ZA200104251B - Wind power installation rotor blade. - Google Patents

Wind power installation rotor blade. Download PDF

Info

Publication number
ZA200104251B
ZA200104251B ZA200104251A ZA200104251A ZA200104251B ZA 200104251 B ZA200104251 B ZA 200104251B ZA 200104251 A ZA200104251 A ZA 200104251A ZA 200104251 A ZA200104251 A ZA 200104251A ZA 200104251 B ZA200104251 B ZA 200104251B
Authority
ZA
South Africa
Prior art keywords
rotor blade
wind power
power installation
rotor
rib spacing
Prior art date
Application number
ZA200104251A
Inventor
Aloys Wobben
Original Assignee
Aloys Wobben
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloys Wobben filed Critical Aloys Wobben
Publication of ZA200104251B publication Critical patent/ZA200104251B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • B08B17/02Preventing deposition of fouling or of dust
    • B08B17/06Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • B08B17/02Preventing deposition of fouling or of dust
    • B08B17/06Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement
    • B08B17/065Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement the surface having a microscopic surface pattern to achieve the same effect as a lotus flower
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/02De-icing means for engines having icing phenomena
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/40Ice detection; De-icing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Materials Engineering (AREA)
  • Wind Motors (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Description

(Q
Aloys Wobben, Argestrasse 19, 26607 Aurich ee
Rotor blade for a wind power installation
EEE...
Rotor blades for wind power installations are known in many different forms. In a wind power installation the rotors or the rotor blades thereof represent the main source of sound. For reasons relating to acceptance and noise prevention laws, the aim should/must be that of minimising the levels of sound emission as wind power installations are often also set up in the proximity of residential accommodation. The levels of sound emission which hitherto occur with a wind power installation or a wind power converter also mean that wind power installations are faced with resistance from populated areas because of the sound they produce and for that reason such installations can be accepted sometimes with difficulty or not at all as authorities responsible for planning permission refuse permission for wind power installations because of the existing environmental requirements, noise also being an environmentally polluting factor.
Many proposals have already been put forward for structurally modifying a rotor blade of a wind power installation in such a way as to afford a reduction in noise. By way of example reference is made here to the documentation as is disclosed in EP-A-0 652 367 or DE 196 14 420.5.
However a reduction in noise by virtue of structural measures on . the rotor blade is possible only to a limited extent.
Therefore the object of the invention is further to improve the noise - emission of wind power installations.
In accordance with the invention that object is attained by a rotor blade having the features of claim 1. Advantageous developments are set forth in the further claims.
The invention is based on the realisation that, if the surface of a rotor blade is at least partially provided with a fluid- and/or ice-repellent - layer, the rotor blade also becomes rougher. Therefore, instead of providing the rotor blade with a coating comprising a coat of paint which imparts to the rotor blade on the top thereof a maximum degree of smoothness, it is precisely the opposite that is done, namely it is given a surface which is rough in respect of microstructure. Such surfaces are also known for example from lacquers or coatings which perform the functionality of the so-called “lotus effect”, so that water/ice adheres only weakly to the surface. In that respect the coating which is produced from a coat of paint comprises a kind of bed of nails of nano size. Those nano- nails of the bed not only roughen up the surface of the rotor blade but also impart a lower level of hardness to the surface because the individual nano-nails are also deformable in their longitudinal direction or are considerably softer in respect of their structure, than the glass fibre coating of a rotor blade.
Thus the “lotus” coating on the rotor blade provides that the eddies which are formed on the top side of the rotor blade are restrained or checked by the soft structure of the surface or energy is taken from the eddies of air so that overall - as has been noted - the sound which is produced upon rotation of the rotor blade is reduced.
J
3 3001475, ] The micro-silicone paint “Lotusan” (trade mark of ispo GmbH, a company of the Dyckerhoff Group) may be mentioned as a self-cleaning coating or paint with which a considerable reduction in noise of a rotor . blade can be achieved in operation. That micro-silicone paint is marketed by the company under the article designation No 1950 and is described as ’ being dirt- and water-repellent. It is also possible for the coating to be formed by a sheet or foil, the surface structure of which forms a water- repellent layer. Self-cleaning surfaces (and the production thereof) are also known from EP 0 772 514.
The invention is also described by way of example with reference to
Figures 1 and 2.
Figure 1 is a front view of a wind power installation comprising a rotor which carries three rotor blades 10. Figure 1 shows a wind power installation of type E-40 from Enercon.
Figure 2 shows a view in cross-section of a part of a rotor blade. It can be seen in this respect that disposed on the surface is a coating 1 or a covering which forms a bed of nails 2 comprising “nano-nails” 3. The spacing A between the nano-nails is in the range of between about 2 and 250 pm and the height H of the nano-nails is in the range of between about 2 and 250 um. The nano-nails comprise for example hydrophobic polymers or durably hydrophobised materials. Particularly good results for reducing the sound produced by the rotor blade are achieved if the nano- nails are of a height of between 5 and 60 um and their mutual spacing is approximately in the range of between 5 and 110 um.
The coating of the rotor blade with a micro-silicone paint (for example “Lotusan”) also has the consequence that water (H;0) or other fluids do not remain clinging to the rotor blade surface. This therefore also takes away from the outset the basis for any icing on the blade.
Preferably the coating is not applied entirely to the rotor blade but only in the last third (as viewed from the rotor) of the rotor blade and
Ce 30014251 there preferably in the region of the rotor blade tip or at the rotor blade trailing and leading edges.
Due to the formation of the nano-nails 3 the surface of the rotor ] blade is of very great irregularity or roughness so that the mass attraction of water drops 4 (molecules) and the rotor blade surface is not sufficient . for the water molecules to remain clinging thereto. The nano-nails therefore so-to-speak hold the foreign water molecules at a spacing relative to the surface 6 of the rotor blade, whereby the attraction force between the water molecules and the surface is drastically reduced.
At the same time the nano-nails 3 have so-to-speak the function of a “(sound) shock absorber” because eddies (not shown) which naturally form on the surface of the rotor blade and which are responsible for the generation of sound impinge on the nano-nails which in turn, by virtue of their relatively great mobility, compared to the rigid glass fibre structure of the rotor blade, can absorb the energy of the eddies and thus take energy away from the air eddies so that the sound is reduced.
The coating can be formed by an applied coat of paint or by a foil or sheet secured by adhesive.
The above-mentioned coating can be applied not only to a rotor blade or parts thereof, but also to other parts of the wind power installation, for example to the tower 7 of the wind power installation and/or to the casing 8. The casing 8 - which is usually also referred to as the pod - is disposed at the head end of the tower and regularly encloses the generator of the wind power installation or other parts of the wind power installation which are not to be exposed directly to the environmental influences. In that respect the coating may be provided not only externally on the tower or rotor blade and/or the casing, but also on the inside. For that purpose, it is advantageous if drip channels (not shown) are provided on the inside and/or outside, by way of which for example the water which runs off the tower and/or the casing can be caught, collected and carried away in a controlled fashion. Such channels
CL 30014251 « preferably extend substantially perpendicularly (or slightly inclined with respect to thereto) relatively to the longitudinal axis of the tower on the wall of the tower and the liquid which is caught is carried away by a down . pipe connected thereto. 5 Alternatively or supplemental to the above-described structure the - reduction in the generation of noise can also be achieved by the rotor blade having a special surface in the manner of a “shark skin”. That surface can be afforded by a sheet or foil coating. Such a foil or sheet is sold for example by 3M under the type designation 3M 8691 Drag
Reduction Tape (Riblet Tape). That foil or sheet was developed as a commission from the aviation industry, with the aim of achieving a saving in fuel for aircraft by virtue of that specific “shark skin” surface.
The structure of such a “shark skin foil” is known for example from publications by Dittrich W. Bechert (Abteilung Turbolenzforschung des
Deutschen Zentrums fir Luft- und Raumfahrt (DLR) - Turbulence
Research Division of the German Aerospace Centre). The structure of a "shark skin foil” (coating) is also described in detail inter alia in EP 0 846 617, DE-C-36 09 541 or DE-C-34 14 554. For the avoidance of repetition the content of all the above-indicated publications is also to be deemed to be content of the present application.
As the sound in the case of aircraft is essentially determined by the engines, the sound produced by the aircraft is not reduced, especially as the sound levels which are generated by virtue of the dynamic events on the aircraft (aerofoil) are below the listening threshold and therefore cannot be perceived.
A foil in accordance with the principle of the shark skin (under a corresponding surface) was developed by an engineering team headed by
Dr. Dietrich W. Bechert of the Abteilung Turbolenzforschung des
Deutschen Zentrums fir Luft- und Raumfahrt (DLR) (translation:
Turbulence Research Division of the German Aerospace Centre) at the
Techinical University of Berlin. In the case of such a “shark skin” foil the surface of the foil has fine channels 11 extending in the flow direction.
Those channels are not continuous but are disposed on panels (scales) 12 which in turn are arranged in mutually displaced relationship, as shown in
Figure 3. In the illustrated example a “scale” 12 has five channels 11 which are of different lengths and which are oriented with their . longitudinal direction perpendicular (or parallel) to the radius r of the rotor blade of a wind power installation. In this case the height H of the channels 11 (or ribs) is about between 30 and 70% of the channel spacing s and the channels (ribs) are preferably of a wedge-shaped configuration with a taper angle of between about 5 and 60°.
The standardised lateral rib spacing of the shark skin foil surface in this case in accordance with the formula s* = (s / ny)N(tauo/rho) is between 12 and 22, wherein s is the lateral rib spacing, tau, is the wall tension of a smooth reference surface which is exposed to the same flow, rho is the density of the flow medium (air) and ny is the kinematic viscosity of the flow medium (air). In this case the standardised rib spacing s* is preferably adjusted to peripheral speed (or angular speed) of a rotor blade of a wind power installation in operation at nominal rating.
Preferably in that respect it is adjusted to the peripheral speed of the rotor blade tip or the rotor blade tip region (between about 5 and 25% of the rotor blade length).
The channel spacing s in that case is between 0.001 and 0.15 mm.
It is also possible for surface structures with a differing channel spacing and/or scale spacing to be provided over the entire rotor blade surface so that adjustment of the standardised channel spacing is always to the respective peripheral speed of the rotor in nominal operation.
Preferably the lateral attachments of the ribs also have a radius of curvature of a maximum of 50%, preferably a maximum of 20%, of the lateral rib spacing s.
It is also advantageous if the surface of the shark skin foil, between the ribs, has a radius of curvature of at least 200% of the lateral rib spacing. That is shown on an enlarged view in cross-section in Figure 4.
Initial tests have shown that the sound emission of a rotor with rotor blades which have the above-described shark skin foil (and thus also . the corresponding surface as described) could be reduced by between about 0.2 and 3 dB (depending on peripheral speed and wind conditions).
A measure as an alternative to or supplemental to the above- described sound-reduction measures can also involve providing portions of a rotor blade, in particular the rotor blade leading edge, with an anti- erosion lacquer or paint. For example a solvent-bearing 2-component PUR lacquer with teflon-like surface properties can be provided as such an anti- erosion lacquer. Hitherto, anti-erosion foils or sheets have been glued onto rotor blade leading edges in order to prevent erosion of the rotor blade leading edge due to dirt particles/rain/hail etc. Gluing on that foil is very complicated and troublesome and has to be carried out with an extremely great amount of care in order to prevent it from rapidly becoming detached in operation. In spite of the greatest amount of care being applied, it nonetheless repeatedly happens that the applied foils come loose, which under some circumstances can also result in an increase in the sound level in operation, but at any event causes high servicing costs as the detached or protruding foil pieces (foil corners) have to be re-secured to the rotor blade again or fresh foils have to be fitted.
A sliding or slippery sealant as is offered by Coelan under the designation VP 1970M, is suitable as an anti-erosion lacquer with which it is possible to eliminate the problems of the known anti-erosion foil. That involves a solvent-bearing 2-component PUR lacquer having teflon-like surface properties and the following characteristics:
Solids content: Component A : about 60%
Component B : about 5%
Mixture : about 32%
v 3001425
Flash point: -22°C
Density: Component A : 1.11 g/cm? (20°C)
Component B : 0.83 g/cm? (20°C) } Viscosity: Component A : about 80 s DIN 4 (23°C)
Component B : < 10s DIN 4 (23°C) : Processing time: about 16 hin a closed container
Skinning: about 30 min (20°C; 50% relative air humidity)
Non-tacky after: about 2 h (20°C; 50% relative air humidity)
Completely dry: about 96 h (20°C; 50% relative air humidity)
Pendulum hardness:147 seconds (in accordance with Kénig; DIN 53157)
Quick weathering: withstood 2350 h UV-A with the Q-panel apparatus (QUV-test) withstood 2430 h UV-B with the Q-panel apparatus
Mixture ratio: Component A : 100 parts by weight
Component B : 100 parts by weight
That lacquer was developed for boat building, but the use thereof in relation to rotor blades for reducing the generation of noise has hitherto : never yet been proposed and is highly advantageous because it makes it possible to replace the known anti-erosion foil and eliminate the problems thereof.

Claims (18)

Cw 3001455, CLAIMS
1. A wind power installation rotor blade having means for reducing the sound generated by a rotor blade, wherein the means are ’ formed by a fluid-repellent layer and/or surface which is provided at least on a surface portion of the rotor blade.
2. A rotor blade according to claim 1 characterised in that the fluid-repellent layer is applied at least where essentially the sound is generated upon rotation of the rotor blade.
3. A wind power installation rotor blade comprising at least a partial coating which imparts to the rotor blade in its microstructure a very great degree of unevenness so that water drops find no hold on the rotor blade surface, so that water drops and/or icing (ice crystals) find no hold on the rotor blade surface and rotor blade sound generation in operation of the wind power installation is lessened.
4, A rotor blade for a wind power installation, wherein the surface of the rotor blade is at least partially provided with a coating so that the surface of the rotor blade is softer in the coated region than in the uncoated region.
5. A rotor blade according to one of the preceding claims characterised in that the layer has a surface structure comprising raised portions and recesses, that the spacing between the raised portions is in the range of between 2 and 250 um and the height of the raised portions is in the range of between 2 and 250 pum and preferably the raised portions comprise hydrophobic polymers or durably hydrophobised materials which cannot be detached by natural rain.
ow 3001455,
6. A rotor blade, in particular according to one of the preceding claims characterised in that the water-repellent layer has a surface which is formed similarly to a “shark skin”.
7. A rotor blade according to claim 8 characterised in that the : rotor blade has a surface for a wall over which there is a turbulent flow of a flow having a main flow direction, with ribs which are oriented in the main flow direction and which are spaced laterally in relation to the main flow direction and the height of which is between about 30 and 70% of the lateral rib spacing.
8. A rotor blade according to claim 9 characterised in that the ribs are of a wedge-shaped configuration, preferably with a taper angle of between about 10 and 60°,
9. A rotor blade according to one of the preceding claims characterised in that the standardised lateral rib spacing s* = (s / ny)*v(taug/rho) is between 12 and 22, wherein s is the lateral rib spacing, taup is the wall thrust stress of a smooth reference surface which is exposed to the same flow, rho is the density of the fluid and ny is the kinematic viscosity of the fluid.
10. A rotor blade according to one of the preceding claims characterised in that the standardised rib spacing s* is adapted to the peripheral speed of the rotor blade and is preferably adapted to the peripheral speed of the rotor blade tip region (in nominal operation).
11. A rotor blade according to one of the preceding claims characterised in that the lateral rib spacing s is between 0.001 and 0.15 mm.
a.
12. A rotor blade according to one of the preceding claims characterised in that the lateral attachments of the ribs have a radius of . curvature of a maximum of between 5 and 35% of the lateral rib spacing
S.
13. A rotor blade according to one of the preceding claims characterised in that the surface between the ribs has a radius of curvature of at least 100%, preferably between 200 and 400% of the lateral rib spacing. .
14. A rotor blade, in particular according to one of the preceding claims, characterised in that applied to portions of the rotor blade, preferably to the rotor blade leading edge, is an anti-erosion lacquer which has teflon-like surface properties.
15. A rotor blade according to claim 16 characterised in that the anti-erosion lacquer is a solvent-bearing 2-component PUR lacquer.
16. A wind power installation comprising a rotor blade according to one of the preceding claims.
17. A wind power installation comprising a rotor having at least one rotor blade, a tower and a casing (pod) which encloses at least one generator of the wind power installation, wherein at least one of the above-mentioned elements such as the rotor biade, the tower (inside or outside) and/or the casing (pod) is provided with a water-repellient layer according to one of the preceding claims, which is applied at least to a surface portion of the rotor blade, of the tower and/or of the casing.
vw 12 )
18. A wind power installation rotor blade substantially as hereinbefore ) described with reference to and as illustrated in the accompanying schematic drawings.
: Date: 24 May 2001 Dr BO P GERNTHOLTZ
DrGERNTHOLTZ
Patent Attorneys of Applicants
PO Box8
CAPE TOWN 8000
Union Road
MILNERTON/CAPE 7441
SOUTH AFRICA
Tel: (021) 551 2650
Telefax: (021) 551 2960
DrG Ref: 10326
ZA200104251A 1998-12-09 2002-05-24 Wind power installation rotor blade. ZA200104251B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE29822003U DE29822003U1 (en) 1998-12-09 1998-12-09 Concrete vibrator for rotor blades on wind power plants

Publications (1)

Publication Number Publication Date
ZA200104251B true ZA200104251B (en) 2002-09-06

Family

ID=8066434

Family Applications (1)

Application Number Title Priority Date Filing Date
ZA200104251A ZA200104251B (en) 1998-12-09 2002-05-24 Wind power installation rotor blade.

Country Status (2)

Country Link
DE (2) DE29822003U1 (en)
ZA (1) ZA200104251B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10118906B4 (en) * 2001-05-25 2009-04-09 Müller, Holger Apparatus and method for coating rotor blades of wind turbines
US6972498B2 (en) * 2002-05-28 2005-12-06 General Electric Company Variable diameter wind turbine rotor blades
WO2011096851A1 (en) * 2010-01-14 2011-08-11 Saab Ab Multifunctional de-icing/anti-icing system of a wind turbine
WO2011161442A2 (en) * 2010-06-22 2011-12-29 Vestas Wind Systems A/S A wind turbine blade de-icing system based on shell distortion
GB2481416A (en) * 2010-06-22 2011-12-28 Vestas Wind Sys As Wind turbine blade de-icing system based on shell distortion
DK2422929T4 (en) 2010-08-27 2017-06-06 Jöst Gmbh Grinding machine for machine grinding of rotor blades for wind turbines
EP2460624A1 (en) 2010-12-06 2012-06-06 Jöst GmbH Grinding device for mechanical grinding of rotor blades for wind power systems
EP2784307A1 (en) * 2013-03-28 2014-10-01 Siemens Aktiengesellschaft Film with liquid-filled chambers, component having such a film and method for producing the same

Also Published As

Publication number Publication date
DE19929386A1 (en) 2000-06-21
DE29822003U1 (en) 1999-04-01

Similar Documents

Publication Publication Date Title
AU764407B2 (en) Reduction in the noise produced by a rotor blade of a wind turbine
CA2654772C (en) A wind turbine blade and a pitch controlled wind turbine
EP2783107B1 (en) A wind turbine blade
EP2674613A2 (en) Method for optimizing the efficiency of wind turbine blades
CN102619676A (en) Wind turbine blades with a hardened substrate construction
ZA200104251B (en) Wind power installation rotor blade.
US20200277931A1 (en) Splitter plate arrangement for a serrated wind turbine blade
Kentfield Theoretically and experimentally obtained performances of gurney-flap equipped wind turbines
US20150322916A1 (en) Soiling shield for wind turbine blade
US20110052400A1 (en) Horizontal axis wind turbine (HAWT)
CN102635494A (en) Rotor blade for wind turbine
CA2569987C (en) Rotor blade for a wind power installation
KR20010093793A (en) Reduction in the noise produced by a rotor blade of a wind turbine
Kentfield The influence of free-stream turbulence intensity on the performance of Gurney-flap equipped wind-turbine blades
DE19951346A1 (en) Noise reducer for wind generator turbine has flow deflector layer formed on surface of rotor