, together with 7.2 kb of upstream sequences and 9 kb of downstream sequences. The insert also contains the human J-Cκ intronic enhancer and may contain a human 3' κ enhancer. The insert is flanked by a unique 3' Sall site for the purpose of cloning additional 3' flanking sequences such as heavy chain or light chain enhancers. A unique Xhol site is located at the 5' end of the insert for the purpose of cloning in unrearranged VK gene segments. The unique Sall and Xhol sites are in turn flanked by NotI sites that are used to isolate the completed transgene construct away from vector sequences. 2. Isolation of unrearranged Vκ gene segments and generation of transgenic animals expressing human Ig light chain protein
The Vκ specific oligonucleotide, cligo-65 (discussed above), is used to probe a human placental genomic DNA library cloned into the phage vector 1EMBL3/3P6/T7 (Clonetech
Laboratories, Inc., Palo Alto, CA). Variable gene segments from the resulting clones are sequenced, and clones that appear functional are selected. Criteria for judging
functionality include: open reading frames, intact splice acceptor and doncr sequences, and intact recombination
sequence. DNA fragments containing selected variable gene segments are cloned into the unique Xhol site of plasmid pJCK1 to generate minilocus constructs. The resulting clones are digested with NotI and the inserts isolated and injected into mouse embryo pronuclei to generate transgenic animals. The transgenes of these animals will undergo V to J joining in developing B-cells. Animals expressing human kappa chain are bred with heavy chain minilocus containing transgenic animals to generate mice expressing fully human antibodies.
EXAMPLE 15
Genomic Heavy Chain Human Ig Transgene
This Example describes the cloning of a human genomic heavy chain immunoglobulin transgene which is then introduced into the murine germline via microinjection into zygotes or integration in ES cells.
Nuclei are isolated from fresh human placental tissue as described by Marzluff, W.F., et al. (1985),
Transcription and Translation: A Practical Approach, B.D.
Hammes and S.J. Higgins, eds., pp. 89-129, IRL Press, Oxford). The isolated nuclei (or PBS washed human spermatocytes) are embedded in 0.5% low melting point agarose blocks and lyse with 1 mg/ml proteinase K in 500mM EDTA, 1% SDS for nuclei, or with lmg/ml proteinase K in 500mM EDTA, 1% SDS, lOmM DTT for spermatocytes at 50°C for 18 hours. The proteinase K is inactivated by incubating the blocks in 40μg/ml PMSF in TE for 30 minutes at 50°C, and then washing extensively with TE. The DNA is then digested in the agarose with the restriction enzyme NotI as described by M. Finney in Current Protocols in Molecular Biology (F. Ausubel et al., eds. John Wiley & Sons, Supp. 4, 1988, e.g., Section 2.5.1).
The NotI digested DNA is then fractionated by pulsed field gel electrophoresis as described by Anand et al., Nuc. Acids Res. 17:3425-3433 (1989). Fractions enriched for the NotI fragment are assayed by Southern hybridization to detect one or more of the sequences encoded by this fragment. Such sequences include the heavy chain D segments, J segments, and γI constant regions together with representatives of all 6 VH families (although this fragment is identified as 670 kb fragment from HeLa cells by Berman et al. (1988), supra., we have found it to be an 830 kb fragment from human placental and sperm DNA). Those fractions containing this NotI
fragment are ligated into the NotI cloning site of the vector pYACNN as described (McCormick et al., Technique 2: 65-71
(1990)). Plasmid pYACNN is prepared by digestion of pYACneo (Clontech) with EcoRI and ligation in the presence of the oligonucleotide 5' - AAT TGC GGC CGC - 3'.
YAC clones containing the heavy chain NotI fragment are isolated as described by Traver et al., Proc. Natl. Acad. Sci. USA. 86:5898-5902 (1989). The cloned NotI insert is isolated from high molecular weight yeast DNA by pulse field gel electrophoresis as described by M. Finney, op. cit. The DNA is condensed by the addition of 1 mM spermine and
microinjected directly into the nucleus of single cell embryos previously described. Alternatively, the DNA is isolated by pulsed field gel electrophoresis and introduced into ES cells by lipofection (Gnirke et al., EMBO J. 10:1629-1634 (1991)), or the YAC is introduced into ES cells by spheroplast fusion.
EXAMPLE 16
Discontinuous Genomic Heavy Chain Ig Transgene
An 85 kb Spel fragment of human genomic DNA,
containing VH6, D segments, J segments, the μ constant region and part of the γ constant region, has been isolated by YAC cloning essentially as described in Example 1. A YAC carrying a fragment from the germline variable region, such as a 570 kb NotI fragment upstream of the 830 kb NotI fragment
described above containing multiple copies of V1 through V5 is isolated as described. (Berman et al. (198P), supra, detected two 570 kb NotI fragments, each containing multiple V
segments.) The two fragments are coinjected into the nucleus of a mouse single cell embryo as described in Example 1.
Typically, coinjection of two different DNA fragments result in the integration of both fragments at the same insertion site within the chromosome. Therefore, approximately 50% of the resulting transgenic animals that contain at least one copy of each of the two fragments will have the V segment fragment inserted upstream of the constant region containing fragment. Of these animals, about 50% will carry out V to DJ joining by DNA inversion and about 50% by deletion, depending on the orientation of the 570 kb NotI fragment relative to the position of the 85 kb Spel fragment. DNA is isolated from resultant transgenic animals and those animals found to be containing both transgenes by Southern blot hybridization (specifically, those animals containing both multiple human V segments and human constant region genes) are tested for their ability to express human
immunoglobulin molecules in accordance with standard
techniques. EXAMPLE 17
Identification of functionally rearranged variable region sequences in transgenic B cells
An antigen of interest is used to immunize (see
Harlow and Lane, Antibodies: A Laboratory Manual. Cold Spring Harbor, New York (1988)) a mouse with the following genetic traits: homozygosity at the endogenous having chain locus for a deletion of JH (Examples 10); hemizygous for a single copy of unrearranged human heavy chain minilocus transgene
(examples 5 and 14); and hemizygous for a single copy of a rearranged human kappa light chain transgene (Examples 6 and 14).
Following the schedule of immunization, the spleen is removed, and spleen cells used to generate hybridomas. Cells from an individual hybridoma clone that secretes
antibodies reactive with the antigen of interest are used to prepare genomic DNA. A sample of the genomic DNA is digested with several different restriction enzymes that recognize unique six base pair sequences, and fractionated on an agarose gel. Southern blot hybridization is used to identify two DNA fragments in the 2-10 kb range, one of which contains the single copy of the rearranged human heavy chain VDJ sequences and one of which contains the single copy of the rearranged human light chain VJ sequence. These two fragments are size fractionated on agarose gel and cloned directly into pUC18. The cloned inserts are then subcloned respectively into heavy and light chain expression cassettes that contain constant region sequences.
The plasmid clone pγel (Example 12) is used as a heavy chain expression cassette and rearranged VDJ sequences are cloned into the Xhol site. The plasmid clone pCK1 is used as a light chain expression cassette and rearranged VJ
sequences are cloned into the Xhol site. The resulting clones are used together to transfect SP0 cells to produce antibodies that react with the antigen of interest (Co. et al., Proc. Natl. Acad. Sci. USA 88:2869 (1991), which is incorporated herein by reference).
Alternatively, mRNA is isolated from the cloned hybridoma cells described above, and used to synthesize cDNA. The expressed human heavy and light chain VDJ and VJ sequence are then amplified by PCR and cloned (Larrick et al., Biol. Technology, 7:934-938 (1989)). After the nucleotide sequence of these clones has been determined, oligonucleotides are synthesized that encode the same polypeptides, and synthetic expression vectors generated as described by Queen et al., Proc. Natl. Acad. Sci. USA., 84: 5454-5458 (1989).
Immunization of Transgenic Animals with Complex Antigens
The following experiment demonstrates that transgenic animals can be successfully immunized with complex antigens such as those on human red blood cells and respond with kinetics that are similar to the response kinetics observed in normal mice.
Blood cells generally are suitable immunogens and comprise many different types of antigens on the surface of red and white blood cells.
Immunization with human blood
Tubes of human blood from a single donor were collected and used to immunize transgenic mice having
functionally disrupted endogenous heavy chain loci (JHD) and harboring a human heavy chain minigene construct (HCI); these mice are designated as line 112. Blood was washed and resuspended in 50 mis Hanks' and diluted to 1x108 cells/ml 0.2 mis (2x107 cells) were then injected interperitoneally using a 28 gauge needle and 1 ce syringe. This immunization protocol was repeated approximately weekly for 6 weeks. Serum titers were monitored by taking blood from retro-orbital bleeds and collecting serum and later testing for specific antibody. A pre-immune bleed was also taken as a control. On the very last immunization, three days before these animals were sacrificed for serum and for hybridomas, a single immunization of 1 x 107 cells was given intravenously through the tail to enhance the production of hybridomas.
Mice # 2343 and 2348 have a desired phenotype: human heavy chain mini-gene transgenic on heavy chain knock-out
background. Generation of Hybridomas
Hybridomas were generated by fusing mouse spleen cells of approximately 16 week-old transgenic mice (Table 9) that had been immunized as described (supra) to a fusion partner consisting of the non-secreting HAT-sensitive myeloma cell line, X63 Ag8.653. Hybridoma clones were cultivated and hybridoma supernatants containing immunoglobulins having specific binding affinity for blood cell antigens were
identified, for example, by flow cytometry. Flow cytometry
Serum and hybridoma supernatants were tested using flow cytometry. Red blood cells from the donor were washed 4X in Hanks' balanced salt solution and 50,000 cells were placed in 1.1 ml polypropylene microtubes. Cells were incubated with antisera or supernatant from the hybridomas for 30 minutes on ice in staining media (lx RPMI 1640 media without phenol red or biotin (Irvine Scientific) 3% newborn calf serum, 0.1% Na azide). Controls consisted of littermate mice with other genotypes. Cells were then washed by centrifugation at 4°C in Sorvall RT600B for 5-10 minutes at 1000 rpm. Cells were washed two times and then antibody detected on the cell surface with a fluorescent developing reagent. Two monoclonal reagents were used to test. One was a FITC-labeled mouse anti-human μ heavy chain antibody (Pharmagen, San Diego, CA) and the other was a PE-labeled rat anti-mouse kappa light chain (Becton-Dickenson, San Jose, CA). Both of these
reagents gave similar results. Whole blood (red blood cells and white blood cells) and white blood cells alone were used as target cells. Both sets gave positive results.
Serum of transgenic mice and littermate controls was incubated with either red blood cells from the donor, or white blood cells from another individual, washed and then developed with anti-human IgM FITC labeled antibody and analyzed in a flow cytometer. Results showed that serum from mice that are transgenic for the human mini-gene locus (mice 2343 and 2348) show human IgM reactivity whereas all littermate animals (2344, 2345, 2346, 2347) do not. Normal mouse serum (NS) and phosphate buffer saline (PBS) were used as negative controls. Red blood cells were ungated and white blood cells were gated to include only lymphocytes. Lines are drawn on the x and y axis to provide a reference. Flow cytometry was performed on 100 supernatants from fusion 2348. Four supernatants showed positive reactivity for blood cell antigens.
EXAMPLE 18
Reduction of Endogenous Mouse Immunoglobulin Expression by Antisense RNA
A. Vector for Expression of Antisense Ig Sequences
1. Construction of the cloning vector pGP1h
The vector pGP1b (referred to in a previous example) is digested with Xhol and BamHI and ligated with the following oligonucleotides: 5'- gat cct cga gac cag gta cca gat ctt gtg aat teg -3'
5'- teg acg aat tea caa gat ctg gta cct ggt etc gag -3' to generate the plasmid pGP1h. This plasmid contains a polylinker that includes the following restriction sites:
NotI, EcoRI, Bglll, Asp718, Xhol, BamHI, Hindlll, NotI.
Construction of pBCEl.
A 0.8 kb Xbal/Bglll fragment of pVH251 (referred to in a previous example), that includes the promoter leader sequence exon, first intron, and part of the second exon of the human VH-V family immunoglobulin variable gene segment, was inserted into Xbal/Bglll digested vector pNN03 to generate the plasmid pVH251.
The 2.2 kb BamHI/EcoRI DNA fragment that includes the coding exons of the human growth hormone gene (hGH;
Seeburg, (1982) DNA 1:239-249) is cloned into Bglll/EcoRI digested pGHlh. The resulting plasmid is digested with BamHI and the BamHI/Bglll of pVH251N is inserted in the same
orientation as the bGH gene to generate the plasmid pVhgh.
A 0.9 kb Xbal fragment of mouse genomic DNA containing the mouse heavy chain J-μ intronic enhancer
(Banerji et al., (1983) Cell 33:729-740) was subcloned into pUClδ to generate the plasmid pJH22.1. This plasmid was linearized with SphI and the ends filled in with klenow enzyme. The klenow treated DNA was then digested with Hindlll and a 1.4 kb Mlul (klenow) /Hindlll fragment of phage clone λ1.3 (previous example), containing the human heavy chain J-μ intronic enhancer (Hayday et al., (1984) Nature 307:334-340), to it. The resulting plasmid, pMHE1, consists of the mouse and human heavy chain J-μ intron enhancers ligated together into pUC18 such that they can be excised on a single
BamHI/Hindlll fragment.
The BamHI/Hindlll fragment of pMHEl is cloned into BamHI/Hindlll cut pVhgh to generate the B-cell expression vector pBCE1. This vector, depicted in Fig. 36, contains unique Xhol and Asp718 cloning sites into which antisense DNA fragments can be cloned. The expression of these antisense sequences is driven by the upstream heavy chain promoter- enhancer combination the downstream hGH gene sequences provide polyadenylation sequences in addition to intron sequences that promote the expression of transgene constructs. Antisense transgene constructs generated from pBCEl can be separated from vector sequences by digestion with NotI.
B. An IgM antisense transgene construct.
The following two oligonucleotides: 5'- cgc ggt ace gag agt cag tec ttc cca aat gtc -3'
5'- cgc etc gag aca get gga atg ggc aca tgc aga -3' are used as primers for the amplification of mouse IgM
constant region sequences by polymerase chain reaction (PCR) using mouse spleen cDNA as a substrate. The resulting 0.3 kb PCR product is digested with Asp7l8 and Xhol and cloned into Asp718/XhoI digested pBCE1 to generate the antisense transgene construct pMASl. The purified NotI insert of pMAS1 is microinjected into the pronuclei of half day mouse embryos-- alone or in combination with one or more other transgene constructs--to generate transgenic mice. This construct expresses an RNA transcript in B-cells that hybridizes with mouse IgM mRNA, thus down-regulating the expression of mouse IgM protein. Double transgenic mice containing pMAS1 and a human heavy chain transgene minilocus such as pHC1 (generated either by coinjection of both constructs or by breeding of singly transgenic mice) will express the human transgene encoded Ig receptor on a higher percentage of B-cell than mice transgenic for the human heavy chain minilocus alone. The ratio of human to mouse Ig receptor expressing cells is due in part to competition between the two populations for factors and cells that promoter B-cell differentiation and expansion. Because the Ig receptor plays a key role in B-cell
development, mouse Ig receptor expressing B-cells that express reduced levels of IgM on their surface (due to mouse Ig specific antisense down-regulation) during B-cell development will not compete as well as cells that express the human receptor.
C. An IgKappa antisense transgene construct.
The following two oligonucleotides:
5'- cgc ggt ace get gat get gca cca act gta tec -3'
5'- cgc etc gag eta aca etc att cct gtt gaa get -3' are used as primers for the amplification of mouse IgKappa constant region sequences by polymerase chain reaction (PCR) using mouse spleen cDNA as a substrate. The resulting 0.3 kb PCR product is digested with Asp718 and Xhol and cloned into Asp718/XhoI digested pBCE1 to generate the antisense transgene construct pKAS1. The purified NotI insert of pKAS1 is
microinjected into the pronuclei of half day mouse embryos-- alone or in combination with one or more other transgene constructs--to generate transgenic mice. This construct expresses an RNA transcript in B-cells that hybridizes with mouse IgK mRNA, thus down-regulating the expression of mouse IgK protein as described above for pMAS1.
EXAMPLE 19
This example demonstrates the successful immunization and immune response in a transgenic mouse of the present invention.
Immunization of Mice
Keyhole limpet hemocyanin conjugated with greater than 400 dinitrophenyl groups per molecule (Calbiochem, La Jolla, California) (KLH-DNP) was alum precipitated according to a previously published method (Practical Immunology, L. Hudson and F.C. Hay, Blackwell Scientific (Pubs.), p. 9, 1980). Four hundred μg of alum precipitated KLH-DNP along with 100 μg dimethyldioctadecyl Ammonium Bromide in 100 μL of phosphate buffered saline (PBS) was injected intraperitoneally into each mouse. Serum samples were collected six days later by retro-orbital sinus bleeding.
Analysis of Human Antibody Reactivity in Serum
Antibody reactivity and specificity were assessed using an indirect enzyme-linked immunosorbent assay (ELISA). Several target antigens were tested to analyze antibody induction by the immunogen. Keyhole limpet hemocyanin
(Calbiochem) was used to identify reactivity against the protein component, bovine serum albumin-DNP for reactivity against the hapten and/or modified amino groups, and KLH-DNP for reactivity against the total immunogen. Human antibody binding to antigen was detected by enzyme conjugates specific for IgM and IgG sub-classes with no cross reactivity to mouse immunoglobulin. Briefly, PVC microtiter plates were coated with antigen drying overnight at 37°C of 5 μg/mL protein in PBS. Serum samples diluted in PBS, 5% chicken serum, 0.5% Tween-20 were incubated in the wells for 1 hour at room temperature, followed by anti-human IgG Fc and IgG F(ab')- horseradish peroxidase or anti-human IgM Fc-horseradish peroxidase in the same diluent. After 1 hour at room temperature enzyme activity was assessed by addition of ABTS substrate (Sigma, St. Louis, Missouri) and read after 30 minutes at 415-490 nm. Human Heavy Chain Participation in Immune Response in
Transgenic Mice
Figure 37 illustrates the response of three mouse iittermates to immunization with KLH-DNP. Mouse number 1296 carried the human IgM and IgG unrearranged transgene and was homozygous for mouse Ig heavy chain knockout. Mouse number
1299 carried the transgene on a non-knockout background, while mouse 1301 inherited neither of these sets of genes. Mouse 1297, another littermate, carried the human transgene and was hemizygous with respect to mouse heavy chain knockout. It was included as a non-immunized control.
The results demonstrate that both human IgG and IgM responses were developed to the hapten in the context of conjugation to protein. Human IgM also developed to the KLH molecule, but no significant levels of human IgG were present at this time point. In pre-immunization serum samples from the same mice, titers of human antibodies to the same target antigens were insignificant.
EXAMPLE 20
This example demonstrates the successful
immunization with a human antigen and immune response in a transgenic mouse of the present invention, and provides data demonstrating that nonrandom somatic mutation occurs in the variable region sequences of the human transgene. Demonstration of antibody responses comprising human
immunoglobulin heavy chains against a human glycoprotein antigen
Transgenic mice used for the experiment were homozygous for functionally disrupted murine immunoglobulin heavy chain loci produced by introduction of a transgene at the joining (J) region (supra) resulting in the absence of functional endogenous (murine) heavy chain production. The transgenic mice also harbored at least one complete
unrearranged human heavy chain mini-locus transgene, (HCl, supra), which included a single functional VH gene (VH251), human μ constant region gene, and human γ1 constant region gene. Transgenic mice shown to express human immunoglobulin transgene products (supra) were selected for immunization with a human antigen to demonstrate the capacity of the transgenic mice to make an immune response against a human antigen immunization. Three mice of the HCl-26 line and three mice of the HCl-57 line (supra) were injected with human antigen.
One hundred μg of purified human carcinoembryonic antigen (CEA) insolubilized on alum was injected in complete Freund's adjuvant on Day 0, followed by further weekly
injections of alum-precipitated CEA in incomplete Freund's adjuvant on Days 7, 14, 21, and 28. Serum samples were collected by retro-orbital bleeding on each day prior to injection of CEA. Equal volumes of serum were pooled from each of the three mice in each group for analysis.
Titres of human μ chain-containing immunoglobulin and human γ chain-containing immunoglobulin which bound to human CEA immobilized on microtitre wells were determined by ELISA assay. Results of the ELISA assays for human μ chain- containing immunoglobulins and human γ chain-containing immmunoglbulins are shown in Figs. 38 and 39, respectively. Significant human μ chain Ig titres were detected for both lines by Day 7 and were observed to rise until about Day 21. For human γ chain Ig, significant titres were delayed, being evident first for line HCl-57 at Day 14, and later for line HCl-26 at Day 21. Titres for human γ chain Ig continued to show an increase over time during the course of the
experiment. The observed human μ chain Ig response, followed by a plateau, combined with a later geveloping γ chain
response which continues to rise is characteristic of the pattern seen with affinity maturation. Analysis of Day 21 samples showed lack of reactivity to an unrelated antigen, keyhole limpet hemocyanin (KLC), indicating that the antibody response was directed against CEA in a specific manner. These data indicate that animals transgenic for human unrearranged immunoglobulin gene loci: (1) can respond to a human antigen (e.g., the human glycoprotein, CEA), (2) can undergo isotype switching ("class switching) as
exemplified by the observed μ to γ class switch, and (3) exhibit characteristics of affinity maturation in their humoral immune responses. In general, these data indicate: (1) the human Ig transgenic mice have the ability to induce heterologous antibody production in response to a defined antigen, (2) the capacity of a single transgene heavy chain variable region to respond to a defined antigen, (3) response kinetics over a time period typical of primary and secondary response development, (4) class switching of a transgeneencoded humoral immune response from IgM to IgG, and (5) the capacity of transgenic animal to produce human-sequence antibodies against a human antigen.
Demonstration of somatic mutation in a human heavy chain transgene minilocus.
Line HCl-57 transgenic mice, containing multiple copies of the HCl transgene, were bred with immunoglobulin heavy chain deletion mice to obtain mice that contain the HCl transgene and contain disruptions at both alleles of the endogenous mouse heavy chain (supra). These mice express human mu and gammal heavy chains together with mouse kappa and lambda light chains (supra). One of these mice was
hyperimmunized against human carcinoembryonic antigen by repeated intraperitoneal injections over the course of 1.5 months. This mouse was sacrificed and lymphoid cells isolated from the spleen, inguinal and mesenteric lymph nodes, and peyers patches. The cells were combined and total RNA
isolated. First strand cDNA was synthesized from the RNA and used as a template for PCR amplification with the following 2 oligonucleotide primers:
149 5' -eta get cga gtc caa gga gtc tgt gcc gag gtg cag ctg
(g/a/t/c)-3'
151 5' -ggc get cga gtt cca cga cac cgt cac egg ttc-3' These primers specifically amplify VH251/gammal cDNA sequences. The amplified sequences were digested with Xhol and cloned into the vector pNN03. DNA sequence from the inserts of 23 random clones is shown in Fig. 40; sequence variations from germline sequence are indicated, dots indicate sequence is identical to germline. Comparison of the cDNA sequences with the germline sequence of the VH251 transgene reveals that 3 of the clones are completely unmutated, while the other 20 clones contain somatic mutations. One of the 3 non-mutated sequences is derived from an out-of-frame VDJ joint. Observed somatic mutations at specific positions of occur at similar frequencies and in similar distribution patterns to those observed in human lymphocytes (Cai et al. (1992) J. Exp. Med. 176: 1073, incorporated herein by
reference). The overall frequency of somatic mutations is approximately 1%; however, the frequency goes up to about 5% within CDRl, indicating selection for amino acid changes that affect antigen binding. This demonstrates antigen driven affinity maturation of the human heavy chain sequences.
EXAMPLE 21
This example demonstrates the successful formation of a transgene by co-introduction of two separate
polynucleotides which recombine to form a complete human light chain minilocus transgene.
Generation of an unrearranged light chain minilocus transgene by co-injection of two overlapping DNA fragments
1. Isolation of unrearranged functional Vκ gene segments
vk65.3, vk65.5, vk65.8 and vk65.15
The Vκ specific oligonucleotide, oligo-65 (5'-agg ttc agt ggc agt ggg tct ggg aca gac ttc act etc ace ate agc- 3'), was used to probe a human placental genomic DNA library cloned into the phage vector XEMBL3/SP6/T7 (Clonetech
Laboratories, Inc., Palo Alto, CA). DNA fragments containing Vκ segments from positive phage clones were subcloned into plasmid vectors. Variable gene segments from the resulting clones are sequenced, and clones that appear functional were selected. Criteria for judging functionality include: open reading frames, intact splice acceptor and donor sequences, and intact recombination sequence. DNA sequences of 4 functional Vκ gene segments (vk65.3, vk65.5, vk65.8, and vk65.15) from 4 different plasmid clones isolated by this procedure are shown in Figs. 41-44. The four plasmid clones, p65.3f, p65.5gl, p65.8, and p65.15f, are described- below.
(1 a) p65.3f
A 3 kb Xba fragment of phage clone λ65.3 was subcloned into pUC19 so that the vector derived Sall site was proximal to the 3' end of the insert and the vector derived BamHI site 5'. The 3 kb BamHI/Sall insert of this clone was subcloned into pGP1f to generate p65.3f.
(1 b) p65.5gl
A 6.8 kb EcoRI fragment of phage clone λ65.5 was subcloned into pGP1f so that the vector derived Xhol site is proximal to the 5' end of the insert and the vector derived Sall site 3'. The resulting plasmid is designated p65.5gl.
(1 c) p65.8
A 6.5 kb Hindlll fragment of phage clone λ65.8 was cloned into pSP72 to generate p65.8.
(1 d) p65.15f
A 10 kb EcoRI fragment of phage clone λ65.16 was subcloned into pUC18 to generate the plasmid p65.15.3. The Vκ gene segment within the plasmid insert was mapped to a 4.6 kb EcoRI/Hindlll subfragment, which was cloned into pGP1f. The resulting clone, p65.15f, has unique Xhol and Sall sites located at the respective 5' and 3' ends of the insert.
2. pKV4
The Xhol/Sall insert of p65.8 was cloned into the
Xhol site of p65.15f to generate the plasmid pKV2. The
Xhol/Sall insert of p65.5gl was cloned into the Xhol site of pKV2 to generate pKV3. The Xhol/Sall insert of pKV3 was cloned into the Xhol site of p65.3f to generate the plasmid pKV4. This plasmid contains a single 21 kb Xhol/Sall insert that includes 4 functional Vκ gene segments. The entire insert can also be excised with NotI.
3. pKClB
(3 a) pKcor
Two Xhol fragments derived from human genomic DNA phage λ clones were subcloned into plasmid vectors. The first, a 13 kb Jκ2-Jκ5/Cκ containing fragment, was treated with Klenow enzyme and cloned into Hindlll digested, Klenow
treated, plasmid pGP1d. A plasmid clone (pK-31) was selected such that the 5' end of the insert is adjacent to the vector derived Clal site. The second Xhol fragment, a 7.4 kb piece of DNA containing Jκ1 was cloned into XhoI/Sall-digested pSP72, such that the 3' insert Xhol site was destroyed by ligation to the vector Sall site. The resulting clone, p36.2s, includes an insert derived Clal site 4.5 kb upstream of Jκ1 and a polylinker derived Clal site downstream in place of the naturally occurring Xhol site between Jκ1 and Jκ2. This clone was digested with Clal to release a 4.7 kb fragment which was cloned into Clal digested pK-31 in the correct 5' to 3' orientation to generate a plasmid containing all 5 human Jκ segments, the human intronic enhancer human Cκ, 4.5 kb of 5' flanking sequence, and 9 kb of 3' flanking sequence. This plasmid, pKcor, includes unique flanking Xhol and Sall sites on the respective 5' and 3' sides of the insert.
(3 b) pKcorB
A 4 kb BamHI fragment containing the human 3' kappa enhancer (Judde, J.-G. arid Max, E.E. (1992) Mol. Cell. Biol. 12: 5206, incorporated herein by reference) was cloned into pGP1f such that the 5' end is proximal to the vector Xhol site. The resulting plasmid, p24Bf, was cut with Xhol and the 17.7 kb Xhol/Sall fragment of pKcor cloned into it in the same orientation as the enhancer fragment. The resulting plasmid, pKcorB, includes unique Xhol and Sall sites at the 5' and 3' ends of the insert respectively. (3 c) pKClB
The Xhol/Sall insert of pKcorB was cloned into the Sall site of p65.3f to generate the light-chain minilocus- transgene plasmid pKClB. This plasmid includes a single functional human Vκ segment, all 5 human Jκ segments, the human intronic enhancer, human Cκ, and the human 3' kappa enhancer. The entire 25 kb insert can be isolated by NotI digestion.
4. Co4
Th two NotI inserts from plasmids pKV4 and pKClB were mixed at a concentration of 2.5 μg/ml each in
microinjection buffer, and co-injected into the pronuclei of half day mouse embryos as described in previous examples.
Resulting transgenic animals contain transgene inserts
(designated Co4, product of the recombination shown in Fig. 45) in which the two fragments co-integrated. The 3' 3 kb of the pKV4 insert and the 5'3 kb of the pKClB insert are
identical. Some of the integration events will represent homologous recombinations between the two fragments over the 3 kb of shared sequence. The Co4 locus will direct the
expression of a repertoire of human sequence light chains in a transgenic mouse.
The foregoing description of the preferred embodiments of the present invention has been presented for purposes of illustration and description. They are not
intended to be exhaustive or to limit the invention to the precise form disclosed, and many modifications and variations are possible in light of the above teaching.
All publications and patent applications herein are incorporated by reference to the same extent as if each
individual publication or patent application was specifically and individually indicated to be incorporated by reference.
Although the present invention has been described in some detail by way of illustration for purposes of clarity of understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the claims.

Claims

WHAT IS CLAIMED IS: TRANSGENE CLAIMS
1. An isolated immunoglobulin heavy chain
transgene that is expressed in B cells of a transgenic nonhuman animal containing at least one integrated copy of a polynucleotide comprising a DNA sequence of the formula:
(VH)x-(D)y-(JH)z-(SD)m-(C1)n-[(T)-(SA)p-(C2)]q wherein x, y, z, m, n, p, and q are integers and x is 2-100, n is 1-10, y is 2-50, p is 1-10, z is 1-50, g is 0-50, and m is 0-10.
2. A transgene of Claim 1, wherein said polynucleotide comprises at least one heterologous D gene segment that can be incorporated into a functionally
rearranged V-D-J sequence.
3. A transgene of Claim 2, wherein said heterologous D gene segment contains at least one human D gene.
4. A transgene of Claim 1, wherein said polynucleotide comprises a human μ CH gene segment and a human γ1 CH gene segment.
5. A transgene of Claim 1, wherein q is at least 1, m is at least 1, n is at least 1, and said polynucleotide comprises at least about 50 basepairs of a segment immediately upstream of a germline switch sequence.
6. A transgene of Claim 5, wherein said polynucleotide comprises about 200 basepairs of sequence immediately upstream of a human germline γ1 switch sequence.
7. A transgene of Claim 1, wherein a SD segment is a γ1 switch sequence.
8. A transgene of Claim 1, wherein said
polynucleotide comprises about 200 basepairs naturally upstream of a human germline γ1 switch sequence, and wherein said 200 basepairs are operably linked to a human γ1 switch sequence.
9. A transgene of Claim 1, wherein said D region comprises only heterologous D genes.
10. A transgene of Claim 9, wherein said D region comprises only human D genes.
11. A transgene of Claim 1, wherein the polynucleotide is functionally rearranged in vivo to produce a rearranged V-D-J gene segment that contains a recognizable D region gene sequence.
12. A transgenic non-human animal comprising a transgene of Claim 1 in the germline of said non-human animal.
13. A transgenic non-human animal of Claim 12, wherein said transgene is rearranged.
14. A transgenic non-human animal of Claim 12, wherein said transgene is unrearranged.
15. A transgenic non-human animal of Claim 14, wherein said B cells produce a heterologous antibody.
16. A transgenic non-human animal of Claim 15, wherein said B cells produce a population of heterologous antibodies of more than one isotype.
17. A transgenic non-human animal of Claim 12, wherein said transgene encodes VH, D, JH, and CH regions.
18. A transgenic non-human animal of Claim 12 wherein said non-human animal is a rodent.
19. A transgenic non-human animal of Claim 12, wherein serum of said animal comprises human antibodies that contain a recognizable D region gene sequence.
20. A transgenic non-human animal of Claim 12, wherein at least one lymphocyte of said animal contains a mRNA encoding a heterologous immunoglobulin chain.
21. A transgenic animal of claim 20, wherein said mRNA contains a recognizable D region gene sequence.
22. A transgenic animal of claim 21, wherein said mRNA contains a functionally rearranged V-D-J sequence.
23. A transgenic animal of claim 12, wherein said transgenic animal comprises heterologous antibodies which comprise a human-sequence μ chain and which specifically bind to an antigen.
24. A transgenic animal of claim 23, further comprising heterologous antibodies which comprise a human- sequence γ chain and which specifically bind to an antigen.
25. A transgenic animal of claim 24, wherein the antigen is a human antigen.
26. A transgenic animal of claim 25, wherein the human antigen is CEA or a human blood cell antigen.
27. A transgenic nonhuman animal comprising a human transgene of claim 1, wherein the transgenic animal further comprises lymphoid tissue containing a population of mRNA species having somatic mutations clustered in CDR regions of a variable region encoded by an immunoglobulin transgene.
28. A transgenic nonhuman animal of claim 27, wherein the immunoglobulin transgene is a heavy chain
minilocus corresponding to HCI.
29. A hybridoma comprising a transgenic non-human B cell fused with a second cell capable of immortalizing said B cell, wherein said hybridoma produces a monoclonal antibody heterologous to said non-human animal.
30. A hybridoma of Claim 29 wherein the heterologous antibody comprises a human heavy chain containing a recognizable D region gene sequence.
31. A hybridoma of Claim 29 wherein said B cell is of murine origin.
32. A hybridoma of Claim 29 wherein the monoclonal antibody binds to a human antigen with an affinity of at least 1 x 107 M-1.
33. A human monoclonal antibody produced by a hybridoma of Claim 29.
34. A transgenic non-human animal having serum comprising detectable heterologous antibodies and having at least one suppressed endogenous immunoglobulin locus.
35. A method for producing heterologous
immunoglobulins from a transgenic nonhuman animal, the animal having a genome comprising germline copies of at least one transgene of Claim 1, the method comprising:
suppressing an endogenous immunoglobulin locus;
contacting the animal with a preselected antigen; and
collecting said heterologous immunoglobulins.
36. A method according to Claim 35, wherein suppression is produced by an antisense polynucleotide.
37. A method according to Claim 36, wherein the antisense polynucleotide is transcribed from an integrated antisense transgene.
38. A method according to Claim 37, wherein
transcription of the antisense transgene produces a transcript containing an antisense sequence linked to a second sequence.
39. A method according to Claim 37, wherein the non-human animal has a genome comprising germline copies of at least one light chain immunoglobulin transgene.
40. A method for suppressing at least one endogenous immunoglobulin locus in a transgenic non-human animal, comprising the steps of:
introducing an antisense transgene into a non-human animal to produce a non-human transgenic animal bearing an antisense transgene;
transcribing antisense RNA from the antisense transgene in vivo;
hybridizing the antisense RNA to a polynucleotide containing an endogenous immunoglobulin sequence; and
inhibiting expression of an endogenous
immunoglobulin chain.
41. A method of Claim 40, wherein said antisense transgene contains a nucleotide sequence that is homologous to an endogenous kappa chain immunoglobulin gene sequence.
42. A method of Claim 40, wherein said antisense transgene contains a nucleotide sequence that is homologous to an endogenous heavy chain immunoglobulin gene sequence.
43. A method for inactivating an endogenous
immunoglobulin gene, comprising the steps of:
integrating a targeting vector into an endogenous immunoglobulin gene; and
selecting for a cell bearing an integrated targeting vector.
44. A method according to Claim 43, further
comprising the step of: generating a line of non-human animals bearing a copy of the integrated targeting vector.
45. A method according to Claim 43, wherein the endogenous immunoglobulin gene is a light chain gene.
46. A method according to Claim 45, wherein the light chain gene is a kappa light chain gene.
47. A method according to Claim 43, wherein the endogenous immunoglobulin gene is a heavy chain gene.
48. A method according to Claim 43, wherein the endogenous immunoglobulin gene is a murine immunoglobulin gene.
49. A method according to Claim 44, wherein the non-human animal is a mouse.
50. A method according to Claim 49, wherein the mouse further comprises a human immunoglobulin transgene of Claim 1.
51. A method according to Claim 43, wherein the cell is an embryonic stem cell.
52. A method of generating a non-human animal having an inactivated endogenous immunoglobulin gene, comprising the steps of:
breeding a line of non-human animals generated by the method of Claim.44; and
identifying individual non-human animal offspring that are homozygous for an inactivated immunoglobulin gene.
53. A method according to Claim 52, wherein said offspring have an inactivated heavy chain immunoglobulin gene and at least one inactivated light chain immunoglobulin gene.
54. A transgenic non-human animal with an
inactivated endogenous immunoglobulin gene.
55. A non-human animal of Claim 54, wherein an integrated targeting vector is present in germline DNA.
56. A non-human animal of Claim 55, wherein a light chain immunoglobulin gene is inactivated.
57. A non-human animal of Claim 55, wherein a heavy chain immunoglobulin gene is inactivated.
58. A non-human animal of Claim 55 which is
homozygous for at least one inactivated endogenous
immunoglobulin gene.
59. An antisense transgene comprising a nucleotide sequence that is complementary to a polynucleotide seguence that is substantially identical to an immunoglobulin gene sequence.
60. A transgenic non-human animal bearing an antisense transgene of Claim 59.
61. A transgenic non-human animal comprising a functionally disrupted endogenous heavy chain locus and a heterologous immunoglobulin heavy chain transgene, wherein said animal makes an antibody response following immunization with an antigen.
62. A transgenic noh-human animal of Claim 61, wherein said functionally disrupted endogenous heavy chain locus is a JH region homologous recombination knockout, said heterologous immunoglobulin heavy chain transgene is the HCI human minigene transgene, and said antigen is a human antigen.
63. A transgenic non-human animal of Claim 61, wherein the antibody response comprises a population of antibodies which comprise human μ chain-containing
immunoglobulins and human γ chain-containing immunoglobulins.
64. A transgenic non-human animal of Claim 63, wherein the heterologous antibodies comprise a population of heterologous immunoglobulins which comprise somatic mutation in the variable regions which cluster in the CDRs.
65. A transgenic non-human animal of Claim 63, wherein the antigen is selected from the group consisting of human blood cell surface antigens, KLH, and human CEA.
EP93901143A 1991-12-17 1992-12-17 Transgenic non-human animals capable of producing heterologous antibodies Withdrawn EP0746609A4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02079536A EP1288229A3 (en) 1991-12-17 1992-12-17 Transgenic non human animals capable of producing heterologous antibodies

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US810279 1991-12-17
US07/810,279 US5569825A (en) 1990-08-29 1991-12-17 Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US07/853,408 US5789650A (en) 1990-08-29 1992-03-18 Transgenic non-human animals for producing heterologous antibodies
US853408 1992-03-18
US90406892A 1992-06-23 1992-06-23
US904068 1992-06-23
PCT/US1992/010983 WO1993012227A1 (en) 1991-12-17 1992-12-17 Transgenic non-human animals capable of producing heterologous antibodies

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP02079536A Division EP1288229A3 (en) 1991-12-17 1992-12-17 Transgenic non human animals capable of producing heterologous antibodies

Publications (2)

Publication Number Publication Date
EP0746609A1 true EP0746609A1 (en) 1996-12-11
EP0746609A4 EP0746609A4 (en) 1997-12-17

Family

ID=27420056

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93901143A Withdrawn EP0746609A4 (en) 1991-12-17 1992-12-17 Transgenic non-human animals capable of producing heterologous antibodies

Country Status (5)

Country Link
EP (1) EP0746609A4 (en)
JP (2) JPH07503132A (en)
AU (1) AU3328493A (en)
CA (1) CA2124967C (en)
WO (1) WO1993012227A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109996441A (en) * 2016-11-04 2019-07-09 瑞泽恩制药公司 Non-human animal with the immunoglobulin lambda light chain gene seat through being engineered

Families Citing this family (761)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6713610B1 (en) 1990-01-12 2004-03-30 Raju Kucherlapati Human antibodies derived from immunized xenomice
US7041871B1 (en) 1995-10-10 2006-05-09 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US7084260B1 (en) 1996-10-10 2006-08-01 Genpharm International, Inc. High affinity human antibodies and human antibodies against human antigens
US5770429A (en) * 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
JPH08509612A (en) * 1993-04-26 1996-10-15 ジェンファーム インターナショナル インコーポレイテッド Transgenic non-human animal capable of producing heterologous antibody
US5827690A (en) * 1993-12-20 1998-10-27 Genzyme Transgenics Corporatiion Transgenic production of antibodies in milk
US5885574A (en) 1994-07-26 1999-03-23 Amgen Inc. Antibodies which activate an erythropoietin receptor
IL117175A (en) 1995-02-20 2005-11-20 Sankyo Co Osteoclastogenesis inhibitory factor protein
US6130364A (en) 1995-03-29 2000-10-10 Abgenix, Inc. Production of antibodies using Cre-mediated site-specific recombination
AU4376400A (en) * 1995-04-27 2000-11-30 Abgenix, Inc. Human antibodies derived from immunized xenomice
CA2219361C (en) * 1995-04-27 2012-02-28 Abgenix, Inc. Human antibodies derived from immunized xenomice
AU2008202860B9 (en) * 1995-04-27 2012-03-29 Amgen Fremont Inc. Human Antibodies Derived From Immunized Xenomice
US5783186A (en) 1995-12-05 1998-07-21 Amgen Inc. Antibody-induced apoptosis
US6537776B1 (en) 1999-06-14 2003-03-25 Diversa Corporation Synthetic ligation reassembly in directed evolution
WO1997033617A1 (en) * 1996-03-13 1997-09-18 Protein Design Labs, Inc. Fas ligand fusion proteins and their uses
US6497878B1 (en) 1996-04-23 2002-12-24 Chugai Seiyaku Kabushiki Kaisha Treatment of cerebral disorders by inhibition of IL-8 binding to receptor
US5961976A (en) * 1996-06-03 1999-10-05 United Biomedical, Inc. Antibodies against a host cell antigen complex for pre- and post-exposure protection from infection by HIV
EP1500329B1 (en) 1996-12-03 2012-03-21 Amgen Fremont Inc. Human antibodies that specifically bind human TNF alpha
AU713471C (en) 1996-12-23 2002-04-18 Immunex Corporation Ligand for receptor activator of NF-kappa B, ligand is member of TNF superfamily
CA2284271C (en) 1997-03-21 2012-05-08 Chugai Seiyaku Kabushiki Kaisha A preventive or therapeutic agent for sensitized t cell-mediated diseases comprising il-6 antagonist as an active ingredient
EP1657255B1 (en) 1997-04-15 2014-07-30 Sankyo Company, Limited Novel protein and method for producing the protein
US6316408B1 (en) 1997-04-16 2001-11-13 Amgen Inc. Methods of use for osetoprotegerin binding protein receptors
US5843678A (en) * 1997-04-16 1998-12-01 Amgen Inc. Osteoprotegerin binding proteins
US6235883B1 (en) 1997-05-05 2001-05-22 Abgenix, Inc. Human monoclonal antibodies to epidermal growth factor receptor
GB9711167D0 (en) * 1997-05-31 1997-07-23 Babraham The Inst Telomere-associated chromosome fragmentation
KR20080027967A (en) 1997-08-15 2008-03-28 츄가이 세이야꾸 가부시키가이샤 Preventives and/or remedies for systemic lupus erythematosus containing anti-il-6 receptor antibody as the active ingredient
AU9148498A (en) * 1997-09-19 1999-04-12 Medleys Laboratories Inc. Method and kit for early diagnosis of autoimmunity and lymphoma in central nervous system
EP0921189B1 (en) * 1997-11-14 2005-01-12 Sankyo Company Limited Transgenic animal allergy models and methods for their use
US7179892B2 (en) 2000-12-06 2007-02-20 Neuralab Limited Humanized antibodies that recognize beta amyloid peptide
US7964192B1 (en) 1997-12-02 2011-06-21 Janssen Alzheimer Immunotherapy Prevention and treatment of amyloidgenic disease
TWI239847B (en) 1997-12-02 2005-09-21 Elan Pharm Inc N-terminal fragment of Abeta peptide and an adjuvant for preventing and treating amyloidogenic disease
US20080050367A1 (en) 1998-04-07 2008-02-28 Guriq Basi Humanized antibodies that recognize beta amyloid peptide
US7109003B2 (en) 1998-12-23 2006-09-19 Abgenix, Inc. Methods for expressing and recovering human monoclonal antibodies to CTLA-4
ES2706547T3 (en) 1998-12-23 2019-03-29 Pfizer Human monoclonal antibodies for CTLA-4
US6682736B1 (en) 1998-12-23 2004-01-27 Abgenix, Inc. Human monoclonal antibodies to CTLA-4
DK1151010T3 (en) * 1999-02-05 2006-01-09 Therapeutic Human Polyclonals Human polyclonal antibodies from antigenic non-human animals
EP1604997A1 (en) * 1999-02-05 2005-12-14 Therapeutic Human Polyclonals, Inc. Human polyclonal antibodies from transgenic nonhuman animals
EP1167537B1 (en) * 1999-03-30 2008-07-23 Japan Tobacco Inc. Process for producing monoclonal antibody
JP4488579B2 (en) * 1999-03-30 2010-06-23 日本たばこ産業株式会社 Method for producing monoclonal antibody
US6864235B1 (en) 1999-04-01 2005-03-08 Eva A. Turley Compositions and methods for treating cellular response to injury and other proliferating cell disorders regulated by hyaladherin and hyaluronans
US6911429B2 (en) 1999-04-01 2005-06-28 Transition Therapeutics Inc. Compositions and methods for treating cellular response to injury and other proliferating cell disorders regulated by hyaladherin and hyaluronans
UA81216C2 (en) 1999-06-01 2007-12-25 Prevention and treatment of amyloid disease
US6833268B1 (en) * 1999-06-10 2004-12-21 Abgenix, Inc. Transgenic animals for producing specific isotypes of human antibodies via non-cognate switch regions
CN1370076A (en) 1999-08-23 2002-09-18 中外制药株式会社 HM 1.24 antigen expression potentiators
NZ517202A (en) 1999-08-24 2004-05-28 Medarex Inc Human CTLA-4 antibodies and their uses
US7605238B2 (en) 1999-08-24 2009-10-20 Medarex, Inc. Human CTLA-4 antibodies and their uses
EP1215284A4 (en) 1999-09-06 2004-05-19 Chugai Pharmaceutical Co Ltd Tsg-like gene
EP1486510B1 (en) 1999-09-21 2009-05-13 Chugai Seiyaku Kabushiki Kaisha Use of transporter gene oatp-c to screen for test compounds
MXPA02003278A (en) 1999-10-01 2002-09-02 Chugai Pharmaceutical Co Ltd Prevention and treatment of diseases associated with blood coagulation.
WO2001082968A1 (en) 2000-04-28 2001-11-08 Chugai Seiyaku Kabushiki Kaisha Cell proliferation inhibitors
AU2001261103B2 (en) 2000-04-29 2007-08-23 University Of Iowa Research Foundation Diagnostics and therapeutics for macular degeneration-related disorders
US7560534B2 (en) 2000-05-08 2009-07-14 Celldex Research Corporation Molecular conjugates comprising human monoclonal antibodies to dendritic cells
US6596541B2 (en) 2000-10-31 2003-07-22 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
ATE378403T1 (en) 2000-11-30 2007-11-15 Medarex Inc TRANSCHROMOSOMAL TRANSGENIC RODENTS FOR PRODUCING HUMAN ANTIBODIES
PE20020574A1 (en) 2000-12-06 2002-07-02 Wyeth Corp HUMANIZED ANTIBODIES THAT RECOGNIZE THE AMYLOID PEPTIDE BETA
JP3986439B2 (en) 2001-02-07 2007-10-03 中外製薬株式会社 Hematopoietic tumor therapeutic agent
UA80091C2 (en) 2001-04-02 2007-08-27 Chugai Pharmaceutical Co Ltd Remedies for infant chronic arthritis-relating diseases and still's disease which contain an interleukin-6 (il-6) antagonist
EP3492100B1 (en) 2001-06-26 2021-12-08 Amgen Inc. Antibodies to opgl
US20030082188A1 (en) 2001-10-11 2003-05-01 Tso J. Yun Treatment of prostate cancer by inhibitors of NCAM2
DK2319301T3 (en) 2001-11-30 2017-12-04 Amgen Fremont Inc Transgenic animals with human Ig lambda light chain genes
KR20110091822A (en) 2002-02-14 2011-08-12 추가이 세이야쿠 가부시키가이샤 Antibody-containing solution pharmaceuticals
WO2003072740A2 (en) 2002-02-25 2003-09-04 Genentech, Inc. Novel type-1 cytokine receptor glm-r
MY139983A (en) 2002-03-12 2009-11-30 Janssen Alzheimer Immunotherap Humanized antibodies that recognize beta amyloid peptide
US7718776B2 (en) 2002-04-05 2010-05-18 Amgen Inc. Human anti-OPGL neutralizing antibodies as selective OPGL pathway inhibitors
WO2004022597A1 (en) 2002-09-04 2004-03-18 Chugai Seiyaku Kabushiki Kaisha Antibody against blood-solubilized n-terminal peptide in gpc3
PT1503794E (en) 2002-04-12 2012-06-21 Medarex Inc Methods of treatement using ctla-4 antibodies
AU2003231802A1 (en) 2002-05-17 2003-12-02 Protein Design Labs Treatment of crohn's disease or psoriasis using anti-inteferon gamma antibodies
EP2316921B1 (en) 2002-05-24 2014-05-14 Merck Sharp & Dohme Corp. Neutralizing human anti-IGFR antibody
CA2490804C (en) 2002-06-28 2016-12-06 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Method of treating autoimmune diseases with interferon-beta and il-2r antagonist
CA2965865C (en) 2002-07-18 2021-10-19 Merus N.V. Recombinant production of mixtures of antibodies
USRE47770E1 (en) 2002-07-18 2019-12-17 Merus N.V. Recombinant production of mixtures of antibodies
EP1541165A4 (en) 2002-08-27 2009-06-24 Chugai Pharmaceutical Co Ltd Method of stabilizing protein solution preparation
CA2497884C (en) 2002-09-06 2013-10-22 Brian Varnum Therapeutic human anti-il-1r1 monoclonal antibody
CA2497364C (en) 2002-09-11 2013-03-19 Chugai Seiyaku Kabushiki Kaisha Protein purification method
WO2010011999A2 (en) 2008-07-25 2010-01-28 The Regents Of The University Of California Methods and compositions for eliciting an amyloid-selective immune response
TW200413725A (en) 2002-09-30 2004-08-01 Oncotherapy Science Inc Method for diagnosing non-small cell lung cancers
WO2004034988A2 (en) 2002-10-16 2004-04-29 Amgen Inc. Human anti-ifn-ϝ neutralizing antibodies as selective ifn-ϝ pathway inhibitors
MXPA05005921A (en) 2002-12-02 2005-10-19 Abgenix Inc Antibodies directed to tumor necrosis factor and uses thereof.
EP1594533B1 (en) 2003-01-31 2012-04-11 Celldex Research Corporation Antibody vaccine conjugates and uses therefor
US9259459B2 (en) 2003-01-31 2016-02-16 Celldex Therapeutics Inc. Antibody vaccine conjugates and uses therefor
EP3000886A1 (en) 2003-03-19 2016-03-30 Amgen Fremont Inc. Antibodies against t cell immunoglobulin domain and mucin domain 1 (tim-1) antigen and uses thereof
US20040208876A1 (en) 2003-04-18 2004-10-21 Kim Kyung Jin Monoclonal antibodies to hepatocyte growth factor
GB2401040A (en) 2003-04-28 2004-11-03 Chugai Pharmaceutical Co Ltd Method for treating interleukin-6 related diseases
US20050025763A1 (en) 2003-05-08 2005-02-03 Protein Design Laboratories, Inc. Therapeutic use of anti-CS1 antibodies
US7709610B2 (en) 2003-05-08 2010-05-04 Facet Biotech Corporation Therapeutic use of anti-CS1 antibodies
US7358331B2 (en) 2003-05-19 2008-04-15 Elan Pharmaceuticals, Inc. Truncated fragments of alpha-synuclein in Lewy body disease
EP2395017A3 (en) 2003-05-30 2012-12-19 Merus B.V. Design and use of paired variable regions of specific binding molecules
US20100069614A1 (en) 2008-06-27 2010-03-18 Merus B.V. Antibody producing non-human mammals
US7405274B2 (en) 2003-06-04 2008-07-29 Fibrogen, Inc. Connective tissue growth factor antibodies
CA2542232A1 (en) 2003-06-09 2005-01-20 Alnylam Pharmaceuticals, Inc. Method for treating neurodegenerative disease by inhibiting alpha-synuclein
EP2228445A1 (en) 2003-06-18 2010-09-15 Chugai Seiyaku Kabushiki Kaisha Fucose Transporter
EP1638606B1 (en) 2003-06-27 2016-01-06 Amgen Fremont Inc. Antibodies directed to the deletion mutants of epidermal growth factor receptor and uses thereof
US8153410B2 (en) 2003-07-07 2012-04-10 Fox Chase Cancer Center Alternate morpheein forms of allosteric proteins as a target for the development of bioactive molecules
US20060162014A1 (en) 2003-07-07 2006-07-20 Jaffe Eileen K Alternate morpheeins of allosteric proteins as a target for the development of bioactive molecules
ES2523837T3 (en) 2003-07-18 2014-12-01 Amgen Inc. Specific binding agents to hepatocyte growth factor
US20080153104A1 (en) 2003-08-08 2008-06-26 Hiroyuki Aburantai Gene Overexpressed in Cancer
US7288253B2 (en) 2003-08-08 2007-10-30 Amgen Fremont, Inc. Antibodies directed to parathyroid hormone (PTH) and uses thereof
WO2005035753A1 (en) 2003-10-10 2005-04-21 Chugai Seiyaku Kabushiki Kaisha Double specific antibodies substituting for functional protein
AU2003271186A1 (en) 2003-10-14 2005-04-27 Chugai Seiyaku Kabushiki Kaisha Double specific antibodies substituting for functional protein
EP2270152A1 (en) 2003-12-03 2011-01-05 Chugai Seiyaku Kabushiki Kaisha Expression system using mammalian beta-actin promoter
SI2383295T1 (en) 2003-12-10 2015-07-31 E.R. Squibb & Sons, L.L.C. IP-10 antibodies and their uses
AU2004299833B2 (en) 2003-12-10 2009-05-07 E. R. Squibb & Sons, L.L.C. Interferon alpha antibodies and their uses
WO2005056605A1 (en) 2003-12-12 2005-06-23 Chugai Seiyaku Kabushiki Kaisha Modified antibodies recognizing trimer receptor or higher
US7625549B2 (en) 2004-03-19 2009-12-01 Amgen Fremont Inc. Determining the risk of human anti-human antibodies in transgenic mice
US20050260679A1 (en) 2004-03-19 2005-11-24 Sirid-Aimee Kellerman Reducing the risk of human anti-human antibodies through V gene manipulation
ES2360073T3 (en) 2004-03-23 2011-05-31 Oncotherapy Science, Inc. METHOD FOR DIAGNOSING LUNG CANCER OF NON-SMALL CELLS.
US20050227289A1 (en) 2004-04-09 2005-10-13 Reilly Edward B Antibodies to erythropoietin receptor and uses thereof
KR101541658B1 (en) 2004-06-21 2015-08-07 메다렉스, 엘.엘.시. Interferon alpha receptor 1 antibodies and their uses
PL2287195T3 (en) 2004-07-01 2019-10-31 Novo Nordisk As Pan-kir2dl nk-receptor antibodies and their use in diagnostik and therapy
US7973134B2 (en) 2004-07-07 2011-07-05 Cell Signaling Technology, Inc. Reagents for the detection of protein phosphorylation in anaplastic large cell lymphoma signaling pathways
US7919086B2 (en) 2004-07-09 2011-04-05 Chugai Seiyaku Kabushiki Kaisha Anti-glypican 3 antibody
ME00226B (en) 2004-07-15 2011-02-10 Medarex Llc Human anti-ngf neutralizing antibodies as selective ngf pathway inhibitors
US7935790B2 (en) 2004-10-04 2011-05-03 Cell Singaling Technology, Inc. Reagents for the detection of protein phosphorylation in T-cell receptor signaling pathways
US20080026457A1 (en) 2004-10-22 2008-01-31 Kevin Wells Ungulates with genetically modified immune systems
ES2679282T3 (en) 2004-10-22 2018-08-23 Revivicor Inc. Transgenic pigs that lack endogenous immunoglobulin light chain
WO2006055178A2 (en) 2004-10-25 2006-05-26 Merck & Co., Inc. Anti-addl antibodies and uses thereof
EP1824886B1 (en) 2004-11-17 2010-12-22 Amgen Inc. Fully human monoclonal antibodies to il-13
CA2590337C (en) 2004-12-15 2017-07-11 Neuralab Limited Humanized amyloid beta antibodies for use in improving cognition
TW200635946A (en) 2004-12-20 2006-10-16 Abgenix Inc Binding proteins specific for human matriptase
MX2007007484A (en) 2004-12-21 2007-07-20 Astrazeneca Ab Antibodies directed to angiopoietin-2 and uses thereof.
US7807789B2 (en) 2004-12-21 2010-10-05 Cell Signaling Technology, Inc. Reagents for the detection of protein phosphorylation in EGFR-signaling pathways
JPWO2006067847A1 (en) 2004-12-22 2008-06-12 中外製薬株式会社 Antibody production method using cells in which fucose transporter function is inhibited
AU2006208286A1 (en) 2005-01-26 2006-08-03 Amgen Fremont Inc. Antibodies against interleukin-1 beta
US8323645B2 (en) 2005-03-24 2012-12-04 Millennium Pharmaceuticals, Inc. Antibodies that bind OV064 and methods of use therefor
ES2592271T3 (en) 2005-03-31 2016-11-29 Chugai Seiyaku Kabushiki Kaisha Polypeptide production methods by regulating the association of polypeptides
EP1876236B9 (en) 2005-04-08 2015-02-25 Chugai Seiyaku Kabushiki Kaisha Antibody substituting for function of blood coagulation factor viii
RU2406760C3 (en) 2005-05-09 2017-11-28 Оно Фармасьютикал Ко., Лтд. HUMAN MONOCLONAL ANTIBODIES TO PROGRAMMABLE DEATH 1 PROTECTION (PD-1) AND METHODS OF CANCER TREATMENT USING ANTI-PD-1-ANTI-BODY, INDEPENDENTLY OR IN COMBINATION WITH OTHER IMMUNETURAH AND I And I And I And I, In The Combine, I And I Do Not Allocate To Them, Combined With Other Overarching
AU2006256041B2 (en) 2005-06-10 2012-03-29 Chugai Seiyaku Kabushiki Kaisha Stabilizer for protein preparation comprising meglumine and use thereof
CN101248089A (en) 2005-07-01 2008-08-20 米德列斯公司 Human monoclonal antibodies to programmed death ligand 1(PD-L1)
NZ604090A (en) 2005-07-18 2014-07-25 Amgen Inc Human anti-b7rp1 neutralizing antibodies
CA2619695A1 (en) 2005-08-18 2007-02-22 Genmab A/S Therapy with cd4 binding peptides and radiation
EP1934867A2 (en) 2005-08-31 2008-06-25 Cell Signaling Technology, Inc. Reagents for the detection of protein phosphorylation in leukemia signaling pathways
US8945573B2 (en) 2005-09-08 2015-02-03 The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. Targeted identification of immunogenic peptides
WO2007030560A2 (en) 2005-09-08 2007-03-15 Philadelphia Health & Education Corporation, D/B/A Drexel University College Of Medicine Identification of modulators of serine protease inhibitor kazal and their use as anti-cancer and anti-viral agents
KR20080056167A (en) 2005-09-26 2008-06-20 메다렉스, 인코포레이티드 Human monoclonal antibodies to cd70
EP1941907B1 (en) 2005-10-14 2016-03-23 Fukuoka University Inhibitor of transplanted islet dysfunction in islet transplantation
GB0521139D0 (en) 2005-10-18 2005-11-23 Univ Sheffield Therapeutic agent
BRPI0617664B8 (en) 2005-10-21 2021-05-25 Chugai Pharmaceutical Co Ltd use of an antibody recognizing IL-6 for the production of a pharmaceutical composition to treat myocardial infarction or suppress left ventricular remodeling after myocardial infarction
AR058104A1 (en) 2005-10-21 2008-01-23 Novartis Ag ORGANIC COMPOUNDS
AU2006315580A1 (en) 2005-11-10 2007-05-24 Curagen Corporation Method of treating ovarian and renal cancer using antibodies against T cell immunoglobulin domain and mucin domain 1 (TIM-1) antigen
PE20070684A1 (en) 2005-11-14 2007-08-06 Amgen Inc RANKL-PTH / PTHrP ANTIBODY CHEMERICAL MOLECULES
US8128934B2 (en) 2005-11-14 2012-03-06 Ribomic, Inc. Method for treatment or prevention of disease associated with functional disorder of regulatory T cell
AR057582A1 (en) 2005-11-15 2007-12-05 Nat Hospital Organization AGENTS TO DELETE INDUCTION OF CYTOTOXIC T LYMPHOCYTES
AR057941A1 (en) 2005-11-25 2007-12-26 Univ Keio THERAPEUTIC AGENTS FOR PROSTATE CANCER
US9829494B2 (en) 2005-12-01 2017-11-28 Adrenomed Ag Methods of treatment using ADM antibodies
EP1954311A4 (en) 2005-12-07 2009-12-23 Medarex Inc Ctla-4 antibody dosage escalation regimens
PL1960434T3 (en) 2005-12-08 2012-12-31 Squibb & Sons Llc Human monoclonal antibodies to fucosyl-gm1 and methods for using anti-fucosyl-gm1
DOP2006000277A (en) 2005-12-12 2007-08-31 Bayer Pharmaceuticals Corp ANTI MN ANTIBODIES AND METHODS FOR USE
BRPI0619786A2 (en) 2005-12-13 2011-10-18 Astrazeneca Ab specific binding protein, nucleic acid molecule, vector, host cell, human monoclonal antibody, method of determining insulin-ii growth factor (igf-1i) and insulin-like growth factor i (igf-1) level in a patient sample, use of the specifically binding protein, and, conjugated
GB2433740A (en) 2005-12-23 2007-07-04 Rapid Biosensor Systems Ltd Detection of tuberculosis infection
EP1977763A4 (en) 2005-12-28 2010-06-02 Chugai Pharmaceutical Co Ltd Antibody-containing stabilizing preparation
AR056857A1 (en) 2005-12-30 2007-10-24 U3 Pharma Ag DIRECTED ANTIBODIES TO HER-3 (RECEIVER OF THE HUMAN EPIDERMAL GROWTH FACTOR-3) AND ITS USES
RU2520088C2 (en) 2006-01-12 2014-06-20 Алексион Фармасьютикалз, Инк. Antibodies to ox-2/cd200 and their application
EP1976883B1 (en) 2006-01-17 2012-10-03 Medarex, Inc. Monoclonal antibodies against cd30 lacking in fucosyl and xylosyl residues
US20120208824A1 (en) 2006-01-20 2012-08-16 Cell Signaling Technology, Inc. ROS Kinase in Lung Cancer
EP3135298B1 (en) 2006-01-27 2018-06-06 Keio University Therapeutic agents for diseases involving choroidal neovascularization
JP5624276B2 (en) 2006-03-31 2014-11-12 中外製薬株式会社 Methods for controlling blood kinetics of antibodies
CN105177091A (en) 2006-03-31 2015-12-23 中外制药株式会社 Antibody modification method for purifying bispecific antibody
AU2007235496B2 (en) 2006-03-31 2013-11-21 E. R. Squibb & Sons, L.L.C. Transgenic animals expressing chimeric antibodies for use in preparing human antibodies
AR059922A1 (en) 2006-04-01 2008-05-07 Galaxy Biotech Llc HUMANIZED MONOCLONAL ANTIBODIES FOR THE GROWTH FACTOR OF HEPATOCITS
EP2025346B1 (en) 2006-04-07 2016-08-10 Osaka University Muscle regeneration promoter
MX2008012754A (en) 2006-04-07 2009-04-27 Us Gov Health & Human Serv Antibody compositions and methods for treatment of neoplastic disease.
BRPI0710645A2 (en) 2006-04-07 2012-03-20 The Procter & Gamble Company ANTIBODIES BINDING TO HUMAN PROTEIN TYROSINE PHOSPHATASE BETA (HPTPBETA) AND USES OF THE SAME
TW200813091A (en) 2006-04-10 2008-03-16 Amgen Fremont Inc Targeted binding agents directed to uPAR and uses thereof
EP2011870A4 (en) 2006-04-14 2010-09-15 Medical & Biol Lab Co Ltd Mutant polypeptide having effector function
WO2009017467A1 (en) 2007-07-27 2009-02-05 Elan Pharma International Limited Treatment of amyloidogenic diseases
US8784810B2 (en) 2006-04-18 2014-07-22 Janssen Alzheimer Immunotherapy Treatment of amyloidogenic diseases
EP2011513B1 (en) 2006-04-25 2016-10-19 The University of Tokyo Therapeutic agents for alzheimer's disease and cancer
WO2008042024A2 (en) 2006-06-01 2008-04-10 Elan Pharmaceuticals, Inc. Neuroactive fragments of app
RU2511406C2 (en) 2006-06-08 2014-04-10 Чугаи Сейяку Кабусики Кайся Preventive and therapeutic agent for inflammatory disease
KR20090021217A (en) 2006-06-14 2009-02-27 추가이 세이야쿠 가부시키가이샤 Hematopoietic stem cell proliferation promoter
PE20081004A1 (en) 2006-07-13 2008-09-18 Chugai Pharmaceutical Co Ltd INDUCING AGENTS OF CELLULAR DEATH
US8025881B2 (en) 2006-07-21 2011-09-27 Chugai Seiyaku Kabushiki Kaisha BMP antibodies and methods of treating kidney disease using the same
BRPI0715141A2 (en) 2006-08-03 2013-06-04 Astrazeneca Ab bleaching agent, isolated antibody, isolated antibody fragment, nucleic acid molecule, vector, host cell, methods for producing a targeted binding agent, for producing an antibody, for producing an antibody fragment, for treating a malignant tumor in an animal, to treat inflammation, and to inhibit alpha6 interaction with its ligand, and, conjugated
CL2007002225A1 (en) 2006-08-03 2008-04-18 Astrazeneca Ab SPECIFIC UNION AGENT FOR A RECEIVER OF THE GROWTH FACTOR DERIVED FROM PLATES (PDGFR-ALFA); NUCLEIC ACID MOLECULA THAT CODIFIES IT; VECTOR AND CELL GUESTS THAT UNDERSTAND IT; CONJUGADO UNDERSTANDING THE AGENT; AND USE OF THE AGENT OF A
US7939636B2 (en) 2006-08-11 2011-05-10 Cell Signaling Technology, Inc. Reagents for the detection of protein phosphorylation in c-Src signaling pathways
BRPI0713086A2 (en) 2006-08-14 2012-10-09 Forerunner Pharma Res Co Ltd diagnosis and treatment of cancer using anti-desmogleìna-3 antibody
AU2007292890A1 (en) 2006-09-05 2008-03-13 Medarex, Inc. Antibodies to bone morphogenic proteins and receptors therefor and methods for their use
JPWO2008032833A1 (en) 2006-09-14 2010-01-28 株式会社医学生物学研究所 Antibody with enhanced ADCC activity and method for producing the same
BRPI0718197A2 (en) 2006-10-02 2014-09-30 Medarex Inc ISOLATED MONOCLONAL ANTIBODY OR AN ANTIGEN-BINDING PORTION OF THE SAME, COMPOSITION, IMMUNOCATED, ISOLATED NUCLEIC ACID MOLECULE, EXPRESSION VECTOR, HOST CELL FOR PREPARING A CIRCULAR ANCLE4 MODULES CELL, AND TO STIMULATE MOBILIZATION OF CD34 + BODY BODY CELLS FOR PERIPHERAL BLOOD IN AN INDIVIDUAL.
AU2007312367B2 (en) 2006-10-12 2012-09-06 Chugai Seiyaku Kabushiki Kaisha Diagnosis and treatment of cancer using anti-EREG antibody
US8613925B2 (en) 2006-10-19 2013-12-24 Csl Limited Anti-IL-13Rα1 antibodies and their uses thereof
US20100061933A1 (en) 2006-10-20 2010-03-11 Naoki Kimura Pharmaceutical composition comprising anti-hb-egf antibody as active ingredient
CA2666809A1 (en) 2006-10-20 2008-04-24 Forerunner Pharma Research Co., Ltd. Anti-cancer agent comprising anti-hb-egf antibody as active ingredient
EA200970477A1 (en) 2006-11-15 2009-12-30 Медарекс, Инк. HUMAN MONOCLONAL ANTIBODIES TO BTLA AND METHODS OF APPLICATION
BRPI0717902A2 (en) 2006-12-01 2013-10-29 Medarex Inc "HUMAN MONOCLONAL ANTIBODY ISOLATED, COMPOSITION, ASSOCIATED ANTIBODY-MOLLECLE PARTNERSHIP, IMMUNOCOUGHTED, ISOLATED NUCLEIC ACID MOLECULES, EXPRESSION VECTOR, HOSPEDIC CELL FOR PREPARING A CDT FOR THE PREPARATION OF A CD22 AND METHOD FOR TREATING INFLAMMATORY DISEASE OR SELF-IMMUNEING AN INDIVIDUAL "
CL2007003622A1 (en) 2006-12-13 2009-08-07 Medarex Inc Human anti-cd19 monoclonal antibody; composition comprising it; and tumor cell growth inhibition method.
AU2007333098A1 (en) 2006-12-14 2008-06-19 Medarex, Inc. Human antibodies that bind CD70 and uses thereof
JP5632582B2 (en) 2006-12-14 2014-11-26 中外製薬株式会社 Anti-Claudin3 monoclonal antibody and cancer treatment and diagnosis using same
EP2123676A4 (en) 2007-01-05 2011-01-05 Univ Tokyo Diagnosis and treatment of cancer by using anti-prg-3 antibody
ES2564392T3 (en) 2007-01-23 2016-03-22 Shinshu University IL-6 inhibitors for the treatment of chronic rejection
WO2008099920A1 (en) 2007-02-15 2008-08-21 Kyushu University, National University Corporation Therapeutic agent for interstitial pulmonary disease comprising anti-hmgb-1 antibody
ES2431940T3 (en) 2007-02-16 2013-11-28 Merrimack Pharmaceuticals, Inc. Antibodies against ERBB3 and their uses
CN101951953A (en) 2007-02-27 2011-01-19 株式会社未来创药研究所 Contain the pharmaceutical composition of anti-GRP78 antibody as effective ingredient
US20090081659A1 (en) 2007-03-07 2009-03-26 Cell Signaling Technology, Inc. Reagents for the detection of protein phosphorylation in carcinoma signaling pathways
CL2008000719A1 (en) 2007-03-12 2008-09-05 Univ Tokushima Chugai Seiyaku THERAPEUTIC AGENT FOR CANCER RESISTANT TO CHEMOTHERAPEUTIC AGENTS THAT UNDERSTAND AN ANTIBODY THAT RECOGNIZES IT CLASS I AS ACTIVE INGREDIENT; PHARMACEUTICAL COMPOSITION THAT INCLUDES SUCH ANTIBODY; AND METHOD TO TREAT CANCER RESISTANT TO
PL2125894T3 (en) 2007-03-22 2019-08-30 Biogen Ma Inc. Binding proteins, including antibodies, antibody derivatives and antibody fragments, that specifically bind cd154 and uses thereof
US20090068684A1 (en) 2007-03-26 2009-03-12 Cell Signaling Technology, Inc. Serine and threoninephosphorylation sites
US8003097B2 (en) 2007-04-18 2011-08-23 Janssen Alzheimer Immunotherapy Treatment of cerebral amyloid angiopathy
US7977462B2 (en) 2007-04-19 2011-07-12 Cell Signaling Technology, Inc. Tyrosine phosphorylation sites
EP1983002A3 (en) 2007-04-19 2009-03-11 Peter Hornbeck Tyrosine phosphorylation sites and antibodies specific for them
EP1983003A3 (en) 2007-04-19 2009-03-11 Peter Hornbeck Tyrosine phosphorylation sites and antibodies specific for them
FI20075278A0 (en) 2007-04-20 2007-04-20 Biotie Therapies Corp Novel completely human anti-VAP-1 monoclonal antibodies
US20090053831A1 (en) 2007-05-01 2009-02-26 Cell Signaling Technology, Inc. Tyrosine phosphorylation sites
JP5117765B2 (en) 2007-05-28 2013-01-16 国立大学法人 東京大学 Tumor diagnostic agent for PET containing anti-ROBO1 antibody
US7709215B2 (en) 2007-06-01 2010-05-04 Cytonics Corporation Method for diagnosing and treating acute joint injury
EP2155238B1 (en) 2007-06-05 2016-04-06 Yale University Antibody against d4 domain of the kit receptor and use thereor
US20080317768A1 (en) 2007-06-21 2008-12-25 Boeing Company Bioconjugated nanoparticles
WO2009001840A1 (en) 2007-06-25 2008-12-31 Forerunner Pharma Research Co., Ltd. Anti-prominin-1 antibody having adcc activity or cdc activity
WO2009014263A1 (en) 2007-07-26 2009-01-29 Osaka University Agent for treatment of ophthalmia containing interleukin-6 receptor inhibitor as active ingredient
EP2185719B1 (en) 2007-08-02 2013-11-13 NovImmune SA Anti-rantes antibodies and methods of use thereof
EP3255144A1 (en) 2007-08-10 2017-12-13 E. R. Squibb & Sons, L.L.C. Recombineering construct for preparing transgenic mice capable of producing human immunoglobulin
EP2185188B1 (en) 2007-08-22 2014-08-06 Medarex, L.L.C. Site-specific attachment of drugs or other agents to engineered antibodies with c-terminal extensions
JOP20080381B1 (en) 2007-08-23 2023-03-28 Amgen Inc Antigen Binding Proteins to Proprotein Convertase subtillisin Kexin type 9 (pcsk9)
EP2615114B1 (en) 2007-08-23 2022-04-06 Amgen Inc. Antigen binding proteins to proprotein convertase subtilisin kexin type 9 (PCSK9)
ES2537580T3 (en) 2007-09-04 2015-06-09 Compugen Ltd. Polypeptides and polynucleotides, and uses thereof as a pharmacological target to produce drugs and biological agents
TW200918553A (en) 2007-09-18 2009-05-01 Amgen Inc Human GM-CSF antigen binding proteins
EP4368721A2 (en) 2007-09-26 2024-05-15 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in cdr
KR101652125B1 (en) 2007-09-26 2016-08-29 우드라이 파마 게엠베하 Heparin-binding epidermal growth factor-like growth factor antigen binding proteins
EP2196541B1 (en) 2007-09-28 2012-11-07 Chugai Seiyaku Kabushiki Kaisha Anti-glypican-3 antibody having improved kinetics in plasma
US8529895B2 (en) 2007-10-02 2013-09-10 Chugai Seiyaku Kabushiki Kaisha Method for suppressing the development of graft-versus-host-disease by administering interleukin 6 receptor antibodies
AR068767A1 (en) 2007-10-12 2009-12-02 Novartis Ag ANTIBODIES AGAINST SCLEROSTIN, COMPOSITIONS AND METHODS OF USE OF THESE ANTIBODIES TO TREAT A PATHOLOGICAL DISORDER MEDIATIONED BY SCLEROSTIN
US9683027B2 (en) 2007-10-15 2017-06-20 Chugai Seiyaku Kabushiki Kaisha Method for production of antibody
JO3076B1 (en) 2007-10-17 2017-03-15 Janssen Alzheimer Immunotherap Immunotherapy regimes dependent on apoe status
ES2576650T3 (en) 2007-10-18 2016-07-08 Cell Signaling Technology, Inc. Translocation and ROS mutant kinase in human non-small cell lung carcinoma
JP5620106B2 (en) 2007-10-24 2014-11-05 株式会社糖鎖工学研究所 Polypeptide having enhanced effector function
CN101951954A (en) 2007-11-02 2011-01-19 诺瓦提斯公司 Molecules and methods for modulating low-density-lipoprotein receptor-related protein 6 (LRP6)
SG187482A1 (en) 2007-11-07 2013-02-28 Celldex Therapeutics Inc Antibodies that bind human dendritic and epithelial cell 205 (dec-205)
NZ585465A (en) 2007-11-12 2012-12-21 Monoclonal antibodies which bind to the extracellular domain of the axl receptor tyrosine kinase
CN102112492B (en) 2007-11-14 2015-02-25 中外制药株式会社 Diagnosis and treatment of cancer using anti-GPR49 antibody
WO2009063965A1 (en) 2007-11-15 2009-05-22 Chugai Seiyaku Kabushiki Kaisha Monoclonal antibody capable of binding to anexelekto, and use thereof
EP2062920A3 (en) 2007-11-21 2009-06-17 Peter Hornbeck Protein phosphorylation by basophilic serine/threonine kinases in insulin signalling pathways
EP2241332A4 (en) 2007-12-05 2011-01-26 Chugai Pharmaceutical Co Ltd Therapeutic agent for pruritus
DK2236604T3 (en) 2007-12-05 2016-10-03 Chugai Pharmaceutical Co Ltd The anti-NR10 antibody and use thereof
JPWO2009075344A1 (en) 2007-12-12 2011-04-28 独立行政法人国立がん研究センター MLL leukemia and MOZ leukemia therapeutic agent using M-CSF receptor as molecular target, and use thereof
JP5591712B2 (en) 2007-12-14 2014-09-17 ノボ・ノルデイスク・エー/エス Antibodies against human NKG2D and uses thereof
EP2231181B1 (en) 2007-12-17 2016-02-17 Marfl AB New vaccine for the treatment of mycobacterium related disorders
PE20091174A1 (en) 2007-12-27 2009-08-03 Chugai Pharmaceutical Co Ltd LIQUID FORMULATION WITH HIGH CONCENTRATION OF ANTIBODY CONTENT
BRPI0821949B1 (en) 2007-12-28 2022-12-06 University Of Tennessee Research Foundation ANTIBODIES OR ANTIGEN-BINDING FRAGMENTS THEREOF, THEIR USES, THEIR METHOD OF PREPARATION, THEIR PHARMACEUTICAL COMPOSITIONS, AND HYBRIDOMES
AU2009203464A1 (en) 2008-01-11 2009-07-16 Forerunner Pharma Research Co., Ltd. Anti-CLDN6 antibody
FR2926438B1 (en) * 2008-01-22 2013-01-11 Univ Limoges NON-HUMAN TRANSGENIC MAMMAL FOR THE CONSTANT REGION OF THE HEAVY CHAIN OF HUMAN CLASS G IMMUNOGLOBULINS AND ITS APPLICATIONS
US8039596B2 (en) 2008-02-05 2011-10-18 Bristol-Myers Squibb Company Alpha 5-beta 1 antibodies and their uses
CL2009000647A1 (en) 2008-04-04 2010-06-04 Chugai Pharmaceutical Co Ltd Pharmaceutical composition for treating or preventing liver cancer comprising a combination of a chemotherapeutic agent and an anti-glypican 3 antibody; agent for attenuating a side effect comprising said antibody; method of treating or preventing liver cancer of a subject.
CA2718975A1 (en) 2008-04-10 2009-10-15 Cell Signaling Technology, Inc. Compositions and methods for detecting egfr mutations in cancer
MY195714A (en) 2008-04-11 2023-02-07 Chugai Pharmaceutical Co Ltd Antigen-Binding Molecule Capable of Binding to Two or More Antigen Molecules Repeatedly
BRPI0912035A2 (en) 2008-05-29 2017-05-23 Galaxy Biotech Llc monoclonal antibody, pharmaceutical composition, use of a pharmaceutical composition, mouse mab in chimeric or humanized form, and humanized antibody
EP2283862B1 (en) 2008-06-02 2018-08-08 The University of Tokyo Combination treatment of cancer comprising anti-mfg-e8 antibody
CN102256623A (en) 2008-06-05 2011-11-23 独立行政法人国立癌症研究中心 Neuroinvasion inhibitor
EP2319869B1 (en) 2008-06-20 2016-08-17 National University Corporation Okayama University ANTIBODY AGAINST OXIDIZED LDL/ß²GPI COMPLEX AND USE OF THE SAME
DK3456190T3 (en) * 2008-06-27 2022-02-14 Merus Nv ANTIBODY PRODUCING TRANSGENT MURINT ANIMALS
PE20110225A1 (en) 2008-08-05 2011-04-05 Novartis Ag COMPOSITIONS AND METHODS FOR ANTIBODIES TARGETING COMPLEMENT PROTEIN C5
AR072999A1 (en) 2008-08-11 2010-10-06 Medarex Inc HUMAN ANTIBODIES THAT JOIN GEN 3 OF LYMPHOCYTARY ACTIVATION (LAG-3) AND THE USES OF THESE
CA2735900A1 (en) 2008-09-19 2010-03-25 Medimmune, Llc Antibodies directed to dll4 and uses thereof
CA3038954A1 (en) 2008-09-30 2010-04-08 Ablexis, Llc Non-human mammals for the production of chimeric antibodies
EP2348827B1 (en) 2008-10-27 2015-07-01 Revivicor, Inc. Immunocompromised ungulates
US9067981B1 (en) 2008-10-30 2015-06-30 Janssen Sciences Ireland Uc Hybrid amyloid-beta antibodies
BRPI0917315B8 (en) 2008-11-07 2021-05-25 Galaxy Biotech Llc monoclonal antibody, its use and pharmaceutical composition comprising it
LT2894165T (en) 2008-11-10 2023-03-10 Alexion Pharmaceuticals, Inc. Methods and compositions for treating complement-associated disorders
AU2009325878B2 (en) 2008-12-08 2014-01-16 Compugen Ltd. TMEM154 polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
UA109633C2 (en) 2008-12-09 2015-09-25 HUMAN ANTIBODY AGAINST TISSUE FACTOR
CN102292445A (en) * 2008-12-18 2011-12-21 伊拉兹马斯大学鹿特丹医学中心 Non-human transgenic animals expressing humanised antibodies and use therof
JP5756292B2 (en) 2008-12-22 2015-07-29 中外製薬株式会社 Anti-HS6ST2 antibody and use thereof
WO2010072740A2 (en) 2008-12-23 2010-07-01 Astrazeneca Ab TARGETED BINDING AGENTS DIRECTED TO α5β1 AND USES THEREOF
WO2010073694A1 (en) 2008-12-25 2010-07-01 国立大学法人東京大学 Diagnosis of treatment of cancer using anti-tm4sf20 antibody
CN102395603A (en) 2008-12-26 2012-03-28 国立大学法人东京大学 Diagnosis and treatment of cancer using anti-lgr7 antibody
US20100260752A1 (en) 2009-01-23 2010-10-14 Biosynexus Incorporated Opsonic and protective antibodies specific for lipoteichoic acid of gram positive bacteria
US9364477B2 (en) 2009-02-12 2016-06-14 Cell Signaling Technology, Inc. Mutant ROS expression in human cancer
CN102341412B (en) 2009-03-05 2018-01-05 梅达雷克斯有限责任公司 It is specific to CADM1 human antibody
JP2010210772A (en) 2009-03-13 2010-09-24 Dainippon Screen Mfg Co Ltd Method of manufacturing liquid crystal display device
WO2010117325A1 (en) 2009-04-08 2010-10-14 Olle Hernell New methods for treatment of inflammatory diseases
WO2010119691A1 (en) 2009-04-16 2010-10-21 国立大学法人東京大学 Diagnosis and treatment of cancer using anti-tmprss11e antibody
US20120052064A1 (en) 2009-04-17 2012-03-01 Yuuki Ito Anti-hgf antibody combinational cancer therapies
WO2010124113A1 (en) 2009-04-23 2010-10-28 Infinity Pharmaceuticals, Inc. Anti-fatty acid amide hydrolase-2 antibodies and uses thereof
NZ595235A (en) 2009-04-27 2013-06-28 Novartis Ag Compositions and methods for increasing muscle growth
CA2759942A1 (en) 2009-04-27 2010-10-07 Novartis Ag Composition and methods of use for therapeutic antibodies specific for the il-12 receptore betai subunit
EP2426149A4 (en) 2009-05-01 2013-01-23 Univ Tokyo Anti-cadherin antibody
PE20121540A1 (en) 2009-05-04 2012-12-22 Abbott Res Bv ANTIBODIES AGAINST NERVOUS GROWTH FACTOR (NGF) WITH IMPROVED IN VIVO STABILITY
RU2605318C2 (en) 2009-05-05 2016-12-20 Новиммун С.А. Anti-il-17f antibodies and methods for use thereof
EP2436397B1 (en) 2009-05-29 2017-05-10 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical composition containing antagonist of egf family ligand as component
US20120101262A1 (en) 2009-06-25 2012-04-26 Bristol-Myers Squibb Company Protein purification by caprylic acid (octanoic acid) precipitation
LT3241435T (en) 2009-07-08 2021-10-25 Kymab Limited Animal models and therapeutic molecules
US20120204278A1 (en) 2009-07-08 2012-08-09 Kymab Limited Animal models and therapeutic molecules
US9445581B2 (en) 2012-03-28 2016-09-20 Kymab Limited Animal models and therapeutic molecules
MY160472A (en) 2009-07-17 2017-03-15 Bioatla Llc Simultaneous, integrated selection and evolution of antibody/protein performance and expression in production hosts
US20120183539A1 (en) 2009-07-31 2012-07-19 Shin Maeda Cancer Metastasis Inhibitor
EA201270228A1 (en) 2009-07-31 2012-09-28 Медарекс, Инк. FULLY HUMAN ANTIBODIES TO BTLA
WO2011017294A1 (en) 2009-08-07 2011-02-10 Schering Corporation Human anti-rankl antibodies
AU2010285974A1 (en) 2009-08-17 2012-03-22 Forerunner Pharma Research Co., Ltd. Pharmaceutical composition comprising anti-HB-EGF antibody as active ingredient
WO2011021146A1 (en) 2009-08-20 2011-02-24 Pfizer Inc. Osteopontin antibodies
WO2011037983A1 (en) 2009-09-23 2011-03-31 Medarex, Inc. Cation exchange chromatography
TW201118166A (en) 2009-09-24 2011-06-01 Chugai Pharmaceutical Co Ltd HLA class I-recognizing antibodies
WO2011045080A2 (en) 2009-10-16 2011-04-21 Biorealites S.A.S. Monoclonal antibodies to progastrin and their uses
TWI583394B (en) 2009-10-23 2017-05-21 千禧製藥公司 Anti-gcc antibody molecules and related compositions and methods
WO2011057188A1 (en) 2009-11-06 2011-05-12 Idexx Laboratories, Inc. Canine anti-cd20 antibodies
US20130045192A1 (en) 2009-11-09 2013-02-21 Alexion Pharmaceuticals, Inc. Reagents and methods for detecting pnh type ii white blood cells and their identification as risk factors for thrombotic disorders
PT2719708T (en) 2009-11-13 2018-01-16 Daiichi Sankyo Europe Gmbh Material and methods for treating or preventing her-3 associated diseases
RS56484B1 (en) 2009-11-17 2018-01-31 Squibb & Sons Llc Methods for enhanced protein production
KR101740171B1 (en) 2009-11-24 2017-05-25 메디뮨 리미티드 Targeted binding agents against b7-h1
EP2507265B1 (en) 2009-12-01 2016-05-11 Compugen Ltd. Antibody specific for heparanase splice variant T5 and its use.
US8765432B2 (en) 2009-12-18 2014-07-01 Oligasis, Llc Targeted drug phosphorylcholine polymer conjugates
JP6012473B2 (en) 2010-01-11 2016-10-25 アレクシオン ファーマシューティカルズ, インコーポレイテッド Biomarker of immunomodulatory effect in human treatment with anti-CD200 antibody
TWI609698B (en) 2010-01-20 2018-01-01 Chugai Pharmaceutical Co Ltd Stabilized antibody-containing solution preparation
PT3342786T (en) 2010-01-29 2021-09-24 Chugai Pharmaceutical Co Ltd Anti-dll3 antibody
CN102712769B (en) 2010-01-29 2014-12-03 东丽株式会社 Polylactic acid-based resin sheet
US9228171B2 (en) 2010-02-05 2016-01-05 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Regulatory B cells (tBREGS) and their use
SI2535358T1 (en) 2010-02-10 2018-03-30 Fujifilm Ri Pharma Co., Ltd. Radioactive metal-labeled anti-cadherin antibody
JP2013520173A (en) 2010-02-18 2013-06-06 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Integrin αvβ8 neutralizing antibody
EP2540827A4 (en) 2010-02-26 2013-09-04 Chugai Pharmaceutical Co Ltd Anti-icam3 antibody and use thereof
WO2011109398A2 (en) 2010-03-02 2011-09-09 President And Fellows Of Harvard College Methods and compositions for treatment of angelman syndrome and autism spectrum disorders
JP5889181B2 (en) 2010-03-04 2016-03-22 中外製薬株式会社 Antibody constant region variants
AR080685A1 (en) 2010-03-17 2012-05-02 Abbott Res Bv COMPOSITIONS OF ANTI-FACTOR ANTI-FACTOR OF NERVOUS GROWTH (NGF)
US10745467B2 (en) 2010-03-26 2020-08-18 The Trustees Of Dartmouth College VISTA-Ig for treatment of autoimmune, allergic and inflammatory disorders
WO2011120013A2 (en) 2010-03-26 2011-09-29 Trustees Of Dartmouth College Vista regulatory t cell mediator protein, vista binding agents and use thereof
US20150231215A1 (en) 2012-06-22 2015-08-20 Randolph J. Noelle VISTA Antagonist and Methods of Use
TWI667257B (en) 2010-03-30 2019-08-01 中外製藥股份有限公司 Antibodies with modified affinity to fcrn that promote antigen clearance
WO2011123708A2 (en) 2010-03-31 2011-10-06 Ablexis Llc Genetic engineering of non-human animals for the production of chimeric antibodies
NZ602892A (en) 2010-04-13 2014-08-29 Celldex Therapeutics Inc Antibodies that bind human cd27 and uses thereof
EP2824111B1 (en) 2010-04-30 2017-03-22 Alexion Pharmaceuticals, Inc. Anti-C5A Antibodies and Methods for Using the Antibodies
WO2011140151A1 (en) 2010-05-04 2011-11-10 Dyax Corp. Antibodies against epidermal growth factor receptor (egfr)
RU2012151823A (en) 2010-05-04 2014-06-10 Мерримак Фармасьютикалз, Инк. ANTIBODIES AGAINST EPIDERMAL GROWTH FACTOR (EGFR) RECEPTOR AND THEIR APPLICATION
EP4234698A3 (en) 2010-05-06 2023-11-08 Novartis AG Compositions and methods of use for therapeutic low density lipoprotein-related protein 6 (lrp6) antibodies
US9290573B2 (en) 2010-05-06 2016-03-22 Novartis Ag Therapeutic low density lipoprotein-related protein 6 (LRP6) multivalent antibodies
WO2011149046A1 (en) 2010-05-28 2011-12-01 独立行政法人国立がん研究センター Therapeutic agent for pancreatic cancer
RS63800B1 (en) 2010-05-28 2022-12-30 Chugai Pharmaceutical Co Ltd Antitumor t cell response enhancer
WO2011154453A1 (en) 2010-06-09 2011-12-15 Genmab A/S Antibodies against human cd38
PL2582728T3 (en) 2010-06-15 2018-01-31 Genmab As Human antibody drug conjugates against tissue factor
CA2803391C (en) 2010-06-22 2021-11-09 Neogenix Oncology, Inc. Npc1 antibodies that bind a muc5ac epitope
US9815890B2 (en) 2010-06-22 2017-11-14 The Regents Of The University Of Colorado, A Body Corporate Antibodies to the C3d fragment of complement component 3
WO2012003338A1 (en) 2010-07-01 2012-01-05 Takeda Pharmaceutical Company Limited COMBINATION OF A cMET INHIBITOR AND AN ANTIBODY TO HGF AND/OR cMET
MX338640B (en) 2010-07-14 2016-04-25 Merck Sharp & Dohme Anti-addl monoclonal antibody and uses thereof.
EP3435087B1 (en) 2010-07-16 2023-11-08 BioAtla, Inc. Novel methods of protein evolution
AU2011286407A1 (en) 2010-08-06 2013-02-21 Amgen Use of HER3 binding agents in prostate treatment
US20120101108A1 (en) 2010-08-06 2012-04-26 Cell Signaling Technology, Inc. Anaplastic Lymphoma Kinase In Kidney Cancer
WO2012024255A2 (en) 2010-08-16 2012-02-23 Duke University Camkk-beta as a target for treating cancer
CN105037552B (en) 2010-08-20 2019-03-29 诺华股份有限公司 EGF-R ELISA 3(HER3) antibody
AR083034A1 (en) 2010-09-17 2013-01-30 Baxter Int STABILIZATION OF IMMUNOGLOBULINS AND OTHER PROTEINS THROUGH A WATERY FORMULATION WITH SODIUM CHLORIDE AT A WEAK ACID pH NEUTRAL
US8999335B2 (en) 2010-09-17 2015-04-07 Compugen Ltd. Compositions and methods for treatment of drug resistant multiple myeloma
EP2434285A1 (en) 2010-09-22 2012-03-28 IMBA-Institut für Molekulare Biotechnologie GmbH Breast cancer diagnostics
EP2433644A1 (en) 2010-09-22 2012-03-28 IMBA-Institut für Molekulare Biotechnologie GmbH Breast cancer therapeutics
EP2622091B1 (en) 2010-09-23 2019-03-13 Precision Biologics, Inc. Colon and pancreas cancer peptidomimetics
CN103154037A (en) 2010-10-05 2013-06-12 诺瓦提斯公司 Anti-IL 12 Rbeta 1 antibodies and their use in treating autoimmune and inflammatory disorders
NZ609984A (en) * 2010-10-11 2015-05-29 Biogen Idec Internat Neuroscience Gmbh Human anti-tau antibodies
WO2012061120A1 (en) 2010-10-25 2012-05-10 Regents Of The University Of Minnesota Therapeutic composition for treatment of glioblastoma
PT2634194T (en) 2010-10-29 2018-10-19 Perseus Proteomics Inc Anti-cdh3 antibody having high internalization capacity
GB201019467D0 (en) 2010-11-17 2010-12-29 Biotecnol Sa Therapeutic agent
TWI452136B (en) 2010-11-17 2014-09-11 中外製藥股份有限公司 A multiple specific antigen-binding molecule that replaces the function of Factor VIII in blood coagulation
US20130245233A1 (en) 2010-11-24 2013-09-19 Ming Lei Multispecific Molecules
KR102385507B1 (en) 2010-11-30 2022-04-12 추가이 세이야쿠 가부시키가이샤 Antigen-binding molecule capable of binding to plurality of antigen molecules repeatedly
ES2693232T3 (en) 2010-11-30 2018-12-10 Chugai Seiyaku Kabushiki Kaisha Therapeutic agent that induces cytotoxicity
KR101993921B1 (en) 2010-12-06 2019-06-28 시애틀 지네틱스, 인크. Humanized antibodies to liv-1 and use of same to treat cancer
EP2659270A4 (en) 2010-12-31 2014-05-21 Bioatla Llc Comprehensive monoclonal antibody generation
US9315566B2 (en) 2011-01-24 2016-04-19 National University Of Singapore Pathogenic mycobacteria-derived mannose-capped lipoarabinomannan antigen binding proteins
US9447187B2 (en) 2011-02-03 2016-09-20 Alexion Pharmaceuticals, Inc. Use of an anti-CD200 antibody for prolonging the survival of allografts
CA2827923C (en) 2011-02-25 2021-11-23 Chugai Seiyaku Kabushiki Kaisha Fc.gamma.riib-specific fc antibody
KR20190107761A (en) 2011-03-09 2019-09-20 셀 시그널링 테크놀러지, 인크. Methods and reagents for creating monoclonal antibodies
EP2500073A1 (en) 2011-03-17 2012-09-19 ChromaCon AG Method for identification and purification of multi-specific polypeptides
DK2698431T3 (en) 2011-03-30 2020-11-30 Chugai Pharmaceutical Co Ltd Maintenance of antigen-binding molecules in blood plasma and method of modifying immunogenicity
MX356426B (en) 2011-04-04 2018-05-29 Univ Iowa Res Found Methods of improving vaccine immunogenicity.
CA2831957A1 (en) 2011-04-07 2012-10-11 Amgen Inc. Novel egfr binding proteins
WO2012142164A1 (en) 2011-04-12 2012-10-18 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Human monoclonal antibodies that bind insulin-like growth factor (igf) i and ii
US10232039B2 (en) 2011-04-12 2019-03-19 Duke University Compositions and methods for the treatment of tissue fibrosis
NZ713461A (en) 2011-04-15 2017-02-24 Compugen Ltd Polypeptides and polynucleotides, and uses thereof for treatment of immune related disorders and cancer
WO2012144208A1 (en) 2011-04-18 2012-10-26 国立大学法人東京大学 Diagnosis and treatment of cancer using anti-itm2a antibody
JOP20200043A1 (en) 2011-05-10 2017-06-16 Amgen Inc Methods of treating or preventing cholesterol related disorders
JP6400470B2 (en) 2011-05-16 2018-10-03 ジェネロン(シャンハイ)コーポレイション リミテッド Multispecific Fab fusion proteins and methods of use
MX347514B (en) 2011-05-25 2017-04-28 Innate Pharma Sa Anti-kir antibodies for the treatment of inflammatory disorders.
US8691231B2 (en) 2011-06-03 2014-04-08 Merrimack Pharmaceuticals, Inc. Methods of treatment of tumors expressing predominantly high affinity EGFR ligands or tumors expressing predominantly low affinity EGFR ligands with monoclonal and oligoclonal anti-EGFR antibodies
WO2012172495A1 (en) 2011-06-14 2012-12-20 Novartis Ag Compositions and methods for antibodies targeting tem8
CA2839755A1 (en) 2011-06-17 2012-12-20 President And Fellows Of Harvard College Frizzled 2 as a target for therapeutic antibodies in the treatment of cancer
CN109517059B (en) 2011-06-30 2023-03-28 中外制药株式会社 Heterodimerised polypeptides
WO2013001517A1 (en) 2011-06-30 2013-01-03 Compugen Ltd. Polypeptides and uses thereof for treatment of autoimmune disorders and infection
WO2013006437A1 (en) 2011-07-01 2013-01-10 Novartis Ag Method for treating metabolic disorders
EP2731970B1 (en) 2011-07-15 2018-11-28 MorphoSys AG Antibodies that are cross-reactive for macrophage migration inhibitory factor (mif) and d-dopachrome tautomerase (d-dt)
US9156911B2 (en) 2011-07-18 2015-10-13 Amgen Inc. Apelin antigen-binding proteins and uses thereof
EP2735315B1 (en) 2011-07-19 2019-10-02 Chugai Seiyaku Kabushiki Kaisha Stable protein-containing preparation containing argininamide or valinamide
WO2013017656A1 (en) 2011-08-02 2013-02-07 Medizinische Universität Wien Antagonists of ribonucleases for treating obesity
WO2013017691A1 (en) 2011-08-04 2013-02-07 Medizinische Universität Innsbruck Cahgt1p inhibitors for use in the treatment of candidiasis
US9550835B2 (en) 2011-08-23 2017-01-24 Chugai Seiyaku Kabushiki Kaisha Anti-DDR1 antibody having anti-tumor activity
EP2749641B1 (en) 2011-09-07 2021-06-02 Chugai Seiyaku Kabushiki Kaisha Cancer stem cell isolation
EP2758535B1 (en) * 2011-09-19 2016-11-09 Kymab Limited Antibodies, variable domains&chains tailored for human use
CA2791109C (en) 2011-09-26 2021-02-16 Merus B.V. Generation of binding molecules
EP2761008A1 (en) 2011-09-26 2014-08-06 Kymab Limited Chimaeric surrogate light chains (slc) comprising human vpreb
WO2013047748A1 (en) 2011-09-30 2013-04-04 中外製薬株式会社 Antigen-binding molecule promoting disappearance of antigens having plurality of biological activities
CN107287660A (en) 2011-09-30 2017-10-24 中外制药株式会社 Ion concentration dependence binding molecule library
CN104093424A (en) 2011-09-30 2014-10-08 中外制药株式会社 Antigen-binding molecule inducing immune response to target antigen
TWI812924B (en) 2011-09-30 2023-08-21 日商中外製藥股份有限公司 Antigen-binding molecules that promote antigen disappearance
TW201326209A (en) 2011-09-30 2013-07-01 Chugai Pharmaceutical Co Ltd Therapeutic antigen-binding molecule with a FcRn-binding domain that promotes antigen clearance
US20150299313A1 (en) 2011-10-05 2015-10-22 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule for promoting clearance from plasma of antigen comprising suger chain receptor-binding domain
CN104039351A (en) 2011-10-13 2014-09-10 阿尔皮奥治疗学股份有限公司 Methods for treating vascular leak syndrome and cancer
EP3501536A1 (en) 2011-10-13 2019-06-26 Aerpio Therapeutics, Inc. Treatment of ocular disease
WO2013054307A2 (en) 2011-10-14 2013-04-18 Novartis Ag Antibodies and methods for wnt pathway-related diseases
WO2013063496A1 (en) 2011-10-28 2013-05-02 Millennium Pharmaceuticals, Inc. Biomarkers of response to nae inhibitors
WO2013062083A1 (en) 2011-10-28 2013-05-02 ファーマロジカルズ・リサーチ プライベート リミテッド Cancer stem cell-specific molecule
BR112014010257A2 (en) 2011-10-31 2017-04-18 Chugai Pharmaceutical Co Ltd antigen binding molecule having regulated conjugation between heavy and light chains
WO2013067057A1 (en) 2011-11-01 2013-05-10 Bionomics, Inc. Anti-gpr49 antibodies
AU2012332587B2 (en) 2011-11-01 2017-02-23 Bionomics, Inc. Antibodies and methods of treating cancer
US9221907B2 (en) 2011-11-01 2015-12-29 Bionomics Inc. Anti-GPR49 monoclonal antibodies
AU2012332588B2 (en) 2011-11-01 2017-09-07 Bionomics, Inc. Methods of blocking cancer stem cell growth
CN104126017A (en) 2011-11-11 2014-10-29 米伦纽姆医药公司 Biomarkers of response to proteasome inhibitors
US9920373B2 (en) 2011-11-11 2018-03-20 Millennium Pharmaceuticals, Inc. Biomarkers of response to proteasome inhibitors
PL2594587T3 (en) 2011-11-16 2014-11-28 Adrenomed Ag Anti-Adrenomedullin (ADM) antibody or anti-ADM antibody fragment or anti-ADM non-Ig protein scaffold for reducing the risk of mortality in a patient having a chronic or acute disease or acute condition
CA2855746A1 (en) 2011-11-16 2013-05-23 John Stephen HILL Methods of treating epidermal growth factor deletion mutant viii related disorders
US20140314775A1 (en) 2011-11-16 2014-10-23 Adrenomed Ag Anti-adrenomedullin (adm) antibody or anti-adm antibody fragment of anti-adm non-ig scaffold for regulating the fluid balance in a patient having a chronic or acute disease
BR112014011670B1 (en) 2011-11-16 2021-05-25 Adrenomed Ag anti-adrenomedullin antibody (adm) or anti-adm antibody fragment or a non-igg anti-adm protein scaffold that binds to adrenomedullin and pharmaceutical formulation
LT2780370T (en) 2011-11-16 2019-11-25 Adrenomed Ag Anti-adrenomedullin (adm) antibody or anti-adm antibody fragment or anti-adm non-ig scaffold for use in therapy of an acute disease or acute condition of a patient for stabilizing the circulation
DK2780717T3 (en) 2011-11-16 2017-02-13 Sphingotec Gmbh ADRENOMEDULLINASSAYS AND METHODS FOR DETERMINING MODERN ADRENOMEDULLIN
ES2938653T3 (en) 2011-11-16 2023-04-13 Adrenomed Ag Anti-adrenomedullin (ADM) antibody or anti-ADM antibody fragment or anti-ADM non-Ig scaffold for the prevention or reduction of organ dysfunction or organ failure in a patient presenting with a chronic or acute disease or acute condition
RU2739792C1 (en) 2011-11-30 2020-12-28 Чугаи Сейяку Кабусики Кайся Carrier containing a drug into a cell for forming an immune complex
US9253965B2 (en) 2012-03-28 2016-02-09 Kymab Limited Animal models and therapeutic molecules
AU2012349735B2 (en) 2011-12-05 2016-05-19 Novartis Ag Antibodies for epidermal growth factor receptor 3 (HER3)
US20130273029A1 (en) 2011-12-05 2013-10-17 Novartis Ag Antibodies for epidermal growth factor receptor 3 (her3) directed to domain ii of her3
EP3527070A1 (en) * 2011-12-20 2019-08-21 Regeneron Pharmaceuticals, Inc. Humanized light chain mice
BR112014015111A2 (en) 2011-12-21 2017-06-13 Novartis Ag p-factor targeting antibody compositions and processes
TWI593705B (en) 2011-12-28 2017-08-01 Chugai Pharmaceutical Co Ltd Humanized anti-epiregulin antibody and cancer therapeutic agent containing the antibody as an active ingredient
BR112014018481A2 (en) 2012-02-01 2017-07-04 Compugen Ltd monoclonal or polyclonal antibody or antigen-binding fragment thereof, polynucleotide, monoclonal antibody, vector, hybridoma, antibody, hybridoma 5166-2 and / or 5166-9, antigen-binding antibody or fragment, pharmaceutical composition, antibody use or antibody binding fragment, method for treating cancer, method for diagnosing cancer in an individual, antibody, method, composition or use
HUE13746964T2 (en) 2012-02-06 2020-01-28 Inhibrx Inc Cd47 antibodies and methods of use thereof
US20150210763A1 (en) 2012-02-09 2015-07-30 Chugai Seiyaku Kabushiki Kaisha MODIFIED Fc REGION OF ANTIBODY
SG11201405137QA (en) 2012-02-24 2014-12-30 Chugai Pharmaceutical Co Ltd ANTIGEN-BINDING MOLECULE FOR PROMOTING DISAPPEARANCE OF ANTIGEN VIA FcγRIIB
US10251377B2 (en) 2012-03-28 2019-04-09 Kymab Limited Transgenic non-human vertebrate for the expression of class-switched, fully human, antibodies
GB2502127A (en) 2012-05-17 2013-11-20 Kymab Ltd Multivalent antibodies and in vivo methods for their production
US9751942B2 (en) 2012-03-29 2017-09-05 Chugai Seiyaku Kabushiki Kaisha Anti-LAMP5 antibody and utilization thereof
KR20150003251A (en) 2012-04-04 2015-01-08 가부시키가이샤 페르세우스 프로테오믹스 Conjugate Of Anti-CDH3(P-Cadherin) Antibody And Drug
PT2838998T (en) 2012-04-18 2018-01-16 Cell Signaling Technology Inc Egfr and ros1 in cancer
KR102171431B1 (en) 2012-04-20 2020-10-30 메뤼스 엔.페. Methods and means for the production of Ig-like molecules
EA039663B1 (en) 2012-05-03 2022-02-24 Амген Инк. Use of an anti-pcsk9 antibody for lowering serum cholesterol ldl and treating cholesterol related disorders
MX2019001355A (en) 2012-05-10 2023-01-17 Bioatla Llc Multi-specific monoclonal antibodies.
US20130309223A1 (en) 2012-05-18 2013-11-21 Seattle Genetics, Inc. CD33 Antibodies And Use Of Same To Treat Cancer
TWI766939B (en) 2012-05-30 2022-06-11 日商中外製藥股份有限公司 target tissue-specific antigen binding molecule
ES2856272T3 (en) 2012-05-30 2021-09-27 Chugai Pharmaceutical Co Ltd Antigen-binding molecule to remove aggregated antigens
CN104540961A (en) 2012-06-11 2015-04-22 安姆根公司 Dual receptor antagonistic antigen-binding proteins and uses thereof
WO2013187495A1 (en) 2012-06-14 2013-12-19 中外製薬株式会社 ANTIGEN-BINDING MOLECULE CONTAINING MODIFIED Fc REGION
US9890215B2 (en) 2012-06-22 2018-02-13 King's College London Vista modulators for diagnosis and treatment of cancer
AU2013277051B2 (en) 2012-06-22 2018-06-07 King's College London Novel VISTA-Ig constructs and the use of VISTA-Ig for treatment of autoimmune, allergic and inflammatory disorders
AR091649A1 (en) 2012-07-02 2015-02-18 Bristol Myers Squibb Co OPTIMIZATION OF ANTIBODIES THAT FIX THE LYMPHOCYTE ACTIVATION GEN 3 (LAG-3) AND ITS USES
US9290489B2 (en) 2012-07-06 2016-03-22 Duke University Activation of TRPV4 ion channel by physical stimuli and critical role for TRPV4 in organ-specific inflammation and itch
US9616101B2 (en) 2012-07-06 2017-04-11 Kyoto Prefectural Public University Corporation Differentiation marker and differentiation control of eye cell
PL2872171T3 (en) 2012-07-13 2021-07-12 The Trustees Of The University Of Pennsylvania Toxicity management for anti-tumor activity of cars
KR102273985B1 (en) 2012-08-24 2021-07-06 추가이 세이야쿠 가부시키가이샤 FcγRIIb-specific Fc region variant
WO2014030750A1 (en) 2012-08-24 2014-02-27 中外製薬株式会社 MOUSE FcγRII-SPECIFIC Fc ANTIBODY
JOP20200308A1 (en) 2012-09-07 2017-06-16 Novartis Ag IL-18 binding molecules
US9381244B2 (en) 2012-09-07 2016-07-05 King's College London VISTA modulators for diagnosis and treatment of cancer
WO2014051022A1 (en) 2012-09-27 2014-04-03 中外製薬株式会社 Fgfr3 fusion gene and pharmaceutical drug targeting same
WO2014050926A1 (en) 2012-09-28 2014-04-03 中外製薬株式会社 Method for evaluating blood coagulation reaction
US10662477B2 (en) 2012-10-01 2020-05-26 Millennium Pharmaceuticals, Inc. Biomarkers and methods to predict response to inhibitors and uses thereof
UA118441C2 (en) 2012-10-08 2019-01-25 Протена Біосаєнсиз Лімітед Antibodies recognizing alpha-synuclein
RS57696B1 (en) 2012-11-08 2018-12-31 Univ Miyazaki Antibody capable of specifically recognizing transferrin receptor
AU2013342163B2 (en) 2012-11-08 2018-08-16 F. Hoffmann-La Roche Ltd IL-6 antagonists and uses thereof
WO2014084859A1 (en) 2012-11-30 2014-06-05 Novartis Ag Molecules and methods for modulating tmem16a activities
AP2015008365A0 (en) 2012-12-05 2015-04-30 Novartis Ag Compositions and methods for antibodies targeting epo
US20140186350A1 (en) 2012-12-18 2014-07-03 Novartis Ag Compositions and methods for long acting molecules
DK2940135T5 (en) 2012-12-27 2021-09-20 Chugai Pharmaceutical Co Ltd Heterodimerized polypeptide
ES2667333T3 (en) 2012-12-28 2018-05-10 Precision Biologics, Inc. Humanized monoclonal antibodies and methods of use for the diagnosis and treatment of colon and pancreas cancer
EP2948478B1 (en) 2013-01-25 2019-04-03 Amgen Inc. Antibodies targeting cdh19 for melanoma
JO3519B1 (en) 2013-01-25 2020-07-05 Amgen Inc Antibody constructs for CDH19 and CD3
CN105101997B (en) 2013-02-06 2018-11-09 印希彼有限合伙公司 Blood platelet is not reduced and does not reduce the CD47 antibody and its application method of erythrocyte
JP6084708B2 (en) 2013-02-08 2017-02-22 ノバルティス アーゲー Anti-IL-17A antibodies and their use in the treatment of autoimmune and inflammatory disorders
AR094778A1 (en) 2013-02-13 2015-08-26 Laboratoire Français Du Fractionnement Et Des Biotechnologies PROTEINS WITH MODIFIED GLYCOSILATION AND METHODS FOR PRODUCERS
CA2900909A1 (en) 2013-02-13 2014-08-21 Laboratoire Francais Du Fractionnement Et Des Biotechnologies Highly galactosylated anti-tnf-.alpha. antibodies and uses thereof
US9458246B2 (en) 2013-03-13 2016-10-04 Amgen Inc. Proteins specific for BAFF and B7RP1
CA2902026C (en) 2013-03-13 2023-08-29 Prothena Biosciences Limited Tau immunotherapy
JOP20140087B1 (en) 2013-03-13 2021-08-17 Amgen Inc Proteins specific for baff and b7rp1 and uses thereof
EP2967012B1 (en) 2013-03-14 2020-09-16 Erasmus University Medical Center Rotterdam Transgenic non-human mammal for antibody production
WO2014159239A2 (en) 2013-03-14 2014-10-02 Novartis Ag Antibodies against notch 3
US9505849B2 (en) 2013-03-15 2016-11-29 Amgen Research (Munich) Gmbh Antibody constructs for influenza M2 and CD3
GB2525568B (en) 2013-03-15 2020-10-14 Abvitro Llc Single cell barcoding for antibody discovery
SI2970449T1 (en) 2013-03-15 2019-11-29 Amgen Res Munich Gmbh Single chain binding molecules comprising n-terminal abp
US9788534B2 (en) 2013-03-18 2017-10-17 Kymab Limited Animal models and therapeutic molecules
ES2830036T3 (en) 2013-03-20 2021-06-02 Sphingotec Gmbh Adrenomedullin to guide blood pressure lowering therapy
CN113621057A (en) 2013-04-02 2021-11-09 中外制药株式会社 Fc region variants
US9783618B2 (en) 2013-05-01 2017-10-10 Kymab Limited Manipulation of immunoglobulin gene diversity and multi-antibody therapeutics
US11707056B2 (en) 2013-05-02 2023-07-25 Kymab Limited Animals, repertoires and methods
US9783593B2 (en) 2013-05-02 2017-10-10 Kymab Limited Antibodies, variable domains and chains tailored for human use
CN105264381B (en) 2013-05-16 2018-06-01 国立大学法人京都大学 For determining the method for cancer prognosis
CA2927309A1 (en) 2013-05-24 2014-11-27 Promis Neurosciences Inc. Fasr antibodies for diagnostic and therapeutic use
EP3009518B1 (en) 2013-06-11 2020-08-12 National Center of Neurology and Psychiatry Method for predicting post-therapy prognosis of relapsing-remitting multiple sclerosis (rrms) patient, and method for determining applicability of novel therapy
AR096601A1 (en) 2013-06-21 2016-01-20 Novartis Ag ANTIBODIES OF LEXINED OXIDATED LDL RECEIVER 1 AND METHODS OF USE
EP3015115A4 (en) 2013-06-24 2017-02-22 Chugai Seiyaku Kabushiki Kaisha Therapeutic agent comprising humanized anti-epiregulin antibody as active ingredient for non-small-cell lung carcinoma excluding adenocarcinoma
EP3013422A1 (en) 2013-06-28 2016-05-04 Amgen Inc. Methods for treating homozygous familial hypercholesterolemia
CN105517572B (en) 2013-07-05 2019-05-31 华盛顿大学商业中心 The monoclonal antibody of neutralization soluble M IC for treating cancer
US10208125B2 (en) 2013-07-15 2019-02-19 University of Pittsburgh—of the Commonwealth System of Higher Education Anti-mucin 1 binding agents and uses thereof
AU2014306564B2 (en) 2013-08-14 2019-10-17 Modmab Therapeutics Corporation Antibodies against frizzled proteins and methods of use thereof
AU2014307589A1 (en) 2013-08-14 2016-02-11 Novartis Ag Methods of treating sporadic inclusion body myositis
US10702608B2 (en) 2013-09-08 2020-07-07 Kodiak Sciences Inc. Factor VIII zwitterionic polymer conjugates
EP3047857A4 (en) 2013-09-20 2017-08-09 Chugai Seiyaku Kabushiki Kaisha Treatment for hemorrhagic diseases by anti-protein-c antibody
SG11201602261VA (en) 2013-09-27 2016-04-28 Chugai Pharmaceutical Co Ltd Method for producing polypeptide heteromultimer
ES2859373T3 (en) 2013-10-01 2021-10-01 Kymab Ltd Animal models and therapeutic molecules
EP3070168A4 (en) 2013-11-11 2017-06-28 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing modified antibody variable region
TW202043467A (en) 2013-12-04 2020-12-01 日商中外製藥股份有限公司 Antigen-binding molecules, the antigen-binding activity of which varies according to the concentration of compounds, and libraries of said molecules
US9023359B1 (en) 2014-07-15 2015-05-05 Kymab Limited Targeting rare human PCSK9 variants for cholesterol treatment
US8986691B1 (en) 2014-07-15 2015-03-24 Kymab Limited Method of treating atopic dermatitis or asthma using antibody to IL4RA
US9914769B2 (en) 2014-07-15 2018-03-13 Kymab Limited Precision medicine for cholesterol treatment
US9034332B1 (en) 2014-07-15 2015-05-19 Kymab Limited Precision medicine by targeting rare human PCSK9 variants for cholesterol treatment
US9045548B1 (en) 2014-07-15 2015-06-02 Kymab Limited Precision Medicine by targeting rare human PCSK9 variants for cholesterol treatment
US9067998B1 (en) 2014-07-15 2015-06-30 Kymab Limited Targeting PD-1 variants for treatment of cancer
US8883157B1 (en) 2013-12-17 2014-11-11 Kymab Limited Targeting rare human PCSK9 variants for cholesterol treatment
US9051378B1 (en) 2014-07-15 2015-06-09 Kymab Limited Targeting rare human PCSK9 variants for cholesterol treatment
US8980273B1 (en) 2014-07-15 2015-03-17 Kymab Limited Method of treating atopic dermatitis or asthma using antibody to IL4RA
US8945560B1 (en) 2014-07-15 2015-02-03 Kymab Limited Method of treating rheumatoid arthritis using antibody to IL6R
US9017678B1 (en) 2014-07-15 2015-04-28 Kymab Limited Method of treating rheumatoid arthritis using antibody to IL6R
US8986694B1 (en) 2014-07-15 2015-03-24 Kymab Limited Targeting human nav1.7 variants for treatment of pain
US9045545B1 (en) 2014-07-15 2015-06-02 Kymab Limited Precision medicine by targeting PD-L1 variants for treatment of cancer
US8992927B1 (en) 2014-07-15 2015-03-31 Kymab Limited Targeting human NAV1.7 variants for treatment of pain
US11014987B2 (en) 2013-12-24 2021-05-25 Janssen Pharmaceutics Nv Anti-vista antibodies and fragments, uses thereof, and methods of identifying same
SG10201805933TA (en) 2013-12-24 2018-08-30 Janssen Pharmaceutica Nv Anti-vista antibodies and fragments
BR112016014824A2 (en) 2013-12-27 2017-09-19 Chugai Pharmaceutical Co Ltd METHOD TO PURIFY ANTIBODY THAT HAS A LOW ISOELECTRIC POINT
US10391081B2 (en) 2013-12-27 2019-08-27 Chugai Seiyaku Kabushiki Kaisha FGFR gatekeeper mutant gene and drug targeting same
CN113504375B (en) 2014-01-07 2024-01-09 生物蛋白有限公司 Ortholog-targeting proteins
WO2015121383A1 (en) 2014-02-12 2015-08-20 Michael Uhlin Bispecific antibodies for use in stem cell transplantation
GB201403775D0 (en) 2014-03-04 2014-04-16 Kymab Ltd Antibodies, uses & methods
JP2017512772A (en) 2014-03-12 2017-05-25 プロセナ バイオサイエンシーズ リミテッド Anti-laminin 4 antibody specific for LG1-3
US10059761B2 (en) 2014-03-12 2018-08-28 Prothena Biosciences Limited Anti-Laminin4 antibodies specific for LG4-5
US10407506B2 (en) 2014-03-12 2019-09-10 Prothena Biosciences Limited Anti-MCAM antibodies and associated methods of use
TW201623331A (en) 2014-03-12 2016-07-01 普羅帝納生物科學公司 Anti-MCAM antibodies and associated methods of use
US9546214B2 (en) 2014-04-04 2017-01-17 Bionomics, Inc. Humanized antibodies that bind LGR5
TW201622746A (en) 2014-04-24 2016-07-01 諾華公司 Methods of improving or accelerating physical recovery after surgery for hip fracture
DK3151921T3 (en) 2014-06-06 2019-12-02 Bristol Myers Squibb Co ANTIBODIES AGAINST GLUCOCORTICOID-INDUCED TUMOR CANCER FACTOR RECEPTORS (GITR) AND APPLICATIONS THEREOF
MX2016016310A (en) 2014-06-11 2017-10-20 A Green Kathy Use of vista agonists and antagonists to suppress or enhance humoral immunity.
TWI695011B (en) 2014-06-18 2020-06-01 美商梅爾莎納醫療公司 Monoclonal antibodies against her2 epitope and methods of use thereof
TW201625299A (en) 2014-06-20 2016-07-16 Chugai Pharmaceutical Co Ltd Pharmaceutical composition for use in prevention and/or treatment of disease that develops or progresses as a result of decrease or loss of activity of blood coagulation factor viii and/or activated blood coagulation factor viii
EP3161001A2 (en) 2014-06-25 2017-05-03 Novartis AG Antibodies specific for il-17a fused to hyaluronan binding peptide tags
WO2015198243A2 (en) 2014-06-25 2015-12-30 Novartis Ag Compositions and methods for long acting proteins
WO2015198240A2 (en) 2014-06-25 2015-12-30 Novartis Ag Compositions and methods for long acting proteins
US9840553B2 (en) 2014-06-28 2017-12-12 Kodiak Sciences Inc. Dual PDGF/VEGF antagonists
CN107073297B (en) 2014-07-08 2021-09-14 纽约大学 Tau imaging ligands and their use in diagnosis and treatment of tauopathies
US9139648B1 (en) 2014-07-15 2015-09-22 Kymab Limited Precision medicine by targeting human NAV1.9 variants for treatment of pain
US9150660B1 (en) 2014-07-15 2015-10-06 Kymab Limited Precision Medicine by targeting human NAV1.8 variants for treatment of pain
UY36245A (en) 2014-07-31 2016-01-29 Amgen Res Munich Gmbh ANTIBODY CONSTRUCTS FOR CDH19 AND CD3
CA2952540C (en) 2014-07-31 2022-06-21 Amgen Research (Munich) Gmbh Bispecific single chain antibody construct with enhanced tissue distribution
TW201609812A (en) 2014-07-31 2016-03-16 安美基研究(慕尼黑)公司 Optimized cross-species specific bispecific single chain antibody constructs
WO2016016442A1 (en) 2014-08-01 2016-02-04 INSERM (Institut National de la Santé et de la Recherche Médicale) An anti-cd45rc antibody for use as drug
DK3177642T3 (en) 2014-08-07 2022-02-21 Novartis Ag ANGIOPOIETIN-LIKE 4 ANTIBODIES AND METHODS OF USING IT
TW201613977A (en) 2014-08-07 2016-04-16 Novartis Ag Angiopoetin-like 4 (ANGPTL4) antibodies and methods of use
US20170362304A1 (en) 2014-08-20 2017-12-21 Chugai Seiyaku Kabushiki Kaisha Method for measuring viscosity of protein solution
US10329265B2 (en) 2014-08-22 2019-06-25 Duke University TRPA1 and TRPV4 inhibitors and methods of using the same for organ-specific inflammation and itch
US20160075772A1 (en) 2014-09-12 2016-03-17 Regeneron Pharmaceuticals, Inc. Treatment of Fibrodysplasia Ossificans Progressiva
SG11201702060VA (en) 2014-09-15 2017-04-27 Abvitro Inc High-throughput nucleotide library sequencing
CA2961464A1 (en) 2014-09-16 2016-03-24 Ubi Ip Holdings Treatment and functional cure of hiv infection by monoclonal antibodies to cd4 mediating competitive hiv entry inhibition
MA40764A (en) 2014-09-26 2017-08-01 Chugai Pharmaceutical Co Ltd THERAPEUTIC AGENT INDUCING CYTOTOXICITY
WO2016059220A1 (en) 2014-10-16 2016-04-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Tcr-activating agents for use in the treatment of t-all
WO2016061562A2 (en) 2014-10-17 2016-04-21 Kodiak Sciences Inc. Butyrylcholinesterase zwitterionic polymer conjugates
WO2016073401A1 (en) 2014-11-03 2016-05-12 Bristol-Myers Squibb Company Use of caprylic acid precipitation for protein purification
UA122673C2 (en) 2014-11-07 2020-12-28 Елевен Байотерапьютікс, Інк. Improved il-6 antibodies
WO2016073894A1 (en) 2014-11-07 2016-05-12 Eleven Biotherapeutics, Inc. Therapeutic agents with increased ocular retention
ME03806B (en) 2014-11-21 2021-04-20 Bristol Myers Squibb Co Antibodies against cd73 and uses thereof
CA2969730A1 (en) 2014-12-05 2016-06-09 Immunext, Inc. Identification of vsig8 as the putative vista receptor and its use thereof to produce vista/vsig8 modulators
UY36449A (en) 2014-12-19 2016-07-29 Novartis Ag COMPOSITIONS AND METHODS FOR ANTIBODIES DIRECTED TO BMP6
CN110256558B (en) 2014-12-23 2023-07-04 百时美施贵宝公司 Antibodies to TIGIT
US11229628B2 (en) 2015-01-09 2022-01-25 Duke University TRPA1 and TRPV4 inhibitors and methods of using the same for organ-specific inflammation and itch
TWI781507B (en) 2015-01-28 2022-10-21 愛爾蘭商普羅佘納生物科技有限公司 Anti-transthyretin antibodies
TWI711631B (en) 2015-01-28 2020-12-01 愛爾蘭商普羅佘納生物科技有限公司 Anti-transthyretin antibodies
TWI786505B (en) 2015-01-28 2022-12-11 愛爾蘭商普羅佘納生物科技有限公司 Anti-transthyretin antibodies
EP3253778A1 (en) 2015-02-05 2017-12-13 Chugai Seiyaku Kabushiki Kaisha Antibodies comprising an ion concentration dependent antigen-binding domain, fc region variants, il-8-binding antibodies, and uses therof
KR101892883B1 (en) 2015-02-27 2018-10-05 추가이 세이야쿠 가부시키가이샤 Composition for treating il-6-related diseases
KR102490956B1 (en) 2015-03-13 2023-01-19 브리스톨-마이어스 스큅 컴퍼니 Use of alkaline wash during chromatography to remove impurities
WO2016153983A1 (en) 2015-03-20 2016-09-29 Bristol-Myers Squibb Company Use of dextran for protein purification
US20180105554A1 (en) 2015-03-20 2018-04-19 Bristol-Myers Squibb Company Use of dextran sulfate to enhance protein a affinity chromatography
AU2016248817A1 (en) 2015-04-17 2017-08-17 F. Hoffmann-La Roche Ag Combination therapy with coagulation factors and multispecific antibodies
ES2945313T3 (en) 2015-04-17 2023-06-30 Amgen Res Munich Gmbh Bispecific antibody constructs for CDH3 and CD3
WO2016172726A1 (en) 2015-04-24 2016-10-27 The Regents Of The University Of California Modulators of ror1-ror2 binding
KR20170140318A (en) 2015-04-29 2017-12-20 리제너론 파마슈티칼스 인코포레이티드 Treatment of advanced ossificant fibrous dysplasia
ES2936317T3 (en) 2015-05-29 2023-03-16 Bristol Myers Squibb Co Antibodies against OX40 and uses thereof
SG11201707815RA (en) 2015-06-05 2017-12-28 Novartis Ag Antibodies targeting bone morphogenetic protein 9 (bmp9) and methods therefor
CN114805576A (en) 2015-06-24 2022-07-29 詹森药业有限公司 anti-VISTA antibodies and fragments
EA201890162A1 (en) 2015-06-29 2018-07-31 Бристол-Маерс Сквибб Компани ANTIBODIES TO CD40 WITH ENHANCED AGONISTIC ACTIVITY
JO3711B1 (en) 2015-07-13 2021-01-31 H Lundbeck As Antibodies specific for hyperphosphorylated tau and methods of use thereof
TWI793062B (en) 2015-07-31 2023-02-21 德商安美基研究(慕尼黑)公司 Antibody constructs for dll3 and cd3
TWI717375B (en) 2015-07-31 2021-02-01 德商安美基研究(慕尼黑)公司 Antibody constructs for cd70 and cd3
TWI829617B (en) 2015-07-31 2024-01-21 德商安美基研究(慕尼黑)公司 Antibody constructs for flt3 and cd3
TWI744242B (en) 2015-07-31 2021-11-01 德商安美基研究(慕尼黑)公司 Antibody constructs for egfrviii and cd3
TWI796283B (en) 2015-07-31 2023-03-21 德商安美基研究(慕尼黑)公司 Antibody constructs for msln and cd3
CA3185706A1 (en) 2015-08-03 2017-02-09 Novartis Ag Methods of treating fgf21-associated disorders
US10407484B2 (en) 2015-09-02 2019-09-10 The Regents Of The University Of Colorado, A Body Corporate Compositions and methods for modulating T-cell mediated immune response
EP3347377B1 (en) 2015-09-09 2021-02-17 Novartis AG Thymic stromal lymphopoietin (tslp)-binding antibodies and methods of using the antibodies
UY36889A (en) 2015-09-09 2017-04-28 Novartis Ag MOLECULES OF JOINT TO TIMICA STROMAL LYMPHOPOYETIN (TSLP) AND METHODS OF USE OF THE MOLECULES
WO2017046774A2 (en) 2015-09-16 2017-03-23 Prothena Biosciences Limited Use of anti-mcam antibodies for treatment or prophylaxis of giant cell arteritis, polymyalgia rheumatica or takayasu's arteritis
JP2018530540A (en) 2015-09-16 2018-10-18 プロセナ バイオサイエンシーズ リミテッド Use of anti-MCAM antibodies for the treatment or prevention of giant cell arteritis, polymyalgia rheumatica or Takayasu arteritis
CR20180217A (en) 2015-09-18 2018-05-03 Chugai Pharmaceutical Co Ltd ANTIBODIES THAT JOIN INTERLEUCINE 8 (IL-8) AND ITS USES
JP6869233B2 (en) 2015-09-24 2021-05-12 アブビトロ, エルエルシー Affinity-oligonucleotide conjugates and their use
MX2018003534A (en) 2015-09-25 2019-04-25 Abvitro Llc High throughput process for t cell receptor target identification of natively-paired t cell receptor sequences.
JP6869553B2 (en) 2015-10-30 2021-05-12 ギャラクシー バイオテック, エルエルシーGalaxy Biotech, Llc Very strong antibody that binds to death receptor 4 and death receptor 5.
JP6925278B2 (en) 2015-11-18 2021-08-25 中外製薬株式会社 Method of enhancing humoral immune response
WO2017086367A1 (en) 2015-11-18 2017-05-26 中外製薬株式会社 Combination therapy using t cell redirection antigen binding molecule against cell having immunosuppressing function
BR112018010172A2 (en) 2015-11-19 2018-11-21 Bristol Myers Squibb Co antibodies to glucocorticoid-induced tumor necrosis factor receptor (gitr) and their uses
CN108602885B (en) 2015-11-30 2022-05-24 百时美施贵宝公司 Anti-human IP-10 antibodies and uses thereof
CA3006759A1 (en) 2015-11-30 2017-06-08 The Regents Of The University Of California Tumor-specific payload delivery and immune activation using a human antibody targeting a highly specific tumor cell surface antigen
EP3389711A1 (en) 2015-12-18 2018-10-24 Novartis AG Antibodies targeting cd32b and methods of use thereof
EP3395835B1 (en) 2015-12-25 2021-02-03 Chugai Seiyaku Kabushiki Kaisha Antibody having enhanced activity, and method for modifying same
RU2744860C2 (en) 2015-12-30 2021-03-16 Кодиак Сайенсиз Инк. Antibodies and their conjugates
ES2847155T3 (en) 2016-01-21 2021-08-02 Novartis Ag Multispecific molecules targeting CLL-1
BR112018015715A2 (en) 2016-02-03 2019-02-05 Amgen Inc bispecific bcma and cd3 t cell coupling antibody constructs
EA039859B1 (en) 2016-02-03 2022-03-21 Эмджен Рисерч (Мюник) Гмбх Bispecific antibody constructs binding egfrviii and cd3
AU2017216237B2 (en) 2016-02-03 2024-04-04 Amgen Research (Munich) Gmbh PSMA and CD3 bispecific T cell engaging antibody constructs
WO2017137830A1 (en) 2016-02-12 2017-08-17 Janssen Pharmaceutica Nv Anti-vista (b7h5) antibodies
WO2017149513A1 (en) 2016-03-03 2017-09-08 Prothena Biosciences Limited Anti-mcam antibodies and associated methods of use
US20190284293A1 (en) 2016-03-04 2019-09-19 Bristol-Myers Squibb Company Combination therapy with anti-cd73 antibodies
WO2017151176A1 (en) 2016-03-04 2017-09-08 The Rockefeller University Antibodies to cd40 with enhanced agonist activity
TWI805127B (en) 2016-03-04 2023-06-11 美商Jn生物科學有限責任公司 Antibodies to tigit
WO2017153955A1 (en) 2016-03-09 2017-09-14 Prothena Biosciences Limited Use of anti-mcam antibodies for treatment or prophylaxis of granulomatous lung diseases
WO2017153953A1 (en) 2016-03-09 2017-09-14 Prothena Biosciences Limited Use of anti-mcam antibodies for treatment or prophylaxis of granulomatous lung diseases
MX2018010988A (en) 2016-03-14 2019-01-21 Chugai Pharmaceutical Co Ltd Cell injury inducing therapeutic drug for use in cancer therapy.
MX2018011204A (en) 2016-03-15 2019-03-07 Mersana Therapeutics Inc Napi2b-targeted antibody-drug conjugates and methods of use thereof.
JP7034489B2 (en) 2016-03-15 2022-03-14 アイタブメッド (エイチケイ) リミテッド Multispecific Fab fusion protein and its use
CN108697799A (en) 2016-03-22 2018-10-23 生态学有限公司 The application of anti-LGR5 monoclonal antibodies
CA3020364A1 (en) 2016-04-07 2017-10-12 Duke University Small molecule dual-inhibitors of trpv4 and trpa1 for sanitizing and anesthetizing
JP7184751B2 (en) 2016-04-15 2022-12-06 イミュネクスト インコーポレイテッド ANTI-HUMAN VISTA ANTIBODY AND USES THEREOF
JOP20170091B1 (en) 2016-04-19 2021-08-17 Amgen Res Munich Gmbh Administration of a bispecific construct binding to CD33 and CD3 for use in a method for the treatment of myeloid leukemia
MX2018012856A (en) 2016-04-21 2019-07-10 Sphingotec Therapeutics Gmbh Methods for determining dpp3 and therapeutic methods.
PE20190261A1 (en) 2016-05-02 2019-02-25 Prothena Biosciences Ltd ANTIBODIES THAT RECOGNIZE TAU
CU24538B1 (en) 2016-05-02 2021-08-06 Prothena Biosciences Ltd MONOCLONAL ANTIBODIES COMPETING TO JOIN HUMAN TAU WITH THE 16G7 ANTIBODY
SG11201809793UA (en) 2016-05-09 2018-12-28 Bristol Myers Squibb Co Tl1a antibodies and uses thereof
WO2017208210A1 (en) 2016-06-03 2017-12-07 Prothena Biosciences Limited Anti-mcam antibodies and associated methods of use
KR102584944B1 (en) 2016-06-06 2023-10-05 시티 오브 호프 Baff-r targeted chimeric antigen receptor-modified t-cells and uses thereof
CN116041514A (en) 2016-06-06 2023-05-02 希望之城 BAFF-R antibodies and uses thereof
KR102492057B1 (en) 2016-06-15 2023-01-26 노파르티스 아게 Methods of treating diseases using inhibitors of bone morphogenetic protein 6 (BMP6)
MA45493A (en) 2016-06-27 2019-05-01 Aicuris Anti Infective Cures Gmbh HCMC ENTRY INHIBITORS.
WO2018007924A2 (en) 2016-07-02 2018-01-11 Prothena Biosciences Limited Anti-transthyretin antibodies
EP3478715A2 (en) 2016-07-02 2019-05-08 Prothena Biosciences Limited Anti-transthyretin antibodies
WO2018007922A2 (en) 2016-07-02 2018-01-11 Prothena Biosciences Limited Anti-transthyretin antibodies
MX2019000003A (en) 2016-07-08 2019-08-29 Sphingotec Gmbh Adrenomedullin for assessing congestion in a subject with acute heart failure.
LT3484916T (en) 2016-07-12 2021-04-26 H. Lundbeck A/S Antibodies specific for hyperphosphorylated tau and methods of use thereof
PE20190418A1 (en) 2016-07-14 2019-03-19 Bristol Myers Squibb Co ANTIBODIES AGAINST PROTEIN 3 CONTAINING THE MUCIN AND IMMUNOGLOBULIN T-LYMPHOCYTE DOMAIN (TIM3) AND THEIR USES
JP2019528312A (en) 2016-08-07 2019-10-10 ノバルティス アーゲー mRNA-mediated immunization methods
JP2019530646A (en) 2016-08-12 2019-10-24 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company Protein purification method
SG11201901203PA (en) 2016-08-13 2019-03-28 United Biopharma Inc Treatment and sustained virologic remission of hiv infection by antibodies to cd4 in haart stabilized patients
WO2018044970A1 (en) 2016-08-31 2018-03-08 University Of Rochester Human monoclonal antibodies to human endogenous retrovirus k envelope (herv-k) and uses thereof
WO2018049248A1 (en) 2016-09-09 2018-03-15 Icellhealth Consulting Llc Oncolytic virus equipped with bispecific engager molecules
JP6929354B2 (en) 2016-09-24 2021-09-01 アブビトロ, エルエルシー Affinity-oligonucleotide conjugates and their use
US11779604B2 (en) 2016-11-03 2023-10-10 Kymab Limited Antibodies, combinations comprising antibodies, biomarkers, uses and methods
US11339209B2 (en) 2016-11-14 2022-05-24 Novartis Ag Compositions, methods, and therapeutic uses related to fusogenic protein minion
TW202235438A (en) 2016-11-28 2022-09-16 日商中外製藥股份有限公司 Ligand-binding molecule having adjustable ligand binding activity
RU2021135712A (en) 2016-12-16 2021-12-30 Адреномед Аг ANTIBODY AGAINST ADRENOMEDULIN (ADM) OR ANTI-ADM ANTIBODY FRAGMENT OR ANTI-ADM non-Ig FRAME FOR USE IN INTERVENTION AND THERAPY OF HYPEREMIA IN A PATIENT
EP3339324A1 (en) 2016-12-22 2018-06-27 sphingotec GmbH Anti-adrenomedullin (adm) antibody or anti-adm antibody fragment or anti-adm non-ig scaffold for use in intervention and therapy of congestion in a patient in need thereof
US20180244785A1 (en) 2017-01-09 2018-08-30 Merrimack Pharmaceuticals, Inc. Anti-fgfr antibodies and methods of use
JOP20190189A1 (en) 2017-02-02 2019-08-01 Amgen Res Munich Gmbh Low ph pharmaceutical composition comprising t cell engaging antibody constructs
CA3052911A1 (en) 2017-02-08 2018-08-16 Novartis Ag Fgf21 mimetic antibodies and uses thereof
JP7136790B2 (en) 2017-02-17 2022-09-13 ブリストル-マイヤーズ スクイブ カンパニー Antibodies against alpha-synuclein and uses thereof
KR20240014600A (en) 2017-03-24 2024-02-01 노바르티스 아게 Methods for preventing and treating heart disease
CA3057808A1 (en) 2017-03-24 2018-09-27 Zenyaku Kogyo Co., Ltd. Anti-igm/b cell surface antigen bispecific antibody
EP3601362A4 (en) 2017-03-30 2020-12-16 The Johns Hopkins University A supramolecular high affinity protein-binding system for purification of biomacromolecules
JP7209298B2 (en) 2017-03-31 2023-01-20 公立大学法人奈良県立医科大学 A pharmaceutical composition used for the prevention and/or treatment of blood coagulation factor IX disorders, containing a multispecific antigen-binding molecule that substitutes for the function of blood coagulation factor VIII
TWI788340B (en) 2017-04-07 2023-01-01 美商必治妥美雅史谷比公司 Anti-icos agonist antibodies and uses thereof
CA3059938A1 (en) 2017-04-14 2018-10-18 Kodiak Sciences Inc. Complement factor d antagonist antibodies and conjugates thereof
JP7261739B2 (en) 2017-04-27 2023-04-20 中外製薬株式会社 Blood Coagulation Factor IX with Improved Pharmacokinetics
JP7185884B2 (en) 2017-05-02 2022-12-08 国立研究開発法人国立精神・神経医療研究センター METHOD FOR PREDICTING AND DETERMINING THERAPEUTIC EFFECT OF IL-6 AND NEUTROPHIL-RELATED DISEASE
MX2019013045A (en) 2017-05-02 2020-02-12 Prothena Biosciences Ltd Antibodies recognizing tau.
EP3618864A1 (en) 2017-05-05 2020-03-11 Amgen Inc. Pharmaceutical composition comprising bispecific antibody constructs for improved storage and administration
MA49352A (en) 2017-05-26 2020-04-08 Abvitro Llc HIGH YIELD POLYNUCLEOTIDE LIBRARY SEQUENCING AND TRANSCRIPTOME ANALYSIS
KR102656200B1 (en) 2017-06-16 2024-04-12 아이엠비에이 - 인스티튜트 퓌어 몰레쿨라레 바이오테크놀로지 게엠베하 Vascular organoids, methods of making and using said organoids
WO2018229715A1 (en) 2017-06-16 2018-12-20 Novartis Ag Compositions comprising anti-cd32b antibodies and methods of use thereof
WO2019003104A1 (en) 2017-06-28 2019-01-03 Novartis Ag Methods for preventing and treating urinary incontinence
US10894833B2 (en) 2017-07-20 2021-01-19 H. Lundbeck A/S Agents, uses and methods for treatment
US11745165B2 (en) 2017-08-18 2023-09-05 The Johns Hopkins University Supramolecular filamentous assemblies for protein purification
US20200292526A1 (en) 2017-09-07 2020-09-17 Juno Therapeutics, Inc. Methods of identifying cellular attributes related to outcomes associated with cell therapy
CA3076691A1 (en) 2017-09-25 2019-03-28 Adrenomed Ag Anti-adrenomedullin (adm) binder for use in therapy or prevention of symptoms of illness
CA3079112A1 (en) 2017-10-18 2019-04-25 Adrenomed Ag Therapy monitoring under treatment with an anti-adrenomedullin (adm) binder
WO2019078344A1 (en) 2017-10-20 2019-04-25 学校法人兵庫医科大学 Anti-il-6 receptor antibody-containing medicinal composition for preventing post-surgical adhesion
CA3080251A1 (en) 2017-10-25 2019-05-02 4TEEN4 Pharmaceuticals GmbH Dpp3 binder directed to and binding to specific dpp3-epitopes and its use in the prevention or treatment of diseases / acute conditions that are associated with oxidative stress
EP3700933A1 (en) 2017-10-25 2020-09-02 Novartis AG Antibodies targeting cd32b and methods of use thereof
CA3083346A1 (en) 2017-11-28 2019-06-06 Chugai Seiyaku Kabushiki Kaisha Ligand-binding molecule having adjustable ligand-binding activity
WO2019109016A1 (en) 2017-12-01 2019-06-06 Millennium Pharmaceuticals, Inc. Biomarkers and methods for treatment with nae inhibitors
CA3082507A1 (en) 2017-12-11 2019-06-20 Amgen Inc. Continuous manufacturing process for bispecific antibody products
EP3498293A1 (en) 2017-12-15 2019-06-19 Institut National De La Sante Et De La Recherche Medicale (Inserm) Treatment of monogenic diseases with an anti-cd45rc antibody
US11667713B2 (en) 2017-12-28 2023-06-06 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
TW201940518A (en) 2017-12-29 2019-10-16 美商安進公司 Bispecific antibody construct directed to MUC17 and CD3
CN111886255A (en) 2018-01-12 2020-11-03 百时美施贵宝公司 anti-TIM 3 antibodies and uses thereof
AU2019207915A1 (en) 2018-01-12 2020-07-16 Amgen Inc. PAC1 antibodies and uses thereof
TWI822728B (en) 2018-01-31 2023-11-21 加藤元一 Asthma therapeutic agents containing IL-6 inhibitors
WO2019150309A1 (en) 2018-02-02 2019-08-08 Hammack Scott Modulators of gpr68 and uses thereof for treating and preventing diseases
JP2021513077A (en) 2018-02-08 2021-05-20 シュピーンゴテック ゲゼルシャフト ミット ベシュレンクテル ハフツング Adrenomedullin (ADM) for the diagnosis and / or prediction of dementia, and an anti-adrenomedullin binder for use in the treatment or prevention of dementia
BR112020018539A2 (en) 2018-03-23 2020-12-29 Bristol-Myers Squibb Company ANTIBODIES AGAINST MICA AND / OR MICB AND USES OF THE SAME
WO2019191416A1 (en) 2018-03-29 2019-10-03 Bristol-Myers Squibb Company Methods of purifying monomeric monoclonal antibodies
EP3569614A1 (en) 2018-05-18 2019-11-20 Julius-Maximilians-Universität Würzburg Compounds and methods for the immobilization of myostatin-inhibitors on the extracellular matrix by transglutaminase
JPWO2019225568A1 (en) 2018-05-21 2021-07-01 中外製薬株式会社 Lyophilized preparation enclosed in a glass container
UY38247A (en) 2018-05-30 2019-12-31 Novartis Ag ANTIBODIES AGAINST ENTPD2, COMBINATION THERAPIES AND METHODS OF USE OF ANTIBODIES AND COMBINATION THERAPIES
EP3586865A1 (en) 2018-06-21 2020-01-01 Charité - Universitätsmedizin Berlin Complement anaphylatoxin binders and their use in treatment of a subject having an ocular wound and/or fibrosis
EP3823979A1 (en) 2018-07-20 2021-05-26 AiCuris GmbH & Co. KG Methods for screening and identifying agents that inhibit or modulate the nuclear egress complex of herpesviruses
TW202021616A (en) 2018-07-30 2020-06-16 美商安進公司 Prolonged administration of a bispecific antibody construct binding to cd33 and cd3
US11692031B2 (en) 2018-08-03 2023-07-04 Amgen Research (Munich) Gmbh Antibody constructs for CLDN18.2 and CD3
US11548938B2 (en) 2018-08-21 2023-01-10 Quidel Corporation DbpA antibodies and uses thereof
AU2019327155A1 (en) 2018-08-27 2021-03-18 Affimed Gmbh Cryopreserved NK cells preloaded with an antibody construct
CN113056487A (en) 2018-09-18 2021-06-29 梅里麦克制药股份有限公司 anti-TNFR 2 antibodies and uses thereof
CN113164597A (en) 2018-09-24 2021-07-23 爱尔皮奥制药公司 Multispecific antibodies targeting HPTP-beta (VE-PTP) and VEGF
WO2020077212A1 (en) 2018-10-11 2020-04-16 Amgen Inc. Downstream processing of bispecific antibody constructs
UY38407A (en) 2018-10-15 2020-05-29 Novartis Ag TREM2 STABILIZING ANTIBODIES
BR112021009111A2 (en) 2018-11-16 2021-08-24 Bristol-Myers Squibb Company Anti-nkg2a antibodies and their uses
JP2022510634A (en) 2018-11-28 2022-01-27 フォーティ セブン, インコーポレイテッド Genetically modified HSPC resistant to removal regimen
WO2020128039A2 (en) 2018-12-21 2020-06-25 4TEEN4 Pharmaceuticals GmbH Therapy guidance and/or therapy monitoring for a treatment with angiotensin-receptor-agonist and/or a precursor thereof
US11008395B2 (en) 2019-01-22 2021-05-18 Bristol Myers-Squibb Company Antibodies against IL-7R alpha subunit and uses thereof
CN113329770A (en) 2019-01-24 2021-08-31 中外制药株式会社 Novel cancer antigen and antibody against said antigen
BR112021016619A2 (en) 2019-02-28 2021-11-03 Juntendo Educational Found Antibody capable of binding to cleaved mutant calreticulin and diagnostic, prophylactic or therapeutic agent for myeloproliferative neoplasms
CN113874083A (en) 2019-03-01 2021-12-31 梅里麦克制药股份有限公司 anti-TNFR 2 antibodies and uses thereof
WO2020180819A1 (en) 2019-03-03 2020-09-10 Prothena Biosciences Limited Antibodies recognizing tau
US20220153875A1 (en) 2019-03-19 2022-05-19 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing antigen-binding domain of which binding activity to antigen is changed depending on mta, and library for obtaining said antigen-binding domain
US20220042954A1 (en) 2019-03-29 2022-02-10 Bristol-Myers Squibb Company Methods of measuring hydrophobicity of chromatographic resins
CA3136398A1 (en) 2019-04-10 2020-10-15 Chugai Seiyaku Kabushiki Kaisha Method for purifying fc region-modified antibody
MX2021012163A (en) 2019-04-17 2022-01-31 Univ Hiroshima Therapeutic agent for urological cancer which is characterized by being administered with il-6 inhibitor and ccr2 inhibitor in combination.
MX2021014433A (en) 2019-06-05 2022-03-11 Chugai Pharmaceutical Co Ltd Antibody cleavage site-binding molecule.
TW202112816A (en) 2019-06-12 2021-04-01 瑞士商諾華公司 Natriuretic peptide receptor 1 antibodies and methods of use
TW202045711A (en) 2019-06-13 2020-12-16 美商安進公司 Automated biomass-based perfusion control in the manufacturing of biologics
MX2022000988A (en) 2019-07-26 2022-05-03 Amgen Inc Anti-il13 antigen binding proteins.
MX2022002432A (en) 2019-08-30 2022-06-02 4TEEN4 Pharmaceuticals GmbH Therapy guidance and/or therapy monitoring for treatment of shock.
CA3152946A1 (en) 2019-09-10 2021-03-18 Amgen Inc. Purification method for bispecific antigen-binding polypeptides with enhanced protein l capture dynamic binding capacity
US20220348651A1 (en) 2019-09-18 2022-11-03 Novartis Ag Entpd2 antibodies, combination therapies, and methods of using the antibodies and combination therapies
TW202124446A (en) 2019-09-18 2021-07-01 瑞士商諾華公司 Combination therapies with entpd2 antibodies
CA3157509A1 (en) 2019-10-10 2021-04-15 Kodiak Sciences Inc. Methods of treating an eye disorder
CA3156683A1 (en) 2019-11-13 2021-05-20 Amgen Inc. Method for reduced aggregate formation in downstream processing of bispecific antigen-binding molecules
EP4077376A2 (en) 2019-12-19 2022-10-26 Quidel Corporation Monoclonal antibody fusions
US11926672B2 (en) 2019-12-20 2024-03-12 Amgen Inc. Mesothelin-targeted CD40 agonistic multispecific antibody constructs for the treatment of solid tumors
AU2020414409A1 (en) 2019-12-27 2022-06-16 Affimed Gmbh Method for the production of bispecific FcyRIIl x CD30 antibody construct
KR20220139886A (en) 2020-01-08 2022-10-17 리제너론 파아마슈티컬스, 인크. Treatment of Progressive Osteogenic Fibrodysplasia
WO2021150824A1 (en) 2020-01-22 2021-07-29 Amgen Research (Munich) Gmbh Combinations of antibody constructs and inhibitors of cytokine release syndrome and uses thereof
EP3871689A1 (en) 2020-02-26 2021-09-01 sphingotec GmbH Anti-adm-antibodies binding to the free n-terminus for accelerated transition of adm-gly to bio-adm in patients with adm-gly/ bio-adm ratio above a threshold and combination with vitamin c
MX2022010207A (en) 2020-02-27 2022-11-16 Adrenomed Ag Anti-adrenomedullin (adm) antibody or anti-adm antibody fragment or anti-adm non-ig scaffold for use in therapy or prevention of shock.
AU2021228207A1 (en) 2020-02-27 2022-10-20 4TEEN4 Pharmaceuticals GmbH DPP3 for therapy guidance, monitoring and stratification of nt-ADM antibodies in patients with shock
BR112022016843A2 (en) 2020-02-27 2022-10-11 Adrenomed Ag ANTIADRENOMEDULIN BINDING (ADM) FOR USE IN SHOCK PATIENTS THERAPY
EP4118113A1 (en) 2020-03-12 2023-01-18 Amgen Inc. Method for treatment and prophylaxis of crs in patients comprising a combination of bispecifc antibodies binding to cds x cancer cell and tnfalpha or il-6 inhibitor
MX2022011581A (en) 2020-03-16 2022-10-18 Adrenomed Ag Pro-adrenomedullin or fragment thereof in patients infected with corona virus and treatments with binder against adrenomedullin.
EP3922993A1 (en) 2020-06-12 2021-12-15 4TEEN4 Pharmaceuticals GmbH Dpp3 in patients infected with coronavirus
AU2021237689A1 (en) 2020-03-16 2022-11-03 4TEEN4 Pharmaceuticals GmbH DPP3 in patients infected with coronavirus
WO2021188851A1 (en) 2020-03-19 2021-09-23 Amgen Inc. Antibodies against mucin 17 and uses thereof
CN115335082A (en) 2020-03-27 2022-11-11 光爱科技公司 Medicinal product for killing tumor cells
US20230149555A1 (en) 2020-04-06 2023-05-18 PhotoQ3 Inc. Medicament for killing tumor cells
JP2023106635A (en) 2020-04-17 2023-08-02 中外製薬株式会社 Bispecific antigen binding molecules and compositions related thereto, uses, kits and methods for producing compositions
JP2023523794A (en) 2020-05-01 2023-06-07 ノバルティス アーゲー engineered immunoglobulin
WO2021220218A1 (en) 2020-05-01 2021-11-04 Novartis Ag Immunoglobulin variants
EP3909601A1 (en) 2020-05-11 2021-11-17 LeukoCom GmbH A novel antibody binding specifically to human ceacam1/3/5 and use thereof
WO2021231732A1 (en) 2020-05-15 2021-11-18 Bristol-Myers Squibb Company Antibodies to garp
JP2023527293A (en) 2020-05-19 2023-06-28 アムジエン・インコーポレーテツド MAGEB2 binding construct
EP4155405A1 (en) 2020-05-22 2023-03-29 Chugai Seiyaku Kabushiki Kaisha Antibody for neutralizing substance having coagulation factor viii (f.viii) function-substituting activity
EP4157874A2 (en) 2020-05-29 2023-04-05 Amgen Inc. Adverse effects-mitigating administration of a bispecific antibody construct binding to cd33 and cd3
US11820824B2 (en) 2020-06-02 2023-11-21 Arcus Biosciences, Inc. Antibodies to TIGIT
WO2021261546A1 (en) 2020-06-24 2021-12-30 国立大学法人 東京大学 Photosensitizing dye
JPWO2022025030A1 (en) 2020-07-28 2022-02-03
TW202220677A (en) 2020-07-31 2022-06-01 日商中外製藥股份有限公司 Pharmaceutical composition comprising cell expressing chimeric receptor
JP2023534765A (en) 2020-08-07 2023-08-10 フォーティス セラピューティクス,インク. CD46 targeting immune complexes and methods of use thereof
AU2021331170A1 (en) 2020-08-27 2023-03-23 Juntendo Educational Foundation Anti-cleaved mutant calr-cd3 bispecific antibody and pharmaceutical composition
US20230365709A1 (en) 2020-10-08 2023-11-16 Affimed Gmbh Trispecific binders
CA3199976A1 (en) 2020-11-06 2022-05-12 Amgen Research (Munich) Gmbh Polypeptide constructs selectively binding to cldn6 and cd3
UY39508A (en) 2020-11-06 2022-05-31 Amgen Res Munich Gmbh BSPECIFIC ANTIGEN-BINDING MOLECULES WITH MULTIPLE TARGETS OF ENHANCED SELECTIVITY
EP4240407A1 (en) 2020-11-06 2023-09-13 Amgen Inc. Antigen binding domain with reduced clipping rate
CN116472288A (en) 2020-11-06 2023-07-21 诺华股份有限公司 Antibody Fc variants
EP4240767A1 (en) 2020-11-06 2023-09-13 Amgen Inc. Polypeptide constructs binding to cd3
EP4023218A1 (en) 2020-12-02 2022-07-06 S-Form Pharma Combination therapy for patients having acute and/or persistent dyspnea
US20240052042A1 (en) 2020-12-14 2024-02-15 Novartis Ag Reversal binding agents for anti-natriuretic peptide receptor i (npri) antibodies and uses thereof
KR20230156368A (en) 2021-03-12 2023-11-14 추가이 세이야쿠 가부시키가이샤 Pharmaceutical composition for the treatment or prevention of myasthenia gravis
AR125290A1 (en) 2021-04-02 2023-07-05 Amgen Inc MAGEB2 JOINING CONSTRUCTIONS
CN117279947A (en) 2021-05-06 2023-12-22 安进研发(慕尼黑)股份有限公司 Antigen binding molecules targeting CD20 and CD22 for use in proliferative diseases
AU2022320948A1 (en) 2021-07-30 2024-01-18 Affimed Gmbh Duplexbodies
EP4144898A1 (en) 2021-09-07 2023-03-08 New/era/mabs GmbH Method for selecting or screening antibodies from an antibody library
CN117999098A (en) 2021-09-24 2024-05-07 光爱科技公司 Pharmaceutical products for killing tumor cells
WO2023057871A1 (en) 2021-10-04 2023-04-13 Novartis Ag Surfactant stabilizers
AR127269A1 (en) 2021-10-08 2024-01-03 Chugai Pharmaceutical Co Ltd ANTI-HLA-DQ2.5 ANTIBODY FORMULATION
CA3237018A1 (en) 2021-11-03 2023-05-11 Joachim Koch Bispecific cd16a binders
TW202334221A (en) 2021-11-03 2023-09-01 德商安富美德有限公司 Bispecific cd16a binders
WO2023175035A1 (en) 2022-03-15 2023-09-21 Adrenomed Ag Stable aqueous formulation of an anti-adrenomedullin (adm) antibody or anti-adm antibody fragment
WO2023209568A1 (en) 2022-04-26 2023-11-02 Novartis Ag Multispecific antibodies targeting il-13 and il-18
TW202346368A (en) 2022-05-12 2023-12-01 德商安美基研究(慕尼黑)公司 Multichain multitargeting bispecific antigen-binding molecules of increased selectivity
WO2024023368A1 (en) 2022-07-29 2024-02-01 4TEEN4 Pharmaceuticals GmbH Prediction of an increase of dpp3 in a patient with septic shock
WO2024023369A1 (en) 2022-07-29 2024-02-01 Adrenomed Ag Anti-adrenomedullin (adm) antibody or anti-adm antibody fragment or anti-adm non-ig scaffold for use in therapy or prevention of shock
WO2024059675A2 (en) 2022-09-14 2024-03-21 Amgen Inc. Bispecific molecule stabilizing composition
EP4345109A1 (en) 2022-09-30 2024-04-03 AdrenoMed AG Anti-adrenomedullin (adm) binder for use in therapy of pediatric patients with congenital heart disease

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991000906A1 (en) * 1989-07-12 1991-01-24 Genetics Institute, Inc. Chimeric and transgenic animals capable of producing human antibodies
WO1991010741A1 (en) * 1990-01-12 1991-07-25 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1992003918A1 (en) * 1990-08-29 1992-03-19 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8823869D0 (en) * 1988-10-12 1988-11-16 Medical Res Council Production of antibodies

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991000906A1 (en) * 1989-07-12 1991-01-24 Genetics Institute, Inc. Chimeric and transgenic animals capable of producing human antibodies
WO1991010741A1 (en) * 1990-01-12 1991-07-25 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1992003918A1 (en) * 1990-08-29 1992-03-19 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
J.E. BERMAN ET AL.: "CONTENT AND ORGANIZATION OF THE HUMAN Ig Vh LOCUS: DEFINITION OF THREE NEW Vh FAMILIES AND LINKAGE TO THE Ig Ch LOCUS" EMBO JOURNAL., vol. 7, no. 3, 1988, EYNSHAM, OXFORD GB, pages 727-737, XP002041127 *
L.D. TAYLOR ET AL.: "A TRANSGENIC MOUSE THAT EXPRESSES A DIVERSITY OF HUMAN SEQUENCE HEAVY AND LIGHT CHAIN IMMUNOGLOBULINS." NUCLEIC ACIDS RESEARCH., vol. 20, no. 23, 11 December 1992, OXFORD GB, pages 6287-6295, XP002041128 *
M. BR]GGEMANN ET AL.: "A REPERTOIRE OF MONOCLONAL ANTIBODIES WITH HUMAN HEAVY CHAINS FROM TRANSGENIC MICE." PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 86, 1989, WASHINGTON US, pages 6709-6713, XP000068417 *
See also references of WO9312227A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109996441A (en) * 2016-11-04 2019-07-09 瑞泽恩制药公司 Non-human animal with the immunoglobulin lambda light chain gene seat through being engineered

Also Published As

Publication number Publication date
EP0746609A4 (en) 1997-12-17
CA2124967A1 (en) 1993-06-24
JP2004008218A (en) 2004-01-15
WO1993012227A1 (en) 1993-06-24
JPH07503132A (en) 1995-04-06
AU3328493A (en) 1993-07-19
CA2124967C (en) 2008-04-08

Similar Documents

Publication Publication Date Title
US5545806A (en) Ransgenic non-human animals for producing heterologous antibodies
US5661016A (en) Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5789650A (en) Transgenic non-human animals for producing heterologous antibodies
US5877397A (en) Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
CA2124967C (en) Transgenic non-human animals capable of producing heterologous antibodies
US5569825A (en) Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5814318A (en) Transgenic non-human animals for producing heterologous antibodies
US5625126A (en) Transgenic non-human animals for producing heterologous antibodies
US5770429A (en) Transgenic non-human animals capable of producing heterologous antibodies
CA2161351C (en) Transgenic non-human animals capable of producing heterologous antibodies
US5633425A (en) Transgenic non-human animals capable of producing heterologous antibodies
US7084260B1 (en) High affinity human antibodies and human antibodies against human antigens
US8158419B2 (en) Transgenic non-human animals for producing chimeric antibodies
US5874299A (en) Transgenic non-human animals capable of producing heterologous antibodies
AU747370B2 (en) Transgenic non-human animals capable of producing heterologous antibo dies
WO1997013852A9 (en) Transgenic non-human animals capable of producing heterologous antibodies
EP1288229A2 (en) Transgenic non human animals capable of producing heterologous antibodies
AU720612B2 (en) Transgenic non-human animals capable of producing heterologous antibodies
AU2003204055B2 (en) Transgenic non-human animals capable of producing heterologous antibodies

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940719

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

A4 Supplementary search report drawn up and despatched

Effective date: 19971030

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20001213

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20021111

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GENPHARM INTERNATIONAL, INC.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KAY, ROBERT M.

Inventor name: LONBERG, NILS