ZA200207729B - Electric suspended conveyor with contactless energy transmission. - Google Patents

Electric suspended conveyor with contactless energy transmission. Download PDF

Info

Publication number
ZA200207729B
ZA200207729B ZA200207729A ZA200207729A ZA200207729B ZA 200207729 B ZA200207729 B ZA 200207729B ZA 200207729 A ZA200207729 A ZA 200207729A ZA 200207729 A ZA200207729 A ZA 200207729A ZA 200207729 B ZA200207729 B ZA 200207729B
Authority
ZA
South Africa
Prior art keywords
feeder
slide rail
mobile
supply
electric
Prior art date
Application number
ZA200207729A
Inventor
Norbert Futschek
Original Assignee
Lju Industrieelektronik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lju Industrieelektronik Gmbh filed Critical Lju Industrieelektronik Gmbh
Publication of ZA200207729B publication Critical patent/ZA200207729B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/005Current collectors for power supply lines of electrically-propelled vehicles without mechanical contact between the collector and the power supply line
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles

Abstract

The conveyor has contactless energy transfer from a supply line along a running rail (1), connected to a high frequency AC source and with a return line (7) via a U-shaped ferrite core current pick-up to a control and power stage on a transport unit on the rail. The return line is formed directly by the running rail and the pick-up has two separate, different windings for providing different supply voltages for the power or control stages.

Description

: oo ~ B2002/7729
Description
Electric telpher with non-contact power transmission
The invention relates to an electric telpher with non- contact power transmission from a feeder and return conductor conducted along a slide rail and connected to a higher-frequency AC power supply via a current collector configured as a U-shaped ferrite core with windings that encompasses the supply line to the control and power circuits of a transfer unit that can travel on the slide rail.
Non-contact inductive transmission of electrical power to rail-guided transfer units equipped with electric consumers has been known for a long time. For example, DE 44 46 779 describes an arrangement for non-contact inductive power transmission to electrically powered transfer units that are moved on a closed track. In this arrangement, a feeder fed by a higher-frequency AC power supply is kept at a spacing from the slide rail and encompassed by the respective current collector that is mounted to the respective transfer unit and connected to the drive motor and the control circuit. The current collector consists of a U-shaped ferrite core with a winding around its limbs. Transmission of electrical power from the primary feeder to the secondary windings is based on the transformer principle, and the various consumers on the transfer unit are supplied a voltage level in accordance with their power needs. As the control circuit of the transfer unit, however, requires a considerably lower voltage (24V) than the power circuit, an enormous switching effort is required to supply the 24V DC from the 560V DC voltage provided by the current collector. A similar effort is required for the return hl LrusT8E . conductor of the primary power supply that in DE 44 46 779 is formed by the sidewalls of a casing that almost completely encompasses the current collector.
It is therefore the problem of this invention to disclose an electric telpher with non-contact electrical power transmission that can be efficiently produced as regards current transfer from the primary supply to the various consumers of the transfer units.
This problem is solved according to the invention by the electric telpher with non-contact power transmission comprising the characteristics described in claim 1.
The inventive idea is to use the aluminum slide rail for the transfer units of the telpher as return conductor. when combining this characteristic with an arrangement of two separate windings on the U-shaped ferrite core (current collector) to be able to provide two independent direct currents of different voltages and load capacities for the control and power circuits and thereby considerably simplify the switching effort required for providing the lower voltage, overall expenditure of supplying power to the consumers of the transportable units is considerably reduced.
The inventive power supply to the transfer units is, of course, not limited to suspended or telpher systems but may also be used in a similarly advantageous way with other conveying equipment in which a transfer unit is moved along a rail and that operates on a non-contact power supply. This is a more effortless way to make use of the known advantages of non-contact power transmission, such as high operational reliability even under difficult operating conditions, minimum maintenance
* LJUS78E and wear, low noise, high conveying speed, and high efficiency.
The subclaims and the description of an exemplary embodiment below reveal other important characteristics of the invention, for example regarding the supply of a stabilized medium-frequency current to the primary circuit, positioning and attachment of the feeder in a specially designed bracket that can be attached to the slide rail, the electrical configuration of the current collectors, or the design of junction points of the telpher.
An embodiment of the invention is explained in greater detail below with reference to the figures. Wherein:
Fig. 1 is a schematic view of an arrangement for non- contact transmission of electrical power to a transfer unit that can be moved along the slide rail of an electric telpher system;
Fig. 2 is a sectional, partially perspective view of a feeder bracket that can be locked into the slide rail of an electric telpher system and is mechanically coded for position detection;
Fig. 3 shows a switching arrangement for feeding power into the primary circuit of an arrangement for non-contact power transmission;
Fig. 4 shows a circuit wiring diagram of the bridge : rectifier to be provided according to Fig. 3;
Fig. 5 shows a circuit wiring diagram of the stabilized power supply for power feeding as shown in Fig. 3;
’ LJUS78E
Fig. 6 shows a circuit wiring diagram of a current collector to be provided for the secondary circuit;
Fig. 7 shows the supply provided for a mobile feeder in the area of a telpher junction; and
Fig. 8 shows a junction area according to Fig. 7, but comprising an upstream safety block.
The arrangement for non-contact power transmission as shown in Fig. 1 comprises an aluminum slide rail for guiding a transfer unit (not shown) for carrying and transporting loads that is equipped with a control circuit and a power circuit. A feeder bracket 2 made of a non-conducting, preferably synthetic material is mounted to a slide rail 1, said feeder bracket comprising a holding groove 3 in its free end placed at a spacing to said slide rail 1 (see Fig. 2) to receive a feeder 4 in the form of a high-frequency litz wire. As Fig. 2 shows, this feeder bracket 2 further comprises a mechanical coding that is used by a scanner mounted to the transfer unit (not shown) to ensure absolute position detection.
Where the slide rail 1 has a bend, the feeder bracket 2 is made of short segments (not shown) which can be locked into compact holders la attached to one longitudinal side of the slide rail 1. The feeder bracket 2 protrudes into a current collector 6 that is configured as a U-shaped ferrite core 6.1 with one winding Ng; or Npa. respectively, on each of its limbs. The windings Np: and
Ny; are each connected to an electronic collector circuit
AEl or AE2, respectively, and these two circuits provide two separate supply voltages Vp, and Vp: to supply the transfer unit with direct current (Ig; Ioz). The windings
) LJUS78E
No; and Ng, have different ratings so that the voltages Vp and Vg, are different in size and load capacity, one suitable for the control circuit and one suitable for the power circuit of the respective transfer unit. Thus wiring and switching requirements for the power electronics are rather low. The low voltage may also be used to feed small consumers. The feeder 4 is located inside the U-shaped ferrite core (current collector 6) at a minimum depth of 40% of the overall depth of the core to ensure the creation of a magnetic flux in the ferrite core and provide an adequate magnetomotive force (No; ®
Toi, Noz © To2).
As shown in Fig. 3, the primary circuit of the arrangement consisting of the feeder 4 and a return conductor 7 is supplied with power from a three-phase low-voltage system via a six-pulse bridge rectifier that provides a link voltage V,. A circuit wiring diagram of the bridge rectifier 8 is shown in Fig. 4. A PWM rectifier inverter 10 that works on two LC components 11 and an output transformer 12 is provided downstream as a stabilized power supply 9 (a circuit diagram of which is shown in Fig. 5) downstream from the bridge rectifier 8 so that a constant medium-frequency current is supplied.
The PWM rectifier inverter 10 determines the output frequency of the constant current while the two LC components 11 are responsible for the quality of the sinusoidal wave shape of the constant current and for limiting the noise spectrum along the feeder.
The circuit diagram as shown in Fig. 3 represents two current collectors 6, each of which connected to a consumer (not shown), that can be moved along the feeder and require different power levels. A circuit wiring diagram of a current collector 6 that can travel along the feeder 4 and is equipped with the electronic i} LJUS78E collector circuits AEl and AE2 as outlined in Fig. 1 for different voltages Vp, and Vg; is shown in Fig. 6. A control unit (Rs) is labeled with reference symbol 13 in the electronic collector circuit AE2 for oscillating circuit quality. There are no feedback effects on the adjacent current collector 6 due to the stabilized power supply. Compensation modules 22 are provided along the guideway formed by the return conductor 7 and the feeder 4 to compensate the inductive voltage portions und thus to increase the working efficiency of the system; these modules are shown as capacitors in Fig. 3.
While the feeder 4 is a finely stranded litz wire with reinforced insulation at mechanically critical points, slide rail 1 is used as return conductor 7. The slide rail segments 1 that are used as return conductor 7 have low-resistance terminations for the required equipotential bonding, while flexible earthing strips (not shown) are provided on all stretching points. By means of specific modulation and demodulation methods, feeder 4 can also be used as a communication channel for programming and remote control of the transfer units.
Communication with the control unit that is connected to the transfer unit (not shown) takes place here in the known way using infrared modules that are integrated into the control unit, or radio modules.
Each control unit is routinely equipped with an onboard infrared module that is used for programming and remote control of the propulsion gear of the transfer unit.
Furthermore, these mobile infrared modules may communicate with special read-write stations at selected points along the guideway which in turn are managed by the higher-order system control unit. This is where the control units exchange status and command information and
} LJUSTS8E store this data in a no-volt protected memory. These IR modules can also be used for start/stop functions and the like, if required.
As an alternative to IR technology, mobile radio modules can be used that can optionally be integrated into the control unit but allow permanent communication with system control. As the range of transmission is limited in a rough industrial environment, an interconnection of fixed base stations is used here, each of these stations representing a cell. These individual cells overlap so that all transfer units on the guideway can be reached safely. This interconnection of radio stations is controlled and monitored in such a way that propulsion gear can be logged off without data loss when the transfer unit leaves a cell and safely logged on to the next cell. This equipment is suitable for rough allotment estimates. If combined with position detection, the user gets a transparent track model of all vehicles and may apply higher-order control mechanisms depending on the communication bandwidth in system control.
The control unit is equipped with a scanner (not shown) that carries out position detection along the travel path using mechanical coding 5. This information is also used for internal motor control. Jolts or any other unsteadiness in the absolute code curve can be stored in a no-volt protected memory the control unit, which means there can be greater fault tolerance when installing the absolute code rail 5. This function is most useful when the scanner scans the feeder brackets 2 that carry a mechanical coding 5.
The control unit is designed in such a way that it can . either directly actuate a standard gearbox motor with a wheel that is mounted on the drive end and performs both
LIUSTSE driving and load-bearing functions and an electromechanical brake or a linear motor unit with an electromechanical brake arrangement that functions as a holding brake.
As shown in Fig. 7, mobile feeders 14 that can be supplied with high-frequency power from a stationary feeder module 15 located in the vicinity of the track and connected to the feeder 14 via a trailing cable and a mobile feeder module 17, are provided in junction areas of the telpher such as points, intersections, lifting, lowering, and shunting stations.
As Fig. 8 shows, emergency stops and safety blocks 19 are provided in front of and inside junctions that are connected to permanently installed supply modules 20 in the vicinity of the track to create partial shutdown segments using conventional switching logic. The supply module 20 is configured so that it can be connected to a feeder module 17 via a trailing cable 21.

Claims (11)

i} LJUS7BE We claim:
1. An electric telpher with non-contact power transmission from a feeder and return conductor conducted along a slide rail and connected to a higher-frequency AC power supply via a current collector configured as a U-shaped ferrite core with windings that encompasses the supply line to the control and power circuits of a transfer unit that can travel on the slide rail, characterized in that the return conductor (7) is directly formed by the slide rail (1) and that two separate and differently rated windings (N,; N,,) are provided on the current collector (6) formed by the ferrite core that provide different supply voltages (U,; U,) to the power circuit and control circuit of the transfer unit, respectively.
2. The electric telpher according to claim 1, characterized in that the feeder (4) that consists of high-duty litz wire is held in a feeder bracket (2) : that consists of individual linear and short plate- like segments and is mounted to and insulated against the slide rail (1).
3. The electric telpher according to claim 2, characterized in that the segments of the feeder bracket (2) can be locked into a compact holder (1a) attached to the slide rail (1) whose front ends abut or can be fit into one another.
4. The electric telpher according to claims 2 and 3, characterized in that the free end of the feeder bracket (2) that faces away from the slide rail (1)
- LJUS78E comprises a holding groove (3) for receiving the feeder (4).
5. The electric telpher according to any one of the preceding claims 2 through 4, characterized in that the plate-like feeder bracket (2) comprises a mechanical coding (5) in the form of a slot code for detecting the position of the transfer units using a scanner mounted on these transfer units.
6. The electric telpher according to claim 1, characterized in that feeder and return conductor (4, 7) are connected to a three-phase low-voltage system via a six-pulse bridge rectifier (8) that supplies a link voltage (V,) and via a stabilized power supply (9) with PWM rectifier inverter (10) that works on two LC components (11) and an output transformer (12) to feed a constant current of a specific higher frequency into the feeder (4).
7. The electric telpher according to claim 6, characterized in that the constant current fed into the primary circuit has a medium frequency of < 20 kHz.
8. The electric telpher according to any one of the preceding claims 1 through 7, characterized in that the transfer units are programmed and remote controlled using the infrared or radio modules that are integrated into their control circuit.
9. The electric telpher according to any one of the preceding claims 1 through 7, characterized in that the feeder (4) can be used as a communication channel for the programming and remote control of the
- LJU578E transfer units by applying specific modulation and demodulation methods.
10. The electric telpher according to any one of the preceding claims 1 through 9, characterized in that a mobile feeder (14) with a mobile feeder module (17) and attached to a mobile section (18) is provided in junction areas of the telpher, and that this mobile feeder (14) is supplied from a permanently installed feeder module (15) via a trailing cable (16).
11. The electric telpher according to any one of the preceding claims 1 through 10, characterized in that emergency stops and safety blocks (19) that are connected to stationary supply modules (20) in the vicinity of the track are provided in front of or inside junctions, and that the respective supply module (20) can be connected to a mobile feeder module (17) via a trailing cable (21).
- LJUS78E i 12 List of reference symbols 1 slide rail (return cable) la compact holder 2 feeder bracket 3 holding groove 4 feeder 5 mechanical coding (slot coding) 6 current collector (SAEl, SAE2)
6.1 ferrite core 7 return conductor 8 six-pulse bridge rectifier 9 stabilized power supply 10 PWM rectifier inverter 11 LC components 12 output transformer 13 control unit (RS) 14 mobile feeder 15 stationary feeder module (VME) le, 21 trailing cable 17 mobile feeder module (VME) 18 mobile section 19 safety block 20 supply module (VMS) 22 compensation modules AEl electronic collector circuit AE2 electronic collector circuit N,,, Ng windings of 6 Uy: Ug supply voltage for transfer unit U, link voltage I, constant medium-frequency current
ZA200207729A 2000-03-22 2002-09-26 Electric suspended conveyor with contactless energy transmission. ZA200207729B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10014954A DE10014954A1 (en) 2000-03-22 2000-03-22 Electrical overhead conveyor has contactless energy transfer, return line formed by running rail, pick-up with two separate windings for different supply voltages

Publications (1)

Publication Number Publication Date
ZA200207729B true ZA200207729B (en) 2003-06-11

Family

ID=7636402

Family Applications (1)

Application Number Title Priority Date Filing Date
ZA200207729A ZA200207729B (en) 2000-03-22 2002-09-26 Electric suspended conveyor with contactless energy transmission.

Country Status (14)

Country Link
EP (1) EP1269601B1 (en)
JP (1) JP2003528555A (en)
KR (1) KR100568405B1 (en)
AT (1) ATE261625T1 (en)
AU (1) AU2001239179A1 (en)
CA (1) CA2403762C (en)
CZ (1) CZ300559B6 (en)
DE (2) DE10014954A1 (en)
DK (1) DK1269601T3 (en)
ES (1) ES2213107T3 (en)
PT (1) PT1269601E (en)
TR (1) TR200400772T4 (en)
WO (1) WO2001071882A1 (en)
ZA (1) ZA200207729B (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10215236C1 (en) * 2002-04-06 2003-10-16 Wampfler Ag Device for the inductive transmission of electrical energy
DE10216422C5 (en) 2002-04-12 2011-02-10 Conductix-Wampfler Ag Device for inductive power supply and guidance of a moving object
DE10239252B4 (en) * 2002-06-04 2015-12-03 Sew-Eurodrive Gmbh & Co Kg Non-contact energy transfer device for a turntable
DE10225005C1 (en) 2002-06-06 2003-12-04 Wampfler Ag Inductive energy transmission device for moving load with inductive coupling used for energy transfer between successive conductor path sections
DE10326614A1 (en) * 2003-06-13 2004-12-30 Dürr Automotion Gmbh transport system
US7108189B2 (en) 2003-06-30 2006-09-19 Progressive Tool & Industries Co. Precise transport positioning apparatus using a closed loop controlled, non-direct drive or friction drive system with absolute positioning encoder
DE10360599B4 (en) 2003-12-19 2020-07-09 Sew-Eurodrive Gmbh & Co Kg System with drives on a rotatably mounted, movable part, i.e. turntable
DE102004009896A1 (en) * 2004-02-26 2005-09-15 Paul Vahle Gmbh & Co. Kg Inductive contactless energy transmission system primary line has compensating capacitance formed by double length coaxial conductors
DE102004049982B4 (en) * 2004-08-25 2016-01-07 Sew-Eurodrive Gmbh & Co Kg Monorail overhead conveyor for contactless energy transmission with a part movable along a rail profile
DE102005053549B4 (en) * 2005-11-08 2008-05-29 Sew-Eurodrive Gmbh & Co. Kg System for holding cables
DE102005054252B4 (en) * 2005-11-11 2009-04-02 Sew-Eurodrive Gmbh & Co. Kg System comprising profile rail and box and at least one holder, and method of attaching a box to a rail
DE102006049588B4 (en) * 2006-02-03 2020-08-13 Sew-Eurodrive Gmbh & Co Kg Transport system
US20070233371A1 (en) 2006-03-31 2007-10-04 Arne Stoschek Navigation system for a motor vehicle
US9478133B2 (en) 2006-03-31 2016-10-25 Volkswagen Ag Motor vehicle and navigation arrangement for a motor vehicle
DE102006026773B4 (en) * 2006-06-07 2017-02-09 Sew-Eurodrive Gmbh & Co Kg investment
DE102007031218B4 (en) * 2006-07-05 2020-10-29 Sew-Eurodrive Gmbh & Co Kg Device, labeling machine and method for operating a device
DE102006054614B4 (en) * 2006-11-17 2020-01-02 Sew-Eurodrive Gmbh & Co Kg Machine or plant and process
DE102007049235A1 (en) * 2007-10-10 2009-04-16 Siemens Ag Electricity transmission arrangement for supplying direct current to electrical consumers, has core carrying windings, which form resonant circuit with current condensers, where resonant circuit increases magnetic flow density in core
GB2461578A (en) 2008-07-04 2010-01-06 Bombardier Transp Gmbh Transferring electric energy to a vehicle
GB2461577A (en) 2008-07-04 2010-01-06 Bombardier Transp Gmbh System and method for transferring electric energy to a vehicle
GB2463693A (en) 2008-09-19 2010-03-24 Bombardier Transp Gmbh A system for transferring electric energy to a vehicle
GB2463692A (en) 2008-09-19 2010-03-24 Bombardier Transp Gmbh An arrangement for providing a vehicle with electric energy
DE102008052143B4 (en) * 2008-10-20 2017-02-02 Sew-Eurodrive Gmbh & Co Kg System for contactless energy transfer
US20110302078A1 (en) 2010-06-02 2011-12-08 Bryan Marc Failing Managing an energy transfer between a vehicle and an energy transfer system
US8292052B2 (en) 2010-06-24 2012-10-23 General Electric Company Power transfer system and method
KR101234565B1 (en) * 2011-03-04 2013-02-19 한국과학기술원 Apparatus for Transferring Power for Electric Rail Car Engaging Magnetic Cable
GB2491651A (en) 2011-06-10 2012-12-12 Bombardier Transp Gmbh System and Method for Transferring Electric Energy to a Vehicle Using Constant Current Operation of Segments of a Conductor Arrangement at resonance frequency
GB2491652A (en) 2011-06-10 2012-12-12 Bombardier Transp Gmbh System and Method for Transferring Electric Energy to a Vehicle Using a Plurality of Segments of a Conductor Arrangement
US9697951B2 (en) 2012-08-29 2017-07-04 General Electric Company Contactless power transfer system
CN107206916B (en) * 2015-02-06 2021-04-06 柿子技术公司 Movable power coupling and robot with movable power coupling
DE102015009074B4 (en) * 2015-07-16 2021-11-11 Sew-Eurodrive Gmbh & Co Kg Arrangement for inductive energy transmission from a primary conductor system to a vehicle having a secondary winding
DE102021005774A1 (en) * 2020-12-17 2022-06-23 Sew-Eurodrive Gmbh & Co Kg Printed circuit board, in particular printed circuit board that can be used as a primary conductor
AT525853A1 (en) * 2022-02-04 2023-08-15 Tgw Mechanics Gmbh Improved overhead conveyor for a picking system and transport carrier for transporting hanging goods

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5293308A (en) * 1991-03-26 1994-03-08 Auckland Uniservices Limited Inductive power distribution system
US5619078A (en) * 1992-05-10 1997-04-08 Boys; John T. Primary inductive pathway
DE4446779C2 (en) * 1994-12-24 1996-12-19 Daimler Benz Ag Arrangement for the contactless inductive transmission of electrical power
WO1998057413A1 (en) * 1997-06-12 1998-12-17 Auckland Uniservices Limited Wireless signals in inductive power transfer systems

Also Published As

Publication number Publication date
KR20030011278A (en) 2003-02-07
KR100568405B1 (en) 2006-04-05
PT1269601E (en) 2004-05-31
DK1269601T3 (en) 2004-04-13
JP2003528555A (en) 2003-09-24
AU2001239179A1 (en) 2001-10-03
DE50101656D1 (en) 2004-04-15
DE10014954A1 (en) 2001-10-04
ES2213107T3 (en) 2004-08-16
CZ300559B6 (en) 2009-06-17
CZ20023022A3 (en) 2003-05-14
EP1269601B1 (en) 2004-03-10
CA2403762A1 (en) 2002-09-20
CA2403762C (en) 2007-09-18
EP1269601A1 (en) 2003-01-02
ATE261625T1 (en) 2004-03-15
WO2001071882A1 (en) 2001-09-27
TR200400772T4 (en) 2004-06-21

Similar Documents

Publication Publication Date Title
CA2403762C (en) Electric suspended conveyor with contactless energy transmission
US7084527B2 (en) Electric suspended conveyor with contactless energy transmission
US8373531B2 (en) System for a linear drive
KR940002048B1 (en) Invention relates to linear induction motor transportation system
EP0818868B1 (en) Inductive power distribution system
CN103338967B (en) Drive system, railway vehicle drive system and carried railway vehicle, the marshaling of this system
RU2612086C2 (en) System and method for electric power transmission to vehicle using operation on direct current of conductor structure segments
CN106663528B (en) Inductive power system suitable for electric vehicle
WO1999008359A1 (en) Method and apparatus for supplying contactless power
WO2022074974A1 (en) Non-contact power supply system and transportation system
US7750506B2 (en) Load and system
CN1847046A (en) Drive system for a vehicle moving along a trackway, particularly a magnetic levitation train
US10850626B2 (en) Supply of a trolley chain with electricity
WO2023199233A1 (en) Dynamic wireless power transfer system
EP1124705A1 (en) Traction power supply systems
KR20230167470A (en) Variable length taps autotransformer for eletronic train
FI20175812A1 (en) Method and apparatus for transmitting electric energy
KR20140134777A (en) Power Supply Apparatus
JP2002218681A (en) Non-contact feeding system
JPH0292749A (en) Electrifying device for preventing trolley wire from icing, frosting and snowing