CH705337B1 - Elektrooptisches Kommunikations- und Energiekabel. - Google Patents

Elektrooptisches Kommunikations- und Energiekabel. Download PDF

Info

Publication number
CH705337B1
CH705337B1 CH01169/05A CH11692005A CH705337B1 CH 705337 B1 CH705337 B1 CH 705337B1 CH 01169/05 A CH01169/05 A CH 01169/05A CH 11692005 A CH11692005 A CH 11692005A CH 705337 B1 CH705337 B1 CH 705337B1
Authority
CH
Switzerland
Prior art keywords
metal wires
communication
power cable
electro
optical
Prior art date
Application number
CH01169/05A
Other languages
English (en)
Inventor
Thomas Rytz
Martin Rutschi
Original Assignee
Brugg Ag Kabelwerke
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brugg Ag Kabelwerke filed Critical Brugg Ag Kabelwerke
Priority to CH01169/05A priority Critical patent/CH705337B1/de
Priority to CA002614986A priority patent/CA2614986A1/en
Priority to US11/989,079 priority patent/US20080247716A1/en
Priority to EP06752911A priority patent/EP1902337A1/de
Priority to PCT/CH2006/000361 priority patent/WO2007006167A1/de
Publication of CH705337B1 publication Critical patent/CH705337B1/de

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4416Heterogeneous cables

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Communication Cables (AREA)
  • Insulated Conductors (AREA)

Abstract

Ein elektrooptisches Kommunikations- und Energiekabel (24) umfasst in einer zentralen Bündelader (20) aus einem glatten, flexiblen Metallrohr (18) wenigstens einen Lichtwellenleiter (10) mit einer primären Ummantelung (16). Zwei Schichten (26, 32) aus verseilten Metalldrähten verlaufen koaxial zur Bündelader (20). Die Metalldrähte dienen auch als Zug- und/oder Querentlastung. Die innere Drahtschicht (26) besteht aus elektrisch gut leitenden Metalldrähten (28). Die äussere Drahtschicht (32) umfasst einzeln- und/oder gruppenweise alternierend angeordnete Metalldrähte (28) hoher elektrischer Leitfähigkeit einerseits und Metalldrähte (34) hoher Zugfestigkeit andererseits. Die beiden Drahtschichten (36, 32) sind mittels einer Isolationsschicht (30) in Abstand gehalten. Das Kommunikations- und Energiekabel (24) dient in erster Linie als elektrooptische Power-Verbindung zwischen zwei Spannungswandlern (44, 46).

Description

[0001] Die Erfindung bezieht sich auf ein elektrooptisches Kommunikations- und Energiekabel, welches in einer zentralen Bündelader aus einem glatten, flexiblen Metallrohr wenigstens einen Lichtwellenleiter mit einer primären Ummantelung, zwei koaxial zur Bündelader verlaufenden Schichten aus verseilten Metalldrähten, welche auch als Zug- und Querkraftentlastung dienen, und einen Aussenmantel umfasst. Weiter betrifft die Erfindung eine Verwendung des elektrooptischen Kommunikations- und Energiekabels.
[0002] Optische Kabel mit Lichtwellenleitern, insbesondere Glasfasern, sind seit mehreren Jahrzehnten bekannt. Die Daten werden statt in Form von elektrischen Impulsen durch Metallleiter als Lichtquanten in Lichtwellenleitern übermittelt. Schnittstellen sind elektrooptische Kupplungen, welche elektrische Impulse in Lichtquanten umwandeln und umgekehrt.
[0003] Moderne Lichtwellenleiter und optische Kommunikations- und Energiekabel mit wenigstens einem Lichtwellenleiter sind beispielsweise aus der Firmenschrift «Kommunikationskabel/Communication Cables» der Firma Brugg Kabel AG, CH-5201 Brugg, revidierte Ausgabe 2004, bekannt.
[0004] Ein Lichtwellenleiter bekannter Bauart umfasst einen optischen Kern und einen optischen Mantel, in der Praxis eine Glasfaser mit einem Aussenmantel von insgesamt etwa 125 µm Durchmesser. Eine primäre Ummantelung der Glasfaser aus einem Kunststoff hat einen Aussendurchmesser von beispielsweise 250 µm. Je nach Verwendung werden Kabel mit Singlemode-Fasern oder Multimode-Fasern eingesetzt, nähere Angaben sind der vorerwähnten Firmenschrift, Seiten 6–9, zu entnehmen.
[0005] Elektrooptische Kabel umfassen neben wenigstens einem Lichtellenleiter elektrische Leiter, die beispielsweise zur Spannungsversorgung oder zur Übertragung von elektrischen Signalen dienen. Die elektrischen Leiter sind am optischen Kabel angeordnet oder damit verbunden. Elektrooptische Kommunikations- und Energiekabel werden auch Hybridkabel genannt.
[0006] Falls die Bündelader ein Metallrohr von hoher elektrischer Leitfähigkeit umfasst, kann dieses selbst als elektrischen Leiter verwendet werden. Die üblichen Stahlrohre sind jedoch dazu wegen der zu niedrigen elektrischen Leitfähigkeit wenig oder nicht geeignet.
[0007] Aus der EP 0 816 885 B1 und der DE 4 236 608 A1 ist es bekannt, eine Bündelader mit optischen Leitern mit wenigstens einer metallischen Armierungsschicht zu verseilen. Dadurch wird einerseits die Zugkraft erhöht und andererseits die Bündelader gegen Querkräfte besser geschützt.
[0008] In der EP 0 371 660 A1 wird ein elektrooptisches Kabel beschrieben, welches eine zentrale Bündelader mit einem dünnen Stahlrohr umfasst. Dieses ist von einer dielektrischen Schicht umgeben, in welcher Kupferlitzen von hoher elektrischer Leitfähigkeit eingebettet sind. Ausserhalb der dielektrischen Schicht ist eine zweilagige Bewehrung aus Stahldrähten angeordnet. Diese sind ihrerseits in die schützende Ummantelung eingebettet.
[0009] Der Erfindung liegt die Aufgabe zugrunde, ein elektrooptisches Kabel der eingangs genannten Art weiter zu verbessern und sein Einsatzgebiet zu verbreitern.
[0010] Die Aufgabe wird erfindungsgemäss dadurch gelöst, dass die innere Schicht aus Metalldrähten mit einem spezifischen elektrischen Widerstand von höchstens 5×10<–5> Ω.mm und die äussere Schicht aus einzel- und/oder gruppenweise alternierend angeordneten Metalldrähten mit einem spezifischen elektrischen Widerstand von höchstens 5×10<–5> Ω.mm einerseits und Metalldrähten mit einer Zugfestigkeit von wenigstens 700 N/mm andererseits besteht, und die beiden Schichten mittels einer Isolationsschicht in Abstand gehalten sind. Spezielle und weiterführende Ausführungsformen des elektrischen Kommunikations- und Energiekabels sind Gegenstand von abhängigen Patentansprüchen.
[0011] Hier und im Folgenden umfasst der Ausdruck «Metalldrähte» auch Metalllitzen mit vergleichbaren elektrischen und mechanischen Eigenschaften. In elektrooptischen Kommunikations- und Energiekabeln werden die Signale optisch, notfalls eventuell auch elektrisch, die Energie ausschliesslich elektrisch übertragen.
[0012] Als elektrisch gut leitende Metalldrähte werden vorzugsweise Metalle mit einem spezifischen elektrischen Widerstand von höchstens 5×10<–><5> Ω.mm, insbesondere (1–3) × 10<–5> Ω.mm, eingesetzt. Unter Berücksichtigung der Materialkosten fallen insbesondere Kupfer, Kupferlegierungen, Aluminium und Aluminiumlegierungen in diese Gruppe. Selbstverständlich können auch mit einem dieser elektrisch gut leitenden Metalle beschichtete Verbunddrähte, insbesondere mit einem Stahlkern, eingesetzt werden.
[0013] Die elektrisch weniger gut leitenden, äusseren Metalldrähte haben eine hohe Zugfestigkeit von wenigstens etwa 700 N/mm, besonders gut geeignet sind Drähte aus einem rostfreien Edelstahl.
[0014] Die alternierende Anordnung der beiden verschiedenen Metalldrähte der äusseren Drahtschicht kann auf verschiedenste Arten erfolgen, einfachheitshalber werden die elektrisch gut leitenden Drähte mit Cu, die zugfesten Drähte mit Fe bezeichnet, beispielsweise ...Fe.Cu.Fe.Cu.Fe.Cu... ...Fe.Fe.Cu.Cu.Fe.Fe.Cu.Cu... ...Fe.Fe.Cu.Fe.Cu.Fe.Fe.Cu... ...Cu.Cu.Fe.Cu.Cu.Fe.Cu.Cu.Fe... ...Fe.Fe.Cu.Fe.Cu.Fe.Cu.Fe... ...Fe.Fe.Fe.Cu.Fe.Cu.Fe.Cu.Fe.Cu.Fe.Fe.Fe.Fe.Cu.Fe...
[0015] Die innere und die äussere Drahtschicht weisen vorzugsweise denselben ohmschen Widerstand auf.
[0016] Das einzelne- und/oder gruppenweise Alternieren der Metalldrähte kann also regelmässig oder unregelmässig sein. Je höher der Anteil an Fe-Drähten ist, desto geringer ist die elektrische Transportleistung der äusseren Drahtschicht. Bei höherem Anteil der Fe-Drähte in der äusseren Drahtschicht ist dafür die Zug- und Querkraftentlastung deutlich besser.
[0017] Die Metalldrähte hoher Zugfestigkeit der Aussenschicht (Fe-Drähte) und das Metallrohr der Bündelader bestehen zweckmässig aus dem gleichen Material, nämlich einem rostfreien Edelstahl.
[0018] Die elektrisch gut leitenden Metalldrähte (Cu-Drähte) der Innenschicht liegen bevorzugt direkt auf dem Metallrohr der Bündelader auf.
[0019] Insbesondere aus fabrikationstechnischen Gründen haben in der Regel alle Metalldrähte den gleichen Durchmesser. Je nach Verwendung kann sich dieser Durchmesser vom feinen bis zum massiven Draht von etwa 1 mm erstrecken. Bei üblicher Verwendung liegt der Drahtdurchmesser meist im Bereich von 0,3 bis 0,5 mm.
[0020] Die Dicke der die innere und die äussere Drahtschicht trennenden Isolationsschicht liegt bei wenigstens dem durchschnittlichen Radius, vorzugsweise bei wenigstens dem durchschnittlichen Durchmesser der Metalldrähte beziehungsweise der verseilten Drahtlitzen.
[0021] Die Isolationsschicht besteht zweckmässig aus einem dielektrischen Kunststoff, insbesondere Polyethylen oder Polypropylen. Der Aussenmantel kann aus demselben Material oder aus Polyurethan, Polyamid oder FRNC bestehen, er dient dem mechanischen und chemischen Schutz, die äussere Oberfläche ist vorzugsweise teilweise gut bedruckbar.
[0022] Weiter kann zwischen der Drahtschicht und dem Aussenmantel ein Quellband und/oder ausserhalb der äusseren Drahtschicht eine Feuchtigkeitssperre angeordnet sein. Diese Sperre ist vorzugsweise eine Aluminiumfolie oder ein Aluminiumkunststofflaminat an sich bekannter Bauart.
[0023] Für das erfindungsgemässe elektrooptische Kommunikations- und Energiekabel ergeben sich zusammengefasst folgende Vorteile: Eine Bündelader aus einem Metallrohr, eine innere Drahtschicht aus elektrisch gut leitenden Metalldrähten und eine äussere Drahtschicht aus einzeln- und/oder gruppenweise alternierend angeordneten Metalldrähten hoher elektrischer Leitfähigkeit einerseits und Metalldrähten hoher Zugfestigkeit andererseits gewährleisten auch einen optimalen Schutz der optischen Lichtwellenleiter gegen Zug- und Querkräfte. Die elektrischen Leiter sind optimal platziert; innen ausschliesslich gut leitende Metalldrähte, aussen neben den parallel geschalteten gut leitenden Metalldrähten auch weniger gut leitende Metalldrähte hoher mechanischer Zugfestigkeit erlauben trotzdem eine hohe elektrische Leistung. Der koaxiale Aufbau der elektrischen Leiter eliminiert die Wechselstromverluste im Kabel. Die elektrooptischen Kommunikations- und Energiekabel können praktisch immer direkt verlegt werden, beispielsweise unter Wasser, insbesondere in offenen Gewässern und in Abwasserkanälen von Siedlungen, Gewerbe und Industrie, im Erdreich, insbesondere entlang von Strassen oder Schienen, in Rohranlagen und Kabelkanälen in Gebäuden. Das Kabel eignet sich insbesondere für den militärisch-taktischen Einsatz. Ein glattes, flexibles Metallrohr als Bündelader mit zwei koaxial in Abstand gehaltenen Drahtschichten erlaubt einen kleinen Biegeradius. Ein Dauerbetrieb kann in einem Temperaturbereich von –40 bis +80 °C aufrechterhalten werden, ohne dass eine Beeinträchtigung der Energie- oder Signalübertragung erfolgt.
[0024] Eine besonders vorteilhafte Verwendung des Kommunikations- und Energiekabels als elektrooptische Power-Verbindung zwischen zwei Spannungswandlern über eine Distanz bis etwa 20 Kilometer. Einer der beiden Spannungswandler ist in der Regel fest verkabelt, der andere Spannungswandler ist regelbar. Spannungswandler sind beispielsweise Transformatoren oder Schaltnetzteile.
[0025] Die Erfindung wird anhand von in der Zeichnung dargestellten Ausführungsbeispielen, welche auch Gegenstand von abhängigen Patentansprüchen sind, näher erläutert. Es zeigen schematisch: <tb>Fig. 1<sep>eine perspektivische Ansicht eines abgestuften stirnseitigen Endes eines Lichtwellenleiters (Stand der Technik), <tb>Fig. 2<sep>einen Querschnitt durch eine Bündelader mit einem Metallrohr (Stand der Technik), <tb>Fig. 3<sep>einen Querschnitt durch ein elektrooptisches Kommunikations- und Energiekabel, und <tb>Fig. 4<sep>ein Schema einer Verwendung eines elektrooptischen Kommunikations- und Energiekabels.
[0026] Fig. 1 zeigt einen Lichtwellenleiter 10 mit einem optischen Kern 12 und einem optischen Mantel 14 aus Glas und einer Primärummantelung 16 aus Kunststoff. Der optische Kern 12 und der optische Mantel 14 werden, entsprechend ihrem üblichen Material, auch einfachheitshalber als Glasfaser bezeichnet. Es wird zwischen Singlemode-Fasern und Multimode-Fasern unterschieden, was hier nicht relevant und einfachheitshalber in Fig. 1nicht erkennbar ist.
[0027] Fig. 2 zeigt eine Bündelader 20 mit einem Metallrohr 18 aus einem rostfreien Edelstahl und zwölf darin längslaufend angeordneten Lichtwellenleitern 10 gemäss Fig. 1. Die Bündelader 20 ist mit einer Aderfüllmasse 22 gefüllt, vorliegend mit einem Gel.
[0028] In einem elektrooptischen Kommunikations- und Energiekabel 24 gemäss Fig. 3 ist im Zentrum eine Bündelader 20 gemäss Fig. 2angeordnet. Das Metallrohr 18 der Bündelader 20 ist in Direktkontakt mit einer inneren, einlagigen Drahtschicht 26 verseilt, die aus zwölf Kupferdrähten 28 besteht. Auf diese innere Drahtschicht 26 ist eine Isolationsschicht 30 aus Polyethylen extrudiert, welche eine grössere Dicke a aufweist als der Durchmesser der Kupferdrähte 28.
[0029] Die Isolationsschicht 30 wird mit einer äusseren Drahtschicht 32 verseilt, die wiederum einlagig ausgebildet ist. Elektrisch gut leitende Drähte 28 sind einzeln und gruppenweise alternierend mit Drähten 34 hoher Zugfestigkeit angeordnet, vorliegend rostfreien Edelstahldrähten. Die Anordnung entlang des Umfangs ist nicht regelmässig, unten und oben ist jeweils ein Kupferdraht 28 durch einen Edelstahldraht 34 ersetzt. Dadurch ist die elektrische Leitfähigkeit des ganzen Kommunikations- und Energiekabels 24 zugunsten der mechanischen Festigkeit etwas herabgesetzt. Wie bereits erwähnt, können zwischen Kupfer- 28 und Edelstahldrähten 34 beliebige Kombinationen angeordnet sein.
[0030] Die Kupferdrähte 28 der inneren und äusseren Drahtschicht 26, 32 sind parallel geschaltet.
[0031] Ein Aussenmantel 36 aus Polyurethan schützt das Kommunikations- und Energiekabel 24 mechanisch und chemisch, er erlaubt auch eine Bedruckung.
[0032] Sowohl die Drähte 28 der inneren Drahtschicht 26 auch als die Drähte 28, 34 der äusseren Drahtschicht 32 sind mit einem Halteband beziehungsweise -netz 38 zusammengehalten und bleiben so während des Produktionsvorgangs in der richtigen Lage positioniert. Das Halteband ist vorliegend ein Melinex-Band der Firma DuPont.
[0033] Zwischen der äusseren Drahtschicht 32 und dem Aussenmantel 36 ist fakultativ – nur teilweise angedeutet – eine Feuchtigkeitssperre 40 angeordnet, vorliegend ein Aluminium-Kunststofflaminat.
[0034] Nach einer nicht dargestellten Variante kann zwischen der äusseren Drahtschicht 32 und dem Aussenmantel 36, innerhalb einer allenfalls vorliegenden Feuchtigkeitssperre 40, ein Quellband angeordnet sein, das beim Eindringen von Feuchtigkeit aufquillt und auf alle Schichten einen Druck ausübt, welcher das Vordringen der Feuchtigkeit in Längsrichtung verhindert oder zumindest stark einschränkt.
[0035] Gemäss einer in Fig. 4dargestellten Verwendung ist zwischen zwei bis etwa 20 km entfernten Netzleitern 42 (230V/50Hz) ein elektrooptisches Kommunikations- und Energiekabel 24 als Powerleitung eingesetzt. Am stirnseitigen Ende der Netzleitungen 42 sind Spannungswandler angeordnet, nämlich ein fest verkabelter Spannungswandler 44 und ein regelbarer Spannungswandler 46, welche eine Spannung von etwa 1000 V erzeugen und wieder abbauen können. Der Spannungswandler 44 ist mit einem Stand-by-Modus ausgestattet. Dieser schaltet die Spannung im Energiekabel 24 ab, wenn am Spannungswandler 46 keine Last anliegt.
Beispiel: Elektrooptisches Kommunikations- und Energiekabel
[0036] Elektrisch gut leitende Kupferdrähte 28 und rostfreie Stahldrähte 34, mit einem Durchmesser von 0,40 bzw. 0,42 mm werden erfindungsgemäss verseilt. Die Anordnung im Kommunikations- und Energiekabel entspricht Fig. 3, insbesondere auch die Sequenz der Kupfer- 28 und rostfreien Stahldrähte 34. Diese sind mittels einer 0,6 mm starken PE-Isolationsschicht 30 (Dicke a) voneinander getrennt. Der äussere Schutz wird von einem Aussenmantel 36 aus einer 0,8 mm dicken Polyurethanschicht gewährleistet. Die innere und die äussere Drahtschicht 26, 34 sind von einem Melinex-Band umhüllt. Das Kommunikations- und Energiekabel 24 hat einen Aussendurchmesser von 5,8 mm, wiegt 68 kg/m und hat einen gesamten Leiterquerschnitt der Kupferkabel von etwa 1,5 mm<2>.
[0037] Elektrische Leitfähigkeit: δCu = 0,0172 (Ω.mm<2>)/m δEdelstahl = 0,4129 (Ω.mm<2>)/m.
[0038] Widerstände pro km und pro Draht: Cu-Draht: Querschnitt = 0,1257 mm<2>, dies entspricht einem Widerstand RCu von 136.8 Ω/km. Edelstahl-Draht: Querschnitt = 0,1385 mm<2>, dies entspricht einem Widerstand REdelstahlvon 1031.5 Ω/km
[0039] Widerstand der gesamten Drahtschichten pro km: Leiter der inneren Drahtschicht 26: Zwölf Kupferdrähte, dies entspricht einem Widerstand Ri von 11.4 Ω/km. Leiter der äusseren Drahtschicht 32: Zehn Kupferdrähte, dies entsprechend einem Widerstand Ra von 12,45 Ω/km. Der Widerstand der parallel geschalteten Kupferdrähte 28 der inneren und äusseren Drahtschichten 26, 32 entspricht einem Leiterwiderstand R = (12.45×73,7)/(12,45+73,7)= 11,53 Ω/km.
[0040] Ein Kabel eines üblichen Durchmessers hält beispielsweise einer dauernden Zugbelastung von etwa 3000 N und einer Querdruckbelastung von etwa 1000 N/cm stand, ohne dass dabei die Funktion beeinträchtigt wird. Der Kabelbruch erfolgt in diesem Fall erst bei etwa 4250 N.

Claims (9)

1. Elektrooptisches Kommunikations- und Energiekabel (24), welches in einer zentralen Bündelader (20) aus einem glatten, flexiblen MetalIrohr (18) wenigstens einen Lichtwellenleiter (10) mit einer primären Ummantelung (16), zwei koaxial zur Bündelader (20) verlaufende Schichten (26, 32) aus verseilten Metalldrähten, welche auch als Zug- und/oder Querentlastung dienen, und einen Aussenmantel (36) umfasst, dadurch gekennzeichnet, dass die innere Schicht (26) aus Metalldrähten (28) mit einem spezifischen elektrischen Widerstand von höchstens 5×10<–5> Ω.mm und die äussere Schicht (32) aus einzeln- und/oder gruppenweise alternierend angeordneten Metalldrähten (28) mit einem spezifischen elektrischen Widerstand von höchstens 5×10<–5> Ω.mm einerseits und Metalldrähten (34) mit einer Zugfestigkeit von wenigstens 700 N/mm andererseits besteht, und die beiden Schichten mittels einer Isolationsschicht (30) in Abstand (a) gehalten sind.
2. Kommunikations- und Energiekabel (24) nach Anspruch 1, dadurch gekennzeichnet, dass die Metalldrähte (28) mit einem spezifischen elektrischen Widerstand von höchstens 5×10<–5>Ω.mm einen spezifischen elektrischen Widerstand von 1×10<–5>bis 3×10<–><5> Ω.mm aufweisen.
3. Kommunikations- und Energiekabel (24) nach Anspruch 2, dadurch gekennzeichnet, dass die Metalldrähte (28) mit einem spezifischen elektrischen Widerstand von höchstens 5×10<–5>Ω.mm aus Kupfer, einer Kupferlegierung, Aluminium oder einer Aluminiumlegierung bestehen oder mit einem dieser Metalle beschichtet sind, die Metalldrähte (34) mit einer Zugfestigkeit von wenigstens 700 N/mm vorzugsweise aus einem rostfreien Edelstahl, insbesondere aus dem gleichen Metall wie das Metallrohr (18) der Bündelader (20), bestehen.
4. Kommunikations- und Energiekabel (24) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die innere Schicht (26) direkt auf dem Metallrohr (18) aufliegt.
5. Kommunikations- und Energiekabel (24) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass alle Metalldrähte (28, 34) den gleichen Durchmesser haben.
6. Kommunikations- und Energiekabel (24) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Isolationsschicht (30) aus Polyethylen oder Polypropylen und der Aussenmantel (36) aus Polyurethan oder dem gleichen Material wie die Isolationsschicht (30) besteht.
7. Kommunikations- und Energiekabel (24) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die beiden Schichten (26, 32) etwa denselben ohmschen Widerstand aufweisen und vorzugsweise von je einem Halteband oder -netz (38) umhüllt sind.
8. Kommunikations- und Energiekabel (24) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass zwischen der äusseren Schicht (32) und dem Aussenmantel (36) ein Quellband und/oder ausserhalb der äusseren Schicht (32) eine Feuchtigkeitssperre (40), vorzugsweise eine Aluminiumfolie oder ein Aluminium-Kunststofflaminat angeordnet ist.
9. Verwendung des Kommunikations- und Energiekabels (24) nach einem der Ansprüche 1 bis 8 als elektrooptische Power-Verbindung zwischen zwei Spannungswandlern (44, 46), insbesondere zwischen einem fest verkabelten (44) und einem regelbaren Spannungswandler (46) über eine Distanz (d) bis etwa 20 km.
CH01169/05A 2005-07-14 2005-07-14 Elektrooptisches Kommunikations- und Energiekabel. CH705337B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CH01169/05A CH705337B1 (de) 2005-07-14 2005-07-14 Elektrooptisches Kommunikations- und Energiekabel.
CA002614986A CA2614986A1 (en) 2005-07-14 2006-07-07 Electrooptical communications and power cable
US11/989,079 US20080247716A1 (en) 2005-07-14 2006-07-07 Electooptical Communications and Power Cable
EP06752911A EP1902337A1 (de) 2005-07-14 2006-07-07 Elektrooptisches kommunikations-und energiekabel
PCT/CH2006/000361 WO2007006167A1 (de) 2005-07-14 2006-07-07 Elektrooptisches kommunikations-und energiekabel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH01169/05A CH705337B1 (de) 2005-07-14 2005-07-14 Elektrooptisches Kommunikations- und Energiekabel.

Publications (1)

Publication Number Publication Date
CH705337B1 true CH705337B1 (de) 2013-02-15

Family

ID=35500834

Family Applications (1)

Application Number Title Priority Date Filing Date
CH01169/05A CH705337B1 (de) 2005-07-14 2005-07-14 Elektrooptisches Kommunikations- und Energiekabel.

Country Status (5)

Country Link
US (1) US20080247716A1 (de)
EP (1) EP1902337A1 (de)
CA (1) CA2614986A1 (de)
CH (1) CH705337B1 (de)
WO (1) WO2007006167A1 (de)

Families Citing this family (261)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9867530B2 (en) 2006-08-14 2018-01-16 Volcano Corporation Telescopic side port catheter device with imaging system and method for accessing side branch occlusions
US7787823B2 (en) 2006-09-15 2010-08-31 Corning Cable Systems Llc Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US7848654B2 (en) 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8111998B2 (en) 2007-02-06 2012-02-07 Corning Cable Systems Llc Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems
WO2009009802A1 (en) 2007-07-12 2009-01-15 Volcano Corporation Oct-ivus catheter for concurrent luminal imaging
US9596993B2 (en) 2007-07-12 2017-03-21 Volcano Corporation Automatic calibration systems and methods of use
WO2009009799A1 (en) 2007-07-12 2009-01-15 Volcano Corporation Catheter for in vivo imaging
US20100054746A1 (en) 2007-07-24 2010-03-04 Eric Raymond Logan Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
WO2009081376A2 (en) 2007-12-20 2009-07-02 Mobileaccess Networks Ltd. Extending outdoor location based services and applications into enclosed areas
AU2010210766A1 (en) 2009-02-03 2011-09-15 Corning Cable Systems Llc Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
EP2394379B1 (de) 2009-02-03 2016-12-28 Corning Optical Communications LLC Verteilte antennensysteme auf glasfaserbasis, bestandteile und entsprechende verfahren zu ihrer kalibrierung
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
CH701871A1 (de) 2009-09-25 2011-03-31 Brugg Ag Kabelwerke Elektrooptisches Kabel.
US8280259B2 (en) 2009-11-13 2012-10-02 Corning Cable Systems Llc Radio-over-fiber (RoF) system for protocol-independent wired and/or wireless communication
US8546690B2 (en) * 2010-01-05 2013-10-01 Belden Inc. Multimedia cable
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US20110268446A1 (en) 2010-05-02 2011-11-03 Cune William P Providing digital data services in optical fiber-based distributed radio frequency (rf) communications systems, and related components and methods
WO2012024247A1 (en) 2010-08-16 2012-02-23 Corning Cable Systems Llc Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US9252874B2 (en) 2010-10-13 2016-02-02 Ccs Technology, Inc Power management for remote antenna units in distributed antenna systems
US11141063B2 (en) 2010-12-23 2021-10-12 Philips Image Guided Therapy Corporation Integrated system architectures and methods of use
US11040140B2 (en) 2010-12-31 2021-06-22 Philips Image Guided Therapy Corporation Deep vein thrombosis therapeutic methods
CN203504582U (zh) 2011-02-21 2014-03-26 康宁光缆系统有限责任公司 一种分布式天线系统及用于在其中分配电力的电源装置
CN103548290B (zh) 2011-04-29 2016-08-31 康宁光缆系统有限责任公司 判定分布式天线系统中的通信传播延迟及相关组件、系统与方法
CN103609146B (zh) 2011-04-29 2017-05-31 康宁光缆系统有限责任公司 用于增加分布式天线系统中的射频(rf)功率的系统、方法和装置
DE202011105000U1 (de) 2011-08-25 2011-12-20 Amphenol-Tuchel Electronics Gmbh Elektrooptisches Kabel
US9360630B2 (en) 2011-08-31 2016-06-07 Volcano Corporation Optical-electrical rotary joint and methods of use
WO2013148986A1 (en) 2012-03-30 2013-10-03 Corning Cable Systems Llc Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (mimo) configuration, and related components, systems, and methods
WO2013162988A1 (en) 2012-04-25 2013-10-31 Corning Cable Systems Llc Distributed antenna system architectures
WO2014024192A1 (en) 2012-08-07 2014-02-13 Corning Mobile Access Ltd. Distribution of time-division multiplexed (tdm) management services in a distributed antenna system, and related components, systems, and methods
US9367965B2 (en) 2012-10-05 2016-06-14 Volcano Corporation Systems and methods for generating images of tissue
US9858668B2 (en) 2012-10-05 2018-01-02 Volcano Corporation Guidewire artifact removal in images
US10070827B2 (en) 2012-10-05 2018-09-11 Volcano Corporation Automatic image playback
US9292918B2 (en) 2012-10-05 2016-03-22 Volcano Corporation Methods and systems for transforming luminal images
US10568586B2 (en) 2012-10-05 2020-02-25 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use
JP2015532536A (ja) 2012-10-05 2015-11-09 デイビッド ウェルフォード, 光を増幅するためのシステムおよび方法
US9307926B2 (en) 2012-10-05 2016-04-12 Volcano Corporation Automatic stent detection
US9324141B2 (en) 2012-10-05 2016-04-26 Volcano Corporation Removal of A-scan streaking artifact
US9286673B2 (en) 2012-10-05 2016-03-15 Volcano Corporation Systems for correcting distortions in a medical image and methods of use thereof
US11272845B2 (en) 2012-10-05 2022-03-15 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
US9840734B2 (en) 2012-10-22 2017-12-12 Raindance Technologies, Inc. Methods for analyzing DNA
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
WO2014085115A1 (en) 2012-11-29 2014-06-05 Corning Cable Systems Llc HYBRID INTRA-CELL / INTER-CELL REMOTE UNIT ANTENNA BONDING IN MULTIPLE-INPUT, MULTIPLE-OUTPUT (MIMO) DISTRIBUTED ANTENNA SYSTEMS (DASs)
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
EP2931132B1 (de) 2012-12-13 2023-07-05 Philips Image Guided Therapy Corporation Vorrichtung zur gezielten kanülierung
US11406498B2 (en) 2012-12-20 2022-08-09 Philips Image Guided Therapy Corporation Implant delivery system and implants
WO2014099899A1 (en) 2012-12-20 2014-06-26 Jeremy Stigall Smooth transition catheters
EP2934310A4 (de) 2012-12-20 2016-10-12 Nathaniel J Kemp Optisches kohärenztomografiesystem zwischen verschiedenen rekonfigurierbaren bildgebungsmodi
US10939826B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Aspirating and removing biological material
CA2895770A1 (en) 2012-12-20 2014-07-24 Jeremy Stigall Locating intravascular images
US10942022B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Manual calibration of imaging system
US10413317B2 (en) 2012-12-21 2019-09-17 Volcano Corporation System and method for catheter steering and operation
US10058284B2 (en) 2012-12-21 2018-08-28 Volcano Corporation Simultaneous imaging, monitoring, and therapy
EP2934280B1 (de) 2012-12-21 2022-10-19 Mai, Jerome Ultraschallbildgebung mit variabler liniendichte
CA2896006A1 (en) 2012-12-21 2014-06-26 David Welford Systems and methods for narrowing a wavelength emission of light
US9612105B2 (en) 2012-12-21 2017-04-04 Volcano Corporation Polarization sensitive optical coherence tomography system
EP2934323A4 (de) 2012-12-21 2016-08-17 Andrew Hancock System und verfahren zur mehrpfad-verarbeitung von bildsignalen
WO2014100162A1 (en) 2012-12-21 2014-06-26 Kemp Nathaniel J Power-efficient optical buffering using optical switch
WO2014100606A1 (en) 2012-12-21 2014-06-26 Meyer, Douglas Rotational ultrasound imaging catheter with extended catheter body telescope
EP2936426B1 (de) 2012-12-21 2021-10-13 Jason Spencer System und verfahren zur grafischen verarbeitung medizinischer daten
US9486143B2 (en) 2012-12-21 2016-11-08 Volcano Corporation Intravascular forward imaging device
US10226597B2 (en) 2013-03-07 2019-03-12 Volcano Corporation Guidewire with centering mechanism
US9770172B2 (en) 2013-03-07 2017-09-26 Volcano Corporation Multimodal segmentation in intravascular images
US11154313B2 (en) 2013-03-12 2021-10-26 The Volcano Corporation Vibrating guidewire torquer and methods of use
EP2967391A4 (de) 2013-03-12 2016-11-02 Donna Collins Systeme und verfahren zur diagnose koronarer mikrovaskulärer erkrankungen
US9301687B2 (en) 2013-03-13 2016-04-05 Volcano Corporation System and method for OCT depth calibration
US11026591B2 (en) 2013-03-13 2021-06-08 Philips Image Guided Therapy Corporation Intravascular pressure sensor calibration
US10758207B2 (en) 2013-03-13 2020-09-01 Philips Image Guided Therapy Corporation Systems and methods for producing an image from a rotational intravascular ultrasound device
US10219887B2 (en) 2013-03-14 2019-03-05 Volcano Corporation Filters with echogenic characteristics
US10292677B2 (en) 2013-03-14 2019-05-21 Volcano Corporation Endoluminal filter having enhanced echogenic properties
US20160030151A1 (en) 2013-03-14 2016-02-04 Volcano Corporation Filters with echogenic characteristics
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
EP3008828B1 (de) 2013-06-12 2017-08-09 Corning Optical Communications Wireless Ltd. Zeitduplexierung (tdd) in verteilten kommunikationssystemen, einschliesslich verteilten antennensystemen (dass)
EP3008515A1 (de) 2013-06-12 2016-04-20 Corning Optical Communications Wireless, Ltd Spannungsgesteuerter optischer richtkoppler
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
CN104297875B (zh) * 2014-10-13 2017-07-07 中天科技海缆有限公司 一种高压光电复合缆用等电位光纤单元及其制备方法
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
WO2016071902A1 (en) 2014-11-03 2016-05-12 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (rf) isolation in multiple-input multiple-output (mimo) antenna arrangement
WO2016075696A1 (en) 2014-11-13 2016-05-19 Corning Optical Communications Wireless Ltd. Analog distributed antenna systems (dass) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (rf) communications signals
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9954287B2 (en) * 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
WO2016098111A1 (en) 2014-12-18 2016-06-23 Corning Optical Communications Wireless Ltd. Digital- analog interface modules (da!ms) for flexibly.distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass)
WO2016098109A1 (en) 2014-12-18 2016-06-23 Corning Optical Communications Wireless Ltd. Digital interface modules (dims) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass)
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US20160249365A1 (en) 2015-02-19 2016-08-25 Corning Optical Communications Wireless Ltd. Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (das)
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US9705571B2 (en) 2015-09-16 2017-07-11 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10074890B2 (en) 2015-10-02 2018-09-11 At&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US20180259676A1 (en) * 2017-03-10 2018-09-13 Eas Ip, Llc Litz Wire As Tracer Wire And Litz Wire Marker Tape
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
WO2023128506A1 (ko) * 2021-12-31 2023-07-06 엘에스전선 주식회사 해저 광케이블

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4907855A (en) * 1988-01-15 1990-03-13 Siemens Aktiengesellschaft Marine cable for a fiber optic waveguide with regenerator supply
US5042903A (en) * 1990-07-30 1991-08-27 Westinghouse Electric Corp. High voltage tow cable with optical fiber
US5202944A (en) * 1990-06-15 1993-04-13 Westech Geophysical, Inc. Communication and power cable
DE4337486A1 (de) * 1993-09-29 1995-03-30 Norddeutsche Seekabelwerke Ag Kabel, insbesondere optisches Luftkabel, und Verfahren zur Herstellung desselben
US6236789B1 (en) * 1999-12-22 2001-05-22 Pirelli Cables And Systems Llc Composite cable for access networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4907855A (en) * 1988-01-15 1990-03-13 Siemens Aktiengesellschaft Marine cable for a fiber optic waveguide with regenerator supply
US5202944A (en) * 1990-06-15 1993-04-13 Westech Geophysical, Inc. Communication and power cable
US5042903A (en) * 1990-07-30 1991-08-27 Westinghouse Electric Corp. High voltage tow cable with optical fiber
DE4337486A1 (de) * 1993-09-29 1995-03-30 Norddeutsche Seekabelwerke Ag Kabel, insbesondere optisches Luftkabel, und Verfahren zur Herstellung desselben
US6236789B1 (en) * 1999-12-22 2001-05-22 Pirelli Cables And Systems Llc Composite cable for access networks

Also Published As

Publication number Publication date
WO2007006167A1 (de) 2007-01-18
CA2614986A1 (en) 2007-01-18
EP1902337A1 (de) 2008-03-26
US20080247716A1 (en) 2008-10-09

Similar Documents

Publication Publication Date Title
CH705337B1 (de) Elektrooptisches Kommunikations- und Energiekabel.
DE3518909A1 (de) Starkstromkabel, insbesondere fuer spannungen von 6 bis 60 kv, mit eingelegten lichtwellenleitern
DE3535827C2 (de) Freileitungsseil für elektrische und optische Übertragung
DE2355854C2 (de) Optisches Kabel
EP2202758B1 (de) Erdungskabel zur Erdung von Eisenbahneinrichtungen
EP0476438A2 (de) Elektro-optisches Freileiterseil mit 24 und mehr Lichtwellenleitern
DE2604766B2 (de) Phasenseil für Starkstrom-Freileitungsnetze zur gleichzeitigen Energie- und Informationsübertragung
DE2910135A1 (de) Optisches kabel
DE2934684C2 (de) Phasen- oder Erdseil
DE2801231C2 (de) Mit Isoliermaterial ummanteltes Starkstromkabel
DE2948757A1 (de) Verstaerkter optischer faserleiter und optisches faserkabel
DE102006015878B4 (de) Flexible elektrische Steuerleitung
DE3538664C2 (de)
DE2939971A1 (de) Elektrisches netzkabel
WO2011035450A2 (de) Elektrooptisches kabel
DE112021003596T5 (de) Unterwasserkabel
EP0704734A2 (de) Seekabel
EP1583109B1 (de) Flexible elektrische Leitung
EP0365759B1 (de) Lichtwellenleiterkabel
DE102014226543B4 (de) Hybridkabel, Verfahren zur Herstellung eines solchen und Verwendung eines solchen in einemKraftfahrzeug
DE202005008731U1 (de) Hybridkabel
DE4244202A1 (de) Mehradriges flexibles Energiekabel mit integriertem Datenübertragungselement
EP0156097B1 (de) Kabel
EP2922069B1 (de) Freileitungsseil
EP1126296A1 (de) Metallisches optisches Luftkabel

Legal Events

Date Code Title Description
PK Correction

Free format text: BERICHTIGUNG INHABER

PFA Name/firm changed

Owner name: BRUGG KABEL AG, CH

Free format text: FORMER OWNER: BRUGG KABEL AG, CH

PUE Assignment

Owner name: SOLIFOS AG, FIBER OPTIC SYSTEMS, CH

Free format text: FORMER OWNER: BRUGG KABEL AG, CH