WO2024113194A1 - Shp2 inhibitors, compositions and methods thereof - Google Patents

Shp2 inhibitors, compositions and methods thereof Download PDF

Info

Publication number
WO2024113194A1
WO2024113194A1 PCT/CN2022/135205 CN2022135205W WO2024113194A1 WO 2024113194 A1 WO2024113194 A1 WO 2024113194A1 CN 2022135205 W CN2022135205 W CN 2022135205W WO 2024113194 A1 WO2024113194 A1 WO 2024113194A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
mmol
mixture
eluted
stirred
Prior art date
Application number
PCT/CN2022/135205
Other languages
French (fr)
Inventor
Ninghui YU
Rongliang Lou
Original Assignee
Canwell Biotech Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canwell Biotech Limited filed Critical Canwell Biotech Limited
Priority to PCT/CN2022/135205 priority Critical patent/WO2024113194A1/en
Priority to PCT/CN2023/133123 priority patent/WO2024114467A1/en
Publication of WO2024113194A1 publication Critical patent/WO2024113194A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4965Non-condensed pyrazines
    • A61K31/497Non-condensed pyrazines containing further heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/10Spiro-condensed systems
    • C07D491/107Spiro-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring

Definitions

  • This invention relates to certain novel SHP2 inhibitors, which are useful for treating SHP2 mediated diseases. More specifically, this disclosure is directed to phosphine oxide compounds which inhibit SHP2 and compositions comprising these compounds, methods of treating diseases associated with SHP2, and methods of synthesizing these compounds.
  • Src homology region 2 (SH2) -containing protein tyrosine phosphatase 2 (SHP2) encoded by the PTPN11 gene, is a cytoplasmic non-receptor phosphotyrosine phosphatase (Blood 2011; 118: 1504-1515. Nature 2013; 499: 491-495) .
  • SHP2 positively modulates RAS signaling and plays roles in cell proliferation, migration, differentiation and other important physiological processes (Mol Cell 2004; 13: 341-355) .
  • SHP2 contains a protein tyrosine phosphatase catalytic domain (PTP) , C-terminal tail with tyrosyl phosphorylation sites, and two SH2 domains, N-SH2 and C-SH2 domain.
  • the N-SH2 domain plays a key role in de-phosphorylating SHP2 itself with two non-overlapping ligand binding sites, while the C-SH2 domain provides binding energy and specificity (J. Cell. Mol. Med 2015; 19: 2075-2083) . Both N-and C-SH2 domains control the SHP2 subcellular localization and function.
  • the PTP domain has a P ring catalytic structure to de-phosphorylate substrates (J. Biol. Chem 2013; 15: 10472-10482) .
  • the SHP2 has two types of mutations, loss-of-function (LOF) mutations and gain-of-function (GOF) mutations.
  • LEF loss-of-function
  • GAF gain-of-function
  • the GOF mutants of SHP2 include D61G (Med. Sci. Monit 2017; 23: 2931-2938) , D61Y (Exp. Hematol 2008; 36: 1285-1296) , E76K (Mol. Carcinog 2018; 57: 619-628) , E76Q (J Chem Inf Model 2019; 59: 3229-3239) and T507K (J. Biol. Chem 2020; 18: 6187-6201) , which were observed in juvenile myelomonocytic leukemia, colorectal cancer, glioblastoma multiforme and other diseases.
  • SHP2 E76K a GOF mutation, activates Erk and Src to promote progression of lung cancer.
  • SHP2 E76K can also promote the malignance of glioblastoma multiform cells through Erk/cAMP/CREB signaling pathway (OncoTargets Ther 2019; 12: 9435-9447. Carcinogenesis 2014; 8: 1717-1725) .
  • SHP2 represents a potential biomarker and therapeutic target in several types of human cancer.
  • the present invention provides novel phosphine oxide compounds that are SHP2 inhibitors and have improved superior potency and selectivity profiles as well as good pharmacokinetics characteristics.
  • the invention further provides pharmaceutical compositions and methods of preparation and use of these compounds in treating a variety of diseases and conditions, such as SHP2-mediated diseases.
  • the invention generally relates to a compound having the structural formula of (I) :
  • X is S or a single bond
  • Y 1 is CR 7 or N
  • Y 2 is CR 8 or N, provided that if one of Y 1 and Y 2 is N, the other is not N;
  • each of R 1 and R 2 is independently NH 2 or a C 1-6 alkyl, or R 1 and R 2 , together with the carbon atom they are bound to, form a substituted or unsubstituted 5-membered carbocyclic or heterocyclic ring;
  • R 3 is H, CH 3 or NH 2 ;
  • R 4 is H, CH 2 OH, C (O) OCH 3 , C (O) NH 2 , or C (O) NHCH 3 ;
  • R 5 is H, Cl or CF 3 ;
  • each of R 6 , R 7 and R 8 is independently H, Cl or P (O) RR’, provided that one of R 6 , R 7 and R 8 is P (O) RR’;
  • each of R and R’ is independently a C 1-6 alkyl, cyclopropyl, cyclobutyl, or cyclopentyl, or a pharmaceutically acceptable form or an isotope derivative thereof.
  • the invention generally relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a compound disclosed herein and a pharmaceutically acceptable excipient, carrier, or diluent.
  • the invention generally relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a compound of the invention effective to treat or reduce cancer, or a related disease or condition.
  • the invention generally relates to a unit dosage form comprising a pharmaceutical composition disclosed herein.
  • the invention generally relates to a method for treating or reducing a disease or condition, comprising administering to a subject in need thereof a therapeutically effective amount of a pharmaceutical composition comprising a compound disclosed herein and a pharmaceutically acceptable excipient, carrier, or diluent.
  • the invention generally relates to use of a compound disclosed herein for treating or reducing a disease or condition.
  • the invention generally relates to use of a compound disclosed herein and a pharmaceutically acceptable excipient, carrier, or diluent, in preparation of a medicament for treating or reducing a disease or condition.
  • Certain compounds of the present invention may exist in particular geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including cis-and trans-isomers, R-and S-enantiomers, diastereomers, (D) -isomers, (L) -isomers, the racemic mixtures thereof, and other mixtures thereof, as falling within the scope of the invention.
  • Additional asymmetric carbon atoms may be present in a substituent such as an alkyl group. All such isomers, as well as mixtures thereof, are intended to be included in this invention.
  • Isomeric mixtures containing any of a variety of isomer ratios may be utilized in accordance with the present invention. For example, where only two isomers are combined, mixtures containing 50: 50, 60: 40, 70: 30, 80: 20, 90: 10, 95: 5, 96: 4, 97: 3, 98: 2, 99: 1, or 100: 0 isomer ratios are contemplated by the present invention. Those of ordinary skill in the art will readily appreciate that analogous ratios are contemplated for more complex isomer mixtures.
  • a particular enantiomer of a compound of the present invention may be prepared by asymmetric synthesis, or by derivation with a chiral auxiliary, where the resulting diastereomeric mixture is separated and the auxiliary group cleaved to provide the pure desired enantiomers.
  • the molecule contains a basic functional group, such as amino, or an acidic functional group, such as carboxyl, diastereomeric salts are formed with an appropriate optically-active acid or base, followed by resolution of the diastereomers thus formed by fractional crystallization or chromatographic methods well known in the art, and subsequent recovery of the pure enantiomers.
  • Solvates and polymorphs of the compounds of the invention are also contemplated herein.
  • Solvates of the compounds of the present invention include, for example, hydrates.
  • C 1-6 alkyl is intended to encompass, C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 1-6 , C 1-5 , C 1-4 , C 1-3 , C 1-2 , C 2-6 , C 2-5 , C 2-4 , C 2-3 , C 3-6 , C 3-5 , C 3-4 , C 4-6 , C 4-5 , and C 5-6 alkyl.
  • alkyl refers to a straight, branched or cyclic hydrocarbon radical consisting solely of carbon and hydrogen atoms, containing no unsaturation, having from one to ten carbon atoms (e.g., C 1-10 alkyl) .
  • a numerical range such as “1 to 10” refers to each integer in the given range; e.g., "1 to 10 carbon atoms” means that the alkyl group can consist of 1 carbon atom, 2 carbon atoms, 3 carbon atoms, etc., up to and including 10 carbon atoms, although the present definition also covers the occurrence of the term "alkyl” where no numerical range is designated.
  • “alkyl” can be a C 1-6 alkyl group.
  • alkyl groups have 1 to 10, 1 to 8, 1 to 6, or 1 to 3 carbon atoms.
  • saturated straight chain alkyls include, but are not limited to, -methyl, -ethyl, -n-propyl, -n-butyl, -n-pentyl, and -n-hexyl; while saturated branched alkyls include, but are not limited to, -isopropyl, -sec-butyl, -isobutyl, -tert-butyl, -isopentyl, 2-methylbutyl, 3-methylbutyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 2-methylhexyl, 3-methylhexyl, 4-methylhexyl, 5-methylhexyl, 2, 3-dimethylbutyl, and the like.
  • the alkyl is attached to the parent molecule by a single bond.
  • an alkyl group is optionally substituted by one or more of substituents.
  • inhibitor refers to any measurable reduction of biological activity.
  • inhibit or “inhibition” may be referred to as a percentage of a normal level of activity.
  • the term “effective amount” or “therapeutically effective amount” of an active agent refers to an amount sufficient to elicit the desired biological response.
  • the effective amount when administered in a proper dosing regimen, is sufficient to reduce or ameliorate the severity, duration or progression of the disorder being treated, prevent the advancement of the disorder being treated, cause the regression of the disorder being treated, or enhance or improve the prophylactic or therapeutic effect (s) of another therapy.
  • the effective amount of a compound of the invention may vary depending on such factors as the desired biological endpoint, the pharmacokinetics of the compound, the disease being treated, the mode of administration, and the patient.
  • An effective amount can be readily determined by a skilled physician, e.g., by first administering a low dose of the pharmacological agent (s) and then incrementally increasing the dose until the desired therapeutic effect is achieved with minimal or no undesirable side effects.
  • treatment refers to a method of reducing, delaying or ameliorating such a condition before or after it has occurred. Treatment may be directed at one or more effects or symptoms of a disease and/or the underlying pathology.
  • the treatment can be any reduction and can be, but is not limited to, the complete ablation of the disease or the symptoms of the disease. As compared with an equivalent untreated control, such reduction or degree of prevention is at least 5%, 10%, 20%, 40%, 50%, 60%, 80%, 90%, 95%, or 100%as measured by any standard technique.
  • the terms “prevent” , “preventing” , or “prevention” refer to a method for precluding, delaying, averting, or stopping the onset, incidence, severity, or recurrence of a disease or condition.
  • a method is considered to be a prevention if there is a reduction or delay in onset, incidence, severity, or recurrence of a disease or condition or one or more symptoms thereof in a subject susceptible to the disease or condition as compared to a subject not receiving the method.
  • the disclosed method is also considered to be a prevention if there is a reduction or delay in onset, incidence, severity, or recurrence of osteoporosis or one or more symptoms of a disease or condition in a subject susceptible to the disease or condition after receiving the method as compared to the subject′sprogression prior to receiving treatment.
  • the reduction or delay in onset, incidence, severity, or recurrence of osteoporosis can be about a 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100%, or any amount of reduction in between.
  • a "pharmaceutically acceptable form” of a disclosed compound includes, but is not limited to, pharmaceutically acceptable salts, esters, hydrates, solvates, polymorphs, isomers, prodrugs, and isotopically labeled derivatives thereof.
  • a "pharmaceutically acceptable form” includes, but is not limited to, pharmaceutically acceptable salts, esters, prodrugs and isotopically labeled derivatives thereof.
  • a "pharmaceutically acceptable form” includes, but is not limited to, pharmaceutically acceptable isomers and stereoisomers, prodrugs and isotopically labeled derivatives thereof.
  • the pharmaceutically acceptable form is a pharmaceutically acceptable salt.
  • pharmaceutically acceptable salt refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of subjects without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio.
  • Pharmaceutically acceptable salts are well known in the art. For example, Berge et al. describes pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences (1977) 66: 1-19.
  • Pharmaceutically acceptable salts of the compounds provided herein include those derived from suitable inorganic and organic acids and bases.
  • Examples of pharmaceutically acceptable, nontoxic acid addition salts are salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchioric acid or with organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchioric acid
  • organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange.
  • salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, besylate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate,
  • organic acids from which salts can be derived include, for example, acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, lactic acid, trifluoracetic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like.
  • the salts can be prepared in situ during the isolation and purification of the disclosed compounds, or separately, such as by reacting the free base or free acid of a parent compound with a suitable base or acid, respectively.
  • Pharmaceutically acceptable salts derived from appropriate bases include alkali metal, alkaline earth metal, ammonium and N + (C 1-4 alkyl) 4 salts.
  • Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, iron, zinc, copper, manganese, aluminum, and the like.
  • compositions include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, lower alkyl sulfonate and aryl sulfonate.
  • Organic bases from which salts can be derived include, for example, primary, secondary, and tertiary amines, substituted amines, including naturally occurring substituted amines, cyclic amines, basic ion exchange resins, and the like, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, and ethanolamine.
  • the pharmaceutically acceptable base addition salt can be chosen from ammonium, potassium, sodium, calcium, and magnesium salts.
  • the pharmaceutically acceptable form is a "solvate” (e.g., a hydrate) .
  • solvate refers to compounds that further include a stoichiometric or non-stoichiometric amount of solvent bound by non-covalent intermolecular forces.
  • the solvate can be of a disclosed compound or a pharmaceutically acceptable salt thereof. Where the solvent is water, the solvate is a "hydrate” .
  • Pharmaceutically acceptable solvates and hydrates are complexes that, for example, can include 1 to about 100, or 1 to about 10, or 1 to about 2, about 3 or about 4, solvent or water molecules. It will be understood that the term “compound” as used herein encompasses the compound and solvates of the compound, as well as mixtures thereof.
  • the pharmaceutically acceptable form is a prodrug.
  • prodrug refers to compounds that are transformed in vivo to yield a disclosed compound or a pharmaceutically acceptable form of the compound.
  • a prodrug can be inactive when administered to a subject, but is converted in vivo to an active compound, for example, by hydrolysis (e.g., hydrolysis in blood) .
  • hydrolysis e.g., hydrolysis in blood
  • a prodrug has improved physical and/or delivery properties over the parent compound.
  • Prodrugs can increase the bioavailability of the compound when administered to a subject (e.g., by permitting enhanced absorption into the blood following oral administration) or which enhance delivery to a biological compartment of interest (e.g., the brain or lymphatic system) relative to the parent compound.
  • exemplary prodrugs include derivatives of a disclosed compound with enhanced aqueous solubility or active transport through the gut membrane, relative to the parent compound.
  • the prodrug compound often offers advantages of solubility, tissue compatibility or delayed release in a mammalian organism (see, e.g., Bundgard, H., Design of Prodrugs (1985) , pp. 7-9, 21-24 (Elsevier, Amsterdam) .
  • a discussion of prodrugs is provided in Higuchi, T., et al., "Pro-drugs as Novel Delivery Systems, " A.C.S. Symposium Series, Vol. 14, and in Bioreversible Carriers in Drug Design, ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987, both of which are incorporated in full by reference herein.
  • Exemplary advantages of a prodrug can include, but are not limited to, its physical properties, such as enhanced water solubility for parenteral administration at physiological pH compared to the parent compound, or it can enhance absorption from the digestive tract, or it can enhance drug stability for long-term storage.
  • Prodrugs commonly known in the art include well-known acid derivatives, such as, for example, esters prepared by reaction of the parent acids with a suitable alcohol, amides prepared by reaction of the parent acid compound with an amine, basic groups reacted to form an acylated base derivative, etc.
  • acid derivatives such as, for example, esters prepared by reaction of the parent acids with a suitable alcohol, amides prepared by reaction of the parent acid compound with an amine, basic groups reacted to form an acylated base derivative, etc.
  • other prodrug derivatives may be combined with other features disclosed herein to enhance bioavailability.
  • those of skill in the art will appreciate that certain of the presently disclosed compounds having free amino, arnido, hydroxy or carboxylic groups can be converted into prodrugs.
  • Prodrugs include compounds having an amino acid residue, or a polypeptide chain of two or more (e.g., two, three or four) amino acid residues which are covalently joined through peptide bonds to free amino, hydroxy or carboxylic acid groups of the presently disclosed compounds.
  • the amino acid residues include the 20 naturally occurring amino acids commonly designated by three letter symbols and also include 4-hydroxyproline, hydroxylysine, demosine, isodemosine, 3-methylhistidine, norvalin, beta-alanine, gamma-aminobutyric acid, citrulline homocysteine, homoserine, ornithine and methionine sulfone.
  • Prodrugs also include compounds having a carbonate, carbamate, amide or alkyl ester moiety covalently bonded to any of the above substituents disclosed herein.
  • the term “pharmaceutically acceptable” excipient, carrier, or diluent refers to a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting the subject pharmaceutical agent from one organ, or portion of the body, to another organ, or portion of the body.
  • a pharmaceutically acceptable material, composition or vehicle such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting the subject pharmaceutical agent from one organ, or portion of the body, to another organ, or portion of the body.
  • Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the patient.
  • materials which can serve as pharmaceutically-acceptable carriers include: sugars, such as lactose, glucose and sucrose; starches, such as corn starch and potato starch; cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients, such as cocoa butter and suppository waxes; oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols, such as propylene glycol; polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; esters, such as ethyl oleate and ethyl laurate; agar; buffering agents, such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ring
  • wetting agents such as sodium lauryl sulfate, magnesium stearate, and polyethylene oxide-polypropylene oxide copolymer as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the compositions.
  • the term “subject” refers to any animal (e.g., a mammal) , including, but not limited to humans, non-human primates, rodents, and the like, which is to be the recipient of a particular treatment.
  • the terms “subject” and “patient” are used interchangeably herein in reference to a human subject.
  • the term “low dosage” refers to at least 5%less (e.g., at least 10%, 20%, 50%, 80%, 90%, or even 95%) than the lowest standard recommended dosage of a particular compound formulated for a given route of administration for treatment of any human disease or condition.
  • a low dosage of an agent that is formulated for administration by inhalation will differ from a low dosage of the same agent formulated for oral administration.
  • high dosage is meant at least 5% (e.g., at least 10%, 20%, 50%, 100%, 200%, or even 300%) more than the highest standard recommended dosage of a particular compound for treatment of any human disease or condition.
  • Isotopically-labeled compounds are also within the scope of the present disclosure.
  • an “isotopically-labeled compound” or “isotope derivative” refers to a presently disclosed compound including pharmaceutical salts and prodrugs thereof, each as described herein, in which one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature.
  • isotopes that can be incorporated into compounds presently disclosed include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine and chlorine, such as 2 H, 3 H, 13 C, 14 C, 15 N, 18 O, 17 O, 31 P, 32 P, 35 S, 18 F, and 36 Cl, respectively.
  • the compounds may be useful in drug and/or substrate tissue distribution assays. Tritiated ( 3 H) and carbon-14 ( 14 C) labeled compounds are particularly preferred for their ease of preparation and detectability. Further, substitution with heavier isotopes such as deuterium ( 2 H) can afford certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life or reduced dosage requirements and, hence, may be preferred in some circumstances. Isotopically labeled compounds presently disclosed, including pharmaceutical salts, esters, and prodrugs thereof, can be prepared by any means known in the art. Benefits may also be obtained from replacement of normally abundant 12 C with 13 C. (See, WO 2007/005643, WO 2007/005644, WO 2007/016361, and WO 2007/016431. )
  • deuterium ( 2 H) can be incorporated into a compound disclosed herein for the purpose in order to manipulate the oxidative metabolism of the compound by way of the primary kinetic isotope effect.
  • the primary kinetic isotope effect is a change of the rate for a chemical reaction that results from exchange of isotopic nuclei, which in turn is caused by the change in ground state energies necessary for covalent bond formation after this isotopic exchange.
  • Exchange of a heavier isotope usually results in a lowering of the ground state energy for a chemical bond and thus causes a reduction in the rate in rate-limiting bond breakage. If the bond breakage occurs in or in the vicinity of a saddle-point region along the coordinate of a multi-product reaction, the product distribution ratios can be altered substantially.
  • a compound which has multiple potential sites of attack for oxidative metabolism for example benzylic hydrogen atoms and hydrogen atoms bonded to a nitrogen atom, is prepared as a series of analogues in which various combinations of hydrogen atoms are replaced by deuterium atoms, so that some, most or all of these hydrogen atoms have been replaced by deuterium atoms.
  • Half-life determinations enable favorable and accurate determination of the extent of the extent to which the improvement in resistance to oxidative metabolism has improved. In this way, it is determined that the half-life of the parent compound can be extended by up to 100%as the result of deuterium-hydrogen exchange of this type.
  • Deuterium-hydrogen exchange in a compound disclosed herein can also be used to achieve a favorable modification of the metabolite spectrum of the starting compound in order to diminish or eliminate undesired toxic metabolites. For example, if a toxic metabolite arises through oxidative carbon-hydrogen (C-H) bond cleavage, it can reasonably be assumed that the deuterated analogue will greatly diminish or eliminate production of the unwanted metabolite, even if the particular oxidation is not a rate-determining step. Further information on the state of the art with respect to deuterium-hydrogen exchange may be found, for example in Hanzlik et al., J. Org. Chem. 55, 3992-3997, 1990, Reider et al., J. Org.
  • Compounds of the present invention are, subsequent to their preparation, preferably isolated and purified to obtain a composition containing an amount by weight equal to or greater than 95% ( “substantially pure” ) , which is then used or formulated as described herein. In certain embodiments, the compounds of the present invention are more than 99%pure.
  • stable refers to compounds which possess stability sufficient to allow manufacture and which maintains the integrity of the compound for a sufficient period of time to be useful for the purposes detailed herein (e.g., therapeutic or prophylactic administration to a subject) .
  • the invention generally relates to a compound having the structural formula of (I) :
  • X is S or a single bond
  • Y 1 is CR 7 or N
  • Y 2 is CR 8 or N, provided that if one of Y 1 and Y 2 is N, the other is not N;
  • each of R 1 and R 2 is independently NH 2 or a C 1-6 alkyl, or R 1 and R 2 , together with the carbon atom they are bound to, form a substituted or unsubstituted 5-membered carbocyclic or heterocyclic ring;
  • R 3 is H, CH 3 or NH 2 ;
  • R 4 is H, CH 2 OH, C (O) NH 2 , C (O) OCH 3 , or C (O) NHCH 3 ;
  • R 5 is H, Cl or CF 3 ;
  • each of R 6 , R 7 and R 8 is independently H, Cl or P (O) RR’, provided that one of R 6 , R 7 and R 8 is P (O) RR’;
  • each of R and R’ is independently a C 1-6 alkyl, cyclopropyl, cyclobutyl, or cyclopentyl, or a pharmaceutically acceptable form or an isotope derivative thereof.
  • Y 1 is CR 7 and Y 2 is CR 8 , having the structural formula:
  • Y 1 is N and Y 2 is CR 8 , having the structural formula (III) :
  • Y 1 is CR 7 and Y 2 is N, having the structural formula (IV) :
  • X is S, having the structural formula (V) :
  • Y 1 is N, having the structural formula (VI) :
  • Y 2 is N, having the structural formula (VII) :
  • Y 1 is CR 7 and Y 2 is CR 8 , having the structural formula (VIII) :
  • Y 1 is N and Y 2 is CR 8 , having the structural formula (X) :
  • Y 1 is CR 7 and Y 2 is N, having the structural formula (XI) :
  • Y 1 is CR 7 and Y 2 is CR 8 , having the structural formula (XII) :
  • Z is O or CH 2 ,
  • R 9 is independently CH 3 or NH 2 .
  • i 0, 1 or 2.
  • R 1 and R 2 form a 5-membered carbocyclic or heterocyclic ring, optionally substituted, having the formula (XIV) :
  • Z is O or CH 2 ,
  • R 9 is independently CH 3 or NH 2 .
  • i 0, 1 or 2.
  • R 1 and R 2 form a 5-membered carbocyclic or heterocyclic ring, optionally substituted, having the formula (XV) :
  • Z is O or CH 2 ,
  • R 9 is independently CH 3 or NH 2 .
  • i 0, 1 or 2.
  • i is 2, and two R 9 ’s are NH 2 and CH 3 .
  • R 3 is NH 2 .
  • R 3 is H.
  • R 3 is CH 3 .
  • R 4 is H.
  • R 4 is CH 2 OH.
  • R 4 is C (O) OCH 3 .
  • R 4 is C (O) NH 2 .
  • R 4 is C (O) NHCH 3 ;
  • R 5 is Cl.
  • R 5 is H.
  • R 5 is CF 3 .
  • R 6 is Cl.
  • one of R 7 and R 8 is P (O) RR’.
  • one of R and R’ is CH 3 .
  • one of R and R’ is cyclopropyl.
  • one of R and R’ is cyclobutyl.
  • one of R and R’ is cyclopentyl.
  • Non-limiting examples of compounds of the invention include:
  • the invention generally relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a compound disclosed herein and a pharmaceutically acceptable excipient, carrier, or diluent.
  • the invention generally relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a compound of the invention effective to treat or reduce cancer, or a related disease or condition.
  • the invention generally relates to a unit dosage form comprising a pharmaceutical composition disclosed herein.
  • the invention generally relates to a method for treating or reducing a disease or condition, comprising administering to a subject in need thereof a therapeutically effective amount of a pharmaceutical composition comprising a compound disclosed herein and a pharmaceutically acceptable excipient, carrier, or diluent.
  • the invention generally relates to use of a compound disclosed herein for treating or reducing a disease or condition.
  • the invention generally relates to use of a compound disclosed herein and a pharmaceutically acceptable excipient, carrier, or diluent, in preparation of a medicament for treating or reducing a disease or condition.
  • the disease or condition is cancer, or a related disease or condition thereof.
  • the terms “cancer” and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by abnormal or unregulated cell growth.
  • the cancer may be selected from melanoma, juvenile myelomoncytic leukemias, neuroblastoma, Philadelphia chromosome positive chronic myeloid, Philadelphia chromosome positive acute lymphoblastic leukemias, acute myeloid leukemias, myeloproliferative neoplasms (such as Polycythemia Vera, Essential Thrombocythemia and Primary Myelofibrosis) , breast cancer, lung cancer, liver cancer, colorectal cancer, esophageal cancer, gastric cancer, squamous-cell carcinoma of the head and neck, glioblastoma, anaplastic large-cell lymphoma, thyroid carcinoma, and spitzoid neoplasms.
  • the cancer is melanoma. In certain embodiments, the cancer is juvenile myelomoncytic leukemias. In certain embodiments, the cancer is neuroblastoma. In certain embodiments, the cancer is Philadelphia chromosome positive chronic myeloid. In certain embodiments, the cancer is Philadelphia chromosome positive acute lymphoblastic leukemias. In certain embodiments, the cancer is acute myeloid leukemias. In certain embodiments, the cancer is myeloproliferative neoplasms, such as Polycythemia Vera, Essential Thrombocythemia and Primary Myelofibrosis.
  • the cancer is selected from the group consisting of Polycythemia Vera, Essential Thrombocythemia and Primary Myelofibrosis.
  • the cancer is Polycythemia Vera.
  • the cancer is Essential Thrombocythemia.
  • the cancer is Primary Myelofibrosis.
  • the cancer is breast cancer.
  • the cancer is lung cancer.
  • the cancer is liver cancer.
  • the cancer is colorectal cancer.
  • the cancer is esophageal cancer.
  • the cancer is gastric cancer.
  • the cancer is squamous-cell carcinoma of the head and neck.
  • the cancer is glioblastoma. In certain embodiments, the cancer is anaplastic large-cell lymphoma. In certain embodiments, the cancer is thyroid carcinoma. In certain embodiments, the cancer is spitzoid neoplasms.
  • the cancer is selected from the group consisting of non-small cell lung cancer (NSCLC) , a colon cancer, an esophageal cancer, a rectal cancer, Juvenile myelomonocytic leukemia (JMML) , breast cancer, melanoma, and a pancreatic cancer.
  • NSCLC non-small cell lung cancer
  • JMML Juvenile myelomonocytic leukemia
  • breast cancer melanoma
  • pancreatic cancer a pancreatic cancer.
  • compositions of the present invention are administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir.
  • parenteral as used herein includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal, intrathecal, intrahepatic, intralesional and intracranial injection or infusion techniques.
  • the compositions are administered orally, intraperitoneally or intravenously.
  • Sterile injectable forms of the compositions of this invention include aqueous or oleaginous suspension. These suspensions are formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents.
  • the sterile injectable preparation is also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1, 3-butanediol.
  • a non-toxic parenterally acceptable diluent or solvent for example as a solution in 1, 3-butanediol.
  • acceptable vehicles and solvents that are employed are water, Ringer’s solution and isotonic sodium chloride solution.
  • sterile, fixed oils are conventionally employed as a solvent or suspending medium.
  • any bland fixed oil employed includes synthetic mono-or di-glycerides.
  • Fatty acids such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions.
  • These oil solutions or suspensions also contain a long-chain alcohol diluent or dispersant, such as carboxymethyl cellulose or similar dispersing agents that are commonly used in the formulation of pharmaceutically acceptable dosage forms including emulsions and suspensions.
  • Other commonly used surfactants such as Tweens, Spans and other emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms are also be used for the purposes of formulation.
  • compositions of this invention are orally administered in any orally acceptable dosage form.
  • exemplary oral dosage forms are capsules, tablets, aqueous suspensions or solutions.
  • carriers commonly used include lactose and corn starch.
  • Lubricating agents such as magnesium stearate, are also typically added.
  • useful diluents include lactose and dried cornstarch.
  • aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening, flavoring or coloring agents are optionally also added.
  • compositions of this invention are administered in the form of suppositories for rectal administration.
  • suppositories can be prepared by mixing the agent with a suitable non-irritating excipient that is solid at room temperature but liquid at rectal temperature and therefore will melt in the rectum to release the drug.
  • suitable non-irritating excipient include cocoa butter, beeswax and polyethylene glycols.
  • compositions of this invention are also administered topically, especially when the target of treatment includes areas or organs readily accessible by topical application, including diseases of the eye, the skin, or the lower intestinal tract. Suitable topical formulations are readily prepared for each of these areas or organs.
  • Topical application for the lower intestinal tract can be effected in a rectal suppository formulation (see above) or in a suitable enema formulation. Topically-transdermal patches are also used.
  • compositions are formulated in a suitable ointment containing the active component suspended or dissolved in one or more carriers.
  • exemplary carriers for topical administration include mineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene, polyoxypropylene compound, emulsifying wax and water.
  • provided pharmaceutically acceptable compositions can be formulated in a suitable lotion or cream containing the active components suspended or dissolved in one or more pharmaceutically acceptable carriers.
  • Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water.
  • compositions of this invention are optionally administered by nasal aerosol or inhalation.
  • Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and are prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other conventional solubilizing or dispersing agents.
  • compositions of this invention are formulated for oral administration. Such formulations may be administered with or without food. In some embodiments, pharmaceutically acceptable compositions of this invention are administered without food. In other embodiments, pharmaceutically acceptable compositions of this invention are administered with food.
  • compositions of the present invention that is optionally combined with the carrier materials to produce a composition in a single dosage form will vary depending upon the host treated, the particular mode of administration.
  • provided compositions should be formulated so that a dosage of between 0.01 -100 mg/kg body weight/day of the compound can be administered to a patient receiving these compositions.
  • a specific dosage and treatment regimen for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, rate of excretion, drug combination, and the judgment of the treating physician and the severity of the particular disease being treated.
  • the amount of a compound of the present invention in the composition will also depend upon the particular compound in the composition.
  • LC-MS spectra were recorded on a Shimadzu LC-MS2020 using Agilent C18 column (Eclipse XDB-C18, 5um, 2.1 x 50mm) with flow rate of 1 mL/min.
  • Mobile phase A 0.1%of formic acid in water
  • mobile phase B 0.1%of formic acid in acetonitrile.
  • a general gradient method was used.
  • Analytical HPLC was performed on Agilent 1200 HPLC with a Zorbax Eclipse XDB C18 column (2.1 x 150 mm) with flow rate of 1 mL/min.
  • Mobile phase A 0.1%of TFA in water
  • mobile phase B 0.1%of TFA in acetonitrile.
  • a general method with following gradient was used.
  • Preparative HPLC was performed on Varian ProStar using Hamilton C18 PRP-1 column (15 x 250 mm) with flow rate of 20 mL/min.
  • Mobile phase A 0.1%of TFA in water
  • mobile phase B 0.1%of TFA in acetonitrile.
  • a typical gradient method was used.
  • Step 1 A mixture of compound 1-1 (1.0 g, 4.80 mmol) , Xantphos (280 mg, 0.484 mmol) , Pd (OAc) 2 (108 mg, 0.481 mmol) in a Schlenk vial was purged with nitrogen for 3 times. To this was added a solution of compound 1-2 (670 mg, 5.57 mmol) and DIPEA (1.85 g, 14.34 mmol) in dioxane. The reaction mixture was purged again with nitrogen for 3 times and stirred at 105 °C for 16 h. After completion of the reaction, the mixture was cooled to room temperature and filtered. The filtrate was concentrated and purified by silica gel column (eluted with 30%EtOAc in Petroleum ether) to afford the title compound 1-3 (950 mg, yield 80%) as a light-yellow solid.
  • silica gel column eluted with 30%EtOAc in Petroleum ether
  • Step 2 Under nitrogen atmosphere, to a solution of compound 1-3 (500 mg, 2.02 mmol) in anhydrous THF (8 mL) was added dropwise NaOEt (20 w%solution in EtOH, 1.1 g, 3.23 mmol) at -30 °C. The mixture was stirred at -30 °C for 2 h. After completion of the reaction, the mixture was warmed to room temperature and concentrated. The residue was acidified by 1 N hydrochloric acid and purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2 O, HCl condition) . The desired components were lyophilized to give the title compound 1-4 (hydrochloride, 320 mg, yield 80%) as a yellow solid.
  • Step 3 To a solution of compound 1-5 (10.0 g, 61.7 mmol) in DMF (60 mL) was added NIS (14.9 g, 66.2 mmol) portion-wise over 30 min at 0 °C. The mixture was stirred at room temperature for 8 h. After completion of the reaction, the mixture was poured in H 2 O (600 mL) . The resulted mixture was extracted with EtOAc (300 mL x 2) . The combined organic layers were washed with water and brine, dried over anhydrous Na 2 SO 4 , filtered and concentrated. The crude product was purified by silica gel column (eluted with 10%EtOAc in Petroleum ether) to afford the title compound 1-6 (11.2 g, yield 63%) as brown solid.
  • Step 4 Under nitrogen atmosphere, a mixture of compound 1-6 (10.0 g, 34.7 mmol) , compound 1-7 (8.13 g, 103 mmol) , Xantphos (2.0 g, 3.45 mmol) , Pd (OAc) 2 (390 mg, 1.74 mmol) and K 3 PO 4 (18.4 g, 86.7 mmol) in anhydrous DMF (50 mL) was stirred at 120 °C for 16 h. The mixture was cooled to room temperature, filtered and concentrated. The residue was purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2 O, HCl condition) . The desired components were lyophilized to give the title compound 1-8 (hydrochloride, 1.35 g, yield 14%) as a yellow solid.
  • Step 5 To a solution of compound 1-8 (hydrochloride, 930 mg, 3.36 mmol) in MeCN (9 mL) was added 4 N aqueous HCl (3.5 mL, 14 mmol) . The mixture was stirred at room temperature for 10 min and cooled to 0 °C. To this was added a cold solution of NaNO 2 (280 mg, 4.05 mmol) in H 2 O (2 mL) . The mixture was stirred at 0 °C for 30 min. CuI (64 mg, 0.336 mmol) and KI (1.38 g, 8.31 mmol) were added thereto. The mixture was stirred at room temperature for 3 h.
  • Step 6 A mixture of compound 1-9 (500 mg, 1.43 mmol) , compound 1-4 (hydrochloride, 350 mg, 1.76 mmol) , Xantphos (165 mg, 0.285 mmol) , Pd 2 (Dba) 3 (130 mg, 0.142 mmol) and DIPEA (550 mg, 4.25 mmol) in dioxane (5 mL) was stirred at 115 °C for 16 h. After completion of the reaction, the mixture was cooled to room temperature, filtered and concentrated.
  • Step 7 A mixture of compound 1-10 (hydrochloride, 100 mg, 0.239 mmol) , compound 1-11 (70 mg, 0.288 mmol) and K 2 CO 3 (165 mg, 1.19 mmol) in DMAc (5 mL) and H 2 O (0.5 mL) was stirred at 120 °C for 18 h. After completion of the reaction, the mixture was cooled and filtered. The filtrate was purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2 O, HCl condition) . The desired components were lyophilized to give the title compound 1 (65 mg, yield 49%) as an off-white solid.
  • Step 1 To a solution of compound 2-1 (10.0 g, 51.1 mmol) in DMF (50 mL) was added NBS (10.0 g, 56.2 mmol) portion-wise over 30 min at 0 °C. The mixture was stirred at room temperature for 3 h. After completion of the reaction, the mixture was poured in H 2 O (500 mL) . The resulted mixture was extracted with EtOAc (300 mL x 2) . The combined organic layers were washed with water and brine, dried over anhydrous Na 2 SO 4 , filtered and concentrated. The crude product was purified by silica gel column (eluted with 10%EtOAc in Petroleum ether) to afford the title compound 2-2 (11.9 g, yield 85%) as brown liquid.
  • Step 2 To a solution of compound 2-2 (3 g, 10.9 mmol) in MeCN (10 mL) was added 4 N aqueous HCl (11 mL, 44 mmol) . The mixture was stirred at room temperature for 10 min and cooled to 0 °C. To this was added a cold solution of NaNO 2 (900 mg, 13.0 mmol) in H 2 O (5 mL) . The mixture was stirred at 0 °C for 30 min. CuI (210 mg, 1.10 mmol) and KI (4.5 g, 27.1 mmol) were added thereto. The mixture was stirred at room temperature for 3 h.
  • Step 3 Under nitrogen atmosphere, a mixture of compound 2-3 (4.68 g, 12.1 mmol) , compound 1-7 (1.05 g, 13.4 mmol) , Xantphos (1.4 g, 2.42 mmol) , Pd (OAc) 2 (270 mg, 1.20 mmol) and K 3 PO 4 (6.5 g, 30.6 mmol) in anhydrous DMF (30 mL) was stirred at 120 °C for 16 h. The mixture was cooled to room temperature, filtered and concentrated. The residue was purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2 O, HCl condition) . The desired components were lyophilized to give the title compound 2-4 (820 mg, yield 20%) as a yellow solid.
  • Step 4 A mixture of compound 2-4 (300 mg, 0.894 mmol) , compound 1-4 (hydrochloride, 260 mg, 1.32 mmol) , Xantphos (103 mg, 0.178 mmol) , Pd 2 (Dba) 3 (82 mg, 0.089 mmol) and DIPEA (350 mg, 2.71 mmol) in dioxane (3 mL) was stirred at 115 °C for 16 h. After completion of the reaction, the mixture was cooled to room temperature, filtered and concentrated.
  • Step 5 A mixture of compound 2-5 (hydrochloride, 100 mg, 0.221 mmol) , compound 1-11 (65 mg, 0.267 mmol) and K 2 CO 3 (150 mg, 1.08 mmol) in DMAc (3 mL) and H 2 O (0.3 mL) was stirred at 120 °C for 18 h. After completion of the reaction, the mixture was cooled and filtered. The filtrate was purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2 O, HCl condition) . The desired components were lyophilized to give the title compound 2 (19 mg, yield 49%) as a pale-yellow solid.
  • Step 1 Under nitrogen atmosphere, a mixture of compound 3-1 (5.0 g, 19.7 mmol) , compound 1-7 (4.61 g, 59.1 mmol) , Xantphos (2.28 g, 3.94 mmol) , Pd (OAc) 2 (442 mg, 1.97 mmol) and K 3 PO 4 (10.5 g, 49.5 mmol) in anhydrous DMF (50 mL) was stirred at 120 °C for 16 h. The mixture was cooled to room temperature, filtered and concentrated. The residue was purified by silica gel column (eluted with 5%methanol in dichloromethane) to afford the title compound 3-2 (3.69 g, yield 67%) as a yellow solid.
  • Step 2 To a solution of compound 3-2 (2 g, 9.82 mmol) in MeCN (10 mL) was added 4 N aqueous HCl (10 mL, 40 mmol) . The mixture was stirred at room temperature for 10 min and cooled to 0 °C. To this was added a cold solution of NaNO 2 (735 mg, 10.6 mmol) in H 2 O (5 mL) . The mixture was stirred at 0 °C for 30 min. CuI (190 mg, 0.997 mmol) and KI (4.07 g, 24.5 mmol) were added thereto. The mixture was stirred at room temperature for 3 h.
  • Step 3 A mixture of compound 3-3 (220 mg, 0.70 mmol) , compound 1-4 (hydrochloride, 210 mg, 1.06 mmol) , Xantphos (85 mg, 0.147 mmol) , Pd 2 (Dba) 3 (64 mg, 0.07 mmol) and DIPEA (270 mg, 2.09 mmol) in dioxane (3 mL) was stirred at 115 °C for 16 h. After completion of the reaction, the mixture was cooled to room temperature, filtered and concentrated.
  • Step 1 Under nitrogen atmosphere, a mixture of compound 4-1 (2.1 g, 6.61 mmol) , compound 1-7 (570 mg, 7.30 mmol) , Xantphos (760 mg, 1.31 mmol) , Pd (OAc) 2 (150 mg, 0.668 mmol) and K 3 PO 4 (3.50 g, 16.5 mmol) in anhydrous DMF (20 mL) was stirred at 120 °C for 16 h. The mixture was cooled to room temperature and filtered. The filtrate was diluted with EtOAc (100 mL) and washed with water (50 mL x2) . The organic layer was washed with brine, dried over anhydrous Na 2 SO 4 , filtered and concentrated. The residue was purified by silica gel column (eluted with 5%methanol in dichloromethane) to afford the title compound 4-2 (750 mg, yield 42%) as a yellow solid.
  • Step 2 A mixture of compound 4-2 (220 mg, 0.822 mmol) , compound 1-4 (hydrochloride, 195 mg, 0.929 mmol) , Xantphos (95 mg, 0.164 mmol) , Pd 2 (Dba) 3 (75 mg, 0.082 mmol) and DIPEA (320 mg, 2.48 mmol) in dioxane (4 mL) was stirred at 115 °C for 16 h. After completion of the reaction, the mixture was cooled to room temperature, filtered and concentrated.
  • Step 3 A mixture of compound 4-3 (hydrochloride, 60 mg, 0.156 mmol) , compound 1-11 (45 mg, 0.185 mmol) and K 2 CO 3 (110 mg, 0.796 mmol) in DMAc (3 mL) and H 2 O (0.3 mL) was stirred at 120 °C for 18 h. After completion of the reaction, the mixture was cooled and filtered. The filtrate was purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2 O, HCl condition) . The desired components were lyophilized to give the title compound 4 (23 mg, yield 44%) as a pale-yellow solid.
  • Step 1 Under nitrogen atmosphere, a mixture of compound 5-1 (5.0 g, 28.9 mmol) , compound 1-7 (6.76 g, 86.7 mmol) , Xantphos (3.34 g, 5.77 mmol) , Pd (OAc) 2 (650 mg, 2.89 mmol) and K 3 PO 4 (15.3 g, 72.1 mmol) in anhydrous DMF (50 mL) was stirred at 120 °C for 16 h. The mixture was cooled to room temperature, filtered and concentrated.
  • Step 2 To a solution of compound 5-2 (hydrochloride, 2.7 g, 13.0 mmol) in MeCN (30 mL) was added 4 N aqueous HCl (15 mL, 60 mmol) . The mixture was stirred at room temperature for 10 min and cooled to 0 °C. To this was added dropwise a cold solution of NaNO 2 (950 mg, 13.8 mmol) in H 2 O (10 mL) . The mixture was stirred at 0 °C for 30 min. CuI (250 mg, 1.31 mmol) and KI (5.44 g, 32.8 mmol) were added thereto. The mixture was stirred at room temperature for 3 h.
  • Step 3 A mixture of compound 5-3 (300 mg, 1.07 mmol) , compound 1-4 (hydrochloride, 320 mg, 1.61 mmol) , Xantphos (123 mg, 0.212 mmol) , Pd 2 (Dba) 3 (98 mg, 0.107 mmol) and DIPEA (415 mg, 3.21 mmol) in dioxane (5 mL) was stirred at 115 °C for 16 h. After completion of the reaction, the mixture was cooled to room temperature, filtered and concentrated.
  • Step 4 A mixture of compound 5-4 (hydrochloride, 60 mg, 0.171 mmol) , compound 1-11 (62 mg, 0.255 mmol) and K 2 CO 3 (120 mg, 0.868 mmol) in DMAc (3 mL) and H 2 O (0.3 mL) was stirred at 120 °C for 18 h. After completion of the reaction, the mixture was cooled and filtered. The filtrate was purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2 O, HCl condition) . The desired components were lyophilized to give the title compound 5 (38 mg, yield 45%) as a yellow solid.
  • Step 1 Under nitrogen atmosphere, a mixture of compound 6-1 (5.0 g, 28.9 mmol) , compound 1-7 (6.76 g, 86.7 mmol) , Xantphos (3.34 g, 5.77 mmol) , Pd (OAc) 2 (650 mg, 2.89 mmol) and K 3 PO 4 (15.3 g, 72.1 mmol) in anhydrous DMF (50 mL) was stirred at 120 °C for 16 h. The mixture was cooled to room temperature, filtered and concentrated.
  • Step 2 To a solution of compound 6-2 (hydrochloride, 1.7 g, 8.22 mmol) in MeCN (20 mL) was added 4 N aqueous HCl (10 mL, 40 mmol) . The mixture was stirred at room temperature for 10 min and cooled to 0 °C. To this was added dropwise a cold solution of NaNO 2 (600 mg, 8.70 mmol) in H 2 O (6 mL) . The mixture was stirred at 0 °C for 30 min. CuI (150 mg, 0.787 mmol) and KI (3.41 g, 20.5 mmol) were added thereto. The mixture was stirred at room temperature for 3 h.
  • Step 3 A mixture of compound 6-3 (130 mg, 0.462 mmol) , compound 1-4 (hydrochloride, 130 mg, 0.656 mmol) , Xantphos (55 mg, 0.095 mmol) , Pd 2 (Dba) 3 (45 mg, 0.049 mmol) and DIPEA (180 mg, 1.39 mmol) in dioxane (2mL) was stirred at 115 °C for 16 h. After completion of the reaction, the mixture was cooled to room temperature, filtered and concentrated.
  • Step 4 A mixture of compound 6-4 (hydrochloride, 40 mg, 0.114 mmol) , compound 1-11 (40 mg, 0.165 mmol) and K 2 CO 3 (80 mg, 0.578 mmol) in DMAc (2 mL) and H 2 O (0.2 mL) was stirred at 120 °C for 18 h. After completion of the reaction, the mixture was cooled and filtered. The filtrate was purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2 O, HCl condition) . The desired components were lyophilized to give the title compound 6 (15 mg, yield 27%) as a yellow solid.
  • Step 1 Under nitrogen, a mixture of compound 7-1 (1.0 g, 5.17 mmol) , 2-Methoxyethanethiol 1-2 (750 mg, 6.25 mmol) , Xantphos (300 mg, 0.518 mmol) , DIEPA (1.3 g, 10.06 mmol) and palladium (II) acetate (62 mg, 0.276 mmol) in dioxane (5 mL) was stirred at 115°C for 16 h. After completion of the reaction, the mixture was filtered. The filtrated was diluted with EtOAc (50 mL) and washed with water (50 mL) . The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated.
  • Step 2 Under nitrogen, to a solution of compound 7-2 (860 mg, 3.70 mmol) in anhydrous THF (5mL) was added dropwise sodium ethoxide (20 w%solution in EtOH, 1.9 g, 5.59 mmol) at -30 °C. The mixture was stirred at -30 °C for 1 h, then warmed at 25°C and stirred for 2 h. After completion of the reaction, the mixture was concentrated under reduced pressure. The residue was dispersed in DCM (15 mL) and petroleum ether (15 mL) . The suspension was filtered and the solid was dried in vacuum to give the title compound 7-3 (780 mg, yield quantitively, 80 w%) as a yellow solid.
  • Step 3 Under nitrogen, a mixture of compound 7-4 (5 g, 24.2 mmol) , dimethylphosphine oxide 1-7 (2.9 g, 36.3 mmol) , Xantphos (1.4 g, 2.4 mmol) , K 3 PO 4 (10.3 g, 48.4 mmol) and palladium (II) acetate (270 mg, 1.2 mmol) in DMF (50 mL) was stirred at 120°C for 16 h. After completion, the reaction was cooled and concentrated.
  • Step 4 To a solution of compound 7-5 (hydrochloride, 1.3 g, 5.41 mmol) in MeCN (15 ml) was added 4 N HCl (6 mL) . After stirring for 10 min at 0 °C, NaNO 2 (480 mg, 6.95 mmol) in cold H 2 O (5 mL) was added dropwise. After stirring for 30 min at 0 °C, CuI (610 mg, 3.20 mmol) and KI (2.1 g, 12.6 mmol) was added thereto. The mixture was stirred at 0 °C for 4 h, water (50 mL) was added to quench the reaction. The resulted mixture extracted with EtOAc (50 mL x 2) .
  • Step 5 Under nitrogen, a mixture of compound 7-6 (120 mg, 0.381 mmol) , compound 7-3 (80 w%, 96 mg, 0.457 mmol) , Xantphos (44 mg, 0.076 mmol) , Pd 2 (Dba) 3 (35 mg, 0.0382 mmol) and DIPEA (150 mg, 1.16 mmol) in dioxane (2 mL) was stirred at 115°C for 16 h. After completion of the reaction, the mixture was cooled and diluted with ethyl acetate (10 mL) and water (10 mL) . The organic layer was separated, dried over anhydrous sodium sulfate, filtered and concentrated.
  • Step 6 A mixture of compound 7-7 (hydrochloride, 50 mg, 0.135 mmol) , compound 1-11 (50 mg, 0.206 mmol) and K 2 CO 3 (95 mg, 0.687 mmol) in N, N-dimethylacetamide (2 mL) was stirred at 120 °C for 24 h. After completion of the reaction, the mixture was cooled and filtered. The filtrated was purified by pre-HPLC (C18 column, eluted with acetonitrile in H 2 O, HCl condition) . The desired component was lyophilized to give the title compound 7 (21 mg, yield 30%) as a yellow solid.
  • Step 1 Under nitrogen, a mixture of compound 7-6 (155 mg, 0.493 mmol) , 2-Methoxyethanethiol 1-2 (90 mg, 0.75 mmol) , Xantphos (57 mg, 0.098 mmol) , palladium (II) acetate (12 mg, 0.049 mmol) and DIEPA (190 mg, 1.47 mmol) in dioxane (3 mL) was stirred at 115 °C for 16 h. After completion of the reaction, the mixture was filtered. The filtrated was diluted with EtOAc (20 mL) and washed with water (20 mL) . The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica gel column (eluted with 5%MeOH in DCM) to afford the title compound --1 (120 mg, yield 79%) as a pale-yellow solid.
  • Step 2 Under nitrogen, to a solution of compound 8-1 (100 mg, 0.326 mmol) in anhydrous THF (3 mL) was added dropwise sodium ethoxide (20 w%solution in EtOH, 166 mg, 0.488 mmol) at 0 °C. The mixture was stirred at room temperature for 1 h. After completion of the reaction, the mixture was concentrated under reduced pressure to give the title compound 8-2 (113 mg, yield quantitively, 70 w%) as a yellow solid, which was used at next step without purification.
  • Step 3 Under nitrogen, a mixture of compound 1-1 (68 mg, 0.326 mmol) , compound 8-2 (70 w%, 113 mg, 0.326 mmol) , Xantphos (37 mg, 0.064 mmol) , Pd 2 (Dba) 3 (30 mg, 0.0327 mmol) and DIPEA (125 mg, 0.967 mmol) in dioxane (2 mL) was stirred at 115 °C for 16 h. After completion of the reaction, the mixture was cooled and concentrated. The residue was purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2 O, HCl condition) . The desired components were lyophilized to afford the title compound 8-3 (hydrochloride, 22 mg, yield 17 %) as a yellow solid.
  • Step 4 A mixture of compound 8-3 (hydrochloride, 22 mg, 0.057 mmol) , compound 1-11 (20 mg, 0.082 mmol) and K 2 CO 3 (40 mg, 0.289 mmol) in N, N-dimethylacetamide (2 mL) was stirred at 120 °C for 16 h. After completion of the reaction, the mixture was cooled and filtered. The filtrated was purified by pre-HPLC (C18 column, eluted with acetonitrile in H 2 O, HCl condition) . The desired component was lyophilized to give the title compound 8 (10 mg, yield 33%) as a yellow solid.
  • Step 1 Tert-butyl nitrite (6.1 g, 59.1 mmol) was added dropwise to a mixture of compound 9-1 (10 g, 39.3 mmol) and copper (I) bromide (8.5 g, 59.2 mmol) in anhydrous acetonitrile (100 mL) at room temperature under nitrogen atmosphere. The mixture was then heated to 75 °C and stirred for 15 h. After completion of the reaction, the mixture was cooled to room temperature and diluted with EtOAc (200 mL) . The resulted mixture was washed with water and brine. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica gel column chromatography (eluted with 10%EtOAc in petroleum ether) to afford the title compound 9-2 (2.4 g, yield 19%) as a white solid.
  • Step 2 Under nitrogen, a mixture of compound 9-2 (900 mg, 2.82 mmol) , compound 1-7 (265 mg, 3.40 mmol) , Xantphos (326 mg, 0.563 mmol) , Pd 2 (Dba) 3 (258 mg, 0.282 mmol) and TEA (720 mg, 7.13 mmol) in dioxane (9 mL) was stirred at 120 °C for 16 h. After completion of the reaction, the mixture was concentrated.
  • Step 3 Under nitrogen, a mixture of compound 9-3 (240 mg, 0.894 mmol) , compound 7-3 (80 w%, 280 mg, 1.33 mmol) , Xantphos (105 mg, 0.181 mmol) , Pd 2 (Dba) 3 (80 mg, 0.087 mmol) and DIPEA (350 mg, 2.71 mmol) in dioxane (4 mL) was stirred at 105 °C for 16 h. After completion of the reaction, the mixture was concentrated.
  • Step 4 A mixture of compound 9-4 (130 mg, 0.389 mmol) , compound 1-11 (140 mg, 0.576 mmol) and K 2 CO 3 (270 mg, 1.95 mmol) in N, N-dimethylacetamide (3 mL) was stirred at 120 °C for 16 h. After completion of the reaction, the mixture was cooled and filtered. The filtrated was purified by pre-HPLC (C18 column, eluted with acetonitrile in H 2 O, HCl condition) . The desired component was lyophilized to give the title compound 9 (45 mg, yield 23%) as a yellow solid.
  • Step 1 Under nitrogen, a mixture of compound 9-3 (1 g, 3.14 mmol) , compound 1-2 (400 mg, 3.32 mmol) , Xantphos (360 mg, 0.622 mmol) , Pd (OAc) 2 (71 mg, 0.316 mmol) and DIPEA (1.02 g, 7.89 mmol) in dioxane (10 mL) was stirred at 105 °C for 16 h. After completion of the reaction, the mixture was cooled, filtered and concentrated. The residue was purified by silica gel column chromatography (eluted with 20%EtOAc in petroleum ether) to afford the title compound 10-1 (880 mg, yield 90%) as a yellow solid.
  • LCMS m/z calculated for C 9 H 9 BrClNO 2 S: 310.59; found: 222.49 [M- (methyl propionate) +H] + .
  • Step 2 Under nitrogen, a mixture of compound 10-1 (1.18 g, 3.80 mmol) , compound 1-7 (600 mg, 7.69 mmol) , Xantphos (440 mg, 0.76 mmol) , Pd 2 (Dba) 3 (350 mg, 0.382 mmol) and Et 3 N (960 mg, 9.50 mmol) in dioxane (12 mL) was stirred at 120 °C for 2 h. The mixture was concentrated after cooled.
  • Step 3 Under nitrogen, to a solution of compound 10-2 (278 mg, 0.903 mmol) in anhydrous THF (5 mL) was added dropwise sodium ethoxide (20 w%solution in EtOH, 460 mg, 1.35 mmol) at -30 °C. The mixture was stirred at -30 °C for 1 h. After completion of the reaction, the mixture was concentrated under reduced pressure. The residue was dispersed in DCM (15 mL) and petroleum ether (15 mL) . The suspension was filtered and the solid was dried in vacuum to give the title compound 10-3 (300 mg, yield quantitively, 73 w%) as a yellow solid.
  • Step 4 Under nitrogen, a mixture of compound 10-3 (73 w%, 113 mg, 0.338 mmol) , compound 7-1 (100 mg, 0.517 mmol) , Xantphos (40 mg, 0.069 mmol) , Pd 2 (Dba) 3 (30 mg, 0.032 mmol) and DIPEA (130 mg, 1.0 mmol) in dioxane (3 mL) was stirred at 105 °C for 16 h. After completion of the reaction, the mixture was concentrated.
  • Step 5 A mixture of compound 10-4 (55 mg, 0.164 mmol) , compound 1-11 (60 mg, 0.247 mmol) and K 2 CO 3 (120 mg, 0.868 mmol) in N, N-dimethylacetamide (3 mL) was stirred at 120 °C for 16 h. After completion of the reaction, the mixture was cooled and filtered. The filtrated was purified by pre-HPLC (C18 column, eluted with acetonitrile in H 2 O, TFA condition) . The desired component was lyophilized to give the title compound 10 (15 mg, yield 15%) as a yellow solid.
  • Step 1 A mixture of compound 11-1 (4 g, 19.3 mmol) and aqueous HCl (4 N, 20 mL, 80 mmol) in acetonitrile (30 mL) was stirred at room temperature for 10 min before cooled to 0 °C. To this was added dropwise a cold solution of NaNO 2 (1.47 g, 21.3 mmol) in H 2 O (10 mL) . After stirring at 0 °C for 30 min, a cold solution of KI (6.4 g, 38.5 mmol) in H 2 O (15 mL) was added thereto. The resulted mixture was stirred at 0 °C for 30 min and then warmed to room temperature with further stirring for 2 h.
  • Step 2 Under nitrogen, a mixture of compound 11-2 (600 mg, 1.88 mmol) , compound 1-7 (176 mg, 2.25 mmol) , Xantphos (217 mg, 0.375 mmol) , Pd 2 (Dba) 3 (170 mg, 0.185 mmol) and Et 3 N (570 mg, 5.64 mmol) in dioxane (5 mL) was stirred at 100 °C for 2 h. The mixture was cooled and concentrated.
  • Step 3 Under nitrogen, a mixture of compound 11-3 (200 mg, 0.745 mmol) , compound 7-3 (80 w%, 235 mg, 1.11 mmol) , Xantphos (86 mg, 0.148 mmol) , Pd 2 (Dba) 3 (68 mg, 0.074 mmol) and DIPEA (280 mg, 2.16 mmol) in dioxane (3 mL) was stirred at 105 °C for 16 h. The mixture was cooled and concentrated.
  • Step 4 A mixture of compound 11-4 (61 mg, 0.182 mmol) , compound 1-11 (66 mg, 0.271 mmol) and K 2 CO 3 (125 mg, 0.904 mmol) in N, N-dimethylacetamide (3 mL) was stirred at 120 °C for 16 h. After completion of the reaction, the mixture was cooled and filtered. The filtrated was purified by pre-HPLC (C18 column, eluted with acetonitrile in H 2 O, TFA condition) . The desired component was lyophilized to give the title compound 11 (20 mg, yield 18%) as a yellow solid.
  • Step 1 Under nitrogen, a mixture of compound 10-3 (73 w%, 200 mg, 0.60 mmol) , compound 1-1 (0.911 mmol) , Xantphos (70 mg, 0.121 mmol) , Pd 2 (Dba) 3 (55 mg, 0.06 mmol) and DIPEA (235 mg, 1.82 mmol) in dioxane (3 mL) was stirred at 105 °C for 16 h. The mixture was cooled and concentrated.
  • Step 2 A mixture of compound 12-1 (155 mg, 0.402 mmol) , compound 1-11 (145 mg, 0.596 mmol) and K 2 CO 3 (280 mg, 2.02 mmol) in N, N-dimethylacetamide (4 mL) was stirred at 120 °C for 16 h. After completion of the reaction, the mixture was cooled and filtered. The filtrated was purified by pre-HPLC (C18 column, eluted with acetonitrile in H 2 O, TFA condition) . The desired component was lyophilized to give the title compound 12 (50 mg, yield 20%) as a pale-yellow solid.
  • Step 1 Under nitrogen atmosphere, to a solution of compound 1-3 (5 g, 20.2 mmol) in anhydrous THF (8 mL) was added dropwise NaOEt (20 w%solution in EtOH, 11 g, 32.3 mmol) at -30 °C. The mixture was stirred at -30 °C for 2 h. After completion of the reaction, the mixture was warmed to room temperature and concentrated. The residue was dispersed in DCM (30 mL) and petroleum ether (30 mL) . The suspension was filtered and the solid was dried in vacumm to give the title compound 13-1 (4.64 g, yield quantitively, 80 w%) as a yellow solid.
  • Step 2 Under nitrogen, a mixture of compound 9-3 (260 mg, 0.968 mmol) , compound 13-1 (80 w%, 330 mg, 1.44 mmol) , Xantphos (115 mg, 0.199 mmol) , Pd 2 (Dba) 3 (88 mg, 0.096 mmol) and DIPEA (375 mg, 2.90 mmol) in dioxane (4 mL) was stirred at 105 °C for 16 h. After completion of the reaction, the mixture was concentrated.
  • Step 3 A mixture of compound 13-2 (hydrochloride, 150 mg, 0.389 mmol) , compound 1-11 (140 mg, 0.576 mmol) and K 2 CO 3 (270 mg, 1.95 mmol) in N, N-dimethylacetamide (3 mL) was stirred at 120 °C for 16 h. After completion of the reaction, the mixture was cooled and filtered. The filtrated was purified by pre-HPLC (C18 column, eluted with acetonitrile in H 2 O, AcOH condition) . The desired component was lyophilized to give the title compound 13 (30 mg, yield 14%) as a brown solid.
  • Step 1 To a solution of compound 14-1 (50.0 g, 362 mmol) in DMF (700 mL) was added NCS (48.5 g, 362 mmol) slowly at 0-5 °C. The mixture was stirred at 75 °C for 16 h. After completion of the reaction, the mixture was cooled and partitioned between EtOAc (800 mL x 3) and water (2.1 L) . The organic layers were washed with brine (600 mL x 4) , dried over anhydrous Na 2 SO 4 and concentrated. The crude product was purified by silica gel column (eluted with 3%EtOAc in petroleum ether) to afford the title compound 14-2 (37.4 g, yield 60%) as a yellow solid.
  • Step 2 A mixture of compound 14-2 (24.6 g, 142 mmol) and conc. HCl (47.4 mL, 568.8 mmol) in MeCN (200 ml) and H 2 O (300 mL) was stirred at 0 °C for 0.5 h. Then NaNO 2 (10.8 g, 156.4 mmol) in H 2 O (50 mL) was added dropwise to the above mixture while keeping the temperature below 5 °C. After stirring for 1 h, KI (47.2 g, 284 mmol) was added to the above mixture. After the reaction mixture was stirred at 0°C for 1 h, the resulted mixture was extracted with EtOAc (300 mL x 3) .
  • Step 3 A mixture of compound 14-3 (25.0 g, 88.3 mmol) , Fe powder (24.7 g, 441.5 mmol) and NH 4 Cl (46.8 g, 883 mmol) in EtOH (300 ml) and H 2 O (300 mL) was stirred at 100 °C for 3 h. After completion of the reaction, the hot mixture was filtered. The filtrate was cooled, concentrated and extracted with EtOAc (300 mL x 3) and H 2 O (300 mL) . The combined organic layers were dried over anhydrous Na 2 SO 4 and concentrated under reduced pressure.
  • Step 4 A mixture of compound 14-4 (10.0 g, 39.5 mmol) , compound 2-3 (9.2 g, 118 mmol) , Pd (OAc) 2 (889 mg, 4.0 mmol) , XantPhos (4.6 g, 7.9 mmol) and K 3 PO 4 (16.7g, 79.0 mmol) in DMF (300 mL) was stirred at 120 °C for 16 h. After completion of the reaction, the mixture was cooled to room temperature, filtered and concentrated under vacuum.
  • Step 5 To a mixture of compound 7-5 (2.3 g, 11.3 mmol) in DMF (38.0 mL) was added NCS (1.5 g, 11.3 mmol) at 0-5 °C. Then it was stirred at room temperature for 1 h. After completion of the reaction, the mixture was concentrated under vacuum. Then the crude product was purified by reverse phase flash chromatography (C18 column, eluted with MeCN in water, HCl condition) . The desired components were lyophilized respectively to afford the title compound 14-5 (980 mg, yield 32%) as a brown oil and a by-product 33-6 (550 mg, yield 21%) as a light-yellow oil.
  • Step 6 A mixture of compound 14-5 (900 mg, 3.3 mmol) and conc. HCl (1.1 ml, 13.2 mmol) in MeCN (10 mL) and H 2 O (15 mL) was stirred at 0 °C for 0.5 h. To this was added dropwise a solution of NaNO 2 (250.5 mg, 3.6 mmol) in H 2 O (2.5 mL) while keeping the temperature below 5 °C. After stirring for 1 h, KI (1.1 g, 6.6 mmol) was added to the above mixture. After the reaction was stirred at 0 °C for 1 h, the resulted mixture was extracted with EtOAc (30 mL x3) . The combined organic layers were washed with sat.
  • Step 7 A mixture of compound 14-7 (600 mg, 1.6 mmol) , compound 14-8 (236 mg, 1.8 mmol) , Pd 2 (dba) 3 (147 mg, 0.2 mmol) , XantPhos (185 mg, 0.3 mmol) and DIPEA (619 mg, 4.8 mmol) in dioxane (10 mL) was stirred at 100 °C for 3 h. After completion of the reaction, the mixture was cooled to room temperature and concentrated under vacuum.
  • LCMS m/z calculated for C 8 H 7 Cl 3 NaOPS: 311.52; found: 289.42 [M-Na+H] + .
  • Step 9 A mixture of compound 14-10 (71 w%, 350 mg, 0.798 mmol) , compound 1-1 (274 mg, 1.3 mmol) , Pd 2 (dba) 3 (100 mg, 0.1 mmol) , XantPhos (116 mg, 0.2 mmol) and DIPEA (426 mg, 3.3 mmol) in dioxane (8 mL) was stirred at 105°C for 2 h. The mixture was cooled to room temperature and concentrated under vacuum.
  • Step 10 To a mixture of compound 14-11 (80 mg, 0.192 mmol) and K 2 CO 3 (138 mg, 1.0 mmol) in DMAc (1 mL) was added compound 1-11 (49 mg, 0.2 mmol) at room temperature. Then it was stirred at 100 °C for 4 h. After completion of the reaction, the mixture was cooled to room temperature and filtered. The resulted mixture was purified by reverse phase flash chromatography (C18 column, eluted with MeCN in water, HCl condition) . The desired components were lyophilized to afford the title compound 14 (12.5 mg, yield 12%) as a light-yellow solid.
  • Step 1 A mixture of compound 14-6 (550 mg, 2.3 mmol) and conc. HCl (0.8 ml, 9.2 mmol) in MeCN (5 ml) and H 2 O (10 mL) was stirred at 0 °C for 0.5 h. Then NaNO 2 (174 mg, 2.5 mmol) in H 2 O (1.5 ml) was added dropwise to the above mixture while keeping the temperature below 5 °C. After stirred for 1 h, KI (763 mg, 4.6 mmol) was added to the above mixture while keeping the temperature below 5 °C. The mixture was stirred at 0 °C for 1 h. The resulted mixture was extracted with EtOAc (15 mL x3) .
  • Step 2 A mixture of compound 15-1 (383 mg, 1.1 mmol) , compound 14-8 (295 mg, 2.2 mmol) , Pd 2 (dba) 3 (92 mg, 0.1 mmol) , XantPhos (115 mg, 0.2 mmol) and DIPEA (426 mg, 3.3 mmol) in dioxane (10 mL) was stirred at 105 °C for 16 h. After completion of the reaction, the mixture cooled to room temperature and concentrated under vacuum. The residue was purified by silica gel column (eluted with 3%MeOH in DCM) to afford the title compound 15-2 (351 mg, yield 90%) as a yellow oil.
  • LCMS m/z calculated for C 13 H 17 Cl 2 O 3 PS: 355.21; found: 355.49 [M+H] + .
  • LCMS m/z calculated for C 8 H 8 Cl 2 NaOPS: 277.07; found: 255.46 [M-Na+H] + .
  • Step 4 A mixture of compound 15-3 (65 w%, 300 mg, 0.70 mmol) , compound 1-1 (354 mg, 1.7 mmol) , Pd 2 (dba) 3 (100.8 mg, 0.1 mmol) , XantPhos (115.8 mg, 0.2 mmol) and DIPEA (425.7 mg, 3.3 mmol) in dioxane (8.0 mL) was stirred at 105 °C for 2 h. After completion of the reaction, the mixture cooled to room temperature and concentrated under vacuum.
  • Step 5 To a mixture of compound 15-4 (80 mg, 0.2 mmol) and K 2 CO 3 (138 mg, 1.0 mmol) in DMAc (1 mL) was added compound 1-11 (49 mg, 0.2 mmol) at room temperature. Then it was stirred at 120 °C for 6 h. After completion of the reaction, the mixture was cooled to room temperature. The crude product was purified by reverse phase flash chromatography (C18 column, eluted with MeCN in water, TFA condition) . The desired components were lyophilized to afford the title compound 15 (9.8 mg, yield 9%) as a light-yellow solid.
  • Step 1 Under nitrogen atmosphere, a solution of compound 16-1 (10 g, 72.4 mmol) in anhydrous THF (100 mL) was added dropwise to a flask containing isopropylmagnesium bromide (2.8 M, 77 mL, 215.6 mmol) with stirring at -20 °C. The mixture was maintained at -20 °C for 15 min after addition, then allowed to warm slowly to room temperature and stirred for a further 20 h. After completion of the reaction, the mixture was quenched with 1 N HCl. The resulted mixture was extracted with MTBE and EtOAc. The organic layers were combined, dried over anhydrous Na2SO4, filtered and concentrated. The crude product was purified by silica gel column (eluted with 6%MeOH in DCM) to afford the title compound 16-2 (6.6 g, yield 67%) as a pale-yellow oil.
  • silica gel column eluted with 6%MeOH in DCM
  • Step 2 A mixture of compound 7-4 (10.0 g, 48.5 mmol) and conc. HCl (16 mL, 192 mmol) in MeCN (100 mL) and H 2 O (200 mL) was stirred at 0 °C for 0.5 h. To this was added dropwise a solution of NaNO 2 (4.0 g, 58.2 mmol) in H 2 O (20 mL) while keeping the temperature below 5 °C. After stirring for 1 h, KI (16.1 g, 97.0 mmol) was added to the above mixture. The reaction was furtherly stirred at 0 °C for 1 h. The resulted mixture was extracted with EtOAc (300 mL x3) .
  • Step 3 A mixture of compound 16-3 (5 g, 15.8 mmol) , compound 13-1 (2.9 g, 15.8 mmol) , Pd 2 (dba) 3 (732.8 mg, 0.8 mmol) , XantPhos (1.9 g, 3.2 mmol) and DIPEA (6.1 g, 47.4 mmol) in dioxane (80 mL) was stirred at 100 °C for 16 h. After completion of the reaction, the mixture was cooled to room temperature and concentrated under vacuum. The residue was purified by silica gel column (eluted with 5%EtOAc in petroleum ether) to afford the title compound 16-4 (4.4 g, yield 80%) as a brown solid.
  • LCMS m/z calculated for C 10 H 6 BrCl 2 N 3 S: 351.04; found: 352.5 [M+H] + .
  • Step 4 A mixture of compound 16-4 (614 mg, 1.7 mmol) , K 2 CO 3 (704 mg, 5.1 mmol) and compound 16-5 (437 mg, 2.0 mmol) in DMAc (10 ml) was stirred at 100°C for 3 h. After completion of the reaction, the mixture was filtered. The filtrate was concentrated and extracted with EtOAc (3x30 ml) and H 2 O (100 mL) . The combined organic layers were washed with brine, dried over anhydrous Na 2 SO 4 and concentrated under reduced pressure. The residue was purified by silica gel column (eluted with 20%EtOAc in petroleum ether) to afford the title compound 16-6 (642 mg, yield 69%) as a light-yellow solid.
  • Step 5 A mixture of compound 16-6 (500 mg, 0.9 mmol) , compound 16-2 (386 mg, 2.7 mmol) , Pd 2 (dba) 3 (83 mg, 0.09 mmol) , XantPhos (116 mg, 0.2 mmol) and Et 3 N (273 mg, 3 mmol) in dioxane (5 mL) was stirred at 100 °C for 16 h. After completion of the reaction, the mixture was cooled to room temperature and concentrated under vacuum. The residue was purified by silica gel column (eluted with 10%MeOH in DCM) to afford the crude product, which was purified by reverse phase flash chromatography (C18 column, eluted with MeCN in water, TFA condition) .
  • Step 1 A mixture of compound 7-7 (110 mg, 0.330 mmol) , K 2 CO 3 (115 mg, 0.832 mmol) and compound 16-5 (110 mg, 0.514 mmol) in DMAc (4 mL) and H 2 O (0.4 mL) was stirred at 100°C for 3 h. After completion of the reaction, the mixture was extracted with EtOAc (3 x 30 mL) and H 2 O (30 mL) . The combined organic layers were washed with brine, dried over anhydrous Na 2 SO 4 and concentrated under reduced pressure. The residue was purified by silica gel column (eluted with 5%MeOH in dichloromethane) to afford the title compound 17-1 (150 mg, yield 89%) as a yellow solid.
  • LCMS m/z calculated for C 23 H 32 ClN 4 O 3 PS: 511.02; found: 511.77 [M+H] + .
  • Step 2 To a solution of compound 17-1 (150 mg, 0.293 mmol) in dichloromethane (4 mL) was added TFA (2 mL) . Then the mixture was stirred at room temperature for 1 h. After completion of the reaction, the mixture was concentrated under vacuum. The residue was purified by pre-HPLC (C18 column, eluted with acetonitrile in water, TFA condition) . The desired components were lyophilized to afford the title compound 17 (47 mg, yield 38%) as a yellow solid.
  • Step 1 A mixture of compound 7-7 (140 mg, 0.420 mmol) , K 2 CO 3 (290 mg, 2.10 mmol) and compound 18-1 (140 mg, 0.508 mmol) in DMAc (3 mL) was stirred at 100°C for 16 h. After completion of the reaction, the mixture was cooled, diluted with EtOAc and concentrated. The residue was purified by pre-HPLC (C18 column, eluted with MeCN in water, TFA condition) . The desired components were lyophilized to afford the title compound 17 (50 mg, yield 23%) as a yellow solid.
  • Step 1 Under nitrogen atmosphere, a mixture of compound 16-3 (10 g, 31.5 mmol) , compound 1-7 (5.0 g, 64.1 mmol) , Pd 2 (Dba) 3 (1.44 g, 1.57 mmol) , XantPhos (1.83 g, 3.16 mmol) and DIPEA (12.2 g, 94.4 mmol) in dioxane (100 mL) was stirred at 120 °C for 16 h. After completion of the reaction, the mixture was cooled to room temperature and concentrated under vacuum. The residue was purified by silica gel column (eluted with 5%EtOAc in petroleum ether) to afford the title compound 19-1 (6.32 g, yield 75%) as a yellow oil.
  • LCMS m/z calculated for C 8 H 9 BrClOP: 267.49; found: 267.53 [M+H] + .
  • Step 2 Under nitrogen atmosphere, a mixture of compound 19-1 (1.9 g, 7.10 mmol) , bis (pinacolato) diboron (3.25 g, 12.8 mmol) , K 2 OAc (2.09 g, 21.3 mmol) and Pd (dppf) Cl 2 (258 mg, 0.355 mmol) in dioxane (20 ml) was stirred at 90 °C for 16 h. After completion of the reaction, the mixture was cooled, diluted with EtOAc and filtered over a short silica gel column. The filtrate was concentrated and re-dissolved in dichloromethane (30 mL) and treated with 2 N HCl (30 mL) .
  • Step 3 Under nitrogen atmosphere, a mixture of compound 19-2 (520 mg, 2.23 mmol) , compound 1-1 (600 mg, 2.88 mmol) , Pd (dppf) Cl 2 (162 mg, 0.223 mmol) and K 3 PO 4 (1.42 g, 6.69 mmol) in dioxane (8 mL) and H 2 O (0.8 mL) was stirred at 90 °C for 1 h. After completion of the reaction, the mixture was cooled to room temperature and concentrated under vacuum. The residue was purified by silica gel column (eluted with 10%MeOH in DCM) to afford the title compound 19-3 (240 mg, yield 34%) as a brown solid.
  • LCMS m/z calculated for C 12 H 12 Cl 2 N 3 OP: 316.12; found: 316.59 [M+H] + .
  • Step 4 A mixture of compound 19-3 (160 mg, 0.506 mmol) , K 2 CO 3 (350 mg, 2.53 mmol) and compound 1-11 (160 mg, 0.658 mmol) in DMAc (4 mL) was stirred at 120 °C for 16 h. After completion of the reaction, the mixture was diluted with EtOAc and filtered. The filtrate was concentrated under high vacuum. The residue was purified by pre-HPLC (C18 column, eluted with acetonitrile in water, TFA condition) . The desired components were lyophilized to afford the title compound 19 (55 mg, yield 24%) as a yellow solid.
  • Step 1 Under nitrogen atmosphere, a mixture of compound 19-2 (520 mg, 2.23 mmol) , compound 7-1 (560 mg, 2.89 mmol) , Pd (dppf) Cl 2 (162 mg, 0.223 mmol) and K 3 PO 4 (1.42 g, 6.69 mmol) in dioxane (8 mL) and H 2 O (0.8 mL) was stirred at 90 °C for 1 h. After completion of the reaction, the mixture was cooled to room temperature and concentrated under vacuum. The residue was purified by silica gel column (eluted with 6%MeOH in DCM) to afford the title compound 20-1 (400 mg, yield 59%) as a wheat solid.
  • LCMS m/z calculated for C 12 H 11 Cl 2 N 2 OP: 301.11; found: 301.56 [M+H] + .
  • Step 2 A mixture of compound 20-1 (90 mg, 0.299 mmol) , K 2 CO 3 (210 mg, 1.52 mmol) and compound 1-11 (100 mg, 0.411 mmol) in DMAc (3 mL) was stirred at 120 °C for 16 h. After completion of the reaction, the mixture was diluted with EtOAc and filtered. The filtrate was concentrated under high vacuum. The residue was purified by pre-HPLC (C18 column, eluted with MeCN in water, TFA condition) . The desired components were lyophilized to afford the title compound 20 (60 mg, yield 46%) as a yellow solid.
  • Step 1 To a clear solution of triphenylphosphine (6.0 g, 22.9 mmol) in anhydrous dioxane (50 mL) was added N-Chlorosuccinimide (3.05 g, 22.8 mmol) at room temperature. After stirring for 30 min, the mixture became a thick and white slurry. To this was added compound 21-1 (2.0 g, 7.66 mmol) in one portion. Then the mixture was heated to 100 °C and stirred for 1 h. After completion of the reaction, the mixture was cooled to room temperature and treated with TEA (20 mL) . The resulted mixture was extracted with EtOAc (100 mL x 2) and H 2 O (100 mL) .
  • Step 2 To a mixture of compound 21-2 (400 mg, 1.43 mmol) in DMAc (5 mL) was added compound 1-11 (420 mg, 1.72 mmol) and DIPEA (925 mg, 7.15 mmol) at room temperature. The mixture was stirred at 60 °C for 16 h. After completion of the reaction, the mixture was cooled and diluted with EtOAc (50 mL) . The organic layer was washed with saturated NH 4 Cl solution and brine. The NH 4 Cl solution was extracted again with EtOAc (50 mL) and the combined organic layers were dried over anhydrous Na 2 SO 4 , filtered and concentrated.
  • Step 3 Under nitrogen atmosphere, to a solution of compound 21-3 (263 mg, 0.636 mmol) in anhydrous dichloromethane (5 mL) was added dropwise DIBAL-H (1 M, 2.54 mL, 2.54 mmol) at -78 °C. After stirring at -78 °C for 30 min, the mixture was warmed slowly to room temperature and stirred for further 3 h. After completion of the reaction, the mixture was cooled to 0 °C in an ice bath and quenched by adding slowly 15%NaOH aqueous solution (1 mL) . The resulted mixture was stirred at room temperature for 30 min and extracted with dichloromethane (30 mL x 2) .
  • Step 4 Under nitrogen atmosphere, a mixture of compound 21-4 (130 mg, 0.350 mmol) , compound 8-2 (80 w%, 110 mg, 0.362 mmol) , Pd 2 (dba) 3 (32 mg, 0.35 mmol) , XantPhos (40 mg, 0.069 mmol) and DIPEA (135 mg, 1.04 mmol) in dioxane (3 mL) was stirred at 105 °C for 16 h. After completion of the reaction, the mixture was cooled to room temperature and concentrated under vacuum.
  • Step 1 To a solution of compound 22-1 (5.0 g, 32.4 mmol) in DMF (30 mL) was added N-Bromosuccinimide (5.78 g, 32.5 mmol) . The mixture was stirred at room temperature for 12 h. After completion of the reaction, the mixture was poured into H 2 O (300 mL) an extracted with EtOAc (200 mL x 2) . The organic layers were washed with brine, dried over anhydrous, filtered and concentrated. The residue was purified by silica gel column (eluted with 15%EtOAc in petroleum ether) to afford the title compound 22-2 (3.4 g, yield 45%) as a pale-yellow solid.
  • LCMS m/z calculated for C 6 H 5 BrN 2 O 3 : 233.02; found: 233.57 [M+H] + .
  • Step 2 Under nitrogen atmosphere, to a clear solution of triphenylphosphine (9.44 g, 36.0 mmol) in anhydrous dioxane (70 mL) was added N-Chlorosuccinimide (4.8 g, 35.9 mmol) at room temperature. After stirring for 30 min, the mixture became a thick and white slurry. To this was added compound 21-1 (2.8 g, 12.0 mmol) in one portion. Then the mixture was heated to 100 °C and stirred for 2 h. After completion of the reaction, the mixture was cooled to room temperature and poured into water (300mL) and extracted by dichloromethane (150 mL x 2) .
  • Step 3 To a mixture of compound 22-3 (400 mg, 1.59 mmol) in DMAc (5 mL) was added compound 1-11 (500 mg, 2.05 mmol) and DIPEA (1.03 g, 7.97 mmol) at room temperature. The mixture was stirred at 55 °C for 16 h. After completion of the reaction, the mixture was cooled and diluted with EtOAc (50 mL) . The organic layer was washed with saturated NH 4 Cl solution and brine. The NH 4 Cl solution was extracted again with EtOAc (50 mL) and the combined organic layers were dried over anhydrous Na 2 SO 4 , filtered and concentrated.
  • Step 4 Under nitrogen atmosphere, to a solution of compound 22-4 (300 mg, 0.778 mmol) in anhydrous THF (5 mL) was added dropwise DIBAL-H (1 M, 3.12 mL, 3.12 mmol) at -75 °C. After stirring at -75 °C for 30 min, the mixture was warmed slowly to room temperature and stirred for further 3 h. After completion of the reaction, the mixture was cooled to 0 °C in an ice bath and quenched by adding slowly 15%NaOH aqueous solution (1 mL) . The resulted mixture was stirred at room temperature for 30 min and extracted with dichloromethane (30 mL x 2) .
  • Step 5 Under nitrogen atmosphere, a mixture of compound 22-5 (70 mg, 0.196 mmol) , compound 8-2 (80 w%, 60 mg, 0.199 mmol) , Pd 2 (dba) 3 (18 mg, 0.019 mmol) , XantPhos (23 mg, 0.039 mmol) and DIPEA (80 mg, 0.619 mmol) in dioxane (2 mL) was stirred at 105 °C for 16 h. After completion of the reaction, the mixture was cooled to room temperature and concentrated under vacuum.
  • Step 1 A mixture of compound 19-3 (110 mg, 0.348 mmol) , K 2 CO 3 (120 mg, 0.868 mmol) and compound 16-5 (110 mg, 0.514 mmol) in DMAc (4 mL) and H 2 O (0.4 mL) was stirred at 120 °C for 3 h. After completion of the reaction, the mixture was extracted with EtOAc (3 x 30 mL) and H 2 O (30 mL) . The combined organic layers were washed with brine, dried over anhydrous Na 2 SO 4 and concentrated under reduced pressure.
  • Step 2 To a solution of compound 23-1 (60 mg, 0.293 mmol) in dichloromethane (2 mL) was added TFA (1 mL) . Then the mixture was stirred at room temperature for 1 h. After completion of the reaction, the mixture was concentrated under vacuum. The residue was purified by pre-HPLC (C18 column, eluted with MeCN in water, TFA condition) . The desired components were lyophilized to afford the title compound 23 (23 mg, yield 20%) as a yellow solid.
  • Step 1 A mixture of compound 19-3 (110 mg, 0.348 mmol) , K 2 CO 3 (240 mg, 1.73 mmol) and compound 18-1 (125 mg, 0.453 mmol) in DMAc (3 mL) was stirred at 100 °C for 16 h. After completion of the reaction, the mixture was cooled, diluted with EtOAc and concentrated. The residue was purified by pre-HPLC (C18 column, eluted with acetonitrile in water, TFA condition) . The desired components were lyophilized to afford the title compound 24 (25 mg, yield 14%) as a yellow solid.
  • Step 1 A mixture of compound 20-1 (70 mg, 0.232 mmol) , K 2 CO 3 (80 mg, 0.579 mmol) and compound 16-5 (74 mg, 0.346 mmol) in DMAc (3 mL) and H 2 O (0.3 mL) was stirred at 120 °C for 3 h. After completion of the reaction, the mixture was extracted with EtOAc (3 x 20 mL) and H 2 O (20 mL) . The combined organic layers were washed with brine, dried over anhydrous Na 2 SO 4 and concentrated under reduced pressure.
  • Step 2 To a solution of compound 25-1 (40 mg, 0.0835 mmol) in dichloromethane (2 mL) was added TFA (1 mL) . Then the mixture was stirred at room temperature for 1 h. After completion of the reaction, the mixture was concentrated under vacuum. The residue was purified by pre-HPLC (C18 column, eluted with acetonitrile in water, TFA condition) . The desired components were lyophilized to afford the title compound 25 (25 mg, yield 20%) as a yellow solid.
  • Step 1 A mixture of compound 20-1 (80 mg, 0.265 mmol) , K 2 CO 3 (185 mg, 1.34 mmol) and compound 18-1 (95 mg, 0.344 mmol) in DMAc (2 mL) was stirred at 100 °C for 16 h. After completion of the reaction, the mixture was cooled, diluted with EtOAc and concentrated. The residue was purified by pre-HPLC (C18 column, eluted with MeCN in water, TFA condition) . The desired components were lyophilized to afford the title compound 26 (48 mg, yield 38%) as a yellow solid.
  • Step 1 Under nitrogen atmosphere, a mixture of compound 21-4 (120 mg, 0.323 mmol) , compound 19-2 (90 mg, 0.387 mmol) , Pd (dppf) Cl 2 (25 mg, 0.34 mmol) and K 3 PO 4 (205 mg, 0.967 mmol) in dioxane (3 mL) and H 2 O (0.3 mL) was stirred at 90 °C for 1 h. After completion of the reaction, the mixture was cooled to room temperature and concentrated under vacuum.
  • Step 1 Under nitrogen atmosphere, a mixture of compound 22-4 (160 mg, 0.415 mmol) , compound 8-2 (80 w%, 130 mg, 0.428 mmol) , Pd 2 (dba) 3 (38 mg, 0.041 mmol) , XantPhos (48 mg, 0.083 mmol) and DIPEA (160 mg, 1.24 mmol) in dioxane (3 mL) was stirred at 105 °C for 16 h. After that, the mixture was cooled to room temperature and concentrated under vacuum.
  • Step 1 To a solution of compound 29-1 (1.0 g, 9.08 mmol) in DMSO (20 mL) and H 2 O (2 mL) at room temperature was added NBS (800 mg, 4.49 mmol) slowly. The mixture was stirred at room temperature for 16 h. After completion of the reaction, the mixture diluted with EtOAc (50 mL) and washed with water. The organic layer was washed with brine, dried over anhydrous Na 2 SO 4 , filtered and concentrated. The residue was purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2 O, TFA condition) .
  • Step 2 Under nitrogen atmosphere, a mixture of compound 29-2 (380 mg, 2.01 mmol) , compound 8-2 (80 w%, 610 mg, 2.01 mmol) , Pd 2 (Dba) 3 (185 mg, 0.202 mmol) , Xantphos (232 mg, 0.400) and DIPEA (780 mg, 6.03 mmol) in dioxane (5 mL) was stirred at 115 °C for 16 h. Then the mixture was cooled to room temperature and concentrated.
  • Step 3 A mixture of compound 29-3 (56 mg, 0.170 mmol) , DBU (52 mg, 0.341 mmol) , compound 1-11 (42 mg, 0.172 mmol) and BOP (75 mg, 0.170 mmol) in DMF (2 mL) was stirred at room temperature for 16 h. After completion of the reaction, the mixture was quenched by adding H 2 O (1 mL) . The resulted mixture was filtered and purified directly by pre-HPLC (C18 column, eluted with acetonitrile in water, TFA condition) . The desired components were lyophilized to afford the title compound 29 (14 mg, yield 17%) as a yellow solid.
  • Step 1 Under nitrogen atmosphere, a solution of compound 16-1 (5 g, 36.2 mmol) in anhydrous THF (50 mL) was added dropwise to a flask containing cyclopropylmagnesium bromide (0.5 M, 217 mL, 108.6 mmol) at -20 °C. The mixture was maintained at -20 °C for 15 min after addition, then allowed to warm slowly to room temperature and stirred for a further 20 h. After completion of the reaction, the mixture was quenched with 1 N HCl. The resulting mixture was extracted with MTBE and EtOAc. The organic layers were combined, dried over anhydrous Na 2 SO 4 , filtered and concentrated to afford the title compound 30-1 (3.1 g, crude, yield 65%) as an orange oil. The crude product was used directly in the next step without further purification.
  • cyclopropylmagnesium bromide 0.5 M, 217 mL, 108.6 mmol
  • Step 2 A mixture of compound 16-6 (230 mg, 0.4 mmol) , compound 30-1 (156 mg, 1.2 mmol) , Pd 2 (dba) 3 (37 mg, 0.04 mmol) , Xanhphos (46 mg, 0.08 mmol) and DIPEA (155 mg, 1.2 mmol) in dioxane (4 mL) was stirred at 105 °C for 16 h. After completion of the reaction, the mixture was cooled to room temperature and concentrated under vacuum.
  • Step 3 A mixture of compound 30-2 (30 mg, 0.05 mmol) in DCM (1 mL) and TFA (0.3 mL) was stirred at room temperature for 1 h. After completion of the reaction, the mixture was concentrated under vacuum. The residue was purified by reverse phase flash chromatography (C18 column, eluted with acetonitrile in water, TFA condition) . The desired components were lyophilized to afford the title compound CAN2352 (11 mg, yield 44%) as a yellow solid.
  • Step 1 A solution of compound 31-1 (1 g, 2.7 mmol) and TFA (3 mL) in anhydrous DCM (50 mL) was stirred at room temperature for 1h. After completion of the reaction, the mixture was concentrated under vacuum to afford the title compound 31-2 (1.9 g, crude trifluoroacetate, 54 w%) as a yellow oil. The crude product was used directly in the next step without further purification.
  • Step 2 A mixture of compound 31-2 (585 mg, 54 w%, 0.81 mmol) , compound 16-4 (250 mg, 0.71 mmol) and K 2 CO 3 (483 mg, 3.5 mmol) in anhydrous DMAc (10 mL) was stirred at 100 °C for 2 h . After completion of the reaction, the mixture was cooled down to room temperature. The resulting mixture was extracted with EtOAc (50 mL x 3) and water. The combined organic layers were washed with brine , dried over anhydrous Na 2 SO 4 and concentrated under reduced pressure. The residue was purified by silica gel column (eluted with 3%MeOH in DCM) to afford the title compound 31-3 (360 mg, yield 86%) as a brown oil.
  • LCMS m/z calculated for C 23 H 31 BrClN 5 O 2 S 2 : 589.01; found: 590.66 [M+H] + .
  • Step 3 Under nitrogen atmosphere, a mixture of compound 31-3 (300 mg, 0.5 mmol) , compound 30-1 (195 mg, 1.5 mmol) , Pd 2 (dba) 3 (46 mg, 0.05 mmol) , Xantphos (58 mg, 0.1 mmol) and DIPEA (194 mg, 1.5 mmol) in dioxane (6 mL) was stirred at 105 °C for 16 h. After completion of the reaction, the mixture was cooled to room temperature and concentrated under vacuum.
  • Step 4 To a solution of compound 31-4 (160 mg, 0.25 mmol) and MeOH (2 mL) was added 4 N HCl in dioxane (0.2 mL, 0.9 mmol) was stirred at 40 °C for 2 h. After completion of the reaction, the mixture was concentrated under vacuum. The residue was purified by pre-HPLC (C18 column, eluted with acetonitrile in water, TFA condition) . The desired components were lyophilized to afford the title compound CAN2352 (27.8 mg, yield 20%) as a light-yellow solid.
  • LCMS m/z calculated for C 25 H 33 ClN 5 O 2 PS: 534.06; found: 534.82 [M+H] + .
  • ⁇ Y is %inhibition and X is compound concentration.
  • A ⁇ 1 ⁇ M
  • B 1 -10 ⁇ M
  • C > 10 ⁇ M

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The invention provides novel phosphine oxide compounds that inhibit SHP2, compositions thereof, as well as methods of preparation thereof and for treating diseases associated with SHP2 (e.g., cancers).

Description

SHP2 INHIBITORS, COMPOSITIONS AND METHODS THEREOF
Technical Field of the Invention
This invention relates to certain novel SHP2 inhibitors, which are useful for treating SHP2 mediated diseases. More specifically, this disclosure is directed to phosphine oxide compounds which inhibit SHP2 and compositions comprising these compounds, methods of treating diseases associated with SHP2, and methods of synthesizing these compounds.
Background of the Invention
Src homology region 2 (SH2) -containing protein tyrosine phosphatase 2 (SHP2) , encoded by the PTPN11 gene, is a cytoplasmic non-receptor phosphotyrosine phosphatase (Blood 2011; 118: 1504-1515. Nature 2013; 499: 491-495) . SHP2 positively modulates RAS signaling and plays roles in cell proliferation, migration, differentiation and other important physiological processes (Mol Cell 2004; 13: 341-355) . Structurally, SHP2 contains a protein tyrosine phosphatase catalytic domain (PTP) , C-terminal tail with tyrosyl phosphorylation sites, and two SH2 domains, N-SH2 and C-SH2 domain. The N-SH2 domain plays a key role in de-phosphorylating SHP2 itself with two non-overlapping ligand binding sites, while the C-SH2 domain provides binding energy and specificity (J. Cell. Mol. Med 2015; 19: 2075-2083) . Both N-and C-SH2 domains control the SHP2 subcellular localization and function. The PTP domain has a P ring catalytic structure to de-phosphorylate substrates (J. Biol. Chem 2013; 15: 10472-10482) .
The SHP2 has two types of mutations, loss-of-function (LOF) mutations and gain-of-function (GOF) mutations. The GOF mutations of SHP2 mainly occur in cancers and promote cancer progression in cell-autonomous and non-autonomous mechanisms.
The GOF mutants of SHP2 include D61G (Med. Sci. Monit 2017; 23: 2931-2938) , D61Y (Exp. Hematol 2008; 36: 1285-1296) , E76K (Mol. Carcinog 2018; 57: 619-628) , E76Q (J Chem Inf Model 2019; 59: 3229-3239) and T507K (J. Biol. Chem 2020; 18: 6187-6201) , which  were observed in juvenile myelomonocytic leukemia, colorectal cancer, glioblastoma multiforme and other diseases.
SHP2 E76K, a GOF mutation, activates Erk and Src to promote progression of lung cancer. SHP2 E76K can also promote the malignance of glioblastoma multiform cells through Erk/cAMP/CREB signaling pathway (OncoTargets Ther 2019; 12: 9435-9447. Carcinogenesis 2014; 8: 1717-1725) . Overall, SHP2 represents a potential biomarker and therapeutic target in several types of human cancer.
While SHP2 inhibitors have been reported (e.g., WO 2021/088945; WO 2020/094104; WO 2020/0210384; WO 2020/081848; WO 2019/182960; WO 2019/118909; WO 2018/172984; WO 2018/136265; WO 2018/136264; WO 2018/081091; WO 2018/057884; WO 2018/013597; WO 2017/216706; WO 2017/211303; WO 2017/210134; WO 2016/203406; WO 2016/203405; WO 2016/203404; WO 2015/107495; WO 2015/107494; and WO 2015/107493) , , significant challenges remain in finding and developing a compound the safety and efficacy required for regulatory approval.
Thus, an urgent and unmet need exists for novel SHP2 inhibitors with improved potency and selectivity, good pharmacokinetics and safety profiles suitable for development into an approved medicine.
Summary of the Invention
The present invention provides novel phosphine oxide compounds that are SHP2 inhibitors and have improved superior potency and selectivity profiles as well as good pharmacokinetics characteristics. The invention further provides pharmaceutical compositions and methods of preparation and use of these compounds in treating a variety of diseases and conditions, such as SHP2-mediated diseases.
In one aspect, the invention generally relates to a compound having the structural formula of (I) :
Figure PCTCN2022135205-appb-000001
wherein
X is S or a single bond;
Y 1 is CR 7 or N;
Y 2 is CR 8 or N, provided that if one of Y 1 and Y 2 is N, the other is not N;
each of R 1 and R 2 is independently NH 2 or a C 1-6 alkyl, or R 1 and R 2, together with the carbon atom they are bound to, form a substituted or unsubstituted 5-membered carbocyclic or heterocyclic ring;
R 3 is H, CH 3 or NH 2;
R 4 is H, CH 2OH, C (O) OCH 3, C (O) NH 2, or C (O) NHCH 3;
R 5 is H, Cl or CF 3;
each of R 6, R 7 and R 8 is independently H, Cl or P (O) RR’, provided that one of R 6, R 7 and R 8 is P (O) RR’; and
each of R and R’ is independently a C 1-6 alkyl, cyclopropyl, cyclobutyl, or cyclopentyl, or a pharmaceutically acceptable form or an isotope derivative thereof.
In another aspect, the invention generally relates to a pharmaceutical composition comprising a compound disclosed herein and a pharmaceutically acceptable excipient, carrier, or diluent.
In yet another aspect, the invention generally relates to a pharmaceutical composition comprising a compound of the invention effective to treat or reduce cancer, or a related disease or condition.
In yet another aspect, the invention generally relates to a unit dosage form comprising a pharmaceutical composition disclosed herein.
In yet another aspect, the invention generally relates to a method for treating or reducing a disease or condition, comprising administering to a subject in need thereof a  therapeutically effective amount of a pharmaceutical composition comprising a compound disclosed herein and a pharmaceutically acceptable excipient, carrier, or diluent.
In yet another aspect, the invention generally relates to use of a compound disclosed herein for treating or reducing a disease or condition.
In yet another aspect, the invention generally relates to use of a compound disclosed herein and a pharmaceutically acceptable excipient, carrier, or diluent, in preparation of a medicament for treating or reducing a disease or condition.
Definitions
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. General principles of organic chemistry, as well as specific functional moieties and reactivity, are described in “Organic Chemistry” , Thomas Sorrell, University Science Books, Sausalito: 1999, and “March’s Advanced Organic Chemistry” , 5 th Ed.: Smith, M.B. and March, J., John Wiley & Sons, New York: 2001, the entire contents of which are hereby incorporated by reference.
Certain compounds of the present invention may exist in particular geometric or stereoisomeric forms. The present invention contemplates all such compounds, including cis-and trans-isomers, R-and S-enantiomers, diastereomers, (D) -isomers, (L) -isomers, the racemic mixtures thereof, and other mixtures thereof, as falling within the scope of the invention. Additional asymmetric carbon atoms may be present in a substituent such as an alkyl group. All such isomers, as well as mixtures thereof, are intended to be included in this invention.
Isomeric mixtures containing any of a variety of isomer ratios may be utilized in accordance with the present invention. For example, where only two isomers are combined, mixtures containing 50: 50, 60: 40, 70: 30, 80: 20, 90: 10, 95: 5, 96: 4, 97: 3, 98: 2, 99: 1, or 100: 0 isomer ratios are contemplated by the present invention. Those of ordinary skill in the art will readily appreciate that analogous ratios are contemplated for more complex isomer mixtures.
If, for instance, a particular enantiomer of a compound of the present invention is desired, it may be prepared by asymmetric synthesis, or by derivation with a chiral auxiliary, where the resulting diastereomeric mixture is separated and the auxiliary group cleaved to  provide the pure desired enantiomers. Alternatively, where the molecule contains a basic functional group, such as amino, or an acidic functional group, such as carboxyl, diastereomeric salts are formed with an appropriate optically-active acid or base, followed by resolution of the diastereomers thus formed by fractional crystallization or chromatographic methods well known in the art, and subsequent recovery of the pure enantiomers.
Solvates and polymorphs of the compounds of the invention are also contemplated herein. Solvates of the compounds of the present invention include, for example, hydrates.
Definitions of specific functional groups and chemical terms are described in more detail below. When a range of values is listed, it is intended to encompass each value and sub-range within the range. For example, "C 1-6 alkyl" is intended to encompass, C 1, C 2, C 3, C 4, C 5, C 6, C 1-6, C 1-5, C 1-4, C 1-3, C 1-2, C 2-6, C 2-5, C 2-4, C 2-3, C 3-6, C 3-5, C 3-4, C 4-6, C 4-5, and C 5-6 alkyl.
As used herein, the term "alkyl" refers to a straight, branched or cyclic hydrocarbon radical consisting solely of carbon and hydrogen atoms, containing no unsaturation, having from one to ten carbon atoms (e.g., C 1-10 alkyl) . Whenever it appears herein, a numerical range such as "1 to 10" refers to each integer in the given range; e.g., "1 to 10 carbon atoms" means that the alkyl group can consist of 1 carbon atom, 2 carbon atoms, 3 carbon atoms, etc., up to and including 10 carbon atoms, although the present definition also covers the occurrence of the term "alkyl" where no numerical range is designated. In some embodiments, “alkyl” can be a C 1-6 alkyl group. In some embodiments, alkyl groups have 1 to 10, 1 to 8, 1 to 6, or 1 to 3 carbon atoms.
Representative saturated straight chain alkyls include, but are not limited to, -methyl, -ethyl, -n-propyl, -n-butyl, -n-pentyl, and -n-hexyl; while saturated branched alkyls include, but are not limited to, -isopropyl, -sec-butyl, -isobutyl, -tert-butyl, -isopentyl, 2-methylbutyl, 3-methylbutyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 2-methylhexyl, 3-methylhexyl, 4-methylhexyl, 5-methylhexyl, 2, 3-dimethylbutyl, and the like. The alkyl is attached to the parent molecule by a single bond.
Unless stated otherwise in the specification, an alkyl group is optionally substituted by one or more of substituents.
As used herein, the term "inhibit" refers to any measurable reduction of biological activity. Thus, as used herein, "inhibit" or "inhibition" may be referred to as a percentage of a normal level of activity.
As used herein, the term “effective amount” or “therapeutically effective amount” of an active agent refers to an amount sufficient to elicit the desired biological response. The effective amount, when administered in a proper dosing regimen, is sufficient to reduce or ameliorate the severity, duration or progression of the disorder being treated, prevent the advancement of the disorder being treated, cause the regression of the disorder being treated, or enhance or improve the prophylactic or therapeutic effect (s) of another therapy. As will be appreciated by those of ordinary skill in this art, the effective amount of a compound of the invention may vary depending on such factors as the desired biological endpoint, the pharmacokinetics of the compound, the disease being treated, the mode of administration, and the patient. An effective amount can be readily determined by a skilled physician, e.g., by first administering a low dose of the pharmacological agent (s) and then incrementally increasing the dose until the desired therapeutic effect is achieved with minimal or no undesirable side effects.
As used herein, the terms “treatment” or “treating” a disease or disorder refers to a method of reducing, delaying or ameliorating such a condition before or after it has occurred. Treatment may be directed at one or more effects or symptoms of a disease and/or the underlying pathology. The treatment can be any reduction and can be, but is not limited to, the complete ablation of the disease or the symptoms of the disease. As compared with an equivalent untreated control, such reduction or degree of prevention is at least 5%, 10%, 20%, 40%, 50%, 60%, 80%, 90%, 95%, or 100%as measured by any standard technique.
As used herein, the terms “prevent” , “preventing” , or “prevention” refer to a method for precluding, delaying, averting, or stopping the onset, incidence, severity, or recurrence of a disease or condition. For example, a method is considered to be a prevention if there is a reduction or delay in onset, incidence, severity, or recurrence of a disease or condition or one or more symptoms thereof in a subject susceptible to the disease or condition as compared to a subject not receiving the method. The disclosed method is also considered to be a prevention if there is a reduction or delay in onset, incidence, severity, or recurrence of osteoporosis or one or more symptoms of a disease or condition in a subject susceptible to the disease or condition after receiving the method as compared to the subject′sprogression prior to receiving treatment. Thus, the reduction or delay in onset, incidence, severity, or recurrence of osteoporosis can be about a 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100%, or any amount of reduction in between.
As used herein, a "pharmaceutically acceptable form" of a disclosed compound includes, but is not limited to, pharmaceutically acceptable salts, esters, hydrates, solvates, polymorphs, isomers, prodrugs, and isotopically labeled derivatives thereof. In one embodiment, a "pharmaceutically acceptable form" includes, but is not limited to, pharmaceutically acceptable salts, esters, prodrugs and isotopically labeled derivatives thereof. In some embodiments, a "pharmaceutically acceptable form" includes, but is not limited to, pharmaceutically acceptable isomers and stereoisomers, prodrugs and isotopically labeled derivatives thereof.
In certain embodiments, the pharmaceutically acceptable form is a pharmaceutically acceptable salt. As used herein, the term "pharmaceutically acceptable salt" refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of subjects without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts are well known in the art. For example, Berge et al. describes pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences (1977) 66: 1-19. Pharmaceutically acceptable salts of the compounds provided herein include those derived from suitable inorganic and organic acids and bases. Examples of pharmaceutically acceptable, nontoxic acid addition salts are salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchioric acid or with organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange. Other pharmaceutically acceptable salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, besylate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, p-toluenesulfonate, undecanoate, valerate salts, and the like. In some embodiments, organic acids from which salts can be derived include, for example, acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, lactic acid, trifluoracetic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid,  cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like.
The salts can be prepared in situ during the isolation and purification of the disclosed compounds, or separately, such as by reacting the free base or free acid of a parent compound with a suitable base or acid, respectively. Pharmaceutically acceptable salts derived from appropriate bases include alkali metal, alkaline earth metal, ammonium and N + (C 1-4alkyl)  4 salts. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, iron, zinc, copper, manganese, aluminum, and the like. Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, lower alkyl sulfonate and aryl sulfonate. Organic bases from which salts can be derived include, for example, primary, secondary, and tertiary amines, substituted amines, including naturally occurring substituted amines, cyclic amines, basic ion exchange resins, and the like, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, and ethanolamine. In some embodiments, the pharmaceutically acceptable base addition salt can be chosen from ammonium, potassium, sodium, calcium, and magnesium salts.
In certain embodiments, the pharmaceutically acceptable form is a "solvate" (e.g., a hydrate) . As used herein, the term "solvate" refers to compounds that further include a stoichiometric or non-stoichiometric amount of solvent bound by non-covalent intermolecular forces. The solvate can be of a disclosed compound or a pharmaceutically acceptable salt thereof. Where the solvent is water, the solvate is a "hydrate" . Pharmaceutically acceptable solvates and hydrates are complexes that, for example, can include 1 to about 100, or 1 to about 10, or 1 to about 2, about 3 or about 4, solvent or water molecules. It will be understood that the term "compound" as used herein encompasses the compound and solvates of the compound, as well as mixtures thereof.
In certain embodiments, the pharmaceutically acceptable form is a prodrug. As used herein, the term "prodrug" (or “pro-drug” ) refers to compounds that are transformed in vivo to yield a disclosed compound or a pharmaceutically acceptable form of the compound. A prodrug can be inactive when administered to a subject, but is converted in vivo to an active compound, for example, by hydrolysis (e.g., hydrolysis in blood) . In certain cases, a prodrug has improved physical and/or delivery properties over the parent compound. Prodrugs can increase the  bioavailability of the compound when administered to a subject (e.g., by permitting enhanced absorption into the blood following oral administration) or which enhance delivery to a biological compartment of interest (e.g., the brain or lymphatic system) relative to the parent compound. Exemplary prodrugs include derivatives of a disclosed compound with enhanced aqueous solubility or active transport through the gut membrane, relative to the parent compound.
The prodrug compound often offers advantages of solubility, tissue compatibility or delayed release in a mammalian organism (see, e.g., Bundgard, H., Design of Prodrugs (1985) , pp. 7-9, 21-24 (Elsevier, Amsterdam) . A discussion of prodrugs is provided in Higuchi, T., et al., "Pro-drugs as Novel Delivery Systems, " A.C.S. Symposium Series, Vol. 14, and in Bioreversible Carriers in Drug Design, ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987, both of which are incorporated in full by reference herein. Exemplary advantages of a prodrug can include, but are not limited to, its physical properties, such as enhanced water solubility for parenteral administration at physiological pH compared to the parent compound, or it can enhance absorption from the digestive tract, or it can enhance drug stability for long-term storage.
Prodrugs commonly known in the art include well-known acid derivatives, such as, for example, esters prepared by reaction of the parent acids with a suitable alcohol, amides prepared by reaction of the parent acid compound with an amine, basic groups reacted to form an acylated base derivative, etc. Of course, other prodrug derivatives may be combined with other features disclosed herein to enhance bioavailability. As such, those of skill in the art will appreciate that certain of the presently disclosed compounds having free amino, arnido, hydroxy or carboxylic groups can be converted into prodrugs. Prodrugs include compounds having an amino acid residue, or a polypeptide chain of two or more (e.g., two, three or four) amino acid residues which are covalently joined through peptide bonds to free amino, hydroxy or carboxylic acid groups of the presently disclosed compounds. The amino acid residues include the 20 naturally occurring amino acids commonly designated by three letter symbols and also include 4-hydroxyproline, hydroxylysine, demosine, isodemosine, 3-methylhistidine, norvalin, beta-alanine, gamma-aminobutyric acid, citrulline homocysteine, homoserine, ornithine and methionine sulfone. Prodrugs also include compounds having a carbonate, carbamate, amide or alkyl ester moiety covalently bonded to any of the above substituents disclosed herein.
As used herein, the term “pharmaceutically acceptable” excipient, carrier, or diluent refers to a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting the subject pharmaceutical agent from one organ, or portion of the body, to another organ, or portion of the body. Each carrier must be "acceptable" in the sense of being compatible with the other ingredients of the formulation and not injurious to the patient. Some examples of materials which can serve as pharmaceutically-acceptable carriers include: sugars, such as lactose, glucose and sucrose; starches, such as corn starch and potato starch; cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients, such as cocoa butter and suppository waxes; oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols, such as propylene glycol; polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; esters, such as ethyl oleate and ethyl laurate; agar; buffering agents, such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer′ssolution; ethyl alcohol; phosphate buffer solutions; and other non-toxic compatible substances employed in pharmaceutical formulations. Wetting agents, emulsifiers and lubricants, such as sodium lauryl sulfate, magnesium stearate, and polyethylene oxide-polypropylene oxide copolymer as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the compositions.
As used herein, the term “subject” refers to any animal (e.g., a mammal) , including, but not limited to humans, non-human primates, rodents, and the like, which is to be the recipient of a particular treatment. Typically, the terms “subject” and “patient” are used interchangeably herein in reference to a human subject.
As used herein, the term “low dosage” refers to at least 5%less (e.g., at least 10%, 20%, 50%, 80%, 90%, or even 95%) than the lowest standard recommended dosage of a particular compound formulated for a given route of administration for treatment of any human disease or condition. For example, a low dosage of an agent that is formulated for administration by inhalation will differ from a low dosage of the same agent formulated for oral administration.
As used herein, the term “high dosage” is meant at least 5% (e.g., at least 10%, 20%, 50%, 100%, 200%, or even 300%) more than the highest standard recommended dosage of a particular compound for treatment of any human disease or condition.
Isotopically-labeled compounds are also within the scope of the present disclosure. As used herein, an "isotopically-labeled compound" or "isotope derivative" refers to a presently disclosed compound including pharmaceutical salts and prodrugs thereof, each as described herein, in which one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature. Examples of isotopes that can be incorporated into compounds presently disclosed include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine and chlorine, such as  2H,  3H,  13C,  14C,  15N,  18O,  17O,  31P,  32P,  35S,  18F, and  36Cl, respectively.
By isotopically-labeling the presently disclosed compounds, the compounds may be useful in drug and/or substrate tissue distribution assays. Tritiated ( 3H) and carbon-14 ( 14C) labeled compounds are particularly preferred for their ease of preparation and detectability. Further, substitution with heavier isotopes such as deuterium ( 2H) can afford certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life or reduced dosage requirements and, hence, may be preferred in some circumstances. Isotopically labeled compounds presently disclosed, including pharmaceutical salts, esters, and prodrugs thereof, can be prepared by any means known in the art. Benefits may also be obtained from replacement of normally abundant  12C with  13C. (See, WO 2007/005643, WO 2007/005644, WO 2007/016361, and WO 2007/016431. )
For example, deuterium ( 2H) can be incorporated into a compound disclosed herein for the purpose in order to manipulate the oxidative metabolism of the compound by way of the primary kinetic isotope effect. The primary kinetic isotope effect is a change of the rate for a chemical reaction that results from exchange of isotopic nuclei, which in turn is caused by the change in ground state energies necessary for covalent bond formation after this isotopic exchange. Exchange of a heavier isotope usually results in a lowering of the ground state energy for a chemical bond and thus causes a reduction in the rate in rate-limiting bond breakage. If the bond breakage occurs in or in the vicinity of a saddle-point region along the coordinate of a multi-product reaction, the product distribution ratios can be altered substantially. For explanation: if deuterium is bonded to a carbon atom at a non-exchangeable position, rate  differences of k M/k D = 2-7 are typical. If this rate difference is successfully applied to a compound disclosed herein that is susceptible to oxidation, the profile of this compound in vivo can be drastically modified and result in improved pharmacokinetic properties.
When discovering and developing therapeutic agents, the person skilled in the art is able to optimize pharmacokinetic parameters while retaining desirable in vitro properties. It is reasonable to assume that many compounds with poor pharmacokinetic profiles are susceptible to oxidative metabolism. In vitro liver microsomal assays currently available provide valuable information on the course of oxidative metabolism of this type, which in turn permits the rational design of deuterated compounds of those disclosed herein with improved stability through resistance to such oxidative metabolism. Significant improvements in the pharmacokinetic profiles of compounds disclosed herein are thereby obtained, and can be expressed quantitatively in terms of increases in the in vivo half-life (t/2) , concen-tra-tion at maximum therapeutic effect (C max) , area under the dose response curve (AUC) , and F; and in terms of reduced clearance, dose and materials costs.
The following is intended to illustrate the above: a compound which has multiple potential sites of attack for oxidative metabolism, for example benzylic hydrogen atoms and hydrogen atoms bonded to a nitrogen atom, is prepared as a series of analogues in which various combinations of hydrogen atoms are replaced by deuterium atoms, so that some, most or all of these hydrogen atoms have been replaced by deuterium atoms. Half-life determinations enable favorable and accurate determination of the extent of the extent to which the improvement in resistance to oxidative metabolism has improved. In this way, it is determined that the half-life of the parent compound can be extended by up to 100%as the result of deuterium-hydrogen exchange of this type.
Deuterium-hydrogen exchange in a compound disclosed herein can also be used to achieve a favorable modification of the metabolite spectrum of the starting compound in order to diminish or eliminate undesired toxic metabolites. For example, if a toxic metabolite arises through oxidative carbon-hydrogen (C-H) bond cleavage, it can reasonably be assumed that the deuterated analogue will greatly diminish or eliminate production of the unwanted metabolite, even if the particular oxidation is not a rate-determining step. Further information on the state of the art with respect to deuterium-hydrogen exchange may be found, for example in Hanzlik et al., J. Org. Chem. 55, 3992-3997, 1990, Reider et al., J. Org. Chem. 52, 3326-3334, 1987, Foster,  Adv. Drug Res. 14, 1-40, 1985, Gillette et al, Biochemistry 33 (10) 2927-2937, 1994, and Jarman et al. Carcinogenesis 16 (4) , 683-688, 1993.
Compounds of the present invention are, subsequent to their preparation, preferably isolated and purified to obtain a composition containing an amount by weight equal to or greater than 95% ( “substantially pure” ) , which is then used or formulated as described herein. In certain embodiments, the compounds of the present invention are more than 99%pure.
Combinations of substituents and variables envisioned by this invention are only those that result in the formation of stable compounds. The term “stable” , as used herein, refers to compounds which possess stability sufficient to allow manufacture and which maintains the integrity of the compound for a sufficient period of time to be useful for the purposes detailed herein (e.g., therapeutic or prophylactic administration to a subject) .
The recitation of a listing of chemical groups in any definition of a variable herein includes definitions of that variable as any single group or combination of listed groups. The recitation of an embodiment for a variable herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.
Detailed Description of the Invention
The invention is based in part on the unexpected discovery of novel phosphine oxide compounds that exhibit superior superior potency and selectivity profiles as SHP2 inhibitors and possess good pharmacokinetics characteristics. Also disclosed herein are pharmaceutical compositions and methods of preparation and use of these compounds in treating a variety of diseases and conditions, such as SHP2-mediated diseases.
In one aspect, the invention generally relates to a compound having the structural formula of (I) :
Figure PCTCN2022135205-appb-000002
wherein
X is S or a single bond;
Y 1 is CR 7 or N;
Y 2 is CR 8 or N, provided that if one of Y 1 and Y 2 is N, the other is not N;
each of R 1 and R 2 is independently NH 2 or a C 1-6 alkyl, or R 1 and R 2, together with the carbon atom they are bound to, form a substituted or unsubstituted 5-membered carbocyclic or heterocyclic ring;
R 3 is H, CH 3 or NH 2;
R 4 is H, CH 2OH, C (O) NH 2, C (O) OCH 3, or C (O) NHCH 3;
R 5 is H, Cl or CF 3;
each of R 6, R 7 and R 8 is independently H, Cl or P (O) RR’, provided that one of R 6, R 7 and R 8 is P (O) RR’; and
each of R and R’ is independently a C 1-6 alkyl, cyclopropyl, cyclobutyl, or cyclopentyl, or a pharmaceutically acceptable form or an isotope derivative thereof.
In certain embodiments of formula (I) , Y 1 is CR 7 and Y 2 is CR 8, having the structural formula:
Figure PCTCN2022135205-appb-000003
In certain embodiments of formula (I) , Y 1 is N and Y 2 is CR 8, having the structural formula (III) :
Figure PCTCN2022135205-appb-000004
In certain embodiments of formula (I) , Y 1 is CR 7 and Y 2 is N, having the structural formula (IV) :
Figure PCTCN2022135205-appb-000005
In certain embodiments of formula (I) , X is S, having the structural formula (V) :
Figure PCTCN2022135205-appb-000006
In certain embodiments of formula (V) , Y 1 is N, having the structural formula (VI) :
Figure PCTCN2022135205-appb-000007
Figure PCTCN2022135205-appb-000008
In certain embodiments of formula (V) , Y 2 is N, having the structural formula (VII) :
Figure PCTCN2022135205-appb-000009
In certain embodiments of formula (V) , Y 1 is CR 7 and Y 2 is CR 8, having the structural formula (VIII) :
Figure PCTCN2022135205-appb-000010
In certain embodiments of formula (I) , wherein X is a single bond, having the structural formula (IX) :
Figure PCTCN2022135205-appb-000011
In certain embodiments of formula (IX) , Y 1 is N and Y 2 is CR 8, having the structural formula (X) :
Figure PCTCN2022135205-appb-000012
In certain embodiments of formula (IX) , Y 1 is CR 7 and Y 2 is N, having the structural formula (XI) :
Figure PCTCN2022135205-appb-000013
In certain embodiments of formula (IX) , Y 1 is CR 7 and Y 2 is CR 8, having the structural formula (XII) :
Figure PCTCN2022135205-appb-000014
In certain embodiments of formula (I) , wherein R 1 and R 2 form a 5-membered carbocyclic or heterocyclic ring, optionally substituted, having the formula (XIII) :
Figure PCTCN2022135205-appb-000015
wherein
Z is O or CH 2,
R 9 is independently CH 3 or NH 2, and
i is 0, 1 or 2.
In certain embodiments of formula (V) , R 1 and R 2 form a 5-membered carbocyclic or heterocyclic ring, optionally substituted, having the formula (XIV) :
Figure PCTCN2022135205-appb-000016
wherein
Z is O or CH 2,
R 9 is independently CH 3 or NH 2, and
i is 0, 1 or 2.
In certain embodiments of formula (IX) , R 1 and R 2 form a 5-membered carbocyclic or heterocyclic ring, optionally substituted, having the formula (XV) :
Figure PCTCN2022135205-appb-000017
wherein
Z is O or CH 2,
R 9 is independently CH 3 or NH 2, and
i is 0, 1 or 2.
In certain embodiments of formula (XIII) , (XIV) or (XV) , Z is O.
In certain embodiments, i is 2, and two R 9’s are NH 2 and CH 3.
In certain embodiments of formulae (I) - (XV) , R 3 is NH 2.
In certain embodiments of formulae (I) - (XV) , R 3 is H.
In certain embodiments of formulae (I) - (XV) , R 3 is CH 3.
In certain embodiments of formulae (I) - (XV) , R 4 is H.
In certain embodiments of formulae (I) - (XV) , R 4 is CH 2OH.
In certain embodiments of formulae (I) - (XV) , R 4 is C (O) OCH 3.
In certain embodiments of formulae (I) - (XV) , R 4 is C (O) NH 2.
In certain embodiments of formulae (I) - (XV) , R 4 is C (O) NHCH 3;
In certain embodiments of formulae (I) - (XV) , R 5 is Cl.
In certain embodiments of formulae (I) - (XV) , R 5 is H.
In certain embodiments of formulae (I) - (XV) , R 5 is CF 3.
In certain embodiments of formulae (I) - (XV) , R 6 is Cl.
In certain embodiments of formulae (I) - (XV) , one of R 7 and R 8 is P (O) RR’.
In certain embodiments of formulae (I) - (XV) , one of R and R’ is CH 3.
In certain embodiments of formulae (I) - (XV) , one of R and R’ is cyclopropyl.
In certain embodiments of formulae (I) - (XV) , one of R and R’ is cyclobutyl.
In certain embodiments of formulae (I) - (XV) , one of R and R’ is cyclopentyl.
Non-limiting examples of compounds of the invention include:
Figure PCTCN2022135205-appb-000018
Figure PCTCN2022135205-appb-000019
Figure PCTCN2022135205-appb-000020
or a pharmaceutically acceptable form or an isotope derivative thereof.
In another aspect, the invention generally relates to a pharmaceutical composition comprising a compound disclosed herein and a pharmaceutically acceptable excipient, carrier, or diluent.
In yet another aspect, the invention generally relates to a pharmaceutical composition comprising a compound of the invention effective to treat or reduce cancer, or a related disease or condition.
In yet another aspect, the invention generally relates to a unit dosage form comprising a pharmaceutical composition disclosed herein.
In yet another aspect, the invention generally relates to a method for treating or reducing a disease or condition, comprising administering to a subject in need thereof a therapeutically effective amount of a pharmaceutical composition comprising a compound disclosed herein and a pharmaceutically acceptable excipient, carrier, or diluent.
In yet another aspect, the invention generally relates to use of a compound disclosed herein for treating or reducing a disease or condition.
In yet another aspect, the invention generally relates to use of a compound disclosed herein and a pharmaceutically acceptable excipient, carrier, or diluent, in preparation of a medicament for treating or reducing a disease or condition.
In certain embodiments of method of treatment and use herein, the disease or condition is cancer, or a related disease or condition thereof.
As used herein, the terms "cancer" and "cancerous" refer to or describe the physiological condition in mammals that is typically characterized by abnormal or unregulated cell growth. In certain embodiments, the cancer may be selected from melanoma, juvenile myelomoncytic leukemias, neuroblastoma, Philadelphia chromosome positive chronic myeloid, Philadelphia chromosome positive acute lymphoblastic leukemias, acute myeloid leukemias, myeloproliferative neoplasms (such as Polycythemia Vera, Essential Thrombocythemia and Primary Myelofibrosis) , breast cancer, lung cancer, liver cancer, colorectal cancer, esophageal cancer, gastric cancer, squamous-cell carcinoma of the head and neck, glioblastoma, anaplastic large-cell lymphoma, thyroid carcinoma, and spitzoid neoplasms. In certain embodiments, the cancer is melanoma. In certain embodiments, the cancer is juvenile myelomoncytic leukemias. In certain embodiments, the cancer is neuroblastoma. In certain embodiments, the cancer is Philadelphia chromosome positive chronic myeloid. In certain embodiments, the cancer is  Philadelphia chromosome positive acute lymphoblastic leukemias. In certain embodiments, the cancer is acute myeloid leukemias. In certain embodiments, the cancer is myeloproliferative neoplasms, such as Polycythemia Vera, Essential Thrombocythemia and Primary Myelofibrosis. In certain embodiments, the cancer is selected from the group consisting of Polycythemia Vera, Essential Thrombocythemia and Primary Myelofibrosis. In certain embodiments, the cancer is Polycythemia Vera. In certain embodiments, the cancer is Essential Thrombocythemia. In certain embodiments, the cancer is Primary Myelofibrosis. In certain embodiments, the cancer is breast cancer. In certain embodiments, the cancer is lung cancer. In certain embodiments, the cancer is liver cancer. In certain embodiments, the cancer is colorectal cancer. In certain embodiments, the cancer is esophageal cancer. In certain embodiments, the cancer is gastric cancer. In certain embodiments, the cancer is squamous-cell carcinoma of the head and neck. In certain embodiments, the cancer is glioblastoma. In certain embodiments, the cancer is anaplastic large-cell lymphoma. In certain embodiments, the cancer is thyroid carcinoma. In certain embodiments, the cancer is spitzoid neoplasms.
In certain embodiments, the cancer is selected from the group consisting of non-small cell lung cancer (NSCLC) , a colon cancer, an esophageal cancer, a rectal cancer, Juvenile myelomonocytic leukemia (JMML) , breast cancer, melanoma, and a pancreatic cancer.
Compositions of the present invention are administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir. The term "parenteral" as used herein includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal, intrathecal, intrahepatic, intralesional and intracranial injection or infusion techniques. Preferably, the compositions are administered orally, intraperitoneally or intravenously. Sterile injectable forms of the compositions of this invention include aqueous or oleaginous suspension. These suspensions are formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation is also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1, 3-butanediol. Among the acceptable vehicles and solvents that are employed are water, Ringer’s solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium.
For this purpose, any bland fixed oil employed includes synthetic mono-or di-glycerides. Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions also contain a long-chain alcohol diluent or dispersant, such as carboxymethyl cellulose or similar dispersing agents that are commonly used in the formulation of pharmaceutically acceptable dosage forms including emulsions and suspensions. Other commonly used surfactants, such as Tweens, Spans and other emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms are also be used for the purposes of formulation.
Pharmaceutically acceptable compositions of this invention are orally administered in any orally acceptable dosage form. Exemplary oral dosage forms are capsules, tablets, aqueous suspensions or solutions. In the case of tablets for oral use, carriers commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried cornstarch. When aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening, flavoring or coloring agents are optionally also added.
Alternatively, pharmaceutically acceptable compositions of this invention are administered in the form of suppositories for rectal administration. These can be prepared by mixing the agent with a suitable non-irritating excipient that is solid at room temperature but liquid at rectal temperature and therefore will melt in the rectum to release the drug. Such materials include cocoa butter, beeswax and polyethylene glycols.
Pharmaceutically acceptable compositions of this invention are also administered topically, especially when the target of treatment includes areas or organs readily accessible by topical application, including diseases of the eye, the skin, or the lower intestinal tract. Suitable topical formulations are readily prepared for each of these areas or organs.
Topical application for the lower intestinal tract can be effected in a rectal suppository formulation (see above) or in a suitable enema formulation. Topically-transdermal patches are also used.
For topical applications, provided pharmaceutically acceptable compositions are formulated in a suitable ointment containing the active component suspended or dissolved in one or more carriers. Exemplary carriers for topical administration include mineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene, polyoxypropylene compound, emulsifying wax and water. Alternatively, provided pharmaceutically acceptable compositions can be formulated in a suitable lotion or cream containing the active components suspended or dissolved in one or more pharmaceutically acceptable carriers. Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water.
Pharmaceutically acceptable compositions of this invention are optionally administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and are prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other conventional solubilizing or dispersing agents.
Most preferably, pharmaceutically acceptable compositions of this invention are formulated for oral administration. Such formulations may be administered with or without food. In some embodiments, pharmaceutically acceptable compositions of this invention are administered without food. In other embodiments, pharmaceutically acceptable compositions of this invention are administered with food.
The amount of compounds of the present invention that is optionally combined with the carrier materials to produce a composition in a single dosage form will vary depending upon the host treated, the particular mode of administration. Preferably, provided compositions should be formulated so that a dosage of between 0.01 -100 mg/kg body weight/day of the compound can be administered to a patient receiving these compositions.
It should also be understood that a specific dosage and treatment regimen for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, rate of excretion, drug combination, and the judgment of the treating physician and the severity of the particular disease being treated. The amount of a compound of the present invention in the composition will also depend upon the particular compound in the composition.
Examples
As depicted in the Examples below, in certain exemplary embodiments, compounds are prepared according to the following general procedures. It will be appreciated that, although the general methods depict the synthesis of certain compounds of the present invention, the following general methods, and other methods known to one of ordinary skill in the art, can be applied to all compounds and subclasses and species of each of these compounds, as described herein.
Compound numbers utilized in the Examples below correspond to compound numbers set forth supra.
1H was recorded at 400 MHz on a Varian Mercury 400 spectrometer.  13C NMR  was recorded at 100 MHz. Proton chemical shifts were internally referenced to the residual proton resonance in CDCl3 (7.26 ppm) . Carbon chemical shifts were internally referenced to the deuterated solvent signals in CDCl3 (77.20 ppm) .
LC-MS spectra were recorded on a Shimadzu LC-MS2020 using Agilent C18 column (Eclipse XDB-C18, 5um, 2.1 x 50mm) with flow rate of 1 mL/min. Mobile phase A: 0.1%of formic acid in water; mobile phase B: 0.1%of formic acid in acetonitrile. A general gradient method was used.
Table 1
Time (min) A B
0 95 5
3 0 100
4 0 100
4.05 95 5
Analytical HPLC was performed on Agilent 1200 HPLC with a Zorbax Eclipse XDB C18 column (2.1 x 150 mm) with flow rate of 1 mL/min. Mobile phase A: 0.1%of TFA in water; mobile phase B: 0.1%of TFA in acetonitrile. A general method with following gradient was used.
Table 2
Time (min) Mobile Phase A Mobile Phase B
0 95 5
15 0 100
16 0 100
16.5 95 5
16.5   stop
Preparative HPLC was performed on Varian ProStar using Hamilton C18 PRP-1 column (15 x 250 mm) with flow rate of 20 mL/min. Mobile phase A: 0.1%of TFA in water; mobile phase B: 0.1%of TFA in acetonitrile. A typical gradient method was used.
Table 3
Time (min) Mobile Phase A Mobile Phase B
0 90 10
30 30 70
35 10 100
40 90 10
45   stop
Example 1.
Synthesis of (4- ( (3-amino-5- ( (3S, 4S) -4-amino-3-methyl-2-oxa-8-azaspiro [4.5] decan-8-yl) pyrazin-2-yl) thio) -2, 3-dichlorophenyl) dimethylphosphine oxide (1)
Figure PCTCN2022135205-appb-000021
Synthetic scheme 1
Figure PCTCN2022135205-appb-000022
Step 1: A mixture of compound 1-1 (1.0 g, 4.80 mmol) , Xantphos (280 mg, 0.484 mmol) , Pd (OAc)  2 (108 mg, 0.481 mmol) in a Schlenk vial was purged with nitrogen for 3 times. To this was added a solution of compound 1-2 (670 mg, 5.57 mmol) and DIPEA (1.85 g, 14.34 mmol) in dioxane. The reaction mixture was purged again with nitrogen for 3 times and stirred at 105 ℃ for 16 h. After completion of the reaction, the mixture was cooled to room temperature and filtered. The filtrate was concentrated and purified by silica gel column (eluted with 30%EtOAc in Petroleum ether) to afford the title compound 1-3 (950 mg, yield 80%) as a light-yellow solid.
Step 2: Under nitrogen atmosphere, to a solution of compound 1-3 (500 mg, 2.02 mmol) in anhydrous THF (8 mL) was added dropwise NaOEt (20 w%solution in EtOH, 1.1 g, 3.23 mmol) at -30 ℃. The mixture was stirred at -30 ℃ for 2 h. After completion of the reaction, the mixture was warmed to room temperature and concentrated. The residue was acidified by 1 N hydrochloric acid and purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2O, HCl condition) . The desired components were lyophilized to give the title compound 1-4 (hydrochloride, 320 mg, yield 80%) as a yellow solid.
Step 3: To a solution of compound 1-5 (10.0 g, 61.7 mmol) in DMF (60 mL) was added NIS (14.9 g, 66.2 mmol) portion-wise over 30 min at 0 ℃. The mixture was stirred at  room temperature for 8 h. After completion of the reaction, the mixture was poured in H 2O (600 mL) . The resulted mixture was extracted with EtOAc (300 mL x 2) . The combined organic layers were washed with water and brine, dried over anhydrous Na 2SO 4, filtered and concentrated. The crude product was purified by silica gel column (eluted with 10%EtOAc in Petroleum ether) to afford the title compound 1-6 (11.2 g, yield 63%) as brown solid.
Step 4: Under nitrogen atmosphere, a mixture of compound 1-6 (10.0 g, 34.7 mmol) , compound 1-7 (8.13 g, 103 mmol) , Xantphos (2.0 g, 3.45 mmol) , Pd (OAc)  2 (390 mg, 1.74 mmol) and K 3PO 4 (18.4 g, 86.7 mmol) in anhydrous DMF (50 mL) was stirred at 120 ℃ for 16 h. The mixture was cooled to room temperature, filtered and concentrated. The residue was purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2O, HCl condition) . The desired components were lyophilized to give the title compound 1-8 (hydrochloride, 1.35 g, yield 14%) as a yellow solid.
Step 5: To a solution of compound 1-8 (hydrochloride, 930 mg, 3.36 mmol) in MeCN (9 mL) was added 4 N aqueous HCl (3.5 mL, 14 mmol) . The mixture was stirred at room temperature for 10 min and cooled to 0 ℃. To this was added a cold solution of NaNO 2 (280 mg, 4.05 mmol) in H 2O (2 mL) . The mixture was stirred at 0 ℃ for 30 min. CuI (64 mg, 0.336 mmol) and KI (1.38 g, 8.31 mmol) were added thereto. The mixture was stirred at room temperature for 3 h. After completion of the reaction, the mixture was quenched by adding H 2O (50 mL) and extracted with EtOAc (50 mL x 2) . The combined organic layers were washed with saturated NaHCO 3 and saturated Na 2S 2O 3, water and brine. The organic layer was dried over anhydrous Na 2SO 4, filtered and concentrated. The crude product was purified by silica gel column (eluted with 5%EtOAc in Petroleum ether) to afford the title compound 1-9 (720 mg, yield 61%) as brown oil.
Step 6: A mixture of compound 1-9 (500 mg, 1.43 mmol) , compound 1-4 (hydrochloride, 350 mg, 1.76 mmol) , Xantphos (165 mg, 0.285 mmol) , Pd 2 (Dba)  3 (130 mg, 0.142 mmol) and DIPEA (550 mg, 4.25 mmol) in dioxane (5 mL) was stirred at 115 ℃ for 16 h. After completion of the reaction, the mixture was cooled to room temperature, filtered and concentrated. The residue was purified by silica gel column (eluted with 5%methanol in dichloromethane) to afford the crude product, which was further purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2O, HCl condition) . The desired components were  lyophilized to give the title compound 1-10 (hydrochloride, 255 mg, yield 42%) as an off-white solid.
Step 7: A mixture of compound 1-10 (hydrochloride, 100 mg, 0.239 mmol) , compound 1-11 (70 mg, 0.288 mmol) and K 2CO 3 (165 mg, 1.19 mmol) in DMAc (5 mL) and H 2O (0.5 mL) was stirred at 120 ℃ for 18 h. After completion of the reaction, the mixture was cooled and filtered. The filtrate was purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2O, HCl condition) . The desired components were lyophilized to give the title compound 1 (65 mg, yield 49%) as an off-white solid.  1H NMR (400 MHz, DMSO-d 6 (D 2O) ) δ 7.72 -7.61 (m, 2H) , 6.69 (d, J = 9.0 Hz, 1H) , 4.24 -4.17 (m, 2H) , 4.13 (d, J = 16.5 Hz, 1H) , 3.89 (d, J = 9.1 Hz, 1H) , 3.69 (s, 1H) , 3.36 (d, J = 5.0 Hz, 1H) , 3.10 -2.98 (m, 2H) , 1.80 (s, 3H) , 1.76 (s, 3H) , 1.75 -1.64 (m, 3H) , 1.56 (d, J = 12.6 Hz, 1H) , 1.21 (d, J = 6.5 Hz, 3H) . LCMS: m/z calculated for C 21H 28Cl 2N 5O 2PS: 516.42; found: 516.71 [M+H]  +.
Example 2.
Synthesis of (4- ( (3-amino-5- ( (3S, 4S) -4-amino-3-methyl-2-oxa-8-azaspiro [4.5] decan-8-yl) pyrazin-2-yl) thio) -2-chloro-3- (trifluoromethyl) phenyl) dimethylphosphine oxide (2)
Figure PCTCN2022135205-appb-000023
Synthetic scheme 2
Figure PCTCN2022135205-appb-000024
Step 1: To a solution of compound 2-1 (10.0 g, 51.1 mmol) in DMF (50 mL) was added NBS (10.0 g, 56.2 mmol) portion-wise over 30 min at 0 ℃. The mixture was stirred at room temperature for 3 h. After completion of the reaction, the mixture was poured in H 2O (500 mL) . The resulted mixture was extracted with EtOAc (300 mL x 2) . The combined organic layers were washed with water and brine, dried over anhydrous Na 2SO 4, filtered and concentrated. The crude product was purified by silica gel column (eluted with 10%EtOAc in Petroleum ether) to afford the title compound 2-2 (11.9 g, yield 85%) as brown liquid.
Step 2: To a solution of compound 2-2 (3 g, 10.9 mmol) in MeCN (10 mL) was added 4 N aqueous HCl (11 mL, 44 mmol) . The mixture was stirred at room temperature for 10 min and cooled to 0 ℃. To this was added a cold solution of NaNO 2 (900 mg, 13.0 mmol) in H 2O (5 mL) . The mixture was stirred at 0 ℃ for 30 min. CuI (210 mg, 1.10 mmol) and KI (4.5 g, 27.1 mmol) were added thereto. The mixture was stirred at room temperature for 3 h. After completion of the reaction, the mixture was quenched by adding H 2O (150 mL) and extracted with EtOAc (150 mL x 2) . The combined organic layers were washed with saturated NaHCO 3 and saturated Na 2S 2O 3, water and brine. The organic layer was dried over anhydrous Na 2SO 4, filtered and concentrated. The crude product was purified by silica gel column (eluted with Petroleum ether) to afford the title compound 2-3 (3 g, yield 70%) as brown oil.
Step 3: Under nitrogen atmosphere, a mixture of compound 2-3 (4.68 g, 12.1 mmol) , compound 1-7 (1.05 g, 13.4 mmol) , Xantphos (1.4 g, 2.42 mmol) , Pd (OAc)  2 (270 mg, 1.20 mmol) and K 3PO 4 (6.5 g, 30.6 mmol) in anhydrous DMF (30 mL) was stirred at 120 ℃ for 16 h. The mixture was cooled to room temperature, filtered and concentrated. The residue was purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2O, HCl condition) . The desired components were lyophilized to give the title compound 2-4 (820 mg, yield 20%) as a yellow solid.
Step 4: A mixture of compound 2-4 (300 mg, 0.894 mmol) , compound 1-4 (hydrochloride, 260 mg, 1.32 mmol) , Xantphos (103 mg, 0.178 mmol) , Pd 2 (Dba)  3 (82 mg, 0.089 mmol) and DIPEA (350 mg, 2.71 mmol) in dioxane (3 mL) was stirred at 115 ℃ for 16 h. After completion of the reaction, the mixture was cooled to room temperature, filtered and concentrated. The residue was purified by silica gel column (eluted with 5%methanol in dichloromethane) to afford the crude product, which was further purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2O, HCl condition) . The desired components were  lyophilized to give the title compound 2-5 (hydrochloride, 165 mg, yield 40%) as a pale yellow solid.
Step 5: A mixture of compound 2-5 (hydrochloride, 100 mg, 0.221 mmol) , compound 1-11 (65 mg, 0.267 mmol) and K 2CO 3 (150 mg, 1.08 mmol) in DMAc (3 mL) and H 2O (0.3 mL) was stirred at 120 ℃ for 18 h. After completion of the reaction, the mixture was cooled and filtered. The filtrate was purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2O, HCl condition) . The desired components were lyophilized to give the title compound 2 (19 mg, yield 49%) as a pale-yellow solid.  1H NMR (500 MHz, DMSO-d 6) δ 8.25 (d, J = 5.6 Hz, 2H) , 7.91 (dd, J = 11.1, 8.6 Hz, 1H) , 7.71 (s, 1H) , 6.90 (d, J = 8.5 Hz, 1H) , 4.27 -4.19 (m, 2H) , 4.15 (d, J = 13.8 Hz, 1H) , 3.93 (s, 1H) , 3.66 (d, J = 9.1 Hz, 1H) , 3.40 -3.35 (m, 1H) , 3.07 (q, J = 11.1 Hz, 2H) , 1.84 -1.73 (m, 8H) , 1.67 (d, J = 13.5 Hz, 1H) , 1.58 (d, J = 12.9 Hz, 1H) , 1.24 (d, J = 6.7 Hz, 3H) . LCMS: m/z calculated for C 22H 28ClF 3N 5O 2PS: 549.98; found: 550.60 [M+H]  +.
Example 3.
Synthesis of (4- ( (3-amino-5- ( (3S, 4S) -4-amino-3-methyl-2-oxa-8-azaspiro [4.5] decan-8-yl) pyrazin-2-yl) thio) -3-chlorophenyl) dimethylphosphine oxide (3)
Figure PCTCN2022135205-appb-000025
Synthetic scheme 3
Figure PCTCN2022135205-appb-000026
Step 1: Under nitrogen atmosphere, a mixture of compound 3-1 (5.0 g, 19.7 mmol) , compound 1-7 (4.61 g, 59.1 mmol) , Xantphos (2.28 g, 3.94 mmol) , Pd (OAc)  2 (442 mg, 1.97 mmol) and K 3PO 4 (10.5 g, 49.5 mmol) in anhydrous DMF (50 mL) was stirred at 120 ℃ for 16 h. The mixture was cooled to room temperature, filtered and concentrated. The residue was purified by silica gel column (eluted with 5%methanol in dichloromethane) to afford the title compound 3-2 (3.69 g, yield 67%) as a yellow solid.
Step 2: To a solution of compound 3-2 (2 g, 9.82 mmol) in MeCN (10 mL) was added 4 N aqueous HCl (10 mL, 40 mmol) . The mixture was stirred at room temperature for 10 min and cooled to 0 ℃. To this was added a cold solution of NaNO 2 (735 mg, 10.6 mmol) in H 2O (5 mL) . The mixture was stirred at 0 ℃ for 30 min. CuI (190 mg, 0.997 mmol) and KI (4.07 g, 24.5 mmol) were added thereto. The mixture was stirred at room temperature for 3 h. After completion of the reaction, the mixture was quenched by adding H 2O (100 mL) and extracted with EtOAc (100 mL x 2) . The combined organic layers were washed with saturated NaHCO 3 and saturated Na 2S 2O 3, water and brine. The organic layer was dried over anhydrous Na 2SO 4, filtered and concentrated. The crude product was purified by silica gel column (eluted with Petroleum ether) to afford the title compound 3-3 (400 mg, yield 13%) as brown oil.
Step 3: A mixture of compound 3-3 (220 mg, 0.70 mmol) , compound 1-4 (hydrochloride, 210 mg, 1.06 mmol) , Xantphos (85 mg, 0.147 mmol) , Pd 2 (Dba)  3 (64 mg, 0.07 mmol) and DIPEA (270 mg, 2.09 mmol) in dioxane (3 mL) was stirred at 115 ℃ for 16 h. After completion of the reaction, the mixture was cooled to room temperature, filtered and concentrated. The residue was purified by silica gel column (eluted with 5%methanol in dichloromethane) to afford the crude product, which was further purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2O, HCl condition) . The desired components were lyophilized to give the title compound 3-4 (hydrochloride, 98 mg, yield 36%) as a pale-yellow solid.
A mixture of compound 3-4 (hydrochloride, 60 mg, 0.156 mmol) , compound 1-11 (45 mg, 0.185 mmol) and K 2CO 3 (110 mg, 0.796 mmol) in DMAc (3 mL) and H 2O (0.3 mL) was stirred at 120 ℃ for 18 h. After completion of the reaction, the mixture was cooled and filtered. The filtrate was purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2O, HCl condition) . The desired components were lyophilized to give the title compound 3 (35 mg,  yield 44%) as a pale-yellow solid.  1H NMR (600 MHz, DMSO-d 6) δ 8.47 (d, J = 47.8 Hz, 1H) , 8.35 (d, J = 33.5 Hz, 2H) , 7.85 (s, 1H) , 7.66 (d, J = 3.6 Hz, 1H) , 7.59 (q, J = 7.4, 6.6 Hz, 1H) , 4.24 -4.18 (m, 2H) , 4.12 (dd, J = 14.1, 4.3 Hz, 1H) , 3.94 -3.90 (m, 1H) , 3.65 (dd, J = 9.2, 3.5 Hz, 1H) , 3.36 (t, J = 4.5 Hz, 1H) , 3.05 (q, J = 12.0, 11.5 Hz, 2H) , 1.77 (td, J = 12.6, 11.9, 6.0 Hz, 2H) , 1.67 (s, 1H) , 1.65 -1.63 (m, 3H) , 1.62 (d, J = 2.5 Hz, 3H) , 1.58 (d, J = 12.8 Hz, 1H) , 1.24 (d, J = 6.5 Hz, 3H) . LCMS: m/z calculated for C 21H 29ClN 5O 2PS: 481.98; found: 482.95 [M+H]  +.
Example 4.
Synthesis of (3- ( (3-amino-5- ( (3S, 4S) -4-amino-3-methyl-2-oxa-8-azaspiro [4.5] decan-8-yl) pyrazin-2-yl) thio) -5-chlorophenyl) dimethylphosphine oxide (4)
Figure PCTCN2022135205-appb-000027
Synthetic scheme 4
Figure PCTCN2022135205-appb-000028
Step 1: Under nitrogen atmosphere, a mixture of compound 4-1 (2.1 g, 6.61 mmol) , compound 1-7 (570 mg, 7.30 mmol) , Xantphos (760 mg, 1.31 mmol) , Pd (OAc)  2 (150 mg, 0.668 mmol) and K 3PO 4 (3.50 g, 16.5 mmol) in anhydrous DMF (20 mL) was stirred at 120 ℃ for 16 h. The mixture was cooled to room temperature and filtered. The filtrate was diluted with EtOAc (100 mL) and washed with water (50 mL x2) . The organic layer was washed with brine, dried  over anhydrous Na 2SO 4, filtered and concentrated. The residue was purified by silica gel column (eluted with 5%methanol in dichloromethane) to afford the title compound 4-2 (750 mg, yield 42%) as a yellow solid.
Step 2: A mixture of compound 4-2 (220 mg, 0.822 mmol) , compound 1-4 (hydrochloride, 195 mg, 0.929 mmol) , Xantphos (95 mg, 0.164 mmol) , Pd 2 (Dba)  3 (75 mg, 0.082 mmol) and DIPEA (320 mg, 2.48 mmol) in dioxane (4 mL) was stirred at 115 ℃ for 16 h. After completion of the reaction, the mixture was cooled to room temperature, filtered and concentrated. The residue was purified by silica gel column (eluted with 5%methanol in dichloromethane) to afford the crude product, which was further purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2O, HCl condition) . The desired components were lyophilized to give the title compound 4-3 (hydrochloride, 65 mg, yield 20%) as a pale-yellow solid.
Step 3: A mixture of compound 4-3 (hydrochloride, 60 mg, 0.156 mmol) , compound 1-11 (45 mg, 0.185 mmol) and K 2CO 3 (110 mg, 0.796 mmol) in DMAc (3 mL) and H 2O (0.3 mL) was stirred at 120 ℃ for 18 h. After completion of the reaction, the mixture was cooled and filtered. The filtrate was purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2O, HCl condition) . The desired components were lyophilized to give the title compound 4 (23 mg, yield 44%) as a pale-yellow solid.  1H NMR (600 MHz, DMSO-d 6) δ 8.32 (d, J = 32.8 Hz, 2H) , 7.79 (dd, J = 11.2, 1.5 Hz, 1H) , 7.70 (d, J = 3.8 Hz, 1H) , 7.56 (ddd, J = 10.2, 8.0, 1.7 Hz, 1H) , 6.75 (tt, J = 6.8, 2.3 Hz, 1H) , 4.23 (d, J = 11.4 Hz, 1H) , 4.21 -4.19 (m, 1H) , 4.15 -4.12 (m, 1H) , 3.92 (dd, J = 9.1, 3.4 Hz, 1H) , 3.66 (dd, J = 9.3, 4.0 Hz, 1H) , 3.41 -3.34 (m, 1H) , 3.12 -3.00 (m, 2H) , 1.82 -1.74 (m, 2H) , 1.67 (d, J = 14.4 Hz, 1H) , 1.64 (d, J = 1.2 Hz, 3H) , 1.62 (d, J = 1.2 Hz, 3H) , 1.59 (d, J = 13.5 Hz, 1H) , 1.24 (d, J = 6.7 Hz, 3H) . LCMS: m/z calculated for C 21H 29ClN 5O 2PS: 481.98; found: 482.89 [M+H]  +.
Example 5.
Synthesis of (5- ( (3-amino-5- ( (3S, 4S) -4-amino-3-methyl-2-oxa-8-azaspiro [4.5] decan-8-yl) pyrazin-2-yl) thio) pyridin-2-yl) dimethylphosphine oxide (5)
Figure PCTCN2022135205-appb-000029
Synthetic scheme 5
Figure PCTCN2022135205-appb-000030
Step 1: Under nitrogen atmosphere, a mixture of compound 5-1 (5.0 g, 28.9 mmol) , compound 1-7 (6.76 g, 86.7 mmol) , Xantphos (3.34 g, 5.77 mmol) , Pd (OAc)  2 (650 mg, 2.89 mmol) and K 3PO 4 (15.3 g, 72.1 mmol) in anhydrous DMF (50 mL) was stirred at 120 ℃ for 16 h. The mixture was cooled to room temperature, filtered and concentrated. The residue was purified by silica gel column (eluted with 10%methanol in dichloromethane) to afford the crude product, which was purified again by reverse phase flash (C18 column, eluted with acetonitrile in H 2O, HCl condition) . The desired components were lyophilized to give the title compound 5-2 (hydrochloride, 2.45 g, yield 41%) as a yellow solid.
Step 2: To a solution of compound 5-2 (hydrochloride, 2.7 g, 13.0 mmol) in MeCN (30 mL) was added 4 N aqueous HCl (15 mL, 60 mmol) . The mixture was stirred at room temperature for 10 min and cooled to 0 ℃. To this was added dropwise a cold solution of NaNO 2 (950 mg, 13.8 mmol) in H 2O (10 mL) . The mixture was stirred at 0 ℃ for 30 min. CuI (250 mg, 1.31 mmol) and KI (5.44 g, 32.8 mmol) were added thereto. The mixture was stirred at room temperature for 3 h. After completion of the reaction, the mixture was quenched by adding H 2O (150 mL) and extracted with EtOAc (150 mL x 2) . The combined organic layers were washed with saturated NaHCO 3 and saturated Na 2S 2O 3, water and brine. The organic layer was dried  over anhydrous Na 2SO 4, filtered and concentrated. The crude product was purified by silica gel column (eluted with 10%methanol in dichloromethane) to afford the title compound 5-3 (1.33 g, yield 36%) as a yellow oil.
Step 3: A mixture of compound 5-3 (300 mg, 1.07 mmol) , compound 1-4 (hydrochloride, 320 mg, 1.61 mmol) , Xantphos (123 mg, 0.212 mmol) , Pd 2 (Dba)  3 (98 mg, 0.107 mmol) and DIPEA (415 mg, 3.21 mmol) in dioxane (5 mL) was stirred at 115 ℃ for 16 h. After completion of the reaction, the mixture was cooled to room temperature, filtered and concentrated. The residue was purified by silica gel column (eluted with 20%methanol in dichloromethane) to afford the crude product, which was further purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2O, HCl condition) . The desired components were lyophilized to give the title compound 5-4 (hydrochloride, 60 mg, yield 16%) as a yellow solid.
Step 4: A mixture of compound 5-4 (hydrochloride, 60 mg, 0.171 mmol) , compound 1-11 (62 mg, 0.255 mmol) and K 2CO 3 (120 mg, 0.868 mmol) in DMAc (3 mL) and H 2O (0.3 mL) was stirred at 120 ℃ for 18 h. After completion of the reaction, the mixture was cooled and filtered. The filtrate was purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2O, HCl condition) . The desired components were lyophilized to give the title compound 5 (38 mg, yield 45%) as a yellow solid.  1H NMR (600 MHz, DMSO-d 6) δ 8.30 (d, J = 30.8 Hz, 1H) , 8.23 (s, 1H) , 7.67 (s, 1H) , 7.61 (d, J = 11.3 Hz, 1H) , 7.45 (d, J = 11.2 Hz, 1H) , 7.21 (s, 1H) , 4.22 (dq, J = 12.8, 6.5, 5.4 Hz, 2H) , 4.17 -4.12 (m, 1H) , 3.94 (dd, J = 9.2, 2.2 Hz, 1H) , 3.67 (d, J = 9.1 Hz, 1H) , 3.37 (t, J = 4.6 Hz, 1H) , 3.10 -3.01 (m, 2H) , 1.76 (dd, J = 16.6, 7.2 Hz, 2H) , 1.68 (d, J = 3.2 Hz, 4H) , 1.66 (d, J = 3.1 Hz, 3H) , 1.58 (d, J = 13.1 Hz, 1H) , 1.26 (d, J = 6.6 Hz, 3H) . LCMS: m/z calculated for C 20H 29N 6O 2PS: 448.53; found: 449.82 [M+H]  +.
Example 6.
Synthesis of (5- ( (3-amino-5- ( (3S, 4S) -4-amino-3-methyl-2-oxa-8-azaspiro [4.5] decan-8-yl) pyrazin-2-yl) thio) pyridin-3-yl) dimethylphosphine oxide (6)
Figure PCTCN2022135205-appb-000031
Synthetic scheme 6
Figure PCTCN2022135205-appb-000032
Step 1: Under nitrogen atmosphere, a mixture of compound 6-1 (5.0 g, 28.9 mmol) , compound 1-7 (6.76 g, 86.7 mmol) , Xantphos (3.34 g, 5.77 mmol) , Pd (OAc)  2 (650 mg, 2.89 mmol) and K 3PO 4 (15.3 g, 72.1 mmol) in anhydrous DMF (50 mL) was stirred at 120 ℃ for 16 h. The mixture was cooled to room temperature, filtered and concentrated. The residue was purified by silica gel column (eluted with 10%methanol in dichloromethane) to afford the crude product, which was purified again by reverse phase flash (C18 column, eluted with acetonitrile in H 2O, HCl condition) . The desired components were lyophilized to give the title compound 6-2 (hydrochloride, 2.2 g, yield 36%) as a yellow solid.
Step 2: To a solution of compound 6-2 (hydrochloride, 1.7 g, 8.22 mmol) in MeCN (20 mL) was added 4 N aqueous HCl (10 mL, 40 mmol) . The mixture was stirred at room temperature for 10 min and cooled to 0 ℃. To this was added dropwise a cold solution of NaNO 2 (600 mg, 8.70 mmol) in H 2O (6 mL) . The mixture was stirred at 0 ℃ for 30 min. CuI (150 mg, 0.787 mmol) and KI (3.41 g, 20.5 mmol) were added thereto. The mixture was stirred at room temperature for 3 h. After completion of the reaction, the mixture was quenched by adding H 2O (150 mL) and extracted with EtOAc (150 mL x 2) . The combined organic layers were washed with saturated NaHCO 3 and saturated Na 2S 2O 3, water and brine. The organic layer was dried  over anhydrous Na 2SO 4, filtered and concentrated. The crude product was purified by silica gel column (eluted with 10%methanol in dichloromethane) to afford the title compound 6-3 (200 mg, yield 8%) as a yellow oil.
Step 3: A mixture of compound 6-3 (130 mg, 0.462 mmol) , compound 1-4 (hydrochloride, 130 mg, 0.656 mmol) , Xantphos (55 mg, 0.095 mmol) , Pd 2 (Dba)  3 (45 mg, 0.049 mmol) and DIPEA (180 mg, 1.39 mmol) in dioxane (2mL) was stirred at 115 ℃ for 16 h. After completion of the reaction, the mixture was cooled to room temperature, filtered and concentrated. The residue was purified by pre-TLC (silica gel, 20%methanol in dichloromethane) to afford the crude product, which was further purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2O, HCl condition) . The desired components were lyophilized to give the title compound 6-4 (hydrochloride, 40 mg, yield 24%) as a yellow solid.
Step 4: A mixture of compound 6-4 (hydrochloride, 40 mg, 0.114 mmol) , compound 1-11 (40 mg, 0.165 mmol) and K 2CO 3 (80 mg, 0.578 mmol) in DMAc (2 mL) and H 2O (0.2 mL) was stirred at 120 ℃ for 18 h. After completion of the reaction, the mixture was cooled and filtered. The filtrate was purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2O, HCl condition) . The desired components were lyophilized to give the title compound 6 (15 mg, yield 27%) as a yellow solid.  1H NMR (500 MHz, DMSO-d 6 (D 2O) ) δ 8.72 (d, J = 5.3 Hz, 1H) , 8.46 (s, 1H) , 7.95 (d, J = 11.2 Hz, 1H) , 7.63 (s, 1H) , 4.19 (dt, J = 11.5, 5.5 Hz, 2H) , 4.10 (dd, J = 11.1, 7.0 Hz, 1H) , 3.90 (d, J = 9.0 Hz, 1H) , 3.65 (d, J = 9.2 Hz, 1H) , 3.35 (d, J = 5.1 Hz, 1H) , 3.08 -2.98 (m, 2H) , 1.71 (d, J = 13.6 Hz, 8H) , 1.66 (d, J = 13.2 Hz, 1H) , 1.55 (d, J = 13.3 Hz, 1H) , 1.22 (d, J = 6.4 Hz, 3H) . LCMS: m/z calculated for C 20H 29N 6O 2PS: 448.53; found: 449.89 [M+H]  +.
Example 7.
Synthesis of (3- ( (5- ( (3S, 4S) -4-amino-3-methyl-2-oxa-8-azaspiro [4.5] decan-8-yl) pyrazin-2-yl) thio) -2-chlorophenyl) dimethylphosphine oxide (7)
Figure PCTCN2022135205-appb-000033
Synthetic scheme 7
Figure PCTCN2022135205-appb-000034
Step 1: Under nitrogen, a mixture of compound 7-1 (1.0 g, 5.17 mmol) , 2-Methoxyethanethiol 1-2 (750 mg, 6.25 mmol) , Xantphos (300 mg, 0.518 mmol) , DIEPA (1.3 g, 10.06 mmol) and palladium (II) acetate (62 mg, 0.276 mmol) in dioxane (5 mL) was stirred at 115℃ for 16 h. After completion of the reaction, the mixture was filtered. The filtrated was diluted with EtOAc (50 mL) and washed with water (50 mL) . The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica gel column (eluted with 20%EtOAc in Petroleum ether) to afford the title compound 7-2 (860 mg, yield 71%) as a pale-yellow solid.  1H NMR (400 MHz, Chloroform-d) δ 8.38 (d, J = 1.5 Hz, 1H) , 8.22 (d, J = 1.5 Hz, 1H) , 3.71 (s, 3H) , 3.41 (t, J = 7.0 Hz, 2H) , 2.76 (t, J = 7.0 Hz, 2H) .
Step 2: Under nitrogen, to a solution of compound 7-2 (860 mg, 3.70 mmol) in anhydrous THF (5mL) was added dropwise sodium ethoxide (20 w%solution in EtOH, 1.9 g, 5.59 mmol) at -30 ℃. The mixture was stirred at -30 ℃ for 1 h, then warmed at 25℃ and stirred for 2 h. After completion of the reaction, the mixture was concentrated under reduced pressure.  The residue was dispersed in DCM (15 mL) and petroleum ether (15 mL) . The suspension was filtered and the solid was dried in vacuum to give the title compound 7-3 (780 mg, yield quantitively, 80 w%) as a yellow solid.
Step 3: Under nitrogen, a mixture of compound 7-4 (5 g, 24.2 mmol) , dimethylphosphine oxide 1-7 (2.9 g, 36.3 mmol) , Xantphos (1.4 g, 2.4 mmol) , K 3PO 4 (10.3 g, 48.4 mmol) and palladium (II) acetate (270 mg, 1.2 mmol) in DMF (50 mL) was stirred at 120℃ for 16 h. After completion, the reaction was cooled and concentrated. The residue was purified by silica gel column (eluted with 10%MeOH in DCM) to afford the crude product, which was further purified by reverse phase flash (eluted with acetonitrile in H 2O, HCl condition) . The desired components were lyophilized to afford the title compound 7-5 (hydrochloride, 1.3 g, yield 22%) as a yellow solid.  1H NMR (400 MHz, Chloroform-d) δ 8.16 (dd, J = 11.4, 7.7 Hz, 1H) , 8.09 (d, J = 7.8 Hz, 1H) , 7.19 (t, J = 7.4 Hz, 1H) , 3.54 (s, 2H) , 2.00 (d, J = 13.5 Hz, 6H) . LCMS: m/z calculated for C 8H 11ClNOP: 203.61; found: 204.62 [M+H]  +.
Step 4: To a solution of compound 7-5 (hydrochloride, 1.3 g, 5.41 mmol) in MeCN (15 ml) was added 4 N HCl (6 mL) . After stirring for 10 min at 0 ℃, NaNO 2 (480 mg, 6.95 mmol) in cold H 2O (5 mL) was added dropwise. After stirring for 30 min at 0 ℃, CuI (610 mg, 3.20 mmol) and KI (2.1 g, 12.6 mmol) was added thereto. The mixture was stirred at 0 ℃ for 4 h, water (50 mL) was added to quench the reaction. The resulted mixture extracted with EtOAc (50 mL x 2) . The combined organic layers were washed with saturated Na 2S 2O 3 and brine, dried over anhydrous Na 2SO 4, filtered and concentrated. The crude product was purified by silica gel column (eluted with 10%MeOH in DCM) to afford the title compound 7-6 (890 mg, yield 52%) as a white solid.  1H NMR (400 MHz, Chloroform-d) δ 8.16 -8.08 (m, 2H) , 7.19 (t, J = 7.8 Hz, 1H) , 2.01 (s, 3H) , 1.97 (s, 3H) . LCMS: m/z calculated for C 8H 9ClIOP: 314.49; found: 315.49 [M+H]  +.
Step 5: Under nitrogen, a mixture of compound 7-6 (120 mg, 0.381 mmol) , compound 7-3 (80 w%, 96 mg, 0.457 mmol) , Xantphos (44 mg, 0.076 mmol) , Pd 2 (Dba)  3 (35 mg, 0.0382 mmol) and DIPEA (150 mg, 1.16 mmol) in dioxane (2 mL) was stirred at 115℃ for 16 h. After completion of the reaction, the mixture was cooled and diluted with ethyl acetate (10 mL) and water (10 mL) . The organic layer was separated, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2O, HCl condition) . The desired components were lyophilized to afford the  title compound 7-7 (hydrochloride, 52 mg, yield 36 %) as a yellow solid. LCMS: m/z calculated for C 12H 11Cl 2N 2OPS: 333.17; found: 333.74 [M+H]  +.
Step 6: A mixture of compound 7-7 (hydrochloride, 50 mg, 0.135 mmol) , compound 1-11 (50 mg, 0.206 mmol) and K 2CO 3 (95 mg, 0.687 mmol) in N, N-dimethylacetamide (2 mL) was stirred at 120 ℃ for 24 h. After completion of the reaction, the mixture was cooled and filtered. The filtrated was purified by pre-HPLC (C18 column, eluted with acetonitrile in H 2O, HCl condition) . The desired component was lyophilized to give the title compound 7 (21 mg, yield 30%) as a yellow solid.  1H NMR (400 MHz, DMSO-d 6 (D 2O) ) δ 8.46 (s, 1H) , 8.29 (s, 1H) , 7.77 -7.69 (m, 1H) , 7.39 (t, J = 8.5 Hz, 1H) , 7.06 (d, J = 7.9 Hz, 1H) , 4.21 (q, J = 15.4, 13.8 Hz, 3H) , 3.89 (d, J = 9.2 Hz, 1H) , 3.70 (d, J = 9.2 Hz, 1H) , 3.38 (d, J = 4.7 Hz, 1H) , 3.13 (d, J = 12.7 Hz, 2H) , 1.83 (s, 3H) , 1.80 (s, 3H) , 1.71 (d, J = 11.9 Hz, 3H) , 1.57 (d, J = 13.4 Hz, 1H) , 1.22 -1.18 (m, 3H) . LCMS: m/z calculated for C 21H 28ClN 4O 2PS: 466.96; found: 467.66 [M+H]  +.
Example 8.
Synthesis of (3- ( (3-amino-5- ( (3S, 4S) -4-amino-3-methyl-2-oxa-8-azaspiro [4.5] decan-8-yl) pyrazin-2-yl) thio) -2-chlorophenyl) dimethylphosphine oxide (8)
Figure PCTCN2022135205-appb-000035
Synthetic scheme 8
Figure PCTCN2022135205-appb-000036
Step 1: Under nitrogen, a mixture of compound 7-6 (155 mg, 0.493 mmol) , 2-Methoxyethanethiol 1-2 (90 mg, 0.75 mmol) , Xantphos (57 mg, 0.098 mmol) , palladium (II) acetate (12 mg, 0.049 mmol) and DIEPA (190 mg, 1.47 mmol) in dioxane (3 mL) was stirred at 115 ℃ for 16 h. After completion of the reaction, the mixture was filtered. The filtrated was diluted with EtOAc (20 mL) and washed with water (20 mL) . The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica gel column (eluted with 5%MeOH in DCM) to afford the title compound --1 (120 mg, yield 79%) as a pale-yellow solid.
Step 2: Under nitrogen, to a solution of compound 8-1 (100 mg, 0.326 mmol) in anhydrous THF (3 mL) was added dropwise sodium ethoxide (20 w%solution in EtOH, 166 mg, 0.488 mmol) at 0 ℃. The mixture was stirred at room temperature for 1 h. After completion of the reaction, the mixture was concentrated under reduced pressure to give the title compound 8-2 (113 mg, yield quantitively, 70 w%) as a yellow solid, which was used at next step without purification.
Step 3: Under nitrogen, a mixture of compound 1-1 (68 mg, 0.326 mmol) , compound 8-2 (70 w%, 113 mg, 0.326 mmol) , Xantphos (37 mg, 0.064 mmol) , Pd 2 (Dba)  3 (30 mg, 0.0327 mmol) and DIPEA (125 mg, 0.967 mmol) in dioxane (2 mL) was stirred at 115 ℃ for 16 h. After completion of the reaction, the mixture was cooled and concentrated. The residue was purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2O, HCl condition) . The desired components were lyophilized to afford the title compound 8-3 (hydrochloride, 22 mg, yield 17 %) as a yellow solid.
Step 4: A mixture of compound 8-3 (hydrochloride, 22 mg, 0.057 mmol) , compound 1-11 (20 mg, 0.082 mmol) and K 2CO 3 (40 mg, 0.289 mmol) in N, N-dimethylacetamide (2 mL) was stirred at 120 ℃ for 16 h. After completion of the reaction, the mixture was cooled and filtered. The filtrated was purified by pre-HPLC (C18 column, eluted with acetonitrile in H 2O, HCl condition) . The desired component was lyophilized to give the title compound 8 (10 mg, yield 33%) as a yellow solid.  1H NMR (400 MHz, DMSO-d 6 (D 2O) ) δ 7.73 -7.67 (m, 2H) , 7.40 (t, J = 7.8 Hz, 1H) , 6.81 (d, J = 7.5 Hz, 1H) , 4.27 -4.12 (m, 3H) , 3.91 (d, J = 9.1 Hz, 1H) , 3.72 (d, J = 9.4 Hz, 1H) , 3.41 (d, J = 4.8 Hz, 1H) , 3.06 (t, J = 11.4 Hz, 2H) , 1.86 (s, 3H) , 1.83 (s, 3H) , 1.73 (s, 3H) , 1.57 (d, J = 12.8 Hz, 1H) , 1.23 (d, J = 6.7 Hz, 3H) . LCMS: m/z calculated for C 21H 29ClN 8O 2PS: 481.98; found: 483.23 [M+H]  +.
Example 9.
Synthesis of (2- ( (5- ( (3S, 4S) -4-amino-3-methyl-2-oxa-8-azaspiro [4.5] decan-8-yl) pyrazin-2-yl)  thio) -3-chloropyridin-4-yl) dimethylphosphine oxide (9)
Figure PCTCN2022135205-appb-000037
Synthetic scheme 9
Figure PCTCN2022135205-appb-000038
Step 1: Tert-butyl nitrite (6.1 g, 59.1 mmol) was added dropwise to a mixture of compound 9-1 (10 g, 39.3 mmol) and copper (I) bromide (8.5 g, 59.2 mmol) in anhydrous acetonitrile (100 mL) at room temperature under nitrogen atmosphere. The mixture was then heated to 75 ℃ and stirred for 15 h. After completion of the reaction, the mixture was cooled to room temperature and diluted with EtOAc (200 mL) . The resulted mixture was washed with water and brine. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica gel column chromatography (eluted with 10%EtOAc in petroleum ether) to afford the title compound 9-2 (2.4 g, yield 19%) as a white solid.
Step 2: Under nitrogen, a mixture of compound 9-2 (900 mg, 2.82 mmol) , compound 1-7 (265 mg, 3.40 mmol) , Xantphos (326 mg, 0.563 mmol) , Pd 2 (Dba)  3 (258 mg, 0.282 mmol) and TEA (720 mg, 7.13 mmol) in dioxane (9 mL) was stirred at 120 ℃ for 16 h. After completion of the reaction, the mixture was concentrated. The residue was purified by silica gel column chromatography (eluted with 5%MeOH in dichloromethane) to give a crude product, which was further purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2O, HCl condition) . The desired components were lyophilized to afford the title compound 9-3 (341 mg, yield 45%) as a yellow solid.  1H NMR (400 MHz, DMSO-d 6) δ 8.55 (dd, J = 4.5, 2.1 Hz, 1H) , 7.88 (dd, J = 11.0, 4.7 Hz, 1H) , 1.87 (s, 3H) , 1.84 (s, 3H) .
Step 3: Under nitrogen, a mixture of compound 9-3 (240 mg, 0.894 mmol) , compound 7-3 (80 w%, 280 mg, 1.33 mmol) , Xantphos (105 mg, 0.181 mmol) , Pd 2 (Dba)  3 (80 mg, 0.087 mmol) and DIPEA (350 mg, 2.71 mmol) in dioxane (4 mL) was stirred at 105 ℃ for 16 h. After completion of the reaction, the mixture was concentrated. The residue was purified by silica gel column chromatography (eluted with 10%MeOH in dichloromethane) to give a crude product, which was further purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2O, HCl condition) . The desired components were lyophilized to afford the title compound 9-4 (140 mg, yield 46%) as a yellow solid. LCMS: m/z calculated for C11H10Cl2N3OPS: 334.15; found: 298.54 [M-Cl]  +.
Step 4: A mixture of compound 9-4 (130 mg, 0.389 mmol) , compound 1-11 (140 mg, 0.576 mmol) and K 2CO 3 (270 mg, 1.95 mmol) in N, N-dimethylacetamide (3 mL) was stirred at 120 ℃ for 16 h. After completion of the reaction, the mixture was cooled and filtered. The filtrated was purified by pre-HPLC (C18 column, eluted with acetonitrile in H 2O, HCl condition) . The desired component was lyophilized to give the title compound 9 (45 mg, yield  23%) as a yellow solid.  1H NMR (400 MHz, DMSO-d 6) δ 8.41 -8.36 (m, 2H) , 8.24 (s, 1H) , 7.57 -7.51 (m, 1H) , 4.22 (dt, J = 18.7, 13.6 Hz, 3H) , 3.90 (dd, J = 9.0, 2.9 Hz, 1H) , 3.71 (s, 1H) , 3.37 (dd, J = 5.1, 2.8 Hz, 1H) , 3.19 -3.07 (m, 2H) , 1.86 (d, J = 3.0 Hz, 3H) , 1.83 (d, J = 2.9 Hz, 3H) , 1.75 (d, J = 10.2 Hz, 3H) , 1.59 (d, J = 13.0 Hz, 1H) , 1.21 (dd, J = 6.4, 3.2 Hz, 3H) . LCMS: m/z calculated for C 20H 27ClN 5O 2PS: 467.95; found: 468.89 [M+H]  +.
Example 10.
Synthesis of (4- ( (5- ( (3S, 4S) -4-amino-3-methyl-2-oxa-8-azaspiro [4.5] decan-8-yl) pyrazin-2-yl) thio) -3-chloropyridin-2-yl) dimethylphosphine oxide (10)
Figure PCTCN2022135205-appb-000039
Synthetic scheme 10
Figure PCTCN2022135205-appb-000040
Step 1: Under nitrogen, a mixture of compound 9-3 (1 g, 3.14 mmol) , compound 1-2 (400 mg, 3.32 mmol) , Xantphos (360 mg, 0.622 mmol) , Pd (OAc) 2 (71 mg, 0.316 mmol) and DIPEA (1.02 g, 7.89 mmol) in dioxane (10 mL) was stirred at 105 ℃ for 16 h. After completion of the reaction, the mixture was cooled, filtered and concentrated. The residue was purified by silica gel column chromatography (eluted with 20%EtOAc in petroleum ether) to afford the title  compound 10-1 (880 mg, yield 90%) as a yellow solid. LCMS: m/z calculated for C 9H 9BrClNO 2S: 310.59; found: 222.49 [M- (methyl propionate) +H]  +.
Step 2: Under nitrogen, a mixture of compound 10-1 (1.18 g, 3.80 mmol) , compound 1-7 (600 mg, 7.69 mmol) , Xantphos (440 mg, 0.76 mmol) , Pd 2 (Dba)  3 (350 mg, 0.382 mmol) and Et 3N (960 mg, 9.50 mmol) in dioxane (12 mL) was stirred at 120 ℃ for 2 h. The mixture was concentrated after cooled. The residue was purified by silica gel column chromatography (eluted with 10%MeOH in dichloromethane) to give a crude product, which was further purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2O, TFA condition) . The desired components were lyophilized to afford the title compound 10-2 (290 mg, yield 24%) as a yellow solid. LCMS: m/z calculated for C 11H 15ClNO 3PS: 307.73; found: 308.63 [M+H]  +.
Step 3: Under nitrogen, to a solution of compound 10-2 (278 mg, 0.903 mmol) in anhydrous THF (5 mL) was added dropwise sodium ethoxide (20 w%solution in EtOH, 460 mg, 1.35 mmol) at -30 ℃. The mixture was stirred at -30 ℃ for 1 h. After completion of the reaction, the mixture was concentrated under reduced pressure. The residue was dispersed in DCM (15 mL) and petroleum ether (15 mL) . The suspension was filtered and the solid was dried in vacuum to give the title compound 10-3 (300 mg, yield quantitively, 73 w%) as a yellow solid.
Step 4: Under nitrogen, a mixture of compound 10-3 (73 w%, 113 mg, 0.338 mmol) , compound 7-1 (100 mg, 0.517 mmol) , Xantphos (40 mg, 0.069 mmol) , Pd 2 (Dba)  3 (30 mg, 0.032 mmol) and DIPEA (130 mg, 1.0 mmol) in dioxane (3 mL) was stirred at 105 ℃ for 16 h. After completion of the reaction, the mixture was concentrated. The residue was purified by silica gel column chromatography (eluted with 10%MeOH in dichloromethane) to give a crude product, which was further purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2O, HCl condition) . The desired components were lyophilized to afford the title compound 10-4 (60 mg, yield 53%) as a yellow solid. LCMS: m/z calculated for C 11H 10Cl 2N 3OPS: 334.15; found: 298.55 [M-Cl]  +.
Step 5: A mixture of compound 10-4 (55 mg, 0.164 mmol) , compound 1-11 (60 mg, 0.247 mmol) and K 2CO 3 (120 mg, 0.868 mmol) in N, N-dimethylacetamide (3 mL) was stirred at 120 ℃ for 16 h. After completion of the reaction, the mixture was cooled and filtered. The filtrated was purified by pre-HPLC (C18 column, eluted with acetonitrile in H 2O, TFA condition) . The desired component was lyophilized to give the title compound 10 (15 mg, yield 15%) as a yellow solid.  1H NMR (400 MHz, DMSO-d 6) δ 8.54 (s, 1H) , 8.41 -8.34 (m, 2H) , 6.85  (d, J = 4.9 Hz, 1H) , 4.29 (d, J = 13.7 Hz, 1H) , 4.21 (dd, J = 12.4, 5.7 Hz, 2H) , 3.91 (d, J = 9.1 Hz, 1H) , 3.70 (d, J = 9.1 Hz, 1H) , 3.40 (d, J = 4.9 Hz, 1H) , 3.18 (q, J = 12.1, 10.9 Hz, 2H) , 1.83 (s, 3H) , 1.80 (s, 3H) , 1.74 (t, J = 11.6 Hz, 3H) , 1.63 -1.56 (m, 1H) , 1.22 (d, J = 6.4 Hz, 3H) . LCMS: m/z calculated for C 20H 27ClN 5O 2PS: 467.95; found: 490.98 [M+Na]  +.
Example 11.
Synthesis of (5- ( (5- ( (3S, 4S) -4-amino-3-methyl-2-oxa-8-azaspiro [4.5] decan-8-yl) pyrazin-2-yl) thio) -4-chloropyridin-3-yl) dimethylphosphine oxide (11)
Figure PCTCN2022135205-appb-000041
Synthetic scheme 11
Figure PCTCN2022135205-appb-000042
Step 1: A mixture of compound 11-1 (4 g, 19.3 mmol) and aqueous HCl (4 N, 20 mL, 80 mmol) in acetonitrile (30 mL) was stirred at room temperature for 10 min before cooled to 0 ℃. To this was added dropwise a cold solution of NaNO 2 (1.47 g, 21.3 mmol) in H 2O (10 mL) . After stirring at 0 ℃ for 30 min, a cold solution of KI (6.4 g, 38.5 mmol) in H 2O (15 mL) was added thereto. The resulted mixture was stirred at 0 ℃ for 30 min and then warmed to room temperature with further stirring for 2 h. After completion of the reaction, the mixture was poured into H 2O (150 mL) and extracted with EtOAc (150 mL x 2) . The combined organic layers were washed with sat. NaHCO 3 solution and sat. Na 2S 2O 3 solution, followed by washing  with water and brine. The resulted organic layer was dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica gel column chromatography (eluted with 10%EtOAc in petroleum ether) to afford the title compound 11-2 (4.5 g, yield 73%) as a pale-yellow solid.  1H NMR (400 MHz, DMSO-d 6) δ 8.93 (s, 1H) , 8.79 (s, 1H) . LCMS: m/z calculated for C 5H 2BrClIN: 318.34; found: 318.51 [M+H]  +.
Step 2: Under nitrogen, a mixture of compound 11-2 (600 mg, 1.88 mmol) , compound 1-7 (176 mg, 2.25 mmol) , Xantphos (217 mg, 0.375 mmol) , Pd 2 (Dba)  3 (170 mg, 0.185 mmol) and Et 3N (570 mg, 5.64 mmol) in dioxane (5 mL) was stirred at 100 ℃ for 2 h. The mixture was cooled and concentrated. The residue was purified by silica gel column chromatography (eluted with 10%MeOH in dichloromethane) to give a crude product, which was further purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2O, HCl condition) . The desired components were lyophilized to afford the title compound 11-3 (410 mg, yield 81%) as a yellow solid. LCMS: m/z calculated for C 7H 8BrClNOP: 268.47; found: 268.63 [M+H]  +.
Step 3: Under nitrogen, a mixture of compound 11-3 (200 mg, 0.745 mmol) , compound 7-3 (80 w%, 235 mg, 1.11 mmol) , Xantphos (86 mg, 0.148 mmol) , Pd 2 (Dba)  3 (68 mg, 0.074 mmol) and DIPEA (280 mg, 2.16 mmol) in dioxane (3 mL) was stirred at 105 ℃ for 16 h. The mixture was cooled and concentrated. The residue was purified by silica gel column chromatography (eluted with 20%MeOH in dichloromethane) to give a crude product, which was further purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2O, HCl condition) . The desired components were lyophilized to afford the title compound 11-4 (100 mg, yield 40%) as a yellow solid. LCMS: m/z calculated for C 11H 10Cl 2N 3OPS: 334.15; found: 298.57 [M-Cl]  +.
Step 4: A mixture of compound 11-4 (61 mg, 0.182 mmol) , compound 1-11 (66 mg, 0.271 mmol) and K 2CO 3 (125 mg, 0.904 mmol) in N, N-dimethylacetamide (3 mL) was stirred at 120 ℃ for 16 h. After completion of the reaction, the mixture was cooled and filtered. The filtrated was purified by pre-HPLC (C18 column, eluted with acetonitrile in H 2O, TFA condition) . The desired component was lyophilized to give the title compound 11 (20 mg, yield 18%) as a yellow solid.  1H NMR (400 MHz, DMSO-d 6) δ 8.97 -8.90 (m, 2H) , 8.20 (d, J = 1.5 Hz, 1H) , 8.17 (d, J = 1.5 Hz, 1H) , 4.22 -4.16 (m, 1H) , 4.12 (d, J = 13.6 Hz, 1H) , 4.05 (d, J = 14.3 Hz, 1H) , 3.85 (d, J = 9.2 Hz, 1H) , 3.67 (d, J = 9.1 Hz, 1H) , 3.36 (d, J = 4.8 Hz, 1H) , 3.10 - 2.98 (m, 2H) , 1.92 (s, 3H) , 1.89 (s, 3H) , 1.71 -1.65 (m, 3H) , 1.54 (d, J = 13.6 Hz, 1H) , 1.19 (d, J = 6.5 Hz, 3H) . LCMS: m/z calculated for C 20H 27ClN 5O 2PS: 467.95; found: 432.67 [M-Cl]  +.
Example 12.
Synthesis of (4- ( (3-amino-5- ( (3S, 4S) -4-amino-3-methyl-2-oxa-8-azaspiro [4.5] decan-8-yl) pyrazin-2-yl) thio) -3-chloropyridin-2-yl) dimethylphosphine oxide (12)
Figure PCTCN2022135205-appb-000043
Synthetic scheme 12
Figure PCTCN2022135205-appb-000044
Step 1: Under nitrogen, a mixture of compound 10-3 (73 w%, 200 mg, 0.60 mmol) , compound 1-1 (0.911 mmol) , Xantphos (70 mg, 0.121 mmol) , Pd 2 (Dba)  3 (55 mg, 0.06 mmol) and DIPEA (235 mg, 1.82 mmol) in dioxane (3 mL) was stirred at 105 ℃ for 16 h. The mixture was cooled and concentrated. The residue was purified by silica gel column chromatography (eluted with 20%MeOH in dichloromethane) to give a crude product, which was further purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2O, HCl condition) . The desired components were lyophilized to afford the title compound 12-1 (hydrochloride, 119 mg, yield 51%) as a yellow solid. LCMS: m/z calculated for C 11H 11Cl 2N 4OPS: 349.17; found: 313.68 [M-Cl]  +.
Step 2: A mixture of compound 12-1 (155 mg, 0.402 mmol) , compound 1-11 (145 mg, 0.596 mmol) and K 2CO 3 (280 mg, 2.02 mmol) in N, N-dimethylacetamide (4 mL) was stirred at 120 ℃ for 16 h. After completion of the reaction, the mixture was cooled and filtered. The filtrated was purified by pre-HPLC (C18 column, eluted with acetonitrile in H 2O, TFA  condition) . The desired component was lyophilized to give the title compound 12 (50 mg, yield 20%) as a pale-yellow solid.  1H NMR (400 MHz, DMSO-d 6) δ 8.35 (d, J = 5.2 Hz, 1H) , 7.68 (s, 1H) , 6.66 (dd, J = 5.3, 1.4 Hz, 1H) , 4.25 -4.11 (m, 3H) , 3.88 (d, J = 9.1 Hz, 1H) , 3.69 (d, J = 9.1 Hz, 1H) , 3.36 (d, J = 4.9 Hz, 1H) , 3.11 -2.99 (m, 2H) , 1.82 (s, 3H) , 1.79 (s, 3H) , 1.70 (d, J = 7.1 Hz, 3H) , 1.54 (d, J = 13.1 Hz, 1H) , 1.20 (d, J = 6.7 Hz, 3H) . LCMS: m/z calculated for C 20H 28ClN 6O 2PS: 482.97; found: 505.66 [M+Na]  +.
Example 13.
Synthesis of (2- ( (3-amino-5- ( (3S, 4S) -4-amino-3-methyl-2-oxa-8-azaspiro [4.5] decan-8-yl) pyrazin-2-yl) thio) -3-chloropyridin-4-yl) dimethylphosphine oxide (13)
Figure PCTCN2022135205-appb-000045
Synthetic scheme 13
Figure PCTCN2022135205-appb-000046
Step 1: Under nitrogen atmosphere, to a solution of compound 1-3 (5 g, 20.2 mmol) in anhydrous THF (8 mL) was added dropwise NaOEt (20 w%solution in EtOH, 11 g, 32.3 mmol) at -30 ℃. The mixture was stirred at -30 ℃ for 2 h. After completion of the reaction, the mixture was warmed to room temperature and concentrated. The residue was dispersed in DCM  (30 mL) and petroleum ether (30 mL) . The suspension was filtered and the solid was dried in vacumm to give the title compound 13-1 (4.64 g, yield quantitively, 80 w%) as a yellow solid.
Step 2: Under nitrogen, a mixture of compound 9-3 (260 mg, 0.968 mmol) , compound 13-1 (80 w%, 330 mg, 1.44 mmol) , Xantphos (115 mg, 0.199 mmol) , Pd 2 (Dba)  3 (88 mg, 0.096 mmol) and DIPEA (375 mg, 2.90 mmol) in dioxane (4 mL) was stirred at 105 ℃ for 16 h. After completion of the reaction, the mixture was concentrated. The residue was purified by silica gel column chromatography (eluted with 10%MeOH in dichloromethane) to give a crude product, which was further purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2O, HCl condition) . The desired components were lyophilized to afford the title compound 13-2 (hydrochloride, 150 mg, yield 40%) as a yellow solid.  1H NMR (400 MHz, DMSO-d 6) δ 8.42 (dd, J = 4.8, 2.3 Hz, 1H) , 7.84 (s, 1H) , 7.58 (dd, J = 11.1, 4.8 Hz, 1H) , 7.09 (s, 2H) , 1.87 (s, 3H) , 1.83 (s, 3H) . LCMS: m/z calculated for C 11H 11Cl 2N 4OPS: 349.17; found: 313.57 [M-Cl]  +.
Step 3: A mixture of compound 13-2 (hydrochloride, 150 mg, 0.389 mmol) , compound 1-11 (140 mg, 0.576 mmol) and K 2CO 3 (270 mg, 1.95 mmol) in N, N-dimethylacetamide (3 mL) was stirred at 120 ℃ for 16 h. After completion of the reaction, the mixture was cooled and filtered. The filtrated was purified by pre-HPLC (C18 column, eluted with acetonitrile in H 2O, AcOH condition) . The desired component was lyophilized to give the title compound 13 (30 mg, yield 14%) as a brown solid.  1H NMR (400 MHz, DMSO-d 6) δ 8.37 (d, J = 2.5 Hz, 1H) , 7.53 -7.45 (m, 2H) , 4.12 -4.01 (m, 1H) , 3.85 (d, J = 4.6 Hz, 2H) , 3.67 (s, 1H) , 3.51 (d, J = 8.6 Hz, 1H) , 3.24 (d, J = 30.9 Hz, 2H) , 2.91 (d, J = 5.0 Hz, 1H) , 1.86 (s, 3H) , 1.82 (s, 3H) , 1.64 (d, J = 30.4 Hz, 2H) , 1.55 -1.43 (m, 2H) , 1.07 (d, J = 6.3 Hz, 3H) . LCMS: m/z calculated for C 20H 28ClN 6O 2PS: 482.97; found: 483.85 [M+H]  +.
Example 14.
Synthesis of (3- ( (3-amino-5- ( (3S, 4S) -4-amino-3-methyl-2-oxa-8-azaspiro [4.5] decan-8-yl) pyrazin-2-yl) thio) -2, 4, 6-trichlorophenyl) dimethylphosphine oxide (14)
Figure PCTCN2022135205-appb-000047
Synthetic scheme 14
Figure PCTCN2022135205-appb-000048
Step 1: To a solution of compound 14-1 (50.0 g, 362 mmol) in DMF (700 mL) was added NCS (48.5 g, 362 mmol) slowly at 0-5 ℃. The mixture was stirred at 75 ℃ for 16 h. After completion of the reaction, the mixture was cooled and partitioned between EtOAc (800 mL x 3) and water (2.1 L) . The organic layers were washed with brine (600 mL x 4) , dried over anhydrous Na 2SO 4 and concentrated. The crude product was purified by silica gel column (eluted with 3%EtOAc in petroleum ether) to afford the title compound 14-2 (37.4 g, yield 60%) as a yellow solid.  1H NMR (400 MHz, DMSO-d 6) δ 7.21 (t, J = 8.0 Hz, 1H) , 7.07 (dd, J = 7.7, 1.4 Hz, 1H) , 7.03 (dd, J = 8.2, 1.4 Hz, 1H) , 6.05 (s, 2H) .
Step 2: A mixture of compound 14-2 (24.6 g, 142 mmol) and conc. HCl (47.4 mL, 568.8 mmol) in MeCN (200 ml) and H 2O (300 mL) was stirred at 0 ℃ for 0.5 h. Then NaNO 2  (10.8 g, 156.4 mmol) in H 2O (50 mL) was added dropwise to the above mixture while keeping the temperature below 5  ℃. After stirring for 1 h, KI (47.2 g, 284 mmol) was added to the above mixture. After the reaction mixture was stirred at 0℃ for 1 h, the resulted mixture was extracted with EtOAc (300 mL x 3) . The combined organic layers were washed with sat. Na 2S 2O solution, dried over anhydrous Na 2SO 4 and concentrated under reduced pressure. The residue was purified by silica gel column (eluted with 5%EtOAc in petroleum ether) to afford the title compound 14-3 (25.1 g, yield 62%) as a light-yellow solid.
Step 3: A mixture of compound 14-3 (25.0 g, 88.3 mmol) , Fe powder (24.7 g, 441.5 mmol) and NH 4Cl (46.8 g, 883 mmol) in EtOH (300 ml) and H 2O (300 mL) was stirred at 100 ℃ for 3 h. After completion of the reaction, the hot mixture was filtered. The filtrate was cooled, concentrated and extracted with EtOAc (300 mL x 3) and H 2O (300 mL) . The combined organic layers were dried over anhydrous Na 2SO 4 and concentrated under reduced pressure. The residue was purified by silica gel column (eluted with 5%EtOAc in petroleum ether) to afford the title compound 14-4 (20.4 g, yield 89%) as a light-yellow solid. LCMS: m/z calculated for C 6H 5ClIN: 253.47; found: 127.37 [M-I]  +.
Step 4: A mixture of compound 14-4 (10.0 g, 39.5 mmol) , compound 2-3 (9.2 g, 118 mmol) , Pd (OAc)  2 (889 mg, 4.0 mmol) , XantPhos (4.6 g, 7.9 mmol) and K 3PO 4 (16.7g, 79.0 mmol) in DMF (300 mL) was stirred at 120 ℃ for 16 h. After completion of the reaction, the mixture was cooled to room temperature, filtered and concentrated under vacuum. The residue was purified by silica gel column (eluted with 3%MeOH in DCM) to afford the crude product, which was furtherly purified by reverse phase flash chromatography (C18 column, eluted with MeCN in water, HCl condition) . The desired components were lyophilized to afford the title compound 7-5 (3.7 g, yield 46%) as a light-yellow solid. LCMS: m/z calculated for C 8H 11ClNOP: 203.61; found: 168.61 [M-Cl]  +.
Step 5: To a mixture of compound 7-5 (2.3 g, 11.3 mmol) in DMF (38.0 mL) was added NCS (1.5 g, 11.3 mmol) at 0-5 ℃. Then it was stirred at room temperature for 1 h. After completion of the reaction, the mixture was concentrated under vacuum. Then the crude product was purified by reverse phase flash chromatography (C18 column, eluted with MeCN in water, HCl condition) . The desired components were lyophilized respectively to afford the title compound 14-5 (980 mg, yield 32%) as a brown oil and a by-product 33-6 (550 mg, yield 21%)  as a light-yellow oil. LCMS: m/z calculated for C 8H 9Cl 3NOP (33-5) : 272.49; found: 272.6 [M+H]  +. LCMS: m/z calculated for C 8H 10Cl 2NOP (33-6) : 238.05; found: 238.72 [M+H]  +.
Step 6: A mixture of compound 14-5 (900 mg, 3.3 mmol) and conc. HCl (1.1 ml, 13.2 mmol) in MeCN (10 mL) and H 2O (15 mL) was stirred at 0 ℃ for 0.5 h. To this was added dropwise a solution of NaNO (250.5 mg, 3.6 mmol) in H 2O (2.5 mL) while keeping the temperature below 5  ℃. After stirring for 1 h, KI (1.1 g, 6.6 mmol) was added to the above mixture. After the reaction was stirred at 0 ℃ for 1 h, the resulted mixture was extracted with EtOAc (30 mL x3) . The combined organic layers were washed with sat. Na 2S 2O solution, dried over anhydrous Na 2SO 4 and concentrated under reduced pressure. The residue was purified by silica gel column (eluted with 5%MeOH in DCM) to afford the title compound 14-7 (848 mg, yield 67%) as a yellow solid. LCMS: m/z calculated for C 8H 7Cl 3IOP: 383.37; found: 383.68. [M+H]  +.
Step 7: A mixture of compound 14-7 (600 mg, 1.6 mmol) , compound 14-8 (236 mg, 1.8 mmol) , Pd 2 (dba)  3 (147 mg, 0.2 mmol) , XantPhos (185 mg, 0.3 mmol) and DIPEA (619 mg, 4.8 mmol) in dioxane (10 mL) was stirred at 100 ℃ for 3 h. After completion of the reaction, the mixture was cooled to room temperature and concentrated under vacuum. The residue was purified by silica gel column (eluted with 3%MeOH in DCM) to afford the crude product, which was furtherly purified by reverse phase flash chromatography (C18 column, eluted with MeCN in water, HCl condition) . The desired components were lyophilized to afford the title compound 14-9 (330 mg, yield 54%) as a yellow oil. LCMS: m/z calculated for C 13H 16Cl 3O 3PS: 389.65; found: 389.38 [M+H]  +.
Step 8: To a mixture of compound 14-9 (330 mg, 0.8 mmol) in THF (4 mL) was added EtONa (20%in EtOH, 408 mg, 1.2 mmol) dropwise at -30 ℃. Then it was stirred at -30  ℃ for 1 h. After completion of the reaction, the mixture was concentrated under vacuum. Then the crude product was washed with 40 mL of cold solvent (petroleum ether/DCM=1: 1) , filtered and dried under vacuum to afford the title compound 14-10 (71 w%, 370 mg, yield quantitively) as a yellow solid. LCMS: m/z calculated for C 8H 7Cl 3NaOPS: 311.52; found: 289.42 [M-Na+H]  +.
Step 9: A mixture of compound 14-10 (71 w%, 350 mg, 0.798 mmol) , compound 1-1 (274 mg, 1.3 mmol) , Pd 2 (dba)  3 (100 mg, 0.1 mmol) , XantPhos (116 mg, 0.2 mmol) and DIPEA (426 mg, 3.3 mmol) in dioxane (8 mL) was stirred at 105℃ for 2 h. The mixture was cooled to room temperature and concentrated under vacuum. The residue was purified by silica gel column  (eluted with 3%MeOH in DCM) to afford the crude product, which was furtherly purified by reverse phase flash chromatography (C18 column, eluted with MeCN in water, HCl condition) . The desired components were lyophilized to afford the title compound 14-11 (85 mg, yield 24%) as an orange solid. LCMS: m/z calculated for C 12H 10Cl 4N 3OPS: 417.07; found: 380.39 [M-Cl]  +.
Step 10: To a mixture of compound 14-11 (80 mg, 0.192 mmol) and K 2CO 3 (138 mg, 1.0 mmol) in DMAc (1 mL) was added compound 1-11 (49 mg, 0.2 mmol) at room temperature. Then it was stirred at 100 ℃ for 4 h. After completion of the reaction, the mixture was cooled to room temperature and filtered. The resulted mixture was purified by reverse phase flash chromatography (C18 column, eluted with MeCN in water, HCl condition) . The desired components were lyophilized to afford the title compound 14 (12.5 mg, yield 12%) as a light-yellow solid.  1H NMR (400 MHz, DMSO-d 6) δ 7.82 (s, 1H) , 7.53 (s, 1H) , 4.19 (s, 1H) , 3.86 (s, 1H) , 3.69 (d, J = 16.8 Hz, 2H) , 3.43 -3.26 (m, 3H) , 2.96 (s, 1H) , 1.97 (d, J = 13.6 Hz, 8H) , 1.79 (s, 1H) , 1.62 (d, J = 12.8 Hz, 1H) , 1.21 (d, J = 6.5 Hz, 3H) . LCMS: m/z calculated for C 21H 27Cl 3N 5O 2PS: 550.86; found: 550.9 [M+H]  +.
Example 15.
Synthesis of (3- ( (3-amino-5- ( (3S, 4S) -4-amino-3-methyl-2-oxa-8-azaspiro [4.5] decan-8-yl) pyrazin-2-yl) thio) -2, 4, 6-trichlorophenyl) dimethylphosphine oxide (15)
Figure PCTCN2022135205-appb-000049
Synthetic scheme 15
Figure PCTCN2022135205-appb-000050
Step 1: A mixture of compound 14-6 (550 mg, 2.3 mmol) and conc. HCl (0.8 ml, 9.2 mmol) in MeCN (5 ml) and H 2O (10 mL) was stirred at 0 ℃ for 0.5 h. Then NaNO 2 (174 mg, 2.5 mmol) in H 2O (1.5 ml) was added dropwise to the above mixture while keeping the temperature below 5  ℃. After stirred for 1 h, KI (763 mg, 4.6 mmol) was added to the above mixture while keeping the temperature below 5  ℃. The mixture was stirred at 0 ℃ for 1 h. The resulted mixture was extracted with EtOAc (15 mL x3) . The combined organic layers were washed with sat. Na 2S 2O 3 solution, dried over anhydrous Na 2SO 4 and concentrated under reduced pressure. The residue was purified by silica gel column (eluted with 5%MeOH in DCM) to afford the title compound 15-1 (495 mg, yield 62%) as a yellow solid. LCMS: m/z calculated for C 8H 8Cl 2IOP: 348.93; found: 349.3 [M+H]  +.
Step 2: A mixture of compound 15-1 (383 mg, 1.1 mmol) , compound 14-8 (295 mg, 2.2 mmol) , Pd 2 (dba)  3 (92 mg, 0.1 mmol) , XantPhos (115 mg, 0.2 mmol) and DIPEA (426 mg, 3.3 mmol) in dioxane (10 mL) was stirred at 105 ℃ for 16 h. After completion of the reaction, the mixture cooled to room temperature and concentrated under vacuum. The residue was purified by silica gel column (eluted with 3%MeOH in DCM) to afford the title compound 15-2 (351 mg, yield 90%) as a yellow oil. LCMS: m/z calculated for C 13H 17Cl 2O 3PS: 355.21; found: 355.49 [M+H]  +.
Step 3: To a mixture of compound 15-2 (351 mg, 1.0 mmol) in THF (4.0 mL) was added dropwise EtONa (20%in EtOH, 500 mg, 1.47 mmol) at -30 ℃. Then it was stirred at -30  ℃ for 1 h. After completion of the reaction, the mixture was concentrated under vacuum. Then the crude product was washed with 40 mL of cold solvent (petroleum ether/DCM=1: 1) . After filtration, the solid was concentrated under vacuum to afford the title compound 15-3 (65 w%, 420 mg, yield quantitively) as a yellow solid. LCMS: m/z calculated for C 8H 8Cl 2NaOPS: 277.07; found: 255.46 [M-Na+H]  +.
Step 4: A mixture of compound 15-3 (65 w%, 300 mg, 0.70 mmol) , compound 1-1 (354 mg, 1.7 mmol) , Pd 2 (dba)  3 (100.8 mg, 0.1 mmol) , XantPhos (115.8 mg, 0.2 mmol) and DIPEA (425.7 mg, 3.3 mmol) in dioxane (8.0 mL) was stirred at 105 ℃ for 2 h. After completion of the reaction, the mixture cooled to room temperature and concentrated under vacuum. The residue was purified by silica gel column (eluted with 2%MeOH in DCM) to afford the crude product, which was further purified by reverse phase flash chromatography (C18  column, eluted with MeCN in water, HCl condition) . The desired components were lyophilized to afford the title compound 15-4 (117 mg, yield 40%) as an orange solid. LCMS: m/z calculated for C 12H 11Cl 3N 3OPS: 382.62; found: 382.58 [M+H]  +.
Step 5: To a mixture of compound 15-4 (80 mg, 0.2 mmol) and K 2CO 3 (138 mg, 1.0 mmol) in DMAc (1 mL) was added compound 1-11 (49 mg, 0.2 mmol) at room temperature. Then it was stirred at 120 ℃ for 6 h. After completion of the reaction, the mixture was cooled to room temperature. The crude product was purified by reverse phase flash chromatography (C18 column, eluted with MeCN in water, TFA condition) . The desired components were lyophilized to afford the title compound 15 (9.8 mg, yield 9%) as a light-yellow solid.  1H NMR (400 MHz, DMSO-d 6) δ 7.65 (s, 1H) , 7.38 (dd, J = 8.6, 3.2 Hz, 1H) , 6.69 (d, J = 8.7 Hz, 1H) , 4.23 -4.08 (m, 3H) , 3.87 (d, J = 9.1 Hz, 1H) , 3.70 (s, 1H) , 3.35 (d, J = 4.8 Hz, 1H) , 3.08 -2.97 (m, 2H) , 1.99 (s, 3H) , 1.95 (s, 3H) , 1.67 (d, J = 20.2 Hz, 3H) , 1.54 (d, J = 13.1 Hz, 1H) , 1.20 (d, J = 6.6 Hz, 3H) . LCMS: m/z calculated for C 21H 28Cl 2N 5O 2PS: 516.42; found: 516.7 [M+H]  +.
Example 16.
Synthesis of (3- ( (3-amino-5- (4-amino-4-methylpiperidin-1-yl) pyrazin-2-yl) thio) -2-chlorophenyl) diisopropylphosphine oxide (16)
Figure PCTCN2022135205-appb-000051
Synthetic scheme 16
Figure PCTCN2022135205-appb-000052
Step 1: Under nitrogen atmosphere, a solution of compound 16-1 (10 g, 72.4 mmol) in anhydrous THF (100 mL) was added dropwise to a flask containing isopropylmagnesium bromide (2.8 M, 77 mL, 215.6 mmol) with stirring at -20 ℃. The mixture was maintained at -20 ℃ for 15 min after addition, then allowed to warm slowly to room temperature and stirred for a further 20 h. After completion of the reaction, the mixture was quenched with 1 N HCl. The resulted mixture was extracted with MTBE and EtOAc. The organic layers were combined, dried over anhydrous Na2SO4, filtered and concentrated. The crude product was purified by silica gel column (eluted with 6%MeOH in DCM) to afford the title compound 16-2 (6.6 g, yield 67%) as a pale-yellow oil.
Step 2: A mixture of compound 7-4 (10.0 g, 48.5 mmol) and conc. HCl (16 mL, 192 mmol) in MeCN (100 mL) and H 2O (200 mL) was stirred at 0 ℃ for 0.5 h. To this was added dropwise a solution of NaNO (4.0 g, 58.2 mmol) in H 2O (20 mL) while keeping the temperature below 5  ℃. After stirring for 1 h, KI (16.1 g, 97.0 mmol) was added to the above mixture. The reaction was furtherly stirred at 0 ℃ for 1 h. The resulted mixture was extracted with EtOAc (300 mL x3) . The combined organic layers were washed with sat. Na 2S 2O 3 solution, dried over anhydrous Na 2SO 4 and concentrated under reduced pressure. The residue was purified by silica gel column (eluted with 100%petroleum ether) to afford the title compound 16-3 (13.1 g, yield 86%) as a white solid.  1H NMR (400 MHz, DMSO-d 6) δ 7.97 (d, J = 7.9 Hz, 1H) , 7.79 (d, J = 8.0 Hz, 1H) , 7.00 (t, J = 7.9 Hz, 1H) .
Step 3: A mixture of compound 16-3 (5 g, 15.8 mmol) , compound 13-1 (2.9 g, 15.8 mmol) , Pd 2 (dba)  3 (732.8 mg, 0.8 mmol) , XantPhos (1.9 g, 3.2 mmol) and DIPEA (6.1 g, 47.4 mmol) in dioxane (80 mL) was stirred at 100 ℃ for 16 h. After completion of the reaction, the mixture was cooled to room temperature and concentrated under vacuum. The residue was purified by silica gel column (eluted with 5%EtOAc in petroleum ether) to afford the title compound 16-4 (4.4 g, yield 80%) as a brown solid. LCMS: m/z calculated for C 10H 6BrCl 2N 3S: 351.04; found: 352.5 [M+H]  +.
Step 4: A mixture of compound 16-4 (614 mg, 1.7 mmol) , K 2CO 3 (704 mg, 5.1 mmol) and compound 16-5 (437 mg, 2.0 mmol) in DMAc (10 ml) was stirred at 100℃ for 3 h. After completion of the reaction, the mixture was filtered. The filtrate was concentrated and extracted with EtOAc (3x30 ml) and H 2O (100 mL) . The combined organic layers were washed with brine, dried over anhydrous Na 2SO 4 and concentrated under reduced pressure. The residue was purified by silica gel column (eluted with 20%EtOAc in petroleum ether) to afford the title compound 16-6 (642 mg, yield 69%) as a light-yellow solid.  1H NMR (400 MHz, DMSO-d 6) δ 7.63 (s, 1H) , 7.52 (dd, J = 7.9, 1.5 Hz, 1H) , 7.15 -7.10 (m, 1H) , 6.61 -6.58 (m, 1H) , 6.14 (s, 2H) , 3.85 (d, J = 13.6 Hz, 2H) , 3.23 (t, J = 12.1 Hz, 2H) , 2.08 (d, J = 13.3 Hz, 2H) , 1.47 -1.41 (m, 2H) , 1.39 (s, 9H) , 1.25 (s, 3H) . LCMS: m/z calculated for C 21H 27BrClN 5O 2S: 528.89; found: 528.7 [M+H]  +.
Step 5: A mixture of compound 16-6 (500 mg, 0.9 mmol) , compound 16-2 (386 mg, 2.7 mmol) , Pd 2 (dba)  3 (83 mg, 0.09 mmol) , XantPhos (116 mg, 0.2 mmol) and Et 3N (273 mg, 3 mmol) in dioxane (5 mL) was stirred at 100 ℃ for 16 h. After completion of the reaction, the mixture was cooled to room temperature and concentrated under vacuum. The residue was purified by silica gel column (eluted with 10%MeOH in DCM) to afford the crude product, which was purified by reverse phase flash chromatography (C18 column, eluted with MeCN in water, TFA condition) . The desired components were lyophilized to afford the title compound 16 (5.5 mg, yield 1%) as a light-yellow solid.  1H NMR (400 MHz, DMSO-d 6) δ 7.71 -7.61 (m, 2H) , 7.36 (t, J = 7.8 Hz, 1H) , 6.79 (d, J = 8.1 Hz, 1H) , 4.03 (d, J = 13.6 Hz, 2H) , 3.26 (dt, J = 14.3, 6.8 Hz, 2H) , 2.58 (td, J = 7.1, 4.4 Hz, 2H) , 1.71 (d, J = 5.2 Hz, 4H) , 1.36 (s, 3H) , 1.21 (dd, J = 15.2, 7.1 Hz, 6H) , 0.84 (dd, J = 16.6, 7.2 Hz, 6H) . LCMS: m/z calculated for C 22H 33ClN 5OPS: 482.02; found: 482.47 [M+H]  +.
Example 17.
Synthesis of (3- ( (5- (4-amino-4-methylpiperidin-1-yl) pyrazin-2-yl) thio) -2-chlorophenyl) dimethylphosphine oxide (17)
Figure PCTCN2022135205-appb-000053
Synthetic scheme 17
Figure PCTCN2022135205-appb-000054
Step 1: A mixture of compound 7-7 (110 mg, 0.330 mmol) , K 2CO 3 (115 mg, 0.832 mmol) and compound 16-5 (110 mg, 0.514 mmol) in DMAc (4 mL) and H 2O (0.4 mL) was stirred at 100℃ for 3 h. After completion of the reaction, the mixture was extracted with EtOAc (3 x 30 mL) and H 2O (30 mL) . The combined organic layers were washed with brine, dried over anhydrous Na 2SO 4 and concentrated under reduced pressure. The residue was purified by silica gel column (eluted with 5%MeOH in dichloromethane) to afford the title compound 17-1 (150 mg, yield 89%) as a yellow solid. LCMS: m/z calculated for C 23H 32ClN 4O 3PS: 511.02; found: 511.77 [M+H]  +.
Step 2: To a solution of compound 17-1 (150 mg, 0.293 mmol) in dichloromethane (4 mL) was added TFA (2 mL) . Then the mixture was stirred at room temperature for 1 h. After completion of the reaction, the mixture was concentrated under vacuum. The residue was purified by pre-HPLC (C18 column, eluted with acetonitrile in water, TFA condition) . The desired components were lyophilized to afford the title compound 17 (47 mg, yield 38%) as a yellow solid.  1H NMR (400 MHz, DMSO-d 6) δ 8.46 (d, J = 1.4 Hz, 1H) , 8.30 (d, J = 1.3 Hz, 1H) , 7.74 (ddd, J = 11.8, 7.6, 1.6 Hz, 1H) , 7.40 (td, J = 7.8, 1.7 Hz, 1H) , 7.08 (dd, J = 8.0, 1.5 Hz, 1H) , 4.10 (dt, J = 14.0, 4.8 Hz, 2H) , 3.40 (ddd, J = 13.7, 8.4, 5.1 Hz, 2H) , 1.84 (s, 3H) , 1.80  (s, 3H) , 1.77 (q, J = 4.4 Hz, 4H) , 1.39 (s, 3H) . LCMS: m/z calculated for C 18H 24ClN 4OPS: 410.90; found: 411.74 [M+H]  +.
Example 18.
Synthesis of (S) - (3- ( (5- (1-amino-1, 3-dihydrospiro [indene-2, 4′-piperidin] -1′-yl) pyrazin-2-yl) thio) -2-chlorophenyl) dimethylphosphine oxide (18)
Figure PCTCN2022135205-appb-000055
Synthetic scheme 18
Figure PCTCN2022135205-appb-000056
Step 1: A mixture of compound 7-7 (140 mg, 0.420 mmol) , K 2CO 3 (290 mg, 2.10 mmol) and compound 18-1 (140 mg, 0.508 mmol) in DMAc (3 mL) was stirred at 100℃ for 16 h. After completion of the reaction, the mixture was cooled, diluted with EtOAc and concentrated. The residue was purified by pre-HPLC (C18 column, eluted with MeCN in water, TFA condition) . The desired components were lyophilized to afford the title compound 17 (50 mg, yield 23%) as a yellow solid.  1H NMR (400 MHz, DMSO-d 6) δ 8.47 (d, J = 1.5 Hz, 1H) , 8.29 (d, J = 1.3 Hz, 1H) , 7.73 (ddd, J = 11.8, 7.6, 1.6 Hz, 1H) , 7.54 (d, J = 7.1 Hz, 1H) , 7.41 (td, J = 7.8, 1.7 Hz, 1H) , 7.35 (d, J = 7.7 Hz, 2H) , 7.29 (td, J = 6.9, 6.3, 2.4 Hz, 1H) , 7.08 (dd, J = 8.0, 1.5 Hz, 1H) , 4.36 (d, J = 5.3 Hz, 2H) , 4.26 (d, J = 13.7 Hz, 1H) , 3.29 -3.16 (m, 3H) , 3.02 (d, J = 16.3 Hz, 1H) , 1.84 (s, 3H) , 1.81 (s, 3H) , 1.79 -1.70 (m, 2H) , 1.60 -1.49 (m, 2H) . LCMS: m/z calculated for C 25H 28ClN 4OPS: 499.01; found: 499.69 [M+H]  +.
Example 19.
Synthesis of (3- (3-amino-5- ( (3S, 4S) -4-amino-3-methyl-2-oxa-8-azaspiro [4.5] decan-8-yl) pyrazin-2-yl) -2-chlorophenyl) dimethylphosphine oxide (19)
Figure PCTCN2022135205-appb-000057
Synthetic scheme 19
Figure PCTCN2022135205-appb-000058
Step 1: Under nitrogen atmosphere, a mixture of compound 16-3 (10 g, 31.5 mmol) , compound 1-7 (5.0 g, 64.1 mmol) , Pd 2 (Dba)  3 (1.44 g, 1.57 mmol) , XantPhos (1.83 g, 3.16 mmol) and DIPEA (12.2 g, 94.4 mmol) in dioxane (100 mL) was stirred at 120 ℃ for 16 h. After completion of the reaction, the mixture was cooled to room temperature and concentrated under vacuum. The residue was purified by silica gel column (eluted with 5%EtOAc in petroleum ether) to afford the title compound 19-1 (6.32 g, yield 75%) as a yellow oil. LCMS: m/z calculated for C 8H 9BrClOP: 267.49; found: 267.53 [M+H]  +.
Step 2: Under nitrogen atmosphere, a mixture of compound 19-1 (1.9 g, 7.10 mmol) , bis (pinacolato) diboron (3.25 g, 12.8 mmol) , K 2OAc (2.09 g, 21.3 mmol) and Pd (dppf) Cl 2 (258 mg, 0.355 mmol) in dioxane (20 ml) was stirred at 90 ℃ for 16 h. After completion of the  reaction, the mixture was cooled, diluted with EtOAc and filtered over a short silica gel column. The filtrate was concentrated and re-dissolved in dichloromethane (30 mL) and treated with 2 N HCl (30 mL) . The resulted mixture was stirred vigorously at room temperature for 24 h. After hydrolysis was completed, the mixture was diluted with dichloromethane and separated. The aqueous layer was purified by reverse phase flash chromatography (C18 column, eluted with MeCN in water, TFA condition) . The desired components were lyophilized to afford the title compound 19-2 (1.5 mg, yield 90%) as a pale-yellow oil. LCMS: m/z calculated for C 8H 11BClO 3P: 232.41; found: 233.57 [M+H]  +.
Step 3: Under nitrogen atmosphere, a mixture of compound 19-2 (520 mg, 2.23 mmol) , compound 1-1 (600 mg, 2.88 mmol) , Pd (dppf) Cl 2 (162 mg, 0.223 mmol) and K 3PO 4 (1.42 g, 6.69 mmol) in dioxane (8 mL) and H 2O (0.8 mL) was stirred at 90 ℃ for 1 h. After completion of the reaction, the mixture was cooled to room temperature and concentrated under vacuum. The residue was purified by silica gel column (eluted with 10%MeOH in DCM) to afford the title compound 19-3 (240 mg, yield 34%) as a brown solid. LCMS: m/z calculated for C 12H 12Cl 2N 3OP: 316.12; found: 316.59 [M+H]  +.
Step 4: A mixture of compound 19-3 (160 mg, 0.506 mmol) , K 2CO 3 (350 mg, 2.53 mmol) and compound 1-11 (160 mg, 0.658 mmol) in DMAc (4 mL) was stirred at 120 ℃ for 16 h. After completion of the reaction, the mixture was diluted with EtOAc and filtered. The filtrate was concentrated under high vacuum. The residue was purified by pre-HPLC (C18 column, eluted with acetonitrile in water, TFA condition) . The desired components were lyophilized to afford the title compound 19 (55 mg, yield 24%) as a yellow solid.  1H NMR (400 MHz, DMSO-d 6) δ 7.97 (ddd, J = 11.9, 7.4, 1.9 Hz, 1H) , 7.59 (td, J = 7.5, 1.5 Hz, 1H) , 7.57 -7.51 (m, 2H) , 4.25 -4.04 (m, 3H) , 3.88 (d, J = 9.1 Hz, 1H) , 3.70 (d, J = 9.1 Hz, 1H) , 3.38 (d, J = 4.8 Hz, 1H) , 3.06 -2.93 (m, 2H) , 1.83 (d, J = 13.6 Hz, 6H) , 1.75 -1.65 (m, 3H) , 1.55 (d, J = 13.3 Hz, 1H) , 1.21 (d, J = 6.6 Hz, 3H) . LCMS: m/z calculated for C 21H 29ClN 5O 2P: 449.92; found: 450.71 [M+H]  +.
Example 20.
Synthesis of (3- (5- ( (3S, 4S) -4-amino-3-methyl-2-oxa-8-azaspiro [4.5] decan-8-yl) pyrazin-2-yl) -2-chlorophenyl) dimethylphosphine oxide (20)
Figure PCTCN2022135205-appb-000059
Synthetic scheme 20
Figure PCTCN2022135205-appb-000060
Step 1: Under nitrogen atmosphere, a mixture of compound 19-2 (520 mg, 2.23 mmol) , compound 7-1 (560 mg, 2.89 mmol) , Pd (dppf) Cl 2 (162 mg, 0.223 mmol) and K 3PO 4 (1.42 g, 6.69 mmol) in dioxane (8 mL) and H 2O (0.8 mL) was stirred at 90 ℃ for 1 h. After completion of the reaction, the mixture was cooled to room temperature and concentrated under vacuum. The residue was purified by silica gel column (eluted with 6%MeOH in DCM) to afford the title compound 20-1 (400 mg, yield 59%) as a wheat solid. LCMS: m/z calculated for C 12H 11Cl 2N 2OP: 301.11; found: 301.56 [M+H]  +.
Step 2: A mixture of compound 20-1 (90 mg, 0.299 mmol) , K 2CO 3 (210 mg, 1.52 mmol) and compound 1-11 (100 mg, 0.411 mmol) in DMAc (3 mL) was stirred at 120 ℃ for 16 h. After completion of the reaction, the mixture was diluted with EtOAc and filtered. The filtrate was concentrated under high vacuum. The residue was purified by pre-HPLC (C18 column, eluted with MeCN in water, TFA condition) . The desired components were lyophilized to afford the title compound 20 (60 mg, yield 46%) as a yellow solid.  1H NMR (400 MHz, DMSO-d 6) δ 8.46 (d, J = 1.5 Hz, 1H) , 8.35 (d, J = 1.4 Hz, 1H) , 7.98 (ddd, J = 11.9, 7.5, 1.8 Hz, 1H) , 7.72 (dd, J = 7.8, 1.7 Hz, 1H) , 7.62 (td, J = 7.6, 1.5 Hz, 1H) , 4.32 -4.17 (m, 3H) , 3.91 (d, J = 9.1 Hz, 1H) , 3.72 (d, J = 9.1 Hz, 1H) , 3.40 (d, J = 4.8 Hz, 1H) , 3.18 -3.07 (m, 2H) , 1.87 (s, 3H) , 1.83 (s, 3H) ,  1.74 (td, J = 13.1, 12.0, 4.1 Hz, 3H) , 1.59 (d, J = 13.4 Hz, 1H) , 1.22 (d, J = 6.5 Hz, 3H) . LCMS: m/z calculated for C 21H 28ClN 4O 2P: 434.90; found: 435.89 [M+H]  +.
Example 21.
Synthesis of (3- ( (5- ( (3S, 4S) -4-amino-3-methyl-2-oxa-8-azaspiro [4.5] decan-8-yl) -6- (hydroxymethyl) -3-methylpyrazin-2-yl) thio) -2-chlorophenyl) dimethylphosphine oxide (21)
Figure PCTCN2022135205-appb-000061
Synthetic scheme 21
Figure PCTCN2022135205-appb-000062
Step 1: To a clear solution of triphenylphosphine (6.0 g, 22.9 mmol) in anhydrous dioxane (50 mL) was added N-Chlorosuccinimide (3.05 g, 22.8 mmol) at room temperature. After stirring for 30 min, the mixture became a thick and white slurry. To this was added compound 21-1 (2.0 g, 7.66 mmol) in one portion. Then the mixture was heated to 100 ℃ and stirred for 1 h. After completion of the reaction, the mixture was cooled to room temperature and treated with TEA (20 mL) . The resulted mixture was extracted with EtOAc (100 mL x 2) and H 2O (100 mL) . The organic layers were washed with brine, dried over anhydrous Na 2SO 4, filtered and concentrated. The residue was purified by silica gel column (eluted with 10%EtOAc in petroleum ether) to afford the title compound 21-2 (1.9 g, yield 88%) as an orange solid.
Step 2: To a mixture of compound 21-2 (400 mg, 1.43 mmol) in DMAc (5 mL) was added compound 1-11 (420 mg, 1.72 mmol) and DIPEA (925 mg, 7.15 mmol) at room temperature. The mixture was stirred at 60 ℃ for 16 h. After completion of the reaction, the mixture was cooled and diluted with EtOAc (50 mL) . The organic layer was washed with saturated NH 4Cl solution and brine. The NH 4Cl solution was extracted again with EtOAc (50 mL) and the combined organic layers were dried over anhydrous Na 2SO 4, filtered and concentrated. The residue was purified by silica gel column (eluted with 10%MeOH in dichloromethane) to afford the title compound 21-3 (263 mg, yield 44%) as a yellow solid. LCMS: m/z calculated for C 17H 25BrN 4O 3: 413.32; found: 413.73 [M+H]  +.
Step 3: Under nitrogen atmosphere, to a solution of compound 21-3 (263 mg, 0.636 mmol) in anhydrous dichloromethane (5 mL) was added dropwise DIBAL-H (1 M, 2.54 mL, 2.54 mmol) at -78 ℃. After stirring at -78 ℃ for 30 min, the mixture was warmed slowly to room temperature and stirred for further 3 h. After completion of the reaction, the mixture was cooled to 0 ℃ in an ice bath and quenched by adding slowly 15%NaOH aqueous solution (1 mL) . The resulted mixture was stirred at room temperature for 30 min and extracted with dichloromethane (30 mL x 2) . The organic layers were washed with brine, dried over anhydrous Na 2SO 4, filtered and concentrated. The residue was purified by reverse phase flash chromatography (C18 column, eluted with acetonitrile in water, TFA condition) . The desired components were lyophilized to afford the title compound 21-4 (150 mg, yield 63%) as a yellow solid. LCMS: m/z calculated for C 15H 23BrN 4O 2: 371.28; found: 371.76 [M+H]  +.
Step 4: Under nitrogen atmosphere, a mixture of compound 21-4 (130 mg, 0.350 mmol) , compound 8-2 (80 w%, 110 mg, 0.362 mmol) , Pd 2 (dba)  3 (32 mg, 0.35 mmol) , XantPhos (40 mg, 0.069 mmol) and DIPEA (135 mg, 1.04 mmol) in dioxane (3 mL) was stirred at 105 ℃ for 16 h. After completion of the reaction, the mixture was cooled to room temperature and concentrated under vacuum. The residue was purified by silica gel column (eluted with 15%MeOH in DCM) to afford the crude product, which was purified by reverse phase flash chromatography (C18 column, eluted with acetonitrile in water, TFA condition) . The desired components were lyophilized to afford the title compound 21 (38 mg, yield 21%) as a pale-yellow solid.  1H NMR (400 MHz, DMSO-d 6) δ 7.76 (ddd, J = 11.7, 7.6, 1.6 Hz, 1H) , 7.40 (td, J = 7.8, 1.7 Hz, 1H) , 7.06 (dd, J = 7.9, 1.5 Hz, 1H) , 4.42 (s, 2H) , 4.23 -4.16 (m, 1H) , 3.85 (d, J = 9.0 Hz, 1H) , 3.83 -3.71 (m, 2H) , 3.68 (d, J = 9.1 Hz, 1H) , 3.41 (d, J = 4.7 Hz, 1H) , 3.01 (qd, J =  13.6, 2.9 Hz, 2H) , 2.42 (s, 3H) , 1.82 (d, J = 13.6 Hz, 8H) , 1.74 (d, J = 13.3 Hz, 1H) , 1.60 (d, J = 13.1 Hz, 1H) , 1.20 (d, J = 6.6 Hz, 3H) . LCMS: m/z calculated for C 23H 32ClN 4O 3PS: 511.02; found: 511.91 [M+H]  +.
Example 22.
Synthesis of (3- ( (5- ( (3S, 4S) -4-amino-3-methyl-2-oxa-8-azaspiro [4.5] decan-8-yl) -6- (hydroxymethyl) pyrazin-2-yl) thio) -2-chlorophenyl) dimethylphosphine oxide (22)
Figure PCTCN2022135205-appb-000063
Synthetic scheme 22
Figure PCTCN2022135205-appb-000064
Step 1: To a solution of compound 22-1 (5.0 g, 32.4 mmol) in DMF (30 mL) was added N-Bromosuccinimide (5.78 g, 32.5 mmol) . The mixture was stirred at room temperature for 12 h. After completion of the reaction, the mixture was poured into H 2O (300 mL) an extracted with EtOAc (200 mL x 2) . The organic layers were washed with brine, dried over anhydrous, filtered and concentrated. The residue was purified by silica gel column (eluted with 15%EtOAc in petroleum ether) to afford the title compound 22-2 (3.4 g, yield 45%) as a pale-yellow solid. LCMS: m/z calculated for C 6H 5BrN 2O 3: 233.02; found: 233.57 [M+H]  +.
Step 2: Under nitrogen atmosphere, to a clear solution of triphenylphosphine (9.44 g, 36.0 mmol) in anhydrous dioxane (70 mL) was added N-Chlorosuccinimide (4.8 g, 35.9 mmol)  at room temperature. After stirring for 30 min, the mixture became a thick and white slurry. To this was added compound 21-1 (2.8 g, 12.0 mmol) in one portion. Then the mixture was heated to 100 ℃ and stirred for 2 h. After completion of the reaction, the mixture was cooled to room temperature and poured into water (300mL) and extracted by dichloromethane (150 mL x 2) . The organic layers were washed with brine, dried over anhydrous Na 2SO 4, filtered and concentrated. The residue was purified by silica gel column (eluted with 10%EtOAc in petroleum ether) to afford the title compound 22-3 (2.1 g, yield 70%) as an off-white solid.
Step 3: To a mixture of compound 22-3 (400 mg, 1.59 mmol) in DMAc (5 mL) was added compound 1-11 (500 mg, 2.05 mmol) and DIPEA (1.03 g, 7.97 mmol) at room temperature. The mixture was stirred at 55 ℃ for 16 h. After completion of the reaction, the mixture was cooled and diluted with EtOAc (50 mL) . The organic layer was washed with saturated NH 4Cl solution and brine. The NH 4Cl solution was extracted again with EtOAc (50 mL) and the combined organic layers were dried over anhydrous Na 2SO 4, filtered and concentrated. The residue was purified by silica gel column (eluted with 10%MeOH in dichloromethane) to afford the title compound 22-4 (320 mg, yield 52%) as a yellow solid. LCMS: m/z calculated for C 15H 21BrN 4O 3: 385.26; found: 385.74 [M+H]  +.
Step 4: Under nitrogen atmosphere, to a solution of compound 22-4 (300 mg, 0.778 mmol) in anhydrous THF (5 mL) was added dropwise DIBAL-H (1 M, 3.12 mL, 3.12 mmol) at -75 ℃. After stirring at -75 ℃ for 30 min, the mixture was warmed slowly to room temperature and stirred for further 3 h. After completion of the reaction, the mixture was cooled to 0 ℃ in an ice bath and quenched by adding slowly 15%NaOH aqueous solution (1 mL) . The resulted mixture was stirred at room temperature for 30 min and extracted with dichloromethane (30 mL x 2) . The organic layers were washed with brine, dried over anhydrous Na 2SO 4, filtered and concentrated. The residue was purified by reverse phase flash chromatography (C18 column, eluted with acetonitrile in water, TFA condition) . The desired components were lyophilized to afford the title compound 22-5 (85 mg, yield 30%) as a yellow solid. LCMS: m/z calculated for C 14H 21BrN 4O 2: 357.25; found 357.68 [M+H]  +.
Step 5: Under nitrogen atmosphere, a mixture of compound 22-5 (70 mg, 0.196 mmol) , compound 8-2 (80 w%, 60 mg, 0.199 mmol) , Pd 2 (dba)  3 (18 mg, 0.019 mmol) , XantPhos (23 mg, 0.039 mmol) and DIPEA (80 mg, 0.619 mmol) in dioxane (2 mL) was stirred at 105 ℃ for 16 h. After completion of the reaction, the mixture was cooled to room temperature and  concentrated under vacuum. The residue was purified by silica gel column (eluted with 15%MeOH in DCM) to afford the crude product, which was purified by reverse phase flash chromatography (C18 column, eluted with acetonitrile in water, TFA condition) . The desired components were lyophilized to afford the title compound 22 (22 mg, yield 22%) as an off-white solid.  1H NMR (400 MHz, DMSO-d 6) δ 8.21 (s, 1H) , 7.82 -7.76 (m, 1H) , 7.43 (td, J = 7.8, 1.7 Hz, 1H) , 7.26 (dd, J = 8.0, 1.6 Hz, 1H) , 4.49 (s, 2H) , 4.24 -4.17 (m, 1H) , 3.88 -3.67 (m, 4H) , 3.40 (d, J = 4.7 Hz, 1H) , 3.08 -2.95 (m, 2H) , 1.83 (d, J = 13.6 Hz, 8H) , 1.74 (d, J = 13.3 Hz, 1H) , 1.59 (d, J = 12.9 Hz, 1H) , 1.21 (d, J = 6.6 Hz, 3H) . LCMS: m/z calculated for C 22H 30ClN 4O 3PS: 496.99; found: 497.84 [M+H]  +.
Example 23.
Synthesis of (3- (3-amino-5- (4-amino-4-methylpiperidin-1-yl) pyrazin-2-yl) -2-chlorophenyl) dimethylphosphine oxide (23)
Figure PCTCN2022135205-appb-000065
Synthetic scheme 23
Figure PCTCN2022135205-appb-000066
Step 1: A mixture of compound 19-3 (110 mg, 0.348 mmol) , K 2CO 3 (120 mg, 0.868 mmol) and compound 16-5 (110 mg, 0.514 mmol) in DMAc (4 mL) and H 2O (0.4 mL) was stirred at 120 ℃ for 3 h. After completion of the reaction, the mixture was extracted with EtOAc (3 x 30 mL) and H 2O (30 mL) . The combined organic layers were washed with brine, dried over  anhydrous Na 2SO 4 and concentrated under reduced pressure. The residue was purified by silica gel column (eluted with 5%MeOH in dichloromethane) to afford the title compound 23-1 (60 mg, yield 35%) as a pale-yellow solid. LCMS: m/z calculated for C 23H 33ClN 5O 3P: 493.97; found: 493.20 [M+H]  +.
Step 2: To a solution of compound 23-1 (60 mg, 0.293 mmol) in dichloromethane (2 mL) was added TFA (1 mL) . Then the mixture was stirred at room temperature for 1 h. After completion of the reaction, the mixture was concentrated under vacuum. The residue was purified by pre-HPLC (C18 column, eluted with MeCN in water, TFA condition) . The desired components were lyophilized to afford the title compound 23 (23 mg, yield 20%) as a yellow solid.  1H NMR (400 MHz, DMSO-d 6) δ 7.97 (ddd, J = 11.9, 7.5, 1.9 Hz, 1H) , 7.62 -7.50 (m, 3H) , 4.01 (dt, J = 13.9, 4.5 Hz, 2H) , 3.24 (ddd, J = 13.7, 8.4, 5.4 Hz, 2H) , 1.82 (d, J = 13.6 Hz, 6H) , 1.72 (p, J = 5.6, 4.7 Hz, 4H) , 1.37 (s, 3H) . LCMS: m/z calculated for C 18H 25ClN 5OP: 393.86; found: 394.66 [M+H]  +.
Example 24.
Synthesis of (S) - (3- (3-amino-5- (1-amino-1, 3-dihydrospiro [indene-2, 4′-piperidin] -1′-yl) pyrazin-2-yl) -2-chlorophenyl) dimethylphosphine oxide (24)
Figure PCTCN2022135205-appb-000067
Synthetic scheme 24
Figure PCTCN2022135205-appb-000068
Step 1: A mixture of compound 19-3 (110 mg, 0.348 mmol) , K 2CO 3 (240 mg, 1.73 mmol) and compound 18-1 (125 mg, 0.453 mmol) in DMAc (3 mL) was stirred at 100 ℃ for 16 h. After completion of the reaction, the mixture was cooled, diluted with EtOAc and concentrated. The residue was purified by pre-HPLC (C18 column, eluted with acetonitrile in water, TFA condition) . The desired components were lyophilized to afford the title compound 24 (25 mg, yield 14%) as a yellow solid.  1H NMR (400 MHz, DMSO-d 6) δ 7.97 (ddd, J = 11.9, 7.4, 2.0 Hz, 1H) , 7.61 -7.49 (m, 4H) , 7.39 -7.28 (m, 3H) , 4.37 (s, 1H) , 4.20 (dd, J = 35.3, 13.8 Hz, 2H) , 3.18 -3.00 (m, 4H) , 1.83 (d, J = 13.6 Hz, 6H) , 1.76 -1.66 (m, 2H) , 1.57 -1.45 (m, 2H) . LCMS: m/z calculated for C 25H 29ClN 5OP: 481.96; found: 482.89 [M+H]  +.
Example 25.
Synthesis of (3- (5- (4-amino-4-methylpiperidin-1-yl) pyrazin-2-yl) -2-chlorophenyl) dimethylphosphine oxide (25)
Figure PCTCN2022135205-appb-000069
Synthetic scheme 25
Figure PCTCN2022135205-appb-000070
Step 1: A mixture of compound 20-1 (70 mg, 0.232 mmol) , K 2CO 3 (80 mg, 0.579 mmol) and compound 16-5 (74 mg, 0.346 mmol) in DMAc (3 mL) and H 2O (0.3 mL) was stirred at 120 ℃ for 3 h. After completion of the reaction, the mixture was extracted with EtOAc (3 x 20 mL) and H 2O (20 mL) . The combined organic layers were washed with brine, dried over anhydrous Na 2SO 4 and concentrated under reduced pressure. The residue was purified by silica gel column (eluted with 5%MeOH in dichloromethane) to afford the title compound 25-1 (40 mg, yield 36%) as a pale-yellow solid. LCMS: m/z calculated for C 23H 32ClN 4O 3P: 478.96; found: 479.87 [M+H]  +.
Step 2: To a solution of compound 25-1 (40 mg, 0.0835 mmol) in dichloromethane (2 mL) was added TFA (1 mL) . Then the mixture was stirred at room temperature for 1 h. After completion of the reaction, the mixture was concentrated under vacuum. The residue was purified by pre-HPLC (C18 column, eluted with acetonitrile in water, TFA condition) . The desired components were lyophilized to afford the title compound 25 (25 mg, yield 20%) as a yellow solid.  1H NMR (400 MHz, DMSO-d 6) δ 8.47 (d, J = 1.5 Hz, 1H) , 8.36 (d, J = 1.4 Hz, 1H) , 7.99 (ddd, J = 11.9, 7.6, 1.8 Hz, 1H) , 7.71 (dd, J = 7.6, 1.8 Hz, 1H) , 7.62 (td, J = 7.6, 1.6 Hz, 1H) , 4.14 (dt, J = 13.9, 4.4 Hz, 2H) , 3.36 (dt, J = 13.8, 6.9 Hz, 2H) , 1.84 (d, J = 13.6 Hz, 6H) , 1.76 (t, J = 5.9 Hz, 4H) , 1.39 (s, 3H) . LCMS: m/z calculated for C 18H 24ClN 4OP: 378.84; found: 379.77 [M+H]  +.
Example 26.
Synthesis of (S) - (3- (5- (1-amino-1, 3-dihydrospiro [indene-2, 4′-piperidin] -1′-yl) pyrazin-2-yl) -2-chlorophenyl) dimethylphosphine oxide (26)
Figure PCTCN2022135205-appb-000071
Synthetic scheme 26
Figure PCTCN2022135205-appb-000072
Step 1: A mixture of compound 20-1 (80 mg, 0.265 mmol) , K 2CO 3 (185 mg, 1.34 mmol) and compound 18-1 (95 mg, 0.344 mmol) in DMAc (2 mL) was stirred at 100 ℃ for 16 h. After completion of the reaction, the mixture was cooled, diluted with EtOAc and concentrated. The residue was purified by pre-HPLC (C18 column, eluted with MeCN in water, TFA condition) . The desired components were lyophilized to afford the title compound 26 (48 mg, yield 38%) as a yellow solid.  1H NMR (400 MHz, DMSO-d 6) δ 8.47 (d, J = 1.5 Hz, 1H) , 8.36 (d, J = 1.4 Hz, 1H) , 7.98 (ddd, J = 11.9, 7.5, 1.8 Hz, 1H) , 7.73 (dd, J = 7.7, 1.8 Hz, 1H) , 7.62 (td, J = 7.6, 1.5 Hz, 1H) , 7.50 (d, J = 7.4 Hz, 1H) , 7.40 -7.29 (m, 3H) , 4.39 (s, 2H) , 4.28 (d, J = 13.7 Hz, 1H) , 3.30 -3.15 (m, 3H) , 3.05 (d, J = 16.2 Hz, 1H) , 1.84 (d, J = 13.6 Hz, 6H) , 1.81 -1.70 (m, 2H) , 1.55 (t, J = 13.2 Hz, 2H) . LCMS: m/z calculated for C 25H 28ClN 4OP: 466.95; found: 467.79 [M+H]  +.
Example 27.
Synthesis of (3- (5- ( (3S, 4S) -4-amino-3-methyl-2-oxa-8-azaspiro [4.5] decan-8-yl) -6-  (hydroxymethyl) -3-methylpyrazin-2-yl) -2-chlorophenyl) dimethylphosphine oxide (27)
Figure PCTCN2022135205-appb-000073
Synthetic scheme 27
Figure PCTCN2022135205-appb-000074
Step 1: Under nitrogen atmosphere, a mixture of compound 21-4 (120 mg, 0.323 mmol) , compound 19-2 (90 mg, 0.387 mmol) , Pd (dppf) Cl 2 (25 mg, 0.34 mmol) and K 3PO 4 (205 mg, 0.967 mmol) in dioxane (3 mL) and H 2O (0.3 mL) was stirred at 90 ℃ for 1 h. After completion of the reaction, the mixture was cooled to room temperature and concentrated under vacuum. The residue was purified by silica gel column (eluted with 10%MeOH in DCM) to afford the crude product, which was purified by reverse phase flash chromatography (C18 column, eluted with acetonitrile in water, TFA condition) . The desired components were lyophilized to afford the title compound 27 (65 mg, yield 42%) as a yellow solid.  1H NMR (400 MHz, DMSO-d 6) δ 8.02 (ddd, J = 11.9, 6.9, 2.5 Hz, 1H) , 7.67 -7.58 (m, 2H) , 4.50 (s, 2H) , 4.25 -4.17 (m, 1H) , 3.86 (d, J = 9.0 Hz, 1H) , 3.69 (q, J = 12.1, 10.2 Hz, 3H) , 3.55 (s, 3H) , 3.43 (d, J = 4.6 Hz, 1H) , 3.04 -2.91 (m, 2H) , 1.93 -1.74 (m, 9H) , 1.63 (d, J = 12.9 Hz, 1H) , 1.21 (d, J = 6.5 Hz, 3H) . LCMS: m/z calculated for C 23H 32ClN 4O 3P: 478.96; found: 479.87 [M+H]  +.
Example 28.
Synthesis of methyl 3- ( (3S, 4S) -4-amino-3-methyl-2-oxa-8-azaspiro [4.5] decan-8-yl) -6- ( (2- chloro-3- (dimethylphosphoryl) phenyl) thio) pyrazine-2-carboxylate (28)
Figure PCTCN2022135205-appb-000075
Synthetic scheme 28
Figure PCTCN2022135205-appb-000076
Step 1: Under nitrogen atmosphere, a mixture of compound 22-4 (160 mg, 0.415 mmol) , compound 8-2 (80 w%, 130 mg, 0.428 mmol) , Pd 2 (dba)  3 (38 mg, 0.041 mmol) , XantPhos (48 mg, 0.083 mmol) and DIPEA (160 mg, 1.24 mmol) in dioxane (3 mL) was stirred at 105 ℃ for 16 h. After that, the mixture was cooled to room temperature and concentrated under vacuum. The residue was purified by silica gel column (eluted with 20%MeOH in DCM) to afford the crude product, which was purified by reverse phase flash chromatography (C18 column, eluted with acetonitrile in water, TFA condition) . The desired components were lyophilized to afford the title compound 28 (5.7 mg, yield 2%) as an off-white solid..  1H NMR (400 MHz, DMSO-d 6) δ 8.40 (s, 1H) , 7.79 (ddd, J = 11.7, 7.6, 1.6 Hz, 1H) , 7.43 (td, J = 7.8, 1.7 Hz, 1H) , 7.20 -7.16 (m, 1H) , 4.24 -4.16 (m, 1H) , 3.87 -3.81 (m, 5H) , 3.76 -3.67 (m, 2H) , 3.42 (d, J = 4.7 Hz, 1H) , 3.21 -3.08 (m, 2H) , 1.84 (s, 3H) , 1.80 (s, 3H) , 1.79 -1.71 (m, 3H) , 1.57 (d, J = 13.4 Hz, 1H) , 1.20 (d, J = 6.5 Hz, 3H) .  LCMS: m/z calculated for C 23H 30ClN 4O 4PS: 525.00; found: 525.83 [M+H]  +.
Example 29.
Synthesis of (3- ( (5- ( (3S, 4S) -4-amino-3-methyl-2-oxa-8-azaspiro [4.5] decan-8-yl) -3- methylpyrazin-2-yl) thio) -2-chlorophenyl) dimethylphosphine oxide (29)
Figure PCTCN2022135205-appb-000077
Synthetic scheme 29
Figure PCTCN2022135205-appb-000078
Step 1: To a solution of compound 29-1 (1.0 g, 9.08 mmol) in DMSO (20 mL) and H 2O (2 mL) at room temperature was added NBS (800 mg, 4.49 mmol) slowly. The mixture was stirred at room temperature for 16 h. After completion of the reaction, the mixture diluted with EtOAc (50 mL) and washed with water. The organic layer was washed with brine, dried over anhydrous Na 2SO 4, filtered and concentrated. The residue was purified by reverse phase flash (C18 column, eluted with acetonitrile in H 2O, TFA condition) . The desired components were lyophilized to afford the title compound 29-2 (566 mg, yield 33%) as a pale-brown solid. LCMS: m/z calculated for C 5H 5BrN 2O: 189.01; found: 189.46 [M+H]  +.
Step 2: Under nitrogen atmosphere, a mixture of compound 29-2 (380 mg, 2.01 mmol) , compound 8-2 (80 w%, 610 mg, 2.01 mmol) , Pd 2 (Dba)  3 (185 mg, 0.202 mmol) , Xantphos (232 mg, 0.400) and DIPEA (780 mg, 6.03 mmol) in dioxane (5 mL) was stirred at 115 ℃ for 16 h. Then the mixture was cooled to room temperature and concentrated. The residue was purified by silica gel column (eluted with 15%MeOH in dichloromethane) to give a crude product, which was purified furtherly by reverse phase flash (C18 column, eluted with  acetonitrile in H 2O, TFA condition) . The desired components were lyophilized to afford the title compound 29-3 (56 mg, yield 8%) as a pale-yellow solid. LCMS: m/z calculated for C 13H 14ClN 2O 2PS: 328.75; found: 329.69 [M+H]  +.
Step 3: A mixture of compound 29-3 (56 mg, 0.170 mmol) , DBU (52 mg, 0.341 mmol) , compound 1-11 (42 mg, 0.172 mmol) and BOP (75 mg, 0.170 mmol) in DMF (2 mL) was stirred at room temperature for 16 h. After completion of the reaction, the mixture was quenched by adding H 2O (1 mL) . The resulted mixture was filtered and purified directly by pre-HPLC (C18 column, eluted with acetonitrile in water, TFA condition) . The desired components were lyophilized to afford the title compound 29 (14 mg, yield 17%) as a yellow solid.  1H NMR (400 MHz, DMSO-d 6) δ 8.26 (s, 1H) , 7.73 (ddd, J = 11.7, 7.6, 1.6 Hz, 1H) , 7.38 (td, J = 7.7, 1.7 Hz, 1H) , 6.95 (dd, J = 8.1, 1.7 Hz, 1H) , 4.29 -4.14 (m, 3H) , 3.88 (d, J = 9.1 Hz, 1H) , 3.70 (d, J = 9.1 Hz, 1H) , 3.39 (d, J = 4.8 Hz, 1H) , 3.18 -3.05 (m, 2H) , 2.40 (s, 3H) , 1.82 (d, J = 13.6 Hz, 6H) , 1.76 -1.64 (m, 3H) , 1.57 (d, J = 13.4 Hz, 1H) , 1.20 (d, J = 6.5 Hz, 3H) . LCMS: m/z calculated for C 22H 30ClN 4O 2PS: 480.99; found: 481.79 [M+H]  +.
Example 30.
Synthesis of (3- ( (3-amino-5- (4-amino-4-methylpiperidin-1-yl) pyrazin-2-yl) thio) -2-chlorophenyl) dicyclopropylphosphine oxide (30)
Figure PCTCN2022135205-appb-000079
Synthetic scheme 30
Figure PCTCN2022135205-appb-000080
Step 1: Under nitrogen atmosphere, a solution of compound 16-1 (5 g, 36.2 mmol) in anhydrous THF (50 mL) was added dropwise to a flask containing cyclopropylmagnesium bromide (0.5 M, 217 mL, 108.6 mmol) at -20 ℃. The mixture was maintained at -20 ℃ for 15 min after addition, then allowed to warm slowly to room temperature and stirred for a further 20 h. After completion of the reaction, the mixture was quenched with 1 N HCl. The resulting mixture was extracted with MTBE and EtOAc. The organic layers were combined, dried over anhydrous Na 2SO 4, filtered and concentrated to afford the title compound 30-1 (3.1 g, crude, yield 65%) as an orange oil. The crude product was used directly in the next step without further purification.
Step 2: A mixture of compound 16-6 (230 mg, 0.4 mmol) , compound 30-1 (156 mg, 1.2 mmol) , Pd 2 (dba)  3 (37 mg, 0.04 mmol) , Xanhphos (46 mg, 0.08 mmol) and DIPEA (155 mg, 1.2 mmol) in dioxane (4 mL) was stirred at 105 ℃ for 16 h. After completion of the reaction, the mixture was cooled to room temperature and concentrated under vacuum. The residue was purified by silica gel column (eluted with 5%MeOH in DCM) to afford the crude product, which was purified by reverse phase flash chromatography (C18 column, eluted with acetonitrile in water, TFA condition) . The desired components were lyophilized to afford the title compound 30-2 (30 mg, yield 15%) as a yellow solid. LCMS: m/z calculated for C 27H 37ClN 5O 3PS: 578.11; found: 578.93 [M+H]  +.
Step 3: A mixture of compound 30-2 (30 mg, 0.05 mmol) in DCM (1 mL) and TFA (0.3 mL) was stirred at room temperature for 1 h. After completion of the reaction, the mixture was concentrated under vacuum. The residue was purified by reverse phase flash chromatography  (C18 column, eluted with acetonitrile in water, TFA condition) . The desired components were lyophilized to afford the title compound CAN2352 (11 mg, yield 44%) as a yellow solid.  1H NMR (400 MHz, DMSO-d 6) δ 7.68 (s, 1H) , 7.58 (ddd, J = 11.1, 7.5, 1.6 Hz, 1H) , 7.34 (td, J = 7.8, 1.7 Hz, 1H) , 6.77 (dd, J = 8.0, 1.6 Hz, 1H) , 4.10 -3.99 (m, 2H) , 3.29 (dt, J = 13.8, 6.9 Hz, 2H) , 1.71 (t, J = 5.7 Hz, 4H) , 1.56 (dtt, J = 14.8, 8.9, 5.9 Hz, 2H) , 1.37 (s, 3H) , 0.89 (ddtt, J = 14.8, 8.8, 5.9, 2.5 Hz, 4H) , 0.73 (qdd, J = 9.1, 5.9, 3.7 Hz, 2H) , 0.55 (dqd, J = 15.5, 6.0, 3.1 Hz, 2H) . LCMS: m/z calculated for C 22H 29ClN 5OPS: 477.99; found: 478.84 [M+H]  +.
Example 31.
Synthesis of (3- ( (3-amino-5- ( (3S, 4S) -4-amino-3-methyl-2-oxa-8-azaspiro [4.5] decan-8-yl) pyrazin-2-yl) thio) -2-chlorophenyl) dicyclopropylphosphine oxide (31)
Figure PCTCN2022135205-appb-000081
Synthetic scheme 3
Figure PCTCN2022135205-appb-000082
Step 1: A solution of compound 31-1 (1 g, 2.7 mmol) and TFA (3 mL) in anhydrous DCM (50 mL) was stirred at room temperature for 1h. After completion of the reaction, the mixture was concentrated under vacuum to afford the title compound 31-2 (1.9 g, crude trifluoroacetate, 54 w%) as a yellow oil. The crude product was used directly in the next step without further purification.
Step 2: A mixture of compound 31-2 (585 mg, 54 w%, 0.81 mmol) , compound 16-4 (250 mg, 0.71 mmol) and K 2CO 3 (483 mg, 3.5 mmol) in anhydrous DMAc (10 mL) was stirred at 100 ℃ for 2 h . After completion of the reaction, the mixture was cooled down to room temperature. The resulting mixture was extracted with EtOAc (50 mL x 3) and water. The combined organic layers were washed with brine dried over anhydrous Na 2SO 4 and concentrated under reduced pressure. The residue was purified by silica gel column (eluted with 3%MeOH in DCM) to afford the title compound 31-3 (360 mg, yield 86%) as a brown oil. LCMS: m/z calculated for C 23H 31BrClN 5O 2S 2: 589.01; found: 590.66 [M+H]  +.
Step 3: Under nitrogen atmosphere, a mixture of compound 31-3 (300 mg, 0.5 mmol) , compound 30-1 (195 mg, 1.5 mmol) , Pd 2 (dba)  3 (46 mg, 0.05 mmol) , Xantphos (58 mg, 0.1 mmol) and DIPEA (194 mg, 1.5 mmol) in dioxane (6 mL) was stirred at 105 ℃ for 16 h. After completion of the reaction, the mixture was cooled to room temperature and concentrated under vacuum. The residue was purified by silica gel column (eluted with 5%MeOH in DCM) to afford the crude product, which was purified by reverse phase flash chromatography (C18 column, eluted with acetonitrile in water, TFA condition) . The desired components were lyophilized to afford the title compound 31-4 (160 mg, yield 49%) as a yellow solid. LCMS: m/z calculated for C 29H 41ClN 5O 3PS 2: 638.22; found: 638.82 [M+H]  +.
Step 4: To a solution of compound 31-4 (160 mg, 0.25 mmol) and MeOH (2 mL) was added 4 N HCl in dioxane (0.2 mL, 0.9 mmol) was stirred at 40 ℃ for 2 h. After completion of the reaction, the mixture was concentrated under vacuum. The residue was purified by pre-HPLC (C18 column, eluted with acetonitrile in water, TFA condition) . The desired components were lyophilized to afford the title compound CAN2352 (27.8 mg, yield 20%) as a light-yellow solid. LCMS: m/z calculated for C 25H 33ClN 5O 2PS: 534.06; found: 534.82 [M+H]  +1H NMR (400 MHz, DMSO-d6) δ 7.67 (s, 1H) , 7.58 (ddd, J = 11.2, 7.5, 1.6 Hz, 1H) , 7.34 (td, J = 7.8, 1.7 Hz, 1H) , 6.77 (dd, J = 7.9, 1.6 Hz, 1H) , 4.24 -4.10  (m, 3H) , 3.88 (d, J = 9.1 Hz, 1H) , 3.69 (d, J = 9.1 Hz, 1H) , 3.39 (d, J = 4.8 Hz, 1H) , 3.11 -2.99 (m, 2H) , 1.75 -1.64 (m, 3H) , 1.56 (dtt, J = 14.8, 8.9, 5.9 Hz, 3H) , 1.21 (d, J = 6.5 Hz, 3H) , 0.89 (ddtd, J = 17.3, 8.9, 6.1, 3.0 Hz, 4H) , 0.73 (qdd, J = 9.0, 6.0, 3.8 Hz, 2H) , 0.55 (dqd, J = 15.4, 6.0, 3.2 Hz, 2H) .
Example 32
Enzymatic activity assay of SHP2
Materials:
● SHP2 (BPS, Cat. No. 79018)
● SHP2 Activating Peptide (BPS, Cat. No. 79319-2)
● OptiPlate TM-384 F black assay plates (Perkin Elmer, Cat. No. 6007279)
● DiFMUP (Invitrogen, Cat. No. D6567)
● Compounds were dissolved into 10 mM stock in 100%DMSO
Experimental methods:
○ Prepare 1x assay buffer
○ Prepare 1x assay buffer (modified Hepes Buffer) .
○ Compound serial dilution:
○ Transfer 200nL compounds to assay plate by Echo in 100%DMSO. The final fraction of DMSO is 1%.
○ Prepare 4x SHP-2 activating peptide solution:
○ Add SHP-2 activating Peptide in 1x assay buffer to make 4x SHP-2 activiting peptide
○ solution. Transfer 5uL 4x SHP-2 activating peptide solution to assay plate. Centrifuge at 1000 rpm for 1 min.
○ Prepare 4x SHP-2 enzyme solution:
○ Add SHP-2 in 1x assay buffer to make 4x SHP-2 enzyme solution. Transfer 5uL 4x SHP-2 enzyme solution to assay plate, except for the negative wells, transfer 5uL 1x assay buffer instead. Centrifuge at 1000 rpm for 1 min. Incubate at RT for 60min.
○ Prepare 2x substrate solution:
○ Add DiFMUP in 1x assay buffer to make the substrate solution. Transfer 10 μL of 2x substrate solution to each well to start reaction. Centrifuge at 1000 rpm for 1 min.
○ Read the plate kinetically on Paradigm for 60 min with excitation at 360nm and emission at 460nm.
○ Curve fitting
○ Fit the data in Excel to obtain inhibition values using equation (1)
○ Equation (1) : Inh %= (Max-Signal) / (Max-Min) *100
○ Fit the data in XL-Fit to obtain IC50 values using equation (2)
○ Equation (2) : Y=Bottom + (Top-Bottom) / (1+ (IC50/X) *HillSlope)  
○ Y is %inhibition and X is compound concentration.
IC 50 data from SHP2 assay testing is shown in Table 4.
Table 4
compound MeAP2 IC50 compound MeAP2 IC50
1 B 19 C
2 C 20 C
3 B 21 A
4 C 22 A
5 C 23 C
6 C 24 B
7 A 25 C
8 A 26 C
9 A 27 C
10 A 28 B
11 C 29 A
12 A 30  
13 B 31  
14 C    
15 A    
16 C    
17 B    
18 A    
A: < 1 μM; B: 1 -10 μM. C: > 10 μM 
Applicant’s disclosure is described herein in preferred embodiments with reference to the Figures, in which like numbers represent the same or similar elements. Reference throughout this specification to “one embodiment, ” “an embodiment, ” or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment, ” “in an embodiment, ” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment.
The described features, structures, or characteristics of Applicant’s disclosure may be combined in any suitable manner in one or more embodiments. In the description, herein, numerous specific details are recited to provide a thorough understanding of embodiments of the invention. One skilled in the relevant art will recognize, however, that Applicant’s composition and/or method may be practiced without one or more of the specific details, or with other methods, components, materials, and so forth. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the disclosure.
In this specification and the appended claims, the singular forms "a, " "an, " and "the" include plural reference, unless the context clearly dictates otherwise. 
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present disclosure, the preferred methods and materials are now described. Methods recited herein may be carried out in any order that is logically possible, in addition to a particular order disclosed.
Incorporation by Reference
References and citations to other documents, such as patents, patent applications, patent publications, journals, books, papers, web contents, have been made in this disclosure. All such documents are hereby incorporated herein by reference in their entirety for all purposes. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material explicitly set forth herein is only incorporated to the extent that no conflict arises between that incorporated material and the present disclosure material. In the event of a conflict, the conflict is to be resolved in favor of the present disclosure as the preferred disclosure.
Equivalents
The representative examples are intended to help illustrate the invention, and are not intended to, nor should they be construed to, limit the scope of the invention. Indeed, various modifications of the invention and many further embodiments thereof, in addition to those shown and described herein, will become apparent to those skilled in the art from the full contents of this document, including the examples and the references to the scientific and patent literature included herein. The examples contain important additional information, exemplification and guidance that can be adapted to the practice of this invention in its various embodiments and equivalents thereof.

Claims (43)

  1. A compound having the structural formula of (I) :
    Figure PCTCN2022135205-appb-100001
    wherein
    X is S or a single bond;
    Y 1 is CR 7 or N;
    Y 2 is CR 8 or N, provided that ifone ofY 1 and Y 2 is N, the other is not N;
    each of R 1 and R 2 is independently NH 2 or a C 1-6 alkyl, or R 1 and R 2, together with the carbon atom they are bound to, form a substituted or unsubstituted 5-membered carbocyclic or heterocyclic ring;
    R 3 is H, CH 3 or NH 2;
    R 4 is H, CH 2OH, C (O) OCH 3, C (O) NH 2, or C (O) NHCH 3;
    R 5 is H, Cl or CF 3;
    each of R 6, R 7 and R 8 is independently H, Cl or P (O) RR’, provided that one of R 6, R 7 and R 8 is P (O) RR’; and
    each of R and R’ is independently a C 1-6 alkyl, cyclopropyl, cyclobutyl, or cyclopentyl,
    or a pharmaceutically acceptable form or an isotope derivative thereof.
  2. The compound of claim 1, wherein Y 1 is CR 7 and Y 2 is CR 8, having the structural formula:
    Figure PCTCN2022135205-appb-100002
  3. The compound of claim 1, wherein Y 1 is N and Y 2 is CR 8, having the structural formula (III) :
    Figure PCTCN2022135205-appb-100003
  4. The compound of claim 1, wherein Y 1 is CR 7 and Y 2 is N, having the structural formula (IV) :
    Figure PCTCN2022135205-appb-100004
  5. The compound of claim 1, wherein X is S, having the structural formula (V) :
    Figure PCTCN2022135205-appb-100005
  6. The compound of claim 5, wherein Y 1 is N, having the structural formula (VI) :
    Figure PCTCN2022135205-appb-100006
  7. The compound of claim 5, wherein Y 2 is N, having the structural formula (VII) :
    Figure PCTCN2022135205-appb-100007
  8. The compound of claim 5, wherein Y 1 is CR 7 and Y 2 is CR 8, having the structural formula (VIII) :
    Figure PCTCN2022135205-appb-100008
  9. The compound of claim 1, wherein X is a single bond, having the structural formula (IX) :
    Figure PCTCN2022135205-appb-100009
  10. The compound of claim 9, wherein Y 1 is N and Y 2 is CR 8, having the structural formula (X) :
    Figure PCTCN2022135205-appb-100010
  11. The compound of claim 9, wherein Y 1 is CR 7 and Y 2 is N, having the structural formula  (XI) :
    Figure PCTCN2022135205-appb-100011
  12. The compound of claim 9, wherein Y 1 is CR 7 and Y 2 is CR 8, having the structural formula (XII) :
    Figure PCTCN2022135205-appb-100012
  13. The compound of claim 1, wherein R 1 and R 2 form a 5-membered carbocyclic or heterocyclic ring, optionally substituted, having the formula (XIII) :
    Figure PCTCN2022135205-appb-100013
    Figure PCTCN2022135205-appb-100014
    wherein
    Z is O or CH 2,
    R 9 is independently CH 3 or NH 2, and
    i is 0, 1 or 2.
  14. The compound of claim 5, wherein R 1 and R 2 form a 5-membered carbocyclic or heterocyclic ring, optionally substituted, having the formula (XIV) :
    Figure PCTCN2022135205-appb-100015
    wherein
    Z is O or CH 2,
    R 9 is independently CH 3 or NH 2, and
    i is 0, 1 or 2.
  15. The compound of claim 9, wherein R 1 and R 2 form a 5-membered carbocyclic or heterocyclic ring, optionally substituted, having the formula (XV) :
    Figure PCTCN2022135205-appb-100016
    wherein
    Z is O or CH 2,
    R 9 is independently CH 3 or NH 2, and
    i is 0, 1 or 2.
  16. The compound of any one of claims 13-15, wherein Z is O.
  17. The compound of claim 16, wherein i is 2, and two R 9’s are NH 2 and CH 3.
  18. The compound of any one of claims 1-17, wherein R 3 is NH 2.
  19. The compound of any one of claims 1-17, wherein R 3 is H.
  20. The compound of any one of claims 1-17, wherein R 3 is CH 3.
  21. The compound of any one of claims 1-20, wherein R 4 is H.
  22. The compound of any one of claims 1-20, wherein R 4 is CH 2OH.
  23. [Rectified under Rule 91, 30.11.2024]
    The compound of any one of claims 1-20, wherein R 4 is C (O) OCH 3.
  24. [Rectified under Rule 91, 30.11.2024]
    The compound of any one of claims 1-20, wherein R4 is C(O)NH2.
  25. [Rectified under Rule 91, 30.11.2024]
    The compound of any one of claims 1-20, wherein R4 is C(O)NHCH3.

  26. The compound of any one of claims 1-25, wherein R5 is Cl..
  27. The compound of any one of claims 1-23, wherein R 5 is H.
  28. The compound of any one of claims 1-23, wherein R 5 is CF 3.
  29. The compound of any one of claims 1-26, wherein R 6 is Cl.
  30. The compound of any one of claims 1-27, wherein one of R 7 and R 8 is P (O) RR’.
  31. The compound of claim 28, wherein one or both of R and R’ is CH 3.
  32. The compound of claim 28, wherein one or both of R and R’ is cyclopropyl.
  33. The compound of claim 28, wherein one or both of R and R’ is cyclobutyl.
  34. The compound of claim 28, wherein one or both of R and R’ is cyclopentyl.
  35. A compound having the structural formula:
    Figure PCTCN2022135205-appb-100017
    Figure PCTCN2022135205-appb-100018
    Figure PCTCN2022135205-appb-100019
    Figure PCTCN2022135205-appb-100020
    or a pharmaceutically acceptable form or an isotope derivative thereof.
  36. A pharmaceutical composition comprising a compound according to any of claims 1-33 and a pharmaceutically acceptable excipient, carrier, or diluent.
  37. The pharmaceutical composition of claim 34, effective to treat or reduce cancer, or a related disease or condition.
  38. A unit dosage form comprising a pharmaceutical composition according to claim 34 or 35.
  39. A method for treating or reducing a disease or condition, comprising administering to a subject in need thereof a therapeutically effective amount of a pharmaceutical composition comprising a compound according to any of claims 1-33 and a pharmaceutically acceptable excipient, carrier, or diluent.
  40. The method of claim 37, wherein the disease or condition is cancer, or a related disease or condition thereof.
  41. Use of a compound of any of claims 1-33 for treating or reducing a disease or condition.
  42. Use of a compound of any of claims 1-33, and a pharmaceutically acceptable excipient, carrier, or diluent, in preparation of a medicament for treating or reducing a disease or condition.
  43. Use of claims 39 or 40, wherein the disease or condition is cancer, or a related disease or condition thereof.
PCT/CN2022/135205 2022-11-30 2022-11-30 Shp2 inhibitors, compositions and methods thereof WO2024113194A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/135205 WO2024113194A1 (en) 2022-11-30 2022-11-30 Shp2 inhibitors, compositions and methods thereof
PCT/CN2023/133123 WO2024114467A1 (en) 2022-11-30 2023-11-22 Shp2 inhibitors, compositions and methods thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/135205 WO2024113194A1 (en) 2022-11-30 2022-11-30 Shp2 inhibitors, compositions and methods thereof

Publications (1)

Publication Number Publication Date
WO2024113194A1 true WO2024113194A1 (en) 2024-06-06

Family

ID=91322617

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/135205 WO2024113194A1 (en) 2022-11-30 2022-11-30 Shp2 inhibitors, compositions and methods thereof
PCT/CN2023/133123 WO2024114467A1 (en) 2022-11-30 2023-11-22 Shp2 inhibitors, compositions and methods thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/133123 WO2024114467A1 (en) 2022-11-30 2023-11-22 Shp2 inhibitors, compositions and methods thereof

Country Status (1)

Country Link
WO (2) WO2024113194A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018172984A1 (en) * 2017-03-23 2018-09-27 Jacobio Pharmaceuticals Co., Ltd. Novel heterocyclic derivatives useful as shp2 inhibitors
CN110143949A (en) * 2018-05-09 2019-08-20 北京加科思新药研发有限公司 It can be used as the new type heterocycle derivative of SHP2 inhibitor
WO2020063760A1 (en) * 2018-09-26 2020-04-02 Jacobio Pharmaceuticals Co., Ltd. Novel heterocyclic derivatives useful as shp2 inhibitors
WO2020073949A1 (en) * 2018-10-10 2020-04-16 江苏豪森药业集团有限公司 Regulator of nitrogen-containing heteroaromatic derivatives, preparation method therefor and use thereof
WO2022063190A1 (en) * 2020-09-23 2022-03-31 南京明德新药研发有限公司 Pyrazine thiobiphenyl compound and application thereof
WO2022161222A1 (en) * 2021-01-29 2022-08-04 四川科伦博泰生物医药股份有限公司 Heterocyclic shp2 inhibitor, preparation method therefor, and use thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JO3517B1 (en) * 2014-01-17 2020-07-05 Novartis Ag N-azaspirocycloalkane substituted n-heteroaryl compounds and compositions for inhibiting the activity of shp2
WO2016203406A1 (en) * 2015-06-19 2016-12-22 Novartis Ag Compounds and compositions for inhibiting the activity of shp2
SG11201900157RA (en) * 2016-07-12 2019-02-27 Revolution Medicines Inc 2,5-disubstituted 3-methyl pyrazines and 2,5,6-trisubstituted 3-methyl pyrazines as allosteric shp2 inhibitors
MX2019008696A (en) * 2017-01-23 2019-09-13 Revolution Medicines Inc Pyridine compounds as allosteric shp2 inhibitors.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018172984A1 (en) * 2017-03-23 2018-09-27 Jacobio Pharmaceuticals Co., Ltd. Novel heterocyclic derivatives useful as shp2 inhibitors
CN110143949A (en) * 2018-05-09 2019-08-20 北京加科思新药研发有限公司 It can be used as the new type heterocycle derivative of SHP2 inhibitor
WO2020063760A1 (en) * 2018-09-26 2020-04-02 Jacobio Pharmaceuticals Co., Ltd. Novel heterocyclic derivatives useful as shp2 inhibitors
WO2020073949A1 (en) * 2018-10-10 2020-04-16 江苏豪森药业集团有限公司 Regulator of nitrogen-containing heteroaromatic derivatives, preparation method therefor and use thereof
WO2022063190A1 (en) * 2020-09-23 2022-03-31 南京明德新药研发有限公司 Pyrazine thiobiphenyl compound and application thereof
WO2022161222A1 (en) * 2021-01-29 2022-08-04 四川科伦博泰生物医药股份有限公司 Heterocyclic shp2 inhibitor, preparation method therefor, and use thereof

Also Published As

Publication number Publication date
WO2024114467A1 (en) 2024-06-06

Similar Documents

Publication Publication Date Title
JP7039802B2 (en) Pharmaceutical composition containing RHO-related protein kinase inhibitor, RHO-related protein kinase inhibitor, preparation method and use of the pharmaceutical composition.
KR102585860B1 (en) Rg-related protein kinase inhibitors, pharmaceutical compositions containing the same, and methods and uses thereof
CN105524048B (en) As the indazole compounds of FGFR kinase inhibitor and its preparation and application
KR102563325B1 (en) ROH-related protein kinase inhibitors, pharmaceutical compositions containing RS-related protein kinase inhibitors, manufacturing methods and uses of pharmaceutical compositions
EP3173412B1 (en) 2,4-disubstituted 7h-pyrrolo[2,3-d]pyrimidine derivative, preparation method and medicinal use thereof
WO2022105855A1 (en) Kras g12d inhibitors
KR20210092804A (en) Heterocyclic compound serving as fgfr4 inhibitor
JP2024505732A (en) Pyridopyrimidinone derivatives and their production methods and uses
CN116568681A (en) SOS1 inhibitor, pharmaceutical composition containing same and application thereof
WO2022166469A1 (en) Fgfr kinase inhibitor and use thereof
CN112969694A (en) Rho-related protein kinase inhibitor, pharmaceutical composition containing same and application thereof
CN111362946A (en) Pharmaceutical compound and composition and application thereof
WO2022002100A1 (en) Novel benzimidazole compound
CN115819418B (en) PLK1 kinase inhibitor and preparation method and application thereof
AU2023217770A1 (en) Conjugates of chemotherapy agents and tissue-binding small molecules, compositions and methods thereof
WO2022222871A1 (en) Heterocyclic compounds as kras g12c inhibitors
WO2024113194A1 (en) Shp2 inhibitors, compositions and methods thereof
AU2020274407B2 (en) Quinazoline-2,4-dione derivatives as PARP inhibitors
CN108341837A (en) It is a kind of to inhibit kinases compound and its purposes medically
AU2022252615A1 (en) Metap-2 inhibitors, pharmaceutical compositions and therapeutic methods thereof
CN108341816A (en) A kind of selective depression kinases compound
CN111808080B (en) Substituted pyridine or pyrimidine compound, preparation method and medical application thereof
CN117126140A (en) Heterocyclic compounds having protein kinase inhibitory activity, pharmaceutical compositions containing the same, and methods of preparing and using the same
WO2022237844A1 (en) Pyrrolopyrimidine derivative containing pyrazine structure
WO2023083373A1 (en) Compound used as src inhibitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22966792

Country of ref document: EP

Kind code of ref document: A1