CN103776474A - 一种3d矩阵式多通道光纤传感解调系统 - Google Patents

一种3d矩阵式多通道光纤传感解调系统 Download PDF

Info

Publication number
CN103776474A
CN103776474A CN201410011457.2A CN201410011457A CN103776474A CN 103776474 A CN103776474 A CN 103776474A CN 201410011457 A CN201410011457 A CN 201410011457A CN 103776474 A CN103776474 A CN 103776474A
Authority
CN
China
Prior art keywords
optical fiber
frequency
sensor
matrix form
fiber sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410011457.2A
Other languages
English (en)
Inventor
刘宇
操日祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU ANGDE PHOTOELECTRIC TECHNOLOGY Co Ltd
Original Assignee
JIANGSU ANGDE PHOTOELECTRIC TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU ANGDE PHOTOELECTRIC TECHNOLOGY Co Ltd filed Critical JIANGSU ANGDE PHOTOELECTRIC TECHNOLOGY Co Ltd
Priority to CN201410011457.2A priority Critical patent/CN103776474A/zh
Publication of CN103776474A publication Critical patent/CN103776474A/zh
Priority to EP14878184.2A priority patent/EP3009809A4/en
Priority to US14/774,370 priority patent/US9939294B2/en
Priority to PCT/CN2014/085472 priority patent/WO2015103887A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35383Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques

Abstract

本发明公开一种3D矩阵式多通道光纤传感解调系统,包括产生入射光的波长扫描光源,还包括通过光纤环形器与所述波长扫描光源连接的光学频域反射器和平衡探测器,所述光学频域反射器包括第一光路和第二光路,其中一条或两条光路上设有移频器,光学频域反射器输出入射光至光开关模块,所述光开关模块不仅可选择地将入射光传输到传感器网络,同时又将来自传感器网络的反射光传输到光学频域反射器。本发明使用现有光学器件,利用FFT变换来分辨传感器的位置,达到复用分布式传感器网络的功能。本发明不仅结构简单成本低,而且可通过增加移频器数量提高空间分辨率。同时本发明中相邻传感器的间距能够做到毫米级别,特别适用于微尺度准分布传感系统。

Description

一种3D矩阵式多通道光纤传感解调系统
技术领域
本发明涉及一种3D矩阵式多通道光纤传感解调系统,属于光纤传感器领域。
背景技术
光纤传感器由于其不受电磁干扰、高可靠性和安全性,在多信道长距离传感系统中正日益受到欢迎。光纤布拉格光栅是一种安装在光纤中的分布式布拉格反射器,它反射特定波长的光而让其他波长的光通过。这种功能依靠在光纤中使折射率发生一种周期性的变化。温度或应力的变化会改变布拉格光栅的周期或折射率,进而导致光纤布拉格光栅所反射的波的波长也发生改变。
光纤布拉格光栅(FBG)有其固有的优点,例如测量波长变化比较准确。大量的光纤布拉格光栅传感器可以组成一个3D矩阵式多通道传感系统。在该传感系统中,传感器的数量可以根据测量的距离和光学开关的信道数改变。
现有的应用于上述复杂传感系统的探询技术包括波分复用、时分复用和频分复用技术(WDM、TDM、FDM),或者这三种的结合。通过在一条光纤传输多个载有对应于不同光学传感器信道的不同波长光信号,波分复用技术能够大幅提高处理能力,并且降低探询成本。时分复用技术使用一个调制过的脉冲实现对多个光学传感器的探询,同时经过调整群延迟提高探询能力。与时分复用类似,频分复用技术通过频率调制和解调来提高探询能力。
虽然上述现有的探询技术已经比较完善,但它们的限制也很明显。波分复用技术要求所有传感器的频率不能重叠。而时分复用和频分复用技术都需要高速脉冲调制器和频率调制器,以及复杂的宽带测量系统。
发明内容
发明目的:本发明提出一种3D矩阵式多通道光纤传感解调系统,其对于准分布式传感器网络的测量更加快速高效。
技术方案:本发明采用的技术方案为一种3D矩阵式多通道光纤传感解调系统,包括产生入射光的波长扫描光源,还包括通过光纤环形器与所述波长扫描光源连接的光学频域反射器和平衡探测器,所述光学频域反射器包括第一光路和第二光路,其中一条或两条光路上设有移频器,光学频域反射器输出入射光至光开关模块,所述光开关模块不仅可选择地将入射光传输到传感器网络,同时又将来自传感器网络的反射光传输到光学频域反射器。反射光经过光学频域反射器后所产生的干涉信号由平衡探测器检出。
作为本发明的一种改进,所述光学频域反射器包括第一3dB耦合器和第二3dB耦合器,所述第一光路和第二光路的入口均连接到第一3dB耦合器,出口均连接到第二3dB耦合器。
作为本发明的一种改进,其中一条光路上串联至少一个移频器,另一条光路上设置偏振控制器。
作为本发明的一种改进,其中一条光路上串联有偏振控制器和至少一个移频器,另一条光路上串联至少一个移频器。
作为本发明的一种改进,所述两条光路上的移频器对频率的改变方向相反。
作为本发明的另一种改进,所述光开关模块由两个并联的光开关,其中一个光开关输入端串接有光纤。或者所述光开关模块由单个光开关组成。
作为本发明的另一种改进,所述传感器网络由多条平行的传感器线缆组成,每条传感器线缆上串联多个FBG传感器,例如三个相同FBG传感器。每条传感器线缆也可以串联多个传感器组,每个传感器组由串联的多个FBG传感器组成。所述相邻传感器组的间距大于空间分辨率。
作为本发明的另一种改进,所述波长扫描光源为可调连续波长激光源或者傅里叶域锁模激光器。
作为本发明的更进一步改进,所述平衡探测器处理后所得到的信号如下式:
I k ( λ ) = Σ i = 1 O * M [ Π j = 1 i - 1 [ 1 - R j ( λ ) ] 2 R i ( λ ) sin ( 4 π n eff L i Δf ct sw t ) ] + Σ i = 1 O * M { Π j = 1 i - 1 [ 1 - R j ( λ ) ] 2 R i ( λ ) sin [ 4 π n eff ( L 0 + L i ) Δf ct sw t ] }
式中c是光在真空中的速度,neff是光纤中有效群折射率,Li是第二3dB耦合器和第i个传感器之间的长度。L0是光纤的长度。Δf和tsw分别是移频器的扫频范围和扫频周期。Ri(λ)是波长为λ的光在第i个传感器处的反射率。
作为本发明的更进一步改进,所述传感器网络具有多个FBG传感器,这些FBG传感器的空间分辨率为:
δL = c 2 n eff ( Δ f 1 + Δ f 2 + . . . + Δ f Q )
式中Q为移频器的数量,c是真空中的光速,neff为光纤中有效群折射率,Δfi(i=1,2,...Q)是第i个移频器的扫频范围。
有益效果:本发明改变了现有OFDR解调系统复杂的结构,使用现有光学器件,利用快速傅里叶变换来分辨FBG传感器的位置,达到复用分布式传感器网络的功能。本发明不仅结构简单成本低,而且可通过增加移频器数量提高空间分辨率。同时本发明中相邻FBG传感器的间距能够做到毫米级别,特别适用于微尺度准分布传感系统。
附图说明
图1为本发明实施例1的结构示意图;
图2为验证本发明实施例1时传感器位置示意图;
图3为验证本发明实施例1时频谱变化示意图;
图4为本发明实施例2的结构示意图;
图5为本发明实施例2中传感器组的结构示意图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等同形式的修改均落于本申请所附权利要求所限定的范围。
实施例1:基于布拉格光栅的3D矩阵式多通道光纤传感解调系统如图1所示。整个系统包括一个发射多种不同波长光的波长扫描光源111。不同波长的光由波长扫描光源111进入到光纤环行器112,所述光纤环行器112的另两个端口分别与光学频域反射器和平衡探测器130连接。所述光学频域反射器包括平行的第一光路和第二光路,两条光路的入口均连接到第一3dB耦合器113,出口均连接到第二3dB耦合器116,所述第二光路上设有移频器115。第一3dB耦合器113将光平均分成第一光束和第二光束两部分,其分别进入光学频域反射器的第一光路和第二光路。偏振控制器114安装在第一光路上,而移频器115安装在第二光路上。移频器115是一种声光调制器。经过移频器115后,第二光束具有了一个频移f,频移f的大小依靠外接的移频驱动器控制。因此当第一光束和第二光束通过第二3dB耦合器116后,分为具有0和f频移的第三光束和第四光束。第三光束直接进入光开关模块118的第一输入端D11。
而第四光束为了增加光程以示与第三光束的区别,先经过光纤117后再进入光开关模块118的第二输入端D12。因为如之后所述,光开关模块118由两个光开关组成,每个光开关都独立工作,两者的光程都是相同的。如果没有光纤117,则系统无法区分两个光开关各自的反射光。
光开关模块118由两个光开关组成,第一输入端D11和第二输入端D12实际上分别是光开关模块118中两个光开关各自的输入端。每个光开关具有一路输入四路输出,因此光开关模块118拥有八个输出端,每个输出端连接到一段传感器线缆。光开关必须是双向的,这样反射信号能够反射回光学频域反射器。对于这种由两个光开关模块成的光开关模块118来说,它能够同时切换两个信道因而显著提高光路切换的效率。
图1中,光开关模块118的输出端连接有第一传感器线缆122至第八传感器线缆129。每一段传感器线缆载有O*M个FBG传感器,其中M是波分复用的维度,O是在同一传感器线缆上位于同一布拉格波长的传感器数量,M是同一传感器线缆上的FBG传感器所工作的不同布拉格波长的个数。例如O*M=3,即图1中第一传感器线缆122上串联第一传感器119、第二传感器120、第三传感器121三个FBG传感器。光纤117应当比最长的传感器线缆的长度还要长,以防止从不同传感器线缆反射回来的信号发生重叠。光通过光开关模块118传输到位于同一传感器线缆的一组FBG传感器。这些FBG传感器在它们的工作波长上都具有较低的反射率。由于其反射率较低(约为4%),当这些FBG传感器的频谱发生重叠时,位置靠前的FBG传感器的阴影效应可以忽略。因此所有沿着同一传感器线缆的FBG传感器都能够反射光线到第一输入端D11和第二输入端D12。反射光接着进入第二3dB耦合器116。具有0和f频移的反射光线被耦合到光学频域反射器的两条光路,即偏振控制器114和移频器115各自所在的光路。因此第一3dB耦合器113处的反射光线,具有四种频移,它们分别是来自第一光路的0和f,以及来自第二光路的f和2f。众所周知,只有那些具有相同f频移的光线才会发生干涉,并形成干涉信号。而其他的光线由于它们具有不同的频移和不平衡的光路,所以不会发生干涉。在第k根传感器线缆的第i个传感器处被反射的信号,于第一端口C11和第二端口C12处所形成的干涉信号如式(1)所示:
( I i k ) C 11 C 12 = R i ( λ ) [ 2 ± cos ( 4 π n eff L i Δf ct sw t ) ] + R i ( λ ) { 2 ± cos [ 4 π n eff ( L 0 + L i ) Δf ct sw t ] } - - - ( 1 )
上式(1)中的k表示传感器线缆的序号,Ri(λ)是波长为λ的光在第i个传感器处的反射率,c是光在真空中的速度,neff是光纤中有效群折射率,Li是第二3dB耦合器116和第i个传感器之间的长度。L0是光纤117的长度。Δf和tsw分别是移频器115的扫频范围和扫频周期。为了简化表达式,所有的传感器线缆都标示为与所在传感器相同的标示。
如图1所示,在第一端口C11处的干涉信号耦合到平衡探测器130的一个输入端。所述平衡探测器130是一种光电转换装置,并能够过滤直流分量。第二端口C12处的干涉信号为了平衡直流部分,需经过可变光学衰减器132后再耦合到平衡探测器130的另一个输入端。所述光学衰减器132为折射器或分光器、或者散射器。因此式(1)中的直流部分可以被有效的去除。其他的FBG传感器所形成的干涉信号分别如下列表达式所示:
I k ( λ ) = Σ i = 1 O * M [ Π j = 1 i - 1 [ 1 - R j ( λ ) ] 2 R i ( λ ) sin ( 4 π n eff L i Δf ct sw t ) ] + Σ i = 1 O * M { Π j = 1 i - 1 [ 1 - R j ( λ ) ] 2 R i ( λ ) sin [ 4 π n eff ( L 0 + L i ) Δf ct sw t ] } - - - ( 2 )
式(2)中c是光在真空中的速度,neff是光纤中有效群折射率,Li是第二3dB耦合器116和第i个传感器之间的长度。L0是光纤117的长度。Δf和tsw分别是移频器115的扫频范围和扫频周期。Ri(λ)是波长为λ的光在第i个传感器处的反射率。由于波长扫描光源111的扫描速度比移频器115慢得多,波长λ可以被认为在整个移频器115的扫描周期内都不变。对式(2)的干涉信号做快速傅里叶变换,则傅里叶分量的强度代表了特定序数的FBG传感器的反射率,而发生反射的传感器位置的表达式如式(3)所示:
L i = ct sw 2 n eff Δf F i - - - ( 3 )
上式中i=1,2…O*M,i表示传感器的序数。不考虑频谱重叠,当波长扫描光源111扫描时,所有传感器的频谱就都可以获得。通过扫描光开关模块118的所有信道,传感器线缆上的所有传感器都被分别探询了。当最小可分辨距离,或者两个相邻传感器之间的空间分辨率在他们的反射频谱发生重叠时,可以表示为式(4):
δL = c 2 n eff Δf - - - ( 4 )
为了验证本实施例,用LabVIEW编写的程序控制波长扫描光源,同时使用一台电脑获取和处理数据。波长扫描光源以0.04MHz的步长从90MHz扫描到110MHz,时间间隔1ms。所有的FBG传感器的反射率在4%左右,相邻传感器组间隔55m。图2给出了当波长扫描光源发射1548.675nm波长的光时,本发明所解析出的G1至G10十个FBG传感器的位置(G5,G6,G8,G9和G10未示出),它们的布拉格波长在1548.6nm附近。其中G1,G2,G3,G4和G7的频谱有重叠。
图3显示出所有十个FBG传感器的反射谱。其中图3(a)是施加应力之前的频谱图,图3(b)是对G1,G2和G4施加应力后的频谱图。比较(a)和(b)两张图可以明显看出G1,G2和G4在施加应力后的波长变化。
实施例2:本发明的另一种实施例如图4所示,第一移频器215和第二移频器216分别位于两条光路上。其中第一移频器215将入射光信号的频率降低f1,而第二移频器216则将入射光信号的频率提高f2,并且第一移频器215和第二移频器216的扫频方向相反,即第二移频器216从90MHz向110MHz扫描,第一移频器215从110MHz向90MHz扫描。与实施例1类似地,第三端口C21和第四端口C22处的干涉信号应当包含-2f1,2f2,f2-f1,f2-f1这些频率分量。只有那些有相同频移的光才会发生干涉并产生可测量的干涉信号,例如f2-f1。分别给定第一移频器215和第二移频器216以Δf1和Δf2的频率扫描范围,则实施例1中的式(2)变为下式:
I k ( λ ) = Σ i = 1 O * M [ Π j = 1 i - 1 [ 1 - R j ( λ ) ] 2 R i ( λ ) sin ( 4 π n eff L i c Δ f 1 + Δ f 2 t sw · t ) ] + Σ i = 1 O * M { Π j = 1 i - 1 [ 1 - R j ( λ ) ] 2 R i ( λ ) sin [ 4 π n eff ( L 0 + L i ) c Δ f 1 + Δ f 2 t sw · t ] } - - - ( 5 )
当对式(5)做快速傅里叶变换后,FBG传感器的位置就可以从傅里叶分量的频率获得,而傅里叶分量的强度代表了FBG传感器的反射率。第i个FBG传感器的位置如式(6)所示:
L i = ct sw 2 n eff ( Δ f 1 + Δ f 2 ) F i - - - ( 6 )
空间分辨率则可以表示为式(7):
δL = c 2 n eff ( Δ f 1 + Δ f 2 ) - - - ( 7 )
显然空间分辨率δL可以通过移频器产生大的频移来提高。
本实施例中的传感器网络与实施例1并不相同,光开关模块219的输出端连接有第一传感器线缆223至第八传感器线缆230,每条传感器线缆上均串联了三组FBG传感器,例如第一传感器线缆223上串联了第一传感器组220、第二传感器组221和第三传感器组222。以此类推,每条传感器线缆还可以串联更多传感器组,每个传感器组也可以串联更多个传感器。
以第一传感器组220和第二传感器组221为例,如图5所示,每个传感器组中含有四个相同的频谱无重叠的FBG传感器。第一传感器组220具有第十一传感器11、第十二传感器12、第十三传感器13和第十四传感器14。第二传感器组221具有第二十一传感器21、第二十二传感器22、第二十三传感器23和第二十四传感器24。同一组内相邻两个FBG传感器的距离x非常短甚至相互接触以便于探询,这种布置能够改进空间分辨率,更适用于准分布式传感器网络。而不同组的相应FBG传感器的距离y应当大于空间分辨率δL。本实施例的其他部分与实施例1相同。
在光学频域反射器的两条光路上也可以设置更多的移频器,例如Q个移频器(Q为正整数)。这些移频器分别具有Δf1、Δf2···ΔfQ的频率扫描范围,则空间分辨率δL表示为式(8):
δL = c 2 n eff ( Δ f 1 + Δ f 2 + . . . + Δ f Q ) - - - ( 8 )
从式(8)可以看出增加移频器数量能够改善空间分辨率。
实施例3:本实施例中光开关模块由单独一个光开关组成,该光开关具有一路输入四路输出。因此与实施例1中的光开关模块相比,只利用了光学频域反射器中入射光的50%,另外50%的入射光没有得到利用。同时该光开关模块所能容纳的传感器数量也减少50%。所以本实施例的装置较为经济。本实施例的其他部分与实施例1相同。

Claims (16)

1.一种3D矩阵式多通道光纤传感解调系统,包括产生入射光的波长扫描光源,其特征在于,还包括通过光纤环形器与所述波长扫描光源连接的光学频域反射器和平衡探测器,所述光学频域反射器包括第一光路和第二光路,其中一条或两条光路上设有移频器,光学频域反射器输出入射光至光开关模块,所述光开关模块不仅可选择地将入射光传输到传感器网络,同时又将来自传感器网络的反射光传输到光学频域反射器。反射光经过光学频域反射器后所产生的干涉信号由平衡探测器检出。
2.根据权利要求1所述的3D矩阵式多通道光纤传感解调系统,其特征在于,所述光学频域反射器包括第一3dB耦合器和第二3dB耦合器,所述第一光路和第二光路的入口均连接到第一3dB耦合器,出口均连接到第二3dB耦合器。
3.根据权利要求2所述的3D矩阵式多通道光纤传感解调系统,其特征在于,其中一条光路上串联至少一个移频器,另一条光路上设置偏振控制器。
4.根据权利要求2所述的3D矩阵式多通道光纤传感解调系统,其特征在于,其中一条光路上串联有偏振控制器和至少一个移频器,另一条光路上串联至少一个移频器。
5.根据权利要求4所述的3D矩阵式多通道光纤传感解调系统,其特征在于,所述两条光路上的移频器对频率的改变方向相反。
6.根据权利要求1所述的3D矩阵式多通道光纤传感解调系统,其特征在于,所述光开关模块由两个并联的光开关组成。
7.根据权利要求1所述的3D矩阵式多通道光纤传感解调系统,其特征在于,所述光开关模块为单个光开关。
8.根据权利要求6所述的3D矩阵式多通道光纤传感解调系统,其特征在于,其中一个光开关输入端串接有光纤。
9.根据权利要求1所述的3D矩阵式多通道光纤传感解调系统,其特征在于,所述传感器网络由多条平行的传感器线缆组成,每条传感器线缆上串联多个FBG传感器。
10.根据权利要求9所述的3D矩阵式多通道光纤传感解调系统,其特征在于,每条传感器线缆上串联三个相同的FBG传感器。
11.根据权利要求9所述的3D矩阵式多通道光纤传感解调系统,其特征在于,每条传感器线缆串联多个传感器组,每个传感器组由串联的多个FBG传感器组成。
12.根据权利要求11所述的3D矩阵式多通道光纤传感解调系统,其特征在于,所述相邻传感器组的间距大于空间分辨率。
13.根据权利要求1所述的3D矩阵式多通道光纤传感解调系统,其特征在于,所述波长扫描光源为可调连续波长激光源。
14.根据权利要求1所述的3D矩阵式多通道光纤传感解调系统,其特征在于,所述波长扫描光源为傅里叶域锁模激光器。
15.根据权利要求1所述的3D矩阵式多通道光纤传感解调系统,其特征在于,所述平衡探测器处理后所得到的信号如下式:
I k ( λ ) = Σ i = 1 O * M [ Π j = 1 i - 1 [ 1 - R j ( λ ) ] 2 R i ( λ ) sin ( 4 π n eff L i Δf ct sw t ) ] + Σ i = 1 O * M { Π j = 1 i - 1 [ 1 - R j ( λ ) ] 2 R i ( λ ) sin [ 4 π n eff ( L 0 + L i ) Δf ct sw t ] }
式中c是光在真空中的速度,neff是光纤中有效群折射率,Li是第二3dB耦合器和第i个传感器之间的长度。L0是光纤的长度。Δf和tsw分别是移频器的扫频范围和扫频周期。Ri(λ)是波长为λ的光在第i个传感器处的反射率。
16.根据权利要求1所述的3D矩阵式多通道光纤传感解调系统,其特征在于,所述传感器网络具有多个FBG传感器,这些FBG传感器的空间分辨率为:
δL = c 2 n eff ( Δ f 1 + Δ f 2 + . . . + Δ f Q )
式中Q为移频器的数量,c是真空中的光速,neff为光纤中有效群折射率,Δfi(i=1,2,...Q)是第i个移频器的扫频范围。
CN201410011457.2A 2014-01-10 2014-01-10 一种3d矩阵式多通道光纤传感解调系统 Pending CN103776474A (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201410011457.2A CN103776474A (zh) 2014-01-10 2014-01-10 一种3d矩阵式多通道光纤传感解调系统
EP14878184.2A EP3009809A4 (en) 2014-01-10 2014-08-29 MULTICANAL FIBER OPTICAL DETECTION DETECTION SYSTEM OF 3D MATRIX TYPE
US14/774,370 US9939294B2 (en) 2014-01-10 2014-08-29 Demodulation system for 3D-matrix multi-channel fiber optic sensing
PCT/CN2014/085472 WO2015103887A1 (zh) 2014-01-10 2014-08-29 一种3d矩阵式多通道光纤传感解调系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410011457.2A CN103776474A (zh) 2014-01-10 2014-01-10 一种3d矩阵式多通道光纤传感解调系统

Publications (1)

Publication Number Publication Date
CN103776474A true CN103776474A (zh) 2014-05-07

Family

ID=50568996

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410011457.2A Pending CN103776474A (zh) 2014-01-10 2014-01-10 一种3d矩阵式多通道光纤传感解调系统

Country Status (4)

Country Link
US (1) US9939294B2 (zh)
EP (1) EP3009809A4 (zh)
CN (1) CN103776474A (zh)
WO (1) WO2015103887A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015103887A1 (zh) * 2014-01-10 2015-07-16 江苏昂德光电科技有限公司 一种3d矩阵式多通道光纤传感解调系统
CN111595246A (zh) * 2020-07-24 2020-08-28 武汉昊衡科技有限公司 波分复用器通道长度测量装置及方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104567958B (zh) * 2015-01-05 2017-06-30 华中科技大学 基于时分波分复用的分布式微结构传感网络及其使用方法
CN105698871B (zh) * 2016-03-29 2018-08-21 天津大学 基于光频域反射的分布式应变温度同时测量装置及方法
CN106404017B (zh) * 2016-08-31 2020-02-07 威海北洋光电信息技术股份公司 高精度多参量光纤微腔传感系统及其解调方法
CN112683311B (zh) * 2020-12-04 2022-11-18 长春工业大学 一种多通道高速光纤光栅解调装置
CN113639650B (zh) * 2021-08-10 2023-12-12 安徽大学 基于相位累加测量法的光频域反射计式传感解调方法
CN114509113A (zh) * 2022-02-15 2022-05-17 金陵科技学院 一种高可靠性光纤光栅传感网络模型

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4898468A (en) * 1988-06-20 1990-02-06 Mcdonnell Douglas Corporation Sagnac distributed sensor
JPH09196812A (ja) * 1996-01-22 1997-07-31 Atr Hikari Denpa Tsushin Kenkiyushiyo:Kk 光の屈折率変化が生じる位置を測定する装置
CN101271240A (zh) * 2008-05-05 2008-09-24 浙江大学 基于傅立叶域锁模激光器的光纤光栅复用解调方法及设备
CN101271242A (zh) * 2008-05-05 2008-09-24 浙江大学 一种光纤光栅传感网络解调的方法和设备
CN101832794A (zh) * 2010-03-30 2010-09-15 浙江大学 一种光纤光栅和光纤拉曼复合传感网络及其实现方法
CN203772289U (zh) * 2014-01-10 2014-08-13 江苏昂德光电科技有限公司 一种3d矩阵式多通道光纤传感解调系统

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5781297A (en) * 1996-08-23 1998-07-14 M&M Precision Systems Corporation Mixed frequency and amplitude modulated fiber optic heterodyne interferometer for distance measurement
US6597822B1 (en) * 1999-04-02 2003-07-22 Ifos, Inc. Multiplexable fiber-optic strain sensor system with temperature compensation capability
US6785004B2 (en) * 2000-11-29 2004-08-31 Weatherford/Lamb, Inc. Method and apparatus for interrogating fiber optic sensors
WO2005028995A1 (ja) * 2003-09-17 2005-03-31 Kyocera Corporation Fbgセンシングシステム
NO339298B1 (no) * 2003-10-10 2016-11-21 Optoplan As Aktiv koherensreduksjon for interferometeravspørring
DE102004010754A1 (de) * 2004-03-05 2005-09-22 Robert Bosch Gmbh Interferometrische Messanordnung
GB0409865D0 (en) * 2004-05-01 2004-06-09 Sensornet Ltd Direct measurement of brillouin frequency in distributed optical sensing systems
US7480056B2 (en) * 2004-06-04 2009-01-20 Optoplan As Multi-pulse heterodyne sub-carrier interrogation of interferometric sensors
ATE545003T1 (de) * 2004-06-25 2012-02-15 Neubrex Co Ltd Verteilter faseroptischer sensor
US7060967B2 (en) * 2004-10-12 2006-06-13 Optoplan As Optical wavelength interrogator
EP1813037A1 (en) * 2004-10-22 2007-08-01 Dublin City University An optical pulse source for use in broadband photonic communication systems
US8315282B2 (en) * 2005-01-20 2012-11-20 Massachusetts Institute Of Technology Fourier domain mode locking: method and apparatus for control and improved performance
US7391520B2 (en) * 2005-07-01 2008-06-24 Carl Zeiss Meditec, Inc. Fourier domain optical coherence tomography employing a swept multi-wavelength laser and a multi-channel receiver
FR2889305B1 (fr) * 2005-07-28 2007-10-19 Sercel Sa Reseau d'interferometres a fibre optique
EP2207008A1 (en) * 2005-08-09 2010-07-14 The General Hospital Corporation Apparatus and method for performing polarization-based quadrature demodulation in optical coherence tomography
US7526147B2 (en) * 2005-08-31 2009-04-28 Northrop Grumman, Inc. Sensor array for perimeter defense
US7554668B2 (en) * 2005-09-06 2009-06-30 Carl Zeiss Meditec, Inc. Light source for swept source optical coherence tomography based on cascaded distributed feedback lasers with engineered band gaps
EP1928306B1 (en) * 2005-09-29 2021-01-13 General Hospital Corporation Optical coherence tomography systems and methods including fluorescence microscopic imaging of one or more biological structures
US20070252998A1 (en) * 2006-03-22 2007-11-01 Berthold John W Apparatus for continuous readout of fabry-perot fiber optic sensor
CN101466298B (zh) * 2006-04-05 2011-08-31 通用医疗公司 用于样本的偏振敏感光频域成像的方法、装置和系统
US7366055B2 (en) * 2006-05-05 2008-04-29 Optoplan As Ocean bottom seismic sensing system
CN101611301B (zh) * 2007-02-28 2012-11-07 日本电信电话株式会社 光反射测定方法以及装置
US7916303B2 (en) * 2007-11-13 2011-03-29 Optoplan As Non-uniform sampling to extend dynamic range of interferometric sensors
CN101680782B (zh) * 2008-02-29 2012-09-12 株式会社藤仓 光频域反射测定方式的物理量测量装置、使用其的温度和应变的测量方法及传感器位置的确定方法
US8565861B2 (en) * 2008-05-02 2013-10-22 Olympus Corporation Optical inspection device, electromagnetic wave detection method, electromagnetic wave detection device, organism observation method, microscope, endoscope, and optical tomographic image generation device
US7859654B2 (en) * 2008-07-17 2010-12-28 Schlumberger Technology Corporation Frequency-scanned optical time domain reflectometry
US8400640B2 (en) * 2008-10-23 2013-03-19 Pusan National University Industry-University Cooperation Foundation Optical sensor interrogation system based on FDML wavelength swept laser
TWI400900B (zh) * 2009-01-20 2013-07-01 Univ Nat Chiao Tung Optical sensing system with self - sensing mechanism
US10485422B2 (en) * 2009-02-19 2019-11-26 Manish Dinkarrao Kulkarni System and method for imaging subsurface of specimen
GB201016736D0 (en) * 2010-02-26 2010-11-17 Univ Mons Interferometer device
US8582619B2 (en) * 2011-03-15 2013-11-12 Lightlab Imaging, Inc. Methods, systems, and devices for timing control in electromagnetic radiation sources
US8908189B2 (en) * 2011-04-15 2014-12-09 Carl Zeiss Meditec, Inc. Systems and methods for swept-source optical coherence tomography
CN102322880B (zh) * 2011-08-18 2013-06-05 天津大学 偏振敏感的分布式光频域反射扰动传感装置和解调方法
TW201315170A (zh) * 2011-09-27 2013-04-01 Chunghwa Telecom Co Ltd 光頻域反射式光纖網路測試方法
JP5628779B2 (ja) * 2011-12-01 2014-11-19 株式会社日立製作所 Fbgセンサの多点計測方法および多点計測装置
US9002150B2 (en) * 2012-05-08 2015-04-07 General Dynamics Advanced Information Systems, Inc. Optical sensing system and method
CN102798411B (zh) * 2012-07-27 2015-07-01 广西师范大学 基于布里渊散射的分布式光纤传感测量系统及测量方法
US8909040B1 (en) * 2013-02-05 2014-12-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus of multiplexing and acquiring data from multiple optical fibers using a single data channel of an optical frequency-domain reflectometry (OFDR) system
US9046389B2 (en) * 2013-05-16 2015-06-02 Weatherford/Lamb, Inc. Time delay compensation for optical waveguides using a bidirectional wavelength scan
US9719883B2 (en) * 2013-06-10 2017-08-01 General Photonics Corporation Devices and methods for characterization of distributed fiber bend and stress
CN103438915A (zh) * 2013-09-11 2013-12-11 武汉理工大学 一种基于频移干涉的f-p传感器复用方法及系统
CN103776474A (zh) * 2014-01-10 2014-05-07 江苏昂德光电科技有限公司 一种3d矩阵式多通道光纤传感解调系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4898468A (en) * 1988-06-20 1990-02-06 Mcdonnell Douglas Corporation Sagnac distributed sensor
JPH09196812A (ja) * 1996-01-22 1997-07-31 Atr Hikari Denpa Tsushin Kenkiyushiyo:Kk 光の屈折率変化が生じる位置を測定する装置
CN101271240A (zh) * 2008-05-05 2008-09-24 浙江大学 基于傅立叶域锁模激光器的光纤光栅复用解调方法及设备
CN101271242A (zh) * 2008-05-05 2008-09-24 浙江大学 一种光纤光栅传感网络解调的方法和设备
CN101832794A (zh) * 2010-03-30 2010-09-15 浙江大学 一种光纤光栅和光纤拉曼复合传感网络及其实现方法
CN203772289U (zh) * 2014-01-10 2014-08-13 江苏昂德光电科技有限公司 一种3d矩阵式多通道光纤传感解调系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015103887A1 (zh) * 2014-01-10 2015-07-16 江苏昂德光电科技有限公司 一种3d矩阵式多通道光纤传感解调系统
EP3009809A4 (en) * 2014-01-10 2016-07-20 Andol Technology Inc MULTICANAL FIBER OPTICAL DETECTION DETECTION SYSTEM OF 3D MATRIX TYPE
US9939294B2 (en) 2014-01-10 2018-04-10 Andol Technology, Inc. Demodulation system for 3D-matrix multi-channel fiber optic sensing
CN111595246A (zh) * 2020-07-24 2020-08-28 武汉昊衡科技有限公司 波分复用器通道长度测量装置及方法

Also Published As

Publication number Publication date
EP3009809A4 (en) 2016-07-20
WO2015103887A1 (zh) 2015-07-16
US20160025523A1 (en) 2016-01-28
US9939294B2 (en) 2018-04-10
EP3009809A1 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
CN103776474A (zh) 一种3d矩阵式多通道光纤传感解调系统
AU2021258052A1 (en) Method and apparatus for optical sensing
JP5521118B2 (ja) 光線路特性解析装置及びその解析方法
CN103512510B (zh) 基于窄带扫描光源的光纤光栅传感系统及运行方法
CN102901525B (zh) 超大容量时分波分光纤光栅传感系统及其查询方法
CN100507455C (zh) 一种强度调制型光纤传感器的复用方法
WO2017203271A1 (en) Method and apparatus for optical sensing
CN203772289U (zh) 一种3d矩阵式多通道光纤传感解调系统
CN101765031A (zh) 一种大容量光纤光栅传感监测系统
CN1955640A (zh) 一种光纤光栅传感器及其波长解调方法及传感器
CN100576049C (zh) 一种光纤光栅传感网络解调的方法和设备
CN105318898A (zh) 基于扫频光源的全同弱反射光栅传感网络解调系统及方法
JP6055716B2 (ja) 分岐光線路特性解析装置及びその解析方法
CN101738216A (zh) 全同低反射率光纤光栅单纤复用方法
CN201302458Y (zh) 一种光纤光栅传感网络解调装置
CN102445326A (zh) 基于时域的光谱探测系统
CN101319921A (zh) 一种光纤光栅传感网络解调的方法和设备
CN201242451Y (zh) 一种光纤光栅传感阵列解调装置
CN102879025A (zh) 一种光纤光栅传感装置
CN202836592U (zh) 一种光纤光栅传感装置
CN201222153Y (zh) 一种光纤光栅传感网络解调装置
CN102853858A (zh) 一种光纤光栅传感装置
CN104020627A (zh) 一种光纤布喇格光栅传感网络的波长解调装置与方法
CN116465439A (zh) 多光源协同的光栅阵列光纤相位解调系统及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20140507

RJ01 Rejection of invention patent application after publication