WO2024221603A1 - 桥梁结构用不锈钢复合板及其制备方法 - Google Patents

桥梁结构用不锈钢复合板及其制备方法 Download PDF

Info

Publication number
WO2024221603A1
WO2024221603A1 PCT/CN2023/105901 CN2023105901W WO2024221603A1 WO 2024221603 A1 WO2024221603 A1 WO 2024221603A1 CN 2023105901 W CN2023105901 W CN 2023105901W WO 2024221603 A1 WO2024221603 A1 WO 2024221603A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite
substrate
composite plate
stainless steel
blank
Prior art date
Application number
PCT/CN2023/105901
Other languages
English (en)
French (fr)
Inventor
镇凡
曲锦波
邵春娟
杨浩
Original Assignee
江苏省沙钢钢铁研究院有限公司
江苏沙钢钢铁有限公司
江苏沙钢集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏省沙钢钢铁研究院有限公司, 江苏沙钢钢铁有限公司, 江苏沙钢集团有限公司 filed Critical 江苏省沙钢钢铁研究院有限公司
Publication of WO2024221603A1 publication Critical patent/WO2024221603A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/08Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the cooling method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/142Laminating of sheets, panels or inserts, e.g. stiffeners, by wrapping in at least one outer layer, or inserting into a preformed pocket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • B32B38/1858Handling of layers or the laminate using vacuum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Definitions

  • the invention relates to a stainless steel composite plate for a bridge structure and a method for preparing the stainless steel composite plate for a bridge structure, belonging to the technical field of steel material preparation.
  • Stainless steel composite plates are composite materials with carbon steel or low alloy steel as the base material layer and stainless steel as the composite material layer, with the base material layer and the composite material layer metallurgically bonded as one.
  • Stainless steel composite plates not only have the corrosion resistance of the stainless steel composite layer, but also have the outstanding mechanical properties and price advantages of the carbon steel or low alloy steel base material layer, which is an important development direction of steel materials.
  • the Chinese patent application with publication number CN110064835A adopts explosive composite to realize the combination between the substrate and the composite material.
  • the explosion will cause vibration, noise and smoke pollution to the environment.
  • the composite board prepared by the explosive composite method has poor board shape and surface quality.
  • the object of the present invention is to provide a stainless steel composite plate for a bridge structure and a method for preparing the stainless steel composite plate for a bridge structure, so as to solve at least one technical problem mentioned in the background technology.
  • an embodiment of the present invention provides a method for preparing a stainless steel composite plate for a bridge structure, the method comprising a process flow of blank preparation, coating of an isolating agent, blank assembly, sealing, vacuuming, sealing, heating, rolling, cooling, plate separation, and flattening; in,
  • the billet is assembled in a manner that an upper carbon steel substrate A, a lower carbon steel substrate B, an intermediate layer is at least two pieces of stainless steel composite materials, and four seals are surrounded on four sides of the intermediate layer.
  • Gas shielded welding is performed between the seal and the substrate A, and between the seal and the substrate B to form a base billet;
  • the four sides of the base billet have grooves with a depth of D surrounded by the substrate A, the seal and the substrate B, and the seal on one side of the base billet is provided with a circular through hole, and a steel pipe with an outer diameter of r is welded in the through hole;
  • the groove is surfacing welded, and a hole with a radius of R>r and concentric with the steel pipe is reserved around the steel pipe during surfacing welding; when the groove on the side where the steel pipe is located is surfacing welded to a depth of 2/3 of the groove depth, and the grooves on other sides are surfacing welded to a depth of more than 2/3 of the groove depth, surfacing welding is stopped;
  • the steel pipe is heated with a flame gun, flattened, and folded into the reserved hole; the hole is fully welded with gas shielded welding to seal the steel pipe in the hole; then the surfacing welding is continued until the groove is filled, and finally the cover welding is performed to obtain a composite blank;
  • the composite billet out of the heating furnace is rolled to obtain a composite plate; in the whole rolling process, the first n passes are transverse rolling, and the longitudinal rolling is adopted after the n+1 pass, and the rolling reduction of the first pass is ⁇ 25mm and the rolling temperature is ⁇ 1060°C, the width of the billet obtained by the nth pass is Wt+0 ⁇ 40mm, Wt is the target width of the composite plate, and the rolling temperature of the nth pass is ⁇ 1030°C; between the nth pass and the n+1th pass and between the n+2nd pass and the n+3rd pass, the billet is water-cooled once in 6 groups of headers, and the cooling water volume of the upper header of each group of headers is 120 ⁇ 180m3 /h, and the cooling water volume of the lower header is 160 ⁇ 220m3 /h, and the roller speed is 0.8 ⁇ 1.2m/s; the rolling reduction from the n+1th to the n+3th pass is ⁇ 40mm, and
  • an embodiment of the present invention provides a stainless steel composite plate for a bridge structure, wherein the preparation method thereof comprises a process flow of blank preparation, coating of an isolating agent, blank assembly, sealing welding, vacuuming, sealing, heating, rolling, cooling, plate separation, and flattening; wherein,
  • the billet is assembled in a manner that an upper carbon steel substrate A, a lower carbon steel substrate B, an intermediate layer is at least two pieces of stainless steel composite materials, and four seals are surrounded on four sides of the intermediate layer.
  • Gas shielded welding is performed between the seal and the substrate A, and between the seal and the substrate B to form a base billet;
  • the four sides of the base billet have grooves with a depth of D surrounded by the substrate A, the seal and the substrate B, and the seal on one side of the base billet is provided with a circular through hole, and a steel pipe with an outer diameter of r is welded in the through hole;
  • the groove is surfacing welded, and a hole with a radius of R>r and concentric with the steel pipe is reserved around the steel pipe during surfacing welding; when the groove on the side where the steel pipe is located is surfacing welded to a depth of 2/3 of the groove depth, and the grooves on other sides are surfacing welded to a depth of more than 2/3 of the groove depth, surfacing welding is stopped;
  • the steel pipe is heated with a flame gun, flattened, and folded into the reserved hole; the hole is fully welded with gas shielded welding to seal the steel pipe in the hole; then the surfacing welding is continued until the groove is filled, and finally the cover welding is performed to obtain a composite blank;
  • the composite billet out of the heating furnace is rolled to obtain a composite plate; in the whole rolling process, the first n passes are transverse rolling, and the longitudinal rolling is adopted after the n+1 pass, and the rolling reduction of the first pass is ⁇ 25mm and the rolling temperature is ⁇ 1060°C, the width of the billet obtained by the nth pass is Wt+0 ⁇ 40mm, Wt is the target width of the composite plate, and the rolling temperature of the nth pass is ⁇ 1030°C; between the nth pass and the n+1th pass and between the n+2nd pass and the n+3rd pass, the billet is water-cooled once in 6 groups of headers, and the cooling water volume of the upper header of each group of headers is 120 ⁇ 180m3 /h, and the cooling water volume of the lower header is 160 ⁇ 220m3 /h, and the roller speed is 0.8 ⁇ 1.2m/s; the rolling reduction from the n+1th pass to the n+3th pass is ⁇ 40mm,
  • the chemical composition of the substrate layer of the composite plate is calculated by mass percentage as follows: C: 0.03-0.16%, Si: 0.11-0.29%, Mn: 1.31-1.54%, P ⁇ 0.018%, S ⁇ 0.0030%, Cr: 0.06-0.29%, Ni ⁇ 0.24%, Cu ⁇ 0.24%, Mo ⁇ 0.24%, Nb: 0.011-0.034%, Ti: 0.011-0.019%, Al: 0.030-0.040%, and the balance is Fe and unavoidable impurities;
  • the chemical composition of the composite material layer of the composite plate is calculated by mass percentage as follows: C ⁇ 0.15%, Si ⁇ 1.00%, Mn ⁇ 2.00%, P ⁇ 0.045%, S ⁇ 0.030%, Ni: 6.0-22.0%, Cr: 16.0-26.0%, Mo ⁇ 3.0%, and the balance is Fe and unavoidable impurities;
  • the composite interface bonding rate of the composite plate is 100%, and the shear strength is ⁇ 300MPa.
  • one embodiment of the present invention can wrap the stainless steel composite material in the substrate and the seal through the assembling method, the sealing method and the sealing method, which is beneficial to ensure the surface quality of the stainless steel composite material, and there is no need to dig grooves and make blanks as in the prior art, and the yield rate is high.
  • it can achieve vacuuming and avoid air leakage and cracks in the composite blank, thereby ensuring the interface bonding quality.
  • the assembling, sealing and sealing methods are combined with the rolling technology, especially the use of the new rolling technology in the field, which can ensure the temperature uniformity of the composite blank and ensure that the core of the composite blank is effectively penetrated.
  • it can not only ensure that the advantages of the substrate and the composite material can be brought into play, but also more importantly, it can ensure the interface bonding quality between the substrate and the composite material.
  • FIG1 is a flow chart of the preparation method provided by the present invention.
  • FIG. 2 is a schematic diagram of a blank in the composite blank preparation stage according to the first embodiment of the present invention
  • FIG. 3 is a schematic cross-sectional view of a base blank obtained in the sealing welding step in the composite blank preparation stage of the first embodiment of the present invention, the cross section passes through the central axis of the steel pipe and is perpendicular to the width direction of the base blank;
  • FIG4 is an enlarged view of the circle area in FIG3 ;
  • FIG. 5 is another schematic cross-sectional view of the base blank obtained in the sealing welding step in the composite blank preparation stage of the first embodiment of the present invention, the cross section passes through the central axis of the steel pipe and is perpendicular to the thickness direction of the base blank;
  • FIG6 is a schematic diagram of a finished single-sided stainless steel composite plate obtained according to the first embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a blank in the composite blank preparation stage according to the second embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional view of a base blank obtained in the sealing welding step in the composite blank preparation stage of the second embodiment of the present invention, the cross section passes through the central axis of the steel pipe and is perpendicular to the width direction of the base blank;
  • FIG9 is an enlarged view of the circled area in FIG8 ;
  • FIG. 10 is another schematic cross-sectional view of the base blank obtained in the sealing welding step in the composite blank preparation stage of the second embodiment of the present invention, the cross section passes through the central axis of the steel pipe and is perpendicular to the thickness direction of the base blank;
  • FIG11 is a schematic diagram of a finished single-sided stainless steel composite plate obtained according to the second embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a blank in the composite blank preparation stage according to the third embodiment of the present invention.
  • FIG. 13 is a schematic cross-sectional view of a base blank obtained in the sealing welding step in the composite blank preparation stage of the third embodiment of the present invention, the cross section passes through the central axis of the steel pipe and is perpendicular to the width direction of the base blank;
  • FIG14 is an enlarged view of the circled area in FIG13 ;
  • FIG. 15 is another schematic cross-sectional view of a base blank obtained in the sealing welding step in the composite blank preparation stage of the third embodiment of the present invention, the cross section passes through the central axis of the steel pipe and is perpendicular to the thickness direction of the base blank;
  • 16 is a schematic diagram of a finished single-sided stainless steel composite plate obtained according to the third embodiment of the present invention.
  • 17 is a schematic diagram of a blank in the composite blank preparation stage according to the fourth embodiment of the present invention.
  • FIG. 18 is a schematic cross-sectional view of a base blank obtained in the sealing welding step in the composite blank preparation stage of the fourth embodiment of the present invention, the cross section passes through the central axis of the steel pipe and is perpendicular to the width direction of the base blank;
  • FIG19 is an enlarged view of the circled area in FIG18 ;
  • 20 is another schematic cross-sectional view of the base blank obtained in the sealing welding step in the composite blank preparation stage of the fourth embodiment of the present invention, the cross section passes through the central axis of the steel pipe and is perpendicular to the thickness direction of the base blank;
  • 21 is a schematic diagram of a finished single-sided stainless steel composite plate obtained according to the fourth embodiment of the present invention.
  • FIG. 22 is a schematic diagram of a blank in the composite blank preparation stage according to the fifth embodiment of the present invention.
  • FIG. 23 is a schematic cross-sectional view of a base blank obtained in the sealing welding step in the composite blank preparation stage of the fifth embodiment of the present invention, the cross section passes through the central axis of the steel pipe and is perpendicular to the width direction of the base blank;
  • FIG24 is an enlarged view of the circled area in FIG23;
  • 25 is another schematic cross-sectional view of the base blank obtained in the sealing welding step in the composite blank preparation stage of the fifth embodiment of the present invention, the cross section passes through the central axis of the steel pipe and is perpendicular to the thickness direction of the base blank;
  • FIG. 26 is a schematic diagram of a finished single-sided stainless steel composite plate obtained according to the fifth embodiment of the present invention.
  • An embodiment of the present invention provides a method for preparing a single-sided stainless steel composite plate for a bridge structure, and provides a single-sided stainless steel composite plate for a bridge structure, wherein the composite plate is prepared by the preparation method of an embodiment of the present invention.
  • the preparation method includes a process flow of blank preparation, release agent coating, blank assembly, sealing, vacuuming, sealing, heating, rolling, cooling, plate separation, and flattening. That is, the present invention prepares a single-sided stainless steel composite plate through a process route of blank preparation-release agent coating-blank assembly-sealing-vacuuming-sealing-heating-rolling-cooling-plate separation-flattening.
  • a composite blank is prepared through a blank preparation process, an isolation agent coating process, a blank assembly process, a sealing process, a vacuum process and a sealing process, so the stage from the blank preparation process to the sealing process is referred to as the composite blank preparation stage in this application; thereafter, the composite blank is made into a large composite plate through a heating process, a rolling process and a cooling process, so the stage from the heating process to the cooling process is referred to as the composite blank rolling stage in this application; finally, through a plate separation process and a flattening process, the large composite plate is made into at least two small single-sided stainless steel composite plates, that is, a single-sided stainless steel composite plate finished product, so this stage is referred to as the finished plate stage in this application.
  • the present invention provides multiple implementations of the composite blank preparation stage, which are described in detail below.
  • the blank preparation process specifically includes:
  • the surface to be composited of each substrate is ground and polished, for example, the surface 11As of the substrate 11A and the surface 11Bs of the substrate 11B, to remove the surface oxide scale and expose the metallic luster; after the surface grinding treatment, the roughness Ra of the surface to be composited is less than 5 ⁇ m;
  • Two stainless steel billets with a thickness of T2, a length of L2, and a width of W2 are prepared as two composite materials, which are distinguished as composite materials 12A and 12B in FIG. 2 ;
  • the surface to be composited of each composite material is ground and polished, for example, the surface A1s of the composite material 12A and the surface B1s of the composite material 12B, to remove the surface oxide scale and expose the metallic luster; after the surface grinding treatment, the roughness Ra of the surface to be composited is less than 5 ⁇ m.
  • L2 ⁇ L1, W2 ⁇ W1 the length and width of the composite material are smaller than the length and width of the base material. More preferably, L1 ⁇ 2500mm, W2 ⁇ 1600mm, T1 ⁇ 60mm; L1-L2 ranges from 90 to 150mm, and W1-W2 also ranges from 90 to 150mm.
  • each substrate is a uniform thickness blank with a constant thickness of T1. Accordingly, the stainless steel obtained in this embodiment The thickness of the substrate layer of the steel composite plate (obtained from the substrate by the preparation method) is constant.
  • the "surface to be composited” refers to the surface that needs to be interfaced with the substrate and the composite material when forming a composite plate.
  • one of the two surfaces in the thickness direction of each can be selected as the surface to be composited, and interfaced with each other in the subsequent steps.
  • the surface 11As of the substrate 11A and the surface A1s of the composite material 12A are interfaced with each other in the subsequent steps
  • the surface 11Bs of the substrate 11B and the surface B1s of the composite material 12B are interfaced with each other in the subsequent steps.
  • the surface 11As of the substrate 11A and the surface 11Bs of the substrate 11B are polished by a grinding wheel machine, a belt sander or a milling machine to remove the surface oxide scale and expose the metallic luster.
  • the surface A1s of the composite material 12A and the surface B1s of the composite material 12B are polished by a wire wheel to remove the surface oxide scale and expose the metallic luster.
  • the release agent coating step specifically includes: applying the release agent on the non-to-be-combined surface of at least one composite material.
  • the release agent can be applied on the non-to-be-combined surface of each composite material, such as the surface A2s of the composite material 12A and the surface B2s of the composite material 12B, or one of the two composite materials can be selected for application of the release agent.
  • the release agent is used to prevent the two composite materials from being combined in the subsequent composite billet rolling step, which makes it difficult to separate the panels in the end.
  • the surface not to be composited is opposite to the surface to be composited of the composite material, and the two constitute two surfaces of the composite material in the thickness direction.
  • the first optional scheme is: a coating liquid containing silicon oxide and magnesium oxide, wherein the mass ratio of silicon oxide to magnesium oxide is 3:1.
  • the release agent of this embodiment can achieve a good isolation effect and ensure the subsequent separation of the two composite board small plates.
  • the total amount of the release agent 13 (see Figure 3) between the two composite materials is 20ymg/ m2
  • y is the ratio of the thickness of the composite blank prepared in the composite blank preparation step to the thickness of the composite board large plate formed by subsequent rolling, and this ratio is also called the composite blank rolling compression ratio.
  • a method for configuring the release agent which is: polyvinyl alcohol and thermosetting phenolic resin are mixed in a mass ratio of 1:1 to obtain a binder powder; silicon oxide and magnesium oxide are mixed in a mass ratio of 3:1 to obtain a release agent powder; the release agent powder, the binder powder and water are mixed in a mass ratio of 27:3:70 to obtain a fluid release agent coating liquid.
  • the composite material coated with the release agent is placed in a trolley furnace for heating and drying.
  • the drying temperature is 340-360°C and the drying time is 35-45 minutes.
  • the second optional scheme is: the composition is 25-35% silicon nitride + 5-10% thermosetting amino resin + 55-70% water by weight.
  • the release agent of this embodiment can not only achieve a good isolation effect and ensure the subsequent separation of the two composite board panels, but also the effective ingredient silicon nitride has strong chemical stability and is resistant to high temperature and heat shock.
  • the thermosetting amino resin used as a binder can be cured at low temperature, is non-toxic, and can achieve a strong bonding effect with a small amount. Therefore, it is low-priced overall, simple to operate, and has good isolation and adhesion effects.
  • a preferred method for preparing the release agent of the second optional solution comprising: firstly placing 5-10% of of silicon nitride (by weight percentage), and then pour in 15-25% of water and stir; after the silicon nitride has no granularity and no bubbles, pour in 2-3% of thermosetting amino resin and continue stirring; when it becomes viscous, continue to pour in the remaining silicon nitride and water, stir for 3-5 minutes, and then pour in the remaining thermosetting amino resin; when it is stirred until it becomes viscous, the isolation agent is prepared.
  • the total amount of the release agent 13 (see FIG. 3 ) between the two composite materials is applied according to a thickness of 0.2 to 0.5 mm; after the release agent is applied and before the subsequent assembly process, the composite material coated with the release agent is heated and dried at a temperature of 100 to 250° C. for 20 to 40 minutes.
  • the thickness of the release agent 13 between the two composite materials is magnified for ease of understanding and explanation, that is, the thickness of the release agent 13 shown in the drawings is magnified relative to the thickness of the substrate, the thickness of the composite material, and the width of the seal mentioned later.
  • the amount of release agent applied to each of the surface A2s and the surface B2s can be half of the total amount. If the release agent is applied to only one of the surface A2s and the surface B2s, it is applied according to the total amount.
  • the blank assembly process specifically includes: assembling the blank in a manner that the composite material 12A and the composite material 12B are the middle layer, the base material 11A is stacked on the top, the base material 11B is stacked on the bottom, and four seals 14 surround the four sides of the middle layer, and performing gas shielded welding between the upper edge of the seal 14 and the base material 11A, and between the lower edge of the seal 14 and the base material 11B, so as to form a blank.
  • the substrate 11A, the composite material 12A, the composite material 12B, and the substrate 11B may be stacked first, and then the seal 14 may be wrapped around the four sides of the composite material 12A and the composite material 12B, and finally the upper edge of the seal 14 and the surface 11As of the substrate 11A, and the lower edge of the seal 14 and the surface 11Bs of the substrate 11B may be subjected to gas shielded welding.
  • the lower edge of the seal 14 and the surface 11Bs of the substrate 11B may also be subjected to gas shielded welding first, and the seal 14 forms a quadrilateral frame on the surface 11Bs of the substrate 11B, and then the composite material 12B and the composite material 12A are placed in the frame in turn, and then the composite material 12A and the frame are covered by the substrate 11A, and finally the upper edge of the seal 14 and the surface 11As of the substrate 11A are subjected to gas shielded welding.
  • the upper edge of the seal 14 and the surface 11As of the substrate 11A may be subjected to gas shielded welding, and then the substrate 11B, the composite material 12B, and the composite material 12A are stacked in sequence from bottom to top, and then the combined seal 14 and the substrate 11A are covered above and around the composite materials 12A and 12B, and finally the lower edge of the seal 14 and the surface 11Bs of the substrate 11B are subjected to gas shielded welding.
  • the stacked steel materials are placed as a whole under a four-column hydraulic machine, and the opposite surfaces of the two base materials (i.e., the upper surface of the base material 11A and the lower surface of the base material 11B) are pressurized to a pressure of ⁇ 500 tons.
  • the adjacent billets can be brought into closer contact.
  • the welding current is 220-240A
  • the welding voltage is 28-32V
  • the welding speed is 300-360mm/min
  • the interpass temperature is controlled at 140-160°C.
  • the substrate 11A and the substrate 11B are preferably preheated and baked with a flame gun at a baking temperature of 150-250°C.
  • the composite material 12A and the composite material 12B are stacked up and down, and the sealing strip 14 is wrapped around the four sides of the composite materials 21 and 22 .
  • the surface 11As of the substrate 11A and the surface A1s of the composite material 12A are facing each other and in contact as surfaces to be composited
  • the surface 11Bs of the substrate 11B and the surface B1s of the composite material 12B are facing each other and in contact as surfaces to be composited
  • the surface A2s of the composite material 12A and the surface B2s of the composite material 12B are facing each other and in contact as surfaces not to be composited.
  • the four sides of the obtained base blank all have grooves surrounded by the substrate 11A, the seal 14 and the substrate 11B.
  • the depths of the grooves on the four sides of the base blank are preferably set to be the same, as indicated as depth D in FIG4 , and the value range is 40 to 60 mm.
  • the depth of the groove depends on the length and width difference between the composite material and the substrate, and the thickness of the seal 14.
  • the composite material is placed in the center relative to the substrate, and the distances from the two sides (i.e., long sides) of the composite material in the transverse direction (i.e., width direction) to the corresponding two sides (i.e., long sides) of the substrate are equal, which is 45-75 mm, and the distances from the two sides (i.e., short sides) of the composite material in the longitudinal direction (i.e., length direction) to the corresponding two sides (i.e., short sides) of the substrate are also equal, which is 45-75 mm;
  • the thickness T3 of the seal is 10-15 mm
  • the groove depth D of the long side of the base blank is (W1-W2-2T3)/2
  • the groove depth D of the short side is (L1-L2-2T3)/2.
  • the width W3 and thickness T3 of the seals 14 on the four sides of the base blank are the same.
  • the thickness of the release agent 13 is enlarged in Figure 3.
  • the width of the seal 14 shown in Figures 3 and 4 is shown to be larger than the sum of the thicknesses of the two composite materials, but this is only because the thickness of the release agent 13 is enlarged.
  • the width W3 of the seal 14 is the same as the sum of the thicknesses of the composite 12A and the composite 12B or is slightly smaller by about 2mm.
  • the upper and lower edges of the outer surface of the seal 14 are grooved, and the groove angle is 10 to 20°, and the vertical depth P of the groove is 10 to 15 mm.
  • the "outer surface of the seal 14" refers to the surface of the seal 14 away from the composite material 12A and the composite material 12B.
  • the upper and lower edges of one surface of the seal 14 are grooved.
  • the seal 14 and the substrate 11A, the substrate 11B, the composite material 12B, and the composite material 12A are assembled in a manner that the "one surface" of the groove of the seal 14 faces outward.
  • the groove angle K1 at the upper edge and the groove angle K2 at the lower edge of the outer surface of the seal strip 14 are respectively 10-20°, and the two can be the same or different.
  • a circular through hole is formed in the seal strip at one side of the base blank.
  • a steel pipe with an outer diameter of r is welded in the through hole. 16.
  • the through hole can be processed before the gas shielded welding of the seal 14 and the substrate 11A and the substrate 11B, or can be processed after the gas shielded welding is completed and the base blank is formed. These are all within the technical purpose of the present application.
  • the aperture of the through hole is consistent with the outer diameter of the steel pipe 16, both being r.
  • the through hole is opened on the seal 14 at one short side of the base blank, and the through hole is centered at a position of 1/3 of the length (i.e. 1/3 of L32) and 1/2 of the width (i.e. 1/2 of W3) of the seal 14; and as shown in FIG4 , the end surface of the steel tube 16 is flush with the inner surface of the seal 14. In this way, the vacuum effect can be ensured.
  • the length of the steel pipe 16 ranges from T3+2D to T3+2D+R.
  • the sealing process specifically includes:
  • the grooves on the four sides of the base blank are surfacing-welded, for example, by submerged arc surfacing; and, during the surfacing-welding process, referring to FIG. 4 and FIG. 5 , a hole 15H concentric with the steel pipe 16 and having a radius R>r is reserved around the steel pipe 16;
  • the groove on the side where the steel pipe 16 is located is welded to a depth of 2/3 of the groove depth
  • the grooves on other sides are welded to a depth of more than 2/3 of the groove depth
  • the groove depths of the four sides are all D, that is, when the groove on the side where the steel pipe 16 is located is welded to a depth of 2/3D, and the grooves on other sides are welded to a depth of more than 2/3D, the welding is terminated.
  • a filling layer in the shape of a quadrilateral frame is formed outside the surrounding frame formed by the seal strip 14 by surfacing welding, referring to FIGS. 3 to 5 , in which the filling layer formed by surfacing welding is marked as 15 .
  • the groove on the side where the steel pipe 16 is located is welded to a depth of 2/3 of the groove depth
  • the grooves on other sides are welded to a depth of the groove depth
  • the groove depths of the four sides are all D
  • the grooves on the other three sides are filled with welding, which can ensure that the base blank will not leak when vacuuming, and it is also convenient to completely seal the vacuum tube in the groove later, and once again ensure the sealing of the composite blank.
  • multi-layer and multi-pass welding is performed in a manner of upper and lower edges first and middle areas later, which not only allows the heat generated during welding to be fully diffused, but also avoids welding through the seal strip; each layer is welded for more than 4 passes, the interpass temperature is 140-160°C, the total number of welding layers is 6-8 layers, and the interlayer temperature is 150-250°C, which not only effectively improves the strength of the welded joint, but also reduces the impact of welding on the microstructure and properties of the base material and composite material.
  • the baking temperature is 300-350°C
  • the baking time is 90-120 minutes
  • the insulation temperature is 100-150°C.
  • the welding current is 550-650A
  • the welding voltage is 28-32V
  • the welding speed is 400-500mm/min.
  • the base blank is vacuumed and then sealed.
  • the vacuuming process can be implemented by using existing known technologies, and this embodiment provides a preferred solution. Specifically, the preferred vacuuming process includes: vacuuming the internal space of the base blank three times and breaking the vacuum twice through the steel pipe, and finally maintaining the vacuum degree of the internal space of the base blank ⁇ 10 -2 Pa.
  • the vacuuming process includes:
  • the steel pipe is connected to a vacuum pump to evacuate the inner space of the base blank to a vacuum degree of ⁇ 10 -2 Pa, and then the pressure is maintained for more than 4 hours; next, the steel pipe is connected to a nitrogen supply device to break the air in the base blank and fill it with nitrogen;
  • the steel pipe is connected to the vacuum pump again to evacuate the base blank, the vacuum degree is ⁇ 10 -1 Pa, and the pressure is not maintained; next, the steel pipe is connected to the nitrogen supply device again to break the air in the base blank and fill it with nitrogen;
  • the steel pipe is connected to a vacuum pump for the third time to evacuate the base blank to a vacuum degree of ⁇ 10 -2 Pa, and then the sealing process is directly carried out without maintaining the pressure.
  • the sealing process specifically includes: heating the steel pipe 16 with a flame gun, flattening it, and then folding it into the reserved hole 15H; then fully welding the hole with gas shielded welding to seal the steel pipe in the hole 15H; next, continuing the surfacing welding until the groove on the side where the steel pipe 16 is located is filled, and finally performing cover welding to obtain a composite billet.
  • a hole 15H is reserved at the weld, which increases the handling space of the steel pipe 16, reduces the difficulty of welding, improves the welding efficiency, avoids sealing leakage, prevents the steel pipe 16 from falling off due to collision, and thus ensures the sealing of the composite blank as a whole, thereby preventing cracking and leakage during rolling; further, the prepared composite plate has excellent interface bonding and reduces production costs.
  • the two stainless steel composite plates prepared have a constant substrate layer thickness, and the length and width of the composite layer and the substrate layer are consistent.
  • the obtained stainless steel composite plate 10A, its substrate layer 11A and composite layer 12A are respectively obtained by rolling the substrate 11A and composite material 12A described above, so the numbers of the original substrate 11A and composite material 12A are used.
  • the substrate layer 11A is a carbon steel material of equal thickness
  • the composite layer 12A is a stainless steel material. The length and width of the composite layer 12A and the substrate layer 11A are consistent.
  • the obtained stainless steel composite plate 10B, its substrate layer 11B and composite layer 12B are respectively obtained by rolling the substrate 11B and composite material 12B described above, so the numbers of the original substrate 11B and composite material 12B are used.
  • the substrate layer 11B is a carbon steel material of equal thickness
  • the composite layer 12B is a stainless steel material. The length and width of the composite layer 12B and the substrate layer 11B are consistent.
  • a single-sided stainless steel composite plate is provided, which is made from the composite blank prepared in this embodiment through a composite blank rolling stage and a plate finished product stage.
  • the composite plate is a full-coverage equal-thickness plate with a total thickness of 5 to 55 mm, a base material layer thickness of 4 to 45 mm, and a composite material layer thickness of 1 to 10 mm.
  • Test Examples 1 to 3 use the present embodiment to prepare the composite blank, and use the prepared composite blank to prepare the stainless steel composite plate.
  • some parameters of the composite blank in these embodiments are shown in Table 1, and the parameters represented by the symbols are referred to in the previous description.
  • a second embodiment of the composite blank preparation stage is shown.
  • the difference between this embodiment and the first embodiment of the composite blank preparation stage described above is that the shape of the substrate prepared in the blank preparation process is different.
  • the release agent coating process, blank assembly process, sealing process, vacuuming process, sealing process, etc. are the same as the first embodiment. Only the blank preparation process with differences is described in detail below, and the others are understood in conjunction with the drawings and the first embodiment of the composite blank preparation stage described above, and will not be repeated.
  • the blank preparation process specifically includes:
  • the surface to be composited of each substrate is ground and polished, for example, the surface 21As of the substrate 21A and the surface 21Bs of the substrate 21B, to remove the surface oxide scale and expose the metallic luster; after the surface grinding treatment, the roughness Ra of the surface to be composited is less than 5 ⁇ m;
  • Two stainless steel billets with a thickness of T2, a length of L2, and a width of W2 are prepared as two composite materials, which are distinguished as composite materials 22A and 22B in FIG. 7 ;
  • the surface to be composited of each composite material is ground and polished, for example, the surface A1s of the composite material 22A and the surface B1s of the composite material 22B, to remove the surface oxide scale and expose the metallic luster; after the surface grinding treatment, the roughness Ra of the surface to be composited is less than 5 ⁇ m.
  • L2 ⁇ L1, W2 ⁇ W1 the length and width of the composite material are smaller than the length and width of the base material. More preferably, L1 ⁇ 2500mm, W2 ⁇ 1600mm; L1-L2 ranges from 90 to 150mm, and W1-W2 also ranges from 90 to 150mm.
  • the substrate 21A and the substrate 21B are carbon steel billets with variable thickness along the X direction, that is, they are not billets with constant thickness, but the thickness varies along the X direction.
  • the X direction is the width direction or the length direction of the substrate, and in the embodiment shown in FIG10 , the X direction is illustrated as the length direction of the substrate.
  • the surface 21As to be composited of the substrate 21A and the surface 21Bs to be composited of the substrate 21B are relatively complementary, that is, the two surfaces are complementary to each other when facing each other, and the complementarity makes the surface of the substrate 21A not to be composited (that is, the upper surface of the substrate 21A in FIG. 7) and the surface of the substrate 21B not to be composited (that is, the lower surface of the substrate 21B in FIG. 7) parallel. Accordingly, as shown in FIG. 8, in the base blank prepared by the subsequent blank assembly process, the upper surface of the substrate 21A and the lower surface of the substrate 21B are parallel.
  • the surface 21As to be composited of the substrate 21A and the surface 21Bs to be composited of the substrate 21B are relatively complementary, that is, when the surface 21As to be composited of the substrate 21A and the surface 21Bs to be composited of the substrate 21B are relatively buckled up and down, the two can just fit together surface to surface, that is, when the surface 21As to be composited of the substrate 21A and the surface 21Bs to be composited of the substrate 21B are relatively buckled up and down, the sum of the thicknesses of the substrate 21A and the substrate 21B is constant.
  • the substrate 21A and the substrate 21B are both plates of non-uniform thickness with monotonically varying thickness along the X direction.
  • the surface to be composited 21As and the surface to be composited 21Bs of the substrate 21B are both inclined planes.
  • the inclination angle of the surface to be composited 21As e.g., the angle with the non-to-be-composite surface of the substrate 21A
  • the inclination angle of the surface to be composited 21Bs is equal to the inclination angle of the surface to be composited 21Bs (e.g., the angle with the non-to-be-composite surface of the substrate 21B).
  • the composite blank based on the present embodiment after the subsequent composite blank rolling stage and the plate finished product stage, the two stainless steel composite plates prepared have the substrate layer with monotonically variable thickness along the X direction, and the four sides of the composite material layer and the substrate layer are flush.
  • the obtained stainless steel composite plate 20A has a lower carbon steel substrate layer 21A and an upper stainless steel composite layer 22A, each of which is obtained by rolling the substrate 21A and the composite material 22A described above, so the numbers of the original substrate 21A and the composite material 22A are used.
  • the substrate layer 21A changes thickness along the X direction, specifically, the thickness changes monotonically along the X direction, and more specifically, the upper surface of the substrate layer 21A is an inclined plane relative to the lower surface of the substrate layer 21A.
  • the four sides of the composite layer 22A and the substrate layer 21A are flush, and the composite layer 22A completely covers the upper surface of the substrate layer 21A.
  • the obtained stainless steel composite plate 20B has a lower carbon steel substrate layer 21B and an upper stainless steel composite layer 22B, each of which is obtained by rolling the substrate 21B and composite material 22B described above, so the numbers of the original substrate 21B and composite material 22B are used.
  • the substrate layer 21B changes thickness along the X direction, specifically, the thickness changes monotonically along the X direction, and more specifically, the upper surface of the substrate layer 21B is an inclined plane relative to the lower surface of the substrate layer 21B.
  • the four sides of the composite layer 22B and the substrate layer 21B are flush, and the composite layer 22B just completely covers the upper surface of the substrate layer 21B.
  • a single-sided stainless steel composite plate is provided, which is made from the composite blank prepared in the present embodiment through a composite blank rolling stage and a plate finished product stage.
  • the composite plate is a non-uniform thickness plate with a total thickness of (5-47)-(7-55) mm, a base material layer thickness of (4-37)-(6-45) mm, and a composite material layer thickness of 1-10 mm, and a fully covered, monotonically variable thickness in the X direction.
  • Test Examples 4 to 6 use the present embodiment to prepare the composite blank, and use the prepared composite blank to prepare the stainless steel composite plate.
  • some parameters of the composite blanks in these embodiments are shown in Table 2, and the parameters represented by the symbols are referred to in the previous description.
  • FIG. 12 to 16 a third embodiment of the composite blank preparation stage is shown.
  • the only difference between this embodiment and the first embodiment of the composite blank preparation stage described above is that the shape of the substrate prepared in the blank preparation process is different.
  • the release agent coating process, blank assembly process, sealing process, vacuuming process, sealing process, etc. are the same as the first embodiment. Only the blank preparation process with differences is described in detail below, and the others are understood in conjunction with the drawings and the first embodiment of the composite blank preparation stage described above, and will not be repeated.
  • the blank preparation process specifically includes:
  • the surface to be composited of each substrate is ground and polished, for example, the surface 31As of the substrate 31A and the surface 31Bs of the substrate 31B, to remove the surface oxide scale and expose the metallic luster; after the surface grinding treatment, the roughness Ra of the surface to be composited is less than 5 ⁇ m;
  • Two stainless steel billets with a thickness of T2, a length of L2, and a width of W2 are prepared as two composite materials, which are distinguished as composite materials 32A and 32B in FIG. 7 ;
  • the surface to be composited of each composite material is ground and polished, for example, the surface A1s of the composite material 32A and the surface B1s of the composite material 32B, to remove the surface oxide scale and expose the metallic luster; after the surface grinding treatment, the roughness Ra of the surface to be composited is less than 5 ⁇ m.
  • L2 ⁇ L1, W2 ⁇ W1 the length and width of the composite material are smaller than the length and width of the base material. More preferably, L1 ⁇ 2500mm, W2 ⁇ 1600mm; L1-L2 ranges from 90 to 150mm, and W1-W2 also ranges from 90 to 150mm.
  • the substrates 31A and 31B are carbon steel billets with variable thickness along the X direction, that is, they are not billets with constant thickness, but the thickness varies along the X direction.
  • the X direction is the width direction or the length direction of the substrate, and in the embodiment shown in FIG15 , the X direction is illustrated as the length direction of the substrate.
  • the surface 31As to be composited of the substrate 31A and the surface 31Bs to be composited of the substrate 31B are relatively complementary, that is, the two surfaces are complementary to each other when facing each other, and the complementarity makes the surface of the substrate 31A not to be composited (that is, the upper surface of the substrate 31A in FIG. 13) and the surface of the substrate 31B not to be composited (that is, the lower surface of the substrate 31B in FIG. 13) parallel. Accordingly, as shown in FIG. 13, in the base blank prepared by the subsequent blank assembly process, the upper surface of the substrate 31A and the lower surface of the substrate 31B are parallel.
  • the surface 31As of substrate 31A to be composited and the surface 31Bs of substrate 31B to be composited are relatively complementary, that is, when the surface 31As of substrate 31A to be composited and the surface 31Bs of substrate 31B to be composited are relatively buckled up and down, the two can just fit together surface to surface, that is, when the surface 31As of substrate 31A to be composited and the surface 31Bs of substrate 31B to be composited are relatively buckled up and down, the sum of the thicknesses of substrate 31A and substrate 31B is constant.
  • the substrate 31A and the substrate 31B are both non-uniform thickness plates whose thickness varies non-monotonically along the X direction, and the surface 31As to be composited of the substrate 31A and the surface 31Bs to be composited of the substrate 31B both include more than two planes arranged along the X direction.
  • the surface 31As to be laminated of the substrate 31A and the surface 31Bs to be laminated of the substrate 31B shown in FIG12 both have 7 planes.
  • the surface 31Bs to be laminated of the substrate 31B as an example, from left to right in FIG12, there are a horizontal plane, an upper inclined plane, a lower inclined plane, a horizontal plane, a lower inclined plane, an upper inclined plane, and a horizontal plane.
  • the surface 31As to be laminated of the substrate 31A shown in the figure has 7 planes.
  • the specific shapes of the composite surface 31As and the surface to be composited 31Bs of the substrate 31B are merely examples, and the number of inclined planes contained in each is not limited to that shown in the drawings.
  • each composite material prepared in the blank preparation step is respectively corresponding to the surface to be composited of the substrate, for example, the shape of the composite material 32A matches the surface to be composited 31As of the substrate 31A, and the shape of the composite material 32B matches the surface to be composited 31Bs of the substrate 31B.
  • stainless steel billets of equal thickness can be bent to obtain the composite material having a shape matching the surface to be composited of the corresponding substrate.
  • the composite blank based on the present embodiment after the subsequent composite blank rolling stage and the plate finished product stage, the two stainless steel composite plates prepared have the substrate layer with non-monotonic variable thickness along the X direction, and the four sides of the composite material layer and the substrate layer are flush.
  • the obtained stainless steel composite plate 30A has a lower carbon steel substrate layer 31A and an upper stainless steel composite layer 32A, each of which is obtained by rolling the substrate 31A and composite material 32A described above, so the numbers of the original substrate 31A and composite material 32A are used.
  • the substrate layer 31A changes thickness along the X direction, specifically, the thickness changes non-monotonically along the X direction, and more specifically, the upper surface of the substrate layer 31A includes at least two planes arranged along the X direction, and the figure shows 5 planes.
  • the four sides of the composite layer 32A and the substrate layer 31A are flush, and the composite layer 32A completely covers the upper surface of the substrate layer 31A.
  • the obtained stainless steel composite plate 30B, the lower carbon steel substrate layer 31B and the upper stainless steel composite layer 32B are respectively obtained by rolling the substrate 31B and the composite material 32B described above, so the numbers of the original substrate 31B and the composite material 32B are used.
  • the substrate layer 31B changes thickness along the X direction, specifically, the thickness changes non-monotonic along the X direction, and more specifically, the upper surface of the substrate layer 31B includes at least two planes arranged along the X direction, and the example in the figure shows 5 planes.
  • the four sides of the composite layer 32B and the substrate layer 31B are flush, and the composite layer 32B just completely covers the upper surface of the substrate layer 31B.
  • a single-sided stainless steel composite plate is provided, which is made from the composite blank prepared in the present embodiment through a composite blank rolling stage and a plate finished product stage.
  • the composite plate is a non-uniform thickness plate with a total thickness of (5-47)-(7-55) mm, a base material layer thickness of (4-37)-(6-45) mm, a composite material layer thickness of 1-10 mm, and a full coverage, non-monotonically variable thickness in the X direction.
  • Test Examples 7 to 9 use the present embodiment to prepare the composite blank, and use the prepared composite blank to prepare the stainless steel composite plate.
  • some parameters of the composite blank in these examples are shown in Table 3, and the parameters represented by the symbols are referred to in the previous description.
  • a fourth embodiment of the composite blank preparation stage is shown.
  • the difference between this embodiment and the first embodiment of the composite blank preparation stage described above is only in the blank preparation process, the release agent coating process and the blank assembly process.
  • the sealing process, the vacuuming process, the sealing process, etc. are the same as the first embodiment. Only the processes with differences are described in detail below, and the others are understood in conjunction with the drawings and the first embodiment of the composite blank preparation stage described above, and will not be repeated.
  • the blank preparation process specifically includes:
  • Two carbon steel billets with a size of L1 in the X direction and W1 in the Y direction are prepared as two substrates, which are distinguished as substrate 41A and substrate 41B in FIG. 17 ; in addition, the thickness of substrate 41A and substrate 41B can be set to be the same or different. If they are set to different thicknesses, stainless steel composite plates with different thickness specifications can be prepared accordingly;
  • the surface to be composited of each substrate is ground and polished, for example, the surface 41As of the substrate 41A and the surface 41Bs of the substrate 41B, to remove the surface oxide scale and expose the metallic luster; after the surface grinding treatment, the roughness Ra of the surface to be composited is less than 5 ⁇ m;
  • a stainless steel billet having an X-direction dimension of L22, a Y-direction dimension of W2, and a thickness of T2 is prepared as a composite material, such as the composite material 42A in FIG. 17 ; a side A3s of the composite material 42A in the X-direction is a hypotenuse of a width V;
  • a stainless steel billet having an X-direction dimension of L21, a Y-direction dimension of W2, and a thickness of T2 is prepared as another composite material, such as the composite material 42B in FIG. 17 ; one side B3s of the composite material 42B in the X-direction is a hypotenuse of a width V;
  • a smaller surface of each composite material in the thickness direction constitutes a non-to-be-combined surface, such as surface A2s of composite material 42A and surface B2s of composite material 42B, while another larger surface constitutes a to-be-combined surface, such as surface A1s of composite material 42A and surface B1s of composite material 42B;
  • the to-be-combined surface of each composite material is ground and polished to remove the surface oxide scale and expose the metallic luster; after the surface grinding treatment, the roughness Ra of the to-be-combined surface is less than 5 ⁇ m.
  • the width V refers to the span of the hypotenuse in the X direction. Due to the existence of the hypotenuse, one of the two surfaces in the thickness direction of each composite material is a larger surface and the other is a smaller surface.
  • the surface 41As of the substrate 41A and the surface 41Bs of the substrate 41B are polished by a grinding wheel machine, a belt sander or a milling machine to remove the surface oxide scale and expose the metallic luster.
  • the surface A1s of the composite material 42A and the surface B1s of the composite material 42B are polished by a wire wheel to remove the surface oxide scale and expose the metallic luster.
  • the release agent coating step specifically includes: coating the release agent on the non-to-be-combined surface and the bevel of each composite material, for example, coating the release agent on the surface A2s and bevel A3s of the composite material 42A, and the surface B2s and bevel B3s of the composite material 42B.
  • the first optional scheme is: a coating liquid containing silicon oxide and magnesium oxide, wherein the mass ratio of silicon oxide to magnesium oxide is 3:1.
  • the release agent of this embodiment can achieve a good isolation effect and ensure the subsequent separation of the two small composite board plates.
  • the amount of the release agent 43 applied on the surface to be composited and on the bevel of each composite material is 20ymg/ m2 , where y is the ratio of the thickness of the composite blank obtained in the composite blank preparation step to the thickness of the composite board large plate formed by subsequent rolling, and this ratio is also called the composite blank rolling compression ratio.
  • the configuration method and subsequent drying of the release agent are the same as those described in the first embodiment of the composite blank preparation stage described above, and will not be repeated here.
  • the second optional scheme is: the composition is 25-35% silicon nitride + 5-10% thermosetting amino resin + 55-70% water by weight.
  • the release agent of this embodiment can not only achieve a good isolation effect and ensure the subsequent separation of the two composite board panels, but also the effective ingredient silicon nitride has strong chemical stability and is resistant to high temperature and heat shock.
  • the thermosetting amino resin used as a binder can be cured at low temperature, is non-toxic, and can achieve a strong bonding effect with a small amount. Therefore, it is low in price overall, simple to operate, and has good isolation and adhesion effects.
  • the thickness of the release agent 43 on the surface to be composited and on the bevel of each composite material is 0.2-0.5mm.
  • the configuration method and subsequent drying of the release agent are the same as those described in the first embodiment of the composite blank preparation stage described above, and will not be repeated.
  • the blanking process specifically includes: blanking is performed in a manner that the composite material 42A and the composite material 42B are the middle layer, the base material 41A is stacked on the top, the base material 41B is stacked on the bottom, and four seals 44 surround the four sides of the middle layer, and gas shielded welding is performed between the upper edge of the seal 44 and the base material 41A, and between the lower edge of the seal 44 and the base material 41B to form a blank.
  • the composite material 42A and the composite material 42B are laid side by side in the X direction, and the hypotenuse A3s of the composite material 42A and the hypotenuse B3s of the composite material 42B are parallel and opposite to each other.
  • the surface 41As of the substrate 41A and the surface A1s of the composite 42A are facing each other and in contact as the surfaces to be composited
  • the surface 41Bs of the substrate 41B and the surface B1s of the composite 42B are facing each other and in contact as the surfaces to be composited
  • the surface A2s of the composite 42A and the substrate 41B, the surface B2s of the composite 42B and the substrate 41A, and the hypotenuse A3s of the composite 42A and the hypotenuse B3s of the composite 42B are coated with a release agent, and they are in contact with each other but will not be composited.
  • the stacked steel materials are placed as a whole under a four-column hydraulic machine, and the opposite surfaces of the two base materials (i.e., the upper surface of the base material 41A and the lower surface of the base material 41B) are pressurized to a pressure of ⁇ 500 tons.
  • the adjacent billets can be brought into closer contact.
  • the welding current is 220-240A
  • the welding voltage is 28-32V
  • the welding speed is 300-360mm/min
  • the interpass temperature is controlled at 140-160°C.
  • the substrate 41A and the substrate 41B are preferably preheated and baked with a flame gun at a baking temperature of 150-250°C.
  • the four sides of the obtained base blank all have grooves surrounded by the substrate 41A, the seal 44 and the substrate 41B.
  • the depths of the grooves on the four sides of the base blank are preferably set to be the same, as indicated as depth D in FIG. 19, and the value range is 40 to 60 mm.
  • the depth of the groove depends on the size difference between the composite material and the substrate in the X direction and the Y direction, and the thickness of the seal 44.
  • T3 is the thickness of the seal, and the value range is 10 to 15 mm.
  • the length L31 of the seal 44 is W2 to W2-2 mm, and at both sides of the base blank in the Y direction, the length L32 of the seal 44 is L21+L22-V to L21+L22-V-2 mm; the width W3 of the seal 44 is T2 to T2-2 mm; the thickness T3 is 10 to 15 mm as mentioned above.
  • the width W3 and thickness T3 of the seals 44 on the four sides of the base blank are the same.
  • grooves are provided on the upper and lower edges of the outer surface of the seal 44, and the groove angle is 10-20°, and the groove vertical depth P is 10-15 mm.
  • the groove angle K1 at the upper edge and the groove angle K2 at the lower edge of the outer surface of the seal strip 44 are respectively 10 to 20°, and the two can be the same or different.
  • a circular through hole is formed in the seal at one side of the base blank, and in the assembly process, a steel pipe 46 with an outer diameter of r and a length of T3+2D to T3+2D+R is welded in the through hole.
  • the through hole can be processed before the seal 44 and the base materials 41A and 41B are formed for gas shielded welding, or can be processed after the gas shielded welding is completed and the base blank is formed. All of these do not deviate from the technical purpose of the present application.
  • the aperture of the through hole is consistent with the outer diameter of the steel pipe 46, both being r.
  • the through hole is opened on a seal 44 at a short side of the base blank, and the through hole is sealed with the seal.
  • the end surface of the steel tube 46 is flush with the inner surface of the seal 44. This ensures the vacuum effect.
  • the X direction is the length direction of the substrate
  • the Y direction is the width direction of the substrate, that is, the two composite materials in the figure are arranged side by side between the two substrates in the length direction of the substrate
  • the X direction may also be the width direction of the substrate
  • the Y direction may be the length direction of the substrate, that is, the two composite materials are arranged side by side between the two substrates in the width direction of the substrate.
  • the shape and size of the blanks prepared in the composite blank preparation stage and the way of assembling the blanks affect the structural shape of the final stainless steel composite plate.
  • the intermediate layer in the billet assembly process is a composite material 42A and a composite material 42B arranged side by side, so that the composite billet based on this embodiment, after the subsequent composite billet rolling stage and the plate finished product stage, the two stainless steel composite plates prepared are both the composite material layer covering part of the upper surface of the substrate layer but not the entire upper surface.
  • the obtained stainless steel composite plate 40A wherein the carbon steel substrate layer 41A and the stainless steel composite layer 42A are respectively obtained by rolling the substrate 41A and the composite material 42A described above, and thus the numbers of the original substrate 41A and the composite material 42A are used.
  • the three sides of the composite layer 42A are flush with the three sides of the substrate layer 41A; and the other side of the composite layer 42A is located inside the upper surface of the substrate layer 41A, so that the composite layer 42A only covers one end of the substrate layer 41A and exposes the other end of the substrate layer 41A.
  • the obtained stainless steel composite plate 40B has a carbon steel substrate layer 41B and a stainless steel composite layer 42B which are obtained by rolling the substrate 41B and the composite material 42B described above, and thus the numbers of the original substrate 41B and the composite material 42B are used.
  • the three sides of the composite layer 42B are flush with the three sides of the substrate layer 41B; and the other side of the composite layer 42B is located inside the upper surface of the substrate layer 41B, so that the composite layer 42B only covers one end of the substrate layer 41B and exposes the other end of the substrate layer 41B.
  • the beneficial effects of the composite plate prepared by the composite blank of this embodiment also need to be understood in combination with the current use status of existing stainless steel composite plates in bridge engineering.
  • the stainless steel composite plate for bridge structure it is necessary to dock with the steel plate for bridge structure during processing and use in the downstream structure factory.
  • the base material layer of the stainless steel composite plate and the steel plate for bridge structure are of the same material, and the welding strength is easy to ensure.
  • the stainless steel composite layer and the steel plate for bridge structure are of different materials, which are difficult to weld and have poor firmness, which has a certain impact on the safety of the overall structural parts.
  • the composite plate prepared by the composite blank of this embodiment has a composite structure composed of carbon steel and stainless steel at one end (for example, the left end of the composite plates 40A and 40B in Figure 21).
  • This end can be like the existing composite plate, with both the corrosion resistance of the composite layer and the good mechanical properties of the substrate layer; and the other end is purely a carbon steel plate (for example, the right end of the composite plates 40A and 40B in Figure 21).
  • the stainless steel composite plate avoids the existing dissimilar welding problems during use, has strong firmness during use, low production difficulty, low cost and high construction efficiency in later use.
  • the side edge of the composite material layer 42A "located inside the upper surface of the substrate layer 41A” is set as a bevel, and the bevel forms an obtuse angle with the upper surface of the composite material layer 42A; similarly, the side edge of the composite material layer 42B "located inside the upper surface of the substrate layer 41B” is set as a bevel, and the bevel forms an obtuse angle with the upper surface of the composite material layer 42B.
  • a single-sided stainless steel composite plate is provided, which is made from the composite blank prepared in the present embodiment through a composite blank rolling stage and a plate finished product stage.
  • the composite plate has a total thickness of 5 to 55 mm, a base material layer thickness of 4 to 45 mm, a composite material layer thickness of 1 to 10 mm, and one end in the X direction is covered and the other end is uncovered.
  • Test Examples 10 to 12 use the present embodiment to prepare the composite blank, and use the prepared composite blank to prepare the stainless steel composite plate.
  • some parameters of the composite blanks in these examples are shown in Table 4, and the parameters represented by the symbols are referred to in the previous description.
  • a fifth embodiment of the composite blank preparation stage is shown.
  • the difference between this embodiment and the first embodiment of the composite blank preparation stage described above is: blank preparation process, release agent coating process and blank assembly process.
  • the sealing process, vacuuming process, sealing process, etc. are the same as the first embodiment. Only the processes with differences are described in detail below, and the others are understood in conjunction with the drawings and the first embodiment of the composite blank preparation stage described above, and will not be repeated.
  • the blank preparation process specifically includes:
  • Two carbon steel billets with a size of L1 in the X direction and a size of W1 in the Y direction are prepared as two substrates, which are distinguished as substrate 51A and substrate 51B in FIG. 22 ; in addition, the thickness of substrate 51A and substrate 51B can be set to be the same or different;
  • the surface to be composited of each substrate is ground and polished, for example, the surface 51As of the substrate 51A and the surface 51Bs of the substrate 51B, to remove the surface oxide scale and expose the metallic luster; after the surface grinding treatment, the roughness Ra of the surface to be composited is less than 5 ⁇ m;
  • a stainless steel billet having an X-direction dimension of L22, a Y-direction dimension of W2, and a thickness of T2 is prepared as a composite material, such as a composite material 52A in FIG. 22 ; one side A3s of the composite material 52A in the X-direction is a hypotenuse of a width V1, and the other side A4s in the X-direction is a hypotenuse of a width V2;
  • a stainless steel billet having an X-direction dimension of L21, a Y-direction dimension of W2, and a thickness of T2 is prepared as another composite material, such as the composite material 52B in FIG. 22 ; one side B3s of the composite material 52B in the X-direction is a hypotenuse having a width of V1;
  • a stainless steel billet having an X-direction dimension of L23, a Y-direction dimension of W2, and a thickness of T2 is prepared as another composite material, such as the composite material 52C in FIG. 22 ; one side C3s of the composite material 52C in the X-direction is a hypotenuse having a width of V2;
  • a smaller surface of each composite material in the thickness direction constitutes a non-to-be-combined surface, such as surface A2s of composite material 52A, surface B2s of composite material 52B, and surface C2s of composite material 52C, while another larger surface constitutes a to-be-combined surface, such as surface A1s of composite material 52A, surface B1s of composite material 52B, and surface C1s of composite material 52C;
  • the to-be-combined surface of each composite material is ground and polished to remove the surface oxide scale and expose the metallic luster; after the surface grinding treatment, the roughness Ra of the to-be-combined surface is less than 5 ⁇ m.
  • the width V1 and the width V2 refer to the span of the hypotenuse in the X direction. It is precisely because of the existence of the hypotenuse that one of the two surfaces in the thickness direction of each composite material is a larger surface and the other is a smaller surface.
  • the side A3s of the composite material 52A and the side B3s of the composite material 52B are both hypotenuses of width V1, so, as described in the subsequent assembly process, the side A3s and the side B3s are parallel to each other; similarly, the side A4s of the composite material 52A and the side C3s of the composite material 52C are both hypotenuses of width V2, so, as described in the subsequent assembly process, the side A3s and the side B3s are parallel to each other.
  • the side edge A3s and the side edge A4s of the composite material 52A both form an obtuse angle with the non-to-be-compounded surface A2s of the composite material 52A.
  • the surface 51As of the substrate 51A and the surface 51Bs of the substrate 51B are ground and polished using a grinding wheel machine, a belt sander or a milling machine to remove the surface oxide scale and expose the metallic luster.
  • the surface A1s of the composite material 52A, the surface B1s of the composite material 52B and the surface C1s of the composite material 52C are ground and polished using a wire wheel to remove the surface oxide scale and expose the metallic luster.
  • the release agent coating step specifically includes: coating the release agent on the non-to-be-combined surface and the bevel of each composite material.
  • the release agent is coated on the surface A2s, bevel A3s and bevel A4s of the composite material 52A, the surface B2s and bevel B3s of the composite material 52B, and the surface C2s and bevel C3s of the composite material 52C.
  • the first optional solution is: a coating solution containing silicon oxide and magnesium oxide, wherein the mass of silicon oxide and magnesium oxide is The amount ratio is 3:1.
  • the isolating agent of this embodiment can achieve a good isolation effect and ensure the subsequent separation of the two composite board small plates.
  • the amount of the isolating agent 53 applied on the surface to be composited and on the bevel of each composite material is 20ymg/ m2
  • y is the ratio of the thickness of the composite blank prepared in the composite blank preparation step to the thickness of the composite board large plate formed by subsequent rolling, and this ratio is also called the composite blank rolling compression ratio.
  • the configuration method and subsequent drying of the isolating agent are the same as those described in the first embodiment of the composite blank preparation stage described above, and will not be repeated here.
  • the second optional scheme is: the composition is 25-35% silicon nitride + 5-10% thermosetting amino resin + 55-70% water by weight.
  • the release agent of this embodiment can not only achieve a good isolation effect and ensure the subsequent separation of the two composite board panels, but also the effective ingredient silicon nitride has strong chemical stability and is resistant to high temperature and heat shock.
  • the thermosetting amino resin used as a binder can be cured at low temperature, is non-toxic, and can achieve a strong bonding effect with a small amount. Therefore, the overall price is low, the operation is simple, and the isolation and adhesion effects are good.
  • the thickness of the release agent 53 on the surface to be composited and on the bevel of each composite material is 0.2-0.5mm.
  • the configuration method and subsequent drying of the release agent are the same as those described in the first embodiment of the composite blank preparation stage described above, and will not be repeated.
  • the blanking process specifically includes: blanking is performed in a manner that the composite material 52A, the composite material 52B and the composite material 52C are the middle layer, the base material 51A is stacked on the top, the base material 51B is stacked on the bottom, and four seals 54 surround the four sides of the middle layer, and gas shielded welding is performed between the upper edge of the seal 54 and the base material 51A, and between the lower edge of the seal 54 and the base material 51B to form a blank.
  • the composite material 52B, the composite material 52A and the composite material 52C are laid side by side in the X direction, the oblique side A3s of the composite material 52A and the oblique side B3s of the composite material 52B are parallel to each other, and the oblique side A4s of the composite material 52A and the oblique side C3s of the composite material 52C are parallel to each other.
  • the surface 51As of the substrate 51A and the surface A1s of the composite 52A are facing each other and in contact with each other as surfaces to be composited
  • the surface 51Bs of the substrate 51B and the surface B1s of the composite 52B are facing each other and in contact with each other as surfaces to be composited
  • the surface 51Bs of the substrate 51B and the surface C1s of the composite 52C are also facing each other and in contact with each other as surfaces to be composited
  • the surface A2s of the composite 52A and the substrate 51B, the surface B2s of the composite 52B and the substrate 51A, the surface C2s of the composite 52C and the substrate 51A, the hypotenuse A3s of the composite 52A and the hypotenuse B3s of the composite 52B, and the hypotenuse A4s of the composite 52A and the hypotenuse C3s of the composite 52C are all coated with a release agent, and they are in contact with each other but will not be composite
  • the stacked steel materials are placed as a whole under a four-column hydraulic machine, and the opposite surfaces of the two base materials (i.e., the upper surface of the base material 51A and the lower surface of the base material 51B) are pressurized to a pressure of ⁇ 500 tons.
  • the adjacent billets can be brought into closer contact.
  • the welding current is 220-240A
  • the welding voltage is 28-32V
  • the welding speed is 300-360mm/min
  • the interpass temperature is controlled at 140-160°C.
  • the substrate 51A and the substrate 51B are preferably preheated and baked with a flame gun at a baking temperature of 150-250°C.
  • the four sides of the obtained base blank all have grooves surrounded by the substrate 51A, the seal 54 and the substrate 51B.
  • the depths of the grooves on the four sides of the base blank are preferably set to be the same, as indicated as depth D in FIG. 24, and the value range is 40 to 60 mm.
  • the depth of the groove depends on the size difference between the composite material and the substrate in the X direction and the Y direction, and the thickness of the seal 54.
  • T3 is the thickness of the seal, and the value range is 10 to 15 mm.
  • the length L31 of the seal 54 is W2 to W2-2 mm
  • the length L32 of the seal 54 is L21+L22+L23-V1-V2 to L21+L22+L23-V1-V2-2 mm
  • the width W3 of the seal 54 is T2 to T2-2 mm
  • the thickness T3 is 10 to 15 mm as described above.
  • the width W3 and thickness T3 of the seals 54 at the four sides of the base blank are the same.
  • grooves are provided on the upper and lower edges of the outer surface of the seal 54, and the groove angle is 10-20°, and the groove vertical depth P is 10-15 mm.
  • the groove angle K1 at the upper edge and the groove angle K2 at the lower edge of the outer surface of the seal strip 54 are respectively 10 to 20°, and the two can be the same or different.
  • a circular through hole is formed in the seal at one side of the base blank, and in the assembly process, a steel pipe 56 with an outer diameter of r and a length of T3+2D to T3+2D+R is welded in the through hole.
  • the through hole can be processed before the seal 54 and the base materials 51A and 51B are formed for gas shielded welding, or can be processed after the gas shielded welding is completed and the base blank is formed. All of these do not deviate from the technical purpose of the present application.
  • the aperture of the through hole is consistent with the outer diameter of the steel pipe 56, both being r.
  • the through hole is opened on a seal 54 at a short side of the base blank, and the through hole is centered at a position 1/3 of the length and 1/2 of the width of the seal 54; as shown in FIG. 24 , the end surface of the steel tube 56 is flush with the inner surface of the seal 54. In this way, the vacuum effect can be ensured.
  • the X direction is the length direction of the substrate
  • the Y direction is the width direction of the substrate, that is, the three composite materials in the figure are arranged side by side between the two substrates in the length direction of the substrate
  • the X direction may also be the width direction of the substrate
  • the Y direction may be the length direction of the substrate, that is, the three composite materials are arranged side by side between the two substrates in the width direction of the substrate.
  • the shape and size of the blanks prepared in the composite blank preparation stage and the way of assembling the blanks affect the structural shape of the final stainless steel composite plate.
  • the intermediate layer in the billet assembly process is composite material 52B, composite material 52A and composite material 52C arranged side by side in sequence, so that the composite billet based on this embodiment, after the subsequent composite billet rolling stage and the plate finished product stage, three stainless steel composite plates are prepared, at least two of which are composite material layers covering part of the upper surface of the substrate layer but not the entire upper surface.
  • the obtained stainless steel composite plate 50A wherein the carbon steel substrate layer 51A and the stainless steel composite layer 52A are respectively obtained by rolling the substrate 51A and the composite material 52A described above, and therefore the numbers of the original substrate 51A and the composite material 52A are used.
  • the two sides of the composite layer 52A in the Y direction are flush with the corresponding two sides of the substrate layer 51A; and the two sides of the composite layer 52A in the X direction are both located inside the upper surface of the substrate layer 51A, so that the composite layer 52A only covers the middle area of the substrate layer 51A and exposes the two ends of the substrate layer 51A in the X direction.
  • This type of composite plate can be called a middle stainless steel composite plate.
  • the middle part of the stainless steel composite plate is a composite structure composed of a carbon steel substrate layer 51A and a stainless steel composite layer 52A, which can have both the corrosion resistance of the composite layer 52A and the good mechanical properties of the substrate layer 51A, just like the existing composite plate; and the two ends of the stainless steel composite plate are purely carbon steel substrate layers 51A, which are directly integrally formed with the composite structure, and the carbon steel substrate layers 51A at these two ends can be directly used in the project without welding.
  • the stainless steel composite plate avoids the existing dissimilar welding problems during use, has strong firmness, low production difficulty, low cost and high construction efficiency during use.
  • both side edges of the composite layer 52A in the X direction are set as bevels, and the two bevels form an obtuse angle with the upper surface of the composite layer 52A.
  • an additional stainless steel plate is required for transition, which not only increases the additional material cost, but also the added stainless steel plate needs to be welded to the composite layer of the stainless steel composite plate and the steel plate for the bridge structure at the same time, which greatly increases the welding workload and affects the construction efficiency.
  • the obtained stainless steel composite plates 50B and 50C respectively, have stainless steel composite layers 52B and 52C obtained by rolling the composite materials 52B and 52C described above, and thus the numbers of the composite materials 52B and 52C are used; and the original substrate 51B is rolled and cut into two parts, one part forming the substrate layer 51Ba of the composite plate 50B, and the other part forming the substrate layer 51Bc of the composite plate 50C.
  • the three sides of the composite layer 52B are flush with the three sides of the substrate layer 51Ba; and the other side of the composite layer 52B is located inside the upper surface of the substrate layer 51Ba, so that the composite layer 52B only covers one end of the substrate layer 51Ba (for example, the left end in FIG. 26) and exposes the other end of the substrate layer 51Ba (for example, the right end in FIG. 26).
  • the three sides of the composite layer 52C are flush with the three sides of the substrate layer 51Bc; and the other side of the composite layer 52C is located inside the upper surface of the substrate layer 51Bc, so that the composite layer 52C only covers one end of the substrate layer 51Bc (for example, the right end in FIG. 26) and exposes the other end of the substrate layer 51Bc (for example, the left end in FIG. 26).
  • the composite plates 50B and 50C have a composite structure composed of carbon steel and stainless steel at one end, which can have both the corrosion resistance of the composite layer and the good mechanical properties of the base material layer like the existing composite plates; and the other end is purely a carbon steel plate.
  • the stainless steel composite plate avoids the existing dissimilar welding problems during use, has strong firmness during use, and has low production difficulty, low cost and high construction efficiency in later use.
  • the side edge of the composite material layer 52B "located inside the upper surface of the substrate layer 51Ba” is set as a bevel.
  • the upper surface of the composite material layer 52B is at an obtuse angle; similarly, the side edge of the composite material layer 52C "located inside the upper surface of the base material layer 51Bc" is set as a bevel, which forms an obtuse angle with the upper surface of the composite material layer 52C.
  • one of the formed composite plates can be a fully covered composite plate with the composite layer and the substrate layer having the same length and width (such as the composite plate 10B shown in FIG. 6 ), and the other composite plate is a composite plate with one end of the substrate layer covered by the composite layer and the other end not covered by the composite layer.
  • other cutting methods can also be used as required.
  • this embodiment can simultaneously obtain at least two different types of composite panels, and has better industrial value.
  • the fourth embodiment and the fifth embodiment described above respectively introduce an assembly method of two composite materials and three composite materials arranged side by side, but the present invention is not limited thereto, and a plurality of composite materials may also be arranged to be assembled side by side.
  • a single-sided stainless steel composite plate is provided, which is made from the composite blank prepared in this embodiment through the composite blank rolling stage and the plate finished product stage.
  • the total thickness of the composite plate is 5 to 55 mm
  • the thickness of the substrate layer is 4 to 45 mm
  • the thickness of the composite layer is 1 to 10 mm
  • the middle area in the X direction is covered and the two ends are not covered.
  • a single-sided stainless steel composite plate can also be provided at the same time, which is made from the composite blank prepared in this embodiment through the composite blank rolling stage and the plate finished product stage.
  • the total thickness of the composite plate is 5 to 55 mm
  • the thickness of the substrate layer is 4 to 45 mm
  • the thickness of the composite layer is 1 to 10 mm
  • one end in the X direction is covered and the other end is not covered.
  • Test Examples 13 to 15 use the present embodiment to prepare the composite blank, and use the prepared composite blank to prepare the stainless steel composite plate.
  • some parameters of the composite blanks in these examples are shown in Table 5, and the parameters represented by the symbols are referred to in the previous description.
  • the five implementation methods of the composite billet preparation stage provided above are respectively introduced, and the specific implementation methods of the composite billet rolling stage and the plate finished product stage are described in detail below. It should be noted here that the specific implementation methods of the composite billet rolling stage and the plate finished product stage described below are applicable to any of the five implementation methods of the composite billet preparation stage mentioned above. That is, the composite billet prepared by any of the five implementation methods of the composite billet preparation stage above can be processed by the specific implementation methods of the composite billet rolling stage and the plate finished product stage described below. A single-sided stainless steel composite plate is prepared by this method.
  • the composite billet obtained in the composite billet preparation stage is subjected to a heating process, a rolling process, and a cooling process to be made into a composite plate.
  • a heating process a rolling process, and a cooling process to be made into a composite plate.
  • the composite billet is heated in a heating furnace to prepare in advance for the subsequent rolling process, which can be specifically implemented using techniques known in the art.
  • the present application provides a preferred implementation of the heating process, specifically: the composite blank is heated in a heating furnace according to five sections: a preheating section, a first heating section, a second heating section, a third heating section and a soaking section, the preheating section temperature is ⁇ 850°C, the first heating section temperature is 1080 ⁇ 30°C, the second heating section temperature is 1160 ⁇ 30°C, the third heating section temperature is 1220 ⁇ 20°C, the soaking section temperature is 1190 ⁇ 20°C, the residence time of the third heating section is (0.25 ⁇ 0.35) ⁇ t min/mm, t is the thickness of the composite blank, and the residence time of the soaking section is 15min ⁇ 30min.
  • the middle layer of the composite blank is a stainless steel composite material
  • the upper and lower layers are carbon steel substrates.
  • the thermal conductivity, expansion coefficient, etc. of the two materials are quite different, and large stress will be generated during the heating process.
  • the heating process of this embodiment can better control the heating rate of the composite blank in each section, ensure uniform heating, and thus avoid the risks of cracking and air leakage, so that the final composite plate has an excellent bonding interface.
  • the composite billet coming out of the heating furnace is rolled to obtain a large composite plate.
  • the first n passes are transversely rolled, and the n+1th pass and thereafter are longitudinally rolled, and the first pass rolling reduction is ⁇ 25 mm and the rolling temperature is ⁇ 1060° C.
  • the width of the billet obtained by the nth pass rolling is Wt+0-40 mm, Wt is the target width of the composite plate, and the rolling temperature of the nth pass is ⁇ 1030° C.
  • the billet is water-cooled once in 6 sets of headers, and the cooling water volume of the upper header of each set of headers is 120-180 m 3 /h, and the cooling water volume of the lower header is 160-220 m 3 /h.
  • the roller speed is 0.8-1.2m/s;
  • the rolling reduction from the n+1th pass to the n+3th pass is ⁇ 40mm, especially the rolling reduction of the n+2th pass is preferably ⁇ 42mm, and the rolling temperature of the n+1th pass is ⁇ 950°C;
  • the rolling temperature is ⁇ 900°C, and the billet is rolled to a thickness of 2.5-3.5 times the target thickness of the composite plate; then water cooling is carried out until the surface temperature of the billet drops below 840°C; then the second stage of rolling is carried out until the billet thickness is the target thickness of the composite plate, completing the entire rolling process, the first rolling temperature of the second stage rolling is 810°C-840°C, and the last rolling temperature is 780-810°C.
  • the rolling process of this embodiment can, on the one hand, ensure the deformation penetration effect of the core, facilitate the bonding of the composite material and the substrate, and improve the interface bonding rate and bonding strength of the substrate layer and the composite material layer of the final composite plate; on the other hand, ensure the relevant mechanical properties, corrosion resistance and low-temperature impact toughness of the large composite plate, and avoid performance degradation due to the composite of the substrate and the composite material.
  • the next cooling process is to cool the heated composite plate obtained in the rolling process.
  • the temperature of the composite plate is around 780°C when it leaves the rolling mill, and then it is cooled to room temperature.
  • the cooling can be performed using the known feasible cooling technology.
  • a cooling process including intermittent cooling technology is provided, which can have excellent beneficial effects compared with the existing cooling technology.
  • the cooling process includes: after the composite plate leaves the rolling mill, it enters the ultra-fast cooling system for Intermittent cooling.
  • the ultra-fast cooling system has 24 groups of cooling manifolds arranged at intervals of 1m along the rollers; in the intermittent cooling, the cooling distance of each group of cooling manifolds is 1m.
  • the opening and closing states of all 24 groups of cooling manifolds are controlled by opening N groups of cooling manifolds and then not opening M groups of cooling manifolds.
  • the cooling water pressure is 0.15-0.30MPa, the cooling rate is 3-15°C/s, and the final cooling temperature is 380-590°C; N is 2, 3 or 4, and M is 2, 3 or 4.
  • the intermittent cooling is adopted.
  • the large composite plate passes through the ultra-fast cooling system, it moves in the alternately opened cooling manifold and the closed cooling manifold. In this way, each part of the large composite plate will be cooled, turned red, cooled, turned red... and so on and so forth, until the large composite plate leaves the ultra-fast cooling system.
  • the carbon steel substrate continuously undergoes phase change and self-tempering effect, and the phase change reaction gradually penetrates into the core until the entire carbon steel substrate completes the phase change.
  • the intermittent cooling process is different from the conventional reciprocating cooling. The turning red and self-tempering of the reciprocating cooling occur after the surface or near-surface layer has completed the phase change.
  • the temperature difference or cooling rate between the surface and the core is relatively large, and the microstructure and mechanical properties are also different.
  • the difference is large, while the intermittent cooling process of the present embodiment is that, at the same time, some parts of the composite plate are in a cooling state, and some parts are in red-returning/self-tempering, and each part of the composite plate is alternately cooled and red-returning/self-tempering over time, so that the differences in temperature, cooling rate, organization, performance, etc. between the surface and the core of the composite plate are small.
  • the Vickers hardness difference in the thickness direction of the substrate layer of the final composite plate is ⁇ 10
  • the strength difference between the head, the middle and the tail is ⁇ 40MPa
  • the strength difference of the whole plate is ⁇ 40MPa.
  • the plate shape of the composite plate can be further improved through intermittent cooling, that is, the unevenness is low, even if straightening is not performed after cooling and the cooling is directly performed on the cooling bed, an excellent plate shape can be obtained.
  • the thickness of the composite plate is below 54 mm, for example, when the thickness is 10 to 54 mm, the roller speed of the ultra-fast cooling system is 0.4 to 0.8 m/s, and the composite plate passes through the ultra-fast cooling system once and then leaves the ultra-fast cooling system; preferably, the preferred control scheme of the 24 groups of cooling manifolds is, for example, the 1st to 4th groups of cooling manifolds are turned on, the 5th to 6th groups of cooling manifolds are not turned on, the 7th to 8th groups of cooling manifolds are turned on, the 9th to 10th groups of cooling manifolds are not turned on, the 11th to 12th groups of cooling manifolds are turned on, the 13th to 14th groups of cooling manifolds are not turned on, the 15th to 16th groups of cooling manifolds are turned on, the 17th to 18th groups of cooling manifolds are not turned on, the 19th to 20th groups of cooling manifolds are turned on, the 21st to
  • the thickness of the large composite plate is greater than 54 mm and less than 70 mm, and the roller speed of the ultra-fast cooling system is greater than 0.2 m/s and less than 0.6 m/s.
  • the large composite plate passes through the ultra-fast cooling system once and then leaves the ultra-fast cooling system; the thickness of the large composite plate is greater than or equal to 70 mm, and the roller speed of the ultra-fast cooling system is 0.4-0.9 m/s.
  • the large composite plate first enters the ultra-fast cooling system entrance in a forward direction, and when its head reaches the 24th group of cooling manifolds, the roller reverses, and the large composite plate passes through the ultra-fast cooling system in a reverse direction and leaves the ultra-fast cooling system entrance.
  • the preferred control scheme for the 24 groups of cooling manifolds is, for example, the 1st to 4th groups of cooling manifolds are turned on, the 5th to 8th groups of cooling manifolds are not turned on, the 9th to 12th groups of cooling manifolds are turned on, the 13th to 16th groups of cooling manifolds are not turned on, the 17th to 20th groups of cooling manifolds are turned on, the 21st to 22nd groups of cooling manifolds are not turned on, and the 23rd to 24th groups of cooling manifolds are turned on.
  • the cooling process specifically includes: after leaving the ultra-fast cooling system, the large composite plate is directly placed on a cooling bed for air cooling until room temperature.
  • the large composite plate is not directly placed on a cooling bed after leaving the ultra-fast cooling system, but can be stacked first.
  • the temperature of the entire thickness direction of the composite plate can be made uniform while ensuring the performance of the composite plate, avoiding the situation where the base material temperature is low and the composite material temperature is high, so that the base material and the composite material maintain a similar expansion amount, thereby ensuring the shape of the composite plate.
  • the preparation method of the present invention further includes a plate product stage.
  • the plate product stage includes a plate separation process and a flattening process.
  • the large composite plate that has been air-cooled to room temperature is cut on four sides by a plasma cutter to remove the portion other than the seal, and the large composite plate is separated into two upper and lower composite plate small plates.
  • the obtained two composite plate small plates can be subjected to a flattening process to obtain two single-sided stainless steel composite plates.
  • the upper and lower composite plate small plates can also be further cut to produce more single-sided stainless steel composite plates, such as the three stainless steel composite plate finished products introduced in the fifth embodiment of the composite blank preparation stage described above, see the stainless steel composite plates 50A, 50B and 50C in FIG. 26.
  • the “part outside the seal” refers to the edge of the composite plate that is transformed from the seal and filling layer in the composite blank mentioned above after the previous rolling step. In this way, this part is removed to expose the stainless steel composite layer, and without the connection function of this part, the composite plate is automatically separated into two small composite plates.
  • the finished single-sided stainless steel composite plate is obtained.
  • an embodiment of the present invention also provides a single-sided stainless steel composite plate, which is prepared by the preparation method described above, and includes a substrate layer transformed from the substrate, and a composite material layer transformed from the composite material.
  • the composite material/composite material layer is preferably austenitic stainless steel. Its chemical composition by mass percentage is: C ⁇ 0.15%, Si ⁇ 1.00%, Mn ⁇ 2.00%, P ⁇ 0.045%, S ⁇ 0.030%, Ni: 6.0-22.0%, Cr: 16.0-26.0%, Mo ⁇ 3.0%, and the remainder is Fe and Unavoidable impurities.
  • the chemical composition of the substrate/the substrate layer is calculated in mass percentage as follows: C: 0.03-0.16%, Si: 0.11-0.29%, Mn: 1.31-1.54%, P ⁇ 0.018%, S ⁇ 0.0030%, Cr: 0.06-0.29%, Nb: 0.011-0.034%, Ti: 0.011-0.019%, Al: 0.030-0.040%, and the rest is Fe and unavoidable impurities.
  • the chemical composition of the substrate/the substrate layer is, in mass percentage, C: 0.08-0.12%, Si: 0.16-0.24%, Mn: 1.36-1.44%, P ⁇ 0.015%, S ⁇ 0.0025%, Cr: 0.11-0.19%, Ni: 0.06-0.14%, Nb: 0.016-0.024%, Ti: 0.011-0.019%, Al: 0.030-0.040%, and the rest is Fe and unavoidable impurities.
  • the chemical composition of the substrate/the substrate layer is, in mass percentage, as follows: C: 0.05-0.09%, Si: 0.14-0.22%, Mn: 1.41-1.49%, P ⁇ 0.012%, S ⁇ 0.0020%, Cr: 0.16-0.24%, Ni: 0.11-0.19%, Mo: 0.11-0.19%, Nb: 0.021-0.029%, Ti: 0.011-0.019%, Al: 0.030-0.040%, and the rest is Fe and unavoidable impurities.
  • the chemical composition of the substrate/the substrate layer is, by mass percentage, C: 0.03-0.07%, Si: 0.11-0.19%, Mn: 1.46-1.54%, P ⁇ 0.010%, S ⁇ 0.0015%, Cr: 0.21-0.29%, Ni: 0.16-0.24%, Cu: 0.16-0.24%, Mo: 0.16-0.24%, Nb: 0.026-0.034%, Ti: 0.011-0.019%, Al: 0.030-0.040%, and the rest is Fe and unavoidable impurities.
  • the stainless steel composite plate has both excellent mechanical properties and corrosion resistance, and has excellent plate shape, interface bonding quality, uniformity, impact toughness and surface quality compared with the prior art.
  • the single-sided stainless steel composite plate of one embodiment of the present invention is sampled in accordance with GB/T 2975-Steel and Steel Products-"Sampling Location and Sample Preparation for Mechanical Properties Test", and:
  • the test is carried out in accordance with GB/T 709- "Dimensions, shape, weight and allowable deviation of hot-rolled steel plates and steel strips".
  • the unevenness of the composite plate is ⁇ 3mm/m, or even ⁇ 2mm/m.
  • the yield strength of the composite plate is ⁇ 345MPa
  • the tensile strength is ⁇ 490MPa
  • the elongation after fracture is ⁇ 18%
  • the yield strength ratio is ⁇ 0.85
  • the Vickers hardness difference in the thickness direction of the substrate layer of the composite plate is ⁇ 10
  • the strength difference between the head, the middle and the tail is ⁇ 40MPa
  • the strength difference of the whole plate is ⁇ 40MPa
  • the composite plate has an impact energy of ⁇ 120J at 0°C, ⁇ 120J at -20°C, and ⁇ 120J at -40°C, and even ⁇ 240J at 0°C, ⁇ 200J at -20°C, and ⁇ 150J at -40°C;
  • the present invention ensures the corrosion resistance and mechanical strength of the stainless steel composite plate through specific control of the process in the entire preparation method, and avoids the degradation of the corrosion resistance and mechanical properties during the rolling process of the composite billet; on the other hand, solves the problems of poor plate shape, poor interface bonding quality, and poor surface quality of the existing thick stainless steel composite plates, so that the stainless steel composite plates have excellent plate shape and interface bonding quality, and avoids obvious surface defects such as pits and scratches caused by the existing explosive composite technology; on the other hand, it can also solve the problem of dissimilar welding in the prior art, the types of composite plates are more diverse, the usage scenarios are higher, and the yield rate and production efficiency are high during the production process.
  • the preferred implementation of the heating process, rolling process, cooling process, plate separation process and flattening process provided by the present invention is implemented to finally obtain a single-sided stainless steel composite plate product.
  • the total thickness, substrate layer thickness, and composite material layer thickness of the composite plate products of these embodiments are shown in Table 7.
  • the two columns of composite plate thickness and substrate layer thickness in Table 7 are ranges, which represent the maximum Minimum thickness ⁇ maximum thickness.
  • the sampling standard, test standard, etc. disclosed above were used to sample and test the composite panels of each embodiment.
  • the interface bonding rate of each embodiment was 100%, the inner bending of 180° was qualified (no cracks), the outer bending of 180° was qualified (no cracks), and after being boiled in sulfuric acid-copper sulfate solution for 20 hours and bent at 180°, the composite layer had no intergranular corrosion cracks.
  • the test results of other properties are shown in Tables 7 and 8.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

本发明揭示了一种桥梁结构用不锈钢复合板及其制备方法。所述方法中,按照上层碳钢基材A、下层碳钢基材B、中间层为至少两块不锈钢复材、四根封条包围在中间层的四侧边的方式进行组坯,封条开设有圆形通孔,在通孔中焊接钢管;堆焊时在所述钢管周围预留出孔洞;抽真空之后,将所述钢管折进预留的所述孔洞内;再进行满焊,将所述钢管封焊在所述孔洞内;整个轧制中,前n道次采用横向轧制,以后纵向轧制;第n道次后和在第n+2道次后,将坯料在6组集管中进行往返水冷1次。

Description

桥梁结构用不锈钢复合板及其制备方法 技术领域
本发明涉及一种桥梁结构用不锈钢复合板,以及一种桥梁结构用不锈钢复合板的制备方法,属于钢铁材料制备技术领域。
背景技术
随着科学和工业的不断发展,普通的合金板材已经很难满足工业发展对材料综合性能的要求,复合板就应运而生。不锈钢复合板是以碳钢或低合金钢为基材层,以不锈钢为复材层,基材层和复材层之间冶金结合为一体的复合材料。不锈钢复合板不但具有不锈钢复材层的耐腐蚀性,而且具有碳钢或低合金钢基材层的突出力学性能及价格优势,是钢铁材料的一个重要发展方向。
近年来,随着对钢桥安全性、长寿命等要求的不断提高,钢桥结构的防锈防腐问题越来越突出,若在桥梁钢表面覆上一层耐腐蚀的保护材料,用它来代替单一的桥梁钢板,可实现喷涂工艺无法达到的长久性防腐目标。因此,不锈钢复合板成为一种比较理想的选择。然而,由于制备技术的原因,现有的不锈钢复合板存在板形差、表面质量差、界面结合质量差、应用时焊接难且不牢固等缺陷,制备过程也具有污染大、难度大、生产效率低、成材率低等问题。
具体地,目前不锈钢复合板的制备技术,分为爆炸复合和轧制复合两种。
其中,关于爆炸复合的制备技术,例如公开号为CN110064835A的中国专利申请,采用爆炸复合的方式实现基材和复材之间的结合,一方面,会因为爆炸对环境造成振动、噪声和烟尘污染,再一方面,爆炸复合方式所制得的复合板,板形和表面质量都比较差。
关于轧制复合的制备技术,有些存在加工难度大、生产效率低、成材率低的问题,例如公开号为CN107009090A的中国专利申请中所采用的挖槽制坯的技术;有些存在界面结合差、表面质量差的问题,例如公开号为CN109694986A的中国专利申请,其不锈钢复材层裸露在外,不锈钢复材层的侧表面的表面质量难以保证,并且铝条在复合坯搬运过程中容易脱落,导致漏气,进而影响界面结合质量。再者,也未有现有技术对轧制工序对界面结合质量的影响予以披露,尤其是在保证基材层与复材层的自身性能的同时,兼顾界面结合质量的方案予以披露。
发明内容
本发明的目的在于提供一种桥梁结构用不锈钢复合板,以及一种桥梁结构用不锈钢复合板的制备方法,以解决背景技术中所提的至少一种技术问题。
为实现上述发明目的,本发明一实施方式提供了一种桥梁结构用不锈钢复合板的制备方法,所述方法包括坯料准备、涂覆隔离剂、组坯、封焊、抽真空、封口、加热、轧制、冷却、分板、压平的工艺流程; 其中,
组坯工序中:按照上层碳钢基材A、下层碳钢基材B、中间层为至少两块不锈钢复材、四根封条包围在中间层的四侧边的方式进行组坯,封条和基材A之间、封条和基材B之间进行气保焊,以形成基坯;该基坯的四侧边具有由基材A、封条和基材B合围出的深度为D的凹槽,并且,基坯的一个侧边的封条开设有圆形通孔,在通孔中焊接外径为r的钢管;
封焊工序中:对所述凹槽进行堆焊,堆焊时在所述钢管周围预留出与钢管同心、半径为R>r的孔洞;当所述钢管所在侧边的凹槽堆焊至熔深为凹槽深度的2/3、而其它侧边的凹槽堆焊至熔深为凹槽深度的2/3以上时,中止堆焊;
封口工序中:在基坯完成抽真空工序之后,将所述钢管用火焰枪加热、夹扁、折进预留的所述孔洞内;再用气保焊对所述孔洞进行满焊,将所述钢管封焊在所述孔洞内;而后继续堆焊直至凹槽被填满,最后进行盖面焊,得到复合坯;
轧制工序中:对出加热炉的复合坯进行轧制,制得复合板大板;整个轧制过程中,前n道次采用横向轧制,第n+1道次以后采用纵向轧制,并且,第1道次轧制压下量≥25mm且轧制温度≥1060℃,第n道次轧制所得坯料的宽度为Wt+0~40mm,Wt为复合板大板的目标宽度,第n道次的轧制温度≥1030℃;在第n道次和第n+1道次之间以及在第n+2道次和第n+3道次之间,将坯料在6组集管中进行往返水冷1次,每组集管的上集管冷却水量120~180m3/h、下集管冷却水量160~220m3/h,且辊道速度为0.8~1.2m/s;第n+1道次至第n+3道次的轧制压下量均≥40mm,第n+1道次的轧制温度≥950℃;至第m道次时,轧制温度≥900℃,轧制至坯料厚度为复合板大板的目标厚度的2.5~3.5倍;之后进行浇水冷却,直至坯料的表面温度降低至840℃以下;而后进行第二阶段轧制,直至坯料厚度为复合板大板的目标厚度,完成整个轧制过程,第二阶段轧制的第1道次轧制温度为810℃~840℃,最后1道次的轧制温度为780~810℃。
为实现上述发明目的,本发明一实施方式提供了一种桥梁结构用不锈钢复合板,其采用的制备方法包括坯料准备、涂覆隔离剂、组坯、封焊、抽真空、封口、加热、轧制、冷却、分板、压平的工艺流程;其中,
组坯工序中:按照上层碳钢基材A、下层碳钢基材B、中间层为至少两块不锈钢复材、四根封条包围在中间层的四侧边的方式进行组坯,封条和基材A之间、封条和基材B之间进行气保焊,以形成基坯;该基坯的四侧边具有由基材A、封条和基材B合围出的深度为D的凹槽,并且,基坯的一个侧边的封条开设有圆形通孔,在通孔中焊接外径为r的钢管;
封焊工序中:对所述凹槽进行堆焊,堆焊时在所述钢管周围预留出与钢管同心、半径为R>r的孔洞;当所述钢管所在侧边的凹槽堆焊至熔深为凹槽深度的2/3、而其它侧边的凹槽堆焊至熔深为凹槽深度的2/3以上时,中止堆焊;
封口工序中:在基坯完成抽真空工序之后,将所述钢管用火焰枪加热、夹扁、折进预留的所述孔洞内;再用气保焊对所述孔洞进行满焊,将所述钢管封焊在所述孔洞内;而后继续堆焊直至凹槽被填满,最后进行盖面焊,得到复合坯;
轧制工序中:对出加热炉的复合坯进行轧制,制得复合板大板;整个轧制过程中,前n道次采用横向轧制,第n+1道次以后采用纵向轧制,并且,第1道次轧制压下量≥25mm且轧制温度≥1060℃,第n道次轧制所得坯料的宽度为Wt+0~40mm,Wt为复合板大板的目标宽度,第n道次的轧制温度≥1030℃;在第n道次和第n+1道次之间以及在第n+2道次和第n+3道次之间,将坯料在6组集管中进行往返水冷1次,每组集管的上集管冷却水量120~180m3/h、下集管冷却水量160~220m3/h,且辊道速度为0.8~1.2m/s;第n+1道次至第n+3道次的轧制压下量均≥40mm,第n+1道次的轧制温度≥950℃;至第m道次时,轧制温度≥900℃,轧制至坯料厚度为复合板大板的目标厚度的2.5~3.5倍;之后进行浇水冷却,直至坯料的表面温度降低至840℃以下;而后进行第二阶段轧制,直至坯料厚度为复合板大板的目标厚度,完成整个轧制过程,第二阶段轧制的第1道次轧制温度为810℃~840℃,最后1道次的轧制温度为780~810℃;
所述复合板的基材层的化学成分以质量百分比计为:C:0.03~0.16%,Si:0.11~0.29%,Mn:1.31~1.54%,P≤0.018%,S≤0.0030%,Cr:0.06~0.29%,Ni≤0.24%,Cu≤0.24%,Mo≤0.24%,Nb:0.011~0.034%,Ti:0.011~0.019%,Al:0.030~0.040%,余量为Fe及不可避免的杂质;
所述复合板的复材层的化学成分以质量百分比计为:C≤0.15%,Si≤1.00%,Mn≤2.00%,P≤0.045%,S≤0.030%,Ni:6.0~22.0%,Cr:16.0~26.0%,Mo≤3.0%,余量为Fe及不可避免的杂质;
所述复合板的复合界面结合率100%,剪切强度≥300MPa。
如此,本发明一实施方式相较于现有技术,一方面,通过组坯方式、封焊和封口方式,可以使得不锈钢复材被包裹在基材、封条之内,利于保证不锈钢复材的表面质量,而且无需如现有技术一样挖槽制坯,成材率高,另外既可以实现抽真空,又可以避免复合坯漏气、裂缝,从而保证界面结合质量,再一方面,组坯、封焊和封口方式与轧制技术相结合,尤其是采用了本领域全新的轧制技术,可以确保复合坯的温度均匀性,并保证复合坯的心部得到有效渗透,进而,不仅可以保证基材和复材的自身优势可以得到发挥,同时更主要的,还可以确保基材和复材之间的界面结合质量。
附图说明
为便于清楚的展示和说明,在本发明的各个图示中,结构或部分的某些尺寸会相对于其它结构或部分扩大,因此,仅用于图示本发明的主题的基本结构。
图1是本发明所提供的制备方法的流程框图;
图2是本发明第一实施方式的复合坯制备阶段中的坯料的示意图;
图3是本发明第一实施方式的复合坯制备阶段中的封焊工序所得基坯的截面示意图,该截面过钢管中心轴并且垂直于基坯的宽度方向;
图4是图3中的圆框区域的放大图;
图5是本发明第一实施方式的复合坯制备阶段中的封焊工序所得基坯的再一截面示意图,该截面过钢管中心轴并且垂直于基坯的厚度方向;
图6是本发明第一实施方式所得的单面不锈钢复合板成品的示意图;
图7是本发明第二实施方式的复合坯制备阶段中的坯料的示意图;
图8是本发明第二实施方式的复合坯制备阶段中的封焊工序所得基坯的截面示意图,该截面过钢管中心轴并且垂直于基坯的宽度方向;
图9是图8中的圆框区域的放大图;
图10是本发明第二实施方式的复合坯制备阶段中的封焊工序所得基坯的再一截面示意图,该截面过钢管中心轴并且垂直于基坯的厚度方向;
图11是本发明第二实施方式所得的单面不锈钢复合板成品的示意图;
图12是本发明第三实施方式的复合坯制备阶段中的坯料的示意图;
图13是本发明第三实施方式的复合坯制备阶段中的封焊工序所得基坯的截面示意图,该截面过钢管中心轴并且垂直于基坯的宽度方向;
图14是图13中的圆框区域的放大图;
图15是本发明第三实施方式的复合坯制备阶段中的封焊工序所得基坯的再一截面示意图,该截面过钢管中心轴并且垂直于基坯的厚度方向;
图16是本发明第三实施方式所得的单面不锈钢复合板成品的示意图;
图17是本发明第四实施方式的复合坯制备阶段中的坯料的示意图;
图18是本发明第四实施方式的复合坯制备阶段中的封焊工序所得基坯的截面示意图,该截面过钢管中心轴并且垂直于基坯的宽度方向;
图19是图18中的圆框区域的放大图;
图20是本发明第四实施方式的复合坯制备阶段中的封焊工序所得基坯的再一截面示意图,该截面过钢管中心轴并且垂直于基坯的厚度方向;
图21是本发明第四实施方式所得的单面不锈钢复合板成品的示意图;
图22是本发明第五实施方式的复合坯制备阶段中的坯料的示意图;
图23是本发明第五实施方式的复合坯制备阶段中的封焊工序所得基坯的截面示意图,该截面过钢管中心轴并且垂直于基坯的宽度方向;
图24是图23中的圆框区域的放大图;
图25是本发明第五实施方式的复合坯制备阶段中的封焊工序所得基坯的再一截面示意图,该截面过钢管中心轴并且垂直于基坯的厚度方向;
图26是本发明第五实施方式所得的单面不锈钢复合板成品的示意图。
具体实施方式
本发明一实施方式提供一种桥梁结构用单面不锈钢复合板的制备方法,以及提供一种桥梁结构用单面不锈钢复合板,所述复合板采用本发明一实施方式的制备方法制备而成。
具体地,参图1所示,所述制备方法包括坯料准备工序、涂覆隔离剂工序、组坯工序、封焊工序、抽真空工序、封口工序、加热工序、轧制工序、冷却工序、分板工序、压平工序的工艺流程。也即,本发明通过坯料准备-涂覆隔离剂-组坯-封焊-抽真空-封口-加热-轧制-冷却-分板-压平的工艺路线制备得到单面不锈钢复合板。
其中,通过坯料准备工序、涂覆隔离剂工序、组坯工序、封焊工序、抽真空工序和封口工序,制备出复合坯,故而从坯料准备工序至封口工序这一阶段在本申请中称之为复合坯制备阶段;之后,通过加热工序、轧制工序和冷却工序,将复合坯制成复合板大板,故而从加热工序至冷却工序这一阶段在本申请中称之为复合坯轧制阶段;最后,通过分板工序和压平工序,将复合板大板制成至少两块单面不锈钢复合板小板,也即单面不锈钢复合板成品,故而这一阶段在本申请中称之为板成品阶段。
进一步地,本发明提供了所述复合坯制备阶段的多种实施方式,下面分别进行详细介绍。
<复合坯制备阶段的第一种实施方式>
参图2至图6,示出了复合坯制备阶段的第一种实施方式。
在该实施方式中,参图2,坯料准备工序具体包括:
准备厚度T1、长度L1、宽度W1的两块碳钢钢坯,作为两块基材,如图2中区别为基材11A、基材11B;
对每块基材的待复合表面进行磨抛,例如基材11A的表面11As、基材11B的表面11Bs,以去除表面氧化皮,露出金属光泽;经过该表面修磨处理之后,所述的待复合表面的粗糙度Ra<5μm;
准备厚度T2、长度L2、宽度W2的两块不锈钢钢坯,作为两块复材,如图2中区别为复材12A、12B;
对每块复材的待复合表面进行磨抛,例如复材12A的表面A1s、复材12B的表面B1s,以去除表面氧化皮,露出金属光泽;经过该表面修磨处理之后,所述的待复合表面的粗糙度Ra<5μm。
其中,L2<L1,W2<W1,复材的长宽尺寸都小于基材的长宽尺寸。再优选地,L1≥2500mm,W2≥1600mm,T1≥60mm;L1-L2取值范围为90~150mm,W1-W2取值范围也为90~150mm。
可以理解,本实施方式中,每块基材为厚度恒定是T1的等厚坯,相应的,基于本实施方式所得的不锈 钢复合板的基材层(由基材经所述制备方法而得)厚度恒定。
此处,所述的“待复合表面”,指的是在形成复合板时基材和复材需要界面结合的表面。例如,对于一对基材和复材,各自任选厚度方向的两个表面的其中之一作为待复合表面,在后续步骤中彼此进行界面结合,例如,基材11A的表面11As与复材12A的表面A1s在后续步骤中彼此界面结合,基材11B的表面11Bs与复材12B的表面B1s在后续步骤中彼此界面结合。
优选地,针对基材11A的表面11As、基材11B的表面11Bs,分别采用砂轮机、砂带机或者铣床,进行磨抛,以去除表面氧化皮,露出金属光泽。针对复材12A的表面A1s、复材12B的表面B1s,分别采用钢丝轮进行磨抛,以去除表面氧化皮,露出金属光泽。
此处只说明了对每块基材和每块复材的待复合表面进行表面修磨处理,而需要说明的是,还可以进一步对各个基材、复材的其它表面进行表面修磨处理,尽管这种额外的其它表面的修磨处理并不是实现本发明技术效果所必须的、但却可能是更优的。
进一步地,在本实施方式中,涂覆隔离剂工序具体包括:在至少一块复材的非待复合表面上涂刷隔离剂。具体地,可以在每块复材的非待复合表面上涂刷隔离剂,所述的非待复合表面例如是复材12A的表面A2s、复材12B的表面B2s,也可以选择两块复材中的一块进行涂刷隔离剂。如此,通过隔离剂来避免两块复材后续在复合坯轧制步骤中发生结合而导致最终难以分板。
可以理解的,所述的非待复合表面与复材的待复合表面相背,二者构成复材在厚度方向上的两个表面。
关于所述隔离剂的成分,第一种可选方案为:包含氧化硅和氧化镁的涂液,其中氧化硅和氧化镁的质量比为3:1。本实施方式的隔离剂,可以达到很好的隔离效果,保证后续的两块复合板小板的分离。采用所述隔离剂,两块复材之间的隔离剂13(参图3)的总量为20ymg/m2,y为所述复合坯制备步骤中所制得的复合坯的厚度与后续轧制而成的复合板大板的厚度的比值,该比值又被称作复合坯轧制压缩比。在此,提供所述隔离剂的配置方法,为:将聚乙烯醇和热固性酚醛树脂,按质量比1:1混合,得到粘结剂粉;将氧化硅和氧化镁,按质量比3:1混合,得到隔离剂粉;将隔离剂粉、粘结剂粉和水,按质量比27:3:70混合,得到流体隔离剂涂液。在涂刷隔离剂完成之后,且后续组坯工序之前,将涂刷了隔离剂的复材置于台车炉内加热烘干,烘干温度为340~360℃,烘干时间为35~45min。
关于所述隔离剂的成分,第二种可选方案为:成分按重量比为25~35%的氮化硅+5~10%的热固性氨基树脂+55~70%的水。相较于现有隔离剂,甚至相较于前述隔离剂的第一种实施方式,本实施方式的隔离剂,不仅可以达到很好的隔离效果,保证后续的两块复合板小板的分离,而且有效成分氮化硅的化学稳定性强且耐高温、耐热冲击,作为粘结剂的热固性氨基树脂在低温下即可固化,无毒性,用量很少就能达到较强的粘结作用,因此整体上价格低廉,操作简单,隔离和附着效果较好。
在此,提供第二种可选方案的所述隔离剂的一种优选配置方法,包括:先在烧杯等容器内放入5~10% 的氮化硅(重量百分比计),接着倒入15~25%的水进行搅拌;待氮化硅无颗粒感、无气泡后,再倒入2~3%的热固性氨基树脂,继续搅拌;待呈现粘稠状时,继续倒入剩余氮化硅和水,搅拌3~5min后倒入剩余热固性氨基树脂;待搅拌至粘稠状时,即制备得到所述隔离剂。
对于所述第二种可选方案的所述隔离剂,两块复材之间的隔离剂13(参图3)的总量按照厚度0.2~0.5mm进行涂刷;在涂刷隔离剂完成之后,且后续组坯工序之前,将涂刷了隔离剂的复材进行加热烘干,烘干温度为100~250℃,烘干时间为20~40min。在此,需要说明的是,在本申请的附图中,为了便于理解和说明,将两块复材之间的隔离剂13进行了厚度尺寸放大示意,也即图中示意的隔离剂13厚度相对于基材厚度、复材厚度以及后文提到的封条宽度的比例进行了放大。
以上,对于隔离剂的第一种可选方案、第二种可选方案,若在复材12A的表面A2s、复材12B的表面B2s均涂刷隔离剂,则表面A2s和表面B2s的各自涂刷隔离剂的量可以为总量的一半,若只在表面A2s和表面B2s的其中之一涂刷隔离剂,则按照总量进行涂刷。
进一步地,参图3,组坯工序具体包括:按照复材12A和复材12B为中间层、基材11A层叠在上方、基材11B层叠在下方、四根封条14包围在中间层的四侧边的方式进行组坯,封条14的上边沿和基材11A之间、封条14的下边沿和基材11B之间进行气保焊,以形成基坯。
具体地,可选地实施方式中,可以先将基材11A、复材12A和复材12B、基材11B层叠好,而后再将封条14包裹在复材12A、复材12B的四侧边,最后对封条14上边沿和基材11A的表面11As进行气保焊、封条14下边沿和基材11B的表面11Bs进行气保焊。当然,变化地实施方式中,也可以先对封条14下边沿和基材11B的表面11Bs进行气保焊,封条14在基材11B的表面11Bs上形成一个四边形围框,而后再依次将复材12B、复材12A放置于所述的围框内,再将基材11A盖住复材12A以及所述的围框,最后对封条14上边沿和基材11A的表面11As进行气保焊。而,在再一变化实施方式中,也可以对封条14上边沿和基材11A的表面11As进行气保焊,而后将基材11B、复材12B、复材12A由下往上依次层叠,再将组合在一起的封条14和基材11A罩在复材12A和复材12B上方及四周,最后对封条14下边沿和基材11B的表面11Bs进行气保焊。这些实施方式均未脱离本发明的记忆宗旨。
进一步优选地,组坯工序中,在基材11A、复材12A和复材12B、基材11B层叠好,并且封条14的上边沿或者下边沿尚未与基材焊接在一起时,将叠放好的这些钢材整体置于四柱液压机械下,对两块基材的相背表面(也即基材11A的上表面和基材11B的下表面)进行加压,压力≥500吨。从而,可以使得相邻的钢坯之间接触更紧密。
优选地,组坯工序中,封条14的边沿与基材之间进行气保焊时,焊接电流为220~240A,焊接电压为28~32V,焊接速度为300~360mm/min,道间温度控制在140~160℃。另外,进行气保焊之前优选用火焰枪对基材11A和基材11B分别进行预热烘烤,烘烤温度为150~250℃。
在本实施方式中,参图3,所述中间层中,复材12A和复材12B上下层叠,封条14包裹在复材21、复材22的四侧边。
而可以理解的,在组坯工序所得基坯中,基材11A的表面11As和复材12A的表面A1s作为待复合表面而朝向彼此并相接触,基材11B的表面11Bs和复材12B的表面B1s作为待复合表面而朝向彼此并相接触,复材12A的表面A2s和复材12B的表面B2s作为非待复合表面而朝向彼此并相接触。
进一步地,所得的基坯的四侧边均具有由基材11A、封条14和基材11B合围出的凹槽。而优选地,基坯的四侧边的凹槽的深度优选地设置为相同,如图4中标示为深度D,取值范围在40~60mm。通过该深度D的控制,不仅可有效避免复合坯轧制时发生焊缝开裂,而且可避免后续封焊时的熔深较深而形成焊接热裂纹,进而影响复合坯的封焊质量。
可以理解的,凹槽的深度取决于复材和基材的长宽尺寸差、以及封条14的厚度。例如,在组坯工序时,复材相对于基材居中放置,复材横向(即宽度方向)上的两侧边(即长边)到基材的相应两侧边(即长边)的距离相等,该距离为45~75mm,复材纵向(即长度方向)上的两侧边(即短边)到基材的相应两侧边(即短边)的距离也相等,该距离为45~75mm;封条的厚度T3为10~15mm,基坯的长侧边的凹槽深度D=(W1-W2-2T3)/2,短侧边的凹槽深度D=(L1-L2-2T3)/2。
另外,关于四根封条14的整体尺寸,在基坯的长侧边处,封条14的长度L31=L2~L2-2mm,而在基坯的短侧边处,封条14的长度L32=W2~W2-2mm;封条14的宽度W3=2T2~2T2-2mm;厚度T3如前所述为10~15mm。优选地,基坯的四侧边的封条14的宽度W3相同、厚度T3也相同。当然,不限于此。在此需要说明的是,如前文所提,为了便于理解和说明,在附图3中将隔离剂13进行了厚度尺寸放大示意,相应的,在附图3和图4中示出的封条14宽度展示为比两块复材厚度之和大,但这仅仅是因为隔离剂13厚度尺寸被放大示意所导致,在实际上,封条14的宽度W3为复材12A和复材12B的厚度之和一致或大约略小2mm以内。
再优选地,参图4,封条14的外表面的上边沿和下边沿均开设坡口,且坡口角度为10~20°,坡口垂直深度P为10~15mm。此处,所述的“封条14的外表面”,指的是封条14背离复材12A和复材12B的表面。换一个角度讲,也即封条14的一个表面的上边沿和下边沿均开设坡口,在组坯工序中,按照封条14的开坡口的该“一个表面”朝外的方式,对封条14和基材11A、基材11B、复材12B、复材12A进行组合。通过开坡口,不仅避免了对封条的内侧点焊工序,避免因多道次焊接对基材产生的热影响,也方便后续封焊坡口,保证牢固度。
参图4,封条14的外表面的上边沿处的坡口角度K1、下边沿处的坡口角度K2分别为10~20°,二者可以相同也可以不同。
进一步地,基坯的一个侧边处的封条开设有圆形通孔,该组坯工序中,在通孔中焊接外径为r的钢管 16。其中,所述的通孔可以在形成封条14和基材11A、基材11B进行气保焊之前就加工而出,也可以在气保焊完成、形成基坯之后再加工而出。这些都未脱离本申请的技艺宗旨。
优选地,所述通孔的孔径与所述钢管16的外径一致,均为r。
再优选地,参图5所示,所述通孔开设在基坯的一个短侧边处的封条14上,并且所述通孔以该封条14的长度1/3(即L32的1/3)、宽度1/2(即W3的1/2)的位置为中心;参图4,所述钢管16的端面与该封条14的内表面齐平。如此,可以确保抽真空的效果。
优选地,钢管16的长度的取值范围为T3+2D~T3+2D+R。
进一步地,在本实施方式中,封焊工序具体包括:
对所述基坯的四侧边的所述凹槽,进行堆焊,具体例如采用埋弧堆焊;并且,在堆焊过程中,参图4和图5,在所述钢管16周围预留出与钢管16同心、半径为R>r的孔洞15H;
当所述钢管16所在侧边的凹槽堆焊至熔深为凹槽深度的2/3、而其它侧边的凹槽堆焊至熔深为凹槽深度的2/3以上时,例如在四侧边的凹槽深度均为D的实施例中,也即当钢管16所在侧边的凹槽堆焊至熔深为2/3D、而其它侧边的凹槽堆焊至熔深为2/3D以上时,中止堆焊。
其中,可以理解的,在封条14所构成的围框外部,通过堆焊而形成一个呈四边框状的填充层,参看图3~图5,其中堆焊所形成的填充层标示为15。
更优选地,当所述钢管16所在侧边的凹槽堆焊至熔深为凹槽深度的2/3、而其它侧边的凹槽堆焊至熔深为凹槽深度时,例如在四侧边的凹槽深度均为D的实施例中,也即当钢管16所在侧边的凹槽堆焊至熔深为2/3D、而其它侧边的凹槽堆焊至熔深为D时,结束封焊工序。如此,其它三侧边的凹槽被堆焊填充完成,既能保证抽真空时基坯不会漏气,也方便后续将真空管完全封焊在凹槽中,再次保证了复合坯的密封性。
进一步地,在堆焊过程中,按照上边沿和下边沿在先、中间区域在后的方式进行多层多道焊,不仅能够使焊接过程中产生的热量进行充分扩散,也避免了焊穿封条;每层焊接4道次以上,道间温度为140~160℃,焊接总层数为6~8层,层间温度为150~250℃,不仅有效提高焊接接头强度,而且减少焊接对基材和复材组织性能的影响。
另外,在堆焊之前,对所用焊剂进行预先烘烤、保温备用,烘烤温度为300~350℃,烘烤时间为90~120min,保温温度为100~150℃。
优选地,堆焊过程中,焊接电流为550~650A,焊接电压为28~32V,焊接速度为400~500mm/min。
进一步地,如前所述的中止堆焊之后,对基坯进行抽真空,而后再封口。所述抽真空工序可采用现有已知技术予以实施,而本实施方式提供了一种优选方案,具体地,该优选的抽真空工序包括:通过所述钢管对基坯的内部空间进行三次抽真空和两次破真空,最后使基坯的内部空间保持真空度≤10-2Pa。
更加优选地,抽真空工序包括:
先将所述钢管接通真空泵,对基坯的内部空间进行抽真空,真空度≤10-2Pa,之后保压4h以上;接下来将所述钢管接通供氮装置,对基坯进行破空,并充入氮气;
之后,将所述钢管再次接通真空泵,对基坯进行抽真空,真空度≤10-1Pa,不保压;接下来将所述钢管再次接通供氮装置,对基坯进行破空,并充入氮气;
最后,第三次将所述钢管接通真空泵,对基坯进行抽真空,真空度≤10-2Pa,之后无需保压,直接进行封口工序。
进一步地,所述封口工序具体包括:将所述钢管16用火焰枪加热、夹扁、而后折进预留的所述孔洞15H内;再用气保焊对所述孔洞进行满焊,将所述钢管封焊在所述孔洞15H内;接下来,继续堆焊直至钢管16所在侧边的所述凹槽被填满,最后进行盖面焊,得到复合坯。
如此,通过本发明的组坯、封焊、封口步骤,在焊缝处预留孔洞15H,增加了钢管16的处置空间,降低了对封焊的难度,提高了封焊效率,避免了封口漏气,防止钢管16因碰撞而脱落,进而整体上保证了复合坯的密封性,由此,使得在轧制时不会发生开裂、漏气现象;进而,所制备得到的复合板的界面结合优异,且降低了生产成本。
而可以理解的是,基于复合坯制备阶段中所准备的坯料形状尺寸以及组坯方式,影响到最终所得不锈钢复合板的结构形状。
如图6所示,本实施方式中,基于坯料准备工序中所准备的等厚基材、以及组坯工序中的中间层为复材12A和复材12B层叠布置,使得基于本实施方式的复合坯,经由后续的复合坯轧制阶段、板成品阶段之后,所制备而成的两块不锈钢复合板,均是基材层厚度恒定、复材层和基材层长宽尺寸一致。
例如,所得不锈钢复合板10A,其基材层11A、复材层12A各自由前面所述的基材11A、复材12A经由轧制而得来,故而沿用了原基材11A、复材12A的标号,基材层11A为等厚度碳钢材,复材层12A为不锈钢材,复材层12A和基材层11A的长宽尺寸相一致。
再例如,所得不锈钢复合板10B,其基材层11B、复材层12B各自由前面所述的基材11B、复材12B经由轧制而得来,故而沿用了原基材11B、复材12B的标号,基材层11B为等厚度碳钢材,复材层12B为不锈钢材,复材层12B和基材层11B的长宽尺寸相一致。
概括来讲,提供一种单面不锈钢复合板,其以本实施方式所制备的复合坯经复合坯轧制阶段、板成品阶段而制成。所述复合板是总厚度为5~55mm、基材层厚度4~45mm、复材层厚度1~10mm的全覆盖等厚板。
以上对本实施方式的复合坯制备阶段的各个工序进行了详细说明,在后文所提供的多个试验例中,其中的试验例1~3就是采用了本实施方式来制备复合坯,并采用所制备的复合坯来制备不锈钢复合板。在此,通过表1示出这些实施例中的复合坯的一些参数,其中符号所代指的参数请参考前文介绍。
表1
<复合坯制备阶段的第二种实施方式>
参图7至图11,示出了复合坯制备阶段的第二种实施方式。该实施方式与前文所述的复合坯制备阶段的第一种实施方式的区别仅在于:坯料准备工序中所准备的基材的形状不同。而涂覆隔离剂工序、组坯工序、封焊工序、抽真空工序、封口工序等均与第一种实施方式相同。下面仅对具有区别的坯料准备工序予以详细介绍,其它结合附图以及前文所述的复合坯制备阶段的第一种实施方式予以理解,不再赘述。
在该实施方式中,参图7,坯料准备工序具体包括:
准备长度L1、宽度W1、沿X方向上变厚度的两块碳钢钢坯,作为两块基材,如图7中区别为基材21A、基材21B;
对每块基材的待复合表面进行磨抛,例如基材21A的表面21As、基材21B的表面21Bs,以去除表面氧化皮,露出金属光泽;经过该表面修磨处理之后,所述的待复合表面的粗糙度Ra<5μm;
准备厚度T2、长度L2、宽度W2的两块不锈钢钢坯,作为两块复材,如图7中区别为复材22A、22B;
对每块复材的待复合表面进行磨抛,例如复材22A的表面A1s、复材22B的表面B1s,以去除表面氧化皮,露出金属光泽;经过该表面修磨处理之后,所述的待复合表面的粗糙度Ra<5μm。
其中,L2<L1,W2<W1,复材的长宽尺寸都小于基材的长宽尺寸。再优选地,L1≥2500mm,W2≥1600mm;L1-L2取值范围为90~150mm,W1-W2取值范围也为90~150mm。
再者,基材21A和基材21B为沿X方向上变厚度的碳钢钢坯,也即并非是厚度恒定的钢坯,而是厚度会沿着X方向变化。此处,所述X方向为基材的宽度方向或者长度方向,在图10所示实施方式中将X方向示意为了基材的长度方向。
进一步优选地,基材21A的待复合表面21As和基材21B的待复合表面21Bs相对互补,也即该两个表面相面对时彼此互补,该互补使得基材21A的非待复合表面(即图7中基材21A的上表面)以及基材21B的非待复合表面(即图7中基材21B的下表面)相平行。相应的,如图8所示,在后续组坯工序所制备的基坯中,基材21A的上表面和基材21B的下表面呈平行状态。换一个角度讲,基材21A的待复合表面21As和基材21B的待复合表面21Bs相对互补,即,基材21A的待复合表面21As和基材31B的待复合表面21Bs上下相对扣合时,二者恰好可以面面贴合,也即,基材21A的待复合表面21As和基材21B的待复合表面21Bs上下相对扣合时,基材21A和基材21B的厚度之和恒定。
在附图所示实施方式中,基材21A和基材21B均为厚度沿X方向上单调变化的非等厚板,基材21A的 待复合表面21As和基材21B的待复合表面21Bs均为倾斜平面。其中,待复合表面21As的倾斜角度(例如与基材21A的所述的非待复合表面的夹角)等于待复合表面21Bs的倾斜角度(例如与基材21B的所述的非待复合表面的夹角)。
可以理解的是,基于复合坯制备阶段中所准备的坯料形状尺寸以及组坯方式,影响到最终所得不锈钢复合板的结构形状。
本实施方式中,如图11所示,基于坯料准备工序中所准备的沿X方向单调变厚度基材、以及组坯工序中的中间层为复材22A和复材22B层叠布置,使得基于本实施方式的复合坯,经由后续的复合坯轧制阶段、板成品阶段之后,所制备而成的两块不锈钢复合板,均是基材层沿X方向单调变厚度、复材层和基材层四侧边齐平。
例如,如图11所示,所得不锈钢复合板20A,其下层的碳钢基材层21A、上层的不锈钢复材层22A各自由前面所述的基材21A、复材22A经由轧制而得来,故而沿用了原基材21A、复材22A的标号。其中,基材层21A沿X方向变厚度,具体而言,沿X方向单调变厚度,更具体的,基材层21A的上表面相对于基材层21A的下表面为倾斜平面。复材层22A和基材层21A的四侧边齐平,复材层22A将基材层21A的上表面恰好完全覆盖。
再例如,如图11所示,所得不锈钢复合板20B,其下层的碳钢基材层21B、上层的不锈钢复材层22B各自由前面所述的基材21B、复材22B经由轧制而得来,故而沿用了原基材21B、复材22B的标号。其中,基材层21B沿X方向变厚度,具体而言,沿X方向单调变厚度,更具体的,基材层21B的上表面相对于基材层21B的下表面为倾斜平面。复材层22B和基材层21B的四侧边齐平,复材层22B将基材层21B的上表面恰好完全覆盖。
概括来讲,提供一种单面不锈钢复合板,其以本实施方式所制备的复合坯经复合坯轧制阶段、板成品阶段而制成。所述复合板是总厚度为(5~47)~(7~55)mm、基材层厚度(4~37)~(6~45)mm、复材层厚度1~10mm的全覆盖、X方向单调变厚度的非等厚板。
以上对本实施方式的复合坯制备阶段的各个工序进行了详细说明,在后文所提供的多个试验例中,其中的试验例4~6就是采用了本实施方式来制备复合坯,并采用所制备的复合坯来制备不锈钢复合板。在此,通过表2示出这些实施例中的复合坯的一些参数,其中符号所代指的参数请参考前文介绍。
表2
<复合坯制备阶段的第三种实施方式>
参图12至图16,示出了复合坯制备阶段的第三种实施方式。该实施方式与前文所述的复合坯制备阶段的第一种实施方式的区别仅在于:坯料准备工序中所准备的基材的形状不同。而涂覆隔离剂工序、组坯工序、封焊工序、抽真空工序、封口工序等均与第一种实施方式相同。下面仅对具有区别的坯料准备工序予以详细介绍,其它结合附图以及前文所述的复合坯制备阶段的第一种实施方式予以理解,不再赘述。
在该实施方式中,参图12,坯料准备工序具体包括:
准备长度L1、宽度W1、沿X方向上变厚度的两块碳钢钢坯,作为两块基材,如图12中区别为基材31A、基材31B;
对每块基材的待复合表面进行磨抛,例如基材31A的表面31As、基材31B的表面31Bs,以去除表面氧化皮,露出金属光泽;经过该表面修磨处理之后,所述的待复合表面的粗糙度Ra<5μm;
准备厚度T2、长度L2、宽度W2的两块不锈钢钢坯,作为两块复材,如图7中区别为复材32A、32B;
对每块复材的待复合表面进行磨抛,例如复材32A的表面A1s、复材32B的表面B1s,以去除表面氧化皮,露出金属光泽;经过该表面修磨处理之后,所述的待复合表面的粗糙度Ra<5μm。
其中,L2<L1,W2<W1,复材的长宽尺寸都小于基材的长宽尺寸。再优选地,L1≥2500mm,W2≥1600mm;L1-L2取值范围为90~150mm,W1-W2取值范围也为90~150mm。
再者,基材31A和基材31B为沿X方向上变厚度的碳钢钢坯,也即并非是厚度恒定的钢坯,而是厚度会沿着X方向变化。此处,所述X方向为基材的宽度方向或者长度方向,在图15所示实施方式中将X方向示意为了基材的长度方向。
进一步优选地,基材31A的待复合表面31As和基材31B的待复合表面31Bs相对互补,也即该两个表面相面对时彼此互补,该互补使得基材31A的非待复合表面(即图13中基材31A的上表面)以及基材31B的非待复合表面(即图13中基材31B的下表面)相平行。相应的,如图13所示,在后续组坯工序所制备的基坯中,基材31A的上表面和基材31B的下表面呈平行状态。换一个角度讲,基材31A的待复合表面31As和基材31B的待复合表面31Bs相对互补,即,基材31A的待复合表面31As和基材31B的待复合表面31Bs上下相对扣合时,二者恰好可以面面贴合,也即,基材31A的待复合表面31As和基材31B的待复合表面31Bs上下相对扣合时,基材31A和基材31B的厚度之和恒定。
在附图所示实施方式中,基材31A和基材31B均为厚度沿X方向上非单调变化的非等厚板,基材31A的待复合表面31As和基材31B的待复合表面31Bs均包括沿X方向排布的两个以上平面。
例如,在图12中所示的基材31A的待复合表面31As和基材31B的待复合表面31Bs均具有7个平面。以基材31B的待复合表面31Bs为例,在图12中由左向右依次为一段水平面、一段上倾斜平面、一段下倾斜平面、一段水平面、一段下倾斜平面、一段上倾斜平面、一段水平面。当然,图中所示的基材31A的待 复合表面31As和基材31B的待复合表面31Bs的具体形状仅为一种示例,各自所含倾斜平面的数量不受限于附图所示。
另外,在本实施方式中,坯料准备工序中所准备的每块复材的形状各自相对于的基材的待复合表面,例如,复材32A的形状匹配于基材31A的待复合表面31As,复材32B的形状匹配于基材31B的待复合表面31Bs。具体地,可以对等厚度的不锈钢钢坯进行折弯处理,以得到形状与相应基材的待复合表面相匹配的所述复材。
同样可以理解的是,基于复合坯制备阶段中所准备的坯料形状尺寸以及组坯方式,影响到最终所得不锈钢复合板的结构形状。
本实施方式中,如图16所示,基于坯料准备工序中所准备的沿X方向非单调变厚度基材、以及组坯工序中的中间层为复材32A和复材32B层叠布置,使得基于本实施方式的复合坯,经由后续的复合坯轧制阶段、板成品阶段之后,所制备而成的两块不锈钢复合板,均是基材层沿X方向非单调变厚度、复材层和基材层四侧边齐平。
例如,如图16所示,所得不锈钢复合板30A,其下层的碳钢基材层31A、上层的不锈钢复材层32A各自由前面所述的基材31A、复材32A经由轧制而得来,故而沿用了原基材31A、复材32A的标号。其中,基材层31A沿X方向变厚度,具体而言,沿X方向非单调变厚度,更具体的,基材层31A的上表面包括沿X方向排布的至少两个平面,图中示例为5个平面。复材层32A和基材层31A的四侧边齐平,复材层32A将基材层31A的上表面恰好完全覆盖。
再例如,如图16所示,所得不锈钢复合板30B,其下层的碳钢基材层31B、上层的不锈钢复材层32B各自由前面所述的基材31B、复材32B经由轧制而得来,故而沿用了原基材31B、复材32B的标号。其中,基材层31B沿X方向变厚度,具体而言,沿X方向非单调变厚度,更具体的,基材层31B的上表面包括沿X方向排布的至少两个平面,图中示例为5个平面。复材层32B和基材层31B的四侧边齐平,复材层32B将基材层31B的上表面恰好完全覆盖。
概括来讲,提供一种单面不锈钢复合板,其以本实施方式所制备的复合坯经复合坯轧制阶段、板成品阶段而制成。所述复合板是总厚度为(5~47)~(7~55)mm、基材层厚度(4~37)~(6~45)mm、复材层厚度1~10mm的全覆盖、X方向非单调变厚度的非等厚板。
以上对本实施方式的复合坯制备阶段的各个工序进行了详细说明,在后文所提供的多个试验例中,其中的试验例7~9就是采用了本实施方式来制备复合坯,并采用所制备的复合坯来制备不锈钢复合板。在此,通过表3示出这些实施例中的复合坯的一些参数,其中符号所代指的参数请参考前文介绍。
表3

<复合坯制备阶段的第四种实施方式>
参图17至图21,示出了复合坯制备阶段的第四种实施方式。该实施方式与前文所述的复合坯制备阶段的第一种实施方式的区别仅在于:坯料准备工序、涂覆隔离剂工序和组坯工序。而封焊工序、抽真空工序、封口工序等均与第一种实施方式相同。下面仅对具有区别的工序予以详细介绍,其它结合附图以及前文所述的复合坯制备阶段的第一种实施方式予以理解,不再赘述。
在该实施方式中,参图17,坯料准备工序具体包括:
准备X方向尺寸为L1、Y方向尺寸为W1的两块碳钢钢坯,作为两块基材,如图17中区别为基材41A、基材41B;另外,基材41A和基材41B的厚度可以设置为相同或不同,若设置为不同厚度,相应的可以制备得到不同厚度规格的不锈钢复合板;
对每块基材的待复合表面进行磨抛,例如基材41A的表面41As、基材41B的表面41Bs,以去除表面氧化皮,露出金属光泽;经过该表面修磨处理之后,所述的待复合表面的粗糙度Ra<5μm;
准备X方向尺寸为L22、Y方向尺寸为W2、厚度T2的一块不锈钢钢坯,作为一块复材,如图17中复材42A;该复材42A的X方向上的一侧边A3s为宽度V的斜边;
准备X方向尺寸为L21、Y方向尺寸为W2、厚度T2的一块不锈钢钢坯,作为另一块复材,如图17中复材42B;该复材42B的X方向上的一侧边B3s为宽度V的斜边;
每个复材在厚度方向上的一个较小表面构成非待复合表面,例如复材42A的表面A2s和复材42B的表面B2s,而另一个较大表面构成待复合表面,例如复材42A的表面A1s和复材42B的表面B1s;对每块复材的待复合表面进行磨抛,以去除表面氧化皮,露出金属光泽;经过该表面修磨处理之后,所述的待复合表面的粗糙度Ra<5μm。
基于上述尺寸,也就是说,复材42A和复材42B在Y方向上的尺寸相同、且厚度也相同;而复材42A和复材42B在X方向上的尺寸可以相同(即L21=L22),也可以不同(即L21≠L22)。若L21=L22,相应的可以制备得到X方向上的复材层相同尺寸规格的不锈钢复合板;若L21≠L22,相应的可以制备得到X方向上的复材层不同尺寸规格的不锈钢复合板。
其中,所述的宽度V,指的是斜边在X方向上的跨度。也正是鉴于斜边的存在,每块复材的厚度方向上的两个表面,其中一个表面为较大表面,另一个表面为较小表面。
再者,L1≥2500mm,W2≥1600mm,T1≥60mm。关于复材42A、复材42B和基材41A、基材41B的尺寸关系,L21+L22-V<L1,W2<W1;再优选地,W1=W2+90~150mm,L1=L21+L22-V+90~150mm。
优选地,针对基材41A的表面41As、基材41B的表面41Bs,分别采用砂轮机、砂带机或者铣床,进行磨抛,以去除表面氧化皮,露出金属光泽。针对复材42A的表面A1s、复材42B的表面B1s,分别采用钢丝轮进行磨抛,以去除表面氧化皮,露出金属光泽。
此处只说明了对每块基材和每块复材的待复合表面进行表面修磨处理,而需要说明的是,还可以进一步对各个基材、复材的其它表面进行表面修磨处理,尽管这种额外的其它表面的修磨处理并不是实现本发明技术效果所必须的、但却可能是更优的。
进一步地,在本实施方式中,涂覆隔离剂工序具体包括:在每块复材的非待复合表面上以及斜边上涂刷隔离剂。具体例如在复材42A的表面A2s和斜边A3s,以及复材42B的表面B2s和斜边B3s上,均涂刷隔离剂。
关于所述隔离剂的成分,第一种可选方案为:包含氧化硅和氧化镁的涂液,其中氧化硅和氧化镁的质量比为3:1。本实施方式的隔离剂,可以达到很好的隔离效果,保证后续的两块复合板小板的分离。采用所述隔离剂,每块复材的待复合表面上以及斜边上的隔离剂43的涂刷量为20ymg/m2,y为所述复合坯制备步骤中所制得的复合坯的厚度与后续轧制而成的复合板大板的厚度的比值,该比值又被称作复合坯轧制压缩比。该隔离剂的配置方法和后续烘干,均与前文所述的复合坯制备阶段的第一种实施方式中所介绍的相同,不再赘述。
关于所述隔离剂的成分,第二种可选方案为:成分按重量比为25~35%的氮化硅+5~10%的热固性氨基树脂+55~70%的水。相较于现有隔离剂,甚至相较于前述隔离剂的第一种实施方式,本实施方式的隔离剂,不仅可以达到很好的隔离效果,保证后续的两块复合板小板的分离,而且有效成分氮化硅的化学稳定性强且耐高温、耐热冲击,作为粘结剂的热固性氨基树脂在低温下即可固化,无毒性,用量很少就能达到较强的粘结作用,因此整体上价格低廉,操作简单,隔离和附着效果较好。采用所述隔离剂,每块复材的待复合表面上以及斜边上的隔离剂43的涂刷厚度0.2~0.5mm。该隔离剂的配置方法和后续烘干,均与前文所述的复合坯制备阶段的第一种实施方式中所介绍的相同,不再赘述。
进一步地,在该实施方式中,参图18,组坯工序具体包括:按照复材42A和复材42B为中间层、基材41A层叠在上方、基材41B层叠在下方、四根封条44包围在中间层的四侧边的方式进行组坯,封条44的上边沿和基材41A之间、封条44的下边沿和基材41B之间进行气保焊,以形成基坯。所述中间层中,复材42A和复材42B于X方向上并排平铺,复材42A的斜边A3s和复材42B的斜边B3s平行相对接。
而可以理解的,在组坯工序所得基坯中,基材41A的表面41As和复材42A的表面A1s作为待复合表面而朝向彼此并相接触,基材41B的表面41Bs和复材42B的表面B1s作为待复合表面而朝向彼此并相接触,复材42A的表面A2s和基材41B之间、复材42B的表面B2s和基材41A之间、复材42A的斜边A3s和复材42B的斜边B3s之间,涂刷有隔离剂,彼此接触但并不会发生复合。
进一步优选地,组坯工序中,在基材41A、复材42A和复材42B、基材41B层叠好,并且封条44的上边沿或者下边沿尚未与基材焊接在一起时,将叠放好的这些钢材整体置于四柱液压机械下,对两块基材的相背表面(也即基材41A的上表面和基材41B的下表面)进行加压,压力≥500吨。从而,可以使得相邻的钢坯之间接触更紧密。
优选地,组坯工序中,封条44的边沿与基材之间进行气保焊时,焊接电流为220~240A,焊接电压为28~32V,焊接速度为300~360mm/min,道间温度控制在140~160℃。另外,进行气保焊之前优选用火焰枪对基材41A和基材41B分别进行预热烘烤,烘烤温度为150~250℃。
进一步地,所得的基坯的四侧边均具有由基材41A、封条44和基材41B合围出的凹槽。而优选地,基坯的四侧边的凹槽的深度优选地设置为相同,如图19中标示为深度D,取值范围在40~60mm。通过该深度D的控制,不仅可有效避免复合坯轧制时发生焊缝开裂,而且可避免后续封焊时的熔深较深而形成焊接热裂纹,进而影响复合坯的封焊质量。
可以理解的,凹槽的深度取决于复材和基材的X方向和Y方向的尺寸差、以及封条44的厚度。例如,在组坯工序时,中间层相对于基材居中放置,中间层Y方向上的两侧边到基材的相应两侧边的距离相等,该距离为45~75mm,相应的凹槽深度D=(W1-W2-2T3)/2;中间层X方向上的两侧边到基材的相应两侧边的距离也相等,该距离为45~75mm,相应的凹槽深度D=(L1-(L21+L22-V)-2T3)/2。其中,T3为封条的厚度,取值范围为10~15mm。
另外,关于四根封条44的整体尺寸,在基坯的X方向上的两侧边处,封条44的长度L31=W2~W2-2mm,而在基坯的Y方向上的两侧边处,,封条44的长度L32=L21+L22-V~L21+L22-V-2mm;封条44的宽度W3=T2~T2-2mm;厚度T3如前所述为10~15mm。优选地,基坯的四侧边的封条44的宽度W3相同、厚度T3也相同。
再优选地,参图19,封条44的外表面的上边沿和下边沿均开设坡口,且坡口角度为10~20°,坡口垂直深度P为10~15mm。通过开坡口,不仅避免了对封条的内侧点焊工序,避免因多道次焊接对基材产生的热影响,也方便后续封焊坡口,保证牢固度。
参图19,封条44的外表面的上边沿处的坡口角度K1、下边沿处的坡口角度K2分别为10~20°,二者可以相同也可以不同。
进一步地,基坯的一个侧边处的封条开设有圆形通孔,该组坯工序中,在通孔中焊接外径为r、长度为T3+2D~T3+2D+R的钢管46。其中,所述的通孔可以在形成封条44和基材41A、基材41B进行气保焊之前就加工而出,也可以在气保焊完成、形成基坯之后再加工而出。这些都未脱离本申请的技艺宗旨。
优选地,所述通孔的孔径与所述钢管46的外径一致,均为r。
再优选地,参图20所示,所述通孔开设在基坯的一个短侧边处的封条44上,并且所述通孔以该封条 44的长度1/3、宽度1/2的位置为中心;参图20,所述钢管46的端面与该封条44的内表面齐平。如此可以确保抽真空的效果。
在此需要说明的是,根据图中示例,X方向为基材的长度方向,Y方向为基材的宽度方向,也即,附图中的两块复材于基材的长度方向并排地设置在两块基材之间;当然,在变化实施中,X方向也可以为基材的宽度方向,Y方向为基材的长度方向,也即,两块复材于基材的宽度方向并排地设置在两块基材之间。
进一步地,同样如前文所述,基于复合坯制备阶段中所准备的坯料形状尺寸以及组坯方式,影响到最终所得不锈钢复合板的结构形状。
如图21所示,本实施方式中,基于组坯工序中的中间层为复材42A和复材42B并排设置,使得基于本实施方式的复合坯,经由后续的复合坯轧制阶段、板成品阶段之后,所制备而成的两块不锈钢复合板,均是复材层覆盖所述基材层的部分上表面而非全部上表面。
例如,所得不锈钢复合板40A,其碳钢基材层41A、不锈钢复材层42A各自由前面所述的基材41A、复材42A经由轧制而得来,故而沿用了原基材41A、复材42A的标号。其中,复材层42A的三侧边与基材层41A的三侧边齐平;而复材层42A的另一侧边则位于基材层41A的上表面的内部,如此,复材层42A仅覆盖基材层41A的一端而暴露基材层41A的另一端。
例如,所得不锈钢复合板40B,其碳钢基材层41B、不锈钢复材层42B各自由前面所述的基材41B、复材42B经由轧制而得来,故而沿用了原基材41B、复材42B的标号。其中,复材层42B的三侧边与基材层41B的三侧边齐平;而复材层42B的另一侧边则位于基材层41B的上表面的内部,如此,复材层42B仅覆盖基材层41B的一端而暴露基材层41B的另一端。
以本实施方式的复合坯来制备而成的复合板的有益效果,还需要结合目前现有不锈钢复合板在桥梁工程中的使用现状予以理解。具体地,对于桥梁结构用不锈钢复合板,在下游结构厂加工使用过程中,需与桥梁结构用钢板进行对接。在该对接位置处,不锈钢复合板的基材层与桥梁结构用钢板属于同种材料,焊接强度易于保证。然而,不锈钢复材层与桥梁结构用钢板属于异种材料,焊接难度大、牢固度差,对整体结构件的安全性存在一定的影响。而以本实施方式的复合坯来制备而成的复合板,一端为碳钢和不锈钢构成的复合结构(例如图21中复合板40A、40B的左端),该端可以如现有的复合板,兼具复材层的耐腐蚀性,又具有基材层良好的力学性能;而另一端纯粹为碳钢钢板(例如图21中复合板40A、40B的右端),如此,该不锈钢复合板在使用中避免了现有的异种焊接问题,使用中牢固度强,后期使用中生产难度低、成本低且施工效率高。
而进一步优选地,复材层42A的所述的“位于基材层41A的上表面的内部”的侧边设置为斜边,该斜边与复材层42A的上表面呈钝角;同样的,复材层42B的所述的“位于基材层41B的上表面的内部”的侧边设置为斜边,该斜边与复材层42B的上表面呈钝角。对此,现有复合板在桥梁工程中应用时,为避免不锈钢 复材层边沿与桥梁结构用钢板之间出现台阶(高度差),还需要额外增加一块不锈钢板进行过渡,不仅增加了额外的材料成本,而且该增加的不锈钢板还需要同时与不锈钢复合板的复材层、桥梁结构用钢板均进行焊接,大大增加了焊接工作量,影响施工效率。而本实施方式,不锈钢复材层边沿与桥梁结构用钢板之间不会有台阶、而是斜面过渡,无需额外的过渡板,施工效率高、工作量少、结构强度大。
概括来讲,提供一种单面不锈钢复合板,其以本实施方式所制备的复合坯经复合坯轧制阶段、板成品阶段而制成。所述复合板总厚度为5~55mm、基材层厚度4~45mm、复材层厚度1~10mm,并且X方向一端覆盖另一端未覆盖。
以上对本实施方式的复合坯制备阶段的各个工序进行了详细说明,在后文所提供的多个试验例中,其中的试验例10~12就是采用了本实施方式来制备复合坯,并采用所制备的复合坯来制备不锈钢复合板。在此,通过表4示出这些实施例中的复合坯的一些参数,其中符号所代指的参数请参考前文介绍。
表4
<复合坯制备阶段的第五种实施方式>
参图22至图26,示出了复合坯制备阶段的第五种实施方式。该实施方式与前文所述的复合坯制备阶段的第一种实施方式的区别在于:坯料准备工序、涂覆隔离剂工序和组坯工序。而封焊工序、抽真空工序、封口工序等均与第一种实施方式相同。下面仅对具有区别的工序予以详细介绍,其它结合附图以及前文所述的复合坯制备阶段的第一种实施方式予以理解,不再赘述。
在该实施方式中,参图22,坯料准备工序具体包括:
准备X方向尺寸为L1、Y方向尺寸为W1的两块碳钢钢坯,作为两块基材,如图22中区别为基材51A、基材51B;另外,基材51A和基材51B的厚度可以设置为相同或不同;
对每块基材的待复合表面进行磨抛,例如基材51A的表面51As、基材51B的表面51Bs,以去除表面氧化皮,露出金属光泽;经过该表面修磨处理之后,所述的待复合表面的粗糙度Ra<5μm;
准备X方向尺寸为L22、Y方向尺寸为W2、厚度T2的一块不锈钢钢坯,作为一块复材,如图22中复材52A;该复材52A的X方向上的一侧边A3s为宽度V1的斜边,X方向上的另一侧边A4s为宽度V2的斜边;
准备X方向尺寸为L21、Y方向尺寸为W2、厚度T2的一块不锈钢钢坯,作为另一块复材,如图22中复材52B;该复材52B的X方向上的一侧边B3s为宽度V1的斜边;
准备X方向尺寸为L23、Y方向尺寸为W2、厚度T2的一块不锈钢钢坯,作为另一块复材,如图22中复材52C;该复材52C的X方向上的一侧边C3s为宽度V2的斜边;
每个复材在厚度方向上的一个较小表面构成非待复合表面,例如复材52A的表面A2s、复材52B的表面B2s、复材52C的表面C2s,而另一个较大表面构成待复合表面,例如复材52A的表面A1s、复材52B的表面B1s、复材52C的表面C1s;对每块复材的待复合表面进行磨抛,以去除表面氧化皮,露出金属光泽;经过该表面修磨处理之后,所述的待复合表面的粗糙度Ra<5μm。
基于上述尺寸,也就是说,复材52A、复材52B和复材52C在Y方向上的尺寸相同、且厚度也相同;而复材52A、复材52B和复材52C在X方向上的尺寸可以全部相同(即L21=L23=L22),也可以两者相同(即L21=L23≠L22,或L21≠L23=L22,或L21=L22≠L23),也可以完全不同(即L21≠L22≠L23)。
其中,所述的宽度V1、宽度V2,指的是斜边在X方向上的跨度。也正是鉴于斜边的存在,每块复材的厚度方向上的两个表面,其中一个表面为较大表面,另一个表面为较小表面。而复材52A的侧边A3s和复材52B的侧边B3s均为宽度V1的斜边,如此,如后续组坯工序中所述,侧边A3s和侧边B3s平行相对接;类似的,复材52A的侧边A4s和复材52C的侧边C3s均为宽度V2的斜边,如此,如后续组坯工序中所述,侧边A3s和侧边B3s平行相对接。
而优选地,复材52A的侧边A3s和侧边A4s均与复材52A的非待复合表面A2s呈钝角。
再者,L1≥2500mm,W2≥1600mm,T1≥60mm。关于复材52A、复材52B、复材52C和基材51A、基材51B的尺寸关系,L21+L22+L23-V1-V2<L1,W2<W1;再优选地,W1=W2+90~150mm,L1=L21+L22+L23-V1-V2+90~150mm。
优选地,针对基材51A的表面51As、基材51B的表面51Bs,分别采用砂轮机、砂带机或者铣床,进行磨抛,以去除表面氧化皮,露出金属光泽。针对复材52A的表面A1s、复材52B的表面B1s、复材52C的表面C1s,分别采用钢丝轮进行磨抛,以去除表面氧化皮,露出金属光泽。
此处只说明了对每块基材和每块复材的待复合表面进行表面修磨处理,而需要说明的是,还可以进一步对各个基材、复材的其它表面进行表面修磨处理,尽管这种额外的其它表面的修磨处理并不是实现本发明技术效果所必须的、但却可能是更优的。
进一步地,在本实施方式中,涂覆隔离剂工序具体包括:在每块复材的非待复合表面上以及斜边上涂刷隔离剂。具体例如在复材52A的表面A2s、斜边A3s和斜边A4s,以及复材52B的表面B2s和斜边B3s上,以及复材52C的表面C2s和斜边C3s上,均涂刷隔离剂。
关于所述隔离剂的成分,第一种可选方案为:包含氧化硅和氧化镁的涂液,其中氧化硅和氧化镁的质 量比为3:1。本实施方式的隔离剂,可以达到很好的隔离效果,保证后续的两块复合板小板的分离。采用所述隔离剂,每块复材的待复合表面上以及斜边上的隔离剂53的涂刷量为20ymg/m2,y为所述复合坯制备步骤中所制得的复合坯的厚度与后续轧制而成的复合板大板的厚度的比值,该比值又被称作复合坯轧制压缩比。该隔离剂的配置方法和后续烘干,均与前文所述的复合坯制备阶段的第一种实施方式中所介绍的相同,不再赘述。
关于所述隔离剂的成分,第二种可选方案为:成分按重量比为25~35%的氮化硅+5~10%的热固性氨基树脂+55~70%的水。相较于现有隔离剂,甚至相较于前述隔离剂的第一种实施方式,本实施方式的隔离剂,不仅可以达到很好的隔离效果,保证后续的两块复合板小板的分离,而且有效成分氮化硅的化学稳定性强且耐高温、耐热冲击,作为粘结剂的热固性氨基树脂在低温下即可固化,无毒性,用量很少就能达到较强的粘结作用,因此整体上价格低廉,操作简单,隔离和附着效果较好。采用所述隔离剂,每块复材的待复合表面上以及斜边上的隔离剂53的涂刷厚度0.2~0.5mm。该隔离剂的配置方法和后续烘干,均与前文所述的复合坯制备阶段的第一种实施方式中所介绍的相同,不再赘述。
进一步地,在该实施方式中,参图23,组坯工序具体包括:按照复材52A和复材52B和复材52C为中间层、基材51A层叠在上方、基材51B层叠在下方、四根封条54包围在中间层的四侧边的方式进行组坯,封条54的上边沿和基材51A之间、封条54的下边沿和基材51B之间进行气保焊,以形成基坯。所述中间层中,复材52B、复材52A和复材52C于X方向上依次并排平铺,复材52A的斜边A3s和复材52B的斜边B3s平行相对接,复材52A的斜边A4s和复材52C的斜边C3s平行相对接。
而可以理解的,在组坯工序所得基坯中,基材51A的表面51As和复材52A的表面A1s作为待复合表面而朝向彼此并相接触,基材51B的表面51Bs和复材52B的表面B1s作为待复合表面而朝向彼此并相接触,基材51B的表面51Bs同时还和复材52C的表面C1s作为待复合表面而朝向彼此并相接触,复材52A的表面A2s和基材51B之间、复材52B的表面B2s和基材51A之间、复材52C的表面C2s和基材51A之间、复材52A的斜边A3s和复材52B的斜边B3s之间、复材52A的斜边A4s和复材52C的斜边C3s之间,均涂刷有隔离剂,彼此接触但并不会发生复合。
进一步优选地,组坯工序中,在基材51A、复材52B、复材52A和复材52C、基材51B层叠好,并且封条54的上边沿或者下边沿尚未与基材焊接在一起时,将叠放好的这些钢材整体置于四柱液压机械下,对两块基材的相背表面(也即基材51A的上表面和基材51B的下表面)进行加压,压力≥500吨。从而,可以使得相邻的钢坯之间接触更紧密。
优选地,组坯工序中,封条54的边沿与基材之间进行气保焊时,焊接电流为220~240A,焊接电压为28~32V,焊接速度为300~360mm/min,道间温度控制在140~160℃。另外,进行气保焊之前优选用火焰枪对基材51A和基材51B分别进行预热烘烤,烘烤温度为150~250℃。
进一步地,所得的基坯的四侧边均具有由基材51A、封条54和基材51B合围出的凹槽。而优选地,基坯的四侧边的凹槽的深度优选地设置为相同,如图24中标示为深度D,取值范围在40~60mm。通过该深度D的控制,不仅可有效避免复合坯轧制时发生焊缝开裂,而且可避免后续封焊时的熔深较深而形成焊接热裂纹,进而影响复合坯的封焊质量。
可以理解的,凹槽的深度取决于复材和基材的X方向和Y方向的尺寸差、以及封条54的厚度。例如,在组坯工序时,中间层相对于基材居中放置,中间层Y方向上的两侧边到基材的相应两侧边的距离相等,该距离为45~75mm,相应的凹槽深度D=(W1-W2-2T3)/2;中间层X方向上的两侧边到基材的相应两侧边的距离也相等,该距离为45~75mm,相应的凹槽深度D=(L1-(L21+L22+L23-V1-V2)-2T3)/2。其中,T3为封条的厚度,取值范围为10~15mm。
另外,关于四根封条54的整体尺寸,在基坯的X方向上的两侧边处,封条54的长度L31=W2~W2-2mm,而在基坯的Y方向上的两侧边处,封条54的长度L32=L21+L22+L23-V1-V2~L21+L22+L23-V1-V2-2mm;封条54的宽度W3=T2~T2-2mm;厚度T3如前所述为10~15mm。优选地,基坯的四侧边的封条54的宽度W3相同、厚度T3也相同。
再优选地,参图24,封条54的外表面的上边沿和下边沿均开设坡口,且坡口角度为10~20°,坡口垂直深度P为10~15mm。通过开坡口,不仅避免了对封条的内侧点焊工序,避免因多道次焊接对基材产生的热影响,也方便后续封焊坡口,保证牢固度。
参图24,封条54的外表面的上边沿处的坡口角度K1、下边沿处的坡口角度K2分别为10~20°,二者可以相同也可以不同。
进一步地,基坯的一个侧边处的封条开设有圆形通孔,该组坯工序中,在通孔中焊接外径为r、长度为T3+2D~T3+2D+R的钢管56。其中,所述的通孔可以在形成封条54和基材51A、基材51B进行气保焊之前就加工而出,也可以在气保焊完成、形成基坯之后再加工而出。这些都未脱离本申请的技艺宗旨。
优选地,所述通孔的孔径与所述钢管56的外径一致,均为r。
再优选地,参图25所示,所述通孔开设在基坯的一个短侧边处的封条54上,并且所述通孔以该封条54的长度1/3、宽度1/2的位置为中心;参图24,所述钢管56的端面与该封条54的内表面齐平。如此可以确保抽真空的效果。
在此需要说明的是,根据图中示例,X方向为基材的长度方向,Y方向为基材的宽度方向,也即,附图中的三块复材于基材的长度方向并排地设置在两块基材之间;当然,在变化实施中,X方向也可以为基材的宽度方向,Y方向为基材的长度方向,也即,三块复材于基材的宽度方向并排地设置在两块基材之间。
进一步地,同样如前文所述,基于复合坯制备阶段中所准备的坯料形状尺寸以及组坯方式,影响到最终所得不锈钢复合板的结构形状。
如图26所示,本实施方式中,基于组坯工序中的中间层为复材52B、复材52A和复材52C依次并排设置,使得基于本实施方式的复合坯,经由后续的复合坯轧制阶段、板成品阶段之后,所制备而成的三块不锈钢复合板,其中至少两块是复材层覆盖所述基材层的部分上表面而非全部上表面。
例如图26所示,所得不锈钢复合板50A,其碳钢基材层51A、不锈钢复材层52A各自由前面所述的基材51A、复材52A经由轧制而得来,故而沿用了原基材51A、复材52A的标号。其中,复材层52A的Y方向上的两侧边与基材层51A的相应两个侧边齐平;而复材层52A的X方向上的两侧边则均位于基材层51A的上表面的内部,如此,复材层52A仅覆盖基材层51A的中部区域而暴露基材层51A的X方向上的两端。这种类型的复合板可以称之为中部不锈钢复合板。如此,该不锈钢复合板的中部为碳钢基材层51A和不锈钢复材层52A构成的复合结构,可以如现有的复合板,兼具复材层52A的耐腐蚀性,又具有基材层51A良好的力学性能;而不锈钢复合板的两端则纯粹为碳钢基材层51A,其与所述的复合结构直接一体成型,这两端的碳钢基材层51A可以直接在工程中使用而省去了焊接,如此,该不锈钢复合板在使用中避免了现有的异种焊接问题,使用中牢固度强、生产难度低、成本低且施工效率高。
并且,复材层52A的X方向上的两侧边均设置为斜边,该两个斜边与复材层52A的上表面呈钝角。对此,现有复合板在桥梁工程中应用时,为避免不锈钢复材层边沿与桥梁结构用钢板之间出现台阶(高度差),还需要额外增加一块不锈钢板进行过渡,不仅增加了额外的材料成本,而且该增加的不锈钢板还需要同时与不锈钢复合板的复材层、桥梁结构用钢板均进行焊接,大大增加了焊接工作量,影响施工效率。而本实施方式,不锈钢复材层边沿与桥梁结构用钢板之间不会有台阶、而是斜面过渡,无需额外的过渡板,施工效率高、工作量少、结构强度大。
例如图26所示,所得不锈钢复合板50B和50C,各自的不锈钢复材层52B和52C分别由前面所述的复材52B和52C经由轧制而得来,故而沿用了复材52B和52C的标号;而原基材51B则经由轧制并裁断成两部分,一部分形成为复合板复合板50B的基材层51Ba,另一部分形成为复合板50C的基材层51Bc。
在图示中,不锈钢复合板50B中,复材层52B的三侧边与基材层51Ba的三侧边齐平;而复材层52B的另一侧边则位于基材层51Ba的上表面的内部,如此,复材层52B仅覆盖基材层51Ba的一端(例如图26中的左端)而暴露基材层51Ba的另一端(例如图26中的右端)。类似的,不锈钢复合板50C中,复材层52C的三侧边与基材层51Bc的三侧边齐平;而复材层52C的另一侧边则位于基材层51Bc的上表面的内部,如此,复材层52C仅覆盖基材层51Bc的一端(例如图26中的右端)而暴露基材层51Bc的另一端(例如图26中的左端)。如此,复合板50B和50C,一端为碳钢和不锈钢构成的复合结构,该端可以如现有的复合板,兼具复材层的耐腐蚀性,又具有基材层良好的力学性能;而另一端纯粹为碳钢钢板,如此,该不锈钢复合板在使用中避免了现有的异种焊接问题,使用中牢固度强,后期使用中生产难度低、成本低且施工效率高。
而进一步优选地,复材层52B的所述的“位于基材层51Ba的上表面的内部”的侧边设置为斜边,该斜边 与复材层52B的上表面呈钝角;同样的,复材层52C的所述的“位于基材层51Bc的上表面的内部”的侧边设置为斜边,该斜边与复材层52C的上表面呈钝角。对此,不锈钢复材层边沿与桥梁结构用钢板之间不会有台阶、而是斜面过渡,无需额外的过渡板,施工效率高、工作量少、结构强度大。
而可以理解的,在原基材51B则经由轧制并裁断成两部分时,基于裁断位置的不同,也可以使得所形成的一块复合板为复材层和基材层长宽等尺寸的全覆盖式复合板(例如图6中示出的复合板10B),另一块复合板为基材层的一端被复材层所覆盖、而另一端则未被复材层所覆盖的复合板。当然,也可以按照需求进行其它裁断方式。
由此可见,本实施方式同时可以得到至少两种不同类型的复合板,工业价值更优。
另外,前述第四种实施方式和第五种实施方式分别介绍了两块复材、三块复材进行并排设置的组坯方式,而本发明不限于此,还可以设置很多块复材进行并排的组坯方式。
概括来讲,提供一种单面不锈钢复合板,其以本实施方式所制备的复合坯经复合坯轧制阶段、板成品阶段而制成。所述复合板总厚度为5~55mm、基材层厚度4~45mm、复材层厚度1~10mm,并且X方向中部区域覆盖两端未覆盖。当然,也可以同时提供一种单面不锈钢复合板,其以本实施方式所制备的复合坯经复合坯轧制阶段、板成品阶段而制成。所述复合板总厚度为5~55mm、基材层厚度4~45mm、复材层厚度1~10mm,并且X方向一端覆盖另一端未覆盖。
以上对本实施方式的复合坯制备阶段的各个工序进行了详细说明,在后文所提供的多个试验例中,其中的试验例13~15就是采用了本实施方式来制备复合坯,并采用所制备的复合坯来制备不锈钢复合板。在此,通过表5示出这些实施例中的复合坯的一些参数,其中符号所代指的参数请参考前文介绍。
表5
以上对所提供的复合坯制备阶段的五种实施方式分别进行了介绍,接下来对复合坯轧制阶段和板成品阶段的具体实施方式进行详细介绍。而此处需要说明的是,下面所述的复合坯轧制阶段和板成品阶段的具体实施方式,适用于上述复合坯制备阶段的五种实施方式的任意一种。也即上面复合坯制备阶段的五种实施方式的任意一种所制备的复合坯,均可以通过接下来所介绍的复合坯轧制阶段和板成品阶段的具体实施 方式而制备成单面不锈钢复合板。
关于复合坯轧制阶段,在该阶段中对复合坯制备阶段所制得的复合坯,进行加热工序、轧制工序、冷却工序的处理,制成复合板大板。下面对各个工序进行详细介绍。
首先,关于加热工序,对所述复合坯在加热炉中进行加热,从而为后续轧制工序提前做好准备,具体可以采用本领域已知的技术予以实施。
而本申请提供一种加热工序的优选实施方式,具体地:对所述复合坯在加热炉中按照预热段、一加热段、二加热段、三加热段和均热段的五段式进行加热,预热段温度≤850℃,一加热段温度1080±30℃,二加热段温度1160±30℃,三加热段温度1220±20℃,均热段温度1190±20℃,三加热段的停留时间为(0.25~0.35)×t min/mm,t为复合坯的厚度,均热段的停留时间为15min~30min。如此,复合坯的中层为不锈钢复材,上下两层为碳钢基材,两种材质的导热率、膨胀系数等差异较大,在加热过程中会存在产生较大应力,本实施方式的加热工序,可以较好的控制复合坯在各段的升温速率,确保均匀升温,进而避免开裂、漏气等风险,从而使得最终所得复合板具有优异的结合界面。
进一步地,在轧制工序中,对出加热炉的复合坯进行轧制,制得复合板大板。
一实施方式中,整个轧制过程中,前n道次采用横向轧制,第n+1道次以后采用纵向轧制,并且,第1道次轧制压下量≥25mm且轧制温度≥1060℃,第n道次轧制所得坯料的宽度为Wt+0~40mm,Wt为复合板大板的目标宽度,第n道次的轧制温度≥1030℃;在第n道次和第n+1道次之间以及在第n+2道次和第n+3道次之间,将坯料在6组集管中进行往返水冷1次,每组集管的上集管冷却水量120~180m3/h、下集管冷却水量160~220m3/h,且辊道速度为0.8~1.2m/s;第n+1道次至第n+3道次的轧制压下量均≥40mm,尤其是第n+2道次的轧制压下量优选地≥42mm,第n+1道次的轧制温度≥950℃;至第m道次时,轧制温度≥900℃,轧制至坯料厚度为复合板大板的目标厚度的2.5~3.5倍;之后进行浇水冷却,直至坯料的表面温度降低至840℃以下;而后进行第二阶段轧制,直至坯料厚度为复合板大板的目标厚度,完成整个轧制过程,第二阶段轧制的第1道次轧制温度为810℃~840℃,最后1道次的轧制温度为780~810℃。
如此,本实施方式的轧制工序,一方面,可以确保心部的变形渗透效果,利于复材和基材的结合,提高最终复合板的基材层和复材层的界面结合率和结合强度;另一方面,保证复合板大板的相关力学性能、耐蚀性能和低温冲击韧性,避免因为基材与复材的复合而导致性能劣化。
接下来的冷却工序,也即对轧制工序所得的带温复合板大板进行冷却,具体例如从前文所述的“最后1道次的轧制温度为780~810℃”之后,所得复合板大板离开轧机时的温度在780℃附近,之后进行冷却至室温。具体可以采用现有已知的可行冷却技术予以冷却,而在本发明一优选实施方式中,提供了一种包括间断式冷却技术的冷却工序,可以相较于现有冷却技术具有优异的有益效果。
具体地,在该优选实施方式中,冷却工序包括:复合板大板在离开轧机之后,进入超快速冷却系统进 行间断式冷却。其中,所述超快速冷却系统具有沿辊道间隔1m布置的24组冷却集管;所述的间断式冷却中:每组冷却集管的冷却距离为1m,在复合板大板通过超快速冷却系统时,按照每开启N组冷却集管、而后不开启M组冷却集管的方式来控制全部24组冷却集管的开闭状态,冷却水压为0.15~0.30MPa,冷却速度为3~15℃/s,终冷温度为380~590℃;其中N取值2、3或4,M取值2、3或4。
本实施方式通过采用所述的间断式冷却,复合板大板通过超快速冷却系统时,在交替的开启冷却集管和不开启冷却集管中行进,这样,复合板大板的每个部位都会冷却、返红、冷却、返红……如此循环,直至复合板大板离开超快速冷却系统;如此,复合板大板在冷却-返红的循环中,碳钢基材不断发生相变和自回火效应,且相变反应逐步向心部渗透,直至整个碳钢基材均完成相变;该间断式冷却工艺不同于常规的往复式冷却,往复式冷却的返红和自回火是发生在表层或者近表层已经完成相变后,表层和心部温差或冷却速度相差较大,组织和力学性能亦相差较大,而本实施方式的间断式冷却工艺,则是,在同一时刻复合板大板既有一些部位处于冷却状态、又有一些部位处于返红/自回火,并且,复合板大板的每个部位都是随时间交替进行冷却和返红/自回火,使得复合板大板在表层和心部上的温度、冷却速度、组织、性能等差异较小,例如,最终所得的复合板的基材层的厚度方向上维氏硬度差≤10,头中尾强度差≤40MPa,整板各处强度差≤40MPa;同时,通过间断式冷却也可以进一步提升复合板的板形,即不平度低,即使冷却结束后不进行矫直而直接冷床冷却,也可以得到优异的板形。
进一步优选地,在所述间断式冷却中:
复合板大板的厚度在54mm以下,例如厚度为10~54mm时,所述超快速冷却系统的辊道速度为0.4~0.8m/s,复合板大板穿过超快速冷却系统一次,之后离开超快速冷却系统;优选地,24组冷却集管的优选控制方案例如是第1~4组冷却集管开启、第5~6组冷却集管不开启、第7~8组冷却集管开启、第9~10组冷却集管不开启、第11~12组冷却集管开启、第13~14组冷却集管不开启、第15~16组冷却集管开启、第17~18组冷却集管不开启、第19~20组冷却集管开启、第21~22组冷却集管不开启、第23~24组冷却集管开启;
复合板大板的厚度>54mm且<70mm,所述超快速冷却系统的辊道速度为0.2m/s以上而不到0.6m/s,复合板大板穿过超快速冷却系统一次,之后离开超快速冷却系统;复合板大板的厚度≥70mm,所述超快速冷却系统的辊道速度为0.4~0.9m/s,复合板大板先正向从超快速冷却系统入口进入,当其头部到达第24组冷却集管时,辊道反向,复合板大板反向穿过超快速冷却系统并从超快速冷却系统入口离开。其中,复合板大板的厚度>54mm时,优选地,24组冷却集管的优选控制方案例如是第1~4组冷却集管开启、第5~8组冷却集管不开启、第9~12组冷却集管开启、第13~16组冷却集管不开启、第17~20组冷却集管开启、第21~22组冷却集管不开启、第23~24组冷却集管开启。
如此,通过间断式冷却,还可以实现复合板大板的厚度大(例如厚度>54mm且<70mm)甚至是厚度 特别大(例如厚度≥70mm)的板形控制和均匀性控制,克服了现有不锈钢复合板厚板的生产难题。
进一步地,一实施方式中,所述冷却工序具体还包括:离开超快速冷却系统之后,复合板大板直接上冷床进行空气冷却,直至室温。而作为更优的一种替代实施方式,复合板大板离开超快速冷却系统之后并非直接上冷床,而是可以先进行堆冷,例如,所述冷却工序具体还包括:离开超快速冷却系统之后,复合板大板放置于温度为Tf-150℃~Tf+150℃的两块钢板之间进行堆冷,堆冷时间为0.4min/mm×t0±5min,t0为复合板大板的厚度;堆冷结束后,将复合板大板上冷床自然冷却至室温;其中,Tf=550+30Si-20Mn+15Cr-15Ni+10Mo,公式中的元素符号表示基材中各元素的质量百分比的100倍。如此,通过堆冷,尤其是堆冷钢板温度的控制,可在保证复合板性能的基础下,使复合板整板厚度方向温度均匀,避免出现基材温度低、复材温度高的情况,以使得基材与复材保持相差不大的膨胀量,进而保证复合板板形。
以上,对所述复合坯轧制阶段进行了详细说明,接下来,本发明的所述制备方法还包括板成品阶段,如前所述,板成品阶段包括分板工序和压平工序。
具体地,分板工序中,对空冷至室温的复合板大板,采用等离子切割机将四侧边进行切割以去除封条之外的部分,复合板大板分离成上下两张复合板小板。所得两张复合板小板可以经由压平工序后得到两张单面不锈钢复合板,当然,也可以对上下的两张复合板小板进一步进行切割以制成更多张单面不锈钢复合板,例如前文所述的复合坯准备阶段的第五种实施方式里所介绍的三张不锈钢复合板成品,参图26中的不锈钢复合板50A、50B和50C。
其中,关于“封条之外的部分”,即经前面的轧制步骤之后,由前文所提到的复合坯中的封条及填充层所转变成的复合板大板上的边沿部分。如此,将这部分去除,露出不锈钢复材层,而在没有这部分的连接作用的情况下,复合板大板自动分离成上下两张复合板小板。
接下来,压平工序具体包括:将分板工序所得的单面复合板小板的复材层朝上置于压平机上进行压平,其中:当横向压平时,控制压平机的压平力F1=ν×a×b×c×σ/(d×(ν-c/a));当纵向压平时,控制压平机的压平力F2=a×b×c×σ/(d+c);其中,a为复合板小板的宽度,单位为mm,b为复合板小板的厚度,单位为mm,c为复合板小板在横向上的每米不平度,单位为mm,c为复合板小板在纵向上的每米不平度,单位为mm,d为压平机的工作距离,σ为复合板小板在横向上的拉伸屈服强度,σ为复合板小板在纵向上的拉伸屈服强度,ν为泊松比。如此,通过调节压平力和压平方向,可进一步保证获得较好的板形。
最后压平工序之后,得到单面不锈钢复合板成品。
进一步地,本发明一实施方式还提供一种单面不锈钢复合板,其采用前面所介绍的制备方法制备而成,包括由所述基材转化而成的基材层,以及由所述复材转化而成的复材层。
优选地,所述复材/所述复材层优选为奥氏体不锈钢。其化学成分以质量百分比计为:C≤0.15%,Si≤1.00%,Mn≤2.00%,P≤0.045%,S≤0.030%,Ni:6.0~22.0%,Cr:16.0~26.0%,Mo≤3.0%,余量为Fe及 不可避免的杂质。
作为一优选方案,所述基材/所述基材层的化学成分以质量百分比计为:C:0.03~0.16%,Si:0.11~0.29%,Mn:1.31~1.54%,P≤0.018%,S≤0.0030%,Cr:0.06~0.29%,Nb:0.011~0.034%,Ti:0.011~0.019%,Al:0.030~0.040%,其余为Fe和不可避免的杂质。
进一步优选地,所述基材/所述基材层的化学成分以质量百分比计为:C:0.08~0.12%,Si:0.16~0.24%,Mn:1.36~1.44%,P≤0.015%,S≤0.0025%,Cr:0.11~0.19%,Ni:0.06~0.14%,Nb:0.016~0.024%,Ti:0.011~0.019%,Al:0.030~0.040%,其余为Fe和不可避免的杂质。
再优选地,所述基材/所述基材层的化学成分以质量百分比计为:C:0.05~0.09%,Si:0.14~0.22%,Mn:1.41~1.49%,P≤0.012%,S≤0.0020%,Cr:0.16~0.24%,Ni:0.11~0.19%,Mo:0.11~0.19%,Nb:0.021~0.029%,Ti:0.011~0.019%,Al:0.030~0.040%,其余为Fe和不可避免的杂质。
另优选地,所述基材/所述基材层的化学成分以质量百分比计为:C:0.03~0.07%,Si:0.11~0.19%,Mn:1.46~1.54%,P≤0.010%,S≤0.0015%,Cr:0.21~0.29%,Ni:0.16~0.24%,Cu:0.16~0.24%,Mo:0.16~0.24%,Nb:0.026~0.034%,Ti:0.011~0.019%,Al:0.030~0.040%,其余为Fe和不可避免的杂质。
所述不锈钢复合板兼具了优异的力学性能和耐蚀性能,并且相对于现有技术具有优异的板形、界面结合质量、均匀性、冲击韧性和表面质量。
具体地,按照GB/T 2975-钢及钢产品-《力学性能试验取样位置及试样制备》对本发明一实施方式的单面不锈钢复合板进行取样,并且:
板形方面,按照GB/T 709-《热轧钢板和钢带的尺寸、外形、重量及允许偏差》进行检测,所述复合板的不平度≤3mm/m,甚至不平度≤2mm/m;
界面结合质量方面,按照GB/T 6396-《复合钢板力学及工艺性能试验方法》,对复合板进行拉伸试验,所述复合板的复合界面结合率100%,剪切强度≥300MPa,甚至于剪切强度≥360MPa;
力学性能方面,按照GB/T 6396-《复合钢板力学及工艺性能试验方法》以及GB/T 228.1-《金属材料拉伸试验第1部分:室温试验方法》的标准,进行拉伸试验,所述复合板的屈服强度≥345MPa,抗拉强度≥490MPa,断后伸长率≥18%,屈强比≤0.85;所述复合板的基材层的厚度方向上维氏硬度差≤10,头中尾强度差≤40MPa,整板各处强度差≤40MPa;
按照GB/T 6396-《复合钢板力学及工艺性能试验方法》和GB/T 229-《金属材料夏比摆锤冲击试验方法》,进行试验,所述复合板的0℃冲击功≥120J,-20℃冲击功≥120J,-40℃冲击功≥120J,甚至于,0℃冲击功≥240J,-20℃冲击功≥200J,-40℃冲击功≥150J;
按照GB/T 2975-钢及钢产品-《力学性能试验取样位置及试样制备》,进行取样,并按照GB/T 6396-《复合钢板力学及工艺性能试验方法》,进行试验,所述复合板外弯180°无裂纹,内弯180°无裂纹。
按照GB/T 6396-《复合钢板力学及工艺性能试验方法》进行取样,并按照GB/T 4334-《金属和合金的腐蚀奥氏体及铁素体-奥氏体(双相)不锈钢晶间腐蚀试验方法》,进行试验,复合板在硫酸-硫酸铜溶液中煮20h,经180°弯曲后,复材层无晶间腐蚀裂纹。
综上,概括来讲,本发明相较于现有技术,一方面:在整个制备方法中,通过工艺的具体控制,保证了不锈钢复合板的耐蚀性能和机械强度,避免耐蚀性能和力学性能在复合坯轧制过程中发生劣化;再一方面,解决了现有不锈钢复合板厚板的板形差、界面结合质量差、表面质量差的问题,使得不锈钢复合板具有优异的板形和界面结合质量,并且避免了现有爆炸复合技术所带来的凹坑、划痕等明显表面缺陷;另一方面,还可以解决现有技术中的异种焊接问题,复合板的类型更多样,使用场景更高,并且,生产过程中成材率高,生产效率高。
上文所列出的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。
下面通过多个实施例来进一步说明本发明的有益效果,当然,这些实施例仅为本发明所含众多变化实施例中的一部分,而非全部。
这些实施例各自采用的复合坯制备阶段的实施方式如前文所示,参前面表1~表5,而表1~表5中的复材和基材的钢种的具体化学成分如表6所示。其中,以“-”表征在钢坯制备过程中未主动添加相应元素(含量为零或接近于零)。
表6
进一步地,对各个实施例,按照本发明所提供的加热工序、轧制工序、冷却工序、分板工序和压平工序的优选实施方式予以实施,最终得到单面不锈钢复合板成品。这些实施例的复合板成品的总厚度、基材层厚度、复材层厚度如表7所示。其中,表7中复合板厚度、基材层厚度的两栏中为范围的,表征的是最 小厚度~最大厚度。
进一步地,采用前文所披露的取样标准、试验标准等,对各个实施例的复合板进行取样并试验,各个实施例的界面结合率均为100%,内弯180°合格(无裂纹),外弯180°合格(无裂纹),且在硫酸-硫酸铜溶液中煮20h,经180°弯曲后,复材层无晶间腐蚀裂纹。另外,其它性能检测结果如表7和表8所示。
表7
表8

Claims (20)

  1. 一种桥梁结构用不锈钢复合板的制备方法,其特征在于,所述方法包括坯料准备、涂覆隔离剂、组坯、封焊、抽真空、封口、加热、轧制、冷却、分板、压平的工艺流程;其中,
    组坯工序中:按照上层碳钢基材A、下层碳钢基材B、中间层为至少两块不锈钢复材、四根封条包围在中间层的四侧边的方式进行组坯,封条和基材A之间、封条和基材B之间进行气保焊,以形成基坯;该基坯的四侧边均具有由基材A、封条和基材B合围出的凹槽,并且,基坯的一个侧边的封条开设有圆形通孔,在通孔中焊接外径为r的钢管;
    封焊工序中:对所述凹槽进行堆焊,堆焊时在所述钢管周围预留出与钢管同心、半径为R>r的孔洞;当所述钢管所在侧边的凹槽堆焊至熔深为凹槽深度的2/3、而其它侧边的凹槽堆焊至熔深为凹槽深度的2/3以上时,中止堆焊;
    封口工序中:在基坯完成抽真空工序之后,将所述钢管用火焰枪加热、夹扁、折进预留的所述孔洞内;再用气保焊对所述孔洞进行满焊,将所述钢管封焊在所述孔洞内;而后继续堆焊直至凹槽被填满,最后进行盖面焊,得到复合坯;
    轧制工序中:对出加热炉的复合坯进行轧制,制得复合板大板;整个轧制过程中,前n道次采用横向轧制,第n+1道次以后采用纵向轧制,并且,第1道次轧制压下量≥25mm且轧制温度≥1060℃,第n道次轧制所得坯料的宽度为Wt+0~40mm,Wt为复合板大板的目标宽度,第n道次的轧制温度≥1030℃;在第n道次和第n+1道次之间以及在第n+2道次和第n+3道次之间,将坯料在6组集管中进行往返水冷1次,每组集管的上集管冷却水量120~180m3/h、下集管冷却水量160~220m3/h,且辊道速度为0.8~1.2m/s;第n+1道次至第n+3道次的轧制压下量均≥40mm,第n+1道次的轧制温度≥950℃;至第m道次时,轧制温度≥900℃,轧制至坯料厚度为复合板大板的目标厚度的2.5~3.5倍;之后进行浇水冷却,直至坯料的表面温度降低至840℃以下;而后进行第二阶段轧制,直至坯料厚度为复合板大板的目标厚度,完成整个轧制过程,第二阶段轧制的第1道次轧制温度为810℃~840℃,最后1道次的轧制温度为780~810℃。
  2. 根据权利要求1所述的桥梁结构用不锈钢复合板的制备方法,其特征在于,封焊工序中,当所述钢管所在侧边的凹槽堆焊至熔深为凹槽深度的2/3、而其它侧边的凹槽堆焊至熔深为凹槽深度时,结束封焊工序。
  3. 根据权利要求1所述的桥梁结构用不锈钢复合板的制备方法,其特征在于,堆焊时,对凹槽按照上边沿和下边沿在先、中间区域在后的顺序进行多层多道焊,每层焊接4道次以上,道间温度为140~160℃,焊接总层数为6~8层,层间温度为150~250℃。
  4. 根据权利要求1所述的桥梁结构用不锈钢复合板的制备方法,其特征在于,组坯工序中,所述通孔 开设在基坯的一个短侧边处的封条上,并且所述通孔以该封条的长度1/3、宽度1/2的位置为中心;
    所述钢管的端面与该封条的内表面齐平。
  5. 根据权利要求1所述的桥梁结构用不锈钢复合板的制备方法,其特征在于,组坯工序中,封条的外表面的上边沿和下边沿均开设坡口,坡口角度为10~20°,垂直深度为10~15mm。
  6. 根据权利要求1所述的桥梁结构用不锈钢复合板的制备方法,其特征在于,组坯工序中,中间层由层叠放置的复材A和复材B构成。
  7. 根据权利要求6所述的桥梁结构用不锈钢复合板的制备方法,其特征在于,组坯工序所得基坯中,基材A和基材B分别为等厚板。
  8. 根据权利要求6所述的桥梁结构用不锈钢复合板的制备方法,其特征在于,组坯工序所得基坯中,基材A和基材B分别为厚度沿X方向上变化的非等厚板,且基材A和基材B各自的待复合表面相对互补;所述X方向为基材A和基材B的长度方向或者宽度方向。
  9. 根据权利要求8所述的桥梁结构用不锈钢复合板的制备方法,其特征在于,基材A和基材B分别为厚度沿X方向上单调变化的非等厚板,各自的待复合表面为倾斜平面;
    或者,基材A和基材B分别为厚度沿X方向上非单调变化的非等厚板,各自的待复合表面包括沿X方向排布的两个以上平面。
  10. 根据权利要求1所述的桥梁结构用不锈钢复合板的制备方法,其特征在于,组坯工序中,中间层由沿X方向并排的两个或更多个复材构成,所述X方向为基材A和基材B的长度方向或者宽度方向;
    相邻两个复材的相接侧边设置为平行互补的斜边,每个复材在厚度方向上的一个较小表面构成非待复合表面,另一个较大表面构成待复合表面。
  11. 根据权利要求1所述的桥梁结构用不锈钢复合板的制备方法,其特征在于,加热工序中:对所述复合坯在加热炉中按照预热段、一加热段、二加热段、三加热段和均热段的五段式进行加热,预热段温度≤850℃,一加热段温度1080±30℃,二加热段温度1160±30℃,三加热段温度1220±20℃,均热段温度1190±20℃,三加热段的停留时间为(0.25~0.35)×t min/mm,t为复合坯的厚度,均热段的停留时间为15min~30min。
  12. 根据权利要求1所述的桥梁结构用不锈钢复合板的制备方法,其特征在于,冷却工序中:轧制所得复合板大板进入超快速冷却系统,所述超快速冷却系统具有沿辊道间隔1m布置的24组冷却集管,每组冷却集管的冷却距离为1m,在复合板大板通过超快速冷却系统时,按照每开启N组冷却集管、而后不开启M组冷却集管的方式来控制全部24组冷却集管的开闭状态,冷却水压为0.15~0.30MPa,冷却速度为3~15℃/s,终冷温度为380~590℃;其中N取值2、3或4,M取值2、3或4。
  13. 根据权利要求12所述的桥梁结构用不锈钢复合板的制备方法,其特征在于,冷却工序中:离开超 快速冷却系统之后,复合板大板上冷床进行空气冷却,直至室温。
  14. 根据权利要求12所述的桥梁结构用不锈钢复合板的制备方法,其特征在于,冷却工序中:离开超快速冷却系统之后,复合板大板放置于温度为Tf-150℃~Tf+150℃的两块钢板之间进行堆冷,堆冷时间为0.4min/mm×t0±5min,t0为复合板大板的厚度;堆冷结束后,将复合板大板上冷床自然冷却至室温;
    其中,Tf=550+30Si-20Mn+15Cr-15Ni+10Mo,公式中的元素符号表示基材A和/或基材B中各元素的质量百分比的100倍,基材A和基材B的化学成分相同。
  15. 根据权利要求12所述的桥梁结构用不锈钢复合板的制备方法,其特征在于,复合板大板的厚度在54mm以下,所述超快速冷却系统的辊道速度为0.4~0.8m/s,复合板大板穿过超快速冷却系统一次,之后离开超快速冷却系统;
    或者,复合板大板的厚度>54mm且<70mm,所述超快速冷却系统的辊道速度为0.2m/s以上而不到0.6m/s,复合板大板穿过超快速冷却系统一次,之后离开超快速冷却系统;
    或者,复合板大板的厚度≥70mm,所述超快速冷却系统的辊道速度为0.4~0.9m/s,复合板大板先正向从超快速冷却系统入口进入,当其头部到达第24组冷却集管时,辊道反向,复合板大板反向穿过超快速冷却系统并从超快速冷却系统入口离开。
  16. 根据权利要求1所述的桥梁结构用不锈钢复合板的制备方法,其特征在于,压平工序中:将分板工序所得的单面复合板小板的复材朝上置于压平机上进行压平,其中:当横向压平时,控制压平机的压平力F1=ν×a×b×c×σ/(d×(ν-c/a));当纵向压平时,控制压平机的压平力F2=a×b×c×σ/(d+c);其中,a为复合板小板的宽度,单位为mm,b为复合板小板的厚度,单位为mm,c为复合板小板在横向上的每米不平度,单位为mm,c为复合板小板在纵向上的每米不平度,单位为mm,d为压平机的工作距离,σ为复合板小板在横向上的拉伸屈服强度,σ为复合板小板在纵向上的拉伸屈服强度,ν为泊松比。
  17. 根据权利要求1所述的桥梁结构用不锈钢复合板的制备方法,其特征在于,步骤“通过所述钢管对基坯的内部空间进行三次抽真空和两次破真空,最后使基坯的内部空间保持真空度≤10-2Pa”包括:
    先将所述钢管接通真空泵,对基坯的内部空间进行抽真空,真空度≤10-2Pa,之后保压4h以上;接下来将所述钢管接通供氮装置,对基坯进行破空,并充入氮气;
    之后,将所述钢管再次接通真空泵,对基坯进行抽真空,真空度≤10-1Pa,不保压;接下来将所述钢管再次接通供氮装置,对基坯进行破空,并充入氮气;
    最后,第三次将所述钢管接通真空泵,对基坯进行抽真空,真空度≤10-2Pa。
  18. 根据权利要求1所述的桥梁结构用不锈钢复合板的制备方法,其特征在于,涂覆隔离剂工序中:对复材的非待复合表面涂覆隔离剂;
    所用隔离剂为包含氧化硅和氧化镁的涂液,其中氧化硅和氧化镁的质量比为3:1;或者,所用隔离剂的 成分按质量比为:25~35%的氮化硅,5~10%的热固性氨基树脂,55~70%的水。
  19. 一种采用权利要求1所述的制备方法制备而成的桥梁结构用不锈钢复合板,其特征在于,其基材层的化学成分以质量百分比计为:C:0.03~0.16%,Si:0.11~0.29%,Mn:1.31~1.54%,P≤0.018%,S≤0.0030%,Cr:0.06~0.29%,Ni≤0.24%,Cu≤0.24%,Mo≤0.24%,Nb:0.011~0.034%,Ti:0.011~0.019%,Al:0.030~0.040%,余量为Fe及不可避免的杂质;
    其复材层的化学成分以质量百分比计为:C≤0.15%,Si≤1.00%,Mn≤2.00%,P≤0.045%,S≤0.030%,Ni:6.0~22.0%,Cr:16.0~26.0%,Mo≤3.0%,余量为Fe及不可避免的杂质;
    所述复合板的复合界面结合率100%,剪切强度≥300MPa。
  20. 根据权利要求19所述的不锈钢复合板,其特征在于,所述复材层覆盖所述基材层的部分上表面而非全部上表面。
PCT/CN2023/105901 2023-04-25 2023-07-05 桥梁结构用不锈钢复合板及其制备方法 WO2024221603A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310451356.6 2023-04-25
CN202310451356.6A CN116160752B (zh) 2023-04-25 2023-04-25 桥梁结构用不锈钢复合板及其制备方法

Publications (1)

Publication Number Publication Date
WO2024221603A1 true WO2024221603A1 (zh) 2024-10-31

Family

ID=86422274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105901 WO2024221603A1 (zh) 2023-04-25 2023-07-05 桥梁结构用不锈钢复合板及其制备方法

Country Status (2)

Country Link
CN (1) CN116160752B (zh)
WO (1) WO2024221603A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116099875B (zh) * 2023-04-12 2023-07-04 江苏省沙钢钢铁研究院有限公司 板形优异的不锈钢复合板及其制备方法
CN116160752B (zh) * 2023-04-25 2023-07-04 江苏省沙钢钢铁研究院有限公司 桥梁结构用不锈钢复合板及其制备方法
CN116875785A (zh) * 2023-07-05 2023-10-13 江苏省沙钢钢铁研究院有限公司 优化表面质量的钢板的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108393653A (zh) * 2017-02-05 2018-08-14 鞍钢股份有限公司 一种以if钢为中间层的钛钢复合板制备方法
CN111361235A (zh) * 2018-12-26 2020-07-03 宝山钢铁股份有限公司 一种高耐蚀船用复合钢板及其制造方法
CN112721349A (zh) * 2020-11-27 2021-04-30 南京钢铁股份有限公司 一种高耐蚀容器用n08825复合钢板及其制备方法
CN116160752A (zh) * 2023-04-25 2023-05-26 江苏省沙钢钢铁研究院有限公司 桥梁结构用不锈钢复合板及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102240894A (zh) * 2011-06-01 2011-11-16 河北钢铁集团有限公司 一种特厚钢板的复合制造方法
CN102248372B (zh) * 2011-06-22 2013-05-29 河南盛荣特种钢业有限公司 单面复合不锈钢冷轧基料的生产方法
CN104624702B (zh) * 2015-01-07 2016-08-17 李向民 一种不锈钢双面复合板的制作方法
CN106271414B (zh) * 2016-08-23 2018-06-19 南京钢铁股份有限公司 一种tmcp型桥梁用不锈钢复合板的制备方法
CN108213873B (zh) * 2018-01-05 2020-02-18 鞍钢股份有限公司 一种桥梁用不锈钢复合钢板生产方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108393653A (zh) * 2017-02-05 2018-08-14 鞍钢股份有限公司 一种以if钢为中间层的钛钢复合板制备方法
CN111361235A (zh) * 2018-12-26 2020-07-03 宝山钢铁股份有限公司 一种高耐蚀船用复合钢板及其制造方法
CN112721349A (zh) * 2020-11-27 2021-04-30 南京钢铁股份有限公司 一种高耐蚀容器用n08825复合钢板及其制备方法
CN116160752A (zh) * 2023-04-25 2023-05-26 江苏省沙钢钢铁研究院有限公司 桥梁结构用不锈钢复合板及其制备方法

Also Published As

Publication number Publication date
CN116160752B (zh) 2023-07-04
CN116160752A (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
CN116160752B (zh) 桥梁结构用不锈钢复合板及其制备方法
CN116159861B (zh) 界面结合优异的不锈钢复合板及其制备方法
CN106607668B (zh) 易焊接敷边不锈钢复合板的制造方法
WO2018036382A1 (zh) 一种tmcp型桥梁用不锈钢复合板的制备方法
CN113957342B (zh) 一种低屈强比耐候钢桥用不锈钢复合板
CN109694989B (zh) 一种825/x70镍基合金复合板及其生产方法
CN116099875B (zh) 板形优异的不锈钢复合板及其制备方法
WO2020143310A1 (zh) 一种石油天然气输送管线用不锈钢复合板及其制备方法
CN109693072B (zh) 一种825/x70/825双面复合板及其生产方法
CN112643292B (zh) 一种碳钢和304不锈钢单面复合板加工方法
CN111589857B (zh) 一种热轧复合钢的制造方法及热轧复合钢
CN107185961A (zh) 一种大规格、薄复层镍基合金/管线钢复合板的制备方法
CN116001380B (zh) 370MPa级不锈钢复合板及其制备方法
CN112248609B (zh) 一种多层叠轧金属复合钢板制造方法
CN109694986B (zh) 一种桥梁用不锈钢复合钢板及其生产方法
CN105728492A (zh) 一种屈服强度大于700MPa的复合钢板及其制备方法
RU178157U1 (ru) Многослойная заготовка для горячей прокатки
CN116445811B (zh) 420MPa级不锈钢复合板及其制备方法
CN116141773B (zh) 500MPa级不锈钢复合板及其制备方法
CN116330763A (zh) 不锈钢复合板及其制备方法
CN116274362A (zh) 特厚不锈钢复合板及其制备方法
CN116351871A (zh) 具有优良板形的不锈钢复合板及其制备方法
CN116373428A (zh) 特厚不锈钢复合板及其制备方法
CN104959783A (zh) 一种提高钎焊轧制法生产金属复合材料产量和质量的方法
CN116373406A (zh) 345MPa级不锈钢复合板及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23934778

Country of ref document: EP

Kind code of ref document: A1