WO2024256218A1 - Coating station - Google Patents

Coating station Download PDF

Info

Publication number
WO2024256218A1
WO2024256218A1 PCT/EP2024/065325 EP2024065325W WO2024256218A1 WO 2024256218 A1 WO2024256218 A1 WO 2024256218A1 EP 2024065325 W EP2024065325 W EP 2024065325W WO 2024256218 A1 WO2024256218 A1 WO 2024256218A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
coating
monolith
unit
coating suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/EP2024/065325
Other languages
German (de)
French (fr)
Inventor
Stéphane MASSON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Umicore AG and Co KG
Original Assignee
Umicore AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umicore AG and Co KG filed Critical Umicore AG and Co KG
Publication of WO2024256218A1 publication Critical patent/WO2024256218A1/en
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C7/00Apparatus specially designed for applying liquid or other fluent material to the inside of hollow work
    • B05C7/04Apparatus specially designed for applying liquid or other fluent material to the inside of hollow work the liquid or other fluent material flowing or being moved through the work; the work being filled with liquid or other fluent material and emptied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/22Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to internal surfaces, e.g. of tubes

Definitions

  • the present invention is directed to a coating apparatus for producing catalytically coated flow-through monoliths for automotive exhaust treatment.
  • the exhaust gases from, for example, combustion engines in motor vehicles typically contain the harmful gases carbon monoxide (CO) and hydrocarbons (HC), nitrogen oxides (NO X ) and possibly sulfur oxides (SO X ), as well as particles that consist predominantly of soot residues and possibly adhering organic agglomerates. These are referred to as primary emissions.
  • CO, HC and particles are products of the incomplete combustion of the fuel in the engine's combustion chamber.
  • Nitrogen oxides are formed in the cylinder from nitrogen and oxygen in the intake air when the local combustion temperatures exceed 1400°C. Sulfur oxides result from the combustion of organic sulfur compounds, which are always present in small quantities in non-synthetic fuels.
  • a variety of catalytic exhaust gas purification technologies have been developed to remove these emissions, which are harmful to the environment and health, from the exhaust gases of motor vehicles.
  • the basic principle of these technologies is usually based on the exhaust gas to be purified being passed over a catalyst consisting of a flow-through or wall-flow honeycomb body (wall-flow filter) and a catalytically active coating applied to and/or within it.
  • the catalyst promotes the chemical reaction of various exhaust gas components to form harmless products such as carbon dioxide and water.
  • the flow-through or wall-flow monoliths described above are also referred to as catalyst supports, carriers or even substrate monoliths, as they carry the catalytically active coating on their surface or in the pores of the wall that form this surface.
  • the catalytically active coating is often applied to the catalyst support in a so-called coating process in the form of a coating suspension (washcoat).
  • An important aspect of the preparation of these heterogeneous catalysts is the precise coating of substrates with a washcoat, especially with regard to e.g. coating length of the channels of the substrate, applied coating amount, uniformity of the coating layer, uniformity of the coating length and coating gradients along the longitudinal axis of the catalyst support as well as in the production of layered or zoned coating designs - in short, coating quality.
  • the first group also works with an excess of coating suspension, which is introduced into the filter substrate by a pressure difference and where the excess coating suspension is removed from the channels by a subsequent pressure difference reversal.
  • excess coating suspension means that the amount of suspension used for the coating process is significantly higher than the value required for the desired loading of the filter with catalytically active material.
  • the excess coating suspension is to be removed from the substrate monolith by appropriate measures, e.g. a pressure difference reversal.
  • pressure difference reversal is understood to mean that a pressure difference at the respective ends of the wall flow filter is reversed, thus changing its sign. This pressure difference reversal therefore works against the original coating direction.
  • the second group works without a pressure difference reversal and a washcoat excess, i.e. the entire amount of suspension intended and provided for the coating essentially remains, i.e. > 97 % of the solid content of the coating suspension, in the substrate monolith.
  • EP2533901 B1 presents a coating technique for substrate monoliths which allows a particularly precise, zoned coating to be achieved.
  • a special coating system is used to pump an excess amount of coating suspension into an upright substrate monolith from below. The excess coating suspension in the channels is then sucked downwards. It is particularly important that a precisely specified amount of coating medium remains on the substrate monolith. Since the coating suspensions often contain expensive precious metals such as platinum, If the suspension contains palladium and/or rhodium, too much suspension would mean a waste of expensive precious metal. Too little, on the other hand, can lead to the necessary catalytic activity of the catalyst no longer being present.
  • EP2415522B1 also shows a coating process in which a coating medium is applied to a substrate from above - so-called top-down coating.
  • the coating medium is fed into a cavity via a feed line using a stamp and then applied to the substrate via openings in a base plate - similar to a shower head.
  • the coating suspension is then sucked into the substrate by applying a negative pressure on the other side of the substrate monolith.
  • Claim 2-x is directed to preferred embodiments of the coating device according to the invention.
  • a coating device (1) for producing catalytically coated flow monoliths (2) for exhaust gas catalysis wherein the flow monoliths (2) have two end faces, a lateral surface of length L and flow channels which ensure a gas flow from one end face to the other, comprising: a first unit (3) for receiving the flow monolith (2) in a vertical orientation; a second unit (4) for applying a coating suspension (7) to the upper end face of the flow monolith (2); and a third unit (5) for applying a coating suspension (7') through the lower end face of the flow monolith; and a fourth unit (6) for sucking excess coating suspension downwards from the flow channels of the flow monolith, wherein the coating device (1) is designed such that the third unit (5) has less If more than 20% of the length L of the flow-through monolith is contacted with the coating suspension (7') and the second unit (4) applies so much coating suspension (7) that, with a subsequent suction pulse from the fourth unit (6), all of the flow channels come into contact with coating suspension (7, 7') over the entire length
  • the present coating device it is possible to obtain more uniform values over the entire coating campaign, particularly with regard to the amount of coating that remains on the flow-through monolith after coating.
  • the cycle time for coating can also be further reduced because, compared to the prior art, it is not necessary to completely pump a large excess of coating suspension into the flow-through monolith and, on the other hand, two separate coating processes do not have to be carried out, possibly involving rotation of the flow-through monolith.
  • a more uniform coating length is obtained compared to designs where the entire length of the flow monolith is to be coated. This was by no means to be expected given the known state of the art.
  • Flow-through monoliths are catalyst supports commonly used in the state of the art, which can be made of metal (e.g. corrugated carrier, WO17153239A1, WO16057285A1, WO15121910A1 and literature cited therein) or ceramic materials. Refractory ceramics such as corderite, silicon carbide or aluminum titanate, etc. are preferably used.
  • the number of channels per area is characterized by the cell density, which is usually between 200 and 900 cells per square inch (cpsi).
  • the wall thickness of the channel walls for ceramics is between 0.5 - 0.05 mm. Further information can be found in the literature (Catalytic Air Pollution Control, Heck et al.. John Wiley & Sons, Inc. 2009, p. 176ff.).
  • the catalytically active mass or coating is applied in the form of a suspension to the channels of the flow monolith using the coating device according to the invention.
  • the coating suspension is generally a slurry of insoluble oxidic components and possibly soluble metal compounds, e.g. precious metal compounds in water.
  • the coating suspension has a desired rheology, which can be specifically adjusted to the requirements by adding surface-active substances, thickeners or acids/bases, etc. The expert knows how to proceed here. Then The coated flow-through monolith is dried and, if necessary, tempered and/or calcined. The finished flow-through monolith is then installed in the corresponding exhaust gas systems.
  • the catalytically active coatings (7, 7') can be selected from the group consisting of three-way catalyst, SCR catalyst, ammonia oxidation catalyst, nitrogen oxide storage catalyst, oxidation catalyst and hydrocarbon storage. Combinations are also possible.
  • the catalytically active coatings used can be located in the pores and/or on the surfaces of the channel walls of the flow monolith. It is possible to coat the flow monolith with two different coating suspensions using the coating device according to the invention. However, the device according to the invention can be used particularly well to coat the flow monolith with a uniform coating suspension over its entire length L.
  • the manufacture of the coating suspensions for the intended purpose is well known to those skilled in the art.
  • so-called three-way catalysts are used for stoichiometrically burning engines to reduce exhaust emissions.
  • Three-way catalysts are well known to those skilled in the art and have been required by law since the 1980s.
  • the actual catalyst mass here usually consists of a high-surface metal compound, in particular an oxide carrier material, on which the catalytically active components are deposited in a very fine distribution.
  • the precious metals of the platinum group, platinum, palladium and/or rhodium are particularly suitable as catalytically active components for cleaning stoichiometrically composed exhaust gases.
  • Suitable carrier materials include, for example, aluminum oxide, silicon dioxide, titanium oxide, zirconium oxide, cerium oxide and their mixed oxides and zeolites. So-called active aluminum oxides with a specific surface area (BET surface area measured according to DIN 66132 - latest version on the date of filing) of more than 10 m 2 /g are preferably used.
  • three-way catalysts also contain oxygen-storing components. These include cerium/zirconium mixed oxides, which may be provided with lanthanum oxide, praseodymium oxide and/or yttrium oxide. Zoned and multi-layer systems with three-way activity are also now known (US8557204; US8394348).
  • the coating device (1) according to the invention has a second unit (4) with which the coating suspension (7') can be applied to the upper end face of the flow-through monolith (2), wherein the second unit (4) has a shower head through which the coating suspension is applied.
  • Other application devices are also conceivable (EP application EP22181902.2).
  • the coating device (1) has a container (8) which helps prevent the coating suspension (7') from running down the outer casing of the flow-through monolith (e.g. DE202022000455U1).
  • the container (8) can be attached to the second unit (4). However, it is also possible to attach the container (8) to the first unit (3). The person skilled in the art knows how to accomplish this in terms of equipment.
  • the coating device according to the invention is part of a coating station in which the flow-through monoliths to be coated are brought to the coating device, e.g. via belt conveyor systems. Once there, a first weighing step can take place in order to be able to determine the gross weight of the flow-through monolith. The flow-through monoliths are then picked up in the first unit. The coating suspension is applied by the coating device.
  • the coating device which is controlled via digital process control, can be designed in such a way that the coating is first applied and sucked off by the third and fourth units, before the coating suspension is applied and sucked through by the second and fourth units. However, according to the invention the coating device is set up in such a way that only one suction pulse is required.
  • control unit controls the coating device in such a way that the coating is first applied from below by the third unit. Afterwards or at the same time the coating suspension is applied from above by the second unit. The following suction pulse through the fourth unit then transports both excess coating suspension out of the channels of the flow monolith and the coating suspension applied from above into the flow monolith.
  • the result is a complete, preferably homogeneous coating of the channels of the flow monolith with extremely good accuracy in wet absorption, which can then be determined by a further weighing step.
  • Examples of a first unit can be found in the following documents: WO2011098450A1; EP3887063A1; EP3865211A1; EP3285936A1
  • Examples of a second unit can be found in the following documents: US9227184B2; EP1900442B1 ; JP5925101B; JP2015039672A; Examples of a third unit can be found in the following documents: DE102017122254A1 ; EP3122458B1; US2021170386AA
  • Examples of a fourth unit can be found in the following documents: EP3386642A1; CN114289253A; CN112756190A; EP3865211A1; CN208839891U; EP3285936A1; WO16143811 A1; JP2014233713A2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a coating device for producing catalytically coated flow-through monoliths for automotive exhaust treatment, wherein a vertically oriented flow-through substrate is coated from the upper and the lower sides, wherein less than 20% of the length of the through-flow monolith is coated from the lower side, and then the excess wash coat is sucked away downwards.

Description

Beschichtungsstation coating station

Beschreibung Description

Die vorliegende Erfindung ist auf eine Beschichtungsvorrichtung zur Herstellung katalytisch beschichteter Durchflussmonolithe für die Autoabgasbehandlung gerichtet. The present invention is directed to a coating apparatus for producing catalytically coated flow-through monoliths for automotive exhaust treatment.

Das Abgas von z. B. Verbrennungsmotoren in Kraftfahrzeugen enthält typischerweise die Schadgase Kohlenmonoxid (CO) und Kohlenwasserstoffe (HC), Stickoxide (NOX) und gegebenenfalls Schwefeloxide (SOX), sowie Partikel, die überwiegend aus Rußrückständen und gegebenenfalls anhaftenden organischen Agglomeraten bestehen. Diese werden als Primäremissionen bezeichnet. CO, HC und Partikel sind Produkte der unvollständigen Verbrennung des Kraftstoffs im Brennraum des Motors. Stickoxide entstehen im Zylinder aus Stickstoff und Sauerstoff der Ansaugluft, wenn die Verbrennungstemperaturen lokal 1400°C überschreiten. Schwefeloxide resultieren aus der Verbrennung organischer Schwefelverbindungen, die in nicht-synthetischen Kraftstoffen immer in geringen Mengen enthalten sind. Zur Entfernung dieser für Umwelt und Gesundheit schädlichen Emissionen aus den Abgasen von Kraftfahrzeugen sind eine Vielzahl katalytischer Abgasreinigungstechnologien entwickelt worden, deren Grundprinzip üblicherweise darauf beruht, dass das zu reinigende Abgas über einen Katalysator geleitet wird, der aus einem Durchfluss- oder einem Wandflusswabenkörper (Wandflussfilter) und einer darauf und/oder darin aufgebrachten katalytisch aktiven Beschichtung besteht. Der Katalysator fördert die chemische Reaktion verschiedener Abgaskomponenten unter Bildung unschädlicher Produkte wie beispielsweise Kohlendioxid und Wasser. The exhaust gases from, for example, combustion engines in motor vehicles typically contain the harmful gases carbon monoxide (CO) and hydrocarbons (HC), nitrogen oxides (NO X ) and possibly sulfur oxides (SO X ), as well as particles that consist predominantly of soot residues and possibly adhering organic agglomerates. These are referred to as primary emissions. CO, HC and particles are products of the incomplete combustion of the fuel in the engine's combustion chamber. Nitrogen oxides are formed in the cylinder from nitrogen and oxygen in the intake air when the local combustion temperatures exceed 1400°C. Sulfur oxides result from the combustion of organic sulfur compounds, which are always present in small quantities in non-synthetic fuels. A variety of catalytic exhaust gas purification technologies have been developed to remove these emissions, which are harmful to the environment and health, from the exhaust gases of motor vehicles. The basic principle of these technologies is usually based on the exhaust gas to be purified being passed over a catalyst consisting of a flow-through or wall-flow honeycomb body (wall-flow filter) and a catalytically active coating applied to and/or within it. The catalyst promotes the chemical reaction of various exhaust gas components to form harmless products such as carbon dioxide and water.

Die eben beschriebenen Durchfluss- oder Wandflussmonolithe werden demgemäß auch als Katalysatorträger, Träger oder eben auch als Substratmonolithe bezeichnet, tragen sie doch die katalytisch aktive Beschichtung auf ihrer Oberfläche bzw. in den diese Oberfläche bildenden Poren der Wand. Die katalytisch aktive Beschichtung wird häufig in einem sogenannten Beschichtungsvorgang in Form einer Beschichtungssuspension (Washcoat) auf den Katalysatorträger aufgebracht. The flow-through or wall-flow monoliths described above are also referred to as catalyst supports, carriers or even substrate monoliths, as they carry the catalytically active coating on their surface or in the pores of the wall that form this surface. The catalytically active coating is often applied to the catalyst support in a so-called coating process in the form of a coating suspension (washcoat).

Ein wichtiger Aspekt der Herstellung dieser heterogenen Katalysatoren ist das präzise Beschichten von Substraten mit einem Washcoat, insbesondere im Hinblick auf z.B. Beschichtungslänge der Kanäle des Substrates, aufgebrachte Beschichtungsmenge, Gleichmäßigkeit der Beschichtungsschicht, Gleichmäßigkeit der Beschichtungslänge und Beschichtungsgradienten entlang der Längsachse des Katalysatorträgers sowie bei der Herstellung von geschichteten oder zonierten Beschichtungsdesigns - kurz Beschichtungsgüte. An important aspect of the preparation of these heterogeneous catalysts is the precise coating of substrates with a washcoat, especially with regard to e.g. coating length of the channels of the substrate, applied coating amount, uniformity of the coating layer, uniformity of the coating length and coating gradients along the longitudinal axis of the catalyst support as well as in the production of layered or zoned coating designs - in short, coating quality.

Es gibt zwei prinzipielle Gruppen von Herstellverfahren zur Erzeugung dieser katalytisch aktiven Katalysatorkörper. Beiden Verfahrensgruppen ist gemeinsam, dass die Beschichtungssuspension durch Anlegen einer Druckdifferenz, also durch das Vorliegen unterschiedlicher Drücke an den beiden Stirnflächen des Substratmonolithen, in diesen eingebracht wird. Die Beschichtungssuspension bewegt sich dabei in den Kanälen des Substratmonolithen in Richtung des niedrigeren Druckes. There are two basic groups of manufacturing processes for producing these catalytically active catalyst bodies. What both groups of processes have in common is that the coating suspension is introduced into the substrate monolith by applying a pressure difference, i.e. by the presence of different pressures on the two end faces of the substrate monolith. The coating suspension moves in the channels of the substrate monolith in the direction of the lower pressure.

Die erste Gruppe arbeitet dabei zusätzlich mit einem Überschuss an Beschichtungssuspension, die durch eine Druckdifferenz in das Filtersubstrat gebracht und wo durch eine anschließende Druckdifferenzumkehr die überschüssige Beschichtungssuspension aus den Kanälen wieder entfernt wird. Unter Überschuss an Beschichtungssuspension ist vorliegend gemeint, dass die für den Beschichtungsvorgang verwendete Menge an Suspension deutlich über dem Wert liegt, der für die gewünschte Beladung des Filters mit katalytisch aktivem Material benötigt wird. Der Überschuss an Beschichtungssuspension ist durch entsprechende Maßnahmen, z.B. eine Druckdifferenzumkehr wieder aus dem Substratmonolithen zu entfernen. Als Druckdifferenzumkehr wird im Rahmen der Erfindung verstanden, dass eine an den jeweiligen Enden des Wandflussfilters anliegende Druckdifferenz umgekehrt wird, mithin ihr Vorzeichen wechselt. Diese Druckdifferenzumkehr wirkt daher entgegen der ursprünglichen Beschichtungsrichtung. The first group also works with an excess of coating suspension, which is introduced into the filter substrate by a pressure difference and where the excess coating suspension is removed from the channels by a subsequent pressure difference reversal. In this case, excess coating suspension means that the amount of suspension used for the coating process is significantly higher than the value required for the desired loading of the filter with catalytically active material. The excess coating suspension is to be removed from the substrate monolith by appropriate measures, e.g. a pressure difference reversal. In the context of the invention, pressure difference reversal is understood to mean that a pressure difference at the respective ends of the wall flow filter is reversed, thus changing its sign. This pressure difference reversal therefore works against the original coating direction.

Die zweite Gruppe arbeitet ohne eine Druckdifferenzumkehr und einen Washcoatüber- schuss, d.h. die gesamte für die Beschichtung vorgesehene und vorgelegte Menge an Suspension verbleibt im Wesentlichen, d.h. > 97 % des Feststoffanteils der Beschichtungssuspension, im Substratmonolithen. The second group works without a pressure difference reversal and a washcoat excess, i.e. the entire amount of suspension intended and provided for the coating essentially remains, i.e. > 97 % of the solid content of the coating suspension, in the substrate monolith.

In der EP2533901 B1 wird eine Beschichtungstechnik für Substratmonolithe vorgestellt, welche es gestattet, eine besonders genaue, zonierte Beschichtung zu erzielen. Hierbei wird mittels einer speziellen Beschichtungsanlage in einen aufrecht stehenden Substratmonolithen von unten eine Menge an Beschichtungssuspension im Überschuss hineingepumpt. Anschließend erfolgt eine Absaugung der überschüssigen, sich in den Kanälen befindlichen Beschichtungssuspension nach unten. Dabei ist es besonders wichtig, dass eine genau vorgegebene Menge an Beschichtungsmedium auf den Substratmonolithen verbleibt. Da die Beschichtungssuspensionen häufig teure Edelmetall wie Platin, Palladium und/oder Rhodium enthalten, würde ein Zuviel an Suspension die Verschwendung an teurem Edelmetall bedeuten. Ein Zuwenig hingegen kann dazu führen, dass die notwendige katalytische Aktivität des Katalysators nicht mehr gegeben ist. EP2533901 B1 presents a coating technique for substrate monoliths which allows a particularly precise, zoned coating to be achieved. A special coating system is used to pump an excess amount of coating suspension into an upright substrate monolith from below. The excess coating suspension in the channels is then sucked downwards. It is particularly important that a precisely specified amount of coating medium remains on the substrate monolith. Since the coating suspensions often contain expensive precious metals such as platinum, If the suspension contains palladium and/or rhodium, too much suspension would mean a waste of expensive precious metal. Too little, on the other hand, can lead to the necessary catalytic activity of the catalyst no longer being present.

Die EP2415522B1 zeigt ebenfalls ein Beschichtungsverfahren, bei dem ein Beschichtungsmedium von oben auf ein Substrat appliziert wird - sogenannte Top-Down-Be- schichtung. Mit einem Stempel wird das Beschichtungsmedium über eine Zuleitung in einen Hohlraum geführt und anschließend über Öffnungen in einer Bodenplatte - ähnlich wie bei einem Duschkopf - auf das Substrat aufgegeben. Anschließend erfolgt das Hineinsaugen der Beschichtungssuspension in das Substrat durch Anlegen eines Unterdrucks auf der anderen Seite des Substratmonolithen. EP2415522B1 also shows a coating process in which a coating medium is applied to a substrate from above - so-called top-down coating. The coating medium is fed into a cavity via a feed line using a stamp and then applied to the substrate via openings in a base plate - similar to a shower head. The coating suspension is then sucked into the substrate by applying a negative pressure on the other side of the substrate monolith.

Die eben diskutierten Verfahren werden alle mit bestimmt ausgebildeten Beschichtungsvorrichtungen oder Beschichtungsstationen durchgeführt. Es besteht daher weiterhin ein Bedarf an optimierten Beschichtungseinrichtungen zur Herstellung katalytisch aktiver Substratmonolithen, insbesondere Durchflussmonolithe, welche im Anforderungsdreieck der Zyklenzeit, der Robustheit und der Beschichtungsgüte neue Maßstäbe setzen. The processes just discussed are all carried out with specifically designed coating devices or coating stations. There is therefore still a need for optimized coating devices for producing catalytically active substrate monoliths, in particular flow-through monoliths, which set new standards in the requirement triangle of cycle time, robustness and coating quality.

Diese und weitere dem Fachmann geläufige Aufgaben werden durch eine Beschichtungsstation gemäß den Merkmalen des gegenständlichen Anspruchs 1 gelöst. Anspruch 2 - x ist auf bevorzugte Ausgestaltungen der erfindungsgemäßen Beschichtungsvorrichtung gerichtet. These and other objects familiar to the person skilled in the art are achieved by a coating station according to the features of the present claim 1. Claim 2-x is directed to preferred embodiments of the coating device according to the invention.

Dadurch, dass man eine Beschichtungsvorrichtung (1) zur Herstellung von katalytisch beschichteten Durchflussmonolithen (2) für die Abgaskatalyse, wobei die Durchflussmonolithen (2) zwei Stirnflächen, eine Mantelfläche der Länge L und Durchflusskanäle aufweisen, die von der einen zur anderen Stirnfläche einen Gasdurchfluss gewährleisten, angibt, aufweisend: eine erste Einheit (3) zur Aufnahme des Durchflussmonolithen (2) in senkrechter Ausrichtung; eine zweite Einheit (4) zur Applikation einer Beschichtungssuspension (7) auf die obere Stirnfläche des Durchflussmonolithen (2); und eine dritte Einheit (5) zur Applikation einer Beschichtungssuspension (7‘) durch die untere Stirnfläche des Durchflussmonolithen; und eine vierte Einheit (6) zum Absaugen überschüssiger Beschichtungssuspension aus den Durchflusskanälen des Durchflussmonolithen nach unten, wobei die Beschichtungsvorrichtung (1) so ausgebildet ist, dass die dritte Einheit (5) weniger als 20% der Länge L des Durchflussmonolithen mit der Beschichtungssuspension (7‘) kontaktiert und durch die zweite Einheit (4) so viel Beschichtungssuspension (7) appliziert wird, dass bei einem folgenden Saugimpuls durch die vierte Einheit (6) die gesamten Durchflusskanäle auf der gesamten Länge L mit Beschichtungssuspension (7, 7‘) in Kontakt kommen, gelangt man recht einfach, dafür aber nicht minder vorteilhaft zur Lösung der gestellten Aufgabe. Mit der vorliegenden Beschichtungsvorrichtung ist es möglich insbesondere im Hinblick auf die Beschichtungsmengen, welche nach der Beschichtung auf dem Durchflussmonolithen verbleibt, einheitlichere Werte über die gesamte Beschichtungskampagne zu erhalten. Gleichfalls lässt sich die Zyklenzeit für die Beschichtung weiter senken, da verglichen mit den Stand der Technik kein komplettes Hereinpumpen eines großen Überschusses an Beschichtungssuspension in den Durchflussmonolithen von Nöten ist und andererseits keine zwei getrennten Beschichtungsvorgänge ggf. mit einem Drehen des Durchflussmonolithen erfolgen müssen. Gleichfalls erhält man eine einheitlichere Beschichtungslänge verglichen mit Ausführungen, bei denen ausschließlich über die gesamte Länge der Durchflussmonolithen beschichtet werden soll. Dies war vor dem Hintergrund des bekannten Standes der Technik mitnichten zu erwarten gewesen. By specifying a coating device (1) for producing catalytically coated flow monoliths (2) for exhaust gas catalysis, wherein the flow monoliths (2) have two end faces, a lateral surface of length L and flow channels which ensure a gas flow from one end face to the other, comprising: a first unit (3) for receiving the flow monolith (2) in a vertical orientation; a second unit (4) for applying a coating suspension (7) to the upper end face of the flow monolith (2); and a third unit (5) for applying a coating suspension (7') through the lower end face of the flow monolith; and a fourth unit (6) for sucking excess coating suspension downwards from the flow channels of the flow monolith, wherein the coating device (1) is designed such that the third unit (5) has less If more than 20% of the length L of the flow-through monolith is contacted with the coating suspension (7') and the second unit (4) applies so much coating suspension (7) that, with a subsequent suction pulse from the fourth unit (6), all of the flow channels come into contact with coating suspension (7, 7') over the entire length L, the problem is solved quite simply but no less advantageously. With the present coating device, it is possible to obtain more uniform values over the entire coating campaign, particularly with regard to the amount of coating that remains on the flow-through monolith after coating. The cycle time for coating can also be further reduced because, compared to the prior art, it is not necessary to completely pump a large excess of coating suspension into the flow-through monolith and, on the other hand, two separate coating processes do not have to be carried out, possibly involving rotation of the flow-through monolith. At the same time, a more uniform coating length is obtained compared to designs where the entire length of the flow monolith is to be coated. This was by no means to be expected given the known state of the art.

Durchflussmonolithe sind im Stand der Technik übliche Katalysatorträger, die aus Metall (z.B. corrugated carrier, WO17153239A1 , WO16057285A1 , WO15121910A1 und darin zitierte Literatur) oder keramischen Materialien bestehen können. Bevorzugt werden feuerfeste Keramiken wie zum Beispiel Corderit, Siliziumcarbit oder Aluminiumtitanat etc. eingesetzt. Die Anzahl der Kanäle pro Fläche wird durch die Zelldichte charakterisiert, welche üblicher Weise zwischen 200 und 900 Zellen pro Quadrat inch (cells per square inch, cpsi) liegt. Die Wanddicke der Kanalwände beträgt bei Keramiken zwischen 0,5 - 0,05 mm. Weitere können der Literatur entnommen werden (Catalytic Air Pollution Control, Heck et al.. John Wiley & Sons, Inc. 2009, S. 176ff.). Flow-through monoliths are catalyst supports commonly used in the state of the art, which can be made of metal (e.g. corrugated carrier, WO17153239A1, WO16057285A1, WO15121910A1 and literature cited therein) or ceramic materials. Refractory ceramics such as corderite, silicon carbide or aluminum titanate, etc. are preferably used. The number of channels per area is characterized by the cell density, which is usually between 200 and 900 cells per square inch (cpsi). The wall thickness of the channel walls for ceramics is between 0.5 - 0.05 mm. Further information can be found in the literature (Catalytic Air Pollution Control, Heck et al.. John Wiley & Sons, Inc. 2009, p. 176ff.).

Vorliegend wird mittels der erfindungsgemäßen Beschichtungsvorrichtung die katalytisch aktive Masse oder Beschichtung in Form einer Suspension auf die Kanäle des Durchflussmonolithen aufgebracht. Die Beschichtungssuspension ist in der Regel eine Aufschlämmung von nicht löslichen oxidischen Bestandteilen und ggf. löslichen Metallverbindungen, z.B. Edelmetallverbindungen in Wasser. Die Beschichtungssuspension weist dabei eine gewünschte Rheologie auf, die gezielt den Erfordernissen mittels Zugabe von oberflächenaktiven Substanzen, Verdickern oder Säuren/Basen etc. eingestellt werden kann. Der Fachmann weiß, wie er hier vorzugehen hat. Anschließend erfolgt eine Trocknung und ggf. eine Temperung und/oder Kalzinierung des beschichteten Durchflussmonolithen. Der fertige Durchflussmonolith wird dann in entsprechende Abgasanalagen eingebaut. In the present case, the catalytically active mass or coating is applied in the form of a suspension to the channels of the flow monolith using the coating device according to the invention. The coating suspension is generally a slurry of insoluble oxidic components and possibly soluble metal compounds, e.g. precious metal compounds in water. The coating suspension has a desired rheology, which can be specifically adjusted to the requirements by adding surface-active substances, thickeners or acids/bases, etc. The expert knows how to proceed here. Then The coated flow-through monolith is dried and, if necessary, tempered and/or calcined. The finished flow-through monolith is then installed in the corresponding exhaust gas systems.

Die katalytisch aktiven Beschichtungen (7, 7‘) können können ausgewählt sein aus der Gruppe bestehend aus Dreiwegkatalysator, SCR-Katalysator, Ammoniakoxidationskatalysator, Stickoxidspeicherkatalysator, Oxidationskatalysator und Kohlenwasserstoffspeicher. Auch Kombinationen sind möglich. Dabei können sich die eingesetzten katalytisch aktiven Beschichtungen in den Poren und/oder auf den Oberflächen der Kanalwände des Durchflussmonolithen befinden. Es ist möglich, mit der erfindungsgemäßen Beschichtungsvorrichtung den Durchflussmonolithen mit zwei unterschiedlichen Beschichtungssuspensionen zu beschichten. Mit der erfindungsgemäßen Vorrichtung kann der Durchflussmonolith jedoch ganz besonders gut über dessen gesamte Länge L mit einer einheitlichen Beschichtungssuspension beschichtet werden. The catalytically active coatings (7, 7') can be selected from the group consisting of three-way catalyst, SCR catalyst, ammonia oxidation catalyst, nitrogen oxide storage catalyst, oxidation catalyst and hydrocarbon storage. Combinations are also possible. The catalytically active coatings used can be located in the pores and/or on the surfaces of the channel walls of the flow monolith. It is possible to coat the flow monolith with two different coating suspensions using the coating device according to the invention. However, the device according to the invention can be used particularly well to coat the flow monolith with a uniform coating suspension over its entire length L.

Die Herstellung der Beschichtungssuspensionen für den angedachten Zweck sind dem Fachmann wohl bekannt. Für stöchiometrisch verbrennende Motoren werden z.B. sogenannte Dreiwegkatalysatoren zur Abgasminderung eingesetzt. Dreiwegkatalysatoren (three-way-catalysts, TWCs) sind dem Fachmann hinlänglich bekannt und seit den achtziger Jahren des letzten Jahrhunderts gesetzlich vorgeschrieben. Die eigentliche Katalysatormasse besteht hier zumeist aus einem hochoberflächigen Metallverbindungen, insbesondere oxidischen Trägermaterial, auf dem die katalytisch aktiven Komponenten in feinster Verteilung abgeschieden sind. Als katalytisch aktive Komponenten eignen sich für die Reinigung von stöchiometrisch zusammengesetzten Abgasen besonders die Edelmetalle der Platingruppe, Platin, Palladium und/oder Rhodium. Als Trägermaterial eignen sich zum Beispiel Aluminiumoxid, Siliciumdioxid, Titanoxid, Zirkonoxid, Ceroxid und deren Mischoxide und Zeolithe. Bevorzugt werden so genannte aktive Aluminiumoxide mit einer spezifischen Oberfläche (BET -Oberfläche gemessen nach DIN 66132 - neueste Fassung am Anmeldetag) von mehr als 10 m2/g eingesetzt. Zur Verbesserung der dynamischen Konvertierung enthalten Dreiwegkatalysatoren darüber hinaus auch Sauerstoff speichernde Komponenten. Hierzu gehören Cer/Zirkon-Mischoxide, welche ggf. mit Lanthanoxid, Praseodymoxid und/oder Yttriumoxid versehen sind. Auch zonierte und Mehrschichtsysteme mit Dreiwegaktivität sind mittlerweile bekannt (US8557204; US8394348). Für den Bereich der mager verbrennenden Diesel und direkteinspritzen- den Benzinmotoren sei auf die einschlägige Literatur diesbezüglich verwiesen (Catalytic Air Pollution Control, Heck et al.. John Wiley & Sons, Inc. 2009, S. 238ff.). In einer bevorzugten Ausführungsform weist die erfindungsgemäße Beschichtungsvorrichtung (1) eine zweite Einheit (4) auf, mit der die Beschichtungssuspension (7‘) auf die obere Stirnfläche des Durchflussmonolithen (2) appliziert werden kann, wobei die zweite Einheit (4) einen Duschkopf aufweist, durch den die Beschichtungssuspension appliziert wird. Andere Applikationsvorrichtung sind ebenfalls denkbar (EP-Anmeldung EP22181902.2). The manufacture of the coating suspensions for the intended purpose is well known to those skilled in the art. For example, so-called three-way catalysts are used for stoichiometrically burning engines to reduce exhaust emissions. Three-way catalysts (TWCs) are well known to those skilled in the art and have been required by law since the 1980s. The actual catalyst mass here usually consists of a high-surface metal compound, in particular an oxide carrier material, on which the catalytically active components are deposited in a very fine distribution. The precious metals of the platinum group, platinum, palladium and/or rhodium, are particularly suitable as catalytically active components for cleaning stoichiometrically composed exhaust gases. Suitable carrier materials include, for example, aluminum oxide, silicon dioxide, titanium oxide, zirconium oxide, cerium oxide and their mixed oxides and zeolites. So-called active aluminum oxides with a specific surface area (BET surface area measured according to DIN 66132 - latest version on the date of filing) of more than 10 m 2 /g are preferably used. To improve the dynamic conversion, three-way catalysts also contain oxygen-storing components. These include cerium/zirconium mixed oxides, which may be provided with lanthanum oxide, praseodymium oxide and/or yttrium oxide. Zoned and multi-layer systems with three-way activity are also now known (US8557204; US8394348). For the area of lean-burn diesel and direct-injection gasoline engines, reference is made to the relevant literature (Catalytic Air Pollution Control, Heck et al.. John Wiley & Sons, Inc. 2009, p. 238ff.). In a preferred embodiment, the coating device (1) according to the invention has a second unit (4) with which the coating suspension (7') can be applied to the upper end face of the flow-through monolith (2), wherein the second unit (4) has a shower head through which the coating suspension is applied. Other application devices are also conceivable (EP application EP22181902.2).

In einer weiteren bevorzugten Ausführungsform weist die Beschichtungsvorrichtung (1) einen Container (8) auf, welcher das Herunterlaufen von Beschichtungssuspension (7‘) am Außenmantel des Durchflussmonolithen verhindern hilft (z.B. DE202022000455U1). Der Container (8) kann dabei an der zweiten Einheit (4) befestigt sein. Es ist jedoch auch möglich, den Container (8) an der ersten Einheit (3) zu befestigen. Der Fachmann weiß, wie er dies apparativ bewerkstelligen kann. In a further preferred embodiment, the coating device (1) has a container (8) which helps prevent the coating suspension (7') from running down the outer casing of the flow-through monolith (e.g. DE202022000455U1). The container (8) can be attached to the second unit (4). However, it is also possible to attach the container (8) to the first unit (3). The person skilled in the art knows how to accomplish this in terms of equipment.

Die erfindungsgemäße Beschichtungsvorrichtung ist Teil einer Beschichtungsstation, in der die zu beschichtenden Durchflussmonolithe z.B. über Bandförderanlagen zu der Beschichtungsvorrichtung verbracht werden. Dort angekommen kann ein erster Wägeschritt erfolgen, um das Rohgewicht des Durchflussmonolithen bestimmen zu können. Anschließend werden die Durchflussmonolithen in der ersten Einheit aufgenommen . Es erfolgt die Applikation der Beschichtungssuspension durch die Beschichtungsvorrichtung. Dabei kann die über eine digitale Prozesskontrolle gesteuerte Beschichtungsvorrichtung so ausgebildet werden, dass zuerst die Applikation und Absaugung der Beschichtung durch die dritte und vierte Einheit erfolgt, bevor die Applikation und Durchsaugung der Beschichtungssuspension durch die zweite und vierte Einheit stattfindet. Allerdings wird erfindungsgemäß die Beschichtungsvorrichtung so eingerichtet, dass nur ein Saugimpuls vonnöten ist. Hierzu steuert das Steuergerät die Beschichtungsvorrichtung dergestalt, dass zuerst die Beschichtung durch die dritte Einheit von unten erfolgt. Danach oder gleichzeitig erfolgt die Applikation der Beschichtungssuspension von oben durch die zweite Einheit. Der folgende Saugimpuls durch die vierte Einheit befördert dann sowohl überschüssige Beschichtungssuspension aus den Kanälen des Durchflussmonolithen hinaus als auch die von oben applizierte Beschichtungssuspension in den Durchflussmonolithen hinein. Das Resultat ist eine vollständige, vorzugsweise homogene Beschichtung der Kanäle des Durchflussmonolithen mit einer extrem guten Genauigkeit in der Nassaufnahme, was anschließend durch einen weiteren Wiegeschritt ermittelt werden kann. Beispiele für eine erste Einheit können z.B. folgenden Schriften entnommen werden: WO2011098450A1; EP3887063A1; EP3865211A1; EP3285936A1 The coating device according to the invention is part of a coating station in which the flow-through monoliths to be coated are brought to the coating device, e.g. via belt conveyor systems. Once there, a first weighing step can take place in order to be able to determine the gross weight of the flow-through monolith. The flow-through monoliths are then picked up in the first unit. The coating suspension is applied by the coating device. The coating device, which is controlled via digital process control, can be designed in such a way that the coating is first applied and sucked off by the third and fourth units, before the coating suspension is applied and sucked through by the second and fourth units. However, according to the invention the coating device is set up in such a way that only one suction pulse is required. For this purpose, the control unit controls the coating device in such a way that the coating is first applied from below by the third unit. Afterwards or at the same time the coating suspension is applied from above by the second unit. The following suction pulse through the fourth unit then transports both excess coating suspension out of the channels of the flow monolith and the coating suspension applied from above into the flow monolith. The result is a complete, preferably homogeneous coating of the channels of the flow monolith with extremely good accuracy in wet absorption, which can then be determined by a further weighing step. Examples of a first unit can be found in the following documents: WO2011098450A1; EP3887063A1; EP3865211A1; EP3285936A1

Beispiele für eine zweite Einheit können z.B. folgenden Schriften entnommen werden: US9227184B2; EP1900442B1 ; JP5925101B; JP2015039672A; Beispiele für eine dritte Einheit können z.B. folgenden Schriften entnommen werden: DE102017122254A1 ; EP3122458B1; US2021170386AA Examples of a second unit can be found in the following documents: US9227184B2; EP1900442B1 ; JP5925101B; JP2015039672A; Examples of a third unit can be found in the following documents: DE102017122254A1 ; EP3122458B1; US2021170386AA

Beispiele für eine vierte Einheit können z.B. folgenden Schriften entnommen werden: EP3386642A1 ; CN114289253A; CN112756190A; EP3865211A1; CN208839891U; EP3285936A1 ; WO16143811 A1; JP2014233713A2 Examples of a fourth unit can be found in the following documents: EP3386642A1; CN114289253A; CN112756190A; EP3865211A1; CN208839891U; EP3285936A1; WO16143811 A1; JP2014233713A2

Claims

Patentansprüche patent claims 1. Beschichtungsvorrichtung (1) zur Herstellung von katalytisch beschichteten Durchflussmonolithen (2) für die Abgaskatalyse, wobei die Durchflussmonolithen (2) zwei Stirnflächen, eine Mantelfläche der Länge L und Durchflusskanäle aufweisen, die von der einen zur anderen Stirnfläche einen Gasdurchfluss gewährleisten, aufweisend: eine erste Einheit (3) zur Aufnahme des Durchflussmonolithen (2) in senkrechter Ausrichtung; eine zweite Einheit (4) zur Applikation einer Beschichtungssuspension (7) auf die obere Stirnfläche des Durchflussmonolithen (2); und eine dritte Einheit (5) zur Applikation einer Beschichtungssuspension (7‘) durch die untere Stirnfläche des Durchflussmonolithen; und eine vierte Einheit (6) zum Absaugen überschüssiger Beschichtungssuspension aus den Durchflusskanälen des Durchflussmonolithen nach unten, dadurch gekennzeichnet, dass die Beschichtungsvorrichtung (1) so ausgebildet ist, dass die dritte Einheit (5) weniger als 20% der Länge L des Durchflussmonolithen mit der Beschichtungssuspension (7‘) kontaktiert und durch die zweite Einheit (4) so viel Beschichtungssuspension (7) appliziert wird, dass bei einem folgenden Saugimpuls durch die vierte Einheit (6) die gesamten Durchflusskanäle auf der gesamten Länge L mit Beschichtungssuspension (7, 7‘) in Kontakt kommen. 1. Coating device (1) for producing catalytically coated flow-through monoliths (2) for exhaust gas catalysis, wherein the flow-through monoliths (2) have two end faces, a lateral surface of length L and flow channels which ensure a gas flow from one end face to the other, comprising: a first unit (3) for receiving the flow-through monolith (2) in a vertical orientation; a second unit (4) for applying a coating suspension (7) to the upper end face of the flow-through monolith (2); and a third unit (5) for applying a coating suspension (7') through the lower end face of the flow-through monolith; and a fourth unit (6) for sucking excess coating suspension downwards from the flow channels of the flow monolith, characterized in that the coating device (1) is designed such that the third unit (5) contacts less than 20% of the length L of the flow monolith with the coating suspension (7') and the second unit (4) applies so much coating suspension (7) that, with a subsequent suction pulse by the fourth unit (6), all of the flow channels come into contact with coating suspension (7, 7') over the entire length L. 2. Beschichtungsvorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die zweite Einheit (4) einen Duschkopf aufweist, durch den die Beschichtungssuspension (6) appliziert wird. 2. Coating device according to claim 1, characterized in that the second unit (4) has a shower head through which the coating suspension (6) is applied. 3. Beschichtungsvorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass diese einen Container (8) aufweist, welches das Herunterlaufen von Beschichtungssuspension (7) am Außenmantel des Durchflussmonolithen verhindert. 3. Coating device according to claim 1, characterized in that it has a container (8) which prevents the coating suspension (7) from running down the outer casing of the flow-through monolith.
PCT/EP2024/065325 2023-06-13 2024-06-04 Coating station Pending WO2024256218A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202023103234.6 2023-06-13
DE202023103234.6U DE202023103234U1 (en) 2023-06-13 2023-06-13 coating device

Publications (1)

Publication Number Publication Date
WO2024256218A1 true WO2024256218A1 (en) 2024-12-19

Family

ID=87160905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2024/065325 Pending WO2024256218A1 (en) 2023-06-13 2024-06-04 Coating station

Country Status (2)

Country Link
DE (1) DE202023103234U1 (en)
WO (1) WO2024256218A1 (en)

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011098450A1 (en) 2010-02-09 2011-08-18 Umicore Ag & Co. Kg Coating method and device
EP1900442B1 (en) 2005-07-07 2013-01-09 Cataler Corporation Device and method for coating base material
US8394348B1 (en) 2010-11-22 2013-03-12 Umicore Ag & Co. Kg Three-way catalyst having a upstream multi-layer catalyst
US8557204B2 (en) 2010-11-22 2013-10-15 Umicore Ag & Co. Kg Three-way catalyst having an upstream single-layer catalyst
JP2014233713A (en) 2013-06-05 2014-12-15 株式会社キャタラー Slurry recovery apparatus targeting the production of a monolithic catalyst
JP2015039672A (en) 2013-08-22 2015-03-02 株式会社キャタラー Slurry supplying nozzle and production apparatus and production method of exhaust gas purifying catalyst using the same
WO2015121910A1 (en) 2014-02-12 2015-08-20 新日鉄住金マテリアルズ株式会社 Base material for carrying catalysts
US9227184B2 (en) 2009-04-03 2016-01-05 Cataler Corporation Method and apparatus of manufacturing exhaust gas-purifying catalyst and nozzle used therefor
WO2016057285A1 (en) 2014-10-06 2016-04-14 Corning Incorporated Honeycomb filter article and methods thereof
JP5925101B2 (en) 2012-10-09 2016-05-25 株式会社キャタラー Slurry supply nozzle and exhaust gas purifying catalyst manufacturing apparatus and manufacturing method using the same
WO2016143811A1 (en) 2015-03-09 2016-09-15 株式会社キャタラー Catalyst slurry coating device
WO2017153239A1 (en) 2016-03-09 2017-09-14 Haldor Topsøe A/S Preparation method of a non-woven fibrous material-based honeycomb catalyst
EP3285936A1 (en) 2015-04-21 2018-02-28 Umicore AG & Co. KG Method, device and apparatus for coating an inner surface of a substrate
DE102017122254A1 (en) 2016-12-14 2018-06-14 Ford Global Technologies, Llc Improvements to or regarding a flow-optimized washcoat job
EP3386642A1 (en) 2015-12-09 2018-10-17 BASF Corporation Systems and methods for solution coating a substrate
CN208839891U (en) 2018-07-31 2019-05-10 包头稀土研究院 Catalyst slurry coating device
EP3122458B1 (en) 2014-03-25 2020-01-08 Johnson Matthey Public Limited Company Method for coating a filter substrate
US20200171529A1 (en) * 2018-11-29 2020-06-04 Johnson Matthey Public Limited Company Apparatus and method for coating substrates with washcoats
CN112756190A (en) 2020-12-21 2021-05-07 浙江德创环保科技股份有限公司 Honeycomb catalyst coating equipment
US20210170386A1 (en) 2019-12-10 2021-06-10 Johnson Matthey Public Limited Company Apparatus and method for coating substrates with washcoats
EP3865211A1 (en) 2018-10-12 2021-08-18 Heesung Catalysts Corporation Method for coating porous catalyst support and device therefor
DE202022000455U1 (en) 2022-02-22 2022-03-02 Umicore Ag & Co. Kg coating hat
CN114289253A (en) 2021-12-31 2022-04-08 镇江市思泰智能装备技术有限公司 Coating device and method for catalyst carrier
DE202023100970U1 (en) * 2023-03-01 2023-03-16 Umicore Ag & Co. Kg coating device

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1900442B1 (en) 2005-07-07 2013-01-09 Cataler Corporation Device and method for coating base material
US9227184B2 (en) 2009-04-03 2016-01-05 Cataler Corporation Method and apparatus of manufacturing exhaust gas-purifying catalyst and nozzle used therefor
EP2415522B1 (en) 2009-04-03 2018-04-18 Cataler Corporation Method and device for manufacturing exhaust emission control catalyst
EP2533901B1 (en) 2010-02-09 2017-12-20 Umicore AG & Co. KG Coating method and device
WO2011098450A1 (en) 2010-02-09 2011-08-18 Umicore Ag & Co. Kg Coating method and device
US8394348B1 (en) 2010-11-22 2013-03-12 Umicore Ag & Co. Kg Three-way catalyst having a upstream multi-layer catalyst
US8557204B2 (en) 2010-11-22 2013-10-15 Umicore Ag & Co. Kg Three-way catalyst having an upstream single-layer catalyst
JP5925101B2 (en) 2012-10-09 2016-05-25 株式会社キャタラー Slurry supply nozzle and exhaust gas purifying catalyst manufacturing apparatus and manufacturing method using the same
JP2014233713A (en) 2013-06-05 2014-12-15 株式会社キャタラー Slurry recovery apparatus targeting the production of a monolithic catalyst
JP2015039672A (en) 2013-08-22 2015-03-02 株式会社キャタラー Slurry supplying nozzle and production apparatus and production method of exhaust gas purifying catalyst using the same
WO2015121910A1 (en) 2014-02-12 2015-08-20 新日鉄住金マテリアルズ株式会社 Base material for carrying catalysts
EP3122458B1 (en) 2014-03-25 2020-01-08 Johnson Matthey Public Limited Company Method for coating a filter substrate
WO2016057285A1 (en) 2014-10-06 2016-04-14 Corning Incorporated Honeycomb filter article and methods thereof
WO2016143811A1 (en) 2015-03-09 2016-09-15 株式会社キャタラー Catalyst slurry coating device
EP3285936A1 (en) 2015-04-21 2018-02-28 Umicore AG & Co. KG Method, device and apparatus for coating an inner surface of a substrate
EP3386642A1 (en) 2015-12-09 2018-10-17 BASF Corporation Systems and methods for solution coating a substrate
WO2017153239A1 (en) 2016-03-09 2017-09-14 Haldor Topsøe A/S Preparation method of a non-woven fibrous material-based honeycomb catalyst
DE102017122254A1 (en) 2016-12-14 2018-06-14 Ford Global Technologies, Llc Improvements to or regarding a flow-optimized washcoat job
CN208839891U (en) 2018-07-31 2019-05-10 包头稀土研究院 Catalyst slurry coating device
EP3865211A1 (en) 2018-10-12 2021-08-18 Heesung Catalysts Corporation Method for coating porous catalyst support and device therefor
US20200171529A1 (en) * 2018-11-29 2020-06-04 Johnson Matthey Public Limited Company Apparatus and method for coating substrates with washcoats
EP3887063A1 (en) 2018-11-29 2021-10-06 Johnson Matthey Public Limited Company Apparatus and method for coating substrates with washcoats
US20210170386A1 (en) 2019-12-10 2021-06-10 Johnson Matthey Public Limited Company Apparatus and method for coating substrates with washcoats
CN112756190A (en) 2020-12-21 2021-05-07 浙江德创环保科技股份有限公司 Honeycomb catalyst coating equipment
CN114289253A (en) 2021-12-31 2022-04-08 镇江市思泰智能装备技术有限公司 Coating device and method for catalyst carrier
DE202022000455U1 (en) 2022-02-22 2022-03-02 Umicore Ag & Co. Kg coating hat
DE202023100970U1 (en) * 2023-03-01 2023-03-16 Umicore Ag & Co. Kg coating device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HECK ET AL.: "Catalytic Air Pollution Control", 2009, JOHN WILEY & SONS, INC

Also Published As

Publication number Publication date
DE202023103234U1 (en) 2023-06-26

Similar Documents

Publication Publication Date Title
EP3501648B1 (en) Catalytically active particle filter
EP3601755B1 (en) Particle filter
EP2038046B1 (en) Two-layered three-way catalyst and its use
DE102011002449B4 (en) Method and device for coating a monolith substrate with a catalyst component
DE102014107667A1 (en) CATALYTED FILTER FOR TREATMENT OF EXHAUST GAS
DE102014107669A1 (en) CATALYTED FILTER FOR TREATMENT OF EXHAUST GAS
DE102018108346A1 (en) Coated wall flow filter
EP3737491B1 (en) Catalytically active particulate filter
EP3505246B1 (en) Catalytically active particle filter
DE112014000588T5 (en) Ammonia oxidation catalyst
EP3505245B1 (en) Catalytically active particle filter
DE102017116461A1 (en) CATALYST BINDER FOR FILTER SUBSTRATES
EP1974810A1 (en) Palladium-rhodium single layer catalytic converter
DE102019100099B4 (en) Process for the production of catalytically active wall-flow filters, catalytically active wall-flow filters and their use
EP2623183B1 (en) Catalytically active particulate filter and use of same
DE102016123228A1 (en) Process for producing a catalytic particulate filter
WO2024179974A2 (en) Coating device
DE202017007047U1 (en) Catalytically active particle filter
WO2024256218A1 (en) Coating station
EP4221871A1 (en) Bismut containing dieseloxidation catalyst
EP4313376B1 (en) Particle filter for exhaust gas of gasoline engines
DE102021107130B4 (en) Device for increasing the fresh filtration of petrol particle filters
DE102022130469A1 (en) Method and device for producing a substrate for an exhaust gas aftertreatment device
DE102023117464A1 (en) Method and device for producing a substrate for an exhaust gas aftertreatment device
DE202017007046U1 (en) Catalytically active particle filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24731860

Country of ref document: EP

Kind code of ref document: A1