CN114509113A - 一种高可靠性光纤光栅传感网络模型 - Google Patents

一种高可靠性光纤光栅传感网络模型 Download PDF

Info

Publication number
CN114509113A
CN114509113A CN202210138908.3A CN202210138908A CN114509113A CN 114509113 A CN114509113 A CN 114509113A CN 202210138908 A CN202210138908 A CN 202210138908A CN 114509113 A CN114509113 A CN 114509113A
Authority
CN
China
Prior art keywords
branch
fbg
reliability
network model
fiber grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210138908.3A
Other languages
English (en)
Inventor
胡兴柳
周智慧
司海飞
叶全意
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinling Institute of Technology
Original Assignee
Jinling Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinling Institute of Technology filed Critical Jinling Institute of Technology
Priority to CN202210138908.3A priority Critical patent/CN114509113A/zh
Publication of CN114509113A publication Critical patent/CN114509113A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35383Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/38Forming the light into pulses by diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/35481xN switch, i.e. one input and a selectable single output of N possible outputs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/35481xN switch, i.e. one input and a selectable single output of N possible outputs
    • G02B6/3551x2 switch, i.e. one input and a selectable single output of two possible outputs

Abstract

本发明提出一种高可靠性光纤光栅传感网络模型,该模型运用了波分复用技术,利用了FBG和耦合器,基于光开关的选择,构建了一个高可靠性的FBG传感网络。该传感网络能够提高传感网络的可靠性并且极大可能的复用了较多的传感器。由单个2×2的耦合器与FBG组成一个传感模块,若干个FBG传感模块以及1个1×2的光开关组成一个支路,若干个支路再通过1×2的光开光连接到1×n光开关的n个通道上。当传感网络出现多点故障时,通过动态切换光开关,就可以解决传感网络出现多点故障的问题,即使该模块失效也不影响后面串联的模块,这样便提高了网络的可靠性,实现了网络的自愈。

Description

一种高可靠性光纤光栅传感网络模型
技术领域
本发明属于智能结构材料领域,具体为一种高可靠性光纤光栅传感网络模型。
背景技术
光纤布拉格光栅传感器具有能够测量多种物理参量、质量轻、集信号的传感与传输为一体、便于构建分布式传感网络、抗电磁干扰能力强等优点,并且可以进行空分复用和波分复用,充分发挥光纤传感器的传、感一体化的优点,从而可以大大降低自诊断系统的复杂性和成本,并最大程度的减小对原结构性能的影响。
光纤光栅传感器的原理:宽谱光源将有一定带宽的光通过环行器入射到光纤光栅中,由于光纤光栅的波长选择性作用,符合条件的光被反射回来,再通过环行器送入解调装置测出光纤光栅的反射波长变化。当光纤光栅做探头测量外界的温度、压力或应力时,光栅自身的栅距发生变化,从而引起反射波长的变化,解调装置即通过检测波长的变化推导出外界温度或应变。
时分复用技术采用脉冲光源,各传感器工作在相同的波长范围,利用不同长度的光纤作为光学延时器件产生延时。传感器的识别依据传感信号到达中心局端的时间间隔。
波分复用技术是将不同波长的传感器连接在一根光纤上,由于传感器波长不同,从而不会引起波长叠加,实现了单根光纤的多点测量。各传感器占用一定的光谱范围,工作波长互不重叠,传感器的识别依据不同的工作波长。
空分复用技术是给每个传感器单独分配一个传输通道,每次仅有一个通道被选通,因此需要光开关切换通道,实现不同传感器的选择,传感器的识别依据不同的传输通道。
随着结构健康监测的智能灵活化,基于复用技术的FBG传感网络拓扑结构也变得更加复杂多样化。由于结构本身的劣化、设备的老化损害、传感器工艺及环境因素的影响,
埋置或粘贴在被测结构的光纤光栅传感网络,可能会发生部分FBG传感器失效或传感光纤发生故障,这就会使得串联其后的所有传感器受到影响,进而造成计算机无法接收到传感器网络中完好的FBG传感器的信号,造成网络的可靠性大大降低。
由于FBG传感网络多是粘贴在结构的表面或在构建结构时埋入其中,如要修复或更换其网络,势必要在结构上大动干戈,造成较大的经济损失。因此,提高FBG传感网络的可靠性具有重要意义。
经检索,中国专利申请号为CN112953626A的专利,公开了一种基于光开关的正方形FBG网络传感模型,当传感器网络某一链路出现故障导致某些传感器不能复用时,通过远程链路方式的切换,可以重新复用这些传感器。
与本发明相比,传感网络模型区别在于:
(1)本发明的传感网络模型主要是利用耦合器以及光纤和FBG组成了一个模块,基于高冗余的模块组成传感网络模型,具有高可靠性。
(2)本发明的传感网络模型即使在一条链路上发生多点故障,通过动态开关切换就可以解决。
(3)本发明的传感网络模型有着更强的扩展性,可以扩展为n条通道,也可以复用更多的传感器。
发明内容
为解决上述问题,本发明提出一种高可靠性光纤光栅传感网络模型,,为一种新型FBG传感网络,传统的FBG传感模块由单一的FBG构成,传感路径只有一条,一旦路径发生故障,就会造成传感器失效,可靠性低,新型的FBG传感网络即使发生多点故障,仍然有着冗余的传感网络进行传输,具有高可靠性、可扩展性高的优点。
为达此目的,本发明提供一种高可靠性光纤光栅传感网络模型,包括光纤、光开关、耦合器和FBG传感器,使用单个2×2的耦合器与FBG组合成为一个模块,n个模块相连接成为一条支路,再通过1个1×2的光开关连接两条支路,两条支路再通过1×2的光开关连接到1×n光开关的n个通道上,每个支路中的FBG传感模块的最大值有ASE宽带光源的带宽决定,光开关通过改变引脚电平来实现光路的切换,通过光开关的切换改变光的传输方向。
作为本发明进一步改进,所述FBG传感器16个,使用了20个耦合器将16个FBG连接起来,形成了4条支路,16个FBG传感器包括FBG1、FBG2、FBG3、FBG4、FBG5、FBG6、FBG7、FBG8、FBG11、FBG12、FBG13、FBG14、FBG15、FBG16、FBG17、FBG18,其中FBG1、FBG2、FBG3、FBG4在支路1上,FBG5、FBG6、FBG7、FBG8在支路2上,FBG11、FBG12、FBG13、FBG14在支路上,FBG15、FBG16、FBG17、FBG18,在支路4上。本申请主要使用以上方式,构成高可靠性光纤光栅传感网络模型。
作为本发明进一步改进,1条支路由3个模块和首尾两个耦合器连接构成,1个通道由2条支路和1个1×2的光开关连接构成,每一个模块都由耦合器和FBG以及光纤组成,具有高冗余性。
作为本发明进一步改进,当一条通道出现多点故障,可以通过光开光的动态切换,仍能实现光信号的解调。
作为本发明进一步改进,通过1×n的光开关的动态切换,可以使传感网络的可靠性大幅提升。
与现有技术相比,本发明具有以下优点:
(1)本发明利用耦合器以及光纤和FBG组成模块,使传感器的冗余性大大提升。
(2)本发明的网络模型每条支路上FBG数量越多,FBG传感模块冗余度越大,光纤光栅传感网络越可靠。
(3)本发明的网络模型有着很强的扩展性,可以有n条支路和通道。
附图说明
附图1是高可靠性光纤光栅传感网络模型结构示意图;
附图2是耦合器和FBG以及光纤组成模块结构示意图;
附图3是其中一条通道网络故障点布局图。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细描述:
本专利提出了一种高可靠性光纤光栅传感网络模型,为一种新型FBG传感网络,传统的FBG传感模块由单一的FBG构成,传感路径只有一条,一旦路径发生故障,就会造成传感器失效,可靠性低,新型的FBG传感网络即使发生多点故障,仍然有着冗余的传感网络进行传输,具有高可靠性、可扩展性高的优点。
图1为高可靠性光纤光栅传感网络模型结构示意。使用耦合器和FBG以及光纤组成一个模块,3个模块加上首尾的耦合器,构成一条支路,两条支路由一个1×2的光开关连接形成一个通道,再由一个1×2的光开关连接每个通道的光开关,通过动态切换光开关来改变光的传输方向。
附图1形成了4条支路,其中FBG1、FBG2、FBG3、FBG4在支路1上,FBG5、FBG6、FBG7、FBG8在支路2上,FBG11、FBG12、FBG13、FBG14在支路上,FBG15、FBG16、FBG17、FBG18,在支路4上。
附图2是耦合器和FBG以及光纤组成模块结构示意图,由1个2×2的耦合器和1个FBG通过光纤连接构成,当该模块A、B、C、D和E点等部位任一一点发生故障时,通过光开光切换,FBG通过冗余线路,依然可以被解调,除了A和B两点同时发生故障这种情况外,该模块都能正常工作。
下面举例当该传感网络多点发生故障时,为了举例方便,只研究一个通道出现故障,传感网络是如何自修复的。附图3是一个通道中出现8处故障,这8处故障分别位于各个FBG传感器之间。当光开光选通支路1时,此时解调器只能接受到FBG1、FBG2、FBG3、FBG4、FBG8的反射信号,还有3个FBG传感器信号得不到解调,这样整个系统的性能就会降低很多,达不到检测的要求。结合当前故障情况,将光开光切换到支路2,使得其余FBG传感器得到全部解调,失效的传感器全部得到恢复。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作任何其他形式的限制,而依据本发明的技术实质所作的任何修改或等同变化,仍属于本发明所要求保护的范围。

Claims (4)

1.一种高可靠性光纤光栅传感网络模型,包括光纤、光开关、耦合器和FBG传感器,其特征在于:使用单个2×2的耦合器与FBG组合成为一个模块,n个模块相连接成为一条支路,再通过1个1×2的光开关连接两条支路,两条支路再通过1×2的光开关连接到1×n光开关的n个通道上,每个支路中的FBG传感模块的最大值有ASE宽带光源的带宽决定,光开关通过改变引脚电平来实现光路的切换,通过光开关的切换改变光的传输方向。
2.根据权利要求1所述的一种高可靠性光纤光栅传感网络模型,其特征在于:所述FBG传感器有16个,使用了20个耦合器将16个FBG连接起来,形成了4条支路,16个FBG传感器包括FBG1、FBG2、FBG3、FBG4、FBG5、FBG6、FBG7、FBG8、FBG11、FBG12、FBG13、FBG14、FBG15、FBG16、FBG17、FBG18,其中FBG1、FBG2、FBG3、FBG4在支路1上,FBG5、FBG6、FBG7、FBG8在支路2上,FBG11、FBG12、FBG13、FBG14在支路上,FBG15、FBG16、FBG17、FBG18,在支路4上。
3.根据权利要求1所述的一种高可靠性光纤光栅传感网络模型,其特征在于:1条支路由3个模块和首尾两个耦合器连接构成。
4.根据权利要求1所述的一种高可靠性光纤光栅传感网络模型,其特征在于:1个通道由2条支路和1个1×2的光开关连接构成。
CN202210138908.3A 2022-02-15 2022-02-15 一种高可靠性光纤光栅传感网络模型 Pending CN114509113A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210138908.3A CN114509113A (zh) 2022-02-15 2022-02-15 一种高可靠性光纤光栅传感网络模型

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210138908.3A CN114509113A (zh) 2022-02-15 2022-02-15 一种高可靠性光纤光栅传感网络模型

Publications (1)

Publication Number Publication Date
CN114509113A true CN114509113A (zh) 2022-05-17

Family

ID=81551951

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210138908.3A Pending CN114509113A (zh) 2022-02-15 2022-02-15 一种高可靠性光纤光栅传感网络模型

Country Status (1)

Country Link
CN (1) CN114509113A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160025523A1 (en) * 2014-01-10 2016-01-28 Andol Technology Inc. Demodulation system for 3d-matrix multi-channel fiber optic sensing
CN105783948A (zh) * 2016-03-25 2016-07-20 北京信息科技大学 一种基于多传感模块协作的fbg传感器系统
CN105783954A (zh) * 2016-03-25 2016-07-20 北京信息科技大学 一种高冗余性fbg传感模块
CN112953626A (zh) * 2021-03-03 2021-06-11 金陵科技学院 一种基于光开关的高可靠性光纤光栅网络模型
CN113891189A (zh) * 2021-08-02 2022-01-04 长春工业大学 一种新型fbg传感网络的设计

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160025523A1 (en) * 2014-01-10 2016-01-28 Andol Technology Inc. Demodulation system for 3d-matrix multi-channel fiber optic sensing
CN105783948A (zh) * 2016-03-25 2016-07-20 北京信息科技大学 一种基于多传感模块协作的fbg传感器系统
CN105783954A (zh) * 2016-03-25 2016-07-20 北京信息科技大学 一种高冗余性fbg传感模块
CN112953626A (zh) * 2021-03-03 2021-06-11 金陵科技学院 一种基于光开关的高可靠性光纤光栅网络模型
CN113891189A (zh) * 2021-08-02 2022-01-04 长春工业大学 一种新型fbg传感网络的设计

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郑文宁: "高冗余光纤光栅传感网络的设计与实验研究", 半导体光电 *

Similar Documents

Publication Publication Date Title
KR101657329B1 (ko) 수동 광통신 망에서 오류를 발견하기 위한 방법과 장치
US7925126B2 (en) Fiber sensing system with self-detection mechanism
US5142141A (en) Crack growth measurement network with primary and shunt optical fibers
CN101924590A (zh) 无源光网络光纤故障的检测系统和方法
JP2002271267A (ja) ネットワークノード装置及びそれを用いたネットワークシステム並びにその障害位置検出方法
CN101630972A (zh) 用于wdm网络的光纤线路智能检测系统及检测方法
CN104518826A (zh) 一种监测光纤故障的方法、设备及系统
CN110266374B (zh) 一种可高精度监测tdm-pon二级支路故障的装置及方法
CN103222206A (zh) 分支光纤的故障检测方法、装置及系统
CN102878920A (zh) 飞机强度应变检测方法和该方法的飞机强度应变检测系统
CN114509113A (zh) 一种高可靠性光纤光栅传感网络模型
JP5291908B2 (ja) 光線路試験システムおよび光線路試験方法
CN103986521B (zh) 一种高可再生性的时分复用光纤光栅传感网络
US5408091A (en) Device for measuring a physical quantity by time-division coding
CN209358545U (zh) 集成fc光纤链路和网络检查的综合光纤检查装置
CN110289905A (zh) 利用fp激光器精准监测twdm-pon故障的装置及方法
CN106289390A (zh) 一种大长度海底电缆生产监测方法
JPH06232817A (ja) 光ファイバ伝送装置およびその試験方法
CN112953626B (zh) 一种基于光开关的高可靠性光纤光栅网络
CN205725763U (zh) 一种用于otdr光纤检测的测试波中继设备
CN113517943A (zh) 一种基于空分波分复用的分布式测量系统及方法
CN105783948A (zh) 一种基于多传感模块协作的fbg传感器系统
WO2011051930A1 (en) Technique for fault localization in passive optical networks
CN101753206B (zh) 光纤光栅传感监控系统双机热备份系统
CN200941616Y (zh) Sdh传输光缆故障检测系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220517