DE102004014041B4 - Air and ground vehicle obstruction detection system has multiple channel range measurement system in rotating head with colour and contrast measurement - Google Patents

Air and ground vehicle obstruction detection system has multiple channel range measurement system in rotating head with colour and contrast measurement Download PDF

Info

Publication number
DE102004014041B4
DE102004014041B4 DE102004014041A DE102004014041A DE102004014041B4 DE 102004014041 B4 DE102004014041 B4 DE 102004014041B4 DE 102004014041 A DE102004014041 A DE 102004014041A DE 102004014041 A DE102004014041 A DE 102004014041A DE 102004014041 B4 DE102004014041 B4 DE 102004014041B4
Authority
DE
Germany
Prior art keywords
sensor
sensor according
rotating
distance measuring
sensor head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE102004014041A
Other languages
German (de)
Other versions
DE102004014041A1 (en
Inventor
Martin Spies
Johann Spies
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hesai Photonics Technology Co Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE102004014041A priority Critical patent/DE102004014041B4/en
Publication of DE102004014041A1 publication Critical patent/DE102004014041A1/en
Application granted granted Critical
Publication of DE102004014041B4 publication Critical patent/DE102004014041B4/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

An air and ground vehicle obstruction detection (113, 114) system has a multiple channel range measurement system in a cylindrical lens (103, 107) rotating (118-120) head that also provides broad band colour and contrast measurement with processing (117) within the rotating head.

Description

Zur Hinderniserkennung für Boden- und Luftfahrzeuge sind folgende Sensoren bekannt:
Radarsensoren mit Einzel- oder umlaufender Antenne.
For obstacle detection for ground and aircraft the following sensors are known:
Radar sensors with single or revolving antenna.

Optische Sensoren nach dem Laufzeitverfahren mit Spiegelabtastung z. B.

  • DE 197 57 849 A1
  • DE 101 14 362 C2
  • DE 101 11 826 A1
  • DE 195 07 957 C1
  • DE 196 05 218 C1
  • DE 38 25 081 A1
Optical sensors according to the transit time method with mirror scanning z. B.
  • - DE 197 57 849 A1
  • - DE 101 14 362 C2
  • - DE 101 11 826 A1
  • - DE 195 07 957 C1
  • - DE 196 05 218 C1
  • - DE 38 25 081 A1

In der DE 197 57 849 A1 ist eine Anordnung beschrieben, bei der ein rotierender Teil Lasersender und einen Laserempfänger in koaxialer Anordnung enthält. Ein Sensor nach dieser Beschreibung ist im Regen oder Dunst nicht einsetzbar, da Rückstreuungen aus dem Nahbereich die Signale verfälschen. Die DE 38 25 081 A1 beschreibt einen Scanner mittels einer zur Vibration gebrachten Glasfaser.In the DE 197 57 849 A1 an arrangement is described in which a rotating part laser transmitter and a laser receiver includes in a coaxial arrangement. A sensor according to this description is not applicable in the rain or haze, since backscattering from the near range distort the signals. The DE 38 25 081 A1 describes a scanner by means of a vibrated fiberglass.

Überdies gibt es Sensoren die auf Transponderbasis arbeiten.moreover There are sensors that work on a transponder basis.

Alle diese Sensoren haben den Nachteil, dass sie kleine Hindernisse wie Drähte oder Segelflugzeuge mit sehr kleiner Frontfläche nicht erkennen.All These sensors have the disadvantage of being small obstacles like wires or gliders with very small front surface do not recognize.

Aufgabe der ErfindungObject of the invention

Aufgabe der Erfindung ist es, einen Sensor zu erstellen, der kleine Hindernisse über eine Entfernungsmessung nach z. B. dem Pulslaufzeitverfahren elektromagnetischer Strahlung erkennt und zuordnet, darüber hinaus eine hohe Winkelauflösung in allen Abtastbereichen, z. B. 30°–60° in der Elevation und 360° im Azimut, aufweist und eine hohe Energiedichte am Ort des Hindernisses erzeugt und zugleich mit wenig Volumen und Gewicht darstellbar ist. Diese Aufgabe wird mit einem Sensor gemäß Anspruch 1 oder Anspruch 2 gelöst.task The invention is to create a sensor that has small obstacles over one Distance measurement after z. B. the pulse transit time electromagnetic Radiation detects and assigns, in addition, a high angular resolution in all scanning areas, z. B. 30 ° -60 ° in the elevation and 360 ° in the Azimuth, has and high energy density at the location of the obstacle generated and at the same time with little volume and weight can be displayed. This object is achieved with a sensor according to claim 1 or claim 2 solved.

Die Erfindung wird anhand der 1 bis 6 beschrieben.The invention is based on the 1 to 6 described.

Entsprechend 1 besteht der Sensor aus einem Sensorkopf 1a der um seine Achse 1b rotiert. Im Sensorkopf befindet sich z. B. eine Laserzeile mit mehreren Einzellasern 101 zur Erzeugung von Lichtimpulsen die von der Treiberelektronik 102 angesteuert wird. Die Laserzeile wird über die Optik 103 auf die Umgebung abgebildet. Die von Hindernissen rückgestreute Energie wird über die Optik 107 empfangen und auf die Empfängerzeile 104 z. B. bestehend aus einer Reihe von Fotodioden abgebildet. Die weitere Signalkonditionierung erfolgt in der Elektronik 105. Durch einen Strahlteiler 106 der für die Wellenlänge des Lasers 101 durchlässig ist und zugleich als Filter für den Empfänger 104 dient, wird derjenige Wellenlängenbereich des Lichtes, der nicht der Laserwellenlänge zugeordnet ist, auf den Bild- oder Zeilensensor 108 geleitet und über die Elektronik 109 ausgewertet. Zur gesamten Signalauswertung und Spannungsversorgung für alle Komponenten im Sensorkopf 1a dienen die Elektronikplatinen 112a und 112b.Corresponding 1 the sensor consists of a sensor head 1a the one around his axis 1b rotates. In the sensor head is z. B. a laser line with several individual lasers 101 to generate light pulses from the driver electronics 102 is controlled. The laser line is about the optics 103 imaged on the environment. The energy backscattered by obstacles is transmitted through the optics 107 received and to the recipient line 104 z. B. consisting of a series of photodiodes imaged. The further signal conditioning takes place in the electronics 105 , Through a beam splitter 106 for the wavelength of the laser 101 is permeable and at the same time as a filter for the recipient 104 is used, that wavelength range of the light, which is not associated with the laser wavelength, on the image or line sensor 108 headed and about the electronics 109 evaluated. For the entire signal evaluation and power supply for all components in the sensor head 1a serve the electronic boards 112a and 112b ,

Die Entfernungsmessung zum Hindernis hin erfolgt durch die Bestimmung der Laufzeit z. B. nach einem der durch die Schriften

  • DE 197 17 399 C2
  • DE 101 62 668 B4
  • DE 41 27 168 A
bekannten und beschriebenen Verfahren.The distance measurement towards the obstacle takes place by determining the transit time z. B. after one of the writings
  • - DE 197 17 399 C2
  • - DE 101 62 668 B4
  • - DE 41 27 168 A
known and described methods.

Die Versorgung des rotierenden Teiles erfolgt mit aus der DE 101 14 362 C2 bekannten Energieübertragung durch induktive Koppelung. Die Datenübertragung in und aus dem Sensorkopf 1a erfolgt über die optischen Sende- und Empfangsgruppen 113 und 114. Der Antrieb erfolgt z. B. über den Zahnkranz 118 und dem Motor 120 über sein Ritzel 119. Der Motor gibt z. B. durch Schrittsteuerung direkt die Winkelinkremente vor und diese sind damit durch die Motorsteuerung bestimmt und bekannt. Die Signalverarbeitung, Steuerung des Motors, Stromversorgung und Schnittstelle zum Fahrzeug oder Fluggerät erfolgt in der Elektronik 117. Gegen Umwelteinflüsse ist das System mit dem transparenten Gehäuse 121 geschützt. Die übrigen Komponenten sind durch das Gehäuse 122 geschützt. Das System wird am Gerät mit dem Flansch 123 befestigt. Die Linsensysteme 107 und 103 sind in einem gesonderten Rahmen 110 und 111 befestigt und können mit diesem über einen Hubmotor 124 in axiale Richtung verschoben werden. Damit können mehrere Winkelbereiche abgescannt werden oder der Elevationswinkel kann statisch oder dynamisch dem geplanten Flug- oder Fahrmanöver angepasst werden.The supply of the rotating part takes place with the DE 101 14 362 C2 known energy transfer by inductive coupling. The data transmission in and out of the sensor head 1a takes place via the optical transmission and reception groups 113 and 114 , The drive is z. B. over the sprocket 118 and the engine 120 over his pinion 119 , The engine is z. B. by stepping directly before the angle increments and these are thus determined and known by the engine control. The signal processing, control of the engine, power supply and interface to the vehicle or aircraft takes place in the electronics 117 , Against environmental influences is the system with the transparent housing 121 protected. The remaining components are through the housing 122 protected. The system is connected to the device with the flange 123 attached. The lens systems 107 and 103 are in a separate frame 110 and 111 attached and can with this over a lifting engine 124 be moved in the axial direction. Thus, several angular ranges can be scanned or the elevation angle can be adjusted statically or dynamically to the planned flight or driving maneuver.

Die Abtastung der Umgebung erfolgt gemäß 2. Im Sensorsystem 121 sind drei Abtastsysteme gemäß 1 untergebracht, die den Azimut jeweils z. B. um 120° versetzt abtasten, so dass mit einem Umlauf nacheinander die Bereiche 205, 206 und 207 abgetastet werden. Jeder Bereich wird über die Einzellaser 202, die in der Laserzeile 201 zusammengefasst ist beleuchtet. Die Zuordnung der Information zu den einzelnen Winkelbereichen erfolgt durch sequentielles Ansteuern der einzelnen Laserdioden oder zumindest durch sequentielles Ansteuern einzelner Laserdiodengruppen. Die drei aufgezeichneten um 120° verdrehten Abtastbereiche 205, 206 und 207 sowie 208, 209 und 210 können parallel abgetastet werden. Nach einem Umlauf wird der Hubmotor 124 gemäß 1 betätigt und die Linsengruppen verschoben, so dass dann die Elevationsbereiche 208, 209 und 210 abgetastet werden. Dies ist nur als Beispiel dargestellt. Es können durch den Hubmotor 124 mehrere Positionen angefahren werden.The scanning of the environment is done according to 2 , In the sensor system 121 are three sampling systems according to 1 accommodated, the azimuth z. B. offset by 120 ° scan, so that with one revolution in succession, the areas 205 . 206 and 207 be scanned. Each area is about the single laser 202 that in the laser line 201 summarized is illuminated. The assignment of the Infor tion to the individual angular ranges is effected by sequential driving of the individual laser diodes or at least by sequential activation of individual laser diode groups. The three recorded scan areas rotated by 120 ° 205 . 206 and 207 such as 208 . 209 and 210 can be sampled in parallel. After one revolution, the lifting motor 124 according to 1 pressed and moved the lens groups, so that then the elevation areas 208 . 209 and 210 be scanned. This is just an example. It can by the lift motor 124 several positions are approached.

Der jeweilige Elevationsbereich 205 bis 210 ist Sendeseitig z. B. entsprechend 201 in 16 Sendestrahlbereiche 202, erzeugt durch die einzelnen Laserdioden, aufgeteilt. Die Empfangsbereiche 203 enthalten Empfangsflächen 204 in denen die Sendestrahlbereiche 202 etwas kleiner abgebildet werden. Damit werden Justagetoleranzen und Laufzeitunterschiede während der Abtastung und Drehbewegung ausgeglichen. Die einzelnen Entfernungsbereiche 202 werden während des Umlaufs sequentiell oder teilweise parallel dargestellt.The respective elevation area 205 to 210 is transmitting side z. B. accordingly 201 in 16 transmission beam ranges 202 , generated by the individual laser diodes, split. The reception areas 203 contain reception areas 204 in which the transmission beam areas 202 be shown a little smaller. This compensates adjustment tolerances and differences in transit time during the scanning and rotational movement. The individual distance ranges 202 are displayed sequentially or partially in parallel during the circulation.

Der passive Empfangsteil 108/109 besteht z. B. aus einem CMOS-Sensor mit einer hohen Zahl an Bildpunkten für den sichtbaren Bereich des Lichtes. Dieser ist entweder analog dem Empfänger 104 als Zeile 204 mit 10 bis 3000 Bildpunkten ausgebildet oder als Fläche 211 mit 100 bis 10 Millionen Bildpunkten der in der Lage so justiert ist, dass die Senderabbildungen 202 etwa in der Mitte angeordnet sind. Anstatt des sichtbaren Bereiches des Lichtes kann auch der Infrarotbereich z. B. 8–12 μm benutzt werden um die Wärmestrahlung der Hindernisse auszuwerten.The passive receiver 108 / 109 exists z. B. from a CMOS sensor with a high number of pixels for the visible range of light. This is either analogous to the receiver 104 as a line 204 formed with 10 to 3000 pixels or as area 211 with 100 to 10 million pixels that is able to be adjusted so that the transmitter pictures 202 are arranged approximately in the middle. Instead of the visible region of the light and the infrared range z. B. 8-12 microns are used to evaluate the heat radiation of the obstacles.

Um das Gesamtsystem möglichst klein und leicht zu gestalten sind die drei Abtastsysteme entsprechend 3 ineinandergeschachtelt. Die Sendeeinheit besteht damit aus den Optiken 103a, 103b und 103c die jeweils um 120° verdreht sind und jeweils die Lasergruppen 101a/102a, 101b/102b und 101c/102c auf die Umgebung abbilden. Analog dazu ist die Abbildung der Umgebung auf die Empfänger entsprechend 4 gestaltet. Hier bilden die Optiken 107a, 107b und 107c die Umgebung und die von den Laser beleuchteten Bereichen jeweils auf die Empfangsgruppen 104a/105a, 104b/105b, und 104c/105c ab. Die Strahlengänge sind gemäß 4 ineinandergeschachtelt. Um gerade die für die Laufzeitmessung nötige schnelle Signalverarbeitung nicht durch Übertragungswege zu beeinträchtigen, wird die gesamte Entfernungsauswertung im rotierenden Sensorkopf vorgenommen.To make the overall system as small and light as possible, the three scanning systems are appropriate 3 interleaved. The transmitting unit thus consists of the optics 103a . 103b and 103c each rotated by 120 ° and each of the laser groups 101 / 102 . 101b / 102b and 101c / 102c depict on the environment. Similarly, mapping the environment to the recipients is appropriate 4 designed. Here are the optics 107a . 107b and 107c the environment and the areas illuminated by the laser each on the receiving groups 104a / 105a . 104b / 105b , and 104c / 105c from. The beam paths are according to 4 interleaved. In order not to impair the fast signal processing necessary for the transit time measurement by transmission paths, the entire distance evaluation is carried out in the rotating sensor head.

Das Blockschaltbild des erfindungsgemäßen Systems ist in 5 dargestellt. Im rotierenden Teil 501 befinden sich neben den in der 1 bis 4 beschriebenen Komponenten die Videoaufbereitung 502, die das Timing in Abhängigkeit von der Laserabtastung steuert und aus den Schwarz-Weiß- bzw. Farbkontrasten relevante Objektumrisse oder Lichtquellen der Objekte auswertet. Ebenso ist die Signalakquisition und Signalaufbereitung für die Abstandsmessung und das Pre-Tracking, das bereits die Signale sortiert und den Winkelbereichen zuordnet und den Vergleich mit dem Videosignal durchführt im rotierenden Teil 501 enthalten. Außerdem befindet sich im rotierenden Teil 501 auch die Hubmotorsteuerung. Im stehenden Teil 510 befinden sich neben der in 1 beschriebenen Komponenten die Gesamtsteuerung mit dem Gesamt-Tracking und der Datenaufbereitung 511 sowie die Stromversorgung und die Schnittstelle zum Gesamtsystem 512.The block diagram of the system according to the invention is shown in FIG 5 shown. In the rotating part 501 are located next to the one in the 1 to 4 components described the video editing 502 , which controls the timing as a function of the laser scanning and evaluates from the black-and-white or color contrasts relevant object outlines or light sources of the objects. Likewise, the signal acquisition and signal conditioning for the distance measurement and the pre-tracking, which already sorts the signals and assigns the angular ranges and performs the comparison with the video signal in the rotating part 501 contain. It is also located in the rotating part 501 also the Hubmotorsteuerung. In the standing part 510 are located next to the in 1 components described the overall control with the total tracking and data preparation 511 as well as the power supply and the interface to the overall system 512 ,

Im einfachsten Fall erfolgt die Auswertung der Lage von Hindernissen durch die Auswertung der gewonnenen Entfernungsinformationen, die durch die Lage der Abtastflächen, die Zuordnung zum jeweiligen System und durch den Drehwinkel sowie den Elevationswinkel des Hubmotors definiert sind. Durch die mehrfache Abtastung von Hindernissen mit, durch die Erfindung ermöglichten, kleinen Flächen ist die Detektionswahrscheinlichkeit von Hindernissen wie Drähten und Hindernissen sehr hoch. Mit Hilfe des jeweiligen Kamerasystems, das zugleich die Umgebung abtastet, können sowohl Schwarz-Weiß als auch Farbkontraste der Hindernisse ermittelt und ausgewertet werden. Auch aktive Lichtquellen wie Positionsleuchten von Luftfahrzeugen und deren Blitzlichter, sowie Warnleuchten z. B. von Antennen können ausgewertet werden. Durch die Korrelation dieser Daten mit der Entfernungsmessung ergibt sich eine sehr sichere Erkennung von Hindernissen.in the the simplest case is the evaluation of the location of obstacles through the evaluation of the obtained distance information, the due to the position of the scanning surfaces, the assignment to the respective system and by the rotation angle and the Elevation angle of the lifting motor are defined. By the multiple Scanning of obstacles with, enabled by the invention, small areas is the probability of detection of obstacles such as wires and obstacles very high. With the help of the respective camera system, at the same time the environment scans, can both black and white as also color contrasts of the obstacles can be determined and evaluated. Also active light sources such as position lights of aircraft and their flashlights, as well as warning lights z. B. antennas can be evaluated become. By correlating this data with the distance measurement results in a very safe detection of obstacles.

Eine Weiterbildung des Sensorsystems ist in 6 dargestellt.A development of the sensor system is in 6 shown.

Da unterschiedliche Hindernisse eine gute Rückstreuung bei unterschiedlichen Wellenlängen aufweisen und die Umgebung für unterschiedliche Wellenlängen unterschiedliche Dämpfungswerte aufweist, werden in der Weiterbildung der Erfindung zwei Sender 602 und 604 mit ihren Optiken 601 und 603 auf die Umgebung entsprechend 2 abgebildet. Die Sender haben z. B. 905 nm Wellenlänge für den Sender 602 und z. B. 10 μm für den Sender 604. Die Empfangseinheit verwendet die Optik 107, die für beide Wellenlängen geeignet ist. Der Strahlteiler 605 ist z. B. für 905 nm Wellenlänge durchlässig und auch für diese Wellenlänge ein selektiver Filter. Damit wird die rückgestreute Energie aus dem Sender mit 905 nm Wellenlänge auf den Detektor 606 geleitet. Der Strahlteiler kann dabei so ausgeführt werden, dass nur Energie mit z. B. 10 μm Wellenlänge auf den Detektor 607 gelangt.Since different obstacles have good backscatter at different wavelengths and the environment has different attenuation values for different wavelengths, in the development of the invention two transmitters are used 602 and 604 with their optics 601 and 603 according to the environment 2 displayed. The stations have z. B. 905 nm wavelength for the transmitter 602 and Z. B. 10 microns for the transmitter 604 , The receiving unit uses the optics 107 which is suitable for both wavelengths. The beam splitter 605 is z. B. for 905 nm wavelength permeable and also for this wavelength a selective filter. Thus, the backscattered energy from the transmitter with 905 nm wavelength on the detector 606 directed. The beam splitter can be designed so that only energy with z. B. 10 micron wavelength on the detector 607 arrives.

Die Sender 602 und 604 und die Empfänger 606 und 607 und die Strahlteiler 605 können natürlich auch auf andere elektromagnetische Wellenlängen ausgelegt werden.The transmitters 602 and 604 and the recipients 606 and 607 and the beam splitters 605 Of course, they can also be designed for other electromagnetic wavelengths.

Mit der Anordnung nach 6 ist es aber auch möglich die Dichte der Abtastpunkte in unterschiedlichen Wellenlängen anders zu gestalten, die in etwa sonst gleiche Eigenschaften aufweisen um damit die Erkennungswahrscheinlichkeit zu erhöhen oder im Bereich der längeren Wellenlängen die optische Auflösung oder die Kosten zu berücksichtigen.With the arrangement after 6 However, it is also possible to make the density of the sampling points in different wavelengths differently, which have approximately the same properties in order to increase the probability of recognition or to take into account the optical resolution or cost in the longer wavelengths.

Claims (9)

Sensor zur Hinderniserkennung für Boden und Luftfahrzeuge mit mindestens einer nach dem Laufzeitverfahren arbeitenden Mehrkanalentfernungsmesseinrichtung, die in einem rotierenden Sensorkopf (1a) untergebracht ist und mehrere Komponenten (101, 103, 104, 107) umfasst, wobei die Komponenten in axialer Richtung derart verschiebbar sind, dass unterschiedliche Elevationswinkelbereiche abgetastet werden.Ground and aircraft obstacle detection sensor comprising at least one multi-channel distance measuring device operating in a rotating sensor head (US Pat. 1a ) and several components ( 101 . 103 . 104 . 107 ), wherein the components are displaceable in the axial direction such that different elevation angle ranges are scanned. Sensor zur Hinderniserkennung für Boden und Luftfahrzeuge mit mindestens zwei nach dem Laufzeitverfahren arbeitenden Mehrkanalentfernungsmesseinrichtungen, die in einem rotierenden Sensorkopf (1a) untergebracht sind und den Azimut jeweils versetzt abtasten, derart dass mit einem Umlauf nacheinander unterschiedliche Elevationswinkelbereiche (205, 206, 207 bzw. 208, 209, 210) abgetastet werden.Ground and aircraft obstacle detection sensor comprising at least two multi-channel distance measuring devices operating in a rotating sensor head ( 1a ) are accommodated and scan the azimuth offset in each case, so that one revolution in succession different elevation angle ranges ( 205 . 206 . 207 respectively. 208 . 209 . 210 ) are scanned. Sensor nach einem der vorigen Ansprüche, bei dem die Strahlengänge der Mehrkanalentfernungsmesseinrichtungen zur Gewichts- und Platzersparnis ineinander verschachtelt ausgeführt sind.Sensor according to one of the preceding claims, in which the beam paths the multi-channel distance measuring devices into each other for weight and space savings nested are. Sensor nach einem der vorigen Ansprüche, bei dem alle Auswertungen, die eine schnelle Signalverarbeitung erfordern, im rotierenden Sensorkopf (1a) untergebracht sind und nur die vorverarbeitete Information vom rotierenden Sensorkopf (1a) zum stehenden Teil übertragen wird.Sensor according to one of the preceding claims, in which all evaluations which require a rapid signal processing, in the rotating sensor head ( 1a ) and only the preprocessed information from the rotating sensor head ( 1a ) is transferred to the stationary part. Sensor nach einem der vorigen Ansprüche, bei dem die Entfernungsmessung in mindestens zwei Wellenlängenbereichen parallel erfolgt.Sensor according to one of the preceding claims, in which the distance measurement in at least two wavelength ranges done in parallel. Sensor nach Anspruch 5, bei dem die abbildenden Optiken zugleich für die mindestens zwei Wellenlängenbereiche benutzt werden.A sensor according to claim 5, wherein the imaging optics at the same time for the at least two wavelength ranges to be used. Sensor nach einem der vorigen Ansprüche mit einem Bildsensor (108), der im rotierenden Sensorkopf (1a) angeordnet ist und zum Aufnehmen von passiven, flächenhaften Bildern dient, aus denen Farbkontraste und aktive Lichtquellen ermittelt und ausgewertet werden.Sensor according to one of the preceding claims with an image sensor ( 108 ) in the rotating sensor head ( 1a ) is arranged and used to record passive, areal images, from which color contrasts and active light sources are determined and evaluated. Sensor nach einem der vorigen Ansprüche mit einem transparenten Gehäuse (121), das als Zylinderlinse im Strahlengang der Einzeloptiken (103, 107) dient.Sensor according to one of the preceding claims with a transparent housing ( 121 ), as a cylindrical lens in the beam path of the individual optics ( 103 . 107 ) serves. Sensor nach einem der vorigen Ansprüche, bei dem die Sendestrahlbereiche (202) der Mehrkanalentfernungsmesseinrichtungen etwas kleiner abgebildet werden als deren Empfangsbereiche (203), so dass Laufzeitunterschiede und Justagetoleranzen ausgeglichen werden.Sensor according to one of the preceding claims, in which the transmission beam areas ( 202 ) of the multi-channel distance measuring devices are shown slightly smaller than their receiving areas ( 203 ), so that runtime differences and adjustment tolerances are compensated.
DE102004014041A 2004-03-19 2004-03-19 Air and ground vehicle obstruction detection system has multiple channel range measurement system in rotating head with colour and contrast measurement Expired - Lifetime DE102004014041B4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102004014041A DE102004014041B4 (en) 2004-03-19 2004-03-19 Air and ground vehicle obstruction detection system has multiple channel range measurement system in rotating head with colour and contrast measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004014041A DE102004014041B4 (en) 2004-03-19 2004-03-19 Air and ground vehicle obstruction detection system has multiple channel range measurement system in rotating head with colour and contrast measurement

Publications (2)

Publication Number Publication Date
DE102004014041A1 DE102004014041A1 (en) 2005-10-13
DE102004014041B4 true DE102004014041B4 (en) 2006-04-06

Family

ID=34982858

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102004014041A Expired - Lifetime DE102004014041B4 (en) 2004-03-19 2004-03-19 Air and ground vehicle obstruction detection system has multiple channel range measurement system in rotating head with colour and contrast measurement

Country Status (1)

Country Link
DE (1) DE102004014041B4 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006045799A1 (en) * 2006-09-26 2008-04-10 Hans Spies Scanning laser distance sensor has laser diode that is driven by pulse driver directly such that electrical connection to mechanically driven carrier is unnecessary
DE102008013906A1 (en) * 2008-03-13 2009-10-22 Spies, Hans, Dipl.-Ing. Optical delay sensor for scanning large area of scene in azimuth and elevation regions, has passive reflector magnetically positioned from outside and contactlessly movable from outside for scanning scene in elevation
DE102008019615A1 (en) 2008-04-18 2009-11-05 Ingenieurbüro Spies GbR (vertretungsberechtigte Gesellschafter: Hans Spies, Martin Spies, 86558 Hohenwart) Optical runtime sensor for scanning space, has receiver directly represented on scene by oscillating mirror while laser illuminates scene by fixed mirror, where mirror array controls performance of receiver
DE102008032216A1 (en) * 2008-07-09 2010-01-14 Sick Ag Device for detecting the presence of an object in space
DE102009035984A1 (en) 2009-08-04 2011-02-10 Ingenieurbüro Spies GbR (vertretungsberechtigte Gesellschafter: Hans Spies, Martin Spies, 86558 Hohenwart) Multi-functional running time sensor for use in e.g. external rear mirror of bus for spatial scanning of trunk road, has receiving unit comprising lens, where sensor scans surfaces at different angle ranges, during rotation of lens
DE102009049809A1 (en) 2008-04-18 2011-06-01 Ingenieurbüro Spies GbR (vertretungsberechtigte Gesellschafter: Hans Spies, Martin Spies, 86558 Hohenwart) Optical run-time sensor for scanning scene room, has mirror system comprising two mirrors that are connected with one another in fixed manner, where mirror system is oscillated by support having springs for scanning scene in plane
DE102011011875B3 (en) * 2011-02-21 2012-07-26 Ingenieurbüro Spies GbR (vertretungsberechtigte Gesellschafter: Hans Spies, Martin Spies, 86558 Hohenwart) Optical pulse transit time sensor for high current laser control, comprises unit for light pulse generation by laser, another unit for receiving backscattered signals of objects and third unit for evaluating distances of received signals
DE102011001387A1 (en) 2011-03-18 2012-09-20 First Sensor AG Sampling method for sampling field by optical sampling system or scanning system, involves transmitting test light signals by transmitters of transmitter arrangement of optical sampling system
EP2388619B1 (en) 2010-05-20 2015-03-25 Leuze electronic GmbH + Co. KG Optical sensor
WO2017001038A1 (en) 2015-06-30 2017-01-05 Wabco Gmbh Sensor device for detecting surroundings and method for recognising a zero position of a rotatable unit of such a sensor device
US11956410B2 (en) 2015-09-24 2024-04-09 Ouster, Inc. Optical system for collecting distance information within a field

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005055572B4 (en) * 2005-11-19 2007-08-02 Ingenieurbüro Spies GbR (vertretungsberechtigte Gesellschafter: Hans Spies, Martin Spies, 86558 Hohenwart) Sampling optical distance sensor
US7544945B2 (en) 2006-02-06 2009-06-09 Avago Technologies General Ip (Singapore) Pte. Ltd. Vertical cavity surface emitting laser (VCSEL) array laser scanner
USRE46672E1 (en) 2006-07-13 2018-01-16 Velodyne Lidar, Inc. High definition LiDAR system
DE102006052770B4 (en) * 2006-11-09 2022-08-11 Conti Temic Microelectronic Gmbh environment detection system
DE102006057495A1 (en) * 2006-12-06 2008-08-21 Valeo Schalter Und Sensoren Gmbh Method for detecting a physical quantity and device therefor
DE102007004973A1 (en) * 2007-01-26 2008-07-31 Valeo Schalter Und Sensoren Gmbh Environment sensor for the detection of objects and operating methods for this
DE102008022941A1 (en) 2008-02-29 2009-09-03 Osram Opto Semiconductors Gmbh Sensor system with a lighting device and a detector device
ATE544081T1 (en) 2009-03-31 2012-02-15 Pepperl & Fuchs OPTICAL SENSOR BASED ON THE TIME PRINCIPLE
ATE545041T1 (en) 2009-03-31 2012-02-15 Pepperl & Fuchs OPTICAL SENSOR BASED ON THE TIME PRINCIPLE
JP6033222B2 (en) 2010-07-22 2016-11-30 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Laser scanning system and method of use
DE102013111547B4 (en) * 2013-10-21 2021-01-21 Sick Ag Sensor with a scanning unit that can be moved around the axis of rotation
DE102014101312B3 (en) * 2014-02-04 2014-12-04 Sick Ag Optoelectronic sensor and method for detecting objects in a surveillance area
DE102014107353A1 (en) * 2014-05-26 2015-11-26 Sick Ag Optoelectronic sensor and method for detecting objects
EP3018500B1 (en) * 2014-11-10 2022-01-19 Sick Ag Optoelectronic sensor
US10539661B2 (en) 2015-11-25 2020-01-21 Velodyne Lidar, Inc. Three dimensional LIDAR system with targeted field of view
DE102015121839A1 (en) * 2015-12-15 2017-06-22 Sick Ag Optoelectronic sensor and method for detecting an object
DE102016101134A1 (en) * 2016-01-22 2017-07-27 Valeo Schalter Und Sensoren Gmbh Optical measuring device of a vehicle, driver assistance device and vehicle with at least one optical measuring device
US10627490B2 (en) 2016-01-31 2020-04-21 Velodyne Lidar, Inc. Multiple pulse, LIDAR based 3-D imaging
WO2017164989A1 (en) 2016-03-19 2017-09-28 Velodyne Lidar, Inc. Integrated illumination and detection for lidar based 3-d imaging
EP3433634B8 (en) * 2016-03-21 2021-07-21 Velodyne Lidar USA, Inc. Lidar based 3-d imaging with varying illumination field density
DE102016114995A1 (en) * 2016-03-30 2017-10-05 Triple-In Holding Ag Apparatus and method for taking distance images
US10393877B2 (en) 2016-06-01 2019-08-27 Velodyne Lidar, Inc. Multiple pixel scanning LIDAR
DE102016219955B4 (en) * 2016-10-13 2024-04-25 Robert Bosch Gmbh Transmitter unit for illuminating an environment, system and method for detecting an environment by means of a scannable illumination pattern
DE102016220708A1 (en) * 2016-10-21 2018-04-26 Volkswagen Aktiengesellschaft Lidar sensor and method for optically sensing an environment
EP3330741B1 (en) 2016-12-05 2019-02-13 Sick Ag Optoelectronic sensor and method for detecting objects in a surveillance area
US10386465B2 (en) 2017-03-31 2019-08-20 Velodyne Lidar, Inc. Integrated LIDAR illumination power control
DE102017107666A1 (en) 2017-04-10 2018-10-11 Sick Ag Optoelectronic sensor and method for detecting an object
DE102017206909A1 (en) * 2017-04-25 2018-10-25 Robert Bosch Gmbh LIDAR system and method of operating the same
WO2018208843A1 (en) 2017-05-08 2018-11-15 Velodyne Lidar, Inc. Lidar data acquisition and control
US11294041B2 (en) 2017-12-08 2022-04-05 Velodyne Lidar Usa, Inc. Systems and methods for improving detection of a return signal in a light ranging and detection system
DE102017223673A1 (en) 2017-12-22 2019-06-27 Robert Bosch Gmbh LIDAR system for capturing an object
DE102018101847A1 (en) 2018-01-26 2019-08-01 Sick Ag Optoelectronic sensor and method for detecting objects
DE202018100458U1 (en) 2018-01-26 2019-04-29 Sick Ag Opto-electronic sensor for detecting objects
DE102018102601A1 (en) 2018-02-06 2019-08-08 Sick Ag Optoelectronic sensor and method for detecting objects in a surveillance area
DE202018103258U1 (en) 2018-06-11 2019-09-12 Sick Ag Optical sensor for detecting objects
DE102018113848A1 (en) 2018-06-11 2019-12-12 Sick Ag Optoelectronic sensor and method for acquiring three-dimensional image data
DE102018113849B4 (en) 2018-06-11 2023-04-20 Sick Ag Photoelectric sensor and method for detecting objects
JP2020016529A (en) * 2018-07-25 2020-01-30 株式会社リコー Object detector and object detection method
US11082010B2 (en) 2018-11-06 2021-08-03 Velodyne Lidar Usa, Inc. Systems and methods for TIA base current detection and compensation
US11885958B2 (en) 2019-01-07 2024-01-30 Velodyne Lidar Usa, Inc. Systems and methods for a dual axis resonant scanning mirror
EP3712647B1 (en) 2019-03-18 2021-04-28 Sick Ag Optoelectronic sensor and method for detecting objects
EP3736603B1 (en) 2019-05-10 2021-09-29 Sick Ag Optoelectronic sensor and method for detecting a monitored area
US11556000B1 (en) 2019-08-22 2023-01-17 Red Creamery Llc Distally-actuated scanning mirror
DE102019125684B4 (en) 2019-09-24 2022-07-28 Sick Ag Photoelectric sensor and method for detecting objects
EP3822657B1 (en) 2019-11-12 2024-02-21 Hexagon Technology Center GmbH Multi-beam measuring device with high directional stability for 3d scanning of an environment
DE102019133096A1 (en) 2019-12-05 2021-06-10 Sick Ag Optoelectronic sensor and method for detecting an object
DE102021117818A1 (en) 2021-07-09 2023-01-12 Sick Ag Camera for capturing three-dimensional image data and method for checking the functionality of a camera
DE102021120698A1 (en) 2021-08-09 2023-02-09 Sick Ag Beam splitter arrangement for an optoelectronic sensor, optoelectronic sensor with such and method for beam splitting in an optoelectronic sensor
DE202021104253U1 (en) 2021-08-09 2022-11-11 Sick Ag Beam splitter arrangement for an optoelectronic sensor and optoelectronic sensor with such

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3825081A1 (en) * 1988-07-23 1990-01-25 Guenter Prof Dr Ing Kompa Fibre-optical scanner
DE4127168A1 (en) * 1991-08-16 1993-02-18 Spies Martin J Dipl Ing Fh Multi-mode signal processor for distance measurement, e.g. between vehicles - has transmitter, receiver, and estimation processor comparing processed data with distance prognosis windows
US5210586A (en) * 1990-06-27 1993-05-11 Siemens Aktiengesellschaft Arrangement for recognizing obstacles for pilots of low-flying aircraft
DE19507957C1 (en) * 1995-03-07 1996-09-12 Daimler Benz Ag Vehicle with optical scanning device for a side lane area
DE19605218C1 (en) * 1996-02-13 1997-04-17 Dornier Gmbh Obstacle warning system for low-flying aircraft
DE19757849A1 (en) * 1997-12-24 1999-07-08 Hipp Johann F Scanner for arrangement for optical detection of objects
DE19717399C2 (en) * 1997-04-24 2001-05-23 Martin Spies Device for determining the distance and type of objects and the visibility
DE10111826A1 (en) * 2000-04-07 2001-10-11 Riegl Laser Measurement Sys Color image system for laser range finders has scanned fan beam illumination and receiver reduces power
DE10146692A1 (en) * 2001-09-21 2003-04-30 Martin Spies Hybrid distance image sensor uses rotation of polygonal deflection rod for simultaneous deflection of transmission and reception surfaces for electromagnetic waves
DE10114362C2 (en) * 2001-03-22 2003-12-24 Martin Spies Laser scanning system for distance measurement
DE10162668B4 (en) * 2001-12-19 2004-03-04 Spies, Martin, Dipl.-Ing. (FH) System for measuring the distance to objects by means of electromagnetic pulses

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3825081A1 (en) * 1988-07-23 1990-01-25 Guenter Prof Dr Ing Kompa Fibre-optical scanner
US5210586A (en) * 1990-06-27 1993-05-11 Siemens Aktiengesellschaft Arrangement for recognizing obstacles for pilots of low-flying aircraft
DE4127168A1 (en) * 1991-08-16 1993-02-18 Spies Martin J Dipl Ing Fh Multi-mode signal processor for distance measurement, e.g. between vehicles - has transmitter, receiver, and estimation processor comparing processed data with distance prognosis windows
DE19507957C1 (en) * 1995-03-07 1996-09-12 Daimler Benz Ag Vehicle with optical scanning device for a side lane area
DE19605218C1 (en) * 1996-02-13 1997-04-17 Dornier Gmbh Obstacle warning system for low-flying aircraft
DE19717399C2 (en) * 1997-04-24 2001-05-23 Martin Spies Device for determining the distance and type of objects and the visibility
DE19757849A1 (en) * 1997-12-24 1999-07-08 Hipp Johann F Scanner for arrangement for optical detection of objects
DE10111826A1 (en) * 2000-04-07 2001-10-11 Riegl Laser Measurement Sys Color image system for laser range finders has scanned fan beam illumination and receiver reduces power
DE10114362C2 (en) * 2001-03-22 2003-12-24 Martin Spies Laser scanning system for distance measurement
DE10146692A1 (en) * 2001-09-21 2003-04-30 Martin Spies Hybrid distance image sensor uses rotation of polygonal deflection rod for simultaneous deflection of transmission and reception surfaces for electromagnetic waves
DE10162668B4 (en) * 2001-12-19 2004-03-04 Spies, Martin, Dipl.-Ing. (FH) System for measuring the distance to objects by means of electromagnetic pulses

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006045799B4 (en) * 2006-09-26 2008-06-05 Hans Spies Scanning laser distance sensor
DE102006045799A1 (en) * 2006-09-26 2008-04-10 Hans Spies Scanning laser distance sensor has laser diode that is driven by pulse driver directly such that electrical connection to mechanically driven carrier is unnecessary
DE102008013906A1 (en) * 2008-03-13 2009-10-22 Spies, Hans, Dipl.-Ing. Optical delay sensor for scanning large area of scene in azimuth and elevation regions, has passive reflector magnetically positioned from outside and contactlessly movable from outside for scanning scene in elevation
DE102008013906B4 (en) * 2008-03-13 2010-03-18 Spies, Hans, Dipl.-Ing. Optical time-of-flight sensor with azimuth and elevation scanning
DE102009049809A1 (en) 2008-04-18 2011-06-01 Ingenieurbüro Spies GbR (vertretungsberechtigte Gesellschafter: Hans Spies, Martin Spies, 86558 Hohenwart) Optical run-time sensor for scanning scene room, has mirror system comprising two mirrors that are connected with one another in fixed manner, where mirror system is oscillated by support having springs for scanning scene in plane
DE102008019615A1 (en) 2008-04-18 2009-11-05 Ingenieurbüro Spies GbR (vertretungsberechtigte Gesellschafter: Hans Spies, Martin Spies, 86558 Hohenwart) Optical runtime sensor for scanning space, has receiver directly represented on scene by oscillating mirror while laser illuminates scene by fixed mirror, where mirror array controls performance of receiver
DE102009049809B4 (en) 2008-04-18 2019-10-10 Ingenieurbüro Spies GbR (vertretungsberechtigte Gesellschafter: Hans Spies, Martin Spies, 86558 Hohenwart) Optical runtime sensor for space scanning
DE102008019615B4 (en) * 2008-04-18 2010-03-25 Ingenieurbüro Spies GbR (vertretungsberechtigte Gesellschafter: Hans Spies, Martin Spies, 86558 Hohenwart) Optical runtime sensor for space scanning
DE102008064652A1 (en) 2008-04-18 2011-03-31 Ingenieurbüro Spies GbR (vertretungsberechtigte Gesellschafter: Hans Spies, Martin Spies, 86558 Hohenwart) Optical sensor for space scanning
US8059263B2 (en) 2008-07-09 2011-11-15 Sick Ag Apparatus for the recognition of the presence of an object in space
DE102008032216A1 (en) * 2008-07-09 2010-01-14 Sick Ag Device for detecting the presence of an object in space
DE102009035984A1 (en) 2009-08-04 2011-02-10 Ingenieurbüro Spies GbR (vertretungsberechtigte Gesellschafter: Hans Spies, Martin Spies, 86558 Hohenwart) Multi-functional running time sensor for use in e.g. external rear mirror of bus for spatial scanning of trunk road, has receiving unit comprising lens, where sensor scans surfaces at different angle ranges, during rotation of lens
DE102009035984B4 (en) * 2009-08-04 2012-08-02 Ingenieurbüro Spies GbR (vertretungsberechtigte Gesellschafter: Hans Spies, Martin Spies, 86558 Hohenwart) Transit Time Sensor
EP2388619B1 (en) 2010-05-20 2015-03-25 Leuze electronic GmbH + Co. KG Optical sensor
DE102011011875B3 (en) * 2011-02-21 2012-07-26 Ingenieurbüro Spies GbR (vertretungsberechtigte Gesellschafter: Hans Spies, Martin Spies, 86558 Hohenwart) Optical pulse transit time sensor for high current laser control, comprises unit for light pulse generation by laser, another unit for receiving backscattered signals of objects and third unit for evaluating distances of received signals
DE102011011875C5 (en) * 2011-02-21 2014-03-27 Ingenieurbüro Spies GbR (vertretungsberechtigte Gesellschafter: Hans Spies, Martin Spies, 86558 Hohenwart) Optical pulse transit time sensor
DE102011001387A1 (en) 2011-03-18 2012-09-20 First Sensor AG Sampling method for sampling field by optical sampling system or scanning system, involves transmitting test light signals by transmitters of transmitter arrangement of optical sampling system
WO2017001038A1 (en) 2015-06-30 2017-01-05 Wabco Gmbh Sensor device for detecting surroundings and method for recognising a zero position of a rotatable unit of such a sensor device
DE102015008310A1 (en) 2015-06-30 2017-01-05 Wabco Gmbh Sensor device for environmental detection and method for detecting a zero point position of a rotatable unit of such a sensor device
US11956410B2 (en) 2015-09-24 2024-04-09 Ouster, Inc. Optical system for collecting distance information within a field

Also Published As

Publication number Publication date
DE102004014041A1 (en) 2005-10-13

Similar Documents

Publication Publication Date Title
DE102004014041B4 (en) Air and ground vehicle obstruction detection system has multiple channel range measurement system in rotating head with colour and contrast measurement
DE10114362C2 (en) Laser scanning system for distance measurement
EP0396865B1 (en) Optical radar
DE19757849B4 (en) Scanner and device for the optical detection of obstacles and their use
DE3942770C2 (en)
DE102007008806B3 (en) Opto-electronic monitoring device for e.g. automobile application, has image sensor determining distance of object, and testing unit formed to modify light penetrating into image sensor in targeted manner such that sensor receives light
EP3537339A2 (en) Camera and method for detecting image data
EP3819671B1 (en) Optoelectronic sensor and method for detecting objects
EP2863176A2 (en) Sensor with scanning unit that can be moved around a rotating axis
DE10146692A1 (en) Hybrid distance image sensor uses rotation of polygonal deflection rod for simultaneous deflection of transmission and reception surfaces for electromagnetic waves
EP2202533A1 (en) Logging device
EP2124069A1 (en) Omnidirectional lidar system
DE112011101667T5 (en) Scanning 3D imager
DE102010054078A1 (en) Laser sensor for driver assistance system for detecting surrounding of car, has transmission unit with laser diodes generating laser beams, where scanning of laser beams takes place in plane around angular distance
DE102014118056A1 (en) Optoelectronic detection device for a motor vehicle and use of such a detection device
WO2019121435A1 (en) Optical scanning system and method for calibrating the optical scanning system
DE102010020537A1 (en) Passive water surface detector for use in autonomous system of self-propelled lawn mower moved over area of golf course, has sensor elements connected to data evaluation device and generating image with different polarizations from scene
DE202011052106U1 (en) Distance measuring optoelectronic sensor
DE102013206929B4 (en) Image capture system
DE10153977B4 (en) System for generating a distance image with electromagnetic pulses
DE102016011328A1 (en) LIDAR scanner with pentaprism
DE102021108318B4 (en) Photoelectronic sensor
EP1717599B1 (en) Device for reproducing a view field on a detector
DE102020119941A1 (en) Optical detection device, vehicle with at least one optical detection device and method for operating an optical detection device
DE4319537A1 (en) Optronic all-round search device

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8364 No opposition during term of opposition
R081 Change of applicant/patentee

Owner name: HESAI PHOTONICS TECHNOLOGY CO. LTD., CN

Free format text: FORMER OWNERS: SPIES, MARTIN, 86558 HOHENWART, DE; SPIES, JOHANN, 85276 PFAFFENHOFEN, DE

R071 Expiry of right