DK162257B - Control system for controlling a respirator supplying a positive inhalation pressure to a patient - Google Patents

Control system for controlling a respirator supplying a positive inhalation pressure to a patient Download PDF

Info

Publication number
DK162257B
DK162257B DK504687A DK504687A DK162257B DK 162257 B DK162257 B DK 162257B DK 504687 A DK504687 A DK 504687A DK 504687 A DK504687 A DK 504687A DK 162257 B DK162257 B DK 162257B
Authority
DK
Denmark
Prior art keywords
valve
respirator
pressure
patient
heartbeat
Prior art date
Application number
DK504687A
Other languages
Danish (da)
Other versions
DK504687D0 (en
DK504687A (en
DK162257C (en
Inventor
Charles C Cummings
Robert I Prince
Original Assignee
Puritan Bennett Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Puritan Bennett Corp filed Critical Puritan Bennett Corp
Publication of DK504687D0 publication Critical patent/DK504687D0/en
Publication of DK504687A publication Critical patent/DK504687A/en
Publication of DK162257B publication Critical patent/DK162257B/en
Application granted granted Critical
Publication of DK162257C publication Critical patent/DK162257C/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/04Heartbeat characteristics, e.g. ECG, blood pressure modulation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pulmonology (AREA)
  • Public Health (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Emergency Medicine (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Percussion Or Vibration Massage (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • External Artificial Organs (AREA)

Description

DK 162257 BDK 162257 B

Ved normal respiration sænkes en patients mellemgulv for at forøge lungekapaciteten og således skabe et negativt tryk i lungehulrummet i forhold til atmosfærisk tryk.In normal respiration, a patient's diaphragm is lowered to increase lung capacity, thus creating a negative pressure in the lung cavity relative to atmospheric pressure.

Hermed drives luft ind i det under undertryk værende hul-5 rum. Mange patienter, såsom ulykkesofre, der lider af chok, trauma eller hjerteanfald, kan behøve en respirator eller en ventilator til at bistå åndedrættet. Kendte respiratorer anvender intermitterende åndedrag ved overtryk for at øge trykket i en patients lunger indtil disse fyl-10 des. Luften udtømmes passivt gennem lungernes naturlige stivhed.Hereby air is driven into the vacuum-hollow space 5. Many patients, such as accident victims suffering from shock, trauma or heart attack, may need a respirator or ventilator to assist the breath. Known respirators use intermittent breaths at overpressure to increase the pressure in a patient's lungs until they are filled. The air is passively discharged through the natural stiffness of the lungs.

Disse kendte respiratorer indfører overtryk i lungerne, der allerede står under atmosfærisk tryk. Trykket i lun-15 gerne øges over a tmos færet rykket i modsætning til normal respiration, hvilket hæmmer hjertets evne til at pumpe blod. Ved normal respiration dannes der ved indånding et negativt lungetryk, der bistår hjertets fyldning med blod. Den resulterende trykgradient (det positive tryk i 20 periferien og det negative tryk i lungen) hjælper til at fylde hjertet, når dette åbnes efter dets pumpebevægelse.These known respirators introduce excess pressure into the lungs already under atmospheric pressure. The pressure in the lung-15 would like to increase over the circulation as opposed to normal respiration, which inhibits the heart's ability to pump blood. In normal respiration, inhalation creates a negative pulmonary pressure which assists the filling of the heart with blood. The resulting pressure gradient (the positive pressure in the periphery and the negative pressure in the lung) helps to fill the heart as it opens after its pumping movement.

Hvis trykket i lungehulen imidlertid forøges, såsom med respiratorer, formindskes den blodmængde, der vender tilbage til eller strømmer ind i hjertet. Hjertet må yderli-25 gere presse imod et højere tryk. Dette resulterer i en formindsket hjerteydelse.However, if the pressure in the pulmonary cavity increases, such as with respirators, the amount of blood that returns to or flows into the heart decreases. The heart must further press against a higher pressure. This results in a decreased heart rate.

Til forbedring af det arterielle oxygentryk er anvendelsen af positivt slutudåndingstryk (Positive-End-Expirato-30 ry-Pressure, PEEP) kendt, hvor der opretholdes et lille overtryk i luftvejen mellem indåndinger med positivt tryk. PEEP anvender en standardiseret omskifter. Et tryksignal, der påføres ventilen, styrer dens høje eller lave tryktilstande. Den lave PEEP-tilstand frembringes, når 35 ventilen åbnes helt. En delvis lukning af ventilen skaber et højt internt lungetryk mellem åndedragene, da luften ikke kan undslippe. Ved et PEEP-tryk på 10 cm vandsøjleTo improve arterial oxygen pressure, the use of positive end-expiratory pressure (Positive-End-Expiratory Pressure, PEEP) is known, where a small airway pressure between positive pressure inhalations is maintained. PEEP uses a standardized switch. A pressure signal applied to the valve controls its high or low pressure states. The low PEEP state is produced when the valve is fully opened. Partial closure of the valve creates a high internal lung pressure between the breaths as the air cannot escape. At a PEEP pressure of 10 cm water column

DK 162257 BDK 162257 B

2 falder hjerteydelsen imidlertid væsentligt. Der anvendes intravenøse fluida til at forøge det intravasculære rumfang i et forsøg på at minimere dette fald i hjerteydelsen. Patienten kan allerede udvise svækket hjertefunk-5 tion, der minimerer eller ophæver fordelene ved den intravasculære rumfangsforøgelse. Ofte besidder patienter, der kræver respirator, ikke en korrekt nyrefunktion, og kan således ikke behandle det tilførte fluidum. Anvendes • der for meget intravenøst fluidum i forhold til patien-10 tens evne (hjulpet eller ej) til behandling af fluidet, kan dette strømme ind i patientens lunger.2, however, the cardiac output decreases substantially. Intravenous fluids are used to increase intravascular volume in an attempt to minimize this decrease in cardiac output. The patient may already exhibit impaired cardiac function that minimizes or abolishes the benefits of intravascular volume increase. Often, patients requiring a respirator do not have proper renal function and thus cannot treat the fluid supplied. If too much intravenous fluid is used relative to the patient's ability (aided or not) to treat the fluid, this may flow into the patient's lungs.

Der anvendes positive inotropiske midler til at forøge hjertets sammentrækning til pumpning af mere blod. Det er 15 klart, at hjertet arbejder hårdere end normalt, hvilket kan medføre hjerteanfald eller arythmier (hjerteflimren).Positive inotropic agents are used to increase the contraction of the heart to pump more blood. It is clear that the heart is working harder than normal, which can cause heart attacks or arrhythmias.

Læger vil ofte foreskrive en kombination af forøgede intravenøse fluida og positive inotropiske midler sammen med PEEP.Doctors will often prescribe a combination of increased intravenous fluids and positive inotropic agents with PEEP.

2020

Flere forskere har bedømt virkningen af hjertecyklus-bestemte forøgelser af lungetrykket eller hjerteydelsen ved at synkronisere en højfrekvent stråleventilation med forskellige faser af R-R-intervallet. Carlson og Pinsky har 25 fundet, at den nedsatte hjerteydelse som følge af respiration med positivt tryk minimeres, hvis de positive trykimpulser synkroniseres med diastolen. Imidlertid har Otto og Tyson ikke fundet nogen væsentlige ændring i hjerteydelsen ved at synkronisere positive trykimpulser 30 med forskellige partier af hjertecyclen.Several researchers have assessed the effect of cardiac cycle-specific increases in lung pressure or cardiac output by synchronizing a high-frequency beam ventilation with different phases of the R-R interval. Carlson and Pinsky have found that the reduced heart rate due to positive pressure respiration is minimized if the positive pressure pulses are synchronized with the diastole. However, Otto and Tyson have found no significant change in heart performance by synchronizing positive pressure pulses 30 with different parts of the heart cycle.

Pinchak har beskrevet den optimale frekvens ved højfrekvent stråleventilation. Han har også bemærket rytmiske svingninger i lungearterietrykket (PAP) samt rytmiske æn-35 dringer i kredsløbets blodtryk. En mulig forklaring på disse svingninger er, at strålepulsarterierne bevæger sig ind i og ud af synkronisme med hjerteslaget. Ved bedøm- 3Pinchak has described the optimal frequency for high-frequency beam ventilation. He also noted rhythmic fluctuations in pulmonary artery pressure (PAP) as well as rhythmic changes in circulatory blood pressure. One possible explanation for these oscillations is that the pulse arteries move in and out of the heartbeat synchrony. By assess- 3

DK 162257 BDK 162257 B

melse af hans resultater fremgår det, at når stråletryk-spidsen i luftvejene optræder under den tidlige systole, er der et stort lungepulsåretryk og et lille kredsløbsblodtryk. Pinchak har ikke selv kommenteret dette, men 5 hans registrerende data viser, at lungearterietrykket stiger og synker lige modsat blodtrykket. En mulig forklaring er, at en forøgelse af lungearterietrykket simpelt hen er en refleksion af en voksende lungevasculær modstand, som bevirker en formindskelse af venstre hjer-10 tekammers fyldning og dermed en formindskelse af kredsløbets blodtryk sekundært til en formindskelse af hjerteydelsen. Hvis de små oscillationer i kredsløbets blodtryk reflekterer oscillationerne i hjerteydelsen, vil Pinchak's analyse understøtte Pinsky og Carlson's arbej-15 de, som antyder, at det positive luftvejstryk er mindst skadeligt under diastolen.According to his results, when the jet pressure peak in the airways occurs during early systole, there is a large pulmonary artery pressure and a small circulatory blood pressure. Pinchak has not commented on this himself, but 5 his recording data shows that pulmonary artery pressure rises and falls just opposite the blood pressure. One possible explanation is that an increase in pulmonary artery pressure is simply a reflection of a growing pulmonary vascular resistance which causes a decrease in left cardiac chamber filling and thus a decrease in circulatory blood pressure secondary to a decrease in cardiac output. If the small oscillations in the circulation blood pressure reflect the oscillations in the heart performance, Pinchak's analysis will support Pinsky and Carlson's work, suggesting that the positive airway pressure is least harmful during diastole.

Opfindelsen angår et styresystem til at styre en respirator, som frembringer åndedrag ved positivt tryk. Systemet 20 er karakteriseret ved at omfatte en indretning til at detektere en patients på hinanden følgende hjerteslag, en til detekteringsindretningen forbundet datamatanordning til beregning af et interval for patientens på hinanden følgende hjerteslag, et ventilorgan, der er elektrisk 25 forbundet med datamatanordningen, og som er pneumatisk forbundet med respiratoren for at styre denne, hvorved respiratoren er indrettet til afslutte åndedræt med posir tivt tryk i afhængighed af det beregnede interval.The invention relates to a control system for controlling a respirator which produces breath at positive pressure. The system 20 is characterized by a device for detecting a patient's consecutive heartbeat, a computer device connected to the detecting device for calculating an interval of the patient's consecutive heartbeat, a valve means electrically connected to the computer device and being pneumatically connected to the respirator to control it, whereby the respirator is adapted to terminate breathing with positive pressure depending on the calculated interval.

30 Den foreliggende opfindelse er især indrettet til anvendelse i et datamatstyret system for positivt udåndingstryk til at supplere PEEP-anlæg med positiv slutudån-dingstryk. Ved en foretrukken udførelsesform forstærkes og udjævnes udgangssignalet fra en kardiogrammaskine, el-35 ler en lysdiode i kardiogrammaskinen overvåges optisk til bestemmelse af en R-bølge eller begyndelsen af en elektrisk systole. Et signal føres til en multiplikator, hvor 4The present invention is particularly adapted for use in a computer controlled positive exhalation pressure system to supplement PEEP systems with positive final exhalation pressure. In a preferred embodiment, the output of a cardiogram is amplified and smoothed, or an LED in the cardiogram is optically monitored to determine an R-wave or the beginning of an electrical systole. A signal is passed to a multiplier where 4

DK 162257 BDK 162257 B

R-R-bølgesignalet (perioden) multipliceres, hvilket repræsenterer varigheden af R-R-bølgen med et af en læge indstillet variabelt interval. Det resulterende produkt (R-R-bølgen multipliceret med det variable interval) an-5 vendes til at trigge en solenoidestyret trevejsventil. Trevejsventilen er normalt lukket for at føre et positivt tryk til en standard PEEP-ventil, der fungerer på iøvrigt kendt vis. Når trevejsventilen trigges åbner den for at • lade et relativt lavt tryk passere til PEEP-ventilen på 10 en sådan måde, at PEEP-ventilen frembringer et lavt tryk til patienten.The R-R wave signal (period) is multiplied, which represents the duration of the R-R wave by a variable interval set by a physician. The resulting product (the R-R wave multiplied by the variable range) is used to trigger a solenoid-controlled three-way valve. The three-way valve is usually closed to supply a positive pressure to a standard PEEP valve which operates in a otherwise known manner. When the three-way valve is triggered, it opens to allow a relatively low pressure to pass to the PEEP valve in such a way that the PEEP valve produces a low pressure to the patient.

Herved gøres det muligt at fjerne PEEP i et forudbestemt, variabelt tidsforhold umiddelbart før et næstfølgende 15 hjerteslag og derved sikre, at hjertet ikke under fyldningen kommer til at arbejde mod høje tryk. PEEP-ventilen styres af en datamat, som styrer trevejsventilen for at skabe trykfald, så at hjertet kan fyldes. Når hjertet er fyldt, genoptages PEEP uden skadelige virkninger. Patien-20 tens respiration koordineres med patientens hjerteslag til at maksimere hjerteydelsen. Et ekstra tryk kan genindføres umiddelbart efter udfaldet i et forsøg på at forbedre hjertets tømning.This makes it possible to remove PEEP in a predetermined variable time ratio immediately before a subsequent heartbeat, thereby ensuring that the heart does not work at high pressure during filling. The PEEP valve is controlled by a computer which controls the three-way valve to create pressure drop so that the heart can be filled. When the heart is full, PEEP resumes without harmful effects. The patient's respiration is coordinated with the patient's heartbeat to maximize cardiac output. An additional pressure can be reintroduced immediately after the outcome in an attempt to improve the emptying of the heart.

25 Opfindelsen forklares nærmere nedenfor i forbindelse med foretrukne udførelsesformer og under henvisning til tegningen, hvor fig. 1 er en skematisk afbildning af opfindelsen anbragt 30 i dennes omgivelser, fig. 2 er et blokdiagram for komponenterne på fig. 1, forbundet med en trevejsventil, og 35 fig. 3 viser en anden udførelsesform til detektering af et hjerteslagsinterval.The invention will be explained in more detail below with reference to preferred embodiments and with reference to the drawing, in which: FIG. 1 is a schematic representation of the invention disposed in its surroundings; FIG. 2 is a block diagram of the components of FIG. 1, connected to a three-way valve, and FIG. 3 shows another embodiment for detecting a heartbeat interval.

55

DK 162257 BDK 162257 B

Det i fig. 1 viste datamatstyrede system for positiv udånding er forbundet til en terapeutisk indretning, såsom et PEEP-system. En patient 10 er vist anvendende en respirator 12 med en standardiseret udåndingsventil (PEEP) 5 14. Ventilen 14 åbner og lukker for at føre lave og høje tryk til patienten 10. Ifølge opfindelsen er patienten 10 også forbundet med en kardiogrammaskine (EK6) 16. På hinanden følgende hjerteslag detekteres af maskinen 16, og et signal repræsenterende hvert hjerteslag udsendes til 10 en mikrodatamat 18, hvis detaljer er nærmere vist på fig.The FIG. 1, the positive exhaled computer controlled system is connected to a therapeutic device such as a PEEP system. A patient 10 is shown using a respirator 12 with a standard exhalation valve (PEEP) 14. The valve 14 opens and closes to supply low and high pressures to the patient 10. According to the invention, the patient 10 is also connected to a cardiogram machine (EK6) 16. Successive heartbeats are detected by the machine 16, and a signal representing each heartbeat is transmitted to 10 a microcomputer 18, the details of which are detailed in FIG.

2 og 3. En generator 20 frembringer et variabelt interval som et andet indgangssignal til mikrodatamaten 18, og intervallets længde fastsættes af en læge. Mikrodatamaten 18 kombinerer intervalsignalet fra generatoren 20 med en 15 værdi repræsenterende tidsrummet mellem på hinanden følgende hjerteslag fra maskinen 16 og frembringer et udgående styresignal til en feltspole 22 i en trevejs magnetventil 24. Ventilen 24 er ved en første ende forbundet med en kilde 26 for positivt tryk. En anden ende af ven-20 tilen er pneumatisk forbundet til en undertrykskilde 28, og en tredje ende af ventilen er forbundet med PEEP-ven-tilen 14, gennem hvilken patienten modtager indåndinger med positivt tryk.2 and 3. A generator 20 generates a variable interval as a second input signal to the microcomputer 18, and the length of the interval is determined by a physician. The microcomputer 18 combines the interval signal from generator 20 with a value representing the time interval between consecutive heartbeats of the machine 16 and produces an output control signal to a field coil 22 in a three-way solenoid valve 24. Valve 24 is connected at first to a positive source 26 pressure. A second end of the valve 20 is pneumatically connected to a negative pressure source 28, and a third end of the valve is connected to the PEEP valve 14 through which the patient receives positive pressure inhalations.

25 Under normal drift af respiratoren 12 manøvreres ventilen 14 til at lade skiftende lave og høje positive trykindåndinger (ca. 2,75 kPa) fra respiratoren 12 passere direkte til patienten 10. Imidlertid aktiveres magnetspolen 22 svarende til udgangssignalet fra mikrodatamaten 18 til at 30 tilvejebringe et udgangssignal 30 i form af et negativt tryk fra undertrykskilden 28. Det negative tryk ved 30 åbner ventilen 14. Fordi ventilen 14 er helt åben, modtages et lavt tryk af patienten 10 fra respiratoren 12. Det resulterende lave tryk indtræffer ifølge opfindelsen lige 35 før et foreskrevet hjerteslag for at sikre, at hjertet under fyldning ikke arbejder imod høje tryk. De kendte PEEP-anlæg frembringer for ofte høje tryk, når hjertet \ 6During normal operation of the respirator 12, the valve 14 is operated to allow alternating low and high positive pressure inhalations (approximately 2.75 kPa) from the respirator 12 to pass directly to the patient 10. However, the magnetic coil 22 corresponding to the output of the microcomputer 18 is activated to provide 30 an output signal 30 in the form of a negative pressure from the negative pressure source 28. The negative pressure at 30 opens the valve 14. Because the valve 14 is fully open, a low pressure is received by the patient 10 from the respirator 12. The resulting low pressure occurs according to the invention just 35 before a prescribed heartbeat to ensure that the heart during filling does not work against high pressure. The known PEEP systems often produce high pressure when the heart \ 6

DK 162257 BDK 162257 B

slår, hvilket hæmmer hjertets fyldning og formindsker hj erteydelsen.beats, which inhibits the filling of the heart and decreases heart performance.

Som vist på fig. 2 går et udgangssignal fra maskinen 16 5 gennem en operationsforstærker 32 til en tidsstyreenhed 34, der udjævner det forstærkede EKG-signal til frembringelse af en række elektriske impulser svarende til de på hinanden følgende hjerteslag. De elektriske impulser fra ' tidsstyreenheden 34 modtages af en lager/beregner 36, som 10 bestemmer en periode repræsenterende intervallet mellem på hinanden følgende hjerteslag. Denne periode anvendes til at forudsige et næste hjerteslag, så at der kan leveres et lavt tryk til patienten lige før og under dette næste hjerteslag. Generatoren 20 indstilles af den til-15 synsførende læge på mellem eksempelvis 15 og 400 με. Signalet for varierende interval fra generatoren 20 og periodesignalet fra beregneren 36 anvendes til at frembringe et produkt i en multiplikator 38. Det resulterende produkt anvendes som et signal til at aktivere feltspolen 20 22 til styring af trevejsventilen 24.As shown in FIG. 2, an output signal from the machine 165 passes through an operational amplifier 32 to a timing controller 34 that smoothes the amplified ECG signal to produce a series of electrical pulses corresponding to the consecutive heartbeats. The electrical pulses from the timing controller 34 are received by a memory / calculator 36 which determines a period representing the interval between consecutive heartbeats. This period is used to predict a next heartbeat so that a low pressure can be delivered to the patient just before and during this next heartbeat. The generator 20 is set by the visionary physician between, for example, 15 and 400 με. The variable interval signal from the generator 20 and the periodic signal from the calculator 36 are used to produce a product in a multiplier 38. The resulting product is used as a signal to activate the field coil 20 22 to control the three-way valve 24.

I normal tilstand forbinder trevejsventilen 24 det positive tryk 26 til udgangen 30 til at bringe ventilen 14 i en delvis lukket stilling. Derved kan respiratoren 12 25 frembringe et højt positivt indåndingstryk til patienten 10. Lad os nu antage, at maskinen 16 detekterer et hjerteslag hvert sekund. Signalet forstærkes i forstærkeren 32, udjævnes af tidsstyreenheden 34, og perioden på 1,0 s beregnes i lageret 36. Hvis generatoren 20 af lægen er 30 indstillet på 0,8 s, danner multiplikatoren 38 et produkt af perioden og det variable interval (1,0 x 0,8) lig med 0,8 s. På denne måde aktiveres feltspolen 22 0,2 s før det næste forudsagte hjerteslag (0,8 s regnet fra det sidste hjerteslag). Nu åbner trevejsventilen 24 udløbet 35 30 til undertrykskilden 28, og derfor åbner et resulteret negativt tryk fuldstændigt PEEP-ventilen 14, og et lavt tryk når patienten. Såfremt patientens puls varierer, vilIn normal mode, the three-way valve 24 connects the positive pressure 26 to the outlet 30 to bring the valve 14 to a partially closed position. In this way, the respirator 12 25 can produce a high positive inhalation pressure for the patient 10. Now suppose the machine 16 detects a heartbeat every second. The signal is amplified in the amplifier 32, smoothed by the time controller 34, and the period of 1.0 s is calculated in the memory 36. If the generator 20 of the physician 30 is set to 0.8 s, the multiplier 38 forms a product of the period and the variable interval (1 In this way, the field coil is activated 0.2 0.2 s before the next predicted heartbeat (0.8 s from the last heartbeat). Now, the three-way valve 24 opens the outlet 35 to the negative pressure source 28, and therefore a resulting negative pressure completely opens the PEEP valve 14 and a low pressure reaches the patient. If the patient's heart rate varies, will

DK 162257 BDK 162257 B

7 forskellen mellem de forudsagte og virkelige hjerteslag blive detekteret og impulstidsprogrammeringen korrigeret. Tidsrummet for impulsen til feltspolen 22 styres af en anden (ikke vist) tidsstyreenhed.7 the difference between the predicted and real heartbeats is detected and the pulse time programming corrected. The timing of the pulse to the field coil 22 is controlled by another (not shown) time controller.

55

Fig. 3 viser en anden udførelsesform til bestemmelse eller detektering af hjerteslag, hvor der anvendes en fotodetektor 40 til at detektere en blinkende lysdiode 42, der udgør en typisk komponent i en kardiogrammaskine. Fo-10 todetektoren 40, der tænder og slukker med glimtene fra lysdioden 42, kræver ingen tidsindstillingsenhed eller bølgekvadreringsorganer og udgør derfor et direkte indgangssignal til forstærkeren 32 til påfølgende funktion som i den på fig. 2 viste udførelsesform.FIG. 3 shows another embodiment for determining or detecting heartbeats, using a photodetector 40 to detect a flashing LED 42, which is a typical component of a cardiogram machine. The photodetector 40, which turns on and off with the flashes of the LED 42, requires no timing unit or wave squaring means and therefore constitutes a direct input signal to the amplifier 32 for subsequent operation as in the one shown in FIG. 2.

15 I stedet for mikrodatamaten 18 kan der eksempelvis også anvendes en mikroprocessor, der programmeres til at overvåge og bestemme slagrytmen, hvor lægen kan programmere det variable interval.For example, instead of the microcomputer 18, a microprocessor programmed to monitor and determine the stroke rate at which the physician can program the variable interval may be used.

20 25 30 3520 25 30 35

Claims (11)

1. Styresystem til at styre en respirator, der frembrin-5 ger åndedræt med positivt tryk, kendetegnet ved, at det omfatter en indretning (16) til at detektere en patients på hinanden følgende hjerteslag, en datamatanordning (18), der er tilsluttet detekteringsindretningen (16) for at beregne et interval mellem de på hinanden 10 følgende hjerteslag, et ventilorgan (24), der er elektrisk forbundet med datamatartordningen (18), og som er pneumatisk forbundet med respiratoren (12) for at styre denne, hvorved respiratoren (12) er indrettet til at afslutte åndedræt med positivt tryk i afhængighed af det 15 beregnede interval.Control system for controlling a respirator producing positive pressure breath, characterized in that it comprises a device (16) for detecting a patient's consecutive heartbeat, a computer device (18) connected to the detecting device (16) to calculate an interval between the consecutive heartbeats, a valve means (24) electrically connected to the computer system (18) and pneumatically connected to the respirator (12) to control it, thereby providing the respirator ( 12) is adapted to terminate positive pressure respiration depending on the calculated interval. 2. System ifølge krav 1, kendetegnet ved, at det desuden omfatter et vakuumorgan (28), der er pneumatisk forbundet med ventilorganet (24) til frembringelse 20 af et lavt tryk til respiratoren (12) via ventilorganet (24).System according to claim 1, characterized in that it further comprises a vacuum means (28) which is pneumatically connected to the valve means (24) to produce a low pressure for the respirator (12) via the valve means (24). 3. System ifølge krav 2, kendetegnet ved, at det omfatter et organ (26) til afgivelse af et positivt 25 tryk, samt at ventilorganet (24) omfatter en trevejsventil med en første, en anden og en tredje ende, hvor den første ende er forbundet med respiratoren (12), den anden ende er forbundet med vakuumorganet (28), og den tredje ende er forbundet med trykafgivelsesorganet (26). 30System according to claim 2, characterized in that it comprises a means (26) for delivering a positive pressure, and the valve means (24) comprises a three-way valve with a first, a second and a third end, wherein the first end is connected to the respirator (12), the second end is connected to the vacuum means (28), and the third end is connected to the pressure release means (26). 30 4. System ifølge krav 3, k e n. d e t egnet ved, at trevejsventilen omfatter en solenoide (22), der er elektrisk forbundet med datamatanordningen (18), der indstiller trevejsventilen. 35The system of claim 3, characterized in that the three-way valve comprises a solenoid (22) electrically connected to the computer device (18) which adjusts the three-way valve. 35 5. System ifølge krav 4, kendetegnet ved, at datamaten er forbundet med et intervalvariationsorgan 9 DK 162257 B (20) til frembringelse af et signal med varierende interval til datamatanordningen (18).System according to claim 4, characterized in that the computer is connected to an interval variation means 9 (20) for producing a signal of varying intervals to the computer device (18). 6. System ifølge krav 5, kendetegnet ved, at 5 datamatanordningen (18) omfatter en multiplikatoranordning (38), der er forbundet med detektorindretningen (16) og intervalvariationsorganet (20) til frembringelse af et produktsignal, der er baseret på det beregnede tidsinterval multipliceret med det varierende interval.System according to claim 5, characterized in that the computer device (18) comprises a multiplier device (38) connected to the detector device (16) and the interval variation means (20) for generating a product signal based on the calculated time interval multiplied with the varying range. 7. System ifølge krav 6, kendetegnet ved, at respiratoren (12) har en styret ventil (14), der er pneumatisk forbundet med ventilorganet (24)'s første ende, hvorved den styrede ventil (14) ved hjælp af ventilorga- 15 net (24)'s pneumatiske forbindelse åbnes af vakuumorganet (28) med relativt lavt tryk til respiratoren (12), og hvorved den styrede ventil (14) åbnes, når ventilorganet (24) forbinder respiratoren (12) pneumatisk med vakuumorganet (28) med relativt lavt tryk, så at den styrede ven-20 til (14) lukkes, når ventilorganet (24) forbinder respiratoren (12) pneumatisk med indretningen (26) med overtryk.System according to claim 6, characterized in that the respirator (12) has a controlled valve (14) which is pneumatically connected to the first end of the valve member (24), whereby the controlled valve (14) is provided by means of valve means. The pneumatic connection of the net (24) is opened by the vacuum means (28) at relatively low pressure to the ventilator (12), whereby the controlled valve (14) is opened when the valve means (24) pneumatically connects the ventilator (12) to the vacuum means (28). with relatively low pressure so that the controlled valve 20 (14) is closed when the valve member (24) pneumatically connects the respirator (12) to the device (26) with overpressure. 8. System ifølge krav 1-7, kendetegnet ved, at 25 detekteringsindretningen (16) er indrettet til såvel at afføle en patients på hinanden følgende hjerteslag som at frembringe et hjerteslagsignal.System according to claims 1-7, characterized in that the detection device (16) is arranged to sense a patient's successive heartbeat as well as to produce a heartbeat signal. 8 DK 162257 B8 DK 162257 B 9. System ifølge krav 8, kendetegnet ved, at 30 detekteringsindretningen (16) er forbundet til en forstærker (32) til at forstærke hjerteslagsignalet.System according to claim 8, characterized in that the detection device (16) is connected to an amplifier (32) for amplifying the heartbeat signal. 10. System ifølge krav 9, kendetegnet ved, at datamatanordningen (18) omfatter et tidsstyreorgan (34), 35 der er forbundet med forstærkeren (32) til at udjævne hjerteslagsignalet og til at frembringe pulser til multiplikatoren (38). DK 162257 B 10System according to claim 9, characterized in that the computer device (18) comprises a timing control means (34) connected to the amplifier (32) to equalize the heartbeat signal and to produce pulses for the multiplier (38). DK 162257 B 10 11. System ifølge krav 10, kendetegnet ved, at detekteringsindretningen (16) omfatter en fotodetektor (40) til at detektere lyssignaler som svar på en patients hjerteslag, hvorved fotodetektoren (40) frembringer et 5 udgangssignal til forstærkeren (32). 10 15 20 25 30 35System according to claim 10, characterized in that the detection device (16) comprises a photodetector (40) for detecting light signals in response to a patient's heartbeat, whereby the photodetector (40) provides an output signal to the amplifier (32). 10 15 20 25 30 35
DK504687A 1986-03-31 1987-09-25 CONTROL SYSTEM TO CONTROL A RESPIRATOR SUPPLYING A PATIENT A POSITIVE INHALATION PRESSURE DK162257C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US84594286A 1986-03-31 1986-03-31
US84594286 1986-03-31
US8700644 1987-03-27
PCT/US1987/000644 WO1987006040A1 (en) 1986-03-31 1987-03-27 Computer gated positive expiratory pressure system

Publications (4)

Publication Number Publication Date
DK504687D0 DK504687D0 (en) 1987-09-25
DK504687A DK504687A (en) 1987-09-25
DK162257B true DK162257B (en) 1991-10-07
DK162257C DK162257C (en) 1992-03-02

Family

ID=25296488

Family Applications (1)

Application Number Title Priority Date Filing Date
DK504687A DK162257C (en) 1986-03-31 1987-09-25 CONTROL SYSTEM TO CONTROL A RESPIRATOR SUPPLYING A PATIENT A POSITIVE INHALATION PRESSURE

Country Status (11)

Country Link
EP (1) EP0273041A4 (en)
JP (2) JPS63503207A (en)
AU (1) AU598255B2 (en)
CA (1) CA1302505C (en)
CH (1) CH672991A5 (en)
DE (1) DE3790137T1 (en)
DK (1) DK162257C (en)
GB (1) GB2194892B (en)
NL (1) NL8720165A (en)
SE (1) SE459214B (en)
WO (1) WO1987006040A1 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69421375T2 (en) * 1994-02-07 2000-07-06 Azriel Perel Procedure for determining cardiovascular function
DE9406407U1 (en) * 1994-04-18 1995-08-17 Schneider Peter Oxygen therapy device
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
US7041468B2 (en) 2001-04-02 2006-05-09 Therasense, Inc. Blood glucose tracking apparatus and methods
US8771183B2 (en) 2004-02-17 2014-07-08 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US7811231B2 (en) 2002-12-31 2010-10-12 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
US8112240B2 (en) 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US7620438B2 (en) 2006-03-31 2009-11-17 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US8732188B2 (en) 2007-02-18 2014-05-20 Abbott Diabetes Care Inc. Method and system for providing contextual based medication dosage determination
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US8665091B2 (en) 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US8461985B2 (en) 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US7928850B2 (en) 2007-05-08 2011-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8103456B2 (en) 2009-01-29 2012-01-24 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
WO2010127050A1 (en) 2009-04-28 2010-11-04 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
US9184490B2 (en) 2009-05-29 2015-11-10 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations
EP2473098A4 (en) 2009-08-31 2014-04-09 Abbott Diabetes Care Inc Analyte signal processing device and methods
US8993331B2 (en) 2009-08-31 2015-03-31 Abbott Diabetes Care Inc. Analyte monitoring system and methods for managing power and noise
EP2482720A4 (en) 2009-09-29 2014-04-23 Abbott Diabetes Care Inc Method and apparatus for providing notification function in analyte monitoring systems
US9980669B2 (en) 2011-11-07 2018-05-29 Abbott Diabetes Care Inc. Analyte monitoring device and methods
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH571868A5 (en) * 1973-11-21 1976-01-30 Hoffmann La Roche
US4182366A (en) * 1976-01-08 1980-01-08 Boehringer John R Positive end expiratory pressure device
DE2746924C2 (en) * 1977-10-19 1982-09-16 Drägerwerk AG, 2400 Lübeck Ventilator
SE425595B (en) * 1978-11-29 1982-10-18 Siemens Elema Ab DEVICE OF A RESPIRATORY DEVICE
FR2483785A1 (en) * 1980-06-10 1981-12-11 Air Liquide AUTOMATIC VENTILATION CORRECTION RESPIRATOR
JPS5822221A (en) * 1981-08-04 1983-02-09 Sumitomo Heavy Ind Ltd Retractor for counterweight supporting frame for continuous unloader
DE3242814A1 (en) * 1982-11-19 1984-05-24 Siemens AG, 1000 Berlin und 8000 München METHOD AND RESPIRATOR FOR BREATHING A PATIENT IN THE HEART RHYMUS AND FOR SUPPORTING THE BLOOD CIRCULATION
FR2557253B1 (en) * 1983-12-22 1986-04-11 Cit Alcatel VALVE WITH OPENING OPERATING AT DEPRESSION
DE3401841A1 (en) * 1984-01-20 1985-07-25 Drägerwerk AG, 2400 Lübeck VENTILATION SYSTEM AND OPERATING METHOD THEREFOR
DE3422066A1 (en) * 1984-06-14 1985-12-19 Drägerwerk AG, 2400 Lübeck VENTILATION SYSTEM AND CONTROLLABLE VALVE UNIT TO

Also Published As

Publication number Publication date
AU598255B2 (en) 1990-06-21
EP0273041A1 (en) 1988-07-06
AU7231687A (en) 1987-10-20
SE8703727L (en) 1987-10-01
NL8720165A (en) 1988-01-04
CA1302505C (en) 1992-06-02
JPH0488952U (en) 1992-08-03
DK504687D0 (en) 1987-09-25
DE3790137T1 (en) 1988-03-31
GB2194892A (en) 1988-03-23
CH672991A5 (en) 1990-01-31
DK504687A (en) 1987-09-25
JPH06125Y2 (en) 1994-01-05
SE8703727D0 (en) 1987-09-28
SE459214B (en) 1989-06-12
EP0273041A4 (en) 1990-01-11
WO1987006040A1 (en) 1987-10-08
GB8722069D0 (en) 1987-10-28
JPS63503207A (en) 1988-11-24
GB2194892B (en) 1990-05-09
DK162257C (en) 1992-03-02

Similar Documents

Publication Publication Date Title
DK162257B (en) Control system for controlling a respirator supplying a positive inhalation pressure to a patient
US5413110A (en) Computer gated positive expiratory pressure method
US11541200B2 (en) Ventilation system
US5183038A (en) Gated programmable ventilator
US5188098A (en) Method and apparatus for ECG gated ventilation
KR102652198B1 (en) ventricular assist device
US5377671A (en) Cardiac synchronous ventilation
WO2022221168A1 (en) System for pulse cycle harmonized ventilation and the method thereof
US5020516A (en) Circulatory assist method and apparatus
US5660171A (en) System and method for flow triggering of pressure supported ventilation by comparison of inhalation and exhalation flow rates
CA2578246A1 (en) Method and apparatus for non-rebreathing positive airway pressure ventilation
CN103957974A (en) Systems and methods for using partial CO2 rebreathing integrated in a ventilator and measurements thereof to determine noninvasive cardiac output
AU2020321288B2 (en) Device for supportive ventilation of a living being and computer program
US11769579B2 (en) Facilitating pulmonary and systemic hemodynamics
CN112384263B (en) System for assisting blood gas exchange by means of artificial respiration and extracorporeal blood gas exchange and system operating according to the method
KR102140161B1 (en) Automatic oxygen supply apparatus, method and comprogram
Nam et al. Development of an Algorithm to Regulate Pump Output for a Closed Air‐Loop Type Pneumatic Biventricular Assist Device
den Dunnen et al. Pneumatic controlled circulation
Richards et al. Modes of Mechanical Ventilation

Legal Events

Date Code Title Description
PBP Patent lapsed