AU2002228811A1 - Damascene nisi metal gate high-k transistor - Google Patents

Damascene nisi metal gate high-k transistor

Info

Publication number
AU2002228811A1
AU2002228811A1 AU2002228811A AU2881102A AU2002228811A1 AU 2002228811 A1 AU2002228811 A1 AU 2002228811A1 AU 2002228811 A AU2002228811 A AU 2002228811A AU 2881102 A AU2881102 A AU 2881102A AU 2002228811 A1 AU2002228811 A1 AU 2002228811A1
Authority
AU
Australia
Prior art keywords
damascene
transistor
metal gate
gate high
nisi metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2002228811A
Inventor
Paul R. Besser
Matthew S. Buynosky
John Clayton Foster
Paul L. King
Eric N. Paton
Qi Xiang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Micro Devices Inc
Original Assignee
Advanced Micro Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/731,031 external-priority patent/US6475874B2/en
Priority claimed from US09/734,189 external-priority patent/US6342414B1/en
Application filed by Advanced Micro Devices Inc filed Critical Advanced Micro Devices Inc
Publication of AU2002228811A1 publication Critical patent/AU2002228811A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28097Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a metallic silicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/495Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
AU2002228811A 2000-12-07 2001-12-03 Damascene nisi metal gate high-k transistor Abandoned AU2002228811A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US09/731,031 US6475874B2 (en) 2000-12-07 2000-12-07 Damascene NiSi metal gate high-k transistor
US09/731,031 2000-12-07
US09/734,189 US6342414B1 (en) 2000-12-12 2000-12-12 Damascene NiSi metal gate high-k transistor
US09/734,189 2000-12-12
PCT/US2001/046551 WO2002047146A2 (en) 2000-12-07 2001-12-03 DAMASCENE NiSi METAL GATE HIGH-K TRANSISTOR

Publications (1)

Publication Number Publication Date
AU2002228811A1 true AU2002228811A1 (en) 2002-06-18

Family

ID=27112153

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2002228811A Abandoned AU2002228811A1 (en) 2000-12-07 2001-12-03 Damascene nisi metal gate high-k transistor

Country Status (3)

Country Link
AU (1) AU2002228811A1 (en)
TW (1) TW517290B (en)
WO (1) WO2002047146A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10230696B4 (en) * 2002-07-08 2005-09-22 Infineon Technologies Ag Method for producing a short channel field effect transistor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189966A (en) * 1996-12-26 1998-07-21 Toshiba Corp Semiconductor device and manufacture thereof
US5937315A (en) * 1997-11-07 1999-08-10 Advanced Micro Devices, Inc. Self-aligned silicide gate technology for advanced submicron MOS devices
US6103559A (en) * 1999-03-30 2000-08-15 Amd, Inc. (Advanced Micro Devices) Method of making disposable channel masking for both source/drain and LDD implant and subsequent gate fabrication
JP2000307103A (en) * 1999-04-21 2000-11-02 Nec Corp Semiconductor device and manufacture thereof
JP4237332B2 (en) * 1999-04-30 2009-03-11 株式会社東芝 Manufacturing method of semiconductor device
US6271132B1 (en) * 1999-05-03 2001-08-07 Advanced Micro Devices, Inc. Self-aligned source and drain extensions fabricated in a damascene contact and gate process

Also Published As

Publication number Publication date
TW517290B (en) 2003-01-11
WO2002047146A2 (en) 2002-06-13
WO2002047146A3 (en) 2002-08-22

Similar Documents

Publication Publication Date Title
AU2001263025A1 (en) Dual metal gate transistors for cmos process
AU2002349507A1 (en) Mos semiconductor device
AU2002350184A1 (en) Trench mosfet having low gate charge
AU2001234796A1 (en) Double recessed transistor
AU2002333593A1 (en) Drain sealing device
SG111054A1 (en) Self-aligned silicide process for silicon sidewall source and drain contacts and structure formed thereby
AU2002356486A1 (en) High voltage mos transistor
AU2001284850A1 (en) Metal sulfide semiconductor transistor devices
AU2003304708A1 (en) Self-aligned trench mos junctions field-effect transistor for high-frequency applications
GB0324189D0 (en) Short-channel transistors
IL143013A0 (en) Self-aligned double gate mosfet with separate gates
AU2001284817A1 (en) Metal sulfide-oxide semiconductor transistor devices
EP1405932A4 (en) Hafnium silicide target for gate oxide film formation and its production method
AU2003263367A1 (en) Metal spacer gate for metal oxide semiconductor device
EP1186885A4 (en) Field-effect transistor
AU2002357826A1 (en) Monos device having buried metal silicide bit line
SG116522A1 (en) Hatted polysilicon gate structure for improving salicide performance and method of forming the same.
AU2002228811A1 (en) Damascene nisi metal gate high-k transistor
AU2002354172A1 (en) Heterobipolar transistor
AU2002251803A1 (en) Mos device having a trench gate electrode
GB2358082B (en) Semiconductor transistor
AU2003270452A1 (en) Transistor element having an anisotropic high-k gate dielectric
AU2003276565A1 (en) Field-effect transistor
AU2001267034A1 (en) Buried inverted gate field-effect transistor (bigfet)
AU2002363273A1 (en) Lateral isolated gate bipolar transistor device