WO2024222567A1 - 选通管材料、相变存储芯片、存储设备及电子设备 - Google Patents
选通管材料、相变存储芯片、存储设备及电子设备 Download PDFInfo
- Publication number
- WO2024222567A1 WO2024222567A1 PCT/CN2024/088633 CN2024088633W WO2024222567A1 WO 2024222567 A1 WO2024222567 A1 WO 2024222567A1 CN 2024088633 W CN2024088633 W CN 2024088633W WO 2024222567 A1 WO2024222567 A1 WO 2024222567A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gate tube
- tube material
- gate
- change memory
- band gap
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 213
- 230000008859 change Effects 0.000 title claims abstract description 81
- 230000015654 memory Effects 0.000 claims abstract description 72
- 239000000126 substance Substances 0.000 claims abstract description 65
- 238000006073 displacement reaction Methods 0.000 claims description 55
- 238000000034 method Methods 0.000 claims description 42
- 238000003860 storage Methods 0.000 claims description 30
- 108010001267 Protein Subunits Proteins 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 abstract description 7
- 231100000252 nontoxic Toxicity 0.000 abstract description 6
- 230000003000 nontoxic effect Effects 0.000 abstract description 6
- 239000004065 semiconductor Substances 0.000 abstract description 5
- 150000001875 compounds Chemical class 0.000 description 83
- 238000012216 screening Methods 0.000 description 30
- 238000012360 testing method Methods 0.000 description 30
- 229910005839 GeS 2 Inorganic materials 0.000 description 24
- 238000010586 diagram Methods 0.000 description 21
- 230000033001 locomotion Effects 0.000 description 21
- 239000000758 substrate Substances 0.000 description 20
- 230000006870 function Effects 0.000 description 19
- 230000009286 beneficial effect Effects 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 238000000329 molecular dynamics simulation Methods 0.000 description 8
- 239000012782 phase change material Substances 0.000 description 8
- 238000005204 segregation Methods 0.000 description 8
- 229910005842 GeS2 Inorganic materials 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 7
- 238000001755 magnetron sputter deposition Methods 0.000 description 6
- 239000000203 mixture Chemical group 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910008813 Sn—Si Inorganic materials 0.000 description 4
- 230000002457 bidirectional effect Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- HTXDPTMKBJXEOW-UHFFFAOYSA-N iridium(IV) oxide Inorganic materials O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000003775 Density Functional Theory Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000004549 pulsed laser deposition Methods 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 2
- 238000000427 thin-film deposition Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- MAKDTFFYCIMFQP-UHFFFAOYSA-N titanium tungsten Chemical compound [Ti].[W] MAKDTFFYCIMFQP-UHFFFAOYSA-N 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910002909 Bi-Te Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 229910017629 Sb2Te3 Inorganic materials 0.000 description 1
- -1 Sb2Te3 ) Chemical class 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910008561 TiTe2 Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000007578 melt-quenching technique Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005610 quantum mechanics Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/882—Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/10—Phase change RAM [PCRAM, PRAM] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/011—Manufacture or treatment of multistable switching devices
- H10N70/021—Formation of switching materials, e.g. deposition of layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
- H10N70/231—Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/884—Switching materials based on at least one element of group IIIA, IVA or VA, e.g. elemental or compound semiconductors
Definitions
- the present disclosure relates to the field of semiconductor storage technology, and in particular to gate tube materials, phase change storage chips, storage devices and electronic devices.
- Phase Change Memory has great potential in high storage density and fast operating speed.
- Phase Change Memory includes multiple phase change memory cells. There is leakage current in the phase change memory cells during read, erase and write operations. In order to prevent the leakage current from adversely affecting the adjacent phase change memory cells, a gate tube unit that acts as a switch is configured for each phase change memory cell.
- the gate tube unit includes a gate layer made of a gate tube material.
- a gate layer made of a gate tube material.
- the related art provides some gate tube materials, including GeAsSiSe material, GeAsSiTe material, and the like.
- the GeAsSiSe material or the GeAsSiTe material includes the toxic As element, which poses a safety hazard.
- the present disclosure provides a gate tube material, a phase change memory chip, a storage device and an electronic device, which can solve the above-mentioned technical problems.
- a gate material wherein the chemical formula of the gate material is ( GexS1 -x ) 1- yMy , where M is selected from Te or Sn; wherein 0.2 ⁇ x ⁇ 0.7, 0 ⁇ y ⁇ 0.4, and x and y are both atomic percentages.
- the gate material provided in the embodiment of the present disclosure is doped with a first doping element M into a Ge-S material, and the type and atomic percentage of the first doping element M are limited, so that the gate material maintains a bidirectional threshold switch characteristic (i.e., OTS characteristic), and the above-mentioned elements cooperate with each other, so that the gate material has at least the advantages of low leakage current, appropriate threshold voltage, strong thermal stability, etc.
- the first doping element M is non-toxic, environmentally friendly, and does not cause safety hazards.
- the M element is Te element; the value ranges of x and y are respectively as follows: 0.312 ⁇ x ⁇ 0.649, 0 ⁇ y ⁇ 0.377.
- the gate tube material can not only maintain a low leakage current and a suitable threshold voltage, but also further enhance its thermal stability.
- the M element is Sn element; the value ranges of x and y are respectively as follows: 0.312 ⁇ x ⁇ 0.649, 0 ⁇ y ⁇ 0.08.
- the gate tube material can not only maintain a low leakage current and a suitable threshold voltage, but also further enhance its thermal stability.
- another gate material is provided, wherein the chemical formula of the gate material is [( GexS1 -x ) 1-yMy ] 1- zNz ;
- the M element and the N element are different, and the M element and the N element are respectively selected from one of the Te element, the Sn element, the C element, and the Si element; wherein 0.2 ⁇ x ⁇ 0.7, 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.4, and x, y, and z are all atomic percentages.
- the gate material provided by the embodiment of the present disclosure is made by doping the Ge-S series material with the first doping element M and the second doping element N, and limiting the types and atomic percentages of the first doping element M and the second doping element N, so that the gate material maintains the bidirectional threshold switch characteristic (i.e., OTS characteristic), and the above elements cooperate with each other, so that the gate material has at least the advantages of low leakage current, appropriate threshold voltage, strong thermal stability, etc.
- the first doping element M and the second doping element N are both non-toxic, environmentally friendly, and will not cause safety hazards.
- the M element is Te element; the value ranges of x, y and z are as follows: 0.312 ⁇ x ⁇ 0.649, 0 ⁇ y ⁇ 0.377, 0.02 ⁇ z ⁇ 0.2.
- the gate tube material can not only maintain a low leakage current and a suitable threshold voltage, but also further enhance its thermal stability.
- the N element is a C element or a Si element; the value range of z is 0.1 ⁇ z ⁇ 0.2, which can further improve the thermal stability of the gate tube material.
- the N element is Sn element; the value range of z is 0.02 ⁇ z ⁇ 0.08, which can further improve the thermal stability of the gate tube material.
- the M element is Sn element; the value ranges of x, y and z are as follows: 0.312 ⁇ x ⁇ 0.649, 0 ⁇ y ⁇ 0.08, 0.02 ⁇ z ⁇ 0.2.
- the gate tube material can not only maintain a low leakage current and a suitable threshold voltage, but also further enhance its thermal stability.
- the N element is a C element or a Si element; the value range of z is 0.1 ⁇ z ⁇ 0.2, which can further improve the thermal stability of the gate tube material.
- the N element is Te element; the value range of z is 0.02 ⁇ z ⁇ 0.2, which can further improve the thermal stability of the gate tube material.
- the gate tube material is obtained by the following method:
- the gating tube material is obtained according to the percentage of elements corresponding to the Ge-S-M ternary structure model or the Ge-S-M-N quaternary structure model that meets the energy band gap threshold condition.
- the gate tube material is also obtained by the following method:
- the gating tube material is obtained according to the percentage of elements corresponding to the Ge-S-M ternary structure model or the Ge-S-M-N quaternary structure model that meets the mean square displacement threshold condition.
- phase change memory chip comprises a plurality of memory sub-units, each of the memory sub-units comprises a gate tube unit and a phase change memory unit connected in series;
- Each of the gate tube units comprises a gate layer, and the gate layer is prepared by using any of the above-mentioned gate tube materials.
- the phase-change memory chip can also be called a phase-change memory.
- a gate tube unit is configured for each phase-change memory unit.
- the gate tube unit is used as a switching device of the phase-change memory unit, which can effectively suppress the leakage current generated during the operation of the phase-change memory chip.
- the phase-change memory chip provided by the embodiment of the present disclosure uses the gate tube material involved above, so that the phase-change memory chip has the advantages of low threshold voltage, low leakage current, strong thermal stability, and long cycle life.
- the gate tube unit and the phase change memory unit are integrated.
- the gate tube unit and the phase change memory unit are independent of each other.
- a storage device which includes a controller and at least one phase-change memory chip, the phase-change memory chip is as described above, and the controller is used to store data in the phase-change memory chip.
- the storage device (also referred to as a memory) may be configured to store various types of data, which may be contact data, phone book data, messages, pictures, videos, etc., or may be instructional data.
- the electronic device includes a processor and the above-mentioned storage device, and the processor is used to store data generated by the electronic device in the storage device.
- the electronic devices include but are not limited to: computers, mobile phones, music playing devices, digital broadcasting devices, message sending and receiving devices, game control devices, medical devices, fitness equipment, personal digital assistants, etc.
- FIG1 is a schematic structural diagram of a storage subunit in which an exemplary gating layer and a phase change memory unit of a confined structure are integrated and arranged according to an embodiment of the present disclosure
- FIG2 is a schematic structural diagram of an exemplary gate tube unit provided in an embodiment of the present disclosure.
- FIG3 is a schematic diagram of the structure of an exemplary storage device provided in an embodiment of the present disclosure.
- FIG4 is a flowchart of obtaining an exemplary gate tube material provided by an embodiment of the present disclosure
- FIG5 is a flowchart of obtaining another exemplary gate tube material provided by an embodiment of the present disclosure.
- FIG6 is a band gap test diagram of GeS 5 provided in an embodiment of the present disclosure.
- FIG. 7 is a graph showing a band gap test of GeS 2 provided in an embodiment of the present disclosure.
- FIG8 is a band gap test diagram of Ge 38 S 62 provided in an embodiment of the present disclosure.
- FIG9 is a graph showing a band gap test of GeS provided by an embodiment of the present disclosure.
- FIG. 10 is a graph showing a band gap test of Ge 2 S provided by an embodiment of the present disclosure.
- FIG11 is a diagram showing a fitting curve of the energy band gap in a Ge-S binary compound as a function of Ge content provided by an embodiment of the present disclosure
- FIG12 is a graph showing a band gap test of a Ge-S-Te ternary compound with a Te doping percentage of 14% provided by an embodiment of the present disclosure
- FIG13 is a graph showing a band gap test of a Ge-S-Te ternary compound with a Te doping percentage of 30% provided by an embodiment of the present disclosure
- FIG14 is a graph showing a band gap test of a Ge-S-Te ternary compound with a Te doping percentage of 40% provided in an embodiment of the present disclosure
- FIG15 is a diagram showing a fitting curve of the energy band gap in the Ge-S-Te ternary compound according to an embodiment of the present disclosure as a function of Te content;
- FIG. 16 is a partial wave state density test diagram of Ge 2 S provided by an embodiment of the present disclosure.
- FIG17 is a partial wave state density test diagram of a Ge-S-Te ternary compound with a Te doping percentage of 14% provided by an embodiment of the present disclosure
- FIG18 is a partial wave state density test diagram of a Ge-S-Te ternary compound with a Te doping percentage of 30% provided by an embodiment of the present disclosure
- FIG19 is a partial wave state density test diagram of a Ge-S-Te ternary compound with a Te doping percentage of 40% provided by an embodiment of the present disclosure
- FIG. 20 is a test diagram of mean square displacement of each element in the Ge 2 S binary compound at 600K provided by an embodiment of the present disclosure
- FIG21 is a graph showing the mean square displacement of each element in a Ge-S-Te ternary compound with a Te doping percentage of 14% at 600K provided by an embodiment of the present disclosure
- FIG22 is a graph showing the mean square displacement of each element in a Ge-S-Te ternary compound with a Te doping percentage of 30% at 600K provided by an embodiment of the present disclosure
- FIG23 is a graph showing the mean square displacement of each element in a Ge-S-Te ternary compound with a Te doping percentage of 40% at 600K provided by an embodiment of the present disclosure
- FIG24 is a band gap test diagram of a Ge-S-Sn ternary compound with a Sn doping percentage of 5% provided by an embodiment of the present disclosure
- FIG25 is a band gap test diagram of a Ge-S-Sn ternary compound with a Sn doping percentage of 8% provided by an embodiment of the present disclosure
- FIG26 is a band gap test diagram of a Ge-S-Sn ternary compound with a Sn doping percentage of 10% provided by an embodiment of the present disclosure
- FIG27 is a graph showing the mean square displacement of each element in a Ge-S-Sn ternary compound with a Sn doping percentage of 5% at 600K provided by an embodiment of the present disclosure
- FIG28 is a graph showing the mean square displacement of each element in a Ge-S-Sn ternary compound with a Sn doping percentage of 8% at 600K provided by an embodiment of the present disclosure
- FIG29 is a graph showing the mean square displacement of each element in a Ge-S-Sn ternary compound with a Sn doping percentage of 8% at 600K provided by an embodiment of the present disclosure
- FIG30 is a graph showing a band gap test of a Ge-S-Te-Si quaternary compound with a Si doping percentage of 10% provided by an embodiment of the present disclosure
- FIG31 is a graph showing the mean square displacement of each element in a Ge-S-Te-Si quaternary compound with a Si doping percentage of 10% at 600K provided by an embodiment of the present disclosure
- FIG32 is a graph showing a band gap test of a Ge-S-Sn-Si quaternary compound with a Si doping percentage of 10% provided by an embodiment of the present disclosure
- FIG33 is a test diagram of the mean square displacement of each element in the Ge-S-Sn-Si quaternary compound with a Si doping percentage of 10% at 600K provided in an embodiment of the present disclosure.
- the horizontal axis Energy (ev) represents the energy band gap, and the unit is ev;
- the vertical axis IPR is Inverse Participation Ratio, which represents the degree of localization of each electronic state in the system.
- the horizontal axis Time is time, and the unit is picoseconds;
- the vertical axis MSD is the mean square displacement value, which represents the square value of the atomic diffusion movement displacement after t time compared with the initial time ⁇ .
- the horizontal axis Energy (ev) represents the energy band gap
- the unit is ev
- the vertical axis PDOS is the number of electronic states occupied by a certain element in each unit.
- Second bottom electrode 10. Second insulating medium; 11. Second substrate.
- Phase Change Memory is a solid-state semiconductor non-volatile memory, also known as phase change memory chip, which uses phase change material as storage medium. Phase change material can undergo reversible transformation between crystalline and amorphous states. By utilizing the difference in high resistivity and low resistivity of phase change material in amorphous and crystalline states, phase change memory can store data "0" and "1".
- the phase change memory includes multiple phase change memory cells.
- the phase change memory cells include read, erase and write operations. There is leakage current in the phase change memory cells during the read, erase and write operations.
- a selection tube unit that acts as a switch is configured for each phase change memory cell.
- Ovonic Threshold Switching (OTS) type gate tube unit has the advantages of high on-state current and low leakage current and is widely used in phase change memory.
- the working principle of the OTS type gate tube unit is as follows: when the external voltage or the external current is less than the threshold voltage or the threshold current, the gate tube unit maintains high resistance and is in a closed state, which can effectively suppress leakage current. When the external voltage or the external current is greater than the threshold voltage or the threshold current, the gate tube unit quickly changes to low resistance and is in an open state, so that the corresponding phase change storage unit in series performs read, write, and erase operations.
- the gate tube unit when the phase change memory unit is read, written, or erased, the gate tube unit needs to be turned on and off, so the number of cycles of the gate tube unit needs to be at least 3 orders of magnitude higher than the number of cycles of the phase change memory unit.
- the cycle life of the gate tube unit directly affects the cycle life of the phase change memory.
- the cycle life involved here refers to the number of cycles that each component can perform before failure when the phase change memory is set to 0 or 1 for repeated cycle operations.
- the gate tube unit includes a gate layer made of a gate tube material.
- a gate layer made of a gate tube material.
- the related art provides some gate tube materials, including GeAsSiSe material, GeAsSiTe material, etc.
- GeAsSiSe material or GeAsSiTe material contains As element, which is toxic and poses a safety hazard.
- an embodiment of the present disclosure provides a gate tube material, which is a ternary compound, and the chemical formula of the gate tube material is ( GexS1 -x ) 1- yMy , where the M element is selected from Te or Sn; wherein 0.2 ⁇ x ⁇ 0.7, 0 ⁇ y ⁇ 0.4, and x and y are both atomic percentages.
- the gate material provided in the embodiment of the present disclosure is doped with a first doping element M into a Ge-S material, and the type and atomic percentage of the first doping element M are limited, so that the gate material maintains a bidirectional threshold switch characteristic (i.e., OTS characteristic), and the above-mentioned elements cooperate with each other, so that the gate material has at least the following advantages: low leakage current, appropriate threshold voltage, strong thermal stability, long cycle life, and high fatigue resistance.
- the first doping element M is non-toxic, environmentally friendly, and does not cause safety hazards.
- the M element is Te element
- the value ranges of x and y are as follows: 0.312 ⁇ x ⁇ 0.649, 0 ⁇ y ⁇ 0.377. That is, the chemical formula of the gate tube material is ( GexS1 -x ) 1- yTey , wherein 0.312 ⁇ x ⁇ 0.649, 0 ⁇ y ⁇ 0.377.
- the M element is Te
- the value of x includes but is not limited to: 0.38, 0.43, 0.47, 0.5, 0.53, 0.55, etc.
- the value of y includes but is not limited to: 0.10, 0.13, 0.16, 0.19, 0.22, etc.
- the obtained gate tube material has stronger thermal stability, so that the gate tube device prepared based on these gate tube materials can withstand higher operating currents and operating temperatures, thereby significantly improving the operating reliability of the gate tube device.
- the gate tube device when the gate tube device is prepared based on these gate tube materials through the back-end process, the gate tube device can withstand an ambient temperature of 400°C for at least 15 minutes without causing problems such as element drift and segregation caused by high temperature.
- the M element is Sn element
- the value ranges of x and y are as follows: 0.312 ⁇ x ⁇ 0.649, 0 ⁇ y ⁇ 0.08. That is, the chemical formula of the gate tube material is ( GexS1 -x ) 1- ySny , wherein 0.312 ⁇ x ⁇ 0.649, 0 ⁇ y ⁇ 0.08.
- the M element is Sn
- the value of x includes but is not limited to: 0.38, 0.43, 0.47, 0.5, 0.53, 0.55, etc.; the value of y includes but is not limited to: 0.03, 0.04, 0.05, 0.06, 0.07, etc.
- the obtained gate tube material has stronger thermal stability, so that the gate tube device prepared based on these gate tube materials can withstand higher operating current and operating temperature, thereby significantly improving the Improve the working reliability of the gate tube device.
- the gate tube device can withstand an ambient temperature of 400°C for at least 15 minutes without causing problems such as element drift and segregation caused by high temperature.
- an embodiment of the present disclosure provides another gate tube material, which is a quaternary compound, and the chemical formula of the gate tube material is [( GexS1 -x ) 1- yMy ] 1-zNz ; the M element and the N element are different, and the M element and the N element are respectively selected from one of Te element, Sn element, C element, and Si element; wherein 0.2 ⁇ x ⁇ 0.7, 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.4, and x, y, and z are all atomic percentages.
- the gate tube material in the form of the quaternary compound provided in the embodiment of the present disclosure is obtained by further doping the element N on the basis of the gate tube material in the form of the ternary compound.
- the gate material By doping the Ge-S material with the first doping element M and the second doping element N at the same time, and limiting the types and atomic percentages of the first doping element M and the second doping element N, the gate material maintains the bidirectional threshold switch characteristic (i.e., OTS characteristic), and the above elements cooperate with each other, so that the gate material has at least the following advantages: low leakage current, appropriate threshold voltage, strong thermal stability, long cycle life, and high fatigue resistance.
- the first doping element M and the second doping element N are non-toxic, environmentally friendly, and will not cause safety hazards.
- the M element is the Te element; the value ranges of x, y and z are as follows: 0.312 ⁇ x ⁇ 0.649, 0 ⁇ y ⁇ 0.377, 0.02 ⁇ z ⁇ 0.2.
- the chemical formula of the gate tube material is [( GexS1 -x ) 1- yTey ] 1-zNz , N element is one of Sn element, C element and Si element, wherein 0.312 ⁇ x ⁇ 0.649, 0 ⁇ y ⁇ 0.377, 0.02 ⁇ z ⁇ 0.2.
- the M element is Te
- one type of gate tube material is that the M element is the Te element, the N element is the C element or the Si element; the value range of z is 0.1 ⁇ z ⁇ 0.2. That is to say, the chemical formula of the gate tube material is [( GexS1 -x ) 1- yTey ] 1-zCz or [( GexS1 -x ) 1- yTey ] 1-zSiz ; wherein, 0.312 ⁇ x ⁇ 0.649, 0 ⁇ y ⁇ 0.377, 0.1 ⁇ z ⁇ 0.2. Furthermore, when the N element is the Si element, the value range of z is 0.1 ⁇ z ⁇ 0.184, which can further improve the thermal stability of the gate tube material.
- the value of x includes but is not limited to: 0.38, 0.43, 0.47, 0.5, 0.53, 0.55, etc.; the value of y includes but is not limited to: 0.10, 0.13, 0.16, 0.19, 0.22, etc.; the value of z includes but is not limited to: 0.1, 0.12, 0.14, 0.16, etc.
- the obtained gate tube material has stronger thermal stability, so that the gate tube device prepared based on these gate tube materials can withstand higher operating currents and operating temperatures, thereby significantly improving the operating reliability of the gate tube device.
- the gate tube device when the gate tube device is prepared based on these gate tube materials through a back-end process, the gate tube device can withstand an ambient temperature of 400°C for at least 15 minutes without causing problems such as element drift and segregation caused by high temperature.
- another type of gate material is that the M element is Te element, the N element is Sn element, and the value range of z is 0.02 ⁇ z ⁇ 0.08. That is, the chemical formula of the gate material is [( GexS1 -x ) 1- yTey ] 1- zSnz ; wherein 0.312 ⁇ x ⁇ 0.649, 0 ⁇ y ⁇ 0.377, 0.02 ⁇ z ⁇ 0.08.
- the value of x includes but is not limited to: 0.38, 0.43, 0.47, 0.5, 0.53, 0.55, etc.; the value of y includes but is not limited to: 0.10, 0.13, 0.16, 0.19, 0.22, etc.; the value of z includes but is not limited to: 0.04, 0.05, 0.06, 0.07, 0.08, etc.
- the obtained gate tube material has stronger thermal stability, so that the gate tube device prepared based on these gate tube materials can withstand higher operating currents and operating temperatures, thereby significantly improving the operating reliability of the gate tube device.
- the gate tube device when the gate tube device is prepared based on these gate tube materials through a back-end process, the gate tube device can withstand an ambient temperature of 400°C for at least 15 minutes without causing problems such as element drift and segregation caused by high temperature.
- the M element is Sn element; the value ranges of x, y and z are as follows: 0.312 ⁇ x ⁇ 0.649, 0 ⁇ y ⁇ 0.08, 0.02 ⁇ z ⁇ 0.2. That is, the chemical formula of the gate tube material is [( GexS1 -x ) 1- ySny ] 1- zNz , N element is one of Te element, C element and Si element, wherein 0.312 ⁇ x ⁇ 0.649, 0 ⁇ y ⁇ 0.08, 0.02 ⁇ z ⁇ 0.2.
- the M element is Sn
- the threshold voltage can be prevented from being too large to cause the phase change memory to be difficult to operate.
- one type of gate tube material is that the M element is Sn element, the N element is C element or Si element; the value range of z is 0.1 ⁇ z ⁇ 0.2. That is to say, the chemical formula of the gate tube material is [( GexS1 -x ) 1-ySny ] 1-zCz or [( GexS1 -x) 1- ySny ] 1- zSiz ; wherein, 0.312 ⁇ x ⁇ 0.649, 0 ⁇ y ⁇ 0.08, 0.1 ⁇ z ⁇ 0.2. Furthermore, when the N element is Si element, the value range of z is 0.1 ⁇ z ⁇ 0.184, which can further improve the thermal stability of the gate tube material.
- the value of x includes but is not limited to: 0.38, 0.43, 0.47, 0.5, 0.53, 0.55, etc.; the value of y includes but is not limited to: 0.03, 0.04, 0.05, 0.06, 0.07, etc.; the value of z includes but is not limited to: 0.10, 0.12, 0.14, 0.16, etc.
- the obtained gate tube material has stronger thermal stability, so that the gate tube device prepared based on these gate tube materials can withstand higher operating currents and operating temperatures, thereby significantly improving the operating reliability of the gate tube device.
- the gate tube device when the gate tube device is prepared based on these gate tube materials through a back-end process, the gate tube device can withstand an ambient temperature of 400°C for at least 15 minutes without causing problems such as element drift and segregation caused by high temperature.
- another type of gate material is that the M element is Sn element, the N element is Te element, and the value range of z is 0.02 ⁇ z ⁇ 0.2. That is, the chemical formula of the gate material is [( GexS1 -x ) 1- ySny ] 1-zTez ; wherein 0.312 ⁇ x ⁇ 0.649, 0 ⁇ y ⁇ 0.08, 0.02 ⁇ z ⁇ 0.2.
- the value of x includes but is not limited to: 0.38, 0.43, 0.47, 0.5, 0.53, 0.55, etc.; the value of y includes but is not limited to: 0.03, 0.04, 0.05, 0.06, 0.07, etc.; the value of z includes but is not limited to: 0.05, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, etc.
- the obtained gate tube material has stronger thermal stability, so that the gate tube device prepared based on these gate tube materials can withstand higher operating currents and operating temperatures, thereby significantly improving the operating reliability of the gate tube device.
- the gate tube device when the gate tube device is prepared based on these gate tube materials through a back-end process, the gate tube device can withstand an ambient temperature of 400°C for at least 15 minutes without causing problems such as element drift and segregation caused by high temperature.
- gate tube materials provided in the embodiments of the present disclosure, their existence forms include but are not limited to the following: alloy form, compound form such as ternary compound or quaternary compound, mixture form of single substance and single substance, mixture form of single substance and compound, or a combination of the above forms.
- the gate tube material in the form of a ternary compound can be a mixture of a Ge - S binary compound or alloy and an M single substance.
- the atomic percentage of each element is determined according to the chemical formula of the gate tube material, and a certain ratio of the Ge - S binary compound is mixed with the doping element single substance, and then the gate layer is prepared.
- the gate tube material in the form of a quaternary compound can be a mixture of a Ge - SM ternary compound or alloy and an N single substance.
- the atomic percentage of each element is determined according to the chemical formula of the gate tube material, and a certain ratio of the Ge - SM ternary compound is mixed with the doping element single substance, and then the gate layer is prepared.
- the gate tube material provided in the embodiment of the present disclosure has the advantages of low leakage current, appropriate threshold voltage, strong thermal stability, etc.
- the gate tube material is suitable for being compatible with complementary metal oxide semiconductor (CMOS) back-end process.
- CMOS complementary metal oxide semiconductor
- the gate tube material provided in the embodiment of the present disclosure can be used to prepare an OTS type gate tube unit, which has all the advantages of the gate tube material, making it not only compatible with CMOS back-end process, but also able to match storage class memory (Storage Class Memory, SCM).
- Storage Class Memory SCM
- the above-mentioned various types of gating tube materials are obtained by the following methods:
- the embodiment of the present disclosure screens the energy band gap of the simulated Ge-SM ternary structure model and the Ge-SMN quaternary structure model, thereby obtaining the Ge-SM ternary structure model and the Ge-SMN quaternary structure model that meet the energy band gap threshold conditions, thereby obtaining the gate tube material in the form of a ternary compound and the gate tube material in the form of a quaternary compound that meet the requirements of leakage current, threshold voltage and thermal stability.
- the method for obtaining the gate tube material has at least the advantages of simple operation, accurate and reliable screening results, time and labor saving, and low cost, and is of great significance for the efficient development of simple-component and environmentally friendly gate tube materials.
- the following method can be used to further screen out gate tube materials with stronger thermal stability from these Ge-S-M ternary structure models and Ge-S-M-N quaternary structure models.
- the method for obtaining the above-mentioned various types of gate tube materials also includes: analyzing whether the mean square displacement value of the Ge-S-M ternary structure model or the Ge-S-M-N quaternary structure model that meets the band gap threshold condition meets the mean square displacement threshold condition.
- the gate tube material is obtained according to the percentage content of the elements corresponding to the Ge-S-M ternary structure model or the Ge-S-M-N quaternary structure model that meets the mean square displacement threshold condition.
- the thermal stability of the ternary Ge-S-M gate tube material and the quaternary Ge-S-M-N gate tube material can be further accurately predicted, thereby further improving the thermal stability of the finally obtained ternary Ge-S-M gate tube material and the quaternary Ge-S-M-N gate tube material.
- the embodiment of the present disclosure further provides a phase change memory chip, which includes a plurality of memory sub-units, each memory sub-unit includes a gate tube unit and a phase change memory unit connected in series.
- Each gate tube unit includes a gate layer, and the gate layer is prepared from any of the gate tube materials mentioned above.
- the phase-change memory chip can also be called a phase-change memory.
- a gate tube unit is configured for each phase-change memory unit.
- the gate tube unit is used as a switching device of the phase-change memory unit, which can effectively suppress the leakage current generated during the operation of the phase-change memory chip.
- the phase-change memory chip provided by the embodiment of the present disclosure uses the gate tube material involved above, so that the phase-change memory chip has the advantages of low threshold voltage, low leakage current, strong thermal stability, and long cycle life.
- a suitable threshold voltage means that the value of the threshold voltage makes the value of the leakage current within the expected range, the threshold voltage will not be too low so that the leakage current is too high, and the value of the threshold voltage will not be too high so that the leakage current is too low.
- the threshold voltage is suitable and the power consumption of the corresponding phase change memory chip is as low as possible.
- the structure of the phase change memory chip involved in the embodiments of the present disclosure can be a 1S1R (One Selector One Resistor) structure (one selector unit controls one phase change memory unit) or a 1SnR (One Selector n Resistor) structure (one selector unit controls multiple phase change memory units at the same time).
- 1S1R One Selector One Resistor
- 1SnR One Selector n Resistor
- the gate tube unit may further include a buffer layer, which is stacked on one surface or two opposite surfaces of the gate layer.
- the buffer layer can effectively prevent element migration or segregation of the gate tube material in the direction of the electric field, reduce the diffusion between the gate tube material and the electrode or the phase change layer, and further improve the thermal stability of the gate tube unit.
- the thickness of the gating layer can be determined according to the size of the operating voltage or operating current corresponding to the gating tube unit.
- the thickness of the gating layer can be 5nm ⁇ 100nm, for example, 5nm ⁇ 50nm, 5nm ⁇ 40nm, 5nm ⁇ 30nm, 10nm ⁇ 25nm, etc., which includes but is not limited to: 10nm, 11nm, 12nm, 13nm, 14nm, 15nm, 16nm, 17nm, 18nm, 19nm, 20nm, 21nm, 22nm, 23nm, 24nm, 25nm, etc.
- the gate tube unit in its memory subunit, on the one hand, can be integrated with the phase-change memory unit, and on the other hand, the gate tube unit can also be arranged independently of the phase-change memory unit.
- the structure of the phase change memory unit includes but is not limited to a confined structure, a T-shaped structure, a U-shaped groove structure, an L-shaped structure, and the like.
- the gate tube unit is integrated with the phase change memory unit, that is, the gate layer of the gate tube unit and the phase change layer of the phase change memory unit are arranged in the same layer structure unit and both share the top electrode and the bottom electrode.
- FIG1 illustrates the structure of a storage subunit in which a gating layer and a phase change memory unit of a confined structure are integrated, and the storage subunit includes a gating layer 1, a phase change layer 2, a first top electrode 3, a first bottom electrode 4, an intermediate electrode 5, a first insulating medium 6 and a first substrate 7.
- the gating layer 1, the intermediate electrode 5 and the phase change layer 2 are stacked in sequence, and the three are integrally connected between the first top electrode 3 and the first bottom electrode 4; the first bottom electrode 4 is located on the first substrate 7, and the first insulating medium 6 is coated on the sides of the gating layer 1, the intermediate electrode, the phase change layer 2, the first top electrode 3 and the first bottom electrode 4.
- the arrangement sequence of the gating layer 1, the intermediate electrode 5 and the phase change layer 2 includes but is not limited to the following:
- the first top electrode 3, the phase change layer 2, the middle electrode 5, the gating layer 1, the first bottom electrode 4 and the first substrate 7 are stacked in sequence.
- the first top electrode 3, the gating layer 1, the intermediate electrode 5, the phase change layer 2, the first bottom electrode 4 and the first substrate 7 are stacked in sequence.
- the thickness of the first top electrode 3 may be 50 nm to 100 nm, including but not limited to: 50 nm, 55 nm, 60 nm, 65nm, 70nm, 75nm, 80nm, 85nm, 90nm, 95nm, 100nm, etc.
- the thickness of the first bottom electrode 4 may be 100 nm to 150 nm, including but not limited to 100 nm, 105 nm, 110 nm, 115 nm, 120 nm, 125 nm, 130 nm, 135 nm, 140 nm, 145 nm, 150 nm, etc.
- the gate tube unit and the phase change memory unit are independent of each other, that is, the gate tube unit and the phase change memory unit are separate from each other, the gate tube unit itself has a top electrode and a bottom electrode, the phase change memory unit itself has another top electrode and another bottom electrode, and the electrode of the gate tube unit and the electrode of the phase change memory unit can be connected in series by means such as a wire, such as a copper interconnect line.
- the gate tube unit includes a gate layer 1, a second top electrode 8, a second bottom electrode 9, a second insulating medium 10 and a second substrate 11.
- the second top electrode 8, the gate layer 1, the second bottom electrode 9 and the second substrate 11 are stacked in sequence from top to bottom; the second insulating medium 10 is configured to provide an insulating isolation function for the gate tube unit, for example, the second insulating medium 10 is coated on the sides of the gate layer 1, the second top electrode 8 and the second bottom electrode 9.
- the gate tube unit may further include a buffer layer, which is used to isolate the gate layer 1 and the electrode, thereby effectively preventing element segregation and drift in the gate layer.
- phase change memory unit independent of the gate tube unit, its structure includes but is not limited to: a restricted structure, a T-shaped structure, a U-shaped groove structure, an L-shaped structure, etc.
- an independent phase change memory unit may include a first top electrode 3, a phase change layer 2, a first bottom electrode 4 and a first substrate 7.
- the first top electrode 3, the phase change layer 2, the first bottom electrode 4 and the first substrate 7 are stacked in sequence from top to bottom.
- the phase change memory unit involved in the embodiment of the present disclosure may include a phase change material layer and a template layer alternately stacked.
- the number of cycles of the alternate stacking of the phase change material layer and the template layer is 2 to 100.
- the phase change material layer is two or more layers, so that the phase change film can be phase-changed in layers to obtain multi-level storage capabilities, which is beneficial to improving the data storage density of the phase change memory chip.
- phase change material used in the phase change material layer is, for example, Ge-Te binary compound, Sb-Te binary compound (such as Sb2Te3 ), Bi-Te binary compound, Ge-Sb-Te ternary compound, Ti-Sb-Te ternary compound, Ga-Sb binary compound, Sb, etc.
- the template material used in the template layer is , for example, TiTe2, etc.
- both can be semiconductor substrates, for example, including but not limited to: silicon dioxide, silicon carbide, silicon wafer, sapphire, diamond, etc.
- an organic solvent such as ethanol and/or acetone can be used to clean the surface of the first substrate or the second substrate to remove impurities on the surface of the substrate. After cleaning, the first substrate or the second substrate is placed in an oven at 50°C to 100°C for drying.
- the electrodes mentioned above include a first top electrode, a first bottom electrode, a second top electrode, and a second bottom electrode, all of which are inert metals.
- the electrode materials used for the first top electrode and the first bottom electrode include but are not limited to the following: titanium tungsten (TiW), tungsten (W), aluminum (Al), titanium nitride (TiN), titanium (Ti), tantalum (Ta), silver (Ag), platinum (Pt), carbon (C), copper (Cu), ruthenium (Ru), gold (Au), cobalt (Co), chromium (Cr), nickel (Ni), iridium (Ir), palladium (Pd), rhodium (Rh), etc.
- the electrode materials used for the second top electrode and the second bottom electrode include, but are not limited to, at least one of the following: Pt (platinum), Ti (titanium), W (tungsten), Au (gold), Ru (ruthenium), Al (aluminum), TiW (titanium tungsten), TiN (titanium nitride), TaN (tantalum nitride), IrO2 (iridium dioxide), ITO (indium tin oxide), and IZO (indium zinc oxide).
- Pt platinum
- Ti titanium
- W tungsten
- Au gold
- Ru ruthenium
- Al aluminum
- TiW titanium tungsten
- TiN titanium nitride
- TaN tantalum nitride
- IrO2 iridium dioxide
- ITO indium tin oxide
- IZO indium zinc oxide
- the insulating materials used for the first insulating medium and the second insulating medium include but are not limited to silicon dioxide (SiO 2 ), silicon nitride (Si 3 N 4 ), and the like.
- phase change memory chip provided by the embodiments of the present disclosure is a memory-level phase change memory chip.
- phase change memory chip provided in the embodiments of the present disclosure may be used as a separate memory, or may be used together with a dynamic random access memory as a hybrid memory.
- the embodiment of the present disclosure further provides a method for preparing a phase change memory chip, wherein the phase change memory chip is as shown above.
- a gating layer, a buffer layer, a phase change layer, a top electrode and a bottom electrode, etc. all can be formed by a thin film deposition process.
- the thin film deposition processes involved above include but are not limited to the following evaporation method, sputtering method, atomic layer deposition method, chemical vapor deposition method, pulsed laser deposition method, molecular beam epitaxy method, metal compound vapor deposition method, etc.
- the gate layer can be prepared using the gate tube material by evaporation, sputtering, atomic layer deposition, chemical vapor deposition, pulsed laser deposition, molecular beam epitaxy, metal compound vapor deposition, etc.
- the prepared gating layer can realize instantaneous conversion between high and low resistance states under the operation of an electrical signal, and instantly returns to a high resistance state when the electrical signal is removed.
- the magnetron sputtering parameters corresponding to each layer are determined according to the specific layer. Taking the preparation of the gating layer as an example, some applicable magnetron sputtering parameters are as follows: the background vacuum is 10-3Pa ⁇ 10-5Pa ; the sputtering pressure is 0.3Pa ⁇ 0.8Pa, etc.; the substrate temperature is 50°C ⁇ 400°C; the sputtering power is 5W ⁇ 50W, etc.; the sputtering gas includes but is not limited to: at least one of argon, krypton, xenon, neon, and nitrogen. For example, argon Ar is selected as the sputtering gas.
- the magnetron sputtering method can be DC magnetron sputtering or RF magnetron sputtering.
- the gating tube material used can be in the form of an alloy, a multi-component compound or a mixture of a single substance and a single substance or a single substance and a compound, or a combination of the above forms.
- the gating layer is prepared by the magnetron sputtering process, one or any combination of an alloy target, a compound target, and a single substance target can be used for co-sputtering, so that the gating layer has a desired chemical composition.
- an embodiment of the present disclosure further provides a storage device, as shown in FIG3, the storage device includes a controller 100 and any one of the above-mentioned phase change memory chips 200, the controller 100 is used to store data in the phase change memory chip 200, wherein the controller 100 reads and writes data stored in the storage device and interacts with an external interface.
- the storage device (also referred to as a memory) may be configured to store various types of data, which may be contact data, phone book data, messages, pictures, videos, etc., or may be instructional data.
- the storage devices involved in the embodiments of the present disclosure may be configured into various types, for example, including but not limited to: memory, hard disk, magnetic disk, optical disk, etc.
- an embodiment of the present disclosure further provides an electronic device, which includes a processor and the above-mentioned storage device, and the processor is used to store data generated by the electronic device in the storage device.
- the electronic device includes, but is not limited to, a computer, a mobile phone, a music player, a digital broadcast device, a messaging device, a game control device, a medical device, a fitness device, a personal digital assistant, and the like.
- the embodiment of the present disclosure further describes a method for obtaining a gate tube material.
- the method for obtaining a gate tube material includes the following steps:
- Step S1 constructing a plurality of Ge-S binary structure models, wherein the atomic percentages of Ge elements in the plurality of Ge-S binary structure models are different from each other.
- Step S2 analyzing the energy band gap values E1 of a plurality of Ge-S binary structure models, and determining the atomic percentage range of the Ge element that meets the first threshold condition.
- Step S3 constructing multiple Ge-S-M ternary structure models, wherein the atomic percentages of the Ge element in the multiple Ge-S-M ternary structure models are the same and satisfy the first threshold condition, and the atomic percentages of the M element are different from each other, and the M element is selected from one of the Te element and the Sn element.
- Step S4 analyzing the energy band gap values E2 of multiple Ge-S-M ternary structure models, and determining the atomic percentage range of the M element that meets the second threshold condition.
- Step S5 based on the atomic percentage range of the Ge element that meets the first threshold condition and the atomic percentage range of the M element that meets the second threshold condition, determine the preliminary screening chemical formula of the Ge-S-M ternary compound, and obtain the gating tube material according to the preliminary screening chemical formula of the Ge-S-M ternary compound and the preliminary screening chemical formula of the Ge-S-M-N quaternary compound.
- the embodiment of the present disclosure further provides another method for obtaining a gate tube material, the method for obtaining a gate tube material comprising:
- Step S1 constructing a plurality of Ge-S binary structure models, wherein the atomic percentages of Ge elements in the plurality of Ge-S binary structure models are different from each other.
- Step S2 analyzing the energy band gap values E1 of a plurality of Ge-S binary structure models, and determining the atomic percentage range of the Ge element that meets the first threshold condition.
- Step S3 constructing multiple Ge-S-M ternary structure models, wherein the atomic percentages of the Ge element in the multiple Ge-S-M ternary structure models are the same and satisfy the first threshold condition, and the atomic percentages of the M element are different from each other, and the M element is selected from one of the Te element and the Sn element.
- Step S4 analyzing the energy band gap values E2 of multiple Ge-S-M ternary structure models, and determining the atomic percentage range of the M element that meets the second threshold condition.
- Step S5 based on the atomic percentage range of the Ge element that meets the first threshold condition and the atomic percentage range of the M element that meets the second threshold condition, determine the preliminary screening chemical formula of the Ge-S-M ternary compound, and obtain the gating tube material according to the preliminary screening chemical formula of the Ge-S-M ternary compound and the preliminary screening chemical formula of the Ge-S-M-N quaternary compound.
- Step S6 construct multiple Ge-SMN quaternary structure models, wherein the atomic percentage of Ge element in the multiple Ge-SMN quaternary structure models is the same And the first threshold condition is satisfied, the atomic percentages of the M elements are the same and the second threshold condition is satisfied, and the atomic percentages of the N elements are different from each other, and the N element is selected from one of the Te element, the Sn element, the C element, and the Si element.
- Step S7 analyzing the energy band gap values E3 of multiple Ge-S-M-N quaternary structure models to determine the atomic percentage range of the N element that meets the third threshold condition.
- Step S8 determining the preliminary screening chemical formula of the Ge-S-M-N quaternary compound based on the atomic percentage range of the Ge element that meets the first threshold condition, the atomic percentage range of the M element that meets the second threshold condition, and the atomic percentage range of the N element that meets the third threshold condition.
- Step S9 Obtain the gating tube material according to the preliminary screening chemical formula of the Ge-S-M ternary compound and the preliminary screening chemical formula of the Ge-S-M-N quaternary compound.
- the multiple Ge-S binary structure models constructed are all amorphous structure models thereof, and the atomic percentage of the Ge element in the multiple Ge-S binary structure models constructed can be gradually increased from small to large.
- the atomic percentage gradient D1 between the current Ge-S binary structure model and the previous Ge-S binary structure model, and the atomic percentage gradient between the current Ge-S binary structure model and the next Ge-S binary structure model are defined as D2.
- the D1 value and the D2 value can be the same or different.
- the D1 value can be greater than the D2 value, or the D1 value can be less than the D2 value.
- the number of the multiple Ge-S binary structure models constructed is at least two, for example, can be three, four, five, six, seven, eight or more.
- the lower limit of the atomic percentage of Ge can be 0.15-0.25, including but not limited to: 0.155, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, etc.
- the upper limit of the atomic percentage of Ge can be 0.65-0.75, including but not limited to: 0.655, 0.66, 0.67, 0.68, 0.69, 0.7, 0.71, 0.72, 0.73, 0.74, 0.75, etc.
- Ge-S binary structure models can be constructed, with the atomic percentages of the Ge element being 0.167, 0.333, 0.38, 0.5, and 0.667, respectively.
- step S2 the energy band gap values E1 of multiple Ge-S binary structure models are analyzed to determine whether the energy band gap values E1 of these Ge-S binary structure models meet the first threshold condition respectively, and the Ge-S binary structure models that meet the first threshold condition are screened out and the atomic percentage range of the Ge element that meets the first threshold condition is determined based on the atomic percentage of the corresponding Ge element.
- the band gap values E1 of multiple Ge-S binary structure models are obtained, and according to the atomic percentage of Ge elements and the band gap values E1 in the multiple Ge-S binary structure models, a linear fit is performed on the functional relationship between the atomic percentage of Ge elements and the band gap values E1, to obtain a fitting function of the band gap value E1 changing with the atomic percentage of Ge elements.
- the first threshold condition the lower limit value and the upper limit value of the atomic percentage of the Ge element that meet the first threshold condition are determined by the fitting function, and then the atomic percentage range of the Ge element that meets the requirements is determined.
- the method of constructing multiple Ge-S-M ternary structure models can refer to the above-mentioned method of constructing multiple Ge-S binary structure models, including the design method of the atomic percentage of the M element can refer to the above-mentioned design method of the atomic percentage of the Ge element.
- the atomic percentage of the Ge element can be 40%-60%, including but not limited to 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, etc.
- step S4 the energy band gap values E2 of multiple Ge-S-M ternary structure models are analyzed, and it is determined whether the energy band gap values E2 of these Ge-S-M ternary structure models meet the second threshold condition respectively, and the Ge-S-M ternary structure models that meet the second threshold condition are screened out and the atomic percentage range of the M element that meets the second threshold condition is determined based on the atomic percentage of the corresponding M element.
- the band gap values E2 of multiple Ge-S-M ternary structure models are obtained, and according to the atomic percentages of the M elements and the band gap values E2 in the multiple Ge-S-M ternary structure models, a linear fit is performed on the functional relationship between the atomic percentages of the M elements and the band gap values E2, to obtain a fitting function of the band gap value E2 varying with the atomic percentage of the M elements.
- the atomic percentage lower limit value and upper limit value of the M element that meet the second threshold condition are determined by the fitting function, and then the atomic percentage range of the M element that meets the requirements is determined.
- the method of constructing multiple Ge-S-M-N quaternary structure models can refer to the above-mentioned method of constructing multiple Ge-S binary structure models, including the design method of the atomic percentage of the N element can refer to the above-mentioned design method of the atomic percentage of the Ge element.
- the atomic percentage of the Ge element is first necessary to determine the atomic percentage of the Ge element and the atomic percentage of the M element, wherein the atomic percentage of the Ge element must at least meet the first threshold condition. Further, the atomic percentage of the selected Ge element may be 40%-60%, including but not limited to 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, etc.
- the atomic percentage of the M element is close to the median value of the atomic percentage range of the M element, because at this time
- the corresponding Ge-SM ternary structure model has a larger band gap value.
- the expected atomic percentage range of the Te element is less than or equal to 0.377.
- the atomic percentage of the selected Te element can be 0.1-0.2, which includes but is not limited to 0.1, 0.12, 0.13, 0.14, 0.15, 0.16, 0.18, etc.
- the atomic percentage range of the Sn element is expected to be less than or equal to 0.08. Then, in the constructed Ge-S-M-N quaternary structure model, the atomic percentage of the selected Sn element can be 0.03-0.06, which includes but is not limited to 0.03, 0.04, 0.05, 0.06, etc.
- step S7 the energy band gap values E3 of multiple Ge-S-M-N quaternary structure models are analyzed, and it is determined whether the energy band gap values E3 of these Ge-S-M-N quaternary structure models meet the third threshold condition respectively, and the Ge-S-M-N quaternary structure models that meet the third threshold condition are screened out and the atomic percentage range of the N element that meets the third threshold condition is determined based on the atomic percentage of the corresponding N element.
- the band gap values E3 of multiple Ge-S-M-N quaternary structure models are obtained, and according to the atomic percentage of the N element and the band gap value E3 in the multiple Ge-S-M-N quaternary structure models, a linear fit is performed on the functional relationship between the atomic percentage of the N element and the band gap value E3 to obtain a fitting function of the band gap value E3 changing with the atomic percentage of the N element.
- the atomic percentage lower limit value and upper limit value of the N element that meet the third threshold condition are determined by the fitting function, and then the atomic percentage range of the N element that meets the requirement is determined.
- the disclosed embodiment sets the first threshold condition, the second threshold condition and the third threshold condition related to the gating performance according to the relationship between the energy band gap value of the gating tube material and its gating performance, and designs the gating tube material based on this.
- Ge-S binary structure model By constructing a Ge-S binary structure model and analyzing whether its energy band gap value E1 satisfies the first threshold condition, those Ge-S binary structure models that satisfy the first threshold condition are screened out, and then according to the atomic percentage of each Ge element in these Ge-S binary structure models, the atomic percentage range of the Ge element that satisfies the first threshold condition is determined.
- the atomic percentage range of the M element that satisfies the second threshold condition is determined.
- the primary screening chemical formula ( GexS1 -x ) 1- yMy of the Ge-SM ternary compound is also determined accordingly, and then the gate tube material in the form of a ternary compound is obtained.
- Ge-SMN quaternary structure model Furthermore, by constructing a Ge-SMN quaternary structure model and analyzing whether its energy band gap value E3 satisfies the third threshold condition, those Ge-SMN quaternary structure models that satisfy the third threshold condition are screened out, and then the atomic percentage range of the N element that satisfies the third threshold condition is determined according to the atomic percentage of each N element in these Ge-SMN quaternary structure models.
- the primary screening chemical formula ( GexS1-x ) 1- yzMyNz of the Ge-SMN quaternary compound is also determined accordingly, thereby obtaining a gate tube material in the form of a quaternary compound.
- the embodiment of the present disclosure screens the energy band gaps of the simulated Ge-S-M ternary structure model and the Ge-S-M-N quaternary structure model based on the relationship between the energy band gap of the gate tube material and its gating performance, thereby obtaining the Ge-S-M ternary structure model and the Ge-S-M-N quaternary structure model that meet the threshold conditions, and then obtaining the gate tube material in the form of a ternary compound and the gate tube material in the form of a quaternary compound.
- the method for obtaining the gate tube material provided by the embodiment of the present disclosure has at least the advantages of simple operation, accurate and reliable screening results, time and labor saving, and low cost, and is of great significance for the efficient development of gate tube materials with simple components and environmental friendliness.
- the energy band gap values of multiple Ge-S binary structure models are defined as E1, wherein the first threshold condition includes enabling the energy band gap value E1 to satisfy, 1.4ev ⁇ E1 ⁇ 2.4ev; the energy band gap values of multiple Ge-S-M ternary structure models are defined as E2, wherein the second threshold condition includes enabling the energy band gap value E2 to satisfy, 1.4ev ⁇ E2 ⁇ 2.4ev; the energy band gap values of multiple Ge-S-M-N quaternary structure models are defined as E3, wherein the third threshold condition includes enabling the energy band gap value E3 to satisfy, 1.4ev ⁇ E3 ⁇ 2.4ev.
- the inventors have found that when the energy band gap value of the gate tube material is higher than 2.4eV, the threshold voltage of the gate tube material will be too large, making the phase change memory device difficult to operate; when the energy band gap value of the gate tube material is less than 1.4eV, the leakage current of the gate tube material will be too large.
- the energy band gap value range of the gate tube material is 1.4ev ⁇ E1 ⁇ 2.4ev. It can be seen that by limiting the first threshold condition, the second threshold condition and the third threshold condition as above, it can be ensured that the gate tube material in the form of a ternary compound and the gate tube material in the form of a quaternary compound have the advantages of low leakage current, suitable threshold voltage, strong thermal stability, etc.
- multiple Ge-S binary structure models, multiple Ge-S-M ternary structure models, and multiple Ge-S-M-N quaternary structure models are constructed according to first principles molecular dynamics.
- First principles molecular dynamics is an algorithm that directly solves the Schrödinger equation based on the principles of interaction between atomic nuclei and electrons and their basic laws of motion, using the principles of quantum mechanics and based on specific requirements, after some approximate processing. It includes density functional theory (DFT), which can calculate and predict parameters such as the crystal structure, band structure, state density, and optical properties of materials.
- DFT density functional theory
- the disclosed embodiments are based on first-principles molecular dynamics, and can construct multiple Ge-S binary structure models, multiple Ge-S-M ternary structure models, and multiple Ge-S-M-N quaternary structure models to achieve accurate simulation of binary Ge-S gating tube materials, ternary Ge-S-M gating tube materials, and quaternary Ge-S-M-N gating tube materials.
- first-principles molecular dynamics it is also possible to calculate parameters such as band structures (including band gaps) and state density for these structural models, thereby achieving effective prediction of the gating performance of these structural models.
- VASP Vienna Ab initio Simulation Package
- the disclosed embodiments can utilize VASP software to construct and analyze Ge-S binary structure models, Ge-S-M ternary structure models, and Ge-S-M-N quaternary structure models, so as to obtain the mutual relationships, electronic structures, energy band structures, thermal stability, etc. between atoms within the materials to which these structure models belong, and then screen out the desired Ge-S-based gate tube doping elements and the doping concentration ranges of these doping elements through calculation, thereby realizing accurate prediction of ternary Ge-S-M gate tube materials and quaternary Ge-S-M-N gate tube materials.
- the predicted ternary Ge-S-M gate tube materials and quaternary Ge-S-M-N gate tube materials have the advantages of being environmentally friendly (non-toxic), having low leakage current, having a suitable threshold voltage, having good thermal stability, etc., and meet the requirements of high-performance gate tubes.
- VASP software was used to construct a Ge-S binary structure model, a Ge-S-M ternary structure model, and a Ge-S-M-N quaternary structure model of an amorphous structure by a melt-quenching method.
- obtaining the gate tube material according to the preliminary screening chemical formula of the Ge-S-M ternary compound and the preliminary screening chemical formula of the Ge-S-M-N quaternary compound may also include:
- Step S91 testing the mean square displacement of multiple Ge-S-M ternary structure models satisfying the primary screening chemical formula of the Ge-S-M ternary compound at a set temperature to obtain multiple first mean square displacement values.
- Step S92 compare the multiple first mean square displacement values with the mean square displacement threshold condition, and select multiple Ge-S-M ternary structure models that meet the mean square displacement threshold condition. In other words, compare the first mean square displacement value corresponding to each element in the multiple Ge-S-M ternary structure models with the mean square displacement threshold condition.
- Step S93 Determine the second screening chemical formula of the Ge-S-M ternary compound according to multiple Ge-S-M ternary structure models that meet the mean square displacement threshold condition.
- Step S94 testing the mean square displacement of multiple Ge-S-M-N quaternary structure models satisfying the primary screening chemical formula of the Ge-S-M-N quaternary compound at a set temperature to obtain multiple second mean square displacement values.
- Step S95 compare the multiple second mean square displacement values with the mean square displacement threshold condition, and select multiple Ge-S-M-N quaternary structure models that meet the mean square displacement threshold condition. In other words, compare the second mean square displacement value corresponding to each element in the multiple Ge-S-M-N quaternary structures with the mean square displacement threshold condition.
- Step S96 Determine the second screening chemical formula of the Ge-S-M-N quaternary compound according to multiple Ge-S-M-N quaternary structure models that meet the mean square displacement threshold condition.
- Step S97 obtaining the gating tube material according to the two-screen chemical formula of the Ge-S-M ternary compound and the two-screen chemical formula of the Ge-S-M-N quaternary compound.
- steps S91 to S93 are performed in sequence, and steps S94 to S96 are performed in sequence.
- the execution order of steps S91 to S93 and the execution order of steps S94 to S96 are not prioritized, and the two can be executed in any order.
- the mean square displacement of a specific atom at a set temperature characterizes the mobility of the atom at the set temperature.
- the larger the mean square displacement the stronger the mobility of the atom.
- the smaller the mean square displacement the weaker the mobility of the atom, that is, the more stable it is. In the present application, it is expected that the mean square displacement of the atom at the set temperature is as small as possible.
- the mean square displacement of each atom at a set temperature in the structural model corresponding to these preliminary screening chemical formulas is further compared with the mean square displacement threshold condition to judge the motion state of each atom at a set temperature. It is expected that the motion state of each atom is inactive and does not show large-scale movement, which indicates that the corresponding Ge-S-M ternary structural model or Ge-S-M-N quaternary structural model has stronger thermal stability.
- the thermal stability of the ternary Ge-S-M gating tube material and the quaternary Ge-S-M-N gating tube material can be further accurately predicted, thereby ensuring that the final obtained ternary Ge-S-M gating tube material and the quaternary Ge-S-M-N gating tube material have the advantages of environmental friendliness, low leakage current, suitable threshold voltage, and good thermal stability.
- the mean square displacement threshold condition is determined based on the actual requirements for the thermal stability of the gate tube material. For example, the mean square displacement curve of the undoped Ge-S binary compound under the same conditions can be used as a judgment basis, and the mean square displacement threshold condition is set so that the difference between the mean square displacement curve and the judgment basis is less than or equal to the set threshold.
- the mean square displacement is measured at a set temperature, which is the tolerable temperature of the gate tube material.
- the set temperature can be 550K-650K, for example, this includes but is not limited to: 550K, 560K, 570K, 580K, 590K, 600K, 610K, 620K, 630K, 640K, 650K.
- Step S11 based on first principle molecular dynamics, five Ge-S binary structure models are constructed using VASP software, wherein the atomic percentages of Ge element in the five Ge-S binary structure models are 16.7%, 33.3%, 38%, 50% and 66.7%, respectively, and the corresponding chemical formulas of the five Ge-S binary structure models are GeS 5 , GeS 2 , Ge 38 S 62 , GeS and Ge 2 S, respectively.
- Step S21 using VASP software to calculate the band gap values E1 of the five Ge-S binary structure models, which are: 2.94eV (see Figure 6), 2.33eV (see Figure 7), 2.22eV (see Figure 8), 2.172eV (see Figure 9) and 1.32eV (see Figure 10).
- the first threshold condition is set to include enabling the energy band gap value E1 to satisfy 1.4ev ⁇ E1 ⁇ 2.4ev, and the fitting function is used to determine the lower and upper atomic percentage limits of the Ge element that satisfies the first threshold condition, and then the atomic percentage range of the Ge element that meets the requirements is determined to be 31.2%-64.9%, that is, it is determined that in the Ge-S binary compound, the value range of x is 31.2% ⁇ x ⁇ 64.9%.
- Step S31 based on first principles molecular dynamics, three Ge-S-M ternary structure models are constructed using VASP software, wherein the atomic percentages of the Ge element in the three Ge-S-M ternary structure models are the same and satisfy the first threshold condition, and the atomic percentages of the M element are different from each other, and the M element is selected from the Te element or the Sn element.
- the atomic percentage of Ge element in the three Ge-SM ternary structure models is set to 33.3%, and the M element is Te element. That is to say, three (GeS 2 ) 1-y Te y ternary structure models are constructed, and the atomic weight percentage of Te element (i.e., y value) in these three (GeS 2 ) 1-y Te y ternary structure models are 14%, 30% and 40%, respectively.
- Step S41 using VASP software to calculate the band gap values E2 of the three ( GeS2 ) 1-yTey ternary structure models, which are 1.86eV (see FIG12), 1.47eV (see FIG13), and 1.18eV (see FIG14), respectively.
- the band gap value of GeS2 without Te element is 2.33eV.
- Step S51 setting the second threshold condition to include enabling the energy band gap value E2 to satisfy, 1.4ev ⁇ E2 ⁇ 2.4ev, and determining the lower limit and upper limit of the atomic percentage of the Te element that satisfies the second threshold condition by the fitting function, and then determining that the atomic percentage range of the Te element that meets the requirement is 0% ⁇ y ⁇ 37.7%.
- the primary screening chemical formula of the Ge-SM ternary compound is determined to be, ( GeS2 ) 1- yTey , wherein, 0.2 ⁇ x ⁇ 0.7, 0 ⁇ y ⁇ 0.377.
- This example tests the partial wave state density of each element in the (GeS 2 ) binary structure model and the three (GeS 2 ) 1-y Te y ternary structure models mentioned above.
- the test results are shown in Figures 16 to 19. It can be seen that the incorporation of Te elements with different doping concentrations has a significant contribution to the intermediate band gap state of the Ge-S-Te ternary system, and the intermediate band gap state is related to the gating characteristics of the gating tube. It can be seen that the incorporation of Te elements has a positive effect on the gating characteristics of the gating tube material system.
- test results are shown in Figures 20 to 23.
- Figure 23 when the atomic weight percentage of Te element is 40%, the movement ability of each atom in the (GeS 2 ) 1-y Te y ternary structure model system is in a strong motion state, which is not expected.
- Figures 21 and 22 when the atomic weight percentage of Te element is 14% and 30% respectively, the movement of each atom in the (GeS 2 ) 1-y Te y ternary structure model system is maintained in a weak motion state, and no large-scale movement is shown. It can be seen that the acquisition of 0% ⁇ y ⁇ 37.7% is accurate and reliable.
- the atomic percentage of Te element is 40%, the band gap of the (GeS 2 ) 1-y Te y ternary structure model is too small (less than the lower limit The value is 1.4ev), which will lead to a higher leakage current, making the leakage serious, and the atomic mobility in this system is strong, which is not conducive to the thermal stability of the gate device. Therefore, the atomic percentage of Te element is 40% and will be excluded. Finally, the doping concentration of Te element is determined to be 0 ⁇ y ⁇ 37.7% through band gap fitting. It can be determined that the second screening chemical formula of Ge-SM ternary compound is the same as its primary screening chemical formula, both of which are (GeS 2 ) 1- y Te y , where 0.2 ⁇ x ⁇ 0.7, 0 ⁇ y ⁇ 0.377.
- the atomic percentage of Ge element in the three Ge-SM ternary structure models is set to 33.3%, and the M element is Sn element. That is to say, three (GeS 2 ) 1-y Sn y ternary structure models are constructed, and the atomic weight percentage of Sn element (i.e., y value) in these three (GeS 2 ) 1-y Sn y ternary structure models is 5%, 8% and 10%, respectively.
- Step S41 using VASP software to calculate the band gap values E2 of the three ( GeS2 ) 1-ySny ternary structure models, which are respectively: 2.09eV (see Figure 24), 2.02eV (see Figure 25), and 2.17eV (see Figure 26), among which the band gap value of GeS2 without Sn element is 2.33eV.
- Step S51 setting the second threshold condition to include enabling the energy band gap value E2 to satisfy, 1.4ev ⁇ E2 ⁇ 2.4ev, determining the lower limit and upper limit of the atomic percentage of the Sn element that satisfies the first threshold condition by the fitting function, and then determining the atomic percentage range of the Sn element that meets the requirements to be, 0% ⁇ y ⁇ 12.5%.
- the preliminary screening chemical formula of the Ge-SM ternary compound is determined to be, (GeS 2 ) 1-y Sn y , wherein, 0.2 ⁇ x ⁇ 0.7, 0 ⁇ y ⁇ 0.125.
- test results are shown in Figures 27 to 29.
- Figure 29 when the atomic weight percentage of the Sn element is 10%, the movement ability of each atom in the (GeS 2 ) 1-y Sn y ternary structure model system is in a strong motion state, while when the atomic weight percentage of the Sn element is 5% and 8%, the movement of each atom in the (GeS 2 ) 1-y Sn y ternary structure model system is in a weak motion state, and no large-scale movement is shown. It can be seen that y needs to be further controlled within 8% to ensure the thermal stability of the gate tube device.
- the atomic percentage range of Sn element that finally meets the requirements is further screened to 0% ⁇ y ⁇ 8%.
- the second screening chemical formula of the Ge-SM ternary compound is determined to be (GeS 2 ) 1-y Sn y , wherein 0.2 ⁇ x ⁇ 0.7, 0 ⁇ y ⁇ 0.08.
- the doping of the Sn element does not contribute much to its energy band gap, and slightly reduces it.
- the doping concentration of the Sn element is greater than 8%, the mobility of each atom in the system is strong, which is not conducive to the thermal stability of the gate tube device. Therefore, the situation when the atomic percentage of the Sn element is greater than 8% will be excluded, and finally the doping concentration of the Sn element is determined to be 0 ⁇ y ⁇ 8% through the energy band gap fitting.
- gate tube material in the form of a quaternary compound is constructed, and some specific examples include but are not limited to the following:
- Step S61 based on first principles molecular dynamics, use VASP software to construct multiple Ge-S-M-N quaternary structure models, the atomic percentage of the Ge element in the multiple Ge-S-M-N quaternary structure models is the same and satisfies the first threshold condition, and the atomic percentage of the M element is the same and satisfies the second threshold condition, the M element is selected from the Te element or the Sn element, and the N element is selected from the Si element or the C element.
- Ge-S-Te-Si quaternary structure models are constructed.
- the atomic percentage of Ge element is set to 50%
- the atomic percentage of Te element is set to 14%. That is to say, six [(Ge 0.5 S 0.5 ) 0.86 Te 0.14 ] 1-z Si z quaternary structure models are constructed.
- the atomic weight percentage of Si element i.e., z value
- the atomic weight percentage of Si element is 5%, 10%, 15%, 20%, 30% and 40%, respectively.
- Step S71 using VASP software to calculate the band gap values E3 of the six [(Ge 0.5 S 0.5 ) 0.86 Te 0.14 ] 1-z Si z quaternary structure models, which are: 1.39 eV (doping amount is 5%), 1.479 eV (doping amount is 10%, see Figure 30), 1.433 eV (doping amount is 15%), 0.51 eV (doping amount is 20%), 0.42 eV (doping amount is 30%) and 0.427 eV (doping amount is 40%). It can be seen that as the doping amount of Si element increases, the band gap value E3 becomes smaller, which in turn leads to an increase in leakage current.
- Step S81 setting the third threshold condition to include enabling the band gap value E3 to satisfy, 1.4ev ⁇ E2 ⁇ 2.4ev, and determining the lower limit and upper limit of the atomic percentage of the Si element that satisfies the second threshold condition by the fitting function, and then determining that the atomic percentage range of the Si element that meets the requirements is 10% ⁇ z ⁇ 19.1%.
- the primary screening chemical formula of the Ge-SMN quaternary compound is determined to be, [( GexS1 -x ) 1-yTey ] 1- zSiz , where, 0.2 ⁇ x ⁇ 0.7, 0 ⁇ y ⁇ 0.377, 0.1 ⁇ z ⁇ 0.191.
- the mean square displacement of two [(Ge 0.5 S 0.5 ) 0.86 Te 0.14 ] 1-z Si z quaternary structure models (the atomic weight percentage of Si element is 10% and 15% respectively) that meet the preliminary requirements are tested.
- the test results show that when the atomic weight percentage of Si element is 10% and 15% respectively, the movement of each atom in the [(Ge 0.5 S 0.5 ) 0.86 Te 0.14 ] 1-z Si z quaternary structure model system is maintained in a weak motion state, and no large-scale movement is shown. It can be seen that the acquisition of 0.1 ⁇ z ⁇ 0.191 is accurate and reliable.
- FIG. 31 illustrates a schematic diagram of the mean square displacement of four atoms in the quaternary structure model of [(Ge 0.5 S 0.5 ) 0.86 Te 0.14 ] 0.9 Si 0.1 at 600K, in which the atomic weight percentage of Si element is 10%. It can be seen that the mobility of Si atoms is the lowest. It can be seen that the doping of Si element can effectively increase the stability of the gate tube material system. This is because Si atoms can form a tetrahedron structure in the gate tube material system, and the tetrahedron plays a role in increasing the stability of the amorphous structure in the amorphous system. Therefore, the incorporation of Si improves the thermal stability of the gate tube material and reduces the device misreading caused by the drift of the gate tube.
- Ge-S-Sn-Si quaternary structure models are constructed.
- the atomic percentage of Ge element is set to 50%, and the atomic percentage of Sn element is set to 5%. That is to say, four [(Ge 0.5 S 0.5 ) 0.95 Sn 0.05 ] 1-z Si z quaternary structure models are constructed.
- the atomic weight percentage of Si element i.e., z value is 5%, 10%, 15% and 20%, respectively.
- Step S71 using VASP software to calculate the band gap values E3 of the four [(Ge 0.5 S 0.5 ) 0.95 Sn 0.05 ] 1-z Si z quaternary structure models, which are: 1.35 eV (doping amount is 5%), 1.439 eV (doping amount is 10%, see Figure 32 ), 1.412 eV (doping amount is 15%), and 0.198 eV (doping amount is 20%).
- Step S81 setting the third threshold condition to include enabling the energy band gap value E3 to satisfy, 1.4ev ⁇ E2 ⁇ 2.4ev, and determining by the fitting function the lower limit and upper limit of the atomic percentage of the Si element that satisfies the second threshold condition, and then determining that the atomic percentage range of the Si element that meets the requirement is 10% ⁇ z ⁇ 18.4%.
- the primary screening chemical formula of the Ge-SMN quaternary compound is determined to be, [( GexS1 -x ) 1- ySny ] 1- zSiz , wherein, 0.2 ⁇ x ⁇ 0.7, 0 ⁇ y ⁇ 0.377, and 0.1 ⁇ z ⁇ 0.184.
- the mean square displacement of two [(Ge 0.5 S 0.5 ) 0.95 Sn 0.05 ] 1-z Si z quaternary structure models (the atomic weight percentage of Si element is 10% and 15% respectively) that meet the preliminary requirements are tested.
- the test results show that when the atomic weight percentage of Si element is 10% and 15% respectively, the movement of each atom in the [(Ge 0.5 S 0.5 ) 0.95 Sn 0.05 ] 1-z Si z quaternary structure model system is maintained in a weak motion state, and no large-scale movement is shown. It can be seen that the acquisition of 0.1 ⁇ z ⁇ 0.184 is accurate and reliable.
- FIG. 33 illustrates a schematic diagram of the mean square displacement of four atoms in the quaternary structure model of [(Ge 0.5 S 0.5 ) 0.95 Sn 0.05 ] 0.9 Si 0.1 at 600K, in which the atomic weight percentage of Si element is 10%. It can be seen that the mobility of Si atoms is the lowest. It can be seen that the doping of Si element can effectively increase the stability of the gate tube material system. This is because Si atoms can form a tetrahedron structure in the gate tube material system, and the tetrahedron plays a role in increasing the stability of the amorphous structure in the amorphous system. Therefore, the incorporation of Si improves the thermal stability of the gate tube material and reduces the device misreading caused by the drift of the gate tube.
- the upper limit value of z can be 0.191 and 0.184, and the minimum value is selected as the upper limit value. That is to say, 0.1 ⁇ z ⁇ 0.184 is more beneficial to improving the performance of the gate tube.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Memories (AREA)
Abstract
公开了选通管材料、相变存储芯片、存储设备及电子设备,属于半导体存储技术领域。该选通管材料的化学式为(Ge xS 1-x) 1-yM y,M元素为Te或Sn元素;0.2≤x≤0.7,0<y≤0.4。或者为[(Ge xS 1-x) 1-yM y] 1-zN z,M元素和N元素不同,两者分别选自Te元素、Sn元素、C元素、Si元素中的一种;0.2≤x≤0.7,0<y≤0.4,0≤z≤0.4。该选通管材料中各个元素协同配合,不仅使选通管材料兼具较低的阈值电压和较低的关态漏电流,还利于提高选通管材料的热稳定性。并且,第一掺杂元素M和第二掺杂元素N均是无毒的,对环境友好,不会产生安全隐患。
Description
本申请要求于2023年04月28日提交的申请号为202310491385.5、发明名称为“选通管材料及其获取方法、相变存储芯片、存储设备及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本公开涉及半导体存储技术领域,特别涉及选通管材料、相变存储芯片、存储设备及电子设备。
相变存储器(Phase Change Memory,PCM)在高存储密度和快运行速度方面具有较大的潜力,相变存储器包括多个相变存储单元,相变存储单元在读、擦、写操作时存在着漏电流,为了防止漏电流对邻近的相变存储单元产生不利影响,针对每一个相变存储单元配置一个起到开关作用的选通管单元。
选通管单元包括由选通管材料制备得到的选通层,例如,相关技术提供了一些选通管材料,其包括GeAsSiSe材料、GeAsSiTe材料等。
然而,GeAsSiSe材料或者GeAsSiTe材料包括含有毒性的As元素,使其存在安全隐患。
公开内容
鉴于此,本公开提供了选通管材料、相变存储芯片、存储设备及电子设备,能够解决上述技术问题。
具体而言,包括以下的技术方案:
一方面,提供了一种选通管材料,所述选通管材料的化学式为(GexS1-x)1-yMy,M元素选自Te元素或者Sn元素;其中,0.2≤x≤0.7,0<y≤0.4,x、y均为原子百分比。
本公开实施例提供的选通管材料,通过向Ge-S系材料中掺杂第一掺杂元素M,并对第一掺杂元素M的种类及其原子百分比进行限定,使得选通管材料保持双向阈值开关特性(即OTS特性)的基础上,上述各个元素协同配合,使得选通管材料至少具有漏电流低,阈值电压合适,热稳定性强等优点。并且,第一掺杂元素M是无毒的,对环境友好,不会产生安全隐患。
在一些可能的实现方式中,所述M元素为Te元素;x和y的取值范围分别如下所示:0.312≤x≤0.649,0<y≤0.377。
在该条件下,选通管材料不仅能够保持较低的漏电流和合适的阈值电压,且能够进一步增强其热稳定性。
在一些可能的实现方式中,所述M元素为Sn元素;x和y的取值范围分别如下所示:0.312≤x≤0.649,0<y≤0.08。
在该条件下,选通管材料不仅能够保持较低的漏电流和合适的阈值电压,且能够进一步增强其热稳定性。
另一方面,提供了另一种选通管材料,所述选通管材料的化学式为[(GexS1-x)1-yMy]1-zNz;
M元素和N元素不同,所述M元素和所述N元素分别选自Te元素、Sn元素、C元素、Si元素中的一种;其中,0.2≤x≤0.7,0<y≤0.4,0≤z≤0.4,x、y、z均为原子百分比。
本公开实施例提供的选通管材料,通过向Ge-S系材料中掺杂第一掺杂元素M和第二掺杂元素N,并对第一掺杂元素M和第二掺杂元素N的种类及其原子百分比进行限定,使得选通管材料保持双向阈值开关特性(即OTS特性)的基础上,上述各个元素协同配合,上述各个元素协同配合,使得选通管材料至少具有漏电流低,阈值电压合适,热稳定性强等优点。并且,第一掺杂元素M和第二掺杂元素N均是无毒的,对环境友好,不会产生安全隐患。
在一些可能的实现方式中,所述M元素为Te元素;x、y和z的取值范围分别如下所示:0.312≤x≤0.649,0<y≤0.377,0.02≤z≤0.2。
在该条件下,选通管材料不仅能够保持较低的漏电流和合适的阈值电压,且能够进一步增强其热稳定性。
进一步地,所述N元素为C元素或者Si元素;z的取值范围为,0.1≤z≤0.2,这能够进一步提升选通管材料的热稳定性。
进一步地,所述N元素为Sn元素;z的取值范围为,0.02≤z≤0.08,这能够进一步提升选通管材料的热稳定性。
在一些可能的实现方式中,所述M元素为Sn元素;x、y和z的取值范围分别如下所示:0.312≤x≤0.649,0<y≤0.08,0.02≤z≤0.2。
在该条件下,选通管材料不仅能够保持较低的漏电流和合适的阈值电压,且能够进一步增强其热稳定性。
进一步地,所述N元素为C元素或者Si元素;z的取值范围为,0.1≤z≤0.2,这能够进一步提升选通管材料的热稳定性。
进一步地,所述N元素为Te元素;z的取值范围为,0.02≤z≤0.2,这能够进一步提升选通管材料的热稳定性。
在一些可能的实现方式中,所述选通管材料通过以下方法获取得到:
分析多个Ge-S-M三元结构模型或者Ge-S-M-N四元结构模型的能带间隙值是否满足能带间隙阈值条件;
根据满足所述能带间隙阈值条件的Ge-S-M三元结构模型或者Ge-S-M-N四元结构模型对应的元素百分含量,获取得到所述选通管材料。
在一些可能的实现方式中,所述选通管材料还通过以下方法获取得到:
分析满足所述能带间隙阈值条件的Ge-S-M三元结构模型或者Ge-S-M-N四元结构模型的均方位移值是否满足均方位移阈值条件;
根据满足所述均方位移阈值条件的Ge-S-M三元结构模型或者Ge-S-M-N四元结构模型对应的元素百分含量,获取得到所述选通管材料。
再一方面,提供了一种相变存储芯片,所述相变存储芯片包括多个存储子单元,每一所述存储子单元包括相串联的选通管单元和相变存储单元;
每个所述选通管单元包括选通层,所述选通层采用上述任一种选通管材料制备得到。
相变存储芯片还可称为相变存储器,针对每一个相变存储单元配置一个选通管单元,利用选通管单元作为相变存储单元的开关器件,能够有效抑制相变存储芯片工作过程中产生的漏电流。本公开实施例提供的相变存储芯片,基于使用了上述涉及的选通管材料,使得该相变存储芯片兼具阈值电压低、漏电流低、热稳定性强、循环寿命长等优点。
在一些可能的实现方式中,所述选通管单元与所述相变存储单元集成设置。
在一些可能的实现方式中,所述选通管单元与所述相变存储单元各自独立。
再一方面,提供了一种存储设备,所述存储设备包括控制器、至少一个相变存储芯片,所述相变存储芯片如上所述,所述控制器用于存储数据至所述相变存储芯片。
该存储设备(又可以称为存储器),可以被配置为存储各种类型的数据,这些数据可以为联系人数据,电话簿数据,消息,图片,视频等,也可以为指令性数据。
再一方面,提供了一种电子设备,所述电子设备包括处理器、上述的存储设备,所述处理器用于存储所述电子设备产生的数据至所述存储设备。
该电子设备包括但不限于:计算机、手机、音乐播放设备、数字广播设备、消息收发设备、游戏控制设备、医疗设备、健身设备、个人数字助理等。
图1为本公开实施例提供的一示例性选通层和限制型结构的相变存储单元集成布置的存储子单元的结构示意图;
图2为本公开实施例提供的一示例性选通管单元的结构示意图;
图3为本公开实施例提供的一示例性存储设备的结构示意图;
图4为本公开实施例提供的一示例性选通管材料的获取流程图;
图5为本公开实施例提供的另一示例性选通管材料的获取流程图;
图6为本公开实施例提供的GeS5的能带间隙测试图;
图7为本公开实施例提供的GeS2的能带间隙测试图;
图8为本公开实施例提供的Ge38S62的能带间隙测试图;
图9为本公开实施例提供的GeS的能带间隙测试图;
图10为本公开实施例提供的Ge2S的能带间隙测试图;
图11为本公开实施例提供的Ge-S二元化合物中能带间隙随Ge含量变化的拟合曲线的图;
图12为本公开实施例提供的Te掺杂百分比为14%的Ge-S-Te三元化合物的能带间隙测试图;
图13为本公开实施例提供的Te掺杂百分比为30%的Ge-S-Te三元化合物的能带间隙测试图;
图14为本公开实施例提供的Te掺杂百分比为40%的Ge-S-Te三元化合物的能带间隙测试图;
图15为本公开实施例提供的Ge-S-Te三元化合物中能带间隙随Te含量变化的拟合曲线的图;
图16为本公开实施例提供的Ge2S的分波态密度测试图;
图17为本公开实施例提供的Te掺杂百分比为14%的Ge-S-Te三元化合物的分波态密度测试图;
图18为本公开实施例提供的Te掺杂百分比为30%的Ge-S-Te三元化合物的分波态密度测试图;
图19为本公开实施例提供的Te掺杂百分比为40%的Ge-S-Te三元化合物的分波态密度测试图;
图20为本公开实施例提供的Ge2S二元化合物中各元素在600K下的均方位移测试图;
图21为本公开实施例提供的Te掺杂百分比为14%的Ge-S-Te三元化合物中各元素在600K下的均方位移测试图;
图22为本公开实施例提供的Te掺杂百分比为30%的Ge-S-Te三元化合物中各元素在600K下的均方位移测试图;
图23为本公开实施例提供的Te掺杂百分比为40%的Ge-S-Te三元化合物中各元素在600K下的均方位移测试图;
图24为本公开实施例提供的Sn掺杂百分比为5%的Ge-S-Sn三元化合物的能带间隙测试图;
图25为本公开实施例提供的Sn掺杂百分比为8%的Ge-S-Sn三元化合物的能带间隙测试图;
图26为本公开实施例提供的Sn掺杂百分比为10%的Ge-S-Sn三元化合物的能带间隙测试图;
图27为本公开实施例提供的Sn掺杂百分比为5%的Ge-S-Sn三元化合物中各元素在600K下的均方位移测试图;
图28为本公开实施例提供的Sn掺杂百分比为8%的Ge-S-Sn三元化合物中各元素在600K下的均方位移测试图;
图29为本公开实施例提供的Sn掺杂百分比为8%的Ge-S-Sn三元化合物中各元素在600K下的均方位移测试图;
图30为本公开实施例提供的Si掺杂百分比为10%的Ge-S-Te-Si四元化合物的能带间隙测试图;
图31为本公开实施例提供的Si掺杂百分比为10%的Ge-S-Te-Si四元化合物中各元素在600K下的均方位移测试图;
图32为本公开实施例提供的Si掺杂百分比为10%的Ge-S-Sn-Si四元化合物的能带间隙测试图;
图33为本公开实施例提供的Si掺杂百分比为10%的Ge-S-Sn-Si四元化合物中各元素在600K下的均方位移测试图。
上述各能带间隙测试图中,横坐标Energy(ev)表示能带间隙,单位为ev;纵坐标IPR为Inverse Participation Ratio,表示体系内各个电子态的局域化程度。
上述各均方位移测试图中,横坐标Time为时间,单位是皮秒;纵坐标MSD为均方位移值,表示与初始时刻τ相比,经过t时间后原子扩散移动位移的平方值。
上述各分波态密度测试图中,横坐标Energy(ev)表示能带间隙,单位为ev,纵坐标PDOS为每个单元中某一元素所占据的电子态的数量。
附图标记分别表示:
1、选通层;2、相变层;3、第一顶电极;4、第一底电极;5、中间电极;
6、第一绝缘介质;7、第一衬底;
8、第二顶电极;
9、第二底电极;10、第二绝缘介质;11、第二衬底。
为使本公开的技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
相变存储器(Phase Change Memory,PCM)是一种固态半导体非易失性存储器,又称为相变存储芯片,其以相变材料作为存储介质,相变材料能够在晶态和非晶态之间进行可逆转变,利用相变材料在非晶态和晶态时对应的高电阻率和低电阻率的差异,相变存储器能够实现数据“0”和“1”的存储。
相变存储器包括多个相变存储单元,相变存储单元包括读、擦、写操作,相变存储单元在读、擦、写操作时存在着漏电流,为了防止该漏电流对邻近的相变存储单元产生影响,造成误读、误操作等问题,针对每一个相变存储单元配置一个起到开关作用的选通管单元。
双向阈值开关(Ovonic Threshold Switching,OTS)型选通管单元具有高开态电流、低漏电流等优点被广泛用于相变存储器。
OTS型选通管单元的工作原理如下所示:当外加电压或者外加电流小于阈值电压或者阈值电流时,选通管单元保持高阻,选通管单元处于关闭状态,能够有效抑制漏电流。当外加电压或者外加电流大于阈值电压或者阈值电流时,选通管单元迅速转变为低阻,选通管单元处于开启状态,这样,与之对应串联的相变存储单元进行读、写、擦操作。
可见,在对相变存储单元进行读、写、擦操作时,需要使选通管单元进行开启和关闭操作,所以,需要使选通管单元的循环次数比相变存储单元的循环次数高出至少3个数量级,选通管单元的循环寿命直接影响了相变存储器的循环寿命。其中,此处涉及的循环寿命指的是,将相变存储器置0或置1来进行反复循环操作,各部件在失效之前所能进行的循环次数。
选通管单元包括由选通管材料制备得到的选通层,例如,相关技术提供了一些选通管材料,其包括GeAsSiSe材料、GeAsSiTe材料等。然而,GeAsSiSe材料或者GeAsSiTe材料含有As元素,As元素具有毒性,使其存在安全隐患。
一方面,本公开实施例提供了一种选通管材料,该选通管材料为三元化合物,该选通管材料的化学式为(GexS1-x)1-yMy,M元素选自Te元素或者Sn元素;其中,0.2≤x≤0.7,0<y≤0.4,x、y均为原子百分比。
本公开实施例提供的选通管材料,通过向Ge-S系材料中掺杂第一掺杂元素M,并对第一掺杂元素M的种类及其原子百分比进行限定,使得选通管材料保持双向阈值开关特性(即OTS特性)的基础上,上述各个元素协同配合,还使得选通管材料至少具有以下优点:漏电流较低、阈值电压合适、热稳定性强、循环寿命长、抗疲劳性高。并且,第一掺杂元素M是无毒的,对环境友好,不会产生安全隐患。
在一些示例中,M元素为Te元素,x和y的取值范围分别如下所示:0.312≤x≤0.649,0<y≤0.377。也就是说,该选通管材料的化学式为(GexS1-x)1-yTey,其中,0.312≤x≤0.649,0<y≤0.377。
在M元素为Te元素时,通过对x和y的取值范围进一步缩小,一方面,利于使选通管材料保持较低的阈值电压,防止阈值电压过大以导致相变存储器难以操作,另一方面,对于降低选通管材料的漏电流及提高其热稳定性更为有利。
对于化学式为(GexS1-x)1-yTey的选通管材料,x的取值包括但不限于:0.38、0.43、0.47、0.5、0.53、0.55等。y的取值包括但不限于:0.10、0.13、0.16、0.19、0.22等。
在Ge元素、S元素和Te元素以上述所示的原子百分比进行组合时,所获得的选通管材料的热稳定性更强,使得基于这些选通管材料制备得到的选通管器件能够承受更高的工作电流和工作温度,从而显著改善选通管器件的工作可靠性。例如,在基于这些选通管材料通过后道工艺制备选通管器件时,选通管器件能够承受400℃的环境温度且承受时间至少为15分钟,而不会产生因高温而引发的元素漂移和偏析等问题。
在另一些示例中,M元素为Sn元素,x和y的取值范围分别如下所示:0.312≤x≤0.649,0<y≤0.08。也就是说,该选通管材料的化学式为(GexS1-x)1-ySny,其中,0.312≤x≤0.649,0<y≤0.08。
在M元素为Sn元素时,通过对x和y的取值范围进一步缩小,一方面,利于使选通管材料保持较低的阈值电压,防止阈值电压过大以导致相变存储器难以操作,另一方面,对于降低选通管材料的漏电流及提高其热稳定性更为有利。
对于化学式为(GexS1-x)1-ySny的选通管材料,x的取值包括但不限于:0.38、0.43、0.47、0.5、0.53、0.55等;y的取值包括但不限于:0.03、0.04、0.05、0.06、0.07等。
在Ge元素、S元素和Sn元素以上述所示的原子百分比进行组合时,所获得的选通管材料的热稳定性更强,使得基于这些选通管材料制备得到的选通管器件能够承受更高的工作电流和工作温度,从而显著改
善选通管器件的工作可靠性。例如,在基于这些选通管材料通过后道工艺制备选通管器件时,选通管器件能够承受400℃的环境温度且承受时间至少为15分钟,而不会产生因高温而引发的元素漂移和偏析等问题。
另一方面,本公开实施例提供了另一种选通管材料,该选通管材料为四元化合物,该选通管材料的化学式为[(GexS1-x)1-yMy]1-zNz;M元素和N元素不同,所述M元素和所述N元素分别选自Te元素、Sn元素、C元素、Si元素中的一种;其中,0.2≤x≤0.7,0<y≤0.4,0≤z≤0.4,x、y、z均为原子百分比。
本公开实施例提供的上述四元化合物形式的选通管材料,通过在上述三元化合物形式的选通管材料的基础上进一步掺杂元素N而获得。
通过向Ge-S系材料中同时掺杂第一掺杂元素M和第二掺杂元素N,并对第一掺杂元素M和第二掺杂元素N的种类及其原子百分比进行限定,使得选通管材料保持双向阈值开关特性(即OTS特性)的基础上,上述各个元素协同配合,还使得选通管材料至少具有以下优点:漏电流较低、阈值电压合适、热稳定性强、循环寿命长、抗疲劳性高。并且,第一掺杂元素M和第二掺杂元素N是无毒的,对环境友好,不会产生安全隐患。
在一些示例中,M元素为Te元素;x、y和z的取值范围分别如下所示:0.312≤x≤0.649,0<y≤0.377,0.02≤z≤0.2。
也就是说,该选通管材料的化学式为[(GexS1-x)1-yTey]1-zNz,N元素为Sn元素、C元素、Si元素中的一种,其中,0.312≤x≤0.649,0<y≤0.377,0.02≤z≤0.2。
在M元素为Te元素时,通过对x、y和z的取值范围进一步缩小,一方面,利于使选通管材料保持较低的阈值电压,防止阈值电压过大以导致相变存储器难以操作,另一方面,对于降低选通管材料的漏电流及提高其热稳定性更为有利。
基于上述示例,一种类型的选通管材料是,M元素为Te元素,N元素为C元素或者Si元素;z的取值范围为,0.1≤z≤0.2。也就是说,该选通管材料的化学式为[(GexS1-x)1-yTey]1-zCz或者[(GexS1-x)1-yTey]1-zSiz;其中,0.312≤x≤0.649,0<y≤0.377,0.1≤z≤0.2。进一步地,当N元素为Si元素时,z的取值范围为,0.1≤z≤0.184,这能够进一步提升选通管材料的热稳定性。
对于化学式为[(GexS1-x)1-yTey]1-zCz或者[(GexS1-x)1-yTey]1-zSiz的选通管材料,x的取值包括但不限于:0.38、0.43、0.47、0.5、0.53、0.55等;y的取值包括但不限于:0.10、0.13、0.16、0.19、0.22等;z的取值包括但不限于:0.1、0.12、0.14、0.16等。
在Ge元素、S元素、Te元素和Si元素(或者C元素)以上述所示的原子百分比进行组合时,所获得的选通管材料的热稳定性更强,使得基于这些选通管材料制备得到的选通管器件能够承受更高的工作电流和工作温度,从而显著改善选通管器件的工作可靠性。例如,在基于这些选通管材料通过后道工艺制备选通管器件时,选通管器件能够承受400℃的环境温度且承受时间至少为15分钟,而不会产生因高温而引发的元素漂移和偏析等问题。
基于上述示例,另一种类型的选通管材料是,M元素为Te元素,N元素为Sn元素;z的取值范围为,0.02≤z≤0.08。也就是说,该选通管材料的化学式为[(GexS1-x)1-yTey]1-zSnz;其中,0.312≤x≤0.649,0<y≤0.377,0.02≤z≤0.08。
对于化学式为[(GexS1-x)1-yTey]1-zSnz的选通管材料,x的取值包括但不限于:0.38、0.43、0.47、0.5、0.53、0.55等;y的取值包括但不限于:0.10、0.13、0.16、0.19、0.22等;z的取值包括但不限于:0.04、0.05、0.06、0.07、0.08等。
在Ge元素、S元素、Te元素和Sn元素以上述所示的原子百分比进行组合时,所获得的选通管材料的热稳定性更强,使得基于这些选通管材料制备得到的选通管器件能够承受更高的工作电流和工作温度,从而显著改善选通管器件的工作可靠性。例如,在基于这些选通管材料通过后道工艺制备选通管器件时,选通管器件能够承受400℃的环境温度且承受时间至少为15分钟,而不会产生因高温而引发的元素漂移和偏析等问题。
在一些示例中,M元素为Sn元素;x、y和z的取值范围分别如下所示:0.312≤x≤0.649,0<y≤0.08,0.02≤z≤0.2。也就是说,该选通管材料的化学式为[(GexS1-x)1-ySny]1-zNz,N元素为Te元素、C元素、Si元素中的一种,其中,0.312≤x≤0.649,0<y≤0.08,0.02≤z≤0.2。
在M元素为Sn元素时,通过对x、y和z的取值范围进一步缩小,一方面,利于使选通管材料保持较低
的阈值电压,防止阈值电压过大以导致相变存储器难以操作,另一方面,对于降低选通管材料的漏电流及提高其热稳定性更为有利。
基于上述示例,一种类型的选通管材料是,M元素为Sn元素,N元素为C元素或者Si元素;z的取值范围为,0.1≤z≤0.2。也就是说,该选通管材料的化学式为[(GexS1-x)1-ySny]1-zCz或者[(GexS1-x)1-ySny]1-zSiz;其中,0.312≤x≤0.649,0<y≤0.08,0.1≤z≤0.2。进一步地,当N元素为Si元素时,z的取值范围为,0.1≤z≤0.184,这能够进一步提升选通管材料的热稳定性。
对于化学式为[(GexS1-x)1-ySny]1-zCz或者[(GexS1-x)1-ySny]1-zSiz的选通管材料,x的取值包括但不限于:0.38、0.43、0.47、0.5、0.53、0.55等;y的取值包括但不限于:0.03、0.04、0.05、0.06、0.07等;z的取值包括但不限于:0.10、0.12、0.14、0.16等。
在Ge元素、S元素、Sn元素和Si元素(或者C元素)以上述所示的原子百分比进行组合时,所获得的选通管材料的热稳定性更强,使得基于这些选通管材料制备得到的选通管器件能够承受更高的工作电流和工作温度,从而显著改善选通管器件的工作可靠性。例如,在基于这些选通管材料通过后道工艺制备选通管器件时,选通管器件能够承受400℃的环境温度且承受时间至少为15分钟,而不会产生因高温而引发的元素漂移和偏析等问题。
基于上述示例,另一种类型的选通管材料是,M元素为Sn元素,N元素为Te元素;z的取值范围为,0.02≤z≤0.2。也就是说,该选通管材料的化学式为[(GexS1-x)1-ySny]1-zTez;其中,0.312≤x≤0.649,0<y≤0.08,0.02≤z≤0.2。
对于化学式为[(GexS1-x)1-ySny]1-zTez的选通管材料,x的取值包括但不限于:0.38、0.43、0.47、0.5、0.53、0.55等;y的取值包括但不限于:0.03、0.04、0.05、0.06、0.07等;z的取值包括但不限于:0.05、0.06、0.08、0.10、0.12、0.14、0.16等。
在Ge元素、S元素、Sn元素和Te元素以上述所示的原子百分比进行组合时,所获得的选通管材料的热稳定性更强,使得基于这些选通管材料制备得到的选通管器件能够承受更高的工作电流和工作温度,从而显著改善选通管器件的工作可靠性。例如,在基于这些选通管材料通过后道工艺制备选通管器件时,选通管器件能够承受400℃的环境温度且承受时间至少为15分钟,而不会产生因高温而引发的元素漂移和偏析等问题。
对于本公开实施例提供的上述各类选通管材料,其存在形式包括但不限于以下:合金形式、诸如三元化合物或者四元化合物等化合物形式、单质与单质相混合的混合物形式、单质与化合物相混合的混合物形式、或者为上述各形式的组合。
例如,三元化合物形式的选通管材料可以为Ge-S二元化合物或者合金与M单质相混合的混合物形式,该种情形下,根据选通管材料的化学式确定其中各元素的原子百分比,将一定配比的Ge-S二元化合物与掺杂元素单质混合均匀,然后进行选通层的制备。四元化合物形式的选通管材料可以为Ge-S-M三元化合物或者合金与N单质相混合的混合物形式,该种情形下,根据选通管材料的化学式确定其中各元素的原子百分比,将一定配比的Ge-S-M三元化合物与掺杂元素单质混合均匀,然后进行选通层的制备。
综上可知,本公开实施例提供的选通管材料具有漏电流低、阈值电压合适、热稳定性强等优点,该选通管材料适于兼容互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)后道工艺。
利用本公开实施例提供的选通管材料能够制备得到OTS型选通管单元,该OTS型选通管单元具有选通管材料的所有优点,使其不仅兼容CMOS后道工艺,还能够匹配存储级内存(Storage Class Memory,SCM)。
在一些可能的实现方式中,上述各类选通管材料通过以下方法获取得到:
分析多个Ge-S-M三元结构模型或者Ge-S-M-N四元结构模型的能带间隙值是否满足能带间隙阈值条件。根据满足能带间隙阈值条件的Ge-S-M三元结构模型或者Ge-S-M-N四元结构模型对应的元素百分含量,获取得到选通管材料。
本公开实施例基于选通管材料的能带间隙与其选通性能的关系,对模拟的Ge-S-M三元结构模型和Ge-S-M-N四元结构模型的能带间隙进行筛选,进而获取符合能带间隙阈值条件的Ge-S-M三元结构模型和Ge-S-M-N四元结构模型,进而获取得到漏电流、阈值电压和热稳定性均符合要求的三元化合物形式的选通管材料和四元化合物形式的选通管材料。该选通管材料的获取方法至少具有操作简单、筛选结果精确可靠、省时省力、成本较低等优点,对于组分简单且环境友好型的选通管材料的高效开发具有重要的意义。
在基于选通管材料的能带间隙来确定得到符合能带间隙阈值条件的Ge-S-M三元结构模型和Ge-S-M-N四元结构模型后,还可以通过以下方法进一步地从这些Ge-S-M三元结构模型和Ge-S-M-N四元结构模型筛选出热稳定性更强的选通管材料。
也就是说,上述各类选通管材料的获取方法还包括:分析满足能带间隙阈值条件的Ge-S-M三元结构模型或者Ge-S-M-N四元结构模型的均方位移值是否满足均方位移阈值条件。根据满足均方位移阈值条件的Ge-S-M三元结构模型或者Ge-S-M-N四元结构模型对应的元素百分含量,获取得到选通管材料。
通过对Ge-S-M三元结构模型或者Ge-S-M-N四元结构模型的均方位移值作进一步地分析,能够对三元Ge-S-M选通管材料和四元Ge-S-M-N选通管材料的热稳定性作进一步地精确预测,从而进一步提升最终获取的三元Ge-S-M选通管材料和四元Ge-S-M-N选通管材料的热稳定性。
关于上述各类选通管材料的获取方法将在下述章节中作进一步的示例性描述。
再一方面,本公开实施例还提供了一种相变存储芯片,该相变存储芯片包括多个存储子单元,每一存储子单元包括相串联的选通管单元和相变存储单元。每个选通管单元包括选通层,选通层由上述涉及的任一种选通管材料制备得到。
相变存储芯片还可称为相变存储器,针对每一个相变存储单元配置一个选通管单元,利用选通管单元作为相变存储单元的开关器件,能够有效抑制相变存储芯片工作过程中产生的漏电流。本公开实施例提供的相变存储芯片,基于使用了上述涉及的选通管材料,使得该相变存储芯片兼具阈值电压低、漏电流低、热稳定性强、循环寿命长等优点。
其中,阈值电压合适,指的是,阈值电压的值使得漏电流的值在期望范围内,阈值电压不会太低以致于漏电流过高,阈值电压的值不会太高以致于漏电流过低,本公开实施例中,期望阈值电压合适,同时使得相应的相变存储芯片的功耗尽可能的低。
在一些示例中,本公开实施例涉及的相变存储芯片的结构可以是1S1R(One Selector One Resistor)结构(一个选通管单元对应控制一个相变存储单元),也可以是1SnR(One Selector n Resistor)结构(一个选通管单元对应同时控制多个相变存储单元)。
在一些示例中,选通管单元还可以包括缓冲层,缓冲层层叠于选通层的一个表面或者相对的两个表面,缓冲层能够有效阻止选通管材料在电场方向上的元素迁移或者偏析,减小选通管材料与电极或者与相变层之间的扩散,,进一步提高选通管单元的热稳定性。
可以根据选通管单元对应的操作电压或者操作电流的大小,来确定其中选通层的厚度,在一些示例中,选通层的厚度可以为5nm~100nm,例如为5nm~50nm、5nm~40nm、5nm~30nm、10nm~25nm等,这包括但不限于:10nm、11nm、12nm、13nm、14nm、15nm、16nm、17nm、18nm、19nm、20nm、21nm、22nm、23nm、24nm、25nm等。
对于本公开实施例提供的相变存储芯片,其存储子单元中,一方面,选通管单元可以与相变存储单元集成设置,另一方面,选通管单元也可以独立于相变存储单元布置。
本公开实施例中,相变存储单元的结构包括但不限于限制型结构、T型结构、U型沟槽结构、L字型结构等。
在一些实现方式中,选通管单元与相变存储单元集成设置,即,选通管单元的选通层和相变存储单元的相变层布置在同一个层结构单元中且两者共用顶电极和底电极。
附图1示例了选通层和限制型结构的相变存储单元集成布置的存储子单元的结构,该存储子单元包括选通层1、相变层2、第一顶电极3、第一底电极4、中间电极5、第一绝缘介质6和第一衬底7。选通层1、中间电极5、相变层2依次层叠布置,且三者整体连接于第一顶电极3和第一底电极4之间;第一底电极4位于第一衬底7上,第一绝缘介质6包覆于选通层1、中间电极、相变层2、第一顶电极3、第一底电极4的侧部。
关于选通层1、中间电极5和相变层2的布置顺序,包括但不限于以下:
作为一种示例,沿着自上而下的方向,第一顶电极3、相变层2、中间电极5、选通层1、第一底电极4和第一衬底7依次层叠布置。
作为另一种示例,沿着自上而下的方向,第一顶电极3、选通层1、中间电极5、相变层2、第一底电极4和第一衬底7依次层叠布置。
在一些示例中,第一顶电极3的厚度可以为50nm~100nm,这包括但不限于:50nm、55nm、60nm、
65nm、70nm、75nm、80nm、85nm、90nm、95nm、100nm等。
在一些示例中,第一底电极4的厚度可以为100nm~150nm,这包括但不限于:100nm、105nm、110nm、115nm、120nm、125nm、130nm、135nm、140nm、145nm、150nm等。
在另一些实现方式中,选通管单元与相变存储单元各自独立,即,选通管单元和相变存储单元两者是各自分开的,选通管单元本身具有顶电极和底电极,相变存储单元本身具有另一顶电极和另一底电极,选通管单元的电极和相变存储单元的电极可以通过诸如导线例如铜互连线等方式进行串联连接。
关于独立于相变存储单元的选通管单元的结构,可以参见图2,选通管单元包括选通层1、第二顶电极8、第二底电极9、第二绝缘介质10和第二衬底11。其中,第二顶电极8、选通层1、第二底电极9、第二衬底11由上至下依次层叠布置;第二绝缘介质10被配置为对选通管单元提供绝缘隔离作用,例如,第二绝缘介质10包覆于选通层1、第二顶电极8、第二底电极9的侧部。
选通管单元还可以进一步包括缓冲层,利用缓冲层隔离选通层1和电极,有效防止选通层发生元素偏析和漂移。
对于上述独立于选通管单元的相变存储单元,其结构包括但不限于:限制型结构、T型结构、U型沟槽结构、L字型结构等。
独立的相变存储单元的结构可以参见上述,例如,其可以包括第一顶电极3、相变层2、第一底电极4和第一衬底7,第一顶电极3、相变层2、第一底电极4和第一衬底7沿着自上而下的方向依次层叠布置。
本公开实施例涉及的相变存储单元,其相变层可以包括交替层叠的相变材料层和模板层,例如,相变材料层与模板层的交替层叠的循环数目为2~100。在一些示例中,使相变材料层为两层或两层以上,使得相变薄膜能够分层相变,以获得多级存储的能力,利于提高相变存储芯片的数据存储密度。
相变材料层使用的相变材料例如为Ge-Te二元化合物、Sb-Te二元化合物(例如为Sb2Te3)、Bi-Te二元化合物、Ge-Sb-Te三元化合物、Ti-Sb-Te三元化合物、Ga-Sb二元化合物、Sb等。模板层使用的模板材料例如为TiTe2等。
对于上述涉及的第一衬底和第二衬底,两者均可以为半导体衬底,例如这包括但不限于:二氧化硅、碳化硅、硅片、蓝宝石、金刚石等。
在用于制备相变存储单元或者选通管单元时,可以采用有机溶剂,例如乙醇和/或丙酮等将第一衬底或者第二衬底的表面清洗干净,以除去衬底表面的杂质,清洗完毕,将第一衬底或者第二衬底置于烘箱中于50℃~100℃下干燥即可。
对于上述涉及的电极,这包括第一顶电极、第一底电极、第二顶电极、第二底电极,它们均为惰性金属。
示例性地,第一顶电极和第一底电极所使用的电极材料包括但不限于以下:钨化钛(TiW)、钨(W)、铝(Al)、氮化钛(TiN)、钛(Ti)、钽(Ta)、银(Ag)、铂(Pt)、碳(C)、铜(Cu)、钌(Ru)、金(Au)、钴(Co)、铬(Cr)、镍(Ni)、铱(Ir)、钯(Pd)、铑(Rh)等。
示例性地,第二顶电极、第二底电极所使用的电极材料包括但不限于以下:Pt(铂)、Ti(钛)、W(钨)、Au(金)、Ru(钌)、Al(铝)、TiW(钨化钛)、TiN(氮化钛)、TaN(氮化钽)、IrO2(二氧化铱)、ITO(氧化铟锡)、IZO(铟锌氧化物)中的至少一种。
本公开实施例中,第一绝缘介质和第二绝缘介质所采用的绝缘材料包括但不限于二氧化硅(SiO2)、氮化硅(Si3N4)等。
在一些示例中,本公开实施例提供的相变存储芯片为内存级相变存储芯片。
本公开实施例提供的相变存储芯片可以作为单独的内存进行使用,也可以与动态随机存取存储器共同作为混合内存进行使用。
再一方面,本公开实施例还提供了一种相变存储芯片的制备方法,其中,该相变存储芯片如上述所示。对于相变存储芯片中除了衬底之外的其他层,例如,选通层、缓冲层、相变层、顶电极和底电极等,均可以通过薄膜沉积工艺来形成。
上述涉及的薄膜沉积工艺包括但不限于以下蒸镀法、溅射法、原子层沉积法、化学气相沉积法、脉冲激光沉积法、分子束外延法、金属化合物气相沉积法等。
举例来说,可以利用选通管材料,采用蒸镀法、溅射法、原子层沉积法、化学气相沉积法、脉冲激光沉积法、分子束外延法、金属化合物气相沉积法等来制备选通层。
所制备得到的选通层在电信号的操作下,能够实现高低阻态的瞬时转变,在撤去电信号时瞬时返回为高阻态。
根据具体的层来确定每一层对应的磁控溅射参数,以制备选通层举例来说,一些适用的磁控溅射参数如下所示:本底真空度为10-3Pa~10-5Pa;溅射气压为0.3Pa~0.8Pa等;基板温度为50℃~400℃;溅射功率为5W~50W等;溅射气体包括但不限于:氩气、氪气、氙气、氖气、氮气中的至少一种,例如,选用氩气Ar作为溅射气体。磁控溅射方式可以为直流磁控溅射,也可以为射频磁控溅射。
以制备选通层举例来说,所使用的选通管材料可以为合金形式,也可以为多元化合物或形式,还可以为单质与单质相混合或者单质与化合物相混合的混合物形式,还可以为上述各形式的组合。在利用磁控溅射工艺制备选通层时,可以采用合金靶、化合物靶、单质靶的一种或者任意组合进行共溅射,使得选通层具有期望的化学组成。
再一方面,本公开实施例还提供了一种存储设备,如附图3所示,该存储设备包括控制器100和上述的任一种相变存储芯片200,控制器100用于存储数据至相变存储芯片200,其中,控制器100对存储设备中保存的数据进行读写,并和外部接口进行交互通讯。
该存储设备(又可以称为存储器),可以被配置为存储各种类型的数据,这些数据可以为联系人数据,电话簿数据,消息,图片,视频等,也可以为指令性数据。
本公开实施例涉及的存储设备可以设置成各种类型,例如,这包括但不限于:内存、硬盘、磁盘、光盘等。
再一方面,本公开实施例还提供了一种电子设备,该电子设备包括处理器和上述的存储设备,处理器用于存储电子设备产生的数据至存储设备。
在一些示例中,该电子设备包括但不限于:计算机、手机、音乐播放设备、数字广播设备、消息收发设备、游戏控制设备、医疗设备、健身设备、个人数字助理等。
本公开实施例还对选通管材料的获取方法作了进一步地示例性描述,参见图4,该选通管材料的获取方法包括以下步骤:
步骤S1、构建多个Ge-S二元结构模型,其中,多个Ge-S二元结构模型中,Ge元素的原子百分比彼此不同。
步骤S2、分析多个Ge-S二元结构模型的能带间隙值E1,确定满足第一阈值条件的Ge元素的原子百分比范围。
步骤S3、构建多个Ge-S-M三元结构模型,多个Ge-S-M三元结构模型中Ge元素的原子百分比相同且满足第一阈值条件,以及,M元素的原子百分比彼此不同,M元素选自Te元素、Sn元素中的一种。
步骤S4、分析多个Ge-S-M三元结构模型的能带间隙值E2,确定满足第二阈值条件的M元素的原子百分比范围。
步骤S5、基于满足第一阈值条件的Ge元素的原子百分比范围和满足第二阈值条件的M元素的原子百分比范围,确定Ge-S-M三元化合物的初筛化学式,根据Ge-S-M三元化合物的初筛化学式和Ge-S-M-N四元化合物的初筛化学式,获取选通管材料。
进一步地,参见图5,本公开实施例还提供了另一种选通管材料的获取方法,该选通管材料的获取方法包括:
步骤S1、构建多个Ge-S二元结构模型,其中,多个Ge-S二元结构模型中,Ge元素的原子百分比彼此不同。
步骤S2、分析多个Ge-S二元结构模型的能带间隙值E1,确定满足第一阈值条件的Ge元素的原子百分比范围。
步骤S3、构建多个Ge-S-M三元结构模型,多个Ge-S-M三元结构模型中Ge元素的原子百分比相同且满足第一阈值条件,以及,M元素的原子百分比彼此不同,M元素选自Te元素、Sn元素中的一种。
步骤S4、分析多个Ge-S-M三元结构模型的能带间隙值E2,确定满足第二阈值条件的M元素的原子百分比范围。
步骤S5、基于满足第一阈值条件的Ge元素的原子百分比范围和满足第二阈值条件的M元素的原子百分比范围,确定Ge-S-M三元化合物的初筛化学式,根据Ge-S-M三元化合物的初筛化学式和Ge-S-M-N四元化合物的初筛化学式,获取选通管材料。
步骤S6、构建多个Ge-S-M-N四元结构模型,多个Ge-S-M-N四元结构模型中Ge元素的原子百分比相同
且满足第一阈值条件,M元素的原子百分比相同且满足第二阈值条件,以及,N元素的原子百分比彼此不同,N元素选自Te元素、Sn元素、C元素、Si元素中的一种。
步骤S7、分析多个Ge-S-M-N四元结构模型的能带间隙值E3,确定满足第三阈值条件的N元素的原子百分比范围。
步骤S8、基于满足第一阈值条件的Ge元素的原子百分比范围、满足第二阈值条件的M元素的原子百分比范围、满足第三阈值条件的N元素的原子百分比范围,确定Ge-S-M-N四元化合物的初筛化学式。
步骤S9、根据Ge-S-M三元化合物的初筛化学式和Ge-S-M-N四元化合物的初筛化学式,获取选通管材料。
对于步骤S1,所构建的多个Ge-S二元结构模型均为其非晶结构模型,所构建的多个Ge-S二元结构模型中Ge元素的原子百分比,可以由小至大逐渐递增。
将当前Ge-S二元结构模型与前一个Ge-S二元结构模型之间的原子百分比梯度D1,将当前Ge-S二元结构模型与后一个Ge-S二元结构模型之间的原子百分比梯度定义为D2,D1值与D2值可以相同,也可以不同,例如,可以使D1值大于D2值,也可以使D1值小于D2值。
所构建的多个Ge-S二元结构模型的数目至少为两个,例如,可以为三个、四个、五个、六个、七个、八个或者更多个。
所构建的多个Ge-S二元结构模型的数目越多,计算结果的可靠性越强,但是也会相应地增加计算工作量。
所构建的多个Ge-S二元结构模型中,Ge的原子百分比的下限值可以为0.15-0.25,这包括但不限于:0.155、0.16、0.17、0.18、0.19、0.2、0.21、0.22、0.23、0.24、0.25等。Ge的原子百分比的上限值可以为0.65-0.75,这包括但不限于:0.655、0.66、0.67、0.68、0.69、0.7、0.71、0.72、0.73、0.74、0.75等。
举例来说,可以构建五个Ge-S二元结构模型,Ge元素的原子百分比分别为0.167、0.333、0.38、0.5、0.667。
对于步骤S2,分析多个Ge-S二元结构模型的能带间隙值E1,以分别判断这些Ge-S二元结构模型的能带间隙值E1是否满足第一阈值条件,筛选出满足第一阈值条件的Ge-S二元结构模型并根据其对应的Ge元素的原子百分比,确定满足第一阈值条件的Ge元素的原子百分比范围。
在一些示例中,获取多个Ge-S二元结构模型的能带间隙值E1,根据多个Ge-S二元结构模型中Ge元素的原子百分比和能带间隙值E1,对Ge元素的原子百分比和能带间隙值E1之间的函数关系作线性拟合,获得能带间隙值E1随Ge元素的原子百分比变化的拟合函数。根据第一阈值条件,由该拟合函数确定获取满足第一阈值条件的Ge元素的原子百分比下限值和上限值,进而确定符合要求的Ge元素的原子百分比范围。
对于步骤S3,其构建多个Ge-S-M三元结构模型的方式可参见上述构建多个Ge-S二元结构模型的方式,这包括M元素的原子百分比的设计方式可以参考上述Ge元素的原子百分比的设计方式。
不同于构建Ge-S二元结构模型,在构建Ge-S-M三元结构模型中首先需要确定其中Ge元素的原子百分比,其中,该Ge元素的原子百分比至少要满足第一阈值条件,进一步地,所选定的Ge元素的原子百分比可以为40%-60%,这包括但不限于45%、46%、47%、48%、49%、50%、51%、52%、53%、54%、55%等。
对于步骤S4,分析多个Ge-S-M三元结构模型的能带间隙值E2,分别判断这些Ge-S-M三元结构模型的能带间隙值E2是否满足第二阈值条件,筛选出满足第二阈值条件的Ge-S-M三元结构模型并根据其对应的M元素的原子百分比,确定满足第二阈值条件的M元素的原子百分比范围。
在一些示例中,获取多个Ge-S-M三元结构模型的能带间隙值E2,根据多个Ge-S-M三元结构模型中M元素的原子百分比和能带间隙值E2,对M元素的原子百分比和能带间隙值E2之间的函数关系作线性拟合,获得能带间隙值E2随M元素的原子百分比变化的拟合函数。根据第二阈值条件,由该拟合函数确定获取满足第二阈值条件的M元素的原子百分比下限值和上限值,进而确定符合要求的M元素的原子百分比范围。
对于步骤S6,其构建多个Ge-S-M-N四元结构模型的方式可参见上述构建多个Ge-S二元结构模型的方式,这包括N元素的原子百分比的设计方式可以参考上述Ge元素的原子百分比的设计方式。
不同于构建Ge-S二元结构模型,在构建Ge-S-M-N四元结构模型中首先需要确定其中Ge元素的原子百分比和M元素的原子百分比,其中,该Ge元素的原子百分比至少要满足第一阈值条件,进一步地,所选定的Ge元素的原子百分比可以为40%-60%,这包括但不限于45%、46%、47%、48%、49%、50%、51%、52%、53%、54%、55%等。该M元素的原子百分比靠近M元素的原子百分比范围的中位值,因为此时对
应的Ge-S-M三元结构模型的能带间隙值较大。
例如,M元素为Te元素时,期望Te元素的原子百分比范围为小于或等于0.377,那么,在所构建的Ge-S-M-N四元结构模型中,所选定的Te元素的原子百分比可以为0.1-0.2,这包括但不限于0.1、0.12、0.13、0.14、0.15、0.16、0.18等。
M元素为Sn元素时,期望Sn元素的原子百分比范围为小于或等于0.08,那么,在所构建的Ge-S-M-N四元结构模型中,所选定的Sn元素的原子百分比可以为0.03-0.06,这包括但不限于0.03、0.04、0.05、0.06等。
对于步骤S7,分析多个Ge-S-M-N四元结构模型的能带间隙值E3,分别判断这些Ge-S-M-N四元结构模型的能带间隙值E3是否满足第三阈值条件,筛选出满足第三阈值条件的Ge-S-M-N四元结构模型并根据其对应的N元素的原子百分比,确定满足第三阈值条件的N元素的原子百分比范围。
在一些示例中,获取多个Ge-S-M-N四元结构模型的能带间隙值E3,根据多个Ge-S-M-N四元结构模型中N元素的原子百分比和能带间隙值E3,对N元素的原子百分比和能带间隙值E3之间的函数关系作线性拟合,获得能带间隙值E3随N元素的原子百分比变化的拟合函数。根据第三阈值条件,由该拟合函数确定获取满足第三阈值条件的N元素的原子百分比下限值和上限值,进而确定符合要求的N元素的原子百分比范围。
本公开实施例根据选通管材料的能带间隙值与其选通性能之间的关系,来设定与选通性能相关的第一阈值条件、第二阈值条件和第三阈值条件,并基于此进行选通管材料的设计。
通过构建Ge-S二元结构模型并分析其能带间隙值E1是否满足第一阈值条件,筛选出满足第一阈值条件的那些Ge-S二元结构模型,进而根据这些Ge-S二元结构模型中各自Ge元素的原子百分比,确定满足第一阈值条件的Ge元素的原子百分比范围。随后,通过构建Ge-S-M三元结构模型并分析其能带间隙值E2是否满足第二阈值条件,筛选出满足第二阈值条件的那些Ge-S-M三元结构模型,进而根据这些Ge-S-M三元结构模型中各自M元素的原子百分比,确定满足第二阈值条件的M元素的原子百分比范围。在Ge元素的原子百分比范围x、M元素的原子百分比范围y各自确定的前提下,Ge-S-M三元化合物的初筛化学式(GexS1-x)1-yMy也相应确定,进而获取三元化合物形式的选通管材料。
进一步地,通过构建Ge-S-M-N四元结构模型并分析其能带间隙值E3是否满足第三阈值条件,筛选出满足第三阈值条件的那些Ge-S-M-N四元结构模型,进而根据这些Ge-S-M-N四元结构模型中各自N元素的原子百分比,确定满足第三阈值条件的N元素的原子百分比范围。在Ge元素的原子百分比范围x、M元素的原子百分比范围y、N元素的原子百分比范围z各自确定的前提下,Ge-S-M-N四元化合物的初筛化学式(GexS1-x)1-y-zMyNz也相应确定,进而获取四元化合物形式的选通管材料。
可见,本公开实施例基于选通管材料的能带间隙与其选通性能的关系,对模拟的Ge-S-M三元结构模型和Ge-S-M-N四元结构模型的能带间隙进行筛选,进而获取符合阈值条件的Ge-S-M三元结构模型和Ge-S-M-N四元结构模型,进而获取三元化合物形式的选通管材料和四元化合物形式的选通管材料。本公开实施例提供的选通管材料的获取方法至少具有操作简单、筛选结果精确可靠、省时省力、成本较低等优点,对于组分简单且环境友好型的选通管材料的高效开发具有重要的意义。
本公开实施例中,将多个Ge-S二元结构模型的能带间隙值定义为E1,其中,第一阈值条件包括使能带间隙值E1满足,1.4ev≤E1≤2.4ev;将多个Ge-S-M三元结构模型的能带间隙定义为E2,其中,第二阈值条件包括使能带间隙值E2满足,1.4ev≤E2≤2.4ev;将多个Ge-S-M-N四元结构模型的能带间隙值定义为E3,其中,第三阈值条件包括使能带间隙值E3满足,1.4ev≤E3≤2.4ev。
发明人研究发现,当选通管材料的能带间隙值高于2.4eV时,会导致选通管材料的阈值电压过大,以至于相变存储器件难以操作;当选通管材料的能带间隙值小于1.4eV时,选通管材料的漏电流过大。
所以,期望选通管材料的能带间隙值的范围为1.4ev≤E1≤2.4ev,可见,通过对第一阈值条件、第二阈值条件和第三阈值条件进行如上限定,能够确保所获得的三元化合物形式的选通管材料和四元化合物形式的选通管材料具有漏电流低、阈值电压合适、热稳定性强等优点。
在一些示例中,根据第一性原理分子动力学,分别构建多个Ge-S二元结构模型、多个Ge-S-M三元结构模型和多个Ge-S-M-N四元结构模型。
第一性原理分子动力学是根据原子核和电子相互作用的原理及其基本运动规律,运用量子力学原理,基于具体要求,经过一些近似处理后直接求解薛定谔方程的算法,其包括密度泛函理论(Density Functional Theory,DFT),能够计算并预测材料的晶体结构、能带结构、态密度、光学性能等参数。
本公开实施例基于第一性原理分子动力学,能够构建多个Ge-S二元结构模型、多个Ge-S-M三元结构模型和多个Ge-S-M-N四元结构模型,来实现对二元Ge-S选通管材料、三元Ge-S-M选通管材料和四元Ge-S-M-N选通管材料的精确模拟。并且,基于第一性原理分子动力学还能够对这些结构模型进行能带结构(包括能带间隙)、态密度等参数的计算,从而实现对这些结构模型的选通性能的有效预测。
维也纳从头计算模拟程序包(The Vienna Ab initio Simulation Package,VASP)是用于原子尺度材料模拟的计算机程序,其基于第一性原理,能够执行电子结构计算和量子力学分子动力学。
本公开实施例可以利用VASP软件构建并分析Ge-S二元结构模型、Ge-S-M三元结构模型和Ge-S-M-N四元结构模型,以获取这些结构模型所属材料内部的原子之间的相互关系、电子结构、能带结构、热稳定性等,进而通过计算而筛选出期望的Ge-S基选通管掺杂元素及这些掺杂元素的掺杂浓度的范围,实现对三元Ge-S-M选通管材料和四元Ge-S-M-N选通管材料的精确预测,所预测得到的三元Ge-S-M选通管材料和四元Ge-S-M-N选通管材料具有环境友好(无毒)、漏电流低、阈值电压合适、热稳定性好等优点,符合高性能选通管的需求。
在一些示例中,利用VASP软件,通过熔融淬火法分别构建非晶结构的Ge-S二元结构模型、Ge-S-M三元结构模型和Ge-S-M-N四元结构模型。
在一些实现方式中,针对步骤S9,根据Ge-S-M三元化合物的初筛化学式和Ge-S-M-N四元化合物的初筛化学式,获取选通管材料,还可以包括:
步骤S91、对满足Ge-S-M三元化合物的初筛化学式的多个Ge-S-M三元结构模型在设定温度下的均方位移进行测试,得到多个第一均方位移值。
步骤S92、将多个第一均方位移值与均方位移阈值条件进行对比,筛选出满足均方位移阈值条件的多个Ge-S-M三元结构模型。也就是说,将多个Ge-S-M三元结构模型中各元素各自对应的第一均方位移值与均方位移阈值条件进行对比。
步骤S93、根据满足均方位移阈值条件的多个Ge-S-M三元结构模型,确定Ge-S-M三元化合物的二筛化学式。
步骤S94、对满足Ge-S-M-N四元化合物的初筛化学式的多个Ge-S-M-N四元结构模型在设定温度下的均方位移进行测试,得到多个第二均方位移值。
步骤S95、将多个第二均方位移值与均方位移阈值条件进行对比,筛选出满足均方位移阈值条件的多个Ge-S-M-N四元结构模型。也就是说,将多个Ge-S-M-N四元结构中各元素各自对应的第二均方位移值与均方位移阈值条件进行对比。
步骤S96、根据满足均方位移阈值条件的多个Ge-S-M-N四元结构模型,确定Ge-S-M-N四元化合物的二筛化学式。
步骤S97、根据Ge-S-M三元化合物的二筛化学式和Ge-S-M-N四元化合物的二筛化学式,获取选通管材料。
其中,步骤S91-步骤S93按照先后顺序依次进行,步骤S94-步骤S96按照先后顺序依次进行,步骤S91-步骤S93的执行顺序与步骤S94-步骤S96的执行顺序不分先后,两者可以按照任意顺序执行。
其中,特定原子在设定温度下的均方位移表征了该原子在设定温度下的运动能力,均方位移越大,表明该原子的运动能力越强,反之,均方位移越小,表明该原子的运动能力越弱,即越稳定。本申请中期望原子在设定温度下的均方位移尽可能地小。
在根据能带间隙获取了Ge-S-M三元化合物的初筛化学式和Ge-S-M-N四元化合物的初筛化学式之后,进一步根据这些初筛化学式对应的结构模型中各原子在设定温度下的均方位移,使其与均方位移阈值条件相比,进而判断各原子在设定温度下的运动状态。期望地是,各原子的运动状态不活跃,未呈现大尺度的移动,这表明所对应的Ge-S-M三元结构模型或者Ge-S-M-N四元结构模型的热稳定性更强。可见,通过上述的二筛步骤,能够对三元Ge-S-M选通管材料和四元Ge-S-M-N选通管材料的热稳定性作进一步地精确预测,从而确保最终获取的三元Ge-S-M选通管材料和四元Ge-S-M-N选通管材料具有环境友好、漏电流低、阈值电压合适、热稳定性好等优点。
根据对选通管材料的热稳定性的实际需求,来确定均方位移阈值条件,例如,可以将相同条件下的无掺杂的Ge-S二元化合物的均方位移曲线作为判断基准,将均方位移阈值条件设定为使均方位移曲线与判断基准之间的差值小于或等于设定阈值。
均方位移在设定温度下测试得到,该设定温度也就是所获取的选通管材料的可耐受温度。在一些示
例中,该设定温度可以为550K-650K,例如,这包括但不限于:550K、560K、570K、580K、590K、600K、610K、620K、630K、640K、650K。
根据上述涉及的选通管材料的获取方法,以下结合一些实例来对其作更详细的描述:
步骤S11、基于第一性原理分子动力学,利用VASP软件构建五个Ge-S二元结构模型,其中,这五个Ge-S二元结构模型中,Ge元素的原子百分比分别为16.7%、33.3%、38%、50%和66.7%,对应的五个Ge-S二元结构模型的化学式分别为GeS5、GeS2,Ge38S62、GeS和Ge2S。
步骤S21、利用VASP软件计算这五个Ge-S二元结构模型的能带间隙值E1,分别为:2.94eV(参见图6)、2.33eV(参见图7)、2.22eV(参见图8)、2.172eV(参见图9)和1.32eV(参见图10)。
根据这五个Ge-S二元结构模型中Ge元素的原子百分比和能带间隙值E1,对Ge元素的原子百分比和能带间隙值E1之间的函数关系作线性拟合,获得能带间隙值E1随Ge元素的原子百分比变化的拟合函数(参见图11)。
将第一阈值条件设置为包括使能带间隙值E1满足,1.4ev≤E1≤2.4ev,由该拟合函数确定获取满足第一阈值条件的Ge元素的原子百分比下限值和上限值,进而确定符合要求的Ge元素的原子百分比范围为31.2%-64.9%,即,确定了Ge-S二元化合物中,x的取值范围为31.2%≤x≤64.9%。
可见,对于Ge-S二元体系,当Ge元素的原子百分比控制在31.2%≤x≤64.9%时,利于获得漏电流低、阈值电压低的选通管材料。
步骤S31、基于第一性原理分子动力学,利用VASP软件构建三个Ge-S-M三元结构模型,这三个Ge-S-M三元结构模型中Ge元素的原子百分比相同且满足第一阈值条件,以及,M元素的原子百分比彼此不同,M元素选自Te元素或者Sn元素。
作为一种实例,这三个Ge-S-M三元结构模型中Ge元素的原子百分比均设为33.3%,M元素为Te元素,也就是说,构建三个(GeS2)1-yTey三元结构模型,这三个(GeS2)1-yTey三元结构模型中Te元素的原子量百分比(即y值)分别为14%、30%和40%。
步骤S41、利用VASP软件计算这三个(GeS2)1-yTey三元结构模型的能带间隙值E2,分别为:1.86eV(参见图12)、1.47eV(参见图13)、1.18eV(参见图14),其中,不掺杂Te元素的GeS2的能带间隙值为2.33eV。
根据这三个(GeS2)1-yTey三元结构模型中Te元素的原子百分比和能带间隙值E2,对Te元素的原子百分比和能带间隙值E2之间的函数关系作线性拟合,获得能带间隙值E2随Te元素的原子百分比变化的拟合函数(参见图15)。
步骤S51、将第二阈值条件设置为包括使能带间隙值E2满足,1.4ev≤E2≤2.4ev,由该拟合函数确定获取满足第二阈值条件的Te元素的原子百分比下限值和上限值,进而确定符合要求的Te元素的原子百分比范围为,0%<y≤37.7%,这样,确定Ge-S-M三元化合物的初筛化学式为,(GeS2)1-yTey,其中,0.2≤x≤0.7,0<y≤0.377。
该实例测试了(GeS2)二元结构模型以及上述三个(GeS2)1-yTey三元结构模型中各元素的分波态密度,测试结果分别参见图16-图19,可见,不同掺杂浓度的Te元素的掺入,对于Ge-S-Te三元体系的中间带隙间隙态有明显贡献,而中间带隙间隙态与选通管的选通特性相关。可见,Te元素的掺入对于选通管材料体系的选通特性具有积极的作用。
为了进一步验证Te元素的原子百分比范围为0%<y≤37.7%,是否满足选通管材料对于热稳定性的需求,进一步对(GeS2)二元结构模型以及上述三个(GeS2)1-yTey三元结构模型(Te元素的原子量百分比分别为14%、30%和40%)在600K温度下的均方位移进行了测试。
测试结果分别参见图20-图23,由图23可知,当Te元素的原子量百分比为40%时,其所在(GeS2)1-yTey三元结构模型体系中各原子的运行能力均呈现为强运动状态,这是不期望的。由图21和图22可知,而当Te元素的原子量百分比分别为14%和30%时,其所在(GeS2)1-yTey三元结构模型体系中各原子的运动均保持在弱运动状态,未呈现大尺度的移动。可见,0%<y≤37.7%的获取是精确可靠的。
基于上述就(GeS2)1-yTey三元结构模型的分析可知,对于能带间隙而言,随着Te元素的掺杂浓度的增多,(GeS2)1-yTey三元结构模型的能带间隙值E2逐渐减小。由于不掺杂的纯GeS2二元结构模型的能带间隙相对较大,进而导致阈值电压Vth会偏高,操作会消耗较大的功耗,Te元素的掺杂能够降低能带间隙,从而降低阈值电压Vth。
然而,在Te元素的原子百分比为40%时,会导致(GeS2)1-yTey三元结构模型的能带间隙过小(小于下限
值1.4ev),这会导致较高的漏电流,使得漏电严重,并且该体系下的各原子运动能力较强,不利于选通管器件的热稳定性。因此,Te元素的原子百分比为40%将被排除,最终通过能带间隙拟合确定Te元素的掺杂浓度为0<y≤37.7%。由此可以确定Ge-S-M三元化合物的二筛化学式与其初筛化学式相同,均为(GeS2)1-
yTey,其中,0.2≤x≤0.7,0<y≤0.377。
作为另一种实例,这三个Ge-S-M三元结构模型中Ge元素的原子百分比均设为33.3%,M元素为Sn元素,也就是说,构建三个(GeS2)1-ySny三元结构模型,这三个(GeS2)1-ySny三元结构模型中Sn元素的原子量百分比(即y值)分别为5%、8%和10%。
步骤S41、利用VASP软件计算这三个(GeS2)1-ySny三元结构模型的能带间隙值E2,分别为:2.09eV(参见图24)、2.02eV(参见图25)、2.17eV(参见图26),其中,不掺杂Sn元素的GeS2的能带间隙值为2.33eV。
根据这三个(GeS2)1-ySny三元结构模型中Sn元素的原子百分比和能带间隙值E2,对Sn元素的原子百分比和能带间隙值E2之间的函数关系作线性拟合,获得能带间隙值E2随Sn元素的原子百分比变化的拟合函数。
步骤S51、将第二阈值条件设置为包括使能带间隙值E2满足,1.4ev≤E2≤2.4ev,由该拟合函数确定获取满足第一阈值条件的Sn元素的原子百分比下限值和上限值,进而确定符合要求的Sn元素的原子百分比范围为,0%<y≤12.5%。这样,确定Ge-S-M三元化合物的初筛化学式为,(GeS2)1-ySny,其中,0.2≤x≤0.7,0<y≤0.125。
考虑到Sn元素掺杂后,(GeS2)1-ySny三元结构模型与Ge-S二元结构模型的能带间隙值之间的差值较小,进一步的对这三个(GeS2)1-ySny三元结构模型(Sn元素的原子量百分比分别为5%、8%和10%)在600K温度下的均方位移进行了测试。
测试结果分别参见图27-图29。由图29可知,当Sn元素的原子量百分比为10%时,其所在(GeS2)1-ySny三元结构模型体系中各原子的运行能力均呈现为强运动状态,而当Sn元素的原子量百分比分别为5%和8%时,其所在(GeS2)1-ySny三元结构模型体系中各原子的运动均保持在弱运动状态,未呈现大尺度的移动。可见,y需要进一步地控制在8%以内,以确保选通管器件的热稳定性。
可见,最终符合要求的Sn元素的原子百分比范围进一步被筛选为,0%<y≤8%。这样,确定Ge-S-M三元化合物的二筛化学式为,(GeS2)1-ySny,其中,0.2≤x≤0.7,0<y≤0.08。
基于上述就(GeS2)1-ySny三元结构模型的分析可知,对于能带间隙而言,Sn元素的掺杂对其能带间隙的贡献不大,稍微降低,但是Sn元素的掺杂浓度大于8%时,该体系下的各原子运动能力较强,不利于选通管器件的热稳定性。因此,Sn元素的原子百分比大于8%时的情形将被排除,最终通过能带间隙拟合确定Sn元素的掺杂浓度为0<y≤8%。
进一步地,继续构建四元化合物形式的选通管材料,一些具体的实例包括但不限于以下:
步骤S61、基于第一性原理分子动力学,利用VASP软件构建多个Ge-S-M-N四元结构模型,多个Ge-S-M-N四元结构模型中Ge元素的原子百分比相同且满足第一阈值条件,以及,M元素的原子百分比相同且满足第二阈值条件,M元素选自Te元素或者Sn元素,N元素选自Si元素或C元素。
作为一种实例,构建六个Ge-S-Te-Si四元结构模型,这六个Ge-S-Te-Si四元结构模型中,Ge元素的原子百分比均设为50%,Te元素的原子百分比均设为14%,也就是说,构建六个[(Ge0.5S0.5)0.86Te0.14]1-zSiz四元结构模型,这六个[(Ge0.5S0.5)0.86Te0.14]1-zSiz四元结构模型中Si元素的原子量百分比(即z值)分别为5%、10%、15%、20%、30%和40%。
步骤S71、利用VASP软件计算这六个[(Ge0.5S0.5)0.86Te0.14]1-zSiz四元结构模型的能带间隙值E3,分别为:1.39eV(掺杂量为5%)、1.479eV(掺杂量为10%,参见图30)、1.433eV(掺杂量为15%)、0.51eV(掺杂量为20%)、0.42eV(掺杂量为30%)和0.427eV(掺杂量为40%)。可见,随着Si元素的掺杂量的增加,能带间隙值E3越小,进而导致漏电流增加。
根据这六个(GeS)1-0.14-zTe0.14Siz四元结构模型中Si元素的原子百分比和能带间隙值E3,对Si元素的原子百分比和能带间隙值E3之间的函数关系作线性拟合,获得能带间隙值E3随Si元素的原子百分比变化的拟合函数。
步骤S81、将第三阈值条件设置为包括使能带间隙值E3满足,1.4ev≤E2≤2.4ev,由该拟合函数确定获取满足第二阈值条件的Si元素的原子百分比下限值和上限值,进而确定符合要求的Si元素的原子百分比范围为,10%≤z≤19.1%,这样,确定Ge-S-M-N四元化合物的初筛化学式为,[(GexS1-x)1-yTey]1-zSiz,其中,
0.2≤x≤0.7,0<y≤0.377,0.1≤z≤0.191。
为了进一步验证Si元素的原子百分比范围为0.1≤z≤0.191,是否满足选通管材料对于热稳定性的需求,进一步对满足初步要求的其中两个[(Ge0.5S0.5)0.86Te0.14]1-zSiz四元结构模型(Si元素的原子量百分比分别为10%、15%)在600K温度下的均方位移进行了测试,测试结果表明,当Si元素的原子量百分比分别为10%和15%时,其所在[(Ge0.5S0.5)0.86Te0.14]1-zSiz四元结构模型体系中各原子的运动均保持在弱运动状态,未呈现大尺度的移动。可见,0.1≤z≤0.191的获取是精确可靠的。
其中,图31示例了的Si元素的原子量百分比分别为10%的[(Ge0.5S0.5)0.86Te0.14]0.9Si0.1四元结构模型中四种原子在600K下的均方位移示意图,可以看到,Si原子的运动能力是最低的,可见,Si元素的掺杂,能够有效地增加选通管材料体系的稳定性,这是因为,Si原子在选通管材料体系中能形成四面体结构,四面体在非晶态体系中起到增加非晶结构稳定性的作用,因此Si的掺入提高了选通管材料的热稳定性,降低选通管漂移drift带来的器件误读。
作为另一种实例,构建四个Ge-S-Sn-Si四元结构模型,这四个Ge-S-Sn-Si四元结构模型中,Ge元素的原子百分比均设为50%,Sn元素的原子百分比均设为5%,也就是说,构建四个[(Ge0.5S0.5)0.95Sn0.05]1-zSiz四元结构模型,这四个[(Ge0.5S0.5)0.95Sn0.05]1-zSiz四元结构模型中Si元素的原子量百分比(即z值)分别为5%、10%、15%、20%。
步骤S71、利用VASP软件计算这四个[(Ge0.5S0.5)0.95Sn0.05]1-zSiz四元结构模型的能带间隙值E3,分别为:1.35eV(掺杂量为5%)、1.439eV(掺杂量为10%,参见图32)、1.412eV(掺杂量为15%)、0.198eV(掺杂量为20%)。
根据这四个[(Ge0.5S0.5)0.95Sn0.05]1-zSiz四元结构模型中Si元素的原子百分比和能带间隙值E3,对Si元素的原子百分比和能带间隙值E3之间的函数关系作线性拟合,获得能带间隙值E3随Si元素的原子百分比变化的拟合函数。
步骤S81、将第三阈值条件设置为包括使能带间隙值E3满足,1.4ev≤E2≤2.4ev,由该拟合函数确定获取满足第二阈值条件的Si元素的原子百分比下限值和上限值,进而确定符合要求的Si元素的原子百分比范围为,10%≤z≤18.4%,这样,确定Ge-S-M-N四元化合物的初筛化学式为,[(GexS1-x)1-ySny]1-zSiz,其中,0.2≤x≤0.7,0<y≤0.377,0.1≤z≤0.184。
为了进一步验证Si元素的原子百分比范围为0.1≤z≤0.184,是否满足选通管材料对于热稳定性的需求,进一步对满足初步要求的其中两个[(Ge0.5S0.5)0.95Sn0.05]1-zSiz四元结构模型(Si元素的原子量百分比分别为10%、15%)在600K温度下的均方位移进行了测试,测试结果表明,当Si元素的原子量百分比分别为10%和15%时,其所在[(Ge0.5S0.5)0.95Sn0.05]1-zSiz四元结构模型体系中各原子的运动均保持在弱运动状态,未呈现大尺度的移动。可见,0.1≤z≤0.184的获取是精确可靠的。
其中,图33示例了的Si元素的原子量百分比分别为10%的[(Ge0.5S0.5)0.95Sn0.05]0.9Si0.1四元结构模型中四种原子在600K下的均方位移示意图,可以看到,Si原子的运动能力是最低的,可见,Si元素的掺杂,能够有效地增加选通管材料体系的稳定性,这是因为,Si原子在选通管材料体系中能形成四面体结构,四面体在非晶态体系中起到增加非晶结构稳定性的作用,因此Si的掺入提高了选通管材料的热稳定性,降低选通管漂移drift带来的器件误读。
综合上述[(GexS1-x)1-yTey]1-zSiz四元结构模型和[(GexS1-x)1-ySny]1-zSiz四元结构模型中对Si元素的原子百分比的获取,z的上限值可以取0.191和0.184,选取最小值作为上限值,也就是说,0.1≤z≤0.184对于提高选通管的性能更为有利。
以上所述仅是为了便于本领域的技术人员理解本公开的技术方案,并不用以限制本公开。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
Claims (17)
- 一种选通管材料,其中,所述选通管材料的化学式为(GexS1-x)1-yMy,M元素选自Te元素或者Sn元素;其中,0.2≤x≤0.7,0<y≤0.4,x和y均为原子百分比。
- 根据权利要求1所述的选通管材料,其中,所述M元素为Te元素;x和y的取值范围分别如下所示:0.312≤x≤0.649,0<y≤0.377。
- 根据权利要求1所述的选通管材料,其中,所述M元素为Sn元素;x和y的取值范围分别如下所示:0.312≤x≤0.649,0<y≤0.08。
- 一种选通管材料,其中,所述选通管材料的化学式为[(GexS1-x)1-yMy]1-zNz;M元素和N元素不同,所述M元素和所述N元素分别选自Te元素、Sn元素、C元素、Si元素中的一种;其中,0.2≤x≤0.7,0<y≤0.4,0≤z≤0.4,x、y、z均为原子百分比。
- 根据权利要求4所述的选通管材料,其中,所述M元素为Te元素;x、y和z的取值范围分别如下所示:0.312≤x≤0.649,0<y≤0.377,0.02≤z≤0.2。
- 根据权利要求5所述的选通管材料,其中,所述N元素为C元素或者Si元素;z的取值范围为,0.1≤z≤0.2。
- 根据权利要求5所述的选通管材料,其中,所述N元素为Sn元素;z的取值范围为,0.02≤z≤0.08。
- 根据权利要求4所述的选通管材料,其中,所述M元素为Sn元素;x、y和z的取值范围分别如下所示:0.312≤x≤0.649,0<y≤0.08,0.02≤z≤0.2。
- 根据权利要求8所述的选通管材料,其中,所述N元素为C元素或者Si元素;z的取值范围为,0.1≤z≤0.2。
- 根据权利要求8所述的选通管材料,其中,所述N元素为Te元素;z的取值范围为,0.02≤z≤0.2。
- 根据权利要求1-10任一项所述的选通管材料,其中,所述选通管材料通过以下方法获取得到:分析多个Ge-S-M三元结构模型或者Ge-S-M-N四元结构模型的能带间隙值是否满足能带间隙阈值条件;根据满足所述能带间隙阈值条件的Ge-S-M三元结构模型或者Ge-S-M-N四元结构模型对应的元素百分含量,获取得到所述选通管材料。
- 根据权利要求11所述的选通管材料,其中,所述选通管材料还通过以下方法获取得到:分析满足所述能带间隙阈值条件的Ge-S-M三元结构模型或者Ge-S-M-N四元结构模型的均方位移值是否满足均方位移阈值条件;根据满足所述均方位移阈值条件的Ge-S-M三元结构模型或者Ge-S-M-N四元结构模型对应的元素百分含量,获取得到所述选通管材料。
- 一种相变存储芯片,其中,所述相变存储芯片包括多个存储子单元,每一所述存储子单元包括相串联的选通管单元和相变存储单元;每个所述选通管单元包括选通层,所述选通层采用权利要求1-12任一项所述的选通管材料制备得到。
- 根据权利要求13所述的相变存储芯片,其中,所述选通管单元与所述相变存储单元集成设置。
- 根据权利要求13所述的相变存储芯片,其中,所述选通管单元与所述相变存储单元各自独立。
- 一种存储设备,其中,所述存储设备包括控制器、至少一个相变存储芯片,所述相变存储芯片如权利要求13-15任一项所述,所述控制器用于存储数据至所述相变存储芯片。
- 一种电子设备,其中,所述电子设备包括处理器、权利要求16所述的存储设备,所述处理器用于存储所述电子设备产生的数据至所述存储设备。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310491385.5 | 2023-04-28 | ||
CN202310491385.5A CN118870963A (zh) | 2023-04-28 | 2023-04-28 | 选通管材料及其获取方法、相变存储芯片、存储设备及电子设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024222567A1 true WO2024222567A1 (zh) | 2024-10-31 |
Family
ID=93178096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2024/088633 WO2024222567A1 (zh) | 2023-04-28 | 2024-04-18 | 选通管材料、相变存储芯片、存储设备及电子设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118870963A (zh) |
WO (1) | WO2024222567A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3966470A (en) * | 1973-08-22 | 1976-06-29 | Veb Pentacon Dresden | Photo-conductive coating containing Ge, S, and Pb or Sn |
CN1539090A (zh) * | 2001-04-12 | 2004-10-20 | �ź㴫 | 高折射率差纤维波导及其应用 |
US20180198064A1 (en) * | 2017-01-08 | 2018-07-12 | Intermolecular, Inc. | Current Compliance Layers and Memory Arrays Comprising Thereof |
-
2023
- 2023-04-28 CN CN202310491385.5A patent/CN118870963A/zh active Pending
-
2024
- 2024-04-18 WO PCT/CN2024/088633 patent/WO2024222567A1/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3966470A (en) * | 1973-08-22 | 1976-06-29 | Veb Pentacon Dresden | Photo-conductive coating containing Ge, S, and Pb or Sn |
CN1539090A (zh) * | 2001-04-12 | 2004-10-20 | �ź㴫 | 高折射率差纤维波导及其应用 |
US20180198064A1 (en) * | 2017-01-08 | 2018-07-12 | Intermolecular, Inc. | Current Compliance Layers and Memory Arrays Comprising Thereof |
Non-Patent Citations (2)
Title |
---|
M TENHOVER; DEPT. OF RES. & DEV., STANDARD OIL CO. (OHIO; M A HAZLE; DEPT. OF RES. & DEV., STANDARD OIL CO. (OHIO; R K GRA: "Raman effect studies of isoelectronic substitution in Si-Ge-S glasses", JOURNAL OF PHYSICS C: SOLID STATE PHYSICS., INSTITUTE OF PHYSICS PUBLISHING, BRISTOL, GB, vol. 18, no. 10, 10 April 1985 (1985-04-10), GB , pages 2025 - 2031, XP020008494, ISSN: 0022-3719, DOI: 10.1088/0022-3719/18/10/008 * |
MAKOVSKAYA, Z. G. ET AL.: "Vitrification in the Ge-S-Se, Ge-S-Te, and Ge-Se-Te systems [and IR spectra]", NEORGANICESKIE MATERIALY - IZVESTIJA AKADEMII NAUK SSSR - BULLETIN DE L'ACADEMIE DES SCIENCES DE L'USSR - PROCEEDINGS OF THE USSR ACADEMY OF SCIENCES, NAUKA, MOSCOW, RU, vol. 16, no. 2, 29 February 1980 (1980-02-29), RU , pages 251 - 254, XP009559171, ISSN: 0002-337X * |
Also Published As
Publication number | Publication date |
---|---|
CN118870963A (zh) | 2024-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104051277B (zh) | 减少双端存储器金属电极中的扩散 | |
TWI422013B (zh) | 具有一個或多個非定值摻雜濃度分佈的相變化記憶體 | |
US12245527B2 (en) | Non-stoichiometric resistive switching memory device and fabrication methods | |
TWI316751B (en) | Improved thermal isolation for an active-sidewall phase change memory cell | |
TWI421348B (zh) | 四元素鎵碲銻為基的相變化記憶裝置 | |
US12075712B2 (en) | Resistive switching memory devices and method(s) for forming the resistive switching memory devices | |
TWI497491B (zh) | 記憶體元件及記憶體裝置 | |
TWI476971B (zh) | 共晶型記憶體 | |
CN101587937A (zh) | 一种二元金属氧化物阻变存储器及其制作方法 | |
CN110148668B (zh) | Al-Sc-Sb-Te相变材料、相变存储器单元及其制备方法 | |
CN102361063B (zh) | 用于相变存储器的薄膜材料及其制备方法 | |
TW200828316A (en) | Method, apparatus and computer program product for read before programming process on programmable resistive memory cell | |
CN108110026A (zh) | 一种Ge-Te-Al-As阈值开关材料、阈值开关器件单元及其制备方法 | |
Wu et al. | Multilevel characteristics for bipolar resistive random access memory based on hafnium doped SiO2 switching layer | |
CN110635033A (zh) | 一种B-Sb-Te相变材料、相变存储单元及其制备方法 | |
CN108899417A (zh) | Ta-Sb-Te相变材料、相变存储器单元及其制备方法 | |
CN102208532A (zh) | 一种采用电场增强层的阻变存储器及其制备方法 | |
CN102593350B (zh) | 相变存储单元及其制作方法 | |
WO2024222567A1 (zh) | 选通管材料、相变存储芯片、存储设备及电子设备 | |
CN102945924A (zh) | 一种TiSbTe相变存储材料、制备方法及其应用 | |
CN116615092A (zh) | 相变材料、相变存储芯片、存储设备及电子设备 | |
CN102403459B (zh) | 用于相变存储器的硅掺杂的铋碲基存储材料及制备方法 | |
CN101420013A (zh) | 一种电阻转换存储器单元 | |
Kaushik et al. | Thin ZnO layer for RRAM Applications | |
KR102720942B1 (ko) | 비-확률적 저항성 스위칭 메모리 디바이스 및 제조 방법들 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24795948 Country of ref document: EP Kind code of ref document: A1 |