WO2025081291A1 - Benzo [c] [1, 2] oxaborol-1 (3h) -ol derivatives as shp2 inhibitors, compositions and methods thereof - Google Patents

Benzo [c] [1, 2] oxaborol-1 (3h) -ol derivatives as shp2 inhibitors, compositions and methods thereof Download PDF

Info

Publication number
WO2025081291A1
WO2025081291A1 PCT/CN2023/124646 CN2023124646W WO2025081291A1 WO 2025081291 A1 WO2025081291 A1 WO 2025081291A1 CN 2023124646 W CN2023124646 W CN 2023124646W WO 2025081291 A1 WO2025081291 A1 WO 2025081291A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
mmol
mixture
alkyl
afford
Prior art date
Application number
PCT/CN2023/124646
Other languages
French (fr)
Inventor
Ninghui YU
Rongliang Lou
Original Assignee
Canwell Biotech Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canwell Biotech Limited filed Critical Canwell Biotech Limited
Priority to PCT/CN2023/124646 priority Critical patent/WO2025081291A1/en
Priority to PCT/CN2024/123588 priority patent/WO2025082225A1/en
Publication of WO2025081291A1 publication Critical patent/WO2025081291A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/537Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines spiro-condensed or forming part of bridged ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds

Definitions

  • This invention relates to certain novel SHP2 inhibitors, which are useful for treating SHP2 mediated diseases. More specifically, this disclosure is directed to phosphine oxide compounds which inhibit SHP2 and compositions comprising these compounds, methods of treating diseases associated with SHP2, and methods of synthesizing these compounds.
  • Src homology region 2 (SH2) -containing protein tyrosine phosphatase 2 (SHP2) encoded by the PTPN11 gene, is a cytoplasmic non-receptor phosphotyrosine phosphatase (Blood 2011; 118: 1504-1515. Nature 2013; 499: 491-495) .
  • SHP2 positively modulates RAS signaling and plays roles in cell proliferation, migration, differentiation and other important physiological processes (Mol Cell 2004; 13: 341-355) .
  • SHP2 contains a protein tyrosine phosphatase catalytic domain (PTP) , C-terminal tail with tyrosyl phosphorylation sites, and two SH2 domains, N-SH2 and C-SH2 domain.
  • the N-SH2 domain plays a key role in de-phosphorylating SHP2 itself with two non-overlapping ligand binding sites, while the C-SH2 domain provides binding energy and specificity (J. Cell. Mol. Med 2015; 19: 2075-2083) . Both N-and C-SH2 domains control the SHP2 subcellular localization and function.
  • the PTP domain has a P ring catalytic structure to de-phosphorylate substrates (J. Biol. Chem 2013; 15: 10472-10482) .
  • the SHP2 has two types of mutations, loss-of-function (LOF) mutations and gain-of-function (GOF) mutations.
  • LEF loss-of-function
  • GAF gain-of-function
  • the GOF mutants of SHP2 include D61G (Med. Sci. Monit 2017; 23: 2931-2938) , D61Y (Exp. Hematol 2008; 36: 1285-1296) , E76K (Mol. Carcinog 2018; 57: 619-628) , E76Q (J Chem Inf Model 2019; 59: 3229-3239) and T507K (J. Biol. Chem 2020; 18: 6187-6201) , which were observed in juvenile myelomonocytic leukemia, colorectal cancer, glioblastoma multiforme and other diseases.
  • SHP2 E76K a GOF mutation, activates Erk and Src to promote progression of lung cancer.
  • SHP2 E76K can also promote the malignance of glioblastoma multiform cells through Erk/cAMP/CREB signaling pathway (OncoTargets Ther 2019; 12: 9435-9447. Carcinogenesis 2014; 8: 1717-1725) .
  • SHP2 represents a potential biomarker and therapeutic target in several types of human cancer.
  • the present invention provides novel phosphine oxide compounds that are SHP2 inhibitors and have improved potency, selectivity, pharmacokinetics and safety profiles as well as good pharmacokinetics characteristics.
  • the invention further provides pharmaceutical compositions and methods of preparation and use of these compounds in treating a variety of diseases and conditions, such as SHP2-mediated diseases.
  • the invention generally relates to a compound having the structural formula of (I) :
  • each of R 1 and R 2 is independently NH 2 or a C 1-6 alkyl, or R 1 and R 2 , together with the carbon atom they are bound to, form a substituted or unsubstituted 5-membered carbocyclic or heterocyclic ring;
  • R 3 is H, CH 3 or NH 2 ;
  • R 4 is H, CH 2 OH, C (O) OCH 3 , C (O) NH 2 , or C (O) NHCH 3 ;
  • each R and R’ is independently H, C 1-6 alkyl or C 3-6 cycloalkyl, or R and R’, together with the N atom they are bound to, form a 4-to 6-membered heterocyclic ring;
  • the invention generally relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a compound disclosed herein and a pharmaceutically acceptable excipient, carrier, or diluent.
  • the invention generally relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a compound of the invention effective to treat or reduce cancer, or a related disease or condition.
  • the invention generally relates to a unit dosage form comprising a pharmaceutical composition disclosed herein.
  • the invention generally relates to a method for treating or reducing a disease or condition, comprising administering to a subject in need thereof a therapeutically effective amount of a pharmaceutical composition comprising a compound disclosed herein and a pharmaceutically acceptable excipient, carrier, or diluent.
  • the invention generally relates to use of a compound disclosed herein for treating or reducing a disease or condition.
  • the invention generally relates to use of a compound disclosed herein and a pharmaceutically acceptable excipient, carrier, or diluent, in preparation of a medicament for treating or reducing a disease or condition.
  • Certain compounds of the present invention may exist in particular geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including cis-and trans-isomers, R-and S-enantiomers, diastereomers, (D) -isomers, (L) -isomers, the racemic mixtures thereof, and other mixtures thereof, as falling within the scope of the invention.
  • Additional asymmetric carbon atoms may be present in a substituent such as an alkyl group. All such isomers, as well as mixtures thereof, are intended to be included in this invention.
  • Isomeric mixtures containing any of a variety of isomer ratios may be utilized in accordance with the present invention. For example, where only two isomers are combined, mixtures containing 50: 50, 60: 40, 70: 30, 80: 20, 90: 10, 95: 5, 96: 4, 97: 3, 98: 2, 99: 1, or 100: 0 isomer ratios are contemplated by the present invention. Those of ordinary skill in the art will readily appreciate that analogous ratios are contemplated for more complex isomer mixtures.
  • a particular enantiomer of a compound of the present invention may be prepared by asymmetric synthesis, or by derivation with a chiral auxiliary, where the resulting diastereomeric mixture is separated and the auxiliary group cleaved to provide the pure desired enantiomers.
  • the molecule contains a basic functional group, such as amino, or an acidic functional group, such as carboxyl, diastereomeric salts are formed with an appropriate optically-active acid or base, followed by resolution of the diastereomers thus formed by fractional crystallization or chromatographic methods well known in the art, and subsequent recovery of the pure enantiomers.
  • Solvates and polymorphs of the compounds of the invention are also contemplated herein.
  • Solvates of the compounds of the present invention include, for example, hydrates.
  • C 1-6 alkyl is intended to encompass, C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 1-6 , C 1-5 , C 1-4 , C 1-3 , C 1-2 , C 2-6 , C 2-5 , C 2-4 , C 2-3 , C 3-6 , C 3-5 , C 3-4 , C 4-6 , C 4-5 , and C 5-6 alkyl.
  • alkyl refers to a straight, branched or cyclic hydrocarbon radical consisting solely of carbon and hydrogen atoms, containing no unsaturation, having from one to ten carbon atoms (e.g., C 1-10 alkyl) .
  • a numerical range such as “1 to 10” refers to each integer in the given range; e.g., "1 to 10 carbon atoms” means that the alkyl group can consist of 1 carbon atom, 2 carbon atoms, 3 carbon atoms, etc., up to and including 10 carbon atoms, although the present definition also covers the occurrence of the term "alkyl” where no numerical range is designated.
  • “alkyl” can be a C 1-6 alkyl group.
  • alkyl groups have 1 to 10, 1 to 8, 1 to 6, or 1 to 3 carbon atoms.
  • saturated straight chain alkyls include, but are not limited to, -methyl, -ethyl, -n-propyl, -n-butyl, -n-pentyl, and -n-hexyl; while saturated branched alkyls include, but are not limited to, -isopropyl, -sec-butyl, -isobutyl, -tert-butyl, -isopentyl, 2-methylbutyl, 3-methylbutyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 2-methylhexyl, 3-methylhexyl, 4-methylhexyl, 5-methylhexyl, 2, 3-dimethylbutyl, and the like.
  • the alkyl is attached to the parent molecule by a single bond.
  • an alkyl group is optionally substituted by one or more of substituents.
  • inhibitor refers to any measurable reduction of biological activity.
  • inhibit or “inhibition” may be referred to as a percentage of a normal level of activity.
  • the term “effective amount” or “therapeutically effective amount” of an active agent refers to an amount sufficient to elicit the desired biological response.
  • the effective amount when administered in a proper dosing regimen, is sufficient to reduce or ameliorate the severity, duration or progression of the disorder being treated, prevent the advancement of the disorder being treated, cause the regression of the disorder being treated, or enhance or improve the prophylactic or therapeutic effect (s) of another therapy.
  • the effective amount of a compound of the invention may vary depending on such factors as the desired biological endpoint, the pharmacokinetics of the compound, the disease being treated, the mode of administration, and the patient.
  • An effective amount can be readily determined by a skilled physician, e.g., by first administering a low dose of the pharmacological agent (s) and then incrementally increasing the dose until the desired therapeutic effect is achieved with minimal or no undesirable side effects.
  • treatment refers to a method of reducing, delaying or ameliorating such a condition before or after it has occurred. Treatment may be directed at one or more effects or symptoms of a disease and/or the underlying pathology.
  • the treatment can be any reduction and can be, but is not limited to, the complete ablation of the disease or the symptoms of the disease. As compared with an equivalent untreated control, such reduction or degree of prevention is at least 5%, 10%, 20%, 40%, 50%, 60%, 80%, 90%, 95%, or 100%as measured by any standard technique.
  • the terms “prevent” , “preventing” , or “prevention” refer to a method for precluding, delaying, averting, or stopping the onset, incidence, severity, or recurrence of a disease or condition.
  • a method is considered to be a prevention if there is a reduction or delay in onset, incidence, severity, or recurrence of a disease or condition or one or more symptoms thereof in a subject susceptible to the disease or condition as compared to a subject not receiving the method.
  • the disclosed method is also considered to be a prevention if there is a reduction or delay in onset, incidence, severity, or recurrence of osteoporosis or one or more symptoms of a disease or condition in a subject susceptible to the disease or condition after receiving the method as compared to the subject's progression prior to receiving treatment.
  • the reduction or delay in onset, incidence, severity, or recurrence of osteoporosis can be about a 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100%, or any amount of reduction in between.
  • a "pharmaceutically acceptable form” of a disclosed compound includes, but is not limited to, pharmaceutically acceptable salts, esters, hydrates, solvates, polymorphs, isomers, prodrugs, and isotopically labeled derivatives thereof.
  • a "pharmaceutically acceptable form” includes, but is not limited to, pharmaceutically acceptable salts, esters, prodrugs and isotopically labeled derivatives thereof.
  • a "pharmaceutically acceptable form” includes, but is not limited to, pharmaceutically acceptable isomers and stereoisomers, prodrugs and isotopically labeled derivatives thereof.
  • the pharmaceutically acceptable form is a pharmaceutically acceptable salt.
  • pharmaceutically acceptable salt refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of subjects without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio.
  • Pharmaceutically acceptable salts are well known in the art. For example, Berge et al. describes pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences (1977) 66: 1-19.
  • Pharmaceutically acceptable salts of the compounds provided herein include those derived from suitable inorganic and organic acids and bases.
  • Examples of pharmaceutically acceptable, nontoxic acid addition salts are salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchioric acid or with organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchioric acid
  • organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange.
  • salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, besylate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate,
  • organic acids from which salts can be derived include, for example, acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, lactic acid, trifluoracetic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like.
  • the salts can be prepared in situ during the isolation and purification of the disclosed compounds, or separately, such as by reacting the free base or free acid of a parent compound with a suitable base or acid, respectively.
  • Pharmaceutically acceptable salts derived from appropriate bases include alkali metal, alkaline earth metal, ammonium and N + (C 1-4 alkyl) 4 salts.
  • Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, iron, zinc, copper, manganese, aluminum, and the like.
  • compositions include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, lower alkyl sulfonate and aryl sulfonate.
  • Organic bases from which salts can be derived include, for example, primary, secondary, and tertiary amines, substituted amines, including naturally occurring substituted amines, cyclic amines, basic ion exchange resins, and the like, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, and ethanolamine.
  • the pharmaceutically acceptable base addition salt can be chosen from ammonium, potassium, sodium, calcium, and magnesium salts.
  • the pharmaceutically acceptable form is a "solvate” (e.g., a hydrate) .
  • solvate refers to compounds that further include a stoichiometric or non-stoichiometric amount of solvent bound by non-covalent intermolecular forces.
  • the solvate can be of a disclosed compound or a pharmaceutically acceptable salt thereof. Where the solvent is water, the solvate is a "hydrate” .
  • Pharmaceutically acceptable solvates and hydrates are complexes that, for example, can include 1 to about 100, or 1 to about 10, or 1 to about 2, about 3 or about 4, solvent or water molecules. It will be understood that the term “compound” as used herein encompasses the compound and solvates of the compound, as well as mixtures thereof.
  • the pharmaceutically acceptable form is a prodrug.
  • prodrug refers to compounds that are transformed in vivo to yield a disclosed compound or a pharmaceutically acceptable form of the compound.
  • a prodrug can be inactive when administered to a subject, but is converted in vivo to an active compound, for example, by hydrolysis (e.g., hydrolysis in blood) .
  • hydrolysis e.g., hydrolysis in blood
  • a prodrug has improved physical and/or delivery properties over the parent compound.
  • Prodrugs can increase the bioavailability of the compound when administered to a subject (e.g., by permitting enhanced absorption into the blood following oral administration) or which enhance delivery to a biological compartment of interest (e.g., the brain or lymphatic system) relative to the parent compound.
  • exemplary prodrugs include derivatives of a disclosed compound with enhanced aqueous solubility or active transport through the gut membrane, relative to the parent compound.
  • the prodrug compound often offers advantages of solubility, tissue compatibility or delayed release in a mammalian organism (see, e.g., Bundgard, H., Design of Prodrugs (1985) , pp. 7-9, 21-24 (Elsevier, Amsterdam) .
  • a discussion of prodrugs is provided in Higuchi, T., et al., "Pro-drugs as Novel Delivery Systems, " A.C.S. Symposium Series, Vol. 14, and in Bioreversible Carriers in Drug Design, ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987, both of which are incorporated in full by reference herein.
  • Exemplary advantages of a prodrug can include, but are not limited to, its physical properties, such as enhanced water solubility for parenteral administration at physiological pH compared to the parent compound, or it can enhance absorption from the digestive tract, or it can enhance drug stability for long-term storage.
  • Prodrugs commonly known in the art include well-known acid derivatives, such as, for example, esters prepared by reaction of the parent acids with a suitable alcohol, amides prepared by reaction of the parent acid compound with an amine, basic groups reacted to form an acylated base derivative, etc.
  • acid derivatives such as, for example, esters prepared by reaction of the parent acids with a suitable alcohol, amides prepared by reaction of the parent acid compound with an amine, basic groups reacted to form an acylated base derivative, etc.
  • other prodrug derivatives may be combined with other features disclosed herein to enhance bioavailability.
  • those of skill in the art will appreciate that certain of the presently disclosed compounds having free amino, arnido, hydroxy or carboxylic groups can be converted into prodrugs.
  • Prodrugs include compounds having an amino acid residue, or a polypeptide chain of two or more (e.g., two, three or four) amino acid residues which are covalently joined through peptide bonds to free amino, hydroxy or carboxylic acid groups of the presently disclosed compounds.
  • the amino acid residues include the 20 naturally occurring amino acids commonly designated by three letter symbols and also include 4-hydroxyproline, hydroxylysine, demosine, isodemosine, 3-methylhistidine, norvalin, beta-alanine, gamma-aminobutyric acid, citrulline homocysteine, homoserine, ornithine and methionine sulfone.
  • Prodrugs also include compounds having a carbonate, carbamate, amide or alkyl ester moiety covalently bonded to any of the above substituents disclosed herein.
  • the term “pharmaceutically acceptable” excipient, carrier, or diluent refers to a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting the subject pharmaceutical agent from one organ, or portion of the body, to another organ, or portion of the body.
  • a pharmaceutically acceptable material, composition or vehicle such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting the subject pharmaceutical agent from one organ, or portion of the body, to another organ, or portion of the body.
  • Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the patient.
  • materials which can serve as pharmaceutically-acceptable carriers include: sugars, such as lactose, glucose and sucrose; starches, such as corn starch and potato starch; cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients, such as cocoa butter and suppository waxes; oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols, such as propylene glycol; polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; esters, such as ethyl oleate and ethyl laurate; agar; buffering agents, such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ring
  • wetting agents such as sodium lauryl sulfate, magnesium stearate, and polyethylene oxide-polypropylene oxide copolymer as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the compositions.
  • the term “subject” refers to any animal (e.g., a mammal) , including, but not limited to humans, non-human primates, rodents, and the like, which is to be the recipient of a particular treatment.
  • the terms “subject” and “patient” are used interchangeably herein in reference to a human subject.
  • the term “low dosage” refers to at least 5%less (e.g., at least 10%, 20%, 50%, 80%, 90%, or even 95%) than the lowest standard recommended dosage of a particular compound formulated for a given route of administration for treatment of any human disease or condition.
  • a low dosage of an agent that is formulated for administration by inhalation will differ from a low dosage of the same agent formulated for oral administration.
  • high dosage is meant at least 5% (e.g., at least 10%, 20%, 50%, 100%, 200%, or even 300%) more than the highest standard recommended dosage of a particular compound for treatment of any human disease or condition.
  • Isotopically-labeled compounds are also within the scope of the present disclosure.
  • an “isotopically-labeled compound” or “isotope derivative” refers to a presently disclosed compound including pharmaceutical salts and prodrugs thereof, each as described herein, in which one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature.
  • isotopes that can be incorporated into compounds presently disclosed include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine and chlorine, such as 2 H, 3 H, 13 C, 14 C, 15 N, 18 O, 17 O, 31 P, 32 P, 35 S, 18 F, and 36 Cl, respectively.
  • the compounds may be useful in drug and/or substrate tissue distribution assays. Tritiated ( 3 H) and carbon-14 ( 14 C) labeled compounds are particularly preferred for their ease of preparation and detectability. Further, substitution with heavier isotopes such as deuterium ( 2 H) can afford certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life or reduced dosage requirements and, hence, may be preferred in some circumstances. Isotopically labeled compounds presently disclosed, including pharmaceutical salts, esters, and prodrugs thereof, can be prepared by any means known in the art. Benefits may also be obtained from replacement of normally abundant 12 C with 13 C. (See, WO 2007/005643, WO 2007/005644, WO 2007/016361, and WO 2007/016431. )
  • deuterium ( 2 H) can be incorporated into a compound disclosed herein for the purpose in order to manipulate the oxidative metabolism of the compound by way of the primary kinetic isotope effect.
  • the primary kinetic isotope effect is a change of the rate for a chemical reaction that results from exchange of isotopic nuclei, which in turn is caused by the change in ground state energies necessary for covalent bond formation after this isotopic exchange.
  • Exchange of a heavier isotope usually results in a lowering of the ground state energy for a chemical bond and thus causes a reduction in the rate in rate-limiting bond breakage. If the bond breakage occurs in or in the vicinity of a saddle-point region along the coordinate of a multi-product reaction, the product distribution ratios can be altered substantially.
  • a compound which has multiple potential sites of attack for oxidative metabolism for example benzylic hydrogen atoms and hydrogen atoms bonded to a nitrogen atom, is prepared as a series of analogues in which various combinations of hydrogen atoms are replaced by deuterium atoms, so that some, most or all of these hydrogen atoms have been replaced by deuterium atoms.
  • Half-life determinations enable favorable and accurate determination of the extent of the extent to which the improvement in resistance to oxidative metabolism has improved. In this way, it is determined that the half-life of the parent compound can be extended by up to 100%as the result of deuterium-hydrogen exchange of this type.
  • Deuterium-hydrogen exchange in a compound disclosed herein can also be used to achieve a favorable modification of the metabolite spectrum of the starting compound in order to diminish or eliminate undesired toxic metabolites. For example, if a toxic metabolite arises through oxidative carbon-hydrogen (C-H) bond cleavage, it can reasonably be assumed that the deuterated analogue will greatly diminish or eliminate production of the unwanted metabolite, even if the particular oxidation is not a rate-determining step. Further information on the state of the art with respect to deuterium-hydrogen exchange may be found, for example in Hanzlik et al., J. Org. Chem. 55, 3992-3997, 1990, Reider et al., J. Org.
  • Compounds of the present invention are, subsequent to their preparation, preferably isolated and purified to obtain a composition containing an amount by weight equal to or greater than 95% ( “substantially pure” ) , which is then used or formulated as described herein. In certain embodiments, the compounds of the present invention are more than 99%pure.
  • stable refers to compounds which possess stability sufficient to allow manufacture and which maintains the integrity of the compound for a sufficient period of time to be useful for the purposes detailed herein (e.g., therapeutic or prophylactic administration to a subject) .
  • the invention is based in part on the unexpected discovery of novel phosphine oxide compounds that exhibit superior potency and selectivity, as well as good pharmacokinetics and safety profiles as SHP2 inhibitors and possess good pharmacokinetics characteristics. Also disclosed herein are pharmaceutical compositions and methods of preparation and use of these compounds in treating a variety of diseases and conditions, such as SHP2-mediated diseases.
  • the invention generally relates to a compound having the structural formula of (I) :
  • each of R 1 and R 2 is independently NH 2 or a C 1-6 alkyl, or R 1 and R 2 , together with the carbon atom they are bound to, form a substituted or unsubstituted 5-membered carbocyclic or heterocyclic ring;
  • R 3 is H, CH 3 or NH 2 ;
  • R 4 is H, CH 2 OH, C (O) OCH 3 , C (O) NH 2 , or C (O) NHCH 3 ;
  • each R and R’ is independently H, C 1-6 alkyl or C 3-6 cycloalkyl, or R and R’, together with the N atom they are bound to, form a 4-to 6-membered heterocyclic ring;
  • R 6 along with R 7 , together with the carbon atoms they are bound to, for a 5-membered heterocyclic ring comprising an -O-B (R B ) -group in the ring.
  • a compound of the invention has the structural formula:
  • each of R 9 and R 10 is independently selected from H, C 1-6 alkyl or C 4-6 cycloalkyl.
  • a compound of the invention has the structural formula:
  • each of R 9 and R 10 is independently selected from H, C 1-6 alkyl or C 4-6 cycloalkyl.
  • R 8 along with R 7 , together with the carbon atoms they are bound to, for a 5-membered heterocyclic ring comprising an -O-B (R B ) -group in the ring.
  • a compound of the invention has the structural formula:
  • each of R 9 and R 10 is independently selected from H, C 1-6 alkyl or C 4-6 cycloalkyl.
  • a compound of the invention has the structural formula:
  • each of R 9 and R 10 is independently selected from H, C 1-6 alkyl or C 4-6 cycloalkyl.
  • each of R 9 and R 10 is H.
  • R B is OH.
  • R B is OCH 3 .
  • R 1 is a C 1-3 alkyl and R 2 is NH 2 or a C 1-3 alkyl substituted with NH 2 .
  • R 1 and R 2 form a 5-membered carbocyclic or heterocyclic ring, optionally substituted, having the formula (III A ) :
  • Z is O or CH 2 ,
  • R 11 is independently CH 3 or NH 2 .
  • i 0, 1 or 2.
  • Z is O.
  • Z is CH 2 .
  • R 1 and R 2 form a 5-6 bicyclic fused carbocyclic ring, optionally substituted, having the formula (III B ) :
  • R 11 is independently CH 3 or NH 2 .
  • i 0, 1 or 2.
  • R 3 is NH 2 .
  • R 3 is H.
  • R 3 is CH 3 .
  • R 4 is H.
  • R 4 is C 1-3 alkyl.
  • R 4 is CH 2 OH.
  • R 6 is Cl.
  • R 6 is F.
  • R 6 is H.
  • R 6 is CH 3 .
  • R 6 is CF 3 .
  • R 6 is OCH 3 .
  • R 5 or R 8 is H.
  • R 5 or R 8 is Cl.
  • R 5 or R 8 is F.
  • R 5 or R 8 is CH 3 .
  • R 5 or R 8 is OCH 3 .
  • R 5 or R 8 is CF 3 .
  • R 5 or R 8 is NH 2 .
  • Non-limiting examples of compounds of the invention include a compound selected from Table 1.
  • the invention generally relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a compound disclosed herein and a pharmaceutically acceptable excipient, carrier, or diluent.
  • the invention generally relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a compound of the invention effective to treat or reduce cancer, or a related disease or condition.
  • the invention generally relates to a unit dosage form comprising a pharmaceutical composition disclosed herein.
  • the invention generally relates to a method for treating or reducing a disease or condition, comprising administering to a subject in need thereof a therapeutically effective amount of a pharmaceutical composition comprising a compound disclosed herein and a pharmaceutically acceptable excipient, carrier, or diluent.
  • the invention generally relates to use of a compound disclosed herein for treating or reducing a disease or condition.
  • the invention generally relates to use of a compound disclosed herein and a pharmaceutically acceptable excipient, carrier, or diluent, in preparation of a medicament for treating or reducing a disease or condition.
  • the disease or condition is cancer, or a related disease or condition thereof.
  • the terms “cancer” and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by abnormal or unregulated cell growth.
  • the cancer may be selected from melanoma, juvenile myelomoncytic leukemias, neuroblastoma, Philadelphia chromosome positive chronic myeloid, Philadelphia chromosome positive acute lymphoblastic leukemias, acute myeloid leukemias, myeloproliferative neoplasms (such as Polycythemia Vera, Essential Thrombocythemia and Primary Myelofibrosis) , breast cancer, lung cancer, liver cancer, colorectal cancer, esophageal cancer, gastric cancer, squamous-cell carcinoma of the head and neck, glioblastoma, anaplastic large-cell lymphoma, thyroid carcinoma, and spitzoid neoplasms.
  • the cancer is melanoma. In certain embodiments, the cancer is juvenile myelomoncytic leukemias. In certain embodiments, the cancer is neuroblastoma. In certain embodiments, the cancer is Philadelphia chromosome positive chronic myeloid. In certain embodiments, the cancer is Philadelphia chromosome positive acute lymphoblastic leukemias. In certain embodiments, the cancer is acute myeloid leukemias. In certain embodiments, the cancer is myeloproliferative neoplasms, such as Polycythemia Vera, Essential Thrombocythemia and Primary Myelofibrosis.
  • the cancer is selected from the group consisting of Polycythemia Vera, Essential Thrombocythemia and Primary Myelofibrosis.
  • the cancer is Polycythemia Vera.
  • the cancer is Essential Thrombocythemia.
  • the cancer is Primary Myelofibrosis.
  • the cancer is breast cancer.
  • the cancer is lung cancer.
  • the cancer is liver cancer.
  • the cancer is colorectal cancer.
  • the cancer is esophageal cancer.
  • the cancer is gastric cancer.
  • the cancer is squamous-cell carcinoma of the head and neck.
  • the cancer is glioblastoma. In certain embodiments, the cancer is anaplastic large-cell lymphoma. In certain embodiments, the cancer is thyroid carcinoma. In certain embodiments, the cancer is spitzoid neoplasms.
  • the cancer is selected from the group consisting of non-small cell lung cancer (NSCLC) , a colon cancer, an esophageal cancer, a rectal cancer, Juvenile myelomonocytic leukemia (JMML) , breast cancer, melanoma, and a pancreatic cancer.
  • NSCLC non-small cell lung cancer
  • JMML Juvenile myelomonocytic leukemia
  • breast cancer melanoma
  • pancreatic cancer a pancreatic cancer.
  • compositions of the present invention are administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir.
  • parenteral as used herein includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal, intrathecal, intrahepatic, intralesional and intracranial injection or infusion techniques.
  • the compositions are administered orally, intraperitoneally or intravenously.
  • Sterile injectable forms of the compositions of this invention include aqueous or oleaginous suspension. These suspensions are formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents.
  • the sterile injectable preparation is also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1, 3-butanediol.
  • a non-toxic parenterally acceptable diluent or solvent for example as a solution in 1, 3-butanediol.
  • acceptable vehicles and solvents that are employed are water, Ringer’s solution and isotonic sodium chloride solution.
  • sterile, fixed oils are conventionally employed as a solvent or suspending medium.
  • any bland fixed oil employed includes synthetic mono-or di-glycerides.
  • Fatty acids such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions.
  • These oil solutions or suspensions also contain a long-chain alcohol diluent or dispersant, such as carboxymethyl cellulose or similar dispersing agents that are commonly used in the formulation of pharmaceutically acceptable dosage forms including emulsions and suspensions.
  • Other commonly used surfactants such as Tweens, Spans and other emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms are also be used for the purposes of formulation.
  • compositions of this invention are orally administered in any orally acceptable dosage form.
  • exemplary oral dosage forms are capsules, tablets, aqueous suspensions or solutions.
  • carriers commonly used include lactose and corn starch.
  • Lubricating agents such as magnesium stearate, are also typically added.
  • useful diluents include lactose and dried cornstarch.
  • aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening, flavoring or coloring agents are optionally also added.
  • compositions of this invention are administered in the form of suppositories for rectal administration.
  • suppositories can be prepared by mixing the agent with a suitable non-irritating excipient that is solid at room temperature but liquid at rectal temperature and therefore will melt in the rectum to release the drug.
  • suitable non-irritating excipient include cocoa butter, beeswax and polyethylene glycols.
  • compositions of this invention are also administered topically, especially when the target of treatment includes areas or organs readily accessible by topical application, including diseases of the eye, the skin, or the lower intestinal tract. Suitable topical formulations are readily prepared for each of these areas or organs.
  • Topical application for the lower intestinal tract can be effected in a rectal suppository formulation (see above) or in a suitable enema formulation. Topically-transdermal patches are also used.
  • compositions are formulated in a suitable ointment containing the active component suspended or dissolved in one or more carriers.
  • exemplary carriers for topical administration include mineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene, polyoxypropylene compound, emulsifying wax and water.
  • provided pharmaceutically acceptable compositions can be formulated in a suitable lotion or cream containing the active components suspended or dissolved in one or more pharmaceutically acceptable carriers.
  • Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water.
  • compositions of this invention are optionally administered by nasal aerosol or inhalation.
  • Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and are prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other conventional solubilizing or dispersing agents.
  • compositions of this invention are formulated for oral administration. Such formulations may be administered with or without food. In some embodiments, pharmaceutically acceptable compositions of this invention are administered without food. In other embodiments, pharmaceutically acceptable compositions of this invention are administered with food.
  • compositions of the present invention that is optionally combined with the carrier materials to produce a composition in a single dosage form will vary depending upon the host treated, the particular mode of administration.
  • provided compositions should be formulated so that a dosage of between 0.01 -100 mg/kg body weight/day of the compound can be administered to a patient receiving these compositions.
  • a specific dosage and treatment regimen for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, rate of excretion, drug combination, and the judgment of the treating physician and the severity of the particular disease being treated.
  • the amount of a compound of the present invention in the composition will also depend upon the particular compound in the composition.
  • LC-MS spectra were recorded on a Shimadzu LC-MS2020 using Agilent C18 column (Eclipse XDB-C18, 5um, 2.1 x 50mm) with flow rate of 1 mL/min.
  • Mobile phase A 0.1%of formic acid in water
  • mobile phase B 0.1%of formic acid in acetonitrile.
  • a general gradient method was used.
  • Analytical HPLC was performed on Agilent 1200 HPLC with a Zorbax Eclipse XDB C18 column (2.1 x 150 mm) with flow rate of 1 mL/min.
  • Mobile phase A 0.1%of TFA in water
  • mobile phase B 0.1%of TFA in acetonitrile.
  • a general method with following gradient was used.
  • Preparative HPLC was performed on Varian ProStar using Hamilton C18 PRP-1 column (15 x 250 mm) with flow rate of 20 mL/min.
  • Mobile phase A 0.1%of TFA in water
  • mobile phase B 0.1%of TFA in acetonitrile.
  • a typical gradient method was used.
  • Step 1 A solution of compound 1-1 (1 g, 3.22 mmol) in toluene (10 mL) was treated with ethylene glycol (600 mg, 9.67 mmol) and PTSA (55 mg, 0.32 mmol) . The reaction was stirred at 120 °C for 3 h and cooled to room temperature. The mixture was diluted with EtOAc (50 mL) , washed with H 2 O (50 mL) and saturated NaHCO 3 (50 mL) . The organic layer was dried over anhydrous Na 2 SO 4 , filtered and concentrated to afford the title compound 1-2 (1.08 g, yield 94%) as a colorless oil, which was used into next step without further purification.
  • Step 2 A mixture of compound 1-2 (500 mg, 1.41 mmol) , compound 1-3 (258 mg, 1.41 mmol) , Pd 2 (dba) 3 (100 mg, 0.11 mmol) , xantphos (128 mg, 0.22 mmol) and DIPEA (550 mg, 4.25 mmol) in dioxane (6 mL) was stirred under nitrogen atmosphere at 115 °C for 2 h. After completion of the reaction, the mixture was filtered over diatomite and concentrated. The crude product was purified by silica gel column (eluted with 25%EtOAc in petroleum ether) to afford the title compound 1-4 (400 mg, yield 73%) as a yellow solid.
  • LCMS m/z calculated for C 13 H 11 BrClN 3 O 2 S: 386.94; found 387.59 [M+H] + .
  • Step 3 To a mixture of compound 1-5 (330 mg, 1.54 mmol) and K 2 CO 3 (356 mg, 2.58 mmol) in DMAc (5 mL) was added compound 1-4 (400 mg, 1.03 mmol) . The mixture was stirred at 120 °C for 1 h. After the reaction was cooled to room temperature, the mixture was extracted with EtOAc (50 mL x 2) and H 2 O (50 mL) . The organic layers were washed with brine, filtered and concentrated. The crude product was purified by silica gel column (eluted with 30%EtOAc in petroleum ether) to afford the title compound 1-6 (469 mg, yield 80%) as a yellow foam.
  • Step 4 A mixture of compound 1-6 (300 mg, 0.53 mmol) , B 2 (Pin) 2 (336 mg, 1.32 mmol) , Pd (dppf) Cl 2 (38 mg, 0.05 mmol) and KOAc (156 mg, 1.60 mmol) in dioxane (6 mL) was stirred under nitrogen atmosphere at 90 °C for 12 h. After completion of the reaction, the mixture was filtered over diatomite and concentrated. The crude product was purified by silica gel column (eluted with 25%EtOAc in petroleum ether) to afford the title compound 1-7 (230 mg, yield 70%) as an orange oil.
  • LCMS m/z calculated for C 30 H 44 BN 5 O 6 S: 613.31; found 614.95 [M+H] + .
  • Step 5 Citric acid (500 mg, 2.60 mmol) was added to a solution of compound 1-7 (200 mg, 0.33 mmol) in THF (5 mL) and H 2 O (5 mL) . The mixture was stirred at room temperature for 5 h. After completion of the reaction, the mixture was concentrated. The crude product was purified by reverse phase flash chromatography (C18 column, eluted with acetonitrile in water, TFA condition) . The desired components were lyophilized to afford the title compound 1-8 (66 mg, yield 41%) as a yellow solid.
  • LCMS m/z calculated for C 20 H 30 BN 5 O 5 S: 487.21; found 414.76 [M-tBu-OH+H] + .
  • Step 7 4 N HCl in dioxane (2.5 mL) was added to a solution of compound 1-9 (50 mg, 0.11 mmol) in dioxane (2.5 mL) and MeOH (0.5 mL) . The mixture was stirred at room temperature for 2 h. After completion of the reaction, EtOAc (25 mL) was added thereto to form a yellow precipitate. The yellow precipitate was filtered, washed with EtOAc (25 mL) , DCM (25 mL) and petroleum ether (25 mL) , dried in vacuum to afford the title compound 1 (20 mg, yield 46%) as a yellow solid.
  • Step 1 A solution of compound 2-1 (800 mg, 2.13 mmol) and TFA (2 mL) in DCM (6 mL) was stirred at room temperature for 3 h. After completion of the reaction, the mixture was concentrated to afford the title compound 2-2 (TFA salt, 810 mg, yield 98%) as a colorless oil, which was used into next step without further purification.
  • Step 2 To a mixture of compound 2-2 (717 mg, 1.84 mmol, TFA salt) and K 2 CO 3 (1.07 g, 7.74 mmol) in DMAc (10 mL) was added compound 1-4 (600 mg, 1.54 mmol) . The mixture was stirred at 120 °C for 16 h. After the reaction was cooled to room temperature, the mixture was extracted with EtOAc (100 mL x 2) and H 2 O (100 mL) . The organic layers were washed with brine, filtered and concentrated. The crude product was purified by silica gel column (eluted with 25%EtOAc in petroleum ether) to afford the title compound 2-3 (470 mg, yield 48%) as a light brown slurry.
  • LCMS m/z calculated for C 26 H 36 BrN 5 O 4 S 2 : 625.14; found 571.66 [M-tBu+H] + .
  • Step 3 A mixture of compound 2-3 (400 mg, 0.64 mmol) , B 2 (Pin) 2 (325 mg, 1.28 mmol) , Pd (dppf) Cl 2 (46 mg, 0.06 mmol) and KOAc (218 mg, 2.22 mmol) in dioxane (6 mL) was stirred under nitrogen atmosphere at 90 °C for 12 h. After completion of the reaction, the mixture was filtered over diatomite and concentrated. The crude product was purified by silica gel column (eluted with 25%EtOAc in petroleum ether) to afford the title compound 2-4 (270 mg, yield 63%) as a light brown solid.
  • LCMS m/z calculated for C 32 H 48 BN 5 O 6 S 2 : 673.31; found 618.17 [M-tBu+H] + .
  • Step 4 Citric acid (547 mg, 2.85 mmol) was added to a solution of compound 2-4 (240 mg, 0.36 mmol) in THF (5 mL) and H 2 O (5 mL) . The mixture was stirred at room temperature for 3 h. After completion of the reaction, the mixture was concentrated. The crude product was purified by reverse phase flash chromatography (C18 column, eluted with acetonitrile in water, TFA condition) . The desired components were lyophilized to afford the title compound 2-5 (90 mg, yield 46%) as a yellow solid.
  • LCMS m/z calculated for C 24 H 34 BN 5 O 5 S 2 : 547.21; found 492.01 [M-tBu+H] + .
  • LCMS m/z calculated for C 24 H 34 BN 5 O 4 S 2 : 531.21; found: 555.06 [M+Na] + .
  • Step 6 4 N HCl in EtOAc (2.5 mL) was added to a solution of compound 2-6 (50 mg, 0.09 mmol) in EtOAc (2.5 mL) . The mixture was stirred at room temperature for 10 min, a brilliant yellow precipitate was formed. After further stirring for 30 min, the precipitate was filtered, washed with EtOAc (25 mL) . The crude product was purified by pre-HPLC (C18 column, eluted with MeCN in H 2 O, TFA condition) . The desired components were lyophilized to afford the title compound 2 (10 mg, yield 25%) as a yellow solid.
  • Step 1 A mixture of compound 3-1 (500 mg, 1.60 mmol) , compound 3-2 (270 mg, 1.60 mmol) , Pd 2 (dba) 3 (146 mg, 0.16 mmol) , xantphos (185 mg, 0.32 mmol) and DIPEA (620 mg, 4.80 mmol) in dioxane (6 mL) was stirred at 115 °C under nitrogen atmosphere for 2 h. After completion of the reaction, the mixture was cooled, filtered and concentrated. The crude product was purified by silica gel chromatography (eluted with 30%EtOAc in petroleum ether) to afford the title compound 3-2 (318 mg, yield 60%) as a light-yellow solid.
  • LCMS m/z calculated for C 11 H 8 BrClN 2 OS: 329.92; found 331.47 [M+H] + .
  • Step 2 To a mixture of compound 3-4 (326 mg, 1.18 mmol) and DIPEA (1.23 g, 9.52 mmol) in NMP (3.5 mL) was added compound 3-3 (300 mg, 0.90 mmol) . The mixture was stirred at 120 °C for 7 h. After completion of the reaction, the mixture was cooled to room temperature and diluted with EtOAc (50 mL) . The resulting mixture was washed with saturated NH 4 Cl solution (100 mL) . The organic layer was washed with brine, filtered and concentrated.
  • Step 3 A mixture of compound 3-5 (100 mg, 0.20 mmol) , B 2 (Pin) 2 (127 mg, 0.50 mmol) , Pd (dppf) Cl 2 (15 mg, 0.02 mmol) and KOAc (108 mg, 1.10 mmol) in dioxane (1.5 mL) was stirred under nitrogen atmosphere at 90 °C for 5 h. After completion of the reaction, the mixture was filtered over diatomite and concentrated. The residue was extracted with DCM (20 mL x 2) and H 2 O (20 mL) . The combined organic layers were dried over anhydrous Na 2 SO 4 , filtered and concentrated.
  • Step 1 To a cool mixture of HNO 3 (35 mL) and conc. H 2 SO 4 (55 mL) at 0 °C was added compound 4-1 (10.0 g, 45.55 mmol) in portions. The resulting mixture was stirred at 0 °Cfor 3 h. After completion of the reaction, the mixture was poured into ice-water with stirring. The precipitate was filter and washed with H 2 O. The solid was crystallized in EtOAc to afford the title compound 4-2 (11.7 g, yield 97%) as a light-yellow solid.
  • Step 2 NaBH 4 (428 mg, 11.32 mmol) was added slowly to a solution of compound 4-2 (2.0 g, 7.56 mmol) in MeOH (20 mL) at 0 °C. The mixture was stirred at 0 °C for 2 h and at room temperature for 10 h. After completion of the reaction, the mixture was quenched with cold H 2 O (50 mL) , extracted with EtOAc (50 mL x 2) . The organic layer was washed with brine, dried over anhydrous Na 2 SO 4 , filtered and concentrated to afford the title compound 4-2 (1.9 g, yield 94%) . The crude product was used into the next step without further purification.
  • Step 3 A mixture of compound 4-3 (1.9 g, 7.13 mmol) and Fe powder (1.6 g, 28.57 mmol) in EtOH (20 mL) and conc. HCl (5 mL) was stirred at 70 °C for 1.5 h. After completion of the reaction, the mixture was cooled, filtered and adjust pH to 11 with 2 N NaOH. The resulting mixture was extracted with EtOAc (100 mL) . The organic layer was washed with brine, dried over anhydrous Na 2 SO 4 , filtered and concentrated. The crude product was purified by silica gel chromatography (eluted with 30%EtOAc in petroleum ether) to afford the title compound 4-4 (1.2 g, yield 71%) as a brown solid.
  • Step 4 A suspension of compound 4-4 (1.0 g, 4.23 mmol) in MeCN (20 mL) and 4 N HCl (8 mL) was stirred at room temperature for 15 min. After the mixture was cooled to 0 °C, to this was added dropwise a cold solution of NaNO 2 (320 mg, 4.63 mmol) in H 2 O (5 mL) . The mixture was stirred at 0 °C for 30 min and treated with KI (1.4 g, 8.43 mmol) . The resulting mixture was stirred at 0 °C for further 1 h.
  • Step 5 A mixture of compound 4-5 (500 mg, 1.44 mmol) , compound 3-2 (243 mg, 1.44 mmol) , Pd 2 (dba) 3 (131 mg, 0.14 mmol) , xantphos (166 mg, 0.29 mmol) and DIPEA (558 mg, 4.32 mmol) in dioxane (6 mL) was stirred at 105 °C under nitrogen atmosphere for 3 h. After completion of the reaction, the mixture was cooled, filtered and concentrated. The crude product was purified by silica gel chromatography (eluted with 25%EtOAc in petroleum ether) to afford the title compound 4-6 (418 mg, yield 79%) as an off-white solid.
  • LCMS m/z calculated for C 11 H 7 BrCl 2 N 2 OS: 363.88; found 366.05 [M+H] + .
  • Step 6 To a mixture of compound 3-4 (293 mg, 1.06 mmol) and DIPEA (1.06 g, 8.20 mmol) in NMP (3.5 mL) was added compound 4-6 (300 mg, 0.82 mmol) . The mixture was stirred at 120 °C for 5 h. After completion of the reaction, the mixture was cooled to room temperature and diluted with EtOAc (50 mL) . The resulting mixture was washed with saturated NH 4 Cl solution (100 mL) . The organic layer was washed with brine, filtered and concentrated.
  • Step 7 A mixture of compound 4-7 (100 mg, 0.19 mmol) , B 2 (Pin) 2 (120 mg, 0.47 mmol) , Pd (dppf) Cl 2 (14 mg, 0.02 mmol) and KOAc (102 mg, 1.04 mmol) in dioxane (2 mL) was stirred under nitrogen atmosphere at 90 °C for 4 h. After completion of the reaction, the mixture was cooled, filtered over diatomite and diluted with DCM (20 mL) . The resulting mixture was washed with H 2 O and brine, dried over anhydrous Na 2 SO 4 , filtered and concentrated.
  • Step 1 A mixture of compound 3-1 (500 mg, 1.60 mmol) , compound 1-3 (293 mg, 1.60 mmol) , Pd 2 (dba) 3 (100 mg, 0.11 mmol) , xantphos (129 mg, 0.22 mmol) and DIPEA (620 mg, 4.80 mmol) in dioxane (6 mL) was stirred at 115 °C under nitrogen atmosphere for 2 h. After completion of the reaction, the mixture was cooled, filtered and concentrated. The crude product was purified by silica gel chromatography (eluted with 30%EtOAc in petroleum ether) to afford the title compound 5-1 (476 mg, yield 85%) as a yellow solid.
  • LCMS m/z calculated for C 11 H 9 BrClN 3 OS: 344.93; found 346.57 [M+H] + .
  • Step 2 To a mixture of compound 3-4 (257 mg, 0.93 mmol) and Cs 2 CO 3 (1.17 g, 3.59 mmol) in DMAc (5 mL) and H 2 O (2 mL) was added compound 5-1 (250 mg, 0.72 mmol) . The mixture was stirred at 120 °C for 4 h. After completion of the reaction, the mixture was cooled to room temperature, diluted with EtOAc (50 mL) and washed with H 2 O (50 mL) . The organic layer was washed with brine, filtered and concentrated.
  • Step 3 A mixture of compound 5-2 (150 mg, 0.29 mmol) , B 2 (Pin) 2 (186 mg, 0.73 mmol) , Pd (dppf) Cl 2 (21 mg, 0.03 mmol) and KOAc (184 mg, 1.88 mmol) in dioxane (2 mL) was stirred under nitrogen atmosphere at 90 °C for 1 h. After completion of the reaction, the mixture was filtered over diatomite and concentrated. The residue was extracted with DCM (20 mL x 2) and H 2 O (20 mL) . The combined organic layers were dried over anhydrous Na 2 SO 4 , filtered and concentrated.
  • Step 1 A mixture of compound 4-5 (500 mg, 1.44 mmol) , compound 1-3 (264 mg, 1.44 mmol) , Pd 2 (dba) 3 (90 mg, 0.10 mmol) , xantphos (116 mg, 0.22 mmol) and DIPEA (560 mg, 4.33 mmol) in dioxane (6 mL) was stirred at 115 °C under nitrogen atmosphere for 2 h. After completion of the reaction, the mixture was cooled, filtered and concentrated. The crude product was purified by silica gel chromatography (eluted with 40%EtOAc in petroleum ether) to afford the title compound 6-1 (300 mg, yield 54%) as a light-yellow solid.
  • LCMS m/z calculated for C 11 H 8 BrCl 2 N 3 OS: 378.89; found 382.45 [M+H] + .
  • Step 2 To a mixture of compound 3-4 (122 mg, 0.44 mmol) and Cs 2 CO 3 (554 mg, 1.70 mmol) in DMAc (3 mL) and H 2 O (1 mL) was added compound 6-1 (130 mg, 0.34 mmol) . The mixture was stirred at 120 °C for 4 h. After completion of the reaction, the mixture was cooled to room temperature, diluted with EtOAc (30 mL) and washed with H 2 O (30 mL) . The organic layer was washed with brine, filtered and concentrated.
  • Step 1 To a mixture of 7-1 (5.0 g, 33.1 mmol) in DCM (200 mL) was added NIS (8.2 g, 36.4 mmol) at room temperature. Then it was stirred at room temperature for 3 h. After completion of the reaction, the mixture was extracted with EtOAc (400 mL x 2) and water (600 mL) . The organic layers were washed with brine (2x400 mL) , dried over anhydrous Na 2 SO 4 and concentrated. The crude product was purified by silica gel column (eluted with 5%MeOH in DCM) to afford the title compound 7-2 (8.8 g, yield 96%) as a light-yellow solid. LCMS: m/z calculated for C 8 H 8 INO 2 : 276.96; found: 260.60. [M-OH] + .
  • Step 2 A mixture of 7-2 (8.8 g, 31.8 mmol) and 48%HBr (14.4 mL, 127.2 mmol) in MeCN (80 mL) and H 2 O (100 mL) was stirred at 0 °C for 10 min. Then NaNO 2 (2.2 g, 31.8 mmol) in H 2 O (12 mL) was added dropwise to the above mixture while keeping the temperature below 5 °C. After stirring for 1 h, CuBr (9.2 g, 63.6 mmol) was added thereto. The mixture was stirred at 0°C for 1 h. After completion of the reaction, the resulting mixture was extracted with EtOAc (120 mL x3) .
  • Step 3 To a mixture of 7-3 (2.1 g, 6.2 mmol) and K 2 CO 3 (1.7 g, 12.4 mmol) in DMF (20 mL) was added MeI (968.4 mg, 6.8 mmol) dropwise. The mixture was stirred at room temperature for 3 h. After completion of the reaction, the mixture was filtered. The filtrate was concentrated and extracted with EtOAc (100 mL x 2) and H 2 O (200 mL) . The combined organic layers were washed with brine, dried over anhydrous Na 2 SO 4 and concentrated. The residue was purified by silica gel column (eluted with 30%EtOAc in petroleum ether) to afford the title compound 7-4 (1.5 g, yield 68%) as a light-yellow oil.
  • Step 4 A mixture of 7-4 (1.5 g, 4.2 mmol) , 3-2 (1.06 g, 6.3 mmol) , Pd 2 (dba) 3 (384.7 mg, 0.42 mmol) , xantphos (486.4 mg, 0.84 mmol) and DIPEA (1.6 g, 12.6 mmol) in dioxane (30 mL) was stirred at 105 °C under nitrogen atmosphere for 2 h. After completion of the reaction, the mixture cooled down to room temperature and concentrated. The residue was purified by silica gel column (eluted with 10%EtOAc in petroleum ether) to afford the title compound 7-6 (850 mg, yield 54%) as an orange solid.
  • Step 5 To a mixture of 7-5 (520 mg, 1.39 mmol) and DIPEA (1.8 g, 13.9 mmol) in NMP (10.0 mL) was added 3-4 (420.5 mg, 1.53 mmol) at room temperature. The reaction mixture was stirred at 100 °C for 3 h. After completion of the reaction, the mixture was cooled down to room temperature and filtered. The filtrate was purified directly by reverse phase flash chromatography (C18 column; eluted with MeCN in H 2 O, TFA condition) . The desired components were lyophilized to afford the title compound 7-6 (436 mg, yield 58%) as a light-yellow solid.
  • LCMS m/z calculated for C 26 H 27 BrN 4 O 2 S: 538.10; found: 539.35. [M+H] + .
  • Step 7 A mixture of 7-9 (97 mg, 0.19 mmol) , B 2 (neop) 2 (85.9 mg, 0.38 mmol) , Pd 2 (PPh 3 ) 2 Cl 2 (13.3 mg, 0.02 mmol) and KOAc (93.1 mg, 0.95 mmol) in dioxane (3 mL) was stirred at 90°C under nitrogen atmosphere for 3 h. After completion of the reaction, the mixture cooled down to room temperature and concentrated. The residue was purified by silica gel column (eluted with 6.6%MeOH in DCM) to afford the crude product, which was purified furtherly by pre-HPLC (C18 column; eluted with MeCN in H 2 O, TFA condition) .
  • Step 1 To a mixture of 8-1 (3.0 g, 16.6 mmol) in EtOH (700 mL) was added Ag 2 SO 4 (5.7 g, 18.3 mmol) and I 2 (4.6 g, 18.3 mmol) at room temperature. The mixture was stirred at room temperature for 3 h. After completion of the reaction, the mixture was filtered. The filtrate was concentrated and extracted with EtOAc (100 mL x 2) and water (200 mL) . The organic layers were washed with Na 2 S 2 O 3 and brine (2x200 mL) , dried over anhydrous Na 2 SO 4 and concentrated.
  • Step 2 To a mixture of 8-2 (4.2 g, 13.7 mmol) and CuBr (3.9 g, 27.4 mmol) in MeCN (200 ml) was added t-BuONO (3.1 g, 27.4 mmol) dropwise at 0°C under nitrogen atmosphere. The reaction mixture was stirred at 80 °C for 2 h. After completion of the reaction, the mixture was cooled down to room temperature and concentrated. The residue was purified by silica gel column (eluted with 4%EtOAc in petroleum ether) to afford the title compound 8-3 (2.5 g, yield 50%) as a light-yellow solid.
  • LCMS m/z calculated for C 9 H 8 BrIO 3 : 369.87; found: 371.26 [M+H] + .
  • Step 3 To a mixture of 8-3 (1.1 g, 3.0 mmol) in anhydrous DCM (12 mL) was added DIBAL-H (12 mL, 12.0 mmol) dropwise at -78 °C under nitrogen atmosphere. The reaction mixture was stirred at -78 °C for 2 h. After completion of the reaction, the mixture was quenched with 15%NaOH at -78 °C and then warmed slowly to room temperature. The resulting mixture was filtered and the filtrate was extracted with DCM (30 mL x 3) and H 2 O (90 mL) . The combined organic layers were washed with brine, dried over anhydrous Na 2 SO 4 and concentrated.
  • Step 4 A mixture of 8-4 (850 mg, 2.5 mmol) , 3-2 (633.8 mg, 3.75 mmol) , Pd 2 (dba) 3 (229.0 mg, 0.25 mmol) , xantphos (289.5 mg, 0.5 mmol) and DIPEA (967.5 mg, 7.5 mmol) in dioxane (16 mL) was stirred at 105°C under nitrogen atmosphere for 2 h. After completion of the reaction, the mixture was cooled down to room temperature and concentrated. The residue was purified by silica gel column (eluted with 20%EtOAc in petroleum ether) to afford the title compound 8-5 (488 mg, yield 54%) as a brown oil.
  • LCMS m/z calculated for C 12 H 10 BrClN 2 O 2 S: 359.93; found: 361.73 [M+H] + .
  • Step 5 To a mixture of 8-5 (220 mg, 0.6 mmol) and DIPEA (774.0 mg, 6.0 mmol) in NMP (4 mL) was added 3-4 (181.5 mg, 6.6 mmol) at room temperature. The reaction mixture was stirred at 120 °C for 6 h. After completion of the reaction, the mixture was cooled down to room temperature. The mixture was filtered and the filtrate was purified directly by reverse phase flash chromatography (C18 column, eluted with MeCN in H 2 O, TFA condition) . The desired components were lyophilized to afford the title compound 8-6 (225 mg, yield 70%) as a light-yellow solid. LCMS: m/z calculated for C 25 H 27 BrN 4 O 2 S: 526.10; found: 527.62 [M+H] + .
  • Step 6 To a mixture of 8-6 (225 mg, 0.4 mmol) and NaOH (88 mg, 2.2 mmol) in DMF (4 mL) was added (Boc) 2 O (261.6 mg, 1.2 mmol) . The mixture was stirred at room temperature for 1h. After completion of the reaction, the mixture was filtered. The filtrate was extracted with DCM (20 mL x 2) and H 2 O (30 mL) . The combined organic layers were washed with brine, dried over anhydrous Na 2 SO 4 and concentrated. The residue was purified by silica gel column (eluted with 5%MeOH in DCM) to afford the title compound 8-7 (156 mg, yield 57%) as a light-yellow solid.
  • LCMS m/z calculated for C 30 H 35 BrN 4 O 4 S: 626.16; found: 627.74 [M+H] + .
  • Step 7 A mixture of 8-7 (140 mg, 0.22 mmol) , B 2 (pin) 2 (167.6 mg, 0.66 mmol) , Pd (dppf) Cl 2 (14.6 mg, 0.02 mmol) and KOAc (64.7 mg, 0.66 mmol) in dioxane (4 mL) was stirred at 90°C under nitrogen atmosphere for 4 h. After completion of the reaction, the mixture was cooled down to room temperature and concentrated. The residue was purified by silica gel column (eluted with 4%MeOH in DCM) to afford the crude product, which was purified furtherly by reverse phase flash chromatography (C18 column, eluted with MeCN in H 2 O, TFA condition) .
  • Step 8 A mixture of 8-8 (20 mg, 0.035 mmol) in DCM (1 mL) was added TFA (0.3 mL) . The mixture was stirred at rt for 1 h. After completion of the reaction, the mixture was concentrated. The crude product was purified by pre-HPLC (C18 column, eluted with MeCN in H 2 O, TFA condition) . The desired components were lyophilized to afford the title compound 8 (10.3 mg, yield 63%) as a light-yellow solid.
  • Step 1 To a mixture of 9-1 (19.7 g, 138.7 mmol) in DMF (500 mL) was added NIS (34.3 g, 152.6 mmol) at 0 °C. The mixture was stirred at 0°C for 1 h. After completion of the reaction, the mixture was extracted with EtOAc (800 mL x 2) and H 2 O (2 L) . The organic layer was washed with Na 2 S 2 O 3 and brine (800 mL x 2) , dried over anhydrous Na 2 SO 4 and concentrated. The crude product was purified by silica gel column (eluted with 10%EtOAc in petroleum ether) to afford the title compound 9-2 (35.2 g, yield 95%) as a brown solid. LCMS: m/z calculated for C 7 H 7 ClIN: 266.93; found: 268.49 [M+H] + .
  • Step 2 To a mixture of 9-2 (25 g, 93.6 mmol) and 48%HBr (42.4 mL, 374.4 mmol) in MeCN (200 ml) and H 2 O (300 mL) was added NaNO 2 (6.5 g, 93.6 mmol) in H 2 O (30 mL) dropwise at 0°C. After the mixture was stirred at 0°C for 1 h, CuBr (27 g, 187.2 mmol) was added thereto. The reaction was stirred for 1 h at 0 °C. After completion of the reaction, the mixture was concentrated and then extracted with EtOAc (500 mL x 2) and H 2 O (300 mL) .
  • EtOAc 500 mL x 2 2
  • Step 4 To a mixture of 9-4 (4 g, 11.0 mmol) in THF (40 mL) was added BH 3 . THF (48.6 mg, 33.0 mmol) dropwise at 0 °C under nitrogen atmosphere. The reaction was warmed slowly and stirred at 60 °C for 1 h. After completion of the reaction, the mixture was cooled down to room temperature and quenched with saturated NH 4 Cl solution. The mixture was extracted with EA (300 mL x 2) and H 2 O (300 mL) . The combined organic layers were washed with brine, dried over anhydrous Na 2 SO 4 and concentrated. The residue was purified by silica gel column (eluted with 20%EtOAc in petroleum ether) to afford the title compound 9-5 (3 g, yield 79%) as a white solid.
  • Step 5 A mixture of 9-5 (3 g, 8.6 mmol) , 3-2 (2.9 g, 17.2 mmol) , Pd 2 (dba) 3 (787.8 mg, 0.86 mmol) , xantphos (995.9 mg, 1.79 mmol) and DIPEA (3.3 g, 25.8 mmol) in dioxane (60 mL) was stirred at 105°C under nitrogen atmosphere for 2 h. After completion of the reaction, the mixture was cooled down to room temperature and concentrated. The residue was purified by silica gel column (eluted with 60%EtOAc in petroleum ether) to afford title compound 9-6 (2.2 g, yield 69%) as a yellow solid.
  • LCMS m/z calculated for C 11 H 7 BrCl 2 N 2 OS: 363.88; found: 329.3 [M-Cl+H] + .
  • Step 6 To a mixture of 9-6 (500 mg, 1.4 mmol) and DIPEA (1.8 g, 14.0 mmol) in NMP (10 mL) was added 7 (412.5 mg, 1.5 mmol) at room temperature. After the reaction was stirred at 120 °C for 3 h, the mixture was cooled down to room temperature. The resulting mixture was purified directly by reverse phase flash chromatography (C18 column, eluted with MeCN in H2O, TFA condition) . The desired components were lyophilized to afford the title compound 9-7 (503 mg, yield 69%) as a yellow solid.
  • LCMS m/z calculated for C 24 H 24 BrClN 4 OS: 530.05; found: 531.45 [M+H] + .
  • Step 7 To a mixture of 9-7 (503 mg, 0.95 mmol) and NaOH (209 mg, 5.2 mmol) in DMF (5.0 mL) was added (Boc) 2 O (621.3 mg, 2.85 mmol) . Then the mixture was stirred at room temperature for 1h. After completion of the reaction, the mixture was extracted with DCM (20 mL x 2) and H 2 O (40 mL) . The combined organic layers were washed with brine, dried over anhydrous Na 2 SO 4 and concentrated. The residue was purified by silica gel column (eluted with 30%EtOAc in petroleum ether) to afford the title compound 9-8 (417 mg, yield 70%) as a light-yellow solid. LCMS: m/z calculated for C 29 H 32 BrClN 4 O 3 S: 630.11; found: 631.49 [M+H] + .
  • Step 8 A mixture of 9-8 (280 mg, 0.44 mmol) , B 2 (pin) 2 (223.5 mg, 0.88 mmol) , Pd 2 (dba) 3 (36.6 mg, 0.04 mmol) , Ph 2 PCy (23.6 mg, 0.09 mmol) , pivalic acid (22.4 mg, 0.22 mmol) and K 2 CO 3 (182.2 mg, 1.3 mmol) in dioxane (5 mL) was stirred at 90°C under nitrogen atmosphere for 1 h. After completion of the reaction, the mixture was cooled down to room temperature and concentrated.
  • Step 9 A mixture of 9-9 (36 mg, 0.06 mmol) in DCM (1.2 mL) was added TFA (0.4 mL) . The mixture was stirred at rt for 1 h. After completion of the reaction, the mixture was concentrated. The crude product was purified by pre-HPLC (C18 column, eluted with MeCN in H 2 O, TFA condition) . The desired components were lyophilized to afford the title compound 9 (11.7 mg, yield 39%) as a light-yellow solid.
  • Step 1 To a mixture of 9-6 (520 mg, 1.4 mmol) and DIPEA (1.8 g, 14.0 mmol) in NMP (10 mL) was added 1-5 (321.0 mg, 1.5 mmol) at room temperature. After The reaction was stirred at 100 °C for 3 h, the mixture was cooled down to room temperature. The mixture was filtered and the filtrate was purified by reverse phase flash chromatography (C18 column, eluted with MeCN in H 2 O, TFA condition) . The desired components were lyophilized to afford the title compound 10-1 (734 mg, yield 95%) as a yellow solid.
  • LCMS m/z calculated for C 22 H 28 BrClN 4 O 3 S: 542.08; found: 543.73 [M+H] + .
  • Step 2 A mixture of 10-1 (350 mg, 0.64 mmol) , B 2 (pin) 2 (330.2 mg, 1.3 mmol) , Pd 2 (dba) 3 (55 mg, 0.06 mmol) , Ph 2 PCy (34.3 mg, 0.13 mmol) , pivalic acid (32.6 mg, 0.32 mmol) and K 2 CO 3 (265 mg, 1.9 mmol) in dioxane (6 mL) was stirred at 90 °C under nitrogen atmosphere for 1 h. After completion of the reaction, the mixture was cooled down to room temperature and concentrated.
  • Step 3 A mixture of 10-2 (66 mg, 0.13 mmol) in EtOAc (1 mL) was added 4 N HCl in EtOAc (0.13 mL, 0.52 mmol) . The mixture was stirred at room temperature for 1 h. After completion of the reaction, the mixture was concentrated. The crude product was purified by pre-HPLC (C18 column, eluted with MeCN in H 2 O, TFA condition) . The desired components were lyophilized to afford the title compound 10 (10.2 mg, yield 19%) as a light-yellow solid.
  • Step 1 To a mixture of 9-4 (4 g, 11 mmol) and K 2 CO 3 (4.6 g, 33 mmol) in DMF (40 mL) was added MeI (2.3 g, 16.5 mmol) dropwise. The reaction was stirred at room temperature for 3 h. After completion of the reaction, the mixture was filtered. The filtrate was extracted with EtOAc (100 mL x 3) and H 2 O (200 mL) . The combined organic layers were washed with brine, dried over anhydrous Na 2 SO 4 and concentrated. The residue was purified by silica gel column (eluted with 5%EtOAc in petroleum ether) to afford the title compound 11-1 (3.9 g, yield 90%) as a light-yellow oil.
  • Step 2 A mixture of 11-1 (3.9 g, 10.4 mmol) , 3-2 (3.5 g, 20.8 mmol) , Pd 2 (dba) 3 (91.6 mg, 0.1 mmol) , xantphos (115.8 mg, 0.2 mmol) and DIPEA (4 g, 31.2 mmol) in dioxane (60 mL) was stirred at 105°C under nitrogen atmosphere for 1 h. After completion of the reaction, the mixture cooled down to room temperature and concentrated. The residue was purified by silica gel column (eluted with 10%EtOAc in Petroleum ether) to afford the title compound 11-2 (3.3 g, yield 80%) as an orange solid.
  • Step 3 To a mixture of 11-2 (900 mg, 2.3 mmol) and DIPEA (3 g, 23 mmol) in NMP (10.0 mL) was added 11-3 (420.5 mg, 1.53 mmol) at room temperature. After the reaction was stirred at 100 °C for 1 h, the mixture was cooled down to room temperature. The resulting mixture was filtered and the filtrate was purified directly by reverse phase flash chromatography (C18 column, eluted with MeCN in water, TFA condition) . The desired components were lyophilized to afford the title compound 11-4 (1.0 g, yield 75%) as a light-yellow solid.
  • LCMS m/z calculated for C 24 H 30 BrClN 4 O 4 S: 584.09; found: 585.78 [M+H] + .
  • Step 4 To a mixture of 11-4 (1 g, 1.7 mmol) in anhydrous DCM (10 mL) was added DIBAL-H (6.8 mL, 6.8 mmol) dropwise at -78 °C under nitrogen atmosphere. The reaction was stirred at -78 °C for 2 h. After completion of the reaction, the mixture was quenched with 15%NaOH at -78°C and then warmed slowly to room temperature. The resulting mixture was filtered and the filtrate was extracted with DCM (40 mL x 3) and H 2 O (80 mL) . The combined organic layers were washed with brine, dried over anhydrous Na 2 SO 4 and concentrated.
  • Step 5 A mixture of 11-5 (420 mg, 0.75 mmol) , B 2 (pin) 2 (381 mg, 1.5 mmol) , Pd 2 (dba) 3 (73.3 mg, 0.08 mmol) , Ph 2 PCy (40.2 mg, 0.15 mmol) , pivalic acid (38.8 mg, 0.38 mmol) and K 2 CO 3 (310.5 mg, 2.3 mmol) in dioxane (8 mL) was stirred at 90°C under nitrogen atmosphere for 1 h. After completion of the reaction, the mixture was cooled down to room temperature and concentrated.
  • Step 6 A mixture of 11-6 (130 mg, 0.26 mmol) in EtOAc (1 mL) was added 4 N HCl in EtOAc (0.26 mL, 1 mmol) . The mixture was stirred at room temperature for 1 h. After completion of the reaction, the mixture was concentrated. The crude product was purified by pre-HPLC (C18 column, eluted with MeCN in H 2 O, TFA condition) . The desired components were lyophilized to afford the title compound 11 (8.9 mg, yield 9%) as a light-yellow solid.
  • Step 1 To a mixture of 9-6 (2 g, 5.5 mmol) and DIPEA (7.1 g, 55 mmol) in NMP (20 mL) was added 12-1 (1 g, 6.1 mmol) at room temperature. The mixture was stirred at 100 °C for 12 h. After completion of the reaction, the mixture was cooled down to room temperature. The resulting mixture was filtered and the filtrate was purified directly by reverse phase flash chromatography (C18 column, eluted with MeCN in H 2 O, TFA condition) . The desired components were lyophilized to afford the title compound 12-2 (1.4 g, yield 52%) as a yellow solid.
  • LCMS m/z calculated for C 20 H 24 BrClN 4 O 2 S: 498.05; found: 499.48 [M+H] + .
  • Step 2 To a mixture of 12-2 (600 mg, 1.2 mmol) and TEA (1.2 g, 12 mmol) in DMF (10.0 mL) was added (Boc) 2 O (784.8 mg, 3.6 mmol) . The reaction was stirred at RT for 1h. After completion of the reaction, the mixture was extracted with DCM (20 mL x 2) and H 2 O (40 mL) . The combined organic layers were washed with brine, dried over anhydrous Na 2 SO 4 and concentrated. The residue was purified by silica gel column (eluted with 40%EtOAc in petroleum ether) to afford the title compound 12-3 (537 mg, yield 75%) as a light-yellow solid.
  • LCMS m/z calculated for C 25 H 32 BrClN 4 O 4 S: 598.10; found: 599.38 [M+H] + .
  • Step 3 A mixture of 12-3 (800 mg, 1.3 mmol) , B 2 (pin) 2 (660.4 mg, 2.6 mmol) , Pd 2 (dba) 3 (119.1 mg, 0.13 mmol) , Ph 2 PCy (69.7 mg, 0.26 mmol) , pivalic acid (66.3 mg, 0.65 mmol) and K 2 CO 3 (538.2 mg, 3.9 mmol) in dioxane (15 mL) was stirred at 90°C under nitrogen atmosphere for 1 h. After completion of the reaction, the mixture was cooled down to room temperature and concentrated.
  • Step 4 A mixture of 12-4 (83 mg, 0.15 mmol) in EtOAc (1 mL) was added 4 N HCl in EtOAc (0.15 mL, 0.6 mmol) . The mixture was stirred at room temperature for 1 h. After completion of the reaction, the mixture was concentrated. The crude product was purified by pre-HPLC (C18 column, eluted with MeCN in H 2 O, TFA condition) . The desired components were lyophilized to afford the title compound 12 (6.2 mg, yield 9%) as a light-yellow solid.
  • Step 1 To a mixture of 7-3 (4 g, 11.7 mmol) in THF (40 mL) was added BH 3 . THF (35.1 mL, 35.1 mmol) dropwise at 0 °C under nitrogen atmosphere. The reaction was warmed slowly to 60 °C and stirred for 1 h. After completion of the reaction, the mixture was cooled down to room temperature and quenched with saturated NH 4 Cl solution. The mixture was extracted with EtOAc (200 mL) and H 2 O (300 mL) . The combined organic layer was washed with brine, dried over anhydrous Na 2 SO 4 and concentrated. The residue was purified by silica gel column (eluted with 10%EtOAc in petroleum ether) to afford the title compound 13-1 (3.7 g, yield 96%) as a white solid.
  • Step 2 A mixture of 13-1 (3.2 g, 9.8 mmol) , 3-2 (3.3 g, 19.6 mmol) , Pd 2 (dba) 3 (448.8 mg, 0.49 mmol) , xantphos (567.4 mg, 0.98 mmol) and DIPEA (3.8 g, 9.4 mmol) in dioxane (100 mL) was stirred at 105 °C for 2 h. After completion of the reaction, the mixture was cooled down to room temperature and concentrated. The residue was purified by silica gel column (eluted with 15%EtOAc in petroleum ether) to afford title compound 13-2 (2.4 g, yield 63%) as a yellow solid.
  • LCMS m/z calculated for C 12 H 10 BrClN 2 OS: 343.94; found: 327.63 [M-OH+H] + .
  • Step 3 To a mixture of 13-2 (892 mg, 2.6 mmol) and K 2 CO 3 (1.8 g, 12.9 mmol) in DMAc (15 mL) was added 12-1 (772.2 mg, 2.9 mmol) at room temperature. The reaction mixture was stirred at 120 °C for 3 h. After completion of the reaction, the mixture was cooled down to room temperature and filtered. The filtrate was concentrated and purified by reverse phase flash chromatography (C18 column, eluted with MeCN in H 2 O, TFA condition) . The desired components were lyophilized to afford the title compound 13-3 (647 mg, yield 52%) as a light-yellow solid.
  • LCMS m/z calculated for C 21 H 27 BrN 4 O 2 S: 478.10; found: 479.94 [M+H] + .
  • Step 4 A mixture of 13-3 (640 mg, 1.3 mmol) , B 2 (pin) 2 (660.4 mg, 2.6 mmol) , Pd 2 (dba) 3 (119.8 mg, 0.13 mmol) , Ph 2 PCy (69.7 mg, 0.26 mmol) , pivalic acid (66.3 mg, 0.65 mmol) and K 2 CO 3 (538.2 mg, 3.9 mmol) in dioxane (20 mL) was stirred at 90°C under nitrogen atmosphere for 1 h. After completion of the reaction, the mixture was cooled down to room temperature and filtered. The filtrate was concentrated.
  • ⁇ Y is %inhibition and X is compound concentration.
  • KYSE-520 were cultured in RPMI-1640 medium containing 1%penicillin-streptomycin and 10%FBS. The cell lines were incubated in a humidified incubator with 5%carbon dioxide (CO2) at 37 °C.
  • CO2 5%carbon dioxide
  • Test compounds were first diluted with DMSO from 20 mM to 5 mM, then 3-fold serial dilutions were further performed to make a total of 9 concentrations for each compound.
  • Staurosporine was diluted from 20 mM in DMSO stock to 1.5 mM, then 3-fold serial dilution was further made for 9 concentrations.
  • test compounds were: 10000, 3333, 1111, 370, 123, 41.2, 13.7, 4.6, 1.5, 0 nM.
  • Cell lines were incubated for 120h in a humidified incubator with 5%carbon dioxide (CO 2 ) at 37 °C.
  • Y was the %inhibition and X was the log concentration of compounds.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Epidemiology (AREA)
  • Neurology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Phosphine oxide compounds that inhibit SHP2, compositions thereof, as well as methods of preparation thereof and for treating diseases associated with SHP2.

Description

BENZO [C] [1, 2] OXABOROL-1 (3H) -OL DERIVATIVES AS SHP2 INHIBITORS, COMPOSITIONS AND METHODS THEREOF Technical Field of the Invention
This invention relates to certain novel SHP2 inhibitors, which are useful for treating SHP2 mediated diseases. More specifically, this disclosure is directed to phosphine oxide compounds which inhibit SHP2 and compositions comprising these compounds, methods of treating diseases associated with SHP2, and methods of synthesizing these compounds.
Background of the Invention
Src homology region 2 (SH2) -containing protein tyrosine phosphatase 2 (SHP2) , encoded by the PTPN11 gene, is a cytoplasmic non-receptor phosphotyrosine phosphatase (Blood 2011; 118: 1504-1515. Nature 2013; 499: 491-495) . SHP2 positively modulates RAS signaling and plays roles in cell proliferation, migration, differentiation and other important physiological processes (Mol Cell 2004; 13: 341-355) . Structurally, SHP2 contains a protein tyrosine phosphatase catalytic domain (PTP) , C-terminal tail with tyrosyl phosphorylation sites, and two SH2 domains, N-SH2 and C-SH2 domain. The N-SH2 domain plays a key role in de-phosphorylating SHP2 itself with two non-overlapping ligand binding sites, while the C-SH2 domain provides binding energy and specificity (J. Cell. Mol. Med 2015; 19: 2075-2083) . Both N-and C-SH2 domains control the SHP2 subcellular localization and function. The PTP domain has a P ring catalytic structure to de-phosphorylate substrates (J. Biol. Chem 2013; 15: 10472-10482) .
The SHP2 has two types of mutations, loss-of-function (LOF) mutations and gain-of-function (GOF) mutations. The GOF mutations of SHP2 mainly occur in cancers and promote cancer progression in cell-autonomous and non-autonomous mechanisms.
The GOF mutants of SHP2 include D61G (Med. Sci. Monit 2017; 23: 2931-2938) , D61Y (Exp. Hematol 2008; 36: 1285-1296) , E76K (Mol. Carcinog 2018; 57: 619-628) , E76Q (J Chem Inf Model 2019; 59: 3229-3239) and T507K (J. Biol. Chem 2020; 18: 6187-6201) , which  were observed in juvenile myelomonocytic leukemia, colorectal cancer, glioblastoma multiforme and other diseases.
SHP2E76K, a GOF mutation, activates Erk and Src to promote progression of lung cancer. SHP2E76K can also promote the malignance of glioblastoma multiform cells through Erk/cAMP/CREB signaling pathway (OncoTargets Ther 2019; 12: 9435-9447. Carcinogenesis 2014; 8: 1717-1725) . Overall, SHP2 represents a potential biomarker and therapeutic target in several types of human cancer.
While SHP2 inhibitors have been reported (e.g., WO 2021/088945; WO 2020/094104; WO 2020/0210384; WO 2020/081848; WO 2019/182960; WO 2019/118909; WO 2018/172984; WO 2018/136265; WO 2018/136264; WO 2018/081091; WO 2018/057884; WO 2018/013597; WO 2017/216706; WO 2017/211303; WO 2017/210134; WO 2016/203406; WO 2016/203405; WO 2016/203404; WO 2015/107495; WO 2015/107494; and WO 2015/107493) , , significant challenges remain in finding and developing a compound the safety and efficacy required for regulatory approval.
Thus, an urgent and unmet need exists for novel SHP2 inhibitors with improved efficacy and safety profiles suitable for development into an approved medicine.
Summary of the Invention
The present invention provides novel phosphine oxide compounds that are SHP2 inhibitors and have improved potency, selectivity, pharmacokinetics and safety profiles as well as good pharmacokinetics characteristics. The invention further provides pharmaceutical compositions and methods of preparation and use of these compounds in treating a variety of diseases and conditions, such as SHP2-mediated diseases.
In one aspect, the invention generally relates to a compound having the structural formula of (I) :
wherein
each of R1 and R2 is independently NH2 or a C1-6 alkyl, or R1 and R2, together with the carbon atom they are bound to, form a substituted or unsubstituted 5-membered carbocyclic or heterocyclic ring;
R3 is H, CH3 or NH2;
R4 is H, CH2OH, C (O) OCH3, C (O) NH2, or C (O) NHCH3;
each of R5, R6 and R8 is independently H, halogen, C1-6 alkyl, C4-6 cycloalkyl, C2-6 alkenyl or alkynyl, OR, SR, CN, CH (O) , CH=NOR, C (O) NRR’, S (O) 2NRR’, NRR’, NRC (O) R’, NRS (O) 2R’, S (O) R, S (O) 2R, 5-or 6-membered aryl, (CH2nXR, wherein X is selected from O, S and NR; provided that, one of R6 and R8 along with R7, together with the carbon atoms they are bound to, form a 5-membered heterocyclic ring comprising an -O-B (RB) -group in the ring, wherein RB is OH or OCH3; and
each R and R’ is independently H, C1-6 alkyl or C3-6 cycloalkyl, or R and R’, together with the N atom they are bound to, form a 4-to 6-membered heterocyclic ring;
or a pharmaceutically acceptable form or an isotope derivative thereof.
In another aspect, the invention generally relates to a pharmaceutical composition comprising a compound disclosed herein and a pharmaceutically acceptable excipient, carrier, or diluent.
In yet another aspect, the invention generally relates to a pharmaceutical composition comprising a compound of the invention effective to treat or reduce cancer, or a related disease or condition.
In yet another aspect, the invention generally relates to a unit dosage form comprising a pharmaceutical composition disclosed herein.
In yet another aspect, the invention generally relates to a method for treating or reducing a disease or condition, comprising administering to a subject in need thereof a therapeutically effective amount of a pharmaceutical composition comprising a compound disclosed herein and a pharmaceutically acceptable excipient, carrier, or diluent.
In yet another aspect, the invention generally relates to use of a compound disclosed herein for treating or reducing a disease or condition.
In yet another aspect, the invention generally relates to use of a compound disclosed herein and a pharmaceutically acceptable excipient, carrier, or diluent, in preparation of a medicament for treating or reducing a disease or condition.
Definitions
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. General principles of organic chemistry, as well as specific functional moieties and reactivity, are described in “Organic Chemistry” , Thomas Sorrell, University Science Books, Sausalito: 1999, and “March’s Advanced Organic Chemistry” , 5th Ed.: Smith, M.B. and March, J., John Wiley &Sons, New York: 2001, the entire contents of which are hereby incorporated by reference.
Certain compounds of the present invention may exist in particular geometric or stereoisomeric forms. The present invention contemplates all such compounds, including cis-and trans-isomers, R-and S-enantiomers, diastereomers, (D) -isomers, (L) -isomers, the racemic mixtures thereof, and other mixtures thereof, as falling within the scope of the invention. Additional asymmetric carbon atoms may be present in a substituent such as an alkyl group. All such isomers, as well as mixtures thereof, are intended to be included in this invention.
Isomeric mixtures containing any of a variety of isomer ratios may be utilized in accordance with the present invention. For example, where only two isomers are combined, mixtures containing 50: 50, 60: 40, 70: 30, 80: 20, 90: 10, 95: 5, 96: 4, 97: 3, 98: 2, 99: 1, or 100: 0 isomer ratios are contemplated by the present invention. Those of ordinary skill in the art will readily appreciate that analogous ratios are contemplated for more complex isomer mixtures.
If, for instance, a particular enantiomer of a compound of the present invention is desired, it may be prepared by asymmetric synthesis, or by derivation with a chiral auxiliary, where the resulting diastereomeric mixture is separated and the auxiliary group cleaved to provide the pure desired enantiomers. Alternatively, where the molecule contains a basic functional group, such as amino, or an acidic functional group, such as carboxyl, diastereomeric salts are formed with an appropriate optically-active acid or base, followed by resolution of the diastereomers thus formed by fractional crystallization or chromatographic methods well known in the art, and subsequent recovery of the pure enantiomers.
Solvates and polymorphs of the compounds of the invention are also contemplated herein. Solvates of the compounds of the present invention include, for example, hydrates.
Definitions of specific functional groups and chemical terms are described in more detail below. When a range of values is listed, it is intended to encompass each value and sub-range within the range. For example, "C1-6 alkyl" is intended to encompass, C1, C2, C3, C4, C5, C6, C1-6, C1-5, C1-4, C1-3, C1-2, C2-6, C2-5, C2-4, C2-3, C3-6, C3-5, C3-4, C4-6, C4-5, and C5-6 alkyl.
As used herein, the term "alkyl" refers to a straight, branched or cyclic hydrocarbon radical consisting solely of carbon and hydrogen atoms, containing no unsaturation, having from one to ten carbon atoms (e.g., C1-10 alkyl) . Whenever it appears herein, a numerical range such as "1 to 10" refers to each integer in the given range; e.g., "1 to 10 carbon atoms" means that the alkyl group can consist of 1 carbon atom, 2 carbon atoms, 3 carbon atoms, etc., up to and including 10 carbon atoms, although the present definition also covers the occurrence of the term "alkyl" where no numerical range is designated. In some embodiments, “alkyl” can be a C1-6 alkyl group. In some embodiments, alkyl groups have 1 to 10, 1 to 8, 1 to 6, or 1 to 3 carbon atoms.
Representative saturated straight chain alkyls include, but are not limited to, -methyl, -ethyl, -n-propyl, -n-butyl, -n-pentyl, and -n-hexyl; while saturated branched alkyls include, but are not limited to, -isopropyl, -sec-butyl, -isobutyl, -tert-butyl, -isopentyl, 2-methylbutyl, 3-methylbutyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 2-methylhexyl, 3-methylhexyl, 4-methylhexyl, 5-methylhexyl, 2, 3-dimethylbutyl, and the like. The alkyl is attached to the parent molecule by a single bond.
Unless stated otherwise in the specification, an alkyl group is optionally substituted by one or more of substituents.
As used herein, the term "inhibit" refers to any measurable reduction of biological activity. Thus, as used herein, "inhibit" or "inhibition" may be referred to as a percentage of a normal level of activity.
As used herein, the term “effective amount” or “therapeutically effective amount” of an active agent refers to an amount sufficient to elicit the desired biological response. The effective amount, when administered in a proper dosing regimen, is sufficient to reduce or ameliorate the severity, duration or progression of the disorder being treated, prevent the advancement of the disorder being treated, cause the regression of the disorder being treated, or enhance or improve the prophylactic or therapeutic effect (s) of another therapy. As will be appreciated by those of ordinary skill in this art, the effective amount of a compound of the invention may vary depending on such factors as the desired biological endpoint, the pharmacokinetics of the compound, the disease being treated, the mode of administration, and the patient. An effective amount can be readily determined by a skilled physician, e.g., by first administering a low dose of the pharmacological agent (s) and then incrementally increasing the dose until the desired therapeutic effect is achieved with minimal or no undesirable side effects.
As used herein, the terms “treatment” or “treating” a disease or disorder refers to a method of reducing, delaying or ameliorating such a condition before or after it has occurred. Treatment may be directed at one or more effects or symptoms of a disease and/or the underlying pathology. The treatment can be any reduction and can be, but is not limited to, the complete ablation of the disease or the symptoms of the disease. As compared with an equivalent untreated control, such reduction or degree of prevention is at least 5%, 10%, 20%, 40%, 50%, 60%, 80%, 90%, 95%, or 100%as measured by any standard technique.
As used herein, the terms “prevent” , “preventing” , or “prevention” refer to a method for precluding, delaying, averting, or stopping the onset, incidence, severity, or recurrence of a disease or condition. For example, a method is considered to be a prevention if there is a reduction or delay in onset, incidence, severity, or recurrence of a disease or condition or one or more symptoms thereof in a subject susceptible to the disease or condition as compared to a subject not receiving the method. The disclosed method is also considered to be a prevention if there is a reduction or delay in onset, incidence, severity, or recurrence of osteoporosis or one or more symptoms of a disease or condition in a subject susceptible to the disease or condition after receiving the method as compared to the subject's progression prior to receiving treatment. Thus,  the reduction or delay in onset, incidence, severity, or recurrence of osteoporosis can be about a 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100%, or any amount of reduction in between.
As used herein, a "pharmaceutically acceptable form" of a disclosed compound includes, but is not limited to, pharmaceutically acceptable salts, esters, hydrates, solvates, polymorphs, isomers, prodrugs, and isotopically labeled derivatives thereof. In one embodiment, a "pharmaceutically acceptable form" includes, but is not limited to, pharmaceutically acceptable salts, esters, prodrugs and isotopically labeled derivatives thereof. In some embodiments, a "pharmaceutically acceptable form" includes, but is not limited to, pharmaceutically acceptable isomers and stereoisomers, prodrugs and isotopically labeled derivatives thereof.
In certain embodiments, the pharmaceutically acceptable form is a pharmaceutically acceptable salt. As used herein, the term "pharmaceutically acceptable salt" refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of subjects without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts are well known in the art. For example, Berge et al. describes pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences (1977) 66: 1-19. Pharmaceutically acceptable salts of the compounds provided herein include those derived from suitable inorganic and organic acids and bases. Examples of pharmaceutically acceptable, nontoxic acid addition salts are salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchioric acid or with organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange. Other pharmaceutically acceptable salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, besylate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, p-toluenesulfonate, undecanoate, valerate salts, and the like. In some embodiments, organic acids from which salts can be derived include, for example, acetic  acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, lactic acid, trifluoracetic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like.
The salts can be prepared in situ during the isolation and purification of the disclosed compounds, or separately, such as by reacting the free base or free acid of a parent compound with a suitable base or acid, respectively. Pharmaceutically acceptable salts derived from appropriate bases include alkali metal, alkaline earth metal, ammonium and N+ (C1-4alkyl) 4 salts. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, iron, zinc, copper, manganese, aluminum, and the like. Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, lower alkyl sulfonate and aryl sulfonate. Organic bases from which salts can be derived include, for example, primary, secondary, and tertiary amines, substituted amines, including naturally occurring substituted amines, cyclic amines, basic ion exchange resins, and the like, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, and ethanolamine. In some embodiments, the pharmaceutically acceptable base addition salt can be chosen from ammonium, potassium, sodium, calcium, and magnesium salts.
In certain embodiments, the pharmaceutically acceptable form is a "solvate" (e.g., a hydrate) . As used herein, the term "solvate" refers to compounds that further include a stoichiometric or non-stoichiometric amount of solvent bound by non-covalent intermolecular forces. The solvate can be of a disclosed compound or a pharmaceutically acceptable salt thereof. Where the solvent is water, the solvate is a "hydrate" . Pharmaceutically acceptable solvates and hydrates are complexes that, for example, can include 1 to about 100, or 1 to about 10, or 1 to about 2, about 3 or about 4, solvent or water molecules. It will be understood that the term "compound" as used herein encompasses the compound and solvates of the compound, as well as mixtures thereof.
In certain embodiments, the pharmaceutically acceptable form is a prodrug. As used herein, the term "prodrug" (or “pro-drug” ) refers to compounds that are transformed in vivo to yield a disclosed compound or a pharmaceutically acceptable form of the compound. A prodrug can be inactive when administered to a subject, but is converted in vivo to an active compound,  for example, by hydrolysis (e.g., hydrolysis in blood) . In certain cases, a prodrug has improved physical and/or delivery properties over the parent compound. Prodrugs can increase the bioavailability of the compound when administered to a subject (e.g., by permitting enhanced absorption into the blood following oral administration) or which enhance delivery to a biological compartment of interest (e.g., the brain or lymphatic system) relative to the parent compound. Exemplary prodrugs include derivatives of a disclosed compound with enhanced aqueous solubility or active transport through the gut membrane, relative to the parent compound.
The prodrug compound often offers advantages of solubility, tissue compatibility or delayed release in a mammalian organism (see, e.g., Bundgard, H., Design of Prodrugs (1985) , pp. 7-9, 21-24 (Elsevier, Amsterdam) . A discussion of prodrugs is provided in Higuchi, T., et al., "Pro-drugs as Novel Delivery Systems, " A.C.S. Symposium Series, Vol. 14, and in Bioreversible Carriers in Drug Design, ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987, both of which are incorporated in full by reference herein. Exemplary advantages of a prodrug can include, but are not limited to, its physical properties, such as enhanced water solubility for parenteral administration at physiological pH compared to the parent compound, or it can enhance absorption from the digestive tract, or it can enhance drug stability for long-term storage.
Prodrugs commonly known in the art include well-known acid derivatives, such as, for example, esters prepared by reaction of the parent acids with a suitable alcohol, amides prepared by reaction of the parent acid compound with an amine, basic groups reacted to form an acylated base derivative, etc. Of course, other prodrug derivatives may be combined with other features disclosed herein to enhance bioavailability. As such, those of skill in the art will appreciate that certain of the presently disclosed compounds having free amino, arnido, hydroxy or carboxylic groups can be converted into prodrugs. Prodrugs include compounds having an amino acid residue, or a polypeptide chain of two or more (e.g., two, three or four) amino acid residues which are covalently joined through peptide bonds to free amino, hydroxy or carboxylic acid groups of the presently disclosed compounds. The amino acid residues include the 20 naturally occurring amino acids commonly designated by three letter symbols and also include 4-hydroxyproline, hydroxylysine, demosine, isodemosine, 3-methylhistidine, norvalin, beta-alanine, gamma-aminobutyric acid, citrulline homocysteine, homoserine, ornithine and  methionine sulfone. Prodrugs also include compounds having a carbonate, carbamate, amide or alkyl ester moiety covalently bonded to any of the above substituents disclosed herein.
As used herein, the term “pharmaceutically acceptable” excipient, carrier, or diluent refers to a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting the subject pharmaceutical agent from one organ, or portion of the body, to another organ, or portion of the body. Each carrier must be "acceptable" in the sense of being compatible with the other ingredients of the formulation and not injurious to the patient. Some examples of materials which can serve as pharmaceutically-acceptable carriers include: sugars, such as lactose, glucose and sucrose; starches, such as corn starch and potato starch; cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients, such as cocoa butter and suppository waxes; oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols, such as propylene glycol; polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; esters, such as ethyl oleate and ethyl laurate; agar; buffering agents, such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer's solution; ethyl alcohol; phosphate buffer solutions; and other non-toxic compatible substances employed in pharmaceutical formulations. Wetting agents, emulsifiers and lubricants, such as sodium lauryl sulfate, magnesium stearate, and polyethylene oxide-polypropylene oxide copolymer as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the compositions.
As used herein, the term “subject” refers to any animal (e.g., a mammal) , including, but not limited to humans, non-human primates, rodents, and the like, which is to be the recipient of a particular treatment. Typically, the terms “subject” and “patient” are used interchangeably herein in reference to a human subject.
As used herein, the term “low dosage” refers to at least 5%less (e.g., at least 10%, 20%, 50%, 80%, 90%, or even 95%) than the lowest standard recommended dosage of a particular compound formulated for a given route of administration for treatment of any human disease or condition. For example, a low dosage of an agent that is formulated for administration by inhalation will differ from a low dosage of the same agent formulated for oral administration.
As used herein, the term “high dosage” is meant at least 5% (e.g., at least 10%, 20%, 50%, 100%, 200%, or even 300%) more than the highest standard recommended dosage of a particular compound for treatment of any human disease or condition.
Isotopically-labeled compounds are also within the scope of the present disclosure. As used herein, an "isotopically-labeled compound" or "isotope derivative" refers to a presently disclosed compound including pharmaceutical salts and prodrugs thereof, each as described herein, in which one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature. Examples of isotopes that can be incorporated into compounds presently disclosed include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine and chlorine, such as 2H, 3H, 13C, 14C, 15N, 18O, 17O, 31P, 32P, 35S, 18F, and 36Cl, respectively.
By isotopically-labeling the presently disclosed compounds, the compounds may be useful in drug and/or substrate tissue distribution assays. Tritiated (3H) and carbon-14 (14C) labeled compounds are particularly preferred for their ease of preparation and detectability. Further, substitution with heavier isotopes such as deuterium (2H) can afford certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life or reduced dosage requirements and, hence, may be preferred in some circumstances. Isotopically labeled compounds presently disclosed, including pharmaceutical salts, esters, and prodrugs thereof, can be prepared by any means known in the art. Benefits may also be obtained from replacement of normally abundant 12C with 13C. (See, WO 2007/005643, WO 2007/005644, WO 2007/016361, and WO 2007/016431. )
For example, deuterium (2H) can be incorporated into a compound disclosed herein for the purpose in order to manipulate the oxidative metabolism of the compound by way of the primary kinetic isotope effect. The primary kinetic isotope effect is a change of the rate for a chemical reaction that results from exchange of isotopic nuclei, which in turn is caused by the change in ground state energies necessary for covalent bond formation after this isotopic exchange. Exchange of a heavier isotope usually results in a lowering of the ground state energy for a chemical bond and thus causes a reduction in the rate in rate-limiting bond breakage. If the bond breakage occurs in or in the vicinity of a saddle-point region along the coordinate of a multi-product reaction, the product distribution ratios can be altered substantially. For explanation: if deuterium is bonded to a carbon atom at a non-exchangeable position, rate  differences of kM/kD = 2-7 are typical. If this rate difference is successfully applied to a compound disclosed herein that is susceptible to oxidation, the profile of this compound in vivo can be drastically modified and result in improved pharmacokinetic properties.
When discovering and developing therapeutic agents, the person skilled in the art is able to optimize pharmacokinetic parameters while retaining desirable in vitro properties. It is reasonable to assume that many compounds with poor pharmacokinetic profiles are susceptible to oxidative metabolism. In vitro liver microsomal assays currently available provide valuable information on the course of oxidative metabolism of this type, which in turn permits the rational design of deuterated compounds of those disclosed herein with improved stability through resistance to such oxidative metabolism. Significant improvements in the pharmacokinetic profiles of compounds disclosed herein are thereby obtained, and can be expressed quantitatively in terms of increases in the in vivo half-life (t/2) , concen-tra-tion at maximum therapeutic effect (Cmax) , area under the dose response curve (AUC) , and F; and in terms of reduced clearance, dose and materials costs.
The following is intended to illustrate the above: a compound which has multiple potential sites of attack for oxidative metabolism, for example benzylic hydrogen atoms and hydrogen atoms bonded to a nitrogen atom, is prepared as a series of analogues in which various combinations of hydrogen atoms are replaced by deuterium atoms, so that some, most or all of these hydrogen atoms have been replaced by deuterium atoms. Half-life determinations enable favorable and accurate determination of the extent of the extent to which the improvement in resistance to oxidative metabolism has improved. In this way, it is determined that the half-life of the parent compound can be extended by up to 100%as the result of deuterium-hydrogen exchange of this type.
Deuterium-hydrogen exchange in a compound disclosed herein can also be used to achieve a favorable modification of the metabolite spectrum of the starting compound in order to diminish or eliminate undesired toxic metabolites. For example, if a toxic metabolite arises through oxidative carbon-hydrogen (C-H) bond cleavage, it can reasonably be assumed that the deuterated analogue will greatly diminish or eliminate production of the unwanted metabolite, even if the particular oxidation is not a rate-determining step. Further information on the state of the art with respect to deuterium-hydrogen exchange may be found, for example in Hanzlik et al., J. Org. Chem. 55, 3992-3997, 1990, Reider et al., J. Org. Chem. 52, 3326-3334, 1987, Foster,  Adv. Drug Res. 14, 1-40, 1985, Gillette et al, Biochemistry 33 (10) 2927-2937, 1994, and Jarman et al. Carcinogenesis 16 (4) , 683-688, 1993.
Compounds of the present invention are, subsequent to their preparation, preferably isolated and purified to obtain a composition containing an amount by weight equal to or greater than 95% ( “substantially pure” ) , which is then used or formulated as described herein. In certain embodiments, the compounds of the present invention are more than 99%pure.
Combinations of substituents and variables envisioned by this invention are only those that result in the formation of stable compounds. The term “stable” , as used herein, refers to compounds which possess stability sufficient to allow manufacture and which maintains the integrity of the compound for a sufficient period of time to be useful for the purposes detailed herein (e.g., therapeutic or prophylactic administration to a subject) .
The recitation of a listing of chemical groups in any definition of a variable herein includes definitions of that variable as any single group or combination of listed groups. The recitation of an embodiment for a variable herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.
Detailed Description of the Invention
The invention is based in part on the unexpected discovery of novel phosphine oxide compounds that exhibit superior potency and selectivity, as well as good pharmacokinetics and safety profiles as SHP2 inhibitors and possess good pharmacokinetics characteristics. Also disclosed herein are pharmaceutical compositions and methods of preparation and use of these compounds in treating a variety of diseases and conditions, such as SHP2-mediated diseases.
In one aspect, the invention generally relates to a compound having the structural formula of (I) :
wherein
each of R1 and R2 is independently NH2 or a C1-6 alkyl, or R1 and R2, together with the carbon atom they are bound to, form a substituted or unsubstituted 5-membered carbocyclic or heterocyclic ring;
R3 is H, CH3 or NH2;
R4 is H, CH2OH, C (O) OCH3, C (O) NH2, or C (O) NHCH3;
each of R5, R6 and R8 is independently H, halogen, C1-6 alkyl, C4-6 cycloalkyl, C2-6 alkenyl or alkynyl, OR, SR, CN, CH (O) , CH=NOR, C (O) NRR’, S (O) 2NRR’, NRR’, NRC (O) R’, NRS (O) 2R’, S (O) R, S (O) 2R, 5-or 6-membered aryl, (CH2nXR, wherein X is selected from O, S and NR; provided that, one of R6 and R8 along with R7, together with the carbon atoms they are bound to, form a 5-membered heterocyclic ring comprising an -O-B (RB) -group in the ring, wherein RB is OH or OCH3; and
each R and R’ is independently H, C1-6 alkyl or C3-6 cycloalkyl, or R and R’, together with the N atom they are bound to, form a 4-to 6-membered heterocyclic ring;
or a pharmaceutically acceptable form or an isotope derivative thereof.
In certain embodiments of (I) , R6 along with R7, together with the carbon atoms they are bound to, for a 5-membered heterocyclic ring comprising an -O-B (RB) -group in the ring.
In certain embodiments, a compound of the invention has the structural formula:
wherein each of R9 and R10 is independently selected from H, C1-6 alkyl or C4-6 cycloalkyl.
In certain embodiments, a compound of the invention has the structural formula:
wherein each of R9 and R10 is independently selected from H, C1-6 alkyl or C4-6 cycloalkyl.
In certain embodiments of (I) , R8 along with R7, together with the carbon atoms they are bound to, for a 5-membered heterocyclic ring comprising an -O-B (RB) -group in the ring.
In certain embodiments, a compound of the invention has the structural formula:
wherein each of R9 and R10 is independently selected from H, C1-6 alkyl or C4-6 cycloalkyl.
In certain embodiments, a compound of the invention has the structural formula:
wherein each of R9 and R10 is independently selected from H, C1-6 alkyl or C4-6 cycloalkyl.
In certain embodiments of (IIA) - (IID) , each of R9 and R10 is H.
In certain embodiments of (I) - (IID) , RB is OH.
In certain embodiments of (I) - (IID) , RB is OCH3.
In certain embodiments of (I) - (IID) , R1 is a C1-3 alkyl and R2 is NH2 or a C1-3 alkyl substituted with NH2.
In certain embodiments of (I) - (IID) , R1 and R2 form a 5-membered carbocyclic or heterocyclic ring, optionally substituted, having the formula (IIIA) :
wherein
Z is O or CH2,
R11 is independently CH3 or NH2, and
i is 0, 1 or 2.
In certain embodiments of (IIIA) , Z is O.
In certain embodiments of (IIIA) , Z is CH2.
In certain embodiments of (I) - (IID) , R1 and R2 form a 5-6 bicyclic fused carbocyclic ring, optionally substituted, having the formula (IIIB) :
wherein
R11 is independently CH3 or NH2, and
i is 0, 1 or 2.
In certain embodiments of (IIIA) - (IIIB) , i is 1, and R11 is NH2.
In certain embodiments of (IIIA) - (IIIB) , i is 2, and the two R11’s are NH2 and CH3.
In certain embodiments of (I) - (IIIB) , R3 is NH2.
In certain embodiments of (I) - (IIIB) , R3 is H.
In certain embodiments of (I) - (IIIB) , R3 is CH3.
In certain embodiments of (I) - (IIIB) , R4 is H.
In certain embodiments of (I) - (IIIB) , R4 is C1-3 alkyl.
In certain embodiments of (I) - (IIIB) , R4 is CH2OH.
In certain embodiments of (I) - (IIIB) , R6 is Cl.
In certain embodiments of (I) - (IIIB) , R6 is F.
In certain embodiments of (I) - (IIIB) , R6 is H.
In certain embodiments of (I) - (IIIB) , R6 is CH3.
In certain embodiments of (I) - (IIIB) , R6 is CF3.
In certain embodiments of (I) - (IIIB) , R6 is NH2.
In certain embodiments of (I) - (IIIB) , R6 is OCH3.
In certain embodiments of (I) - (IIIB) , R5 or R8 is H.
In certain embodiments of (I) - (IIIB) , R5 or R8 is Cl.
In certain embodiments of (I) - (IIIB) , R5 or R8 is F.
In certain embodiments of (I) - (IIIB) , R5 or R8 is CH3.
In certain embodiments of (I) - (IIIB) , R5 or R8 is OCH3.
In certain embodiments of (I) - (IIIB) , R5 or R8 is CF3.
In certain embodiments of (I) - (IIIB) , R5 or R8 is NH2.
Non-limiting examples of compounds of the invention include a compound selected from Table 1.
Table 1. Exemplary Compounds


or a pharmaceutically acceptable form or an isotope derivative thereof.
In another aspect, the invention generally relates to a pharmaceutical composition comprising a compound disclosed herein and a pharmaceutically acceptable excipient, carrier, or diluent.
In yet another aspect, the invention generally relates to a pharmaceutical composition comprising a compound of the invention effective to treat or reduce cancer, or a related disease or condition.
In yet another aspect, the invention generally relates to a unit dosage form comprising a pharmaceutical composition disclosed herein.
In yet another aspect, the invention generally relates to a method for treating or reducing a disease or condition, comprising administering to a subject in need thereof a therapeutically effective amount of a pharmaceutical composition comprising a compound disclosed herein and a pharmaceutically acceptable excipient, carrier, or diluent.
In yet another aspect, the invention generally relates to use of a compound disclosed herein for treating or reducing a disease or condition.
In yet another aspect, the invention generally relates to use of a compound disclosed herein and a pharmaceutically acceptable excipient, carrier, or diluent, in preparation of a medicament for treating or reducing a disease or condition.
In certain embodiments of method of treatment and use herein, the disease or condition is cancer, or a related disease or condition thereof.
As used herein, the terms "cancer" and "cancerous" refer to or describe the physiological condition in mammals that is typically characterized by abnormal or unregulated cell growth. In certain embodiments, the cancer may be selected from melanoma, juvenile myelomoncytic leukemias, neuroblastoma, Philadelphia chromosome positive chronic myeloid, Philadelphia chromosome positive acute lymphoblastic leukemias, acute myeloid leukemias, myeloproliferative neoplasms (such as Polycythemia Vera, Essential Thrombocythemia and Primary Myelofibrosis) , breast cancer, lung cancer, liver cancer, colorectal cancer, esophageal cancer, gastric cancer, squamous-cell carcinoma of the head and neck, glioblastoma, anaplastic large-cell lymphoma, thyroid carcinoma, and spitzoid neoplasms. In certain embodiments, the cancer is melanoma. In certain embodiments, the cancer is juvenile myelomoncytic leukemias. In certain embodiments, the cancer is neuroblastoma. In certain embodiments, the cancer is Philadelphia chromosome positive chronic myeloid. In certain embodiments, the cancer is  Philadelphia chromosome positive acute lymphoblastic leukemias. In certain embodiments, the cancer is acute myeloid leukemias. In certain embodiments, the cancer is myeloproliferative neoplasms, such as Polycythemia Vera, Essential Thrombocythemia and Primary Myelofibrosis. In certain embodiments, the cancer is selected from the group consisting of Polycythemia Vera, Essential Thrombocythemia and Primary Myelofibrosis. In certain embodiments, the cancer is Polycythemia Vera. In certain embodiments, the cancer is Essential Thrombocythemia. In certain embodiments, the cancer is Primary Myelofibrosis. In certain embodiments, the cancer is breast cancer. In certain embodiments, the cancer is lung cancer. In certain embodiments, the cancer is liver cancer. In certain embodiments, the cancer is colorectal cancer. In certain embodiments, the cancer is esophageal cancer. In certain embodiments, the cancer is gastric cancer. In certain embodiments, the cancer is squamous-cell carcinoma of the head and neck. In certain embodiments, the cancer is glioblastoma. In certain embodiments, the cancer is anaplastic large-cell lymphoma. In certain embodiments, the cancer is thyroid carcinoma. In certain embodiments, the cancer is spitzoid neoplasms.
In certain embodiments, the cancer is selected from the group consisting of non-small cell lung cancer (NSCLC) , a colon cancer, an esophageal cancer, a rectal cancer, Juvenile myelomonocytic leukemia (JMML) , breast cancer, melanoma, and a pancreatic cancer.
Compositions of the present invention are administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir. The term "parenteral" as used herein includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal, intrathecal, intrahepatic, intralesional and intracranial injection or infusion techniques. Preferably, the compositions are administered orally, intraperitoneally or intravenously. Sterile injectable forms of the compositions of this invention include aqueous or oleaginous suspension. These suspensions are formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation is also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1, 3-butanediol. Among the acceptable vehicles and solvents that are employed are water, Ringer’s solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium.
For this purpose, any bland fixed oil employed includes synthetic mono-or di-glycerides. Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions also contain a long-chain alcohol diluent or dispersant, such as carboxymethyl cellulose or similar dispersing agents that are commonly used in the formulation of pharmaceutically acceptable dosage forms including emulsions and suspensions. Other commonly used surfactants, such as Tweens, Spans and other emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms are also be used for the purposes of formulation.
Pharmaceutically acceptable compositions of this invention are orally administered in any orally acceptable dosage form. Exemplary oral dosage forms are capsules, tablets, aqueous suspensions or solutions. In the case of tablets for oral use, carriers commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried cornstarch. When aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening, flavoring or coloring agents are optionally also added.
Alternatively, pharmaceutically acceptable compositions of this invention are administered in the form of suppositories for rectal administration. These can be prepared by mixing the agent with a suitable non-irritating excipient that is solid at room temperature but liquid at rectal temperature and therefore will melt in the rectum to release the drug. Such materials include cocoa butter, beeswax and polyethylene glycols.
Pharmaceutically acceptable compositions of this invention are also administered topically, especially when the target of treatment includes areas or organs readily accessible by topical application, including diseases of the eye, the skin, or the lower intestinal tract. Suitable topical formulations are readily prepared for each of these areas or organs.
Topical application for the lower intestinal tract can be effected in a rectal suppository formulation (see above) or in a suitable enema formulation. Topically-transdermal patches are also used.
For topical applications, provided pharmaceutically acceptable compositions are formulated in a suitable ointment containing the active component suspended or dissolved in one or more carriers. Exemplary carriers for topical administration include mineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene, polyoxypropylene compound, emulsifying wax and water. Alternatively, provided pharmaceutically acceptable compositions can be formulated in a suitable lotion or cream containing the active components suspended or dissolved in one or more pharmaceutically acceptable carriers. Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water.
Pharmaceutically acceptable compositions of this invention are optionally administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and are prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other conventional solubilizing or dispersing agents.
Most preferably, pharmaceutically acceptable compositions of this invention are formulated for oral administration. Such formulations may be administered with or without food. In some embodiments, pharmaceutically acceptable compositions of this invention are administered without food. In other embodiments, pharmaceutically acceptable compositions of this invention are administered with food.
The amount of compounds of the present invention that is optionally combined with the carrier materials to produce a composition in a single dosage form will vary depending upon the host treated, the particular mode of administration. Preferably, provided compositions should be formulated so that a dosage of between 0.01 -100 mg/kg body weight/day of the compound can be administered to a patient receiving these compositions.
It should also be understood that a specific dosage and treatment regimen for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, rate of excretion, drug combination, and the judgment of the treating physician and the severity of the particular disease being treated. The amount of a compound of the present invention in the composition will also depend upon the particular compound in the composition.
Examples
As depicted in the Examples below, in certain exemplary embodiments, compounds are prepared according to the following general procedures. It will be appreciated that, although the general methods depict the synthesis of certain compounds of the present invention, the following general methods, and other methods known to one of ordinary skill in the art, can be applied to all compounds and subclasses and species of each of these compounds, as described herein.
Compound numbers utilized in the Examples below correspond to compound numbers set forth supra.
1H was recorded at 400 MHz on a Varian Mercury 400 spectrometer. 13C NMR was recorded at 100 MHz. Proton chemical shifts were internally referenced to the residual proton resonance in CDCl3 (7.26 ppm) . Carbon chemical shifts were internally referenced to the deuterated solvent signals in CDCl3 (77.20 ppm) .
LC-MS spectra were recorded on a Shimadzu LC-MS2020 using Agilent C18 column (Eclipse XDB-C18, 5um, 2.1 x 50mm) with flow rate of 1 mL/min. Mobile phase A: 0.1%of formic acid in water; mobile phase B: 0.1%of formic acid in acetonitrile. A general gradient method was used.
Table 2
Analytical HPLC was performed on Agilent 1200 HPLC with a Zorbax Eclipse XDB C18 column (2.1 x 150 mm) with flow rate of 1 mL/min. Mobile phase A: 0.1%of TFA in water; mobile phase B: 0.1%of TFA in acetonitrile. A general method with following gradient was used.
Table 3
Preparative HPLC was performed on Varian ProStar using Hamilton C18 PRP-1 column (15 x 250 mm) with flow rate of 20 mL/min. Mobile phase A: 0.1%of TFA in water; mobile phase B: 0.1%of TFA in acetonitrile. A typical gradient method was used.
Table 4
Example 1.
Synthesis of 6- ( (3-amino-5- (4-amino-4-methylpiperidin-1-yl) pyrazin-2-yl) thio) benzo [c] [1, 2] oxaborol-1 (3H) -ol (1)
Synthetic scheme 1
Step 1: A solution of compound 1-1 (1 g, 3.22 mmol) in toluene (10 mL) was treated with ethylene glycol (600 mg, 9.67 mmol) and PTSA (55 mg, 0.32 mmol) . The reaction was stirred at 120 ℃ for 3 h and cooled to room temperature. The mixture was diluted with EtOAc (50 mL) , washed with H2O (50 mL) and saturated NaHCO3 (50 mL) . The organic layer was dried over anhydrous Na2SO4, filtered and concentrated to afford the title compound 1-2 (1.08 g, yield 94%) as a colorless oil, which was used into next step without further purification.
Step 2: A mixture of compound 1-2 (500 mg, 1.41 mmol) , compound 1-3 (258 mg, 1.41 mmol) , Pd2 (dba) 3 (100 mg, 0.11 mmol) , xantphos (128 mg, 0.22 mmol) and DIPEA (550 mg, 4.25 mmol) in dioxane (6 mL) was stirred under nitrogen atmosphere at 115 ℃ for 2 h. After completion of the reaction, the mixture was filtered over diatomite and concentrated. The crude product was purified by silica gel column (eluted with 25%EtOAc in petroleum ether) to afford the title compound 1-4 (400 mg, yield 73%) as a yellow solid. LCMS: m/z calculated for C13H11BrClN3O2S: 386.94; found 387.59 [M+H] +.
Step 3: To a mixture of compound 1-5 (330 mg, 1.54 mmol) and K2CO3 (356 mg, 2.58 mmol) in DMAc (5 mL) was added compound 1-4 (400 mg, 1.03 mmol) . The mixture was stirred at 120 ℃ for 1 h. After the reaction was cooled to room temperature, the mixture was extracted with EtOAc (50 mL x 2) and H2O (50 mL) . The organic layers were washed with brine, filtered and concentrated. The crude product was purified by silica gel column (eluted with 30%EtOAc in petroleum ether) to afford the title compound 1-6 (469 mg, yield 80%) as a yellow foam. 1H NMR (400 MHz, DMSO-d6) δ 7.58 (s, 1H) , 7.43 (d, J = 8.2 Hz, 1H) , 7.23 (d, J  = 1.6 Hz, 1H) , 7.12 –7.08 (m, 1H) , 6.61 (s, 1H) , 6.15 (s, 2H) , 5.87 (s, 1H) , 4.04 (t, J = 6.9 Hz, 2H) , 3.95 (t, J = 6.9 Hz, 2H) , 3.83 (d, J = 13.6 Hz, 2H) , 3.22 (t, J = 11.4 Hz, 2H) , 2.08 (d, J = 13.4 Hz, 2H) , 1.44 (d, J = 13.3 Hz, 2H) , 1.39 (s, 9H) , 1.25 (s, 3H) .
Step 4: A mixture of compound 1-6 (300 mg, 0.53 mmol) , B2 (Pin) 2 (336 mg, 1.32 mmol) , Pd (dppf) Cl2 (38 mg, 0.05 mmol) and KOAc (156 mg, 1.60 mmol) in dioxane (6 mL) was stirred under nitrogen atmosphere at 90 ℃ for 12 h. After completion of the reaction, the mixture was filtered over diatomite and concentrated. The crude product was purified by silica gel column (eluted with 25%EtOAc in petroleum ether) to afford the title compound 1-7 (230 mg, yield 70%) as an orange oil. LCMS: m/z calculated for C30H44BN5O6S: 613.31; found 614.95 [M+H] +.
Step 5: Citric acid (500 mg, 2.60 mmol) was added to a solution of compound 1-7 (200 mg, 0.33 mmol) in THF (5 mL) and H2O (5 mL) . The mixture was stirred at room temperature for 5 h. After completion of the reaction, the mixture was concentrated. The crude product was purified by reverse phase flash chromatography (C18 column, eluted with acetonitrile in water, TFA condition) . The desired components were lyophilized to afford the title compound 1-8 (66 mg, yield 41%) as a yellow solid. LCMS: m/z calculated for C20H30BN5O5S: 487.21; found 414.76 [M-tBu-OH+H] +.
Step 6: To a solution of compound 1-8 (66 mg, 0.14 mmol) in anhydrous THF (3 mL) at 0 ℃ was added NaBH4 (15 mg, 0.40 mmol) . The mixture was stirred at room temperature under nitrogen atmosphere for 8 h. After completion of the reaction, the mixture was extracted with EtOAc (10 mL x 2) and H2O (10 mL) . The organic layers were washed with brine, filtered and concentrated. The crude product was purified by pre-TLC (SiO2, petroleum ether: EtOAc =1: 1) to afford the title compound 1-9 (47 mg, yield 73%) as a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ 9.21 (s, 1H) , 7.55 (s, 1H) , 7.46 (s, 1H) , 7.34 –7.25 (m, 2H) , 6.60 (s, 1H) , 6.03 (s, 2H) , 4.93 (s, 2H) , 3.81 (d, J = 13.3 Hz, 2H) , 3.24 –3.16 (m, 2H) , 2.07 (d, J = 11.8 Hz, 2H) , 1.43 (d, J = 10.3 Hz, 2H) , 1.39 (s, 9H) , 1.25 (s, 3H) . LCMS: m/z calculated for C22H30BN5O4S: 471.21; found: 354.80 [M-tBu-OH+H] +.
Step 7: 4 N HCl in dioxane (2.5 mL) was added to a solution of compound 1-9 (50 mg, 0.11 mmol) in dioxane (2.5 mL) and MeOH (0.5 mL) . The mixture was stirred at room temperature for 2 h. After completion of the reaction, EtOAc (25 mL) was added thereto to form a yellow precipitate. The yellow precipitate was filtered, washed with EtOAc (25 mL) , DCM (25  mL) and petroleum ether (25 mL) , dried in vacuum to afford the title compound 1 (20 mg, yield 46%) as a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ 7.59 (s, 1H) , 7.49 (s, 1H) , 7.33 (d, J =8.1 Hz, 1H) , 7.29 (dd, J = 8.0, 1.8 Hz, 1H) , 4.92 (s, 2H) , 4.00 (dt, J = 14.2, 4.7 Hz, 2H) , 3.28 (ddd, J = 13.6, 9.3, 4.1 Hz, 2H) , 1.77 –1.68 (m, 4H) , 1.37 (s, 3H) . LCMS: m/z calculated for C17H22BN5O2S: 371.16; found: 394.73 [M+Na] +.
Example 2.
Synthesis of 6- ( (3-amino-5- ( (3S, 4S) -4-amino-3-methyl-2-oxa-8-azaspiro [4.5] decan-8-yl) pyrazin-2-yl) thio) benzo [c] [1, 2] oxaborol-1 (3H) -ol (2)
Synthetic scheme 2
Step 1: A solution of compound 2-1 (800 mg, 2.13 mmol) and TFA (2 mL) in DCM (6 mL) was stirred at room temperature for 3 h. After completion of the reaction, the mixture was concentrated to afford the title compound 2-2 (TFA salt, 810 mg, yield 98%) as a colorless oil, which was used into next step without further purification.
Step 2: To a mixture of compound 2-2 (717 mg, 1.84 mmol, TFA salt) and K2CO3 (1.07 g, 7.74 mmol) in DMAc (10 mL) was added compound 1-4 (600 mg, 1.54 mmol) . The mixture was stirred at 120 ℃ for 16 h. After the reaction was cooled to room temperature, the mixture was extracted with EtOAc (100 mL x 2) and H2O (100 mL) . The organic layers were washed with brine, filtered and concentrated. The crude product was purified by silica gel column (eluted with 25%EtOAc in petroleum ether) to afford the title compound 2-3 (470 mg, yield 48%) as a light brown slurry. LCMS: m/z calculated for C26H36BrN5O4S2: 625.14; found 571.66 [M-tBu+H] +.
Step 3: A mixture of compound 2-3 (400 mg, 0.64 mmol) , B2 (Pin) 2 (325 mg, 1.28 mmol) , Pd (dppf) Cl2 (46 mg, 0.06 mmol) and KOAc (218 mg, 2.22 mmol) in dioxane (6 mL) was stirred under nitrogen atmosphere at 90 ℃ for 12 h. After completion of the reaction, the mixture was filtered over diatomite and concentrated. The crude product was purified by silica gel column (eluted with 25%EtOAc in petroleum ether) to afford the title compound 2-4 (270 mg, yield 63%) as a light brown solid. LCMS: m/z calculated for C32H48BN5O6S2: 673.31; found 618.17 [M-tBu+H] +.
Step 4: Citric acid (547 mg, 2.85 mmol) was added to a solution of compound 2-4 (240 mg, 0.36 mmol) in THF (5 mL) and H2O (5 mL) . The mixture was stirred at room temperature for 3 h. After completion of the reaction, the mixture was concentrated. The crude product was purified by reverse phase flash chromatography (C18 column, eluted with acetonitrile in water, TFA condition) . The desired components were lyophilized to afford the title compound 2-5 (90 mg, yield 46%) as a yellow solid. LCMS: m/z calculated for C24H34BN5O5S2: 547.21; found 492.01 [M-tBu+H] +.
Step 5: To a solution of compound 2-5 (85 mg, 0.16 mmol) in anhydrous THF (3 mL) at 0 ℃ was added NaBH4 (15 mg, 0.40 mmol) . The mixture was stirred at room temperature under nitrogen atmosphere for 8 h. After completion of the reaction, the mixture was extracted with DCM (10 mL x 2) and H2O (10 mL) . The organic layers were washed with brine, filtered and concentrated. The crude product was purified by pre-TLC (SiO2, petroleum ether: EtOAc =1: 4) to afford the title compound 2-6 (61 mg, yield 74%) as a yellow solid. LCMS: m/z calculated for C24H34BN5O4S2: 531.21; found: 555.06 [M+Na] +.
Step 6: 4 N HCl in EtOAc (2.5 mL) was added to a solution of compound 2-6 (50 mg, 0.09 mmol) in EtOAc (2.5 mL) . The mixture was stirred at room temperature for 10 min, a  brilliant yellow precipitate was formed. After further stirring for 30 min, the precipitate was filtered, washed with EtOAc (25 mL) . The crude product was purified by pre-HPLC (C18 column, eluted with MeCN in H2O, TFA condition) . The desired components were lyophilized to afford the title compound 2 (10 mg, yield 25%) as a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ 7.58 (s, 1H) , 7.48 (s, 1H) , 7.34 (d, J = 8.0 Hz, 1H) , 7.29 (d, J = 7.8 Hz, 1H) , 4.93 (s, 2H) , 4.20 (dd, J = 11.6, 6.2 Hz, 2H) , 4.15 –4.02 (m, 2H) , 3.88 (d, J = 8.9 Hz, 1H) , 3.36 (d, J = 4.7 Hz, 1H) , 3.07 –2.93 (m, 2H) , 1.69 (q, J = 8.9, 7.6 Hz, 3H) , 1.54 (dd, J = 14.1, 4.8 Hz, 1H) , 1.21 (d, J = 6.6 Hz, 3H) . LCMS: m/z calculated for C20H26BN5O3S: 427.18; found: 428.96 [M+H] +. Example 3.
Synthesis of (S) -6- ( (5- (1-amino-1, 3-dihydrospiro [indene-2, 4'-piperidin] -1'-yl) pyrazin-2-yl) thio) benzo [c] [1, 2] oxaborol-1 (3H) -ol (3)
Synthetic scheme 3
Step 1: A mixture of compound 3-1 (500 mg, 1.60 mmol) , compound 3-2 (270 mg, 1.60 mmol) , Pd2 (dba) 3 (146 mg, 0.16 mmol) , xantphos (185 mg, 0.32 mmol) and DIPEA (620 mg, 4.80 mmol) in dioxane (6 mL) was stirred at 115 ℃ under nitrogen atmosphere for 2 h. After completion of the reaction, the mixture was cooled, filtered and concentrated. The crude product was purified by silica gel chromatography (eluted with 30%EtOAc in petroleum ether) to afford the title compound 3-2 (318 mg, yield 60%) as a light-yellow solid. LCMS: m/z calculated for C11H8BrClN2OS: 329.92; found 331.47 [M+H] +.
Step 2: To a mixture of compound 3-4 (326 mg, 1.18 mmol) and DIPEA (1.23 g, 9.52 mmol) in NMP (3.5 mL) was added compound 3-3 (300 mg, 0.90 mmol) . The mixture was stirred at 120 ℃ for 7 h. After completion of the reaction, the mixture was cooled to room temperature and diluted with EtOAc (50 mL) . The resulting mixture was washed with saturated NH4Cl solution (100 mL) . The organic layer was washed with brine, filtered and concentrated. The crude product was purified by reverse phase flash chromatography (eluted with MeCN in H2O, TFA condition) to afford the title compound 3-5 (160 mg, yield 35%) as a yellow solid. LCMS: m/z calculated for C24H25BrN4OS: 496.09; found 497.70 [M+H] +.
Step 3: A mixture of compound 3-5 (100 mg, 0.20 mmol) , B2 (Pin) 2 (127 mg, 0.50 mmol) , Pd (dppf) Cl2 (15 mg, 0.02 mmol) and KOAc (108 mg, 1.10 mmol) in dioxane (1.5 mL) was stirred under nitrogen atmosphere at 90 ℃ for 5 h. After completion of the reaction, the mixture was filtered over diatomite and concentrated. The residue was extracted with DCM (20 mL x 2) and H2O (20 mL) . The combined organic layers were dried over anhydrous Na2SO4, filtered and concentrated. The crude product was purified by pre-TLC (SiO2, DCM: MeOH =15: 1) to afford the title compound 3 (12 mg, yield 13%) as a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ 8.32 (d, J = 1.3 Hz, 1H) , 8.14 (d, J = 1.4 Hz, 1H) , 7.64 –7.60 (m, 1H) , 7.42 (dd, J =8.0, 1.8 Hz, 1H) , 7.37 (d, J = 8.0 Hz, 1H) , 7.33 –7.30 (m, 1H) , 7.17 (dq, J = 7.0, 3.5 Hz, 3H) , 4.95 (s, 2H) , 4.20 (d, J = 4.4 Hz, 2H) , 3.85 (s, 1H) , 3.15 (d, J = 13.8 Hz, 2H) , 3.07 (d, J = 15.8 Hz, 1H) , 2.65 (d, J = 15.7 Hz, 1H) , 1.81 –1.71 (m, 1H) , 1.68 –1.58 (m, 1H) , 1.55 –1.40 (m, 2H) . LCMS: m/z calculated for C24H25BN4O2S: 444.18; found 428.76 [M-OH+H] +.
Example 4.
Synthesis of (S) -5- ( (5- (1-amino-1, 3-dihydrospiro [indene-2, 4'-piperidin] -1'-yl) pyrazin-2-yl) thio) -6-chlorobenzo [c] [1, 2] oxaborol-1 (3H) -ol (4)
Synthetic scheme 4
Step 1: To a cool mixture of HNO3 (35 mL) and conc. H2SO4 (55 mL) at 0 ℃ was added compound 4-1 (10.0 g, 45.55 mmol) in portions. The resulting mixture was stirred at 0 ℃for 3 h. After completion of the reaction, the mixture was poured into ice-water with stirring. The precipitate was filter and washed with H2O. The solid was crystallized in EtOAc to afford the title compound 4-2 (11.7 g, yield 97%) as a light-yellow solid.
Step 2: NaBH4 (428 mg, 11.32 mmol) was added slowly to a solution of compound 4-2 (2.0 g, 7.56 mmol) in MeOH (20 mL) at 0 ℃. The mixture was stirred at 0 ℃ for 2 h and at room temperature for 10 h. After completion of the reaction, the mixture was quenched with cold H2O (50 mL) , extracted with EtOAc (50 mL x 2) . The organic layer was washed with brine, dried over anhydrous Na2SO4, filtered and concentrated to afford the title compound 4-2 (1.9 g, yield 94%) . The crude product was used into the next step without further purification.
Step 3: A mixture of compound 4-3 (1.9 g, 7.13 mmol) and Fe powder (1.6 g, 28.57 mmol) in EtOH (20 mL) and conc. HCl (5 mL) was stirred at 70 ℃ for 1.5 h. After completion of the reaction, the mixture was cooled, filtered and adjust pH to 11 with 2 N NaOH. The resulting mixture was extracted with EtOAc (100 mL) . The organic layer was washed with brine, dried over anhydrous Na2SO4, filtered and concentrated. The crude product was purified by silica gel chromatography (eluted with 30%EtOAc in petroleum ether) to afford the title compound 4-4 (1.2 g, yield 71%) as a brown solid.
Step 4: A suspension of compound 4-4 (1.0 g, 4.23 mmol) in MeCN (20 mL) and 4 N HCl (8 mL) was stirred at room temperature for 15 min. After the mixture was cooled to 0 ℃, to this was added dropwise a cold solution of NaNO2 (320 mg, 4.63 mmol) in H2O (5 mL) . The mixture was stirred at 0 ℃ for 30 min and treated with KI (1.4 g, 8.43 mmol) . The resulting mixture was stirred at 0 ℃ for further 1 h. After completion of the reaction, the mixture was diluted with EtOAc (100 mL) and washed with H2O, saturated Na2S2O3 solution and saturated NaHCO3 solution. The organic layer was washed with brine, dried over anhydrous Na2SO4, filtered and concentrated. The crude product was purified by silica gel chromatography (eluted with 20%EtOAc in petroleum ether) to afford the title compound 4-5 (1.2 g, yield 81%) as a yellow solid.
Step 5: A mixture of compound 4-5 (500 mg, 1.44 mmol) , compound 3-2 (243 mg, 1.44 mmol) , Pd2 (dba) 3 (131 mg, 0.14 mmol) , xantphos (166 mg, 0.29 mmol) and DIPEA (558 mg, 4.32 mmol) in dioxane (6 mL) was stirred at 105 ℃ under nitrogen atmosphere for 3 h. After completion of the reaction, the mixture was cooled, filtered and concentrated. The crude product was purified by silica gel chromatography (eluted with 25%EtOAc in petroleum ether) to afford the title compound 4-6 (418 mg, yield 79%) as an off-white solid. LCMS: m/z calculated for C11H7BrCl2N2OS: 363.88; found 366.05 [M+H] +.
Step 6: To a mixture of compound 3-4 (293 mg, 1.06 mmol) and DIPEA (1.06 g, 8.20 mmol) in NMP (3.5 mL) was added compound 4-6 (300 mg, 0.82 mmol) . The mixture was stirred at 120 ℃ for 5 h. After completion of the reaction, the mixture was cooled to room temperature and diluted with EtOAc (50 mL) . The resulting mixture was washed with saturated NH4Cl solution (100 mL) . The organic layer was washed with brine, filtered and concentrated. The crude product was purified by reverse phase flash chromatography (eluted with MeCN in H2O, TFA condition) to afford the title compound 4-7 (218 mg, yield 50%) as a yellow solid. LCMS: m/z calculated for C24H24BrClN4OS: 530.05; found 531.68 [M+H] +.
Step 7: A mixture of compound 4-7 (100 mg, 0.19 mmol) , B2 (Pin) 2 (120 mg, 0.47 mmol) , Pd (dppf) Cl2 (14 mg, 0.02 mmol) and KOAc (102 mg, 1.04 mmol) in dioxane (2 mL) was stirred under nitrogen atmosphere at 90 ℃ for 4 h. After completion of the reaction, the mixture was cooled, filtered over diatomite and diluted with DCM (20 mL) . The resulting mixture was washed with H2O and brine, dried over anhydrous Na2SO4, filtered and concentrated. The residue was purified by pre-TLC (SiO2, DCM: MeOH = 10: 1) to afford the crude product, which  was further purified by pre-HPLC (C18 column, eluted with MeCN in H2O, TFA condition) to afford the title compound 3 (4.5 mg, yield 5%) as a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ 8.51 –8.47 (m, 1H) , 8.30 (d, J = 1.1 Hz, 1H) , 7.76 (s, 1H) , 7.50 (d, J = 7.4 Hz, 1H) , 7.40 –7.34 (m, 2H) , 7.31 (td, J = 7.0, 2.3 Hz, 1H) , 6.92 (s, 1H) , 4.85 (s, 2H) , 4.40 –4.33 (m, 2H) , 4.27 (d, J = 13.5 Hz, 1H) , 3.31 –3.21 (m, 2H) , 3.18 (d, J = 16.3 Hz, 1H) , 3.03 (d, J = 16.3 Hz, 1H) , 1.73 (q, J = 11.1 Hz, 2H) , 1.59 –1.49 (m, 2H) . LCMS: m/z calculated for C24H24BClN4O2S: 478.14; found 462.72 [M-OH+H] +.
Example 5.
Synthesis of (S) -6- ( (3-amino-5- (1-amino-1, 3-dihydrospiro [indene-2, 4'-piperidin] -1'-yl) pyrazin-2-yl) thio) benzo [c] [1, 2] oxaborol-1 (3H) -ol (5)
Synthetic scheme 5
Step 1: A mixture of compound 3-1 (500 mg, 1.60 mmol) , compound 1-3 (293 mg, 1.60 mmol) , Pd2 (dba) 3 (100 mg, 0.11 mmol) , xantphos (129 mg, 0.22 mmol) and DIPEA (620 mg, 4.80 mmol) in dioxane (6 mL) was stirred at 115 ℃ under nitrogen atmosphere for 2 h. After completion of the reaction, the mixture was cooled, filtered and concentrated. The crude product was purified by silica gel chromatography (eluted with 30%EtOAc in petroleum ether)  to afford the title compound 5-1 (476 mg, yield 85%) as a yellow solid. LCMS: m/z calculated for C11H9BrClN3OS: 344.93; found 346.57 [M+H] +.
Step 2: To a mixture of compound 3-4 (257 mg, 0.93 mmol) and Cs2CO3 (1.17 g, 3.59 mmol) in DMAc (5 mL) and H2O (2 mL) was added compound 5-1 (250 mg, 0.72 mmol) . The mixture was stirred at 120 ℃ for 4 h. After completion of the reaction, the mixture was cooled to room temperature, diluted with EtOAc (50 mL) and washed with H2O (50 mL) . The organic layer was washed with brine, filtered and concentrated. The crude product was purified by reverse phase flash chromatography (eluted with MeCN in H2O, TFA condition) to afford the title compound 5-2 (230 mg, yield 62%) as a yellow solid. LCMS: m/z calculated for C24H26BrN5OS: 511.10; found 512.73 [M+H] +.
Step 3: A mixture of compound 5-2 (150 mg, 0.29 mmol) , B2 (Pin) 2 (186 mg, 0.73 mmol) , Pd (dppf) Cl2 (21 mg, 0.03 mmol) and KOAc (184 mg, 1.88 mmol) in dioxane (2 mL) was stirred under nitrogen atmosphere at 90 ℃ for 1 h. After completion of the reaction, the mixture was filtered over diatomite and concentrated. The residue was extracted with DCM (20 mL x 2) and H2O (20 mL) . The combined organic layers were dried over anhydrous Na2SO4, filtered and concentrated. The residue was purified by pre-TLC (SiO2, DCM: MeOH = 10: 1) to afford the crude product, which was further purified by pre-HPLC (C18 column, eluted with MeCN in H2O, TFA condition) . The desired components were lyophilized to afford the title compound 5 (32 mg, yield 24%) as a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ 7.59 (s, 1H) , 7.48 (d, J =7.5 Hz, 1H) , 7.46 (s, 1H) , 7.38 –7.26 (m, 5H) , 4.92 (s, 2H) , 4.35 (s, 1H) , 4.25 (s, 1H) , 4.17 (s, 1H) , 3.13 (d, J = 16.4 Hz, 3H) , 3.00 (d, J = 16.3 Hz, 1H) , 1.74 –1.61 (m, 2H) , 1.48 (t, J = 13.1 Hz, 2H) . LCMS: m/z calculated for C24H26BN5O2S: 459.19; found 460.93 [M+H] +.
Example 6.
Synthesis of (S) -5- ( (3-amino-5- (1-amino-1, 3-dihydrospiro [indene-2, 4'-piperidin] -1'-yl) pyrazin-2-yl) thio) -6-chlorobenzo [c] [1, 2] oxaborol-1 (3H) -ol (6)
Synthetic scheme 6
Step 1: A mixture of compound 4-5 (500 mg, 1.44 mmol) , compound 1-3 (264 mg, 1.44 mmol) , Pd2 (dba) 3 (90 mg, 0.10 mmol) , xantphos (116 mg, 0.22 mmol) and DIPEA (560 mg, 4.33 mmol) in dioxane (6 mL) was stirred at 115 ℃ under nitrogen atmosphere for 2 h. After completion of the reaction, the mixture was cooled, filtered and concentrated. The crude product was purified by silica gel chromatography (eluted with 40%EtOAc in petroleum ether) to afford the title compound 6-1 (300 mg, yield 54%) as a light-yellow solid. LCMS: m/z calculated for C11H8BrCl2N3OS: 378.89; found 382.45 [M+H] +.
Step 2: To a mixture of compound 3-4 (122 mg, 0.44 mmol) and Cs2CO3 (554 mg, 1.70 mmol) in DMAc (3 mL) and H2O (1 mL) was added compound 6-1 (130 mg, 0.34 mmol) . The mixture was stirred at 120 ℃ for 4 h. After completion of the reaction, the mixture was cooled to room temperature, diluted with EtOAc (30 mL) and washed with H2O (30 mL) . The organic layer was washed with brine, filtered and concentrated. The crude product was purified by reverse phase flash chromatography (eluted with MeCN in H2O, TFA condition) to afford the title compound 6-2 (125 mg, yield 67%) as a yellow solid. LCMS: m/z calculated for C24H25BrClN5OS: 545.07; found 546.69 [M+H] +.
Step 3: A mixture of compound 6-2 (100 mg, 0.18 mmol) , B2 (Pin) 2 (116 mg, 0.46 mmol) , Pd (dppf) Cl2 (13 mg, 0.02 mmol) and KOAc (114 mg, 1.16 mmol) in dioxane (2 mL) was stirred under nitrogen atmosphere at 90 ℃ for 1 h. After completion of the reaction, the mixture was filtered over diatomite and concentrated. The residue was extracted with DCM (20 mL x 2) and H2O (20 mL) . The combined organic layers were dried over anhydrous Na2SO4, filtered and concentrated. The residue was purified by pre-TLC (SiO2, DCM: MeOH = 10: 1) to afford the  crude product, which was further purified by pre-HPLC (C18 column, eluted with MeCN in H2O, TFA condition) . The desired components were lyophilized to afford the title compound 6 (4 mg, yield 4%) as a light-yellow solid. 1H NMR (400 MHz, DMSO-d6) δ 7.74 (s, 1H) , 7.69 (s, 1H) , 7.50 (d, J = 7.3 Hz, 1H) , 7.34 (h, J = 8.5, 8.0 Hz, 3H) , 6.67 (s, 1H) , 4.85 (s, 2H) , 4.38 (s, 1H) , 4.30 (d, J = 18.6 Hz, 1H) , 4.21 (d, J = 13.7 Hz, 1H) , 3.16 (d, J = 15.9 Hz, 3H) , 3.02 (d, J =16.3 Hz, 1H) , 1.71 (d, J = 12.3 Hz, 2H) , 1.51 (s, 2H) . LCMS: m/z calculated for C24H25BClN5O2S: 493.15; found 494.82 [M+H] +.
Example 7.
Synthesis of (S) -5- ( (5- (1-amino-1, 3-dihydrospiro [indene-2, 4'-piperidin] -1'-yl) pyrazin-2-yl) thio) -7-methylbenzo [c] [1, 2] oxaborol-1 (3H) -ol (7)
Synthetic scheme 7
Step 1: To a mixture of 7-1 (5.0 g, 33.1 mmol) in DCM (200 mL) was added NIS (8.2 g, 36.4 mmol) at room temperature. Then it was stirred at room temperature for 3 h. After completion of the reaction, the mixture was extracted with EtOAc (400 mL x 2) and water (600  mL) . The organic layers were washed with brine (2x400 mL) , dried over anhydrous Na2SO4 and concentrated. The crude product was purified by silica gel column (eluted with 5%MeOH in DCM) to afford the title compound 7-2 (8.8 g, yield 96%) as a light-yellow solid. LCMS: m/z calculated for C8H8INO2: 276.96; found: 260.60. [M-OH] +.
Step 2: A mixture of 7-2 (8.8 g, 31.8 mmol) and 48%HBr (14.4 mL, 127.2 mmol) in MeCN (80 mL) and H2O (100 mL) was stirred at 0 ℃ for 10 min. Then NaNO2 (2.2 g, 31.8 mmol) in H2O (12 mL) was added dropwise to the above mixture while keeping the temperature below 5 ℃. After stirring for 1 h, CuBr (9.2 g, 63.6 mmol) was added thereto. The mixture was stirred at 0℃ for 1 h. After completion of the reaction, the resulting mixture was extracted with EtOAc (120 mL x3) . The combined organic layers were washed with saturated Na2S2O3 solution and brine, dried over anhydrous Na2SO4 and concentrated. The residue was purified by silica gel column (eluted with 5%MeOH in DCM) to afford the title compound 7-3 (9.0 g, yield 83%) as a light-yellow solid.
Step 3: To a mixture of 7-3 (2.1 g, 6.2 mmol) and K2CO3 (1.7 g, 12.4 mmol) in DMF (20 mL) was added MeI (968.4 mg, 6.8 mmol) dropwise. The mixture was stirred at room temperature for 3 h. After completion of the reaction, the mixture was filtered. The filtrate was concentrated and extracted with EtOAc (100 mL x 2) and H2O (200 mL) . The combined organic layers were washed with brine, dried over anhydrous Na2SO4 and concentrated. The residue was purified by silica gel column (eluted with 30%EtOAc in petroleum ether) to afford the title compound 7-4 (1.5 g, yield 68%) as a light-yellow oil.
Step 4: A mixture of 7-4 (1.5 g, 4.2 mmol) , 3-2 (1.06 g, 6.3 mmol) , Pd2 (dba) 3 (384.7 mg, 0.42 mmol) , xantphos (486.4 mg, 0.84 mmol) and DIPEA (1.6 g, 12.6 mmol) in dioxane (30 mL) was stirred at 105 ℃ under nitrogen atmosphere for 2 h. After completion of the reaction, the mixture cooled down to room temperature and concentrated. The residue was purified by silica gel column (eluted with 10%EtOAc in petroleum ether) to afford the title compound 7-6 (850 mg, yield 54%) as an orange solid.
Step 5: To a mixture of 7-5 (520 mg, 1.39 mmol) and DIPEA (1.8 g, 13.9 mmol) in NMP (10.0 mL) was added 3-4 (420.5 mg, 1.53 mmol) at room temperature. The reaction mixture was stirred at 100 ℃ for 3 h. After completion of the reaction, the mixture was cooled down to room temperature and filtered. The filtrate was purified directly by reverse phase flash chromatography (C18 column; eluted with MeCN in H2O, TFA condition) . The desired  components were lyophilized to afford the title compound 7-6 (436 mg, yield 58%) as a light-yellow solid. LCMS: m/z calculated for C26H27BrN4O2S: 538.10; found: 539.35. [M+H] +.
Step 6: To a mixture of 7-6 (150 mg, 0.28 mmol) in anhydrous DCM (3 mL) was added DIBAL-H (1.12 mL, 1.12 mmol) dropwise at -78 ℃ under nitrogen atmosphere. The reaction mixture was stirred at -78 ℃ for 2 h. After completion of the reaction, the mixture was quenched with 15%NaOH at -78℃ and then warmed slowly to room temperature. The resulting mixture was filtered, the filtrate was extracted with DCM (40 mL x 2) and H2O (80 mL) . The combined organic layers were washed with brine, dried over anhydrous Na2SO4 and concentrated. The residue was purified by reverse phase flash chromatography (C18 column; eluted with MeCN in H2O, TFA condition) . The desired components were lyophilized to afford the title compound 7-7 (97 mg, yield 68%) as a yellow solid. LCMS: m/z calculated for C25H27BrN4OS: 510.11; found: 511.44. [M+H] +.
Step 7: A mixture of 7-9 (97 mg, 0.19 mmol) , B2 (neop) 2 (85.9 mg, 0.38 mmol) , Pd2 (PPh32Cl2 (13.3 mg, 0.02 mmol) and KOAc (93.1 mg, 0.95 mmol) in dioxane (3 mL) was stirred at 90℃ under nitrogen atmosphere for 3 h. After completion of the reaction, the mixture cooled down to room temperature and concentrated. The residue was purified by silica gel column (eluted with 6.6%MeOH in DCM) to afford the crude product, which was purified furtherly by pre-HPLC (C18 column; eluted with MeCN in H2O, TFA condition) . The desired components were lyophilized to afford the title compound 7 (10.5 mg, yield 12%) as a yellow solid. 1HNMR (400 MHz, DMSO-d6) : δ 8.29 (d, J = 1.4 Hz, 1H) , 8.16 (d, J = 1.3 Hz, 1H) , 7.44 (d, J = 7.5 Hz, 1H) , 7.34 (d, J = 6.0 Hz, 2H) , 7.27 (td, J = 6.7, 5.8, 2.8 Hz, 1H) , 6.99 (s, 1H) , 6.94 (s, 1H) , 4.83 (s, 2H) , 4.25 (d, J = 20.7 Hz, 2H) , 4.14 (d, J = 13.9 Hz, 1H) , 3.24-3.09 (m, 3H) , 3.00 (d, J = 16.4 Hz, 1H) , 2.33 (s, 3H) , 1.67 (t, J = 10.4 Hz, 2H) , 1.51 (dd, J = 27.4, 13.1 Hz, 2H) . LCMS: m/z calculated for C25H27BN4O2S: 458.19; found: 459.77 [M+H] +.
Example 8.
Synthesis of (S) -5- ( (5- (1-amino-1, 3-dihydrospiro [indene-2, 4'-piperidin] -1'-yl) pyrazin-2-yl) thio) -7-methoxybenzo [c] [1, 2] oxaborol-1 (3H) -ol (8)
Synthetic scheme 8
Step 1: To a mixture of 8-1 (3.0 g, 16.6 mmol) in EtOH (700 mL) was added Ag2SO4 (5.7 g, 18.3 mmol) and I2 (4.6 g, 18.3 mmol) at room temperature. The mixture was stirred at room temperature for 3 h. After completion of the reaction, the mixture was filtered. The filtrate was concentrated and extracted with EtOAc (100 mL x 2) and water (200 mL) . The organic layers were washed with Na2S2O3 and brine (2x200 mL) , dried over anhydrous Na2SO4 and concentrated. The crude product was purified by silica gel column (eluted with 5%EtOAc in Petroleum ether) to afford the title compound 8-2 (4.2 g, yield 82%) as a light-yellow solid. LCMS: m/z calculated for C9H10INO3: 306.97; found: 308.56 [M+H] +.
Step 2: To a mixture of 8-2 (4.2 g, 13.7 mmol) and CuBr (3.9 g, 27.4 mmol) in MeCN (200 ml) was added t-BuONO (3.1 g, 27.4 mmol) dropwise at 0℃ under nitrogen atmosphere.  The reaction mixture was stirred at 80 ℃ for 2 h. After completion of the reaction, the mixture was cooled down to room temperature and concentrated. The residue was purified by silica gel column (eluted with 4%EtOAc in petroleum ether) to afford the title compound 8-3 (2.5 g, yield 50%) as a light-yellow solid. LCMS: m/z calculated for C9H8BrIO3: 369.87; found: 371.26 [M+H] +.
Step 3: To a mixture of 8-3 (1.1 g, 3.0 mmol) in anhydrous DCM (12 mL) was added DIBAL-H (12 mL, 12.0 mmol) dropwise at -78 ℃ under nitrogen atmosphere. The reaction mixture was stirred at -78 ℃ for 2 h. After completion of the reaction, the mixture was quenched with 15%NaOH at -78 ℃ and then warmed slowly to room temperature. The resulting mixture was filtered and the filtrate was extracted with DCM (30 mL x 3) and H2O (90 mL) . The combined organic layers were washed with brine, dried over anhydrous Na2SO4 and concentrated. The residue was purified by silica gel column (eluted with 10%EtOAc in petroleum ether) to afford the title compound 8-4 (907 mg, yield 90%) as a white solid. LCMS: m/z calculated for C8H8BrIO2: 341.88; found: 325.30 [M-OH] +.
Step 4: A mixture of 8-4 (850 mg, 2.5 mmol) , 3-2 (633.8 mg, 3.75 mmol) , Pd2 (dba) 3 (229.0 mg, 0.25 mmol) , xantphos (289.5 mg, 0.5 mmol) and DIPEA (967.5 mg, 7.5 mmol) in dioxane (16 mL) was stirred at 105℃ under nitrogen atmosphere for 2 h. After completion of the reaction, the mixture was cooled down to room temperature and concentrated. The residue was purified by silica gel column (eluted with 20%EtOAc in petroleum ether) to afford the title compound 8-5 (488 mg, yield 54%) as a brown oil. LCMS: m/z calculated for C12H10BrClN2O2S: 359.93; found: 361.73 [M+H] +.
Step 5: To a mixture of 8-5 (220 mg, 0.6 mmol) and DIPEA (774.0 mg, 6.0 mmol) in NMP (4 mL) was added 3-4 (181.5 mg, 6.6 mmol) at room temperature. The reaction mixture was stirred at 120 ℃ for 6 h. After completion of the reaction, the mixture was cooled down to room temperature. The mixture was filtered and the filtrate was purified directly by reverse phase flash chromatography (C18 column, eluted with MeCN in H2O, TFA condition) . The desired components were lyophilized to afford the title compound 8-6 (225 mg, yield 70%) as a light-yellow solid. LCMS: m/z calculated for C25H27BrN4O2S: 526.10; found: 527.62 [M+H] +.
Step 6: To a mixture of 8-6 (225 mg, 0.4 mmol) and NaOH (88 mg, 2.2 mmol) in DMF (4 mL) was added (Boc) 2O (261.6 mg, 1.2 mmol) . The mixture was stirred at room temperature for 1h. After completion of the reaction, the mixture was filtered. The filtrate was  extracted with DCM (20 mL x 2) and H2O (30 mL) . The combined organic layers were washed with brine, dried over anhydrous Na2SO4 and concentrated. The residue was purified by silica gel column (eluted with 5%MeOH in DCM) to afford the title compound 8-7 (156 mg, yield 57%) as a light-yellow solid. LCMS: m/z calculated for C30H35BrN4O4S: 626.16; found: 627.74 [M+H] +.
Step 7: A mixture of 8-7 (140 mg, 0.22 mmol) , B2 (pin) 2 (167.6 mg, 0.66 mmol) , Pd (dppf) Cl2 (14.6 mg, 0.02 mmol) and KOAc (64.7 mg, 0.66 mmol) in dioxane (4 mL) was stirred at 90℃ under nitrogen atmosphere for 4 h. After completion of the reaction, the mixture was cooled down to room temperature and concentrated. The residue was purified by silica gel column (eluted with 4%MeOH in DCM) to afford the crude product, which was purified furtherly by reverse phase flash chromatography (C18 column, eluted with MeCN in H2O, TFA condition) . The desired components were lyophilized to afford the title compound 8-8 (20 mg, yield 16%) as a yellow solid. LCMS: m/z calculated for C30H35BN4O5S: 574.24; found: 575.91 [M+H] +.
Step 8: A mixture of 8-8 (20 mg, 0.035 mmol) in DCM (1 mL) was added TFA (0.3 mL) . The mixture was stirred at rt for 1 h. After completion of the reaction, the mixture was concentrated. The crude product was purified by pre-HPLC (C18 column, eluted with MeCN in H2O, TFA condition) . The desired components were lyophilized to afford the title compound 8 (10.3 mg, yield 63%) as a light-yellow solid. 1H NMR (400 MHz, DMSO-d6) δ 8.34 (d, J = 1.4 Hz, 1H) , 8.20 (d, J = 1.3 Hz, 1H) , 7.45 (d, J = 7.5 Hz, 1H) , 7.34 (d, J = 5.9 Hz, 2H) , 7.31–7.25 (m, 1H) , 6.68 (d, J = 6.2 Hz, 2H) , 4.80 (s, 2H) , 4.27 (d, J = 17.1 Hz, 2H) , 4.17 (d, J = 13.8 Hz, 1H) , 3.71 (s, 3H) , 3.25–3.09 (m, 3H) , 3.01 (d, J = 16.4 Hz, 1H) , 1.73–1.62 (m, 2H) , 1.51 (dd, J =21.4, 13.2 Hz, 2H) . LCMS: m/z calculated for C25H27BN4O3S: 474.19; found: 475.89 [M+H] +.
Example 9.
Synthesis of (S) -5- ( (5- (1-amino-1, 3-dihydrospiro [indene-2, 4'-piperidin] -1'-yl) pyrazin-2-yl) thio) -7-chlorobenzo [c] [1, 2] oxaborol-1 (3H) -ol (9)
Synthetic scheme 9
Step 1: To a mixture of 9-1 (19.7 g, 138.7 mmol) in DMF (500 mL) was added NIS (34.3 g, 152.6 mmol) at 0 ℃. The mixture was stirred at 0℃ for 1 h. After completion of the reaction, the mixture was extracted with EtOAc (800 mL x 2) and H2O (2 L) . The organic layer was washed with Na2S2O3 and brine (800 mL x 2) , dried over anhydrous Na2SO4 and concentrated. The crude product was purified by silica gel column (eluted with 10%EtOAc in petroleum ether) to afford the title compound 9-2 (35.2 g, yield 95%) as a brown solid. LCMS: m/z calculated for C7H7ClIN: 266.93; found: 268.49 [M+H] +.
Step 2: To a mixture of 9-2 (25 g, 93.6 mmol) and 48%HBr (42.4 mL, 374.4 mmol) in MeCN (200 ml) and H2O (300 mL) was added NaNO2 (6.5 g, 93.6 mmol) in H2O (30 mL) dropwise at 0℃. After the mixture was stirred at 0℃ for 1 h, CuBr (27 g, 187.2 mmol) was added thereto. The reaction was stirred for 1 h at 0 ℃. After completion of the reaction, the mixture was concentrated and then extracted with EtOAc (500 mL x 2) and H2O (300 mL) . The combined organic layers were washed with brine, dried over anhydrous Na2SO4 and concentrated. The residue was purified by silica gel column (eluted with 5%EtOAc in petroleum ether) to afford the title compound 9-3 (30 g, yield 97%) as a brown solid.
Step 3: To a mixture of 9-3 (30 g, 90.6 mmol) , pyridine (40 mL) in H2O (40 mL) was added KMnO4 (57.3 g, 362.4 mmol) in portions at room temperature. After the reaction was stirred at 80 ℃ for 12 h, the heated mixture was filtered. The filtrate was cooled to 0 ℃ and adjusted to pH = 3 with 1 N HCl. The aqueous solution was extracted with EtOAc (500 mL x 3) . The combined organic layers were washed with brine, dried over anhydrous Na2SO4 and concentrated. The residue was purified by silica gel column (eluted with 50%EtOAc in petroleum ether) to afford the title compound 9-4 (14 g, yield 43%) as a white solid.
Step 4: To a mixture of 9-4 (4 g, 11.0 mmol) in THF (40 mL) was added BH3. THF (48.6 mg, 33.0 mmol) dropwise at 0 ℃ under nitrogen atmosphere. The reaction was warmed slowly and stirred at 60 ℃ for 1 h. After completion of the reaction, the mixture was cooled down to room temperature and quenched with saturated NH4Cl solution. The mixture was extracted with EA (300 mL x 2) and H2O (300 mL) . The combined organic layers were washed with brine, dried over anhydrous Na2SO4 and concentrated. The residue was purified by silica gel column (eluted with 20%EtOAc in petroleum ether) to afford the title compound 9-5 (3 g, yield 79%) as a white solid.
Step 5: A mixture of 9-5 (3 g, 8.6 mmol) , 3-2 (2.9 g, 17.2 mmol) , Pd2 (dba) 3 (787.8 mg, 0.86 mmol) , xantphos (995.9 mg, 1.79 mmol) and DIPEA (3.3 g, 25.8 mmol) in dioxane (60 mL) was stirred at 105℃ under nitrogen atmosphere for 2 h. After completion of the reaction, the mixture was cooled down to room temperature and concentrated. The residue was purified by silica gel column (eluted with 60%EtOAc in petroleum ether) to afford title compound 9-6 (2.2 g, yield 69%) as a yellow solid. LCMS: m/z calculated for C11H7BrCl2N2OS: 363.88; found: 329.3 [M-Cl+H] +.
Step 6: To a mixture of 9-6 (500 mg, 1.4 mmol) and DIPEA (1.8 g, 14.0 mmol) in NMP (10 mL) was added 7 (412.5 mg, 1.5 mmol) at room temperature. After the reaction was stirred at 120 ℃ for 3 h, the mixture was cooled down to room temperature. The resulting mixture was purified directly by reverse phase flash chromatography (C18 column, eluted with MeCN in H2O, TFA condition) . The desired components were lyophilized to afford the title compound 9-7 (503 mg, yield 69%) as a yellow solid. LCMS: m/z calculated for C24H24BrClN4OS: 530.05; found: 531.45 [M+H] +.
Step 7: To a mixture of 9-7 (503 mg, 0.95 mmol) and NaOH (209 mg, 5.2 mmol) in DMF (5.0 mL) was added (Boc) 2O (621.3 mg, 2.85 mmol) . Then the mixture was stirred at room  temperature for 1h. After completion of the reaction, the mixture was extracted with DCM (20 mL x 2) and H2O (40 mL) . The combined organic layers were washed with brine, dried over anhydrous Na2SO4 and concentrated. The residue was purified by silica gel column (eluted with 30%EtOAc in petroleum ether) to afford the title compound 9-8 (417 mg, yield 70%) as a light-yellow solid. LCMS: m/z calculated for C29H32BrClN4O3S: 630.11; found: 631.49 [M+H] +.
Step 8: A mixture of 9-8 (280 mg, 0.44 mmol) , B2 (pin) 2 (223.5 mg, 0.88 mmol) , Pd2 (dba) 3 (36.6 mg, 0.04 mmol) , Ph2PCy (23.6 mg, 0.09 mmol) , pivalic acid (22.4 mg, 0.22 mmol) and K2CO3 (182.2 mg, 1.3 mmol) in dioxane (5 mL) was stirred at 90℃ under nitrogen atmosphere for 1 h. After completion of the reaction, the mixture was cooled down to room temperature and concentrated. The residue was purified by silica gel column (eluted with 50% EtOAc in petroleum ether) to afford the crude product, which was purified furtherly by reverse phase flash chromatography (C18 column, eluted with MeCN in H2O, TFA condition) . The desired components were lyophilized to afford the title compound 9-9 (36 mg, yield 14%) as a yellow solid. LCMS: m/z calculated for C29H32BClN4O4S: 578.19; found: 579.68 [M+H] +.
Step 9: A mixture of 9-9 (36 mg, 0.06 mmol) in DCM (1.2 mL) was added TFA (0.4 mL) . The mixture was stirred at rt for 1 h. After completion of the reaction, the mixture was concentrated. The crude product was purified by pre-HPLC (C18 column, eluted with MeCN in H2O, TFA condition) . The desired components were lyophilized to afford the title compound 9 (11.7 mg, yield 39%) as a light-yellow solid. 1H NMR (400 MHz, DMSO-d6) δ 8.37 (s, 1H) , 8.24 (s, 1H) , 7.46 (d, J = 7.5 Hz, 1H) , 7.38–7.32 (m, 2H) , 7.31–7.25 (m, 1H) , 7.17 (s, 1H) , 7.05 (s, 1H) , 4.88 (s, 2H) , 4.30 (d, J = 12.3 Hz, 2H) , 4.20 (d, J = 13.8 Hz, 1H) , 3.27–3.10 (m, 3H) , 3.01 (d, J = 16.3 Hz, 1H) , 1.68 (q, J = 7.5, 6.7 Hz, 2H) , 1.52 (t, J = 16.8 Hz, 2H) . LCMS: m/z calculated for C24H24BClN4O2S: 478.14; found: 479.73 [M+H] +.
Example 10.
Synthesis of 5- ( (5- (4-amino-4-methylpiperidin-1-yl) pyrazin-2-yl) thio) -7-chlorobenzo [c] [1, 2] oxaborol-1 (3H) -ol (10)
Synthetic scheme 10
Step 1: To a mixture of 9-6 (520 mg, 1.4 mmol) and DIPEA (1.8 g, 14.0 mmol) in NMP (10 mL) was added 1-5 (321.0 mg, 1.5 mmol) at room temperature. After The reaction was stirred at 100 ℃ for 3 h, the mixture was cooled down to room temperature. The mixture was filtered and the filtrate was purified by reverse phase flash chromatography (C18 column, eluted with MeCN in H2O, TFA condition) . The desired components were lyophilized to afford the title compound 10-1 (734 mg, yield 95%) as a yellow solid. LCMS: m/z calculated for C22H28BrClN4O3S: 542.08; found: 543.73 [M+H] +.
Step 2: A mixture of 10-1 (350 mg, 0.64 mmol) , B2 (pin) 2 (330.2 mg, 1.3 mmol) , Pd2 (dba) 3 (55 mg, 0.06 mmol) , Ph2PCy (34.3 mg, 0.13 mmol) , pivalic acid (32.6 mg, 0.32 mmol) and K2CO3 (265 mg, 1.9 mmol) in dioxane (6 mL) was stirred at 90 ℃ under nitrogen atmosphere for 1 h. After completion of the reaction, the mixture was cooled down to room temperature and concentrated. The residue was purified by silica gel column (eluted with 55%EtOAc in petroleum ether) to afford the crude product, which was purified furtherly by reverse phase flash chromatography (C18 column, eluted with MeCN in H2O, TFA condition) . The desired components were lyophilized to afford the title compound 10-2 (66 mg, yield 21%) as a yellow solid. LCMS: m/z calculated for C22H28BClN4O4S: 490.16; found: 491.87 [M+H] +.
Step 3: A mixture of 10-2 (66 mg, 0.13 mmol) in EtOAc (1 mL) was added 4 N HCl in EtOAc (0.13 mL, 0.52 mmol) . The mixture was stirred at room temperature for 1 h. After completion of the reaction, the mixture was concentrated. The crude product was purified by pre-HPLC (C18 column, eluted with MeCN in H2O, TFA condition) . The desired components were lyophilized to afford the title compound 10 (10.2 mg, yield 19%) as a light-yellow solid. 1H NMR (400 MHz, DMSO-d6) δ 8.43 (s, 1H) , 8.28 (s, 1H) , 7.17 (d, J = 1.3 Hz, 1H) , 7.11 (d, J = 1.3 Hz, 1H) , 4.91 (s, 2H) , 4.08 (dt, J = 13.9, 4.7 Hz, 2H) , 3.38 (dd, J = 8.9, 4.9 Hz, 2H) , 1.77 (q, J = 4.9 Hz, 4H) , 1.38 (s, 3H) . LCMS: m/z calculated for C17H20BClN4O2S: 390.11; found: 391.71 [M+H] +.
Example 11.
Synthesis of 5- ( (5- (4- (aminomethyl) -4-methylpiperidin-1-yl) pyrazin-2-yl) thio) -7-chlorobenzo [c] [1, 2] oxaborol-1 (3H) -ol (11)
Synthetic scheme 11
Step 1: To a mixture of 9-4 (4 g, 11 mmol) and K2CO3 (4.6 g, 33 mmol) in DMF (40 mL) was added MeI (2.3 g, 16.5 mmol) dropwise. The reaction was stirred at room temperature for 3 h. After completion of the reaction, the mixture was filtered. The filtrate was extracted with EtOAc (100 mL x 3) and H2O (200 mL) . The combined organic layers were washed with brine, dried over anhydrous Na2SO4 and concentrated. The residue was purified by silica gel column (eluted with 5%EtOAc in petroleum ether) to afford the title compound 11-1 (3.9 g, yield 90%) as a light-yellow oil.
Step 2: A mixture of 11-1 (3.9 g, 10.4 mmol) , 3-2 (3.5 g, 20.8 mmol) , Pd2 (dba) 3 (91.6 mg, 0.1 mmol) , xantphos (115.8 mg, 0.2 mmol) and DIPEA (4 g, 31.2 mmol) in dioxane (60 mL) was stirred at 105℃ under nitrogen atmosphere for 1 h. After completion of the reaction, the mixture cooled down to room temperature and concentrated. The residue was purified by silica gel column (eluted with 10%EtOAc in Petroleum ether) to afford the title compound 11-2 (3.3 g, yield 80%) as an orange solid.
Step 3: To a mixture of 11-2 (900 mg, 2.3 mmol) and DIPEA (3 g, 23 mmol) in NMP (10.0 mL) was added 11-3 (420.5 mg, 1.53 mmol) at room temperature. After the reaction was stirred at 100 ℃ for 1 h, the mixture was cooled down to room temperature. The resulting mixture was filtered and the filtrate was purified directly by reverse phase flash chromatography (C18 column, eluted with MeCN in water, TFA condition) . The desired components were lyophilized to afford the title compound 11-4 (1.0 g, yield 75%) as a light-yellow solid. LCMS: m/z calculated for C24H30BrClN4O4S: 584.09; found: 585.78 [M+H] +.
Step 4: To a mixture of 11-4 (1 g, 1.7 mmol) in anhydrous DCM (10 mL) was added DIBAL-H (6.8 mL, 6.8 mmol) dropwise at -78 ℃ under nitrogen atmosphere. The reaction was stirred at -78 ℃ for 2 h. After completion of the reaction, the mixture was quenched with 15%NaOH at -78℃ and then warmed slowly to room temperature. The resulting mixture was filtered and the filtrate was extracted with DCM (40 mL x 3) and H2O (80 mL) . The combined organic layers were washed with brine, dried over anhydrous Na2SO4 and concentrated. The crude product was purified by reverse phase flash chromatography (C18 column, eluted with MeCN in water, TFA condition) . The desired components were lyophilized to afford the title compound 11-5 (420 mg, yield 44%) as a yellow solid. LCMS: m/z calculated for C23H30BrClN4O3S: 556.09; found: 557.41 [M+H] +.
Step 5: A mixture of 11-5 (420 mg, 0.75 mmol) , B2 (pin) 2 (381 mg, 1.5 mmol) , Pd2 (dba) 3 (73.3 mg, 0.08 mmol) , Ph2PCy (40.2 mg, 0.15 mmol) , pivalic acid (38.8 mg, 0.38 mmol) and K2CO3 (310.5 mg, 2.3 mmol) in dioxane (8 mL) was stirred at 90℃ under nitrogen atmosphere for 1 h. After completion of the reaction, the mixture was cooled down to room temperature and concentrated. The residue was purified by silica gel column (eluted with 3%MeOH in DCM) to afford the crude product, which was purified furtherly by reverse phase flash chromatography (C18 column, eluted with MeCN in H2O, TFA condition) . The desired  components were lyophilized to afford the title compound 11-6 (130 mg, yield 34%) as a yellow solid. LCMS: m/z calculated for C23H30BClN4O4S: 504.18; found: 505.47 [M+H] +.
Step 6: A mixture of 11-6 (130 mg, 0.26 mmol) in EtOAc (1 mL) was added 4 N HCl in EtOAc (0.26 mL, 1 mmol) . The mixture was stirred at room temperature for 1 h. After completion of the reaction, the mixture was concentrated. The crude product was purified by pre-HPLC (C18 column, eluted with MeCN in H2O, TFA condition) . The desired components were lyophilized to afford the title compound 11 (8.9 mg, yield 9%) as a light-yellow solid. 1H NMR (400 MHz, DMSO-d6) δ 8.40 (d, J = 1.4 Hz, 1H) , 8.26 (d, J = 1.3 Hz, 1H) , 7.15 (d, J = 1.1 Hz, 1H) , 7.08 (d, J = 1.3 Hz, 1H) , 4.90 (s, 2H) , 3.90 (dt, J = 14.0, 5.3 Hz, 2H) , 3.44 (dd, J = 9.5, 3.8 Hz, 2H) , 2.78 (s, 2H) , 1.55 –1.47 (m, 2H) , 1.43 (d, J = 14.0 Hz, 2H) , 1.06 (s, 3H) . LCMS: m/z calculated for C18H22BClN4O2S: 404.12; found: 405.84 [M+H] +.
Example 12.
Synthesis of 5- ( (5- ( (3S, 4S) -4-amino-3-methyl-2-oxa-8-azaspiro [4.5] decan-8-yl) pyrazin-2-yl) thio) -7-chlorobenzo [c] [1, 2] oxaborol-1 (3H) -ol (12)
Synthetic scheme 12
Step 1: To a mixture of 9-6 (2 g, 5.5 mmol) and DIPEA (7.1 g, 55 mmol) in NMP (20 mL) was added 12-1 (1 g, 6.1 mmol) at room temperature. The mixture was stirred at 100 ℃ for 12 h. After completion of the reaction, the mixture was cooled down to room temperature. The resulting mixture was filtered and the filtrate was purified directly by reverse phase flash chromatography (C18 column, eluted with MeCN in H2O, TFA condition) . The desired components were lyophilized to afford the title compound 12-2 (1.4 g, yield 52%) as a yellow solid. LCMS: m/z calculated for C20H24BrClN4O2S: 498.05; found: 499.48 [M+H] +.
Step 2: To a mixture of 12-2 (600 mg, 1.2 mmol) and TEA (1.2 g, 12 mmol) in DMF (10.0 mL) was added (Boc) 2O (784.8 mg, 3.6 mmol) . The reaction was stirred at RT for 1h. After completion of the reaction, the mixture was extracted with DCM (20 mL x 2) and H2O (40 mL) . The combined organic layers were washed with brine, dried over anhydrous Na2SO4 and concentrated. The residue was purified by silica gel column (eluted with 40%EtOAc in petroleum ether) to afford the title compound 12-3 (537 mg, yield 75%) as a light-yellow solid. LCMS: m/z calculated for C25H32BrClN4O4S: 598.10; found: 599.38 [M+H] +.
Step 3: A mixture of 12-3 (800 mg, 1.3 mmol) , B2 (pin) 2 (660.4 mg, 2.6 mmol) , Pd2 (dba) 3 (119.1 mg, 0.13 mmol) , Ph2PCy (69.7 mg, 0.26 mmol) , pivalic acid (66.3 mg, 0.65 mmol) and K2CO3 (538.2 mg, 3.9 mmol) in dioxane (15 mL) was stirred at 90℃ under nitrogen atmosphere for 1 h. After completion of the reaction, the mixture was cooled down to room temperature and concentrated. The residue was purified by silica gel column (eluted with 50%EtOAc in petroleum ether) to afford the crude product, which was purified furtherly by reverse phase flash chromatography (C18 column, eluted with MeCN in H2O, TFA condition) . The desired components were lyophilized to afford the title compound 10-2 (83 mg, yield 11%) as a yellow solid. LCMS: m/z calculated for C25H32BClN4O5S: 546.19; found: 547.39 [M+H] +.
Step 4: A mixture of 12-4 (83 mg, 0.15 mmol) in EtOAc (1 mL) was added 4 N HCl in EtOAc (0.15 mL, 0.6 mmol) . The mixture was stirred at room temperature for 1 h. After completion of the reaction, the mixture was concentrated. The crude product was purified by pre-HPLC (C18 column, eluted with MeCN in H2O, TFA condition) . The desired components were lyophilized to afford the title compound 12 (6.2 mg, yield 9%) as a light-yellow solid. 1H NMR (400 MHz, DMSO-d6) δ 8.43 (s, 1H) , 8.26 (s, 1H) , 7.16 (s, 1H) , 7.09 (s, 1H) , 4.90 (s, 2H) , 4.25–4.09 (m, 3H) , 3.86 (d, J = 9.1 Hz, 1H) , 3.67 (d, J = 9.1 Hz, 1H) , 3.35 (d, J = 4.9 Hz, 1H) , 3.21– 3.09 (m, 2H) , 1.78–1.63 (m, 3H) , 1.55 (d, J=13.3 Hz, 1H) , 1.18 (d, J =6.5 Hz, 3H) . LCMS: m/z calculated for C20H24BClN4O3S: 446.14; found: 447.07 [M+H] +.
Example 13.
Synthesis of 5- ( (5- ( (3S, 4S) -4-amino-3-methyl-2-oxa-8-azaspiro [4.5] decan-8-yl) pyrazin-2-yl) thio) -7-methylbenzo [c] [1, 2] oxaborol-1 (3H) -ol (13)
Synthetic scheme 13
Step 1: To a mixture of 7-3 (4 g, 11.7 mmol) in THF (40 mL) was added BH3. THF (35.1 mL, 35.1 mmol) dropwise at 0 ℃ under nitrogen atmosphere. The reaction was warmed slowly to 60 ℃ and stirred for 1 h. After completion of the reaction, the mixture was cooled down to room temperature and quenched with saturated NH4Cl solution. The mixture was extracted with EtOAc (200 mL) and H2O (300 mL) . The combined organic layer was washed with brine, dried over anhydrous Na2SO4 and concentrated. The residue was purified by silica gel column (eluted with 10%EtOAc in petroleum ether) to afford the title compound 13-1 (3.7 g, yield 96%) as a white solid.
Step 2: A mixture of 13-1 (3.2 g, 9.8 mmol) , 3-2 (3.3 g, 19.6 mmol) , Pd2 (dba) 3 (448.8 mg, 0.49 mmol) , xantphos (567.4 mg, 0.98 mmol) and DIPEA (3.8 g, 9.4 mmol) in dioxane (100 mL) was stirred at 105 ℃ for 2 h. After completion of the reaction, the mixture was cooled down to room temperature and concentrated. The residue was purified by silica gel column (eluted  with 15%EtOAc in petroleum ether) to afford title compound 13-2 (2.4 g, yield 63%) as a yellow solid. LCMS: m/z calculated for C12H10BrClN2OS: 343.94; found: 327.63 [M-OH+H] +.
Step 3: To a mixture of 13-2 (892 mg, 2.6 mmol) and K2CO3 (1.8 g, 12.9 mmol) in DMAc (15 mL) was added 12-1 (772.2 mg, 2.9 mmol) at room temperature. The reaction mixture was stirred at 120 ℃ for 3 h. After completion of the reaction, the mixture was cooled down to room temperature and filtered. The filtrate was concentrated and purified by reverse phase flash chromatography (C18 column, eluted with MeCN in H2O, TFA condition) . The desired components were lyophilized to afford the title compound 13-3 (647 mg, yield 52%) as a light-yellow solid. LCMS: m/z calculated for C21H27BrN4O2S: 478.10; found: 479.94 [M+H] +.
Step 4: A mixture of 13-3 (640 mg, 1.3 mmol) , B2 (pin) 2 (660.4 mg, 2.6 mmol) , Pd2 (dba) 3 (119.8 mg, 0.13 mmol) , Ph2PCy (69.7 mg, 0.26 mmol) , pivalic acid (66.3 mg, 0.65 mmol) and K2CO3 (538.2 mg, 3.9 mmol) in dioxane (20 mL) was stirred at 90℃ under nitrogen atmosphere for 1 h. After completion of the reaction, the mixture was cooled down to room temperature and filtered. The filtrate was concentrated. The residue was purified by silica gel column (eluted with 10%MeOH in DCM) to afford the crude product, which was purified furtherly by pre-HPLC (C18 column, eluted with MeCN in H2O, HCl condition) . The desired components were lyophilized to afford the title compound 13 (53.1 mg, yield 9%) as a yellow solid. LCMS: m/z calculated for C21H27BN4O3S: 426.19; found: 427.86 [M+H] +.
Example 14. Enzymatic activity assay of SHP2
Materials:
● SHP2 (BPS, Cat. No. 79018)
● SHP2 Activating Peptide (BPS, Cat. No. 79319-2)
● OptiPlate TM-384 F black assay plates (Perkin Elmer, Cat. No. 6007279)
● DiFMUP (Invitrogen, Cat. No. D6567)
● Compounds were dissolved into 10 mM stock in 100%DMSO
Experimental methods:
○ Prepare 1x assay buffer
○ Prepare 1x assay buffer (modified Hepes Buffer) .
○ Compound serial dilution:
○ Transfer 200nL compounds to assay plate by Echo in 100%DMSO. The final fraction of DMSO is 1%.
○ Prepare 4x SHP-2 activating peptide solution:
○ Add SHP-2 activating Peptide in 1x assay buffer to make 4x SHP-2 activiting peptide
○ solution. Transfer 5uL 4x SHP-2 activating peptide solution to assay plate. Centrifuge at 1000 rpm for 1 min.
○ Prepare 4x SHP-2 enzyme solution:
○ Add SHP-2 in 1x assay buffer to make 4x SHP-2 enzyme solution. Transfer 5uL 4x SHP-2 enzyme solution to assay plate, except for the negative wells, transfer 5uL 1x assay buffer instead. Centrifuge at 1000 rpm for 1 min. Incubate at RT for 60min.
○ Prepare 2x substrate solution:
○ Add DiFMUP in 1x assay buffer to make the substrate solution. Transfer 10 μL of 2x substrate solution to each well to start reaction. Centrifuge at 1000 rpm for 1 min.
○ Read the plate kinetically on Paradigm for 60 min with excitation at 360nm and emission at 460nm.
○ Curve fitting
○ Fit the data in Excel to obtain inhibition values using equation (1)
○ Equation (1) : Inh %= (Max-Signal) / (Max-Min) *100
○ Fit the data in XL-Fit to obtain IC50 values using equation (2)
○ Equation (2) : Y=Bottom + (Top-Bottom) / (1+ (IC50/X) *HillSlope)
○ Y is %inhibition and X is compound concentration.
Example 15 KYSE-520 cellular inhibitor assay
Material and Instruments



Experimental Procedure
Cell Culture
a) KYSE-520 were cultured in RPMI-1640 medium containing 1%penicillin-streptomycin and 10%FBS. The cell lines were incubated in a humidified incubator with 5%carbon dioxide (CO2) at 37 ℃.
Preparation of Cell Plating
a) When the cell confluence reached 80%-90%, cells were harvested.
b) Resuspend cells in medium, and then count and dilute cells at a desired density.
c) Add 100 μL/well of cell suspension containing proper cells into a 96-well plate as listed below.
d) Cells were incubated in a humidified incubator with 5%carbon dioxide (CO2) at 37 ℃ overnight.
Compound Preparation
a) Test compounds were first diluted with DMSO from 20 mM to 5 mM, then 3-fold serial dilutions were further performed to make a total of 9 concentrations for each compound.
b) Staurosporine was diluted from 20 mM in DMSO stock to 1.5 mM, then 3-fold serial dilution was further made for 9 concentrations.
c) The final concentration is 0.2%of DMSO
d) High reading control was cells only containing 2 uL of DMSO.
e) Low reading control was only medium.
Compound Treatment
a) After 24 h cell culture, add 98 uL medium and 2 uL of compound working stock to wells. Cell lines were incubated in a humidified incubator with 5%carbon dioxide (CO2) at 37 ℃.
b) The final testing concentrations of test compounds were: 10000, 3333, 1111, 370, 123, 41.2, 13.7, 4.6, 1.5, 0 nM. Cell lines were incubated for 120h in a humidified incubator with 5%carbon dioxide (CO2) at 37 ℃.
CTG Detection
a) Add 100 μL of CellTiter-Glo Reagent per well and shake plates (avoiding light) for 3 min on a plate shaker. Incubate the plates (avoiding light) at room temperature for 30 min.
b) Record the luminescence values by Envision reader.
Data Analysis
a) Use nonlinear fitting formula of GraphPad Prism 8 software to calculate IC50 (the half maximal inhibitory concentration) :
Y=Bottom + (Top-Bottom) / (1+10^ ( (LogIC50-X) *Hillslope) )
Y was the %inhibition and X was the log concentration of compounds.
inhibition (%) =100- (Signalcmpd-SignalAve_LC) / (SignalAve_HC -SignalAve_LC) ×100
HC: High reading control was cells only containing 2uL of DMSO LC: Low reading control was only medium.
IC50 data from SHP2 assays testing is shown in Table 5.
Table 5
A:< 0.1 μM; B: 0.1 –1 μM; C: 1 –10 μM
Applicant’s disclosure is described herein in preferred embodiments with reference to the Figures, in which like numbers represent the same or similar elements. Reference throughout this specification to “one embodiment, ” “an embodiment, ” or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases  “in one embodiment, ” “in an embodiment, ” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment.
The described features, structures, or characteristics of Applicant’s disclosure may be combined in any suitable manner in one or more embodiments. In the description, herein, numerous specific details are recited to provide a thorough understanding of embodiments of the invention. One skilled in the relevant art will recognize, however, that Applicant’s composition and/or method may be practiced without one or more of the specific details, or with other methods, components, materials, and so forth. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the disclosure.
In this specification and the appended claims, the singular forms "a, " "an, " and "the" include plural reference, unless the context clearly dictates otherwise.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present disclosure, the preferred methods and materials are now described. Methods recited herein may be carried out in any order that is logically possible, in addition to a particular order disclosed.
Incorporation by Reference
References and citations to other documents, such as patents, patent applications, patent publications, journals, books, papers, web contents, have been made in this disclosure. All such documents are hereby incorporated herein by reference in their entirety for all purposes. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material explicitly set forth herein is only incorporated to the extent that no conflict arises between that incorporated material and the present disclosure material. In the event of a conflict, the conflict is to be resolved in favor of the present disclosure as the preferred disclosure.
Equivalents
The representative examples are intended to help illustrate the invention, and are not intended to, nor should they be construed to, limit the scope of the invention. Indeed, various  modifications of the invention and many further embodiments thereof, in addition to those shown and described herein, will become apparent to those skilled in the art from the full contents of this document, including the examples and the references to the scientific and patent literature included herein. The examples contain important additional information, exemplification and guidance that can be adapted to the practice of this invention in its various embodiments and equivalents thereof.

Claims (36)

  1. A compound having the structural formula of (I) :
    wherein
    each of R1 and R2 is independently NH2 or a C1-6 alkyl, or R1 and R2, together with the carbon atom they are bound to, form a substituted or unsubstituted 5-membered carbocyclic or heterocyclic ring;
    R3 is H, CH3 or NH2;
    R4 is H, CH2OH, C (O) OCH3, C (O) NH2, or C (O) NHCH3;
    each of R5, R6 and R8 is independently H, halogen, C1-6 alkyl, C4-6 cycloalkyl, C2-6 alkenyl or alkynyl, OR, SR, CN, CH (O) , CH=NOR, C (O) NRR’, S (O) 2NRR’, NRR’, NRC (O) R’, NRS (O) 2R’, S (O) R, S (O) 2R, 5-or 6-membered aryl, (CH2nXR, wherein X is selected from O, S and NR; provided that, one of R6 and R8 along with R7, together with the carbon atoms they are bound to, form a 5-membered heterocyclic ring comprising an -O-B (RB) -group in the ring, wherein RB is OH or OCH3; and
    each R and R’ is independently H, C1-6 alkyl or C3-6 cycloalkyl, or R and R’, together with the N atom they are bound to, form a 4-to 6-membered heterocyclic ring; or a pharmaceutically acceptable form or an isotope derivative thereof.
  2. The compound of claim 1, wherein R6 along with R7, together with the carbon atoms they are bound to, for a 5-membered heterocyclic ring comprising an -O-B (RB) -group in the ring.
  3. The compound of claim 2, having the structural formula:
    wherein each of R9 and R10 is independently selected from H, C1-6 alkyl or C4-6 cycloalkyl.
  4. The compound of claim 2, having the structural formula:
    wherein each of R9 and R10 is independently selected from H, C1-6 alkyl or C4-6 cycloalkyl.
  5. The compound of claim 1, wherein R8 along with R7, together with the carbon atoms they are bound to, for a 5-membered heterocyclic ring comprising an -O-B (RB) -group in the ring.
  6. The compound of claim 5, having the structural formula:
    wherein each of R9 and R10 is independently selected from H, C1-6 alkyl or C4-6 cycloalkyl.
  7. The compound of claim 5, having the structural formula:
    wherein each of R9 and R10 is independently selected from H, C1-6 alkyl or C4-6 cycloalkyl.
  8. The compound of any one of claims 3, 4, 6, and 7 wherein each of R9 and R10 is H.
  9. The compound of any one of claims 1-8, wherein RB is OH.
  10. The compound of any one of claims 1-9, wherein R1 is a C1-3 alkyl and R2 is NH2 or a C1- 3 alkyl substituted with NH2.
  11. The compound of any one of claims 1-9, wherein R1 and R2 form a 5-membered carbocyclic or heterocyclic ring, optionally substituted, having the formula (IIIA) :
    wherein
    Z is O or CH2,
    R11 is independently CH3 or NH2, and
    i is 0, 1 or 2.
  12. The compound of claim 11, wherein Z is O.
  13. The compound of any one of claims 1-9, wherein R1 and R2 form a 5-6 bicyclic fused carbocyclic ring, optionally substituted, having the formula (IIIB) :
    wherein
    R11 is independently CH3 or NH2, and
    i is 0, 1 or 2.
  14. The compound of any one of claims 10-13, wherein i is 1, and R11 is NH2.
  15. The compound of any one of claims 10-13, wherein i is 2, and the two R11’s are NH2 and  CH3.
  16. The compound of any one of claims 1-15, wherein R3 is NH2.
  17. The compound of any one of claims 1-15, wherein R3 is H.
  18. The compound of any one of claims 1-15, wherein R3 is CH3.
  19. The compound of any one of claims 1-18, wherein R4 is H.
  20. The compound of any one of claims 1-18, wherein R4 is H, C1-3 alkyl or CH2OH.
  21. The compound of any one of claims 1-20, wherein R5 is Cl.
  22. The compound of any one of claims 1-20, wherein R5 is H.
  23. The compound of any one of claims 1-20, wherein R5 is CF3, F or NH2.
  24. The compound of any one of claims 1-23, wherein R6 or R8 is H.
  25. The compound of any one of claims 1-24, wherein R6 or R8 is Cl.
  26. The compound of any one of claims 1-24, wherein R6 or R8 is methyl.
  27. The compound of any one of claims 1-24, wherein R6 or R8 is O-methyl.
  28. A compound selected from Table 1, or a pharmaceutically acceptable form or an isotope derivative thereof.
  29. A pharmaceutical composition comprising a compound according to any of claims 1-28 and a pharmaceutically acceptable excipient, carrier, or diluent.
  30. The pharmaceutical composition of claim 29, effective to treat or reduce cancer, or a related disease or condition.
  31. A unit dosage form comprising a pharmaceutical composition according to claim 29 or 30.
  32. A method for treating or reducing a disease or condition, comprising administering to a subject in need thereof a therapeutically effective amount of a pharmaceutical composition comprising a compound according to any of claims 1-28 and a pharmaceutically acceptable excipient, carrier, or diluent.
  33. The method of claim 32, wherein the disease or condition is cancer, or a related disease or condition thereof.
  34. Use of a compound of any of claims 1-28 for treating or reducing a disease or condition.
  35. Use of a compound of any of claims 1-33, and a pharmaceutically acceptable excipient, carrier, or diluent, in preparation of a medicament for treating or reducing a disease or condition.
  36. Use of claims 34 or 35, wherein the disease or condition is cancer, or a related disease or condition thereof.
PCT/CN2023/124646 2023-10-16 2023-10-16 Benzo [c] [1, 2] oxaborol-1 (3h) -ol derivatives as shp2 inhibitors, compositions and methods thereof WO2025081291A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2023/124646 WO2025081291A1 (en) 2023-10-16 2023-10-16 Benzo [c] [1, 2] oxaborol-1 (3h) -ol derivatives as shp2 inhibitors, compositions and methods thereof
PCT/CN2024/123588 WO2025082225A1 (en) 2023-10-16 2024-10-09 Benzo [c] [1, 2] oxaborol-1 (3h) -ol derivatives as shp2 inhibitors, compositions and methods thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/124646 WO2025081291A1 (en) 2023-10-16 2023-10-16 Benzo [c] [1, 2] oxaborol-1 (3h) -ol derivatives as shp2 inhibitors, compositions and methods thereof

Publications (1)

Publication Number Publication Date
WO2025081291A1 true WO2025081291A1 (en) 2025-04-24

Family

ID=95447565

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2023/124646 WO2025081291A1 (en) 2023-10-16 2023-10-16 Benzo [c] [1, 2] oxaborol-1 (3h) -ol derivatives as shp2 inhibitors, compositions and methods thereof
PCT/CN2024/123588 WO2025082225A1 (en) 2023-10-16 2024-10-09 Benzo [c] [1, 2] oxaborol-1 (3h) -ol derivatives as shp2 inhibitors, compositions and methods thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/123588 WO2025082225A1 (en) 2023-10-16 2024-10-09 Benzo [c] [1, 2] oxaborol-1 (3h) -ol derivatives as shp2 inhibitors, compositions and methods thereof

Country Status (1)

Country Link
WO (2) WO2025081291A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018172984A1 (en) * 2017-03-23 2018-09-27 Jacobio Pharmaceuticals Co., Ltd. Novel heterocyclic derivatives useful as shp2 inhibitors
CN109311848A (en) * 2016-06-07 2019-02-05 北京加科思新药研发有限公司 Novel heterocyclic derivatives useful as SHP2 inhibitors
CN110143949A (en) * 2018-05-09 2019-08-20 北京加科思新药研发有限公司 It can be used as the new type heterocycle derivative of SHP2 inhibitor
WO2022161222A1 (en) * 2021-01-29 2022-08-04 四川科伦博泰生物医药股份有限公司 Heterocyclic shp2 inhibitor, preparation method therefor, and use thereof
CN115515946A (en) * 2020-06-11 2022-12-23 贝达药业股份有限公司 SHP2 inhibitors, compositions and applications thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PH12019500056B1 (en) * 2016-07-12 2024-01-31 Revolution Medicines Inc 2,5-disubstituted 3-methyl pyrazines and 2,5,6-trisubstituted 3-methyl pyrazines as allosteric shp2 inhibitors
CA3078565A1 (en) * 2017-10-12 2019-04-18 Revolution Medicines, Inc. Pyridine, pyrazine, and triazine compounds as allosteric shp2 inhibitors
CA3097709A1 (en) * 2018-03-21 2019-09-26 Synblia Therapeutics, Inc. Shp2 inhibitors and uses thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109311848A (en) * 2016-06-07 2019-02-05 北京加科思新药研发有限公司 Novel heterocyclic derivatives useful as SHP2 inhibitors
WO2018172984A1 (en) * 2017-03-23 2018-09-27 Jacobio Pharmaceuticals Co., Ltd. Novel heterocyclic derivatives useful as shp2 inhibitors
CN110143949A (en) * 2018-05-09 2019-08-20 北京加科思新药研发有限公司 It can be used as the new type heterocycle derivative of SHP2 inhibitor
CN115515946A (en) * 2020-06-11 2022-12-23 贝达药业股份有限公司 SHP2 inhibitors, compositions and applications thereof
WO2022161222A1 (en) * 2021-01-29 2022-08-04 四川科伦博泰生物医药股份有限公司 Heterocyclic shp2 inhibitor, preparation method therefor, and use thereof

Also Published As

Publication number Publication date
WO2025082225A1 (en) 2025-04-24

Similar Documents

Publication Publication Date Title
JP7672451B2 (en) RHO-associated protein kinase inhibitors, pharmaceutical compositions containing same, and methods for preparing and using same - Patents.com
JP7039802B2 (en) Pharmaceutical composition containing RHO-related protein kinase inhibitor, RHO-related protein kinase inhibitor, preparation method and use of the pharmaceutical composition.
WO2022105855A1 (en) Kras g12d inhibitors
CN111499634B (en) Quinazoline compound and application thereof in medicine
EP3173412B1 (en) 2,4-disubstituted 7h-pyrrolo[2,3-d]pyrimidine derivative, preparation method and medicinal use thereof
EP2986611B1 (en) Certain protein kinase inhibitors
JP2014508168A (en) Quinazolinedione and uses thereof
CN104936945A (en) Pyridic ketone derivatives, method of preparing same, and pharmaceutical application thereof
WO2024041621A1 (en) K-ras mutant protein inhibitors
CN113454081A (en) Imidazopyridinyl compounds and their use for the treatment of proliferative diseases
CN108431001B (en) Fused ring pyrimidine compound or salt thereof
JP2024505732A (en) Pyridopyrimidinone derivatives and their production methods and uses
JP2023536948A (en) EGFR inhibitor and its production method and application
WO2022222871A1 (en) Heterocyclic compounds as kras g12c inhibitors
WO2022002100A1 (en) Novel benzimidazole compound
JP2020517654A (en) Method of using tri-substituted benzotriazole derivatives as inhibitors of dihydroorotic acid oxygenase
EP3750893B1 (en) Dioxazoline compound, preparation method therefor, and uses thereof
TW202043209A (en) MEK inhibitor and pharmaceutical use thereof
WO2025081291A1 (en) Benzo [c] [1, 2] oxaborol-1 (3h) -ol derivatives as shp2 inhibitors, compositions and methods thereof
EP4476226A1 (en) Conjugates of chemotherapy agents and tissue-binding small molecules, compositions and methods thereof
WO2024113194A1 (en) Shp2 inhibitors, compositions and methods thereof
WO2022171088A1 (en) Pyrazolo[3,4-d]pyrimidin-3-one derivative
WO2024089272A1 (en) New inhibitors of phosphatidylinositol 3-kinase
CN120051457A (en) Oxalic acid amide compound, pharmaceutical composition containing oxalic acid amide compound, preparation method and application of oxalic acid amide compound
EP4313944A1 (en) Metap-2 inhibitors, pharmaceutical compositions and therapeutic methods thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23955621

Country of ref document: EP

Kind code of ref document: A1