WO2024199094A1 - 供电电路的控制方法、供电电路及储能设备 - Google Patents

供电电路的控制方法、供电电路及储能设备 Download PDF

Info

Publication number
WO2024199094A1
WO2024199094A1 PCT/CN2024/083149 CN2024083149W WO2024199094A1 WO 2024199094 A1 WO2024199094 A1 WO 2024199094A1 CN 2024083149 W CN2024083149 W CN 2024083149W WO 2024199094 A1 WO2024199094 A1 WO 2024199094A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
conversion circuit
power
bus
voltage
Prior art date
Application number
PCT/CN2024/083149
Other languages
English (en)
French (fr)
Inventor
黑超
吴东
陈熙
王雷
Original Assignee
深圳市正浩创新科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市正浩创新科技股份有限公司 filed Critical 深圳市正浩创新科技股份有限公司
Publication of WO2024199094A1 publication Critical patent/WO2024199094A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other DC sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/02Conversion of AC power input into DC power output without possibility of reversal
    • H02M7/04Conversion of AC power input into DC power output without possibility of reversal by static converters
    • H02M7/12Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present application belongs to the field of power supply technology, and in particular, relates to a control method for a power supply circuit and an energy storage device.
  • the power supply system is a system composed of a power supply system and a power transmission and distribution system that generates electrical energy and supplies and transmits it to electrical equipment.
  • the general principles for determining the power supply system are: reliable power supply, convenient operation, safe and flexible operation, economic rationality, and the possibility of development.
  • Multi-power supply is an indispensable technical guarantee for emergency power supply. As we all know, the switching of two or more power sources needs to be consistent with each other, otherwise the power supply system will have output failures or even paralysis.
  • Traditional technology usually uses conventional power grids as the main power supply, and uses other power sources such as fuel generators as the second power supply. When switching the power supply, it is cut out first and then put in, so there is a gap in the power supply, which affects the requirements of electrical equipment for high-quality power.
  • a control method for a power supply circuit, a power supply circuit, and an energy storage device are provided.
  • an embodiment of the present application provides a control method for a power supply circuit, wherein the power supply circuit comprises: an AC/DC conversion circuit, a DC/DC conversion circuit, a BOOST circuit, and a BUCK/BOOST circuit; wherein a first end of the AC/DC conversion circuit is configured to be connected to a first device, and a second end of the AC/DC conversion circuit is connected to the DC/DC via a DC bus.
  • the first end of the conversion circuit is connected, the second end of the DC/DC conversion circuit is configured to be connected to a battery module, the input end of the BOOST circuit is configured to be connected to a first photovoltaic module, the output end of the BOOST circuit and the first end of the BUCK/BOOST circuit are commonly connected to the DC bus, and the second end of the BUCK/BOOST circuit is configured to be connected to a DC load;
  • the control method of the power supply circuit includes:
  • the operating states of the AC/DC conversion circuit, the DC/DC conversion circuit, the BOOST circuit and the BUCK/BOOST circuit are controlled respectively according to the required power of the first device, the required power of the battery module, the required power of the DC load and the bus voltage to meet the power demand of the DC load, the first device and the battery module.
  • a second aspect of an embodiment of the present application provides a power supply circuit, the power supply circuit comprising: an AC/DC conversion circuit, a DC/DC conversion circuit, a BOOST circuit, a BUCK/BOOST circuit and a main control circuit; wherein a first end of the AC/DC conversion circuit is configured to be connected to a first device, a second end of the AC/DC conversion circuit is connected to a first end of the DC/DC conversion circuit via a DC bus, a second end of the DC/DC conversion circuit is configured to be connected to a battery module, an input end of the BOOST circuit is configured to be connected to a first photovoltaic panel, an output end of the BOOST circuit and a first end of the BUCK/BOOST circuit are connected to the DC bus in common, a second end of the BUCK/BOOST circuit is configured to be connected to a DC load, and the main control circuit is respectively connected to the AC/DC conversion circuit, the DC/DC conversion circuit, the BOOST circuit, the BUCK/BOOST circuit and the
  • the main control circuit is configured to execute the control method as described in any one of the above embodiments.
  • a third aspect of an embodiment of the present application provides an energy storage device, which includes a battery module and the power supply circuit described in the embodiment.
  • FIG. 1 is a schematic diagram of the structure of a power supply circuit provided in an embodiment of the present application.
  • FIG. 2 is a flow chart of a method for controlling a power supply circuit provided in an embodiment of the present application.
  • FIG3 is a flow chart of a method for controlling a power supply circuit provided in yet another embodiment of the present application.
  • FIG. 4 is a flow chart of a method for controlling a power supply circuit provided in yet another embodiment of the present application.
  • FIG5 is a flow chart of a method for controlling a power supply circuit provided in yet another embodiment of the present application.
  • FIG6 is a flow chart of a method for controlling a power supply circuit provided in yet another embodiment of the present application.
  • FIG. 7 is a flow chart of a method for controlling a power supply circuit provided in yet another embodiment of the present application.
  • FIG8 is a flow chart of a method for controlling a power supply circuit provided in yet another embodiment of the present application.
  • FIG. 9 is a flow chart of a method for controlling a power supply circuit provided in yet another embodiment of the present application.
  • FIG. 10 is a flow chart of a method for controlling a power supply circuit provided in yet another embodiment of the present application.
  • FIG. 11 is a schematic diagram of the structure of a power supply circuit provided in another embodiment of the present application.
  • FIG. 12 is a schematic diagram of the structure of an energy storage device provided in an embodiment of the present application.
  • FIG. 13 is a schematic diagram of the structure of a battery module provided in an embodiment of the present application.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features.
  • plurality means one or more, unless otherwise clearly and specifically defined.
  • the power supply circuit in this embodiment includes: an AC/DC conversion circuit 110 , a DC/DC conversion circuit 120 , a BOOST circuit 310 and a BUCK/BOOST circuit 320 .
  • the first end of the AC/DC conversion circuit 110 is configured to be connected to the first device 210, and the second end of the AC/DC conversion circuit 110 is connected to the first end of the DC/DC conversion circuit 120 through the DC bus 101.
  • the second end of the DC/DC conversion circuit 120 is configured to be connected to the battery module 220.
  • the input end of the BOOST circuit 310 is configured to be connected to the first photovoltaic component 240, and the output end of the BOOST circuit 310 and the first end of the BUCK/BOOST circuit 320 are connected to the DC bus 101.
  • the second end of the BUCK/BOOST circuit 320 is configured to be connected to the DC load 230.
  • the AC/DC conversion circuit 110 can be configured to convert the DC power on the DC bus 101 into AC power and output it to the first device 210.
  • the DC/DC conversion circuit 120 can be configured to charge the battery module 220 after performing voltage conversion on the DC bus 101.
  • the DC/DC conversion circuit 120 can also perform voltage conversion on the DC power output by the battery module 220 according to the instruction and output it to the DC bus 101, that is, the DC/DC conversion circuit 120 can control the discharge of the battery module 220.
  • the BOOST circuit 310 is configured to boost the DC power generated by the first photovoltaic module 240 and output the DC power obtained by the boosting process to the DC bus 101.
  • the BUCK/BOOST circuit 320 is also configured to draw power from the DC bus 101 and perform voltage conversion on the DC power provided by the DC bus 101 and output it to the DC load 230, and the voltage conversion includes boosting or bucking.
  • the DC/DC conversion circuit 120 may be a bidirectional LLC circuit.
  • the first device 210 may be an AC device, such as a three-phase motor.
  • the first device 210 may be an AC power source, such as a mains power supply, a three-phase power grid, etc.
  • the AC/DC conversion circuit 110 may also be configured to convert the AC power provided by the first device 210 into DC power and output it to the DC bus 101 .
  • the first photovoltaic component 240 may be a photovoltaic array.
  • a photovoltaic maximum power point tracking (MPPT) circuit is further provided between the first photovoltaic module 240 and the input end of the BOOST circuit 310.
  • the MPPT circuit converts the voltage input by the photovoltaic array through its own power conversion circuit and outputs it to the input end of the BOOST circuit 310.
  • the DC load 230 may be a DC charging station.
  • the operating voltage range of the DC charging pile can be 300V-750V.
  • a bus capacitor is provided on the DC bus 101 .
  • the control method of the power supply circuit in this embodiment includes steps S100 to S400 .
  • Step S100 obtaining the bus voltage of the DC bus 101.
  • Step S200 obtaining the photovoltaic output voltage of the first photovoltaic assembly 240 .
  • the first photovoltaic assembly 240 and the battery module 220 can both be used as a DC power supply to supply power to the DC bus 101.
  • the charge and discharge state of the battery module 220 can be controlled by controlling the working state of the DC/DC conversion circuit 120.
  • the power output of the first photovoltaic assembly 240 can be controlled by controlling the working state of the BOOST circuit 310.
  • the photovoltaic output voltage of the first photovoltaic assembly 240 and the bus voltage on the DC bus 101 may be sampled respectively by using a plurality of voltage sampling circuits.
  • Step S300 obtaining the required power of the first device 210 connected to the first end of the AC/DC conversion circuit 110 , the required power of the battery module 220 , and the required power of the DC load 230 .
  • the first device 210, the battery module 220 and the DC load 230 can be used as power loads.
  • the output power of the first photovoltaic assembly 240 can be distributed, thereby distributing the output power of the first photovoltaic assembly 240 to each power load.
  • the sum of the required power of the first device 210, the battery module 220 and the DC load 230 is equal to the output power of the first photovoltaic assembly 240.
  • Step S400 when the photovoltaic output voltage is greater than the preset input voltage, the working states of the AC/DC conversion circuit 110, the DC/DC conversion circuit 120, the BOOST circuit 310 and the BUCK/BOOST circuit 320 are controlled respectively according to the required power of the first device 210, the required power of the battery module 220, the required power of the DC load 230 and the bus voltage to meet the power demand of the DC load 230, the first device 210 and the battery module 220.
  • the BOOST circuit 310 boosts the photovoltaic output voltage of the first photovoltaic component 240 and outputs it to the DC bus 101.
  • the first device 210, the battery module 220 and the DC load 230 are all used as power loads. Since the power requirements of each power load are different and the priorities of each power load are different, it is necessary to allocate the output power of the first photovoltaic component 240 based on the bus voltage on the DC bus 101.
  • the working states of the AC/DC conversion circuit 110, the DC/DC conversion circuit 120, the BOOST circuit 310 and the BUCK/BOOST circuit 320 are controlled based on the power requirements of the first device 210, the power requirements of the battery module 220, the power requirements of the DC load 230 and the bus voltage on the DC bus 101.
  • the conversion powers of the AC/DC conversion circuit 110 , the DC/DC conversion circuit 120 , the BOOST circuit 310 , and the BUCK/BOOST circuit 320 respectively, the power requirements of the DC load 230 , the first device 210 , and the battery module 220 are met.
  • the AC/DC conversion circuit 110 is controlled to convert the DC power on the DC bus 101 into AC power according to the power requirements of the first device 210 and output it to the first device 210.
  • the DC/DC conversion circuit 120 converts the DC power on the DC bus 101 into a corresponding DC voltage to charge the battery module 220 according to the power requirements of the battery module 220.
  • the BUCK/BOOST circuit 320 converts the DC power on the DC bus 101 into a corresponding DC voltage and outputs it to the DC load 230 according to the power requirements of the DC load 230.
  • the first photovoltaic assembly 240 can supply power to all power loads, complete the working state switching of the AC/DC conversion circuit 110, the DC/DC conversion circuit 120, the BOOST circuit 310 and the BUCK/BOOST circuit 320, and the distribution of the output power of the first photovoltaic assembly 240.
  • the BOOST circuit 310 converts the photovoltaic output voltage of the first photovoltaic component 240 so that the power requirements of the first device 210, the battery module 220 and the DC load 230 are exactly equal to the output power of the BOOST circuit 310.
  • control method in this embodiment further includes steps S500 to S600 .
  • Step S500 obtaining the priorities of the first device 210, the battery module 220, and the DC load 230, and determining the working priorities of the AC/DC conversion circuit 110, the DC/DC conversion circuit 120, and the BUCK/BOOST circuit 320 according to the priorities of the first device 210, the battery module 220, and the DC load 230.
  • the bus voltage of the DC bus 101 corresponds to the output voltage of the first photovoltaic assembly 240. Due to different demand conditions of the power loads, for example, when the bus voltage of the DC bus 101 is low, it is impossible to simultaneously supply power to the first device 210, the battery module 220, and the DC load 230 according to their required power. At this time, the power consumption of the battery module 220 is not urgent, so the conversion power of the DC/DC conversion circuit 120 can be reduced to give priority to meeting the power consumption of the first device 210 and the DC load 230.
  • the working priorities of the AC/DC conversion circuit 110, the DC/DC conversion circuit 120, and the BUCK/BOOST circuit 320 can be determined based on the priorities of the first device 210, the battery module 220, and the DC load 230, so as to allocate the output power of the first photovoltaic assembly 240, so as to avoid the problem of overload causing damage to the equipment or failure to meet the requirements of the connected load when the bus voltage of the DC bus 101 is low.
  • Step S600 controlling the working state of the AC/DC conversion circuit 110 , the DC/DC conversion circuit 120 or the BUCK/BOOST circuit 320 according to the working priority and the bus voltage.
  • the conversion power of the AC/DC conversion circuit 110, the DC/DC conversion circuit 120 or the BUCK/BOOST circuit 320 is determined based on the working priorities of the AC/DC conversion circuit 110, the DC/DC conversion circuit 120 and the BUCK/BOOST circuit 320 and the bus voltage on the DC bus 101.
  • the conversion power of the AC/DC conversion circuit 110, the DC/DC conversion circuit 120 or the BUCK/BOOST circuit 320 is equal to the output power of the first photovoltaic assembly 240, avoiding the problem of overload and equipment damage when the bus voltage of the DC bus 101 is low.
  • step S400 the operating states of the AC/DC conversion circuit 110, the DC/DC conversion circuit 120, the BOOST circuit 310 and the BUCK/BOOST circuit 320 are controlled respectively according to the required power of the first device 210, the required power of the battery module 220, the required power of the DC load 230 and the bus voltage, specifically including step S410.
  • Step S410 Under the condition that the bus voltage is greater than or equal to the first preset voltage, a first control signal is generated according to the power demand of the first device 210, the power demand of the DC load 230, and the power demand of the battery module 220.
  • the first control signal is configured to control the AC/DC conversion circuit 110, the DC/DC conversion circuit 120, and the BUCK/BOOST circuit 320.
  • the converted power can meet the power requirements of the first device 210, the DC load 230 and the battery module 220.
  • the first photovoltaic assembly 240 serves as the sole power supply to supply power to the DC bus 101.
  • the bus voltage on the DC bus 101 is greater than or equal to the first preset voltage
  • the sum of the power requirements of the first device 210, the battery module 220 and the DC load 230 is equal to or less than the output power of the first photovoltaic assembly 240, and the first photovoltaic assembly 240 can simultaneously meet the power requirements of the first device 210, the battery module 220 and the DC load 230.
  • a first control signal is generated according to the power requirements of the first device 210, the DC load 230 and the battery module 220, and the first control signal is configured to control the conversion power of the AC/DC conversion circuit 110, the DC/DC conversion circuit 120 and the BUCK/BOOST circuit 320 to meet the power requirements of the first device 210, the DC load 230 and the battery module 220.
  • the first preset voltage is 550 V.
  • the bus voltage of the DC bus 101 is equivalent to the voltage output by the BOOST circuit 310.
  • the AC/DC conversion circuit 110 works normally to output AC power to the first device 210.
  • the DC/DC conversion circuit 120 works normally to charge the battery module 220, and the BUCK/BOOST circuit 320 also works normally to output DC power to the charging pile.
  • relevant control can be performed according to the access status of the power supply circuit.
  • the DC load 230 is a charging pile and the first device 210 is an AC device
  • the on and off of the switch device of the branch where the charging pile and the AC device are located is determined according to the access status, and the switch device can be a relay.
  • control method in this embodiment further includes step S420 .
  • Step S420 When the bus voltage drops from the first preset voltage to the second preset voltage, a second control signal is generated.
  • the second control signal is configured to control the conversion power of the DC/DC conversion circuit 120 to gradually decrease, and when the bus voltage is equal to the second preset voltage, the DC/DC conversion circuit 120 is controlled to stop working.
  • the bus voltage on the DC bus 101 drops from the first preset voltage to the second preset voltage, the sum of the power requirements of the first device 210, the battery module 220 and the DC load 230 is greater than the output power of the first photovoltaic assembly 240. Since the priority of charging the battery module 220 is lower than the priority of powering the DC load 230 and the first device 210, at this time, by sending a second control signal to the DC/DC conversion circuit 120, the conversion power of the DC/DC conversion circuit 120 is gradually reduced by the second control signal. When the bus voltage is equal to the second preset voltage, the DC/DC conversion circuit 120 is controlled to stop working, thereby stopping charging the battery module 220.
  • the second preset voltage may be 500V.
  • the conversion power of the DC/DC conversion circuit 120 is controlled to gradually decrease, and the BUCK/BOOST circuit 320 operates normally.
  • the DC/DC conversion circuit 120 is controlled to perform voltage conversion according to the photovoltaic output voltage to charge the battery module 220 until the bus voltage drops to 500V.
  • Controlling the DC/DC conversion circuit 120 The voltage conversion according to the photovoltaic output voltage includes: controlling the on-off frequency of the switch tube in the DC/DC conversion circuit 120, and reducing the conversion power of the DC/DC conversion circuit 120 by reducing its duty cycle.
  • control method in this embodiment further includes step S430 and step S431 .
  • Step S430 When the bus voltage drops from the second preset voltage to the third preset voltage, a third control signal is generated.
  • the third control signal is configured to control the DC/DC conversion circuit 120 to enter a preset discharge mode. In the preset discharge mode, the DC/DC conversion circuit 120 converts the direct current output by the battery module 220 and outputs it to the DC bus 101, and the voltage input to the DC bus 101 gradually increases.
  • the bus voltage when the bus voltage continues to drop from the second preset voltage, it means that the output power of the first photovoltaic assembly 240 continues to drop.
  • a third control signal is sent to the DC/DC conversion circuit 120, and the third control signal controls the DC/DC conversion circuit 120 to enter a preset discharge mode, and the DC/DC conversion circuit 120 converts the DC power output by the battery module 220 and outputs it to the DC bus 101.
  • the conversion power of the DC/DC conversion circuit 120 is gradually increased, and the voltage output from the DC/DC conversion circuit 120 to the DC bus 101 is gradually increased.
  • Step S431 when the bus voltage drops to a third preset voltage, the BUCK/BOOST circuit 320 is controlled to stop working.
  • the DC/DC conversion circuit 120 when the bus voltage starts to drop from the second preset voltage, the DC/DC conversion circuit 120 enters a preset discharge mode. In the preset discharge mode, the DC/DC conversion circuit 120 converts the DC power output by the battery module 220 and outputs it to the DC bus 101. In order to slow down the drop of the bus voltage or increase the bus voltage, the voltage input to the DC bus 101 by the DC/DC conversion circuit 120 gradually increases.
  • the bus voltage of the DC bus 101 drops to the third preset voltage, since the priority of the first device 210 is greater than the priority of the DC load 230, in order to meet the required power of the first device 210, the BUCK/BOOST circuit 320 is controlled to stop working at this time.
  • the third preset voltage may be 450V.
  • the bus voltage of the DC bus 101 is greater than 450V and less than 500V, it indicates that the photovoltaic output voltage of the first photovoltaic assembly 240 cannot meet the power requirements of the first device 210 and the DC load 230 at this time, and the BUCK/BOOST circuit 320 is controlled not to work, and the switch at the output end of the BUCK/BOOST circuit 320 is disconnected.
  • the output end of the BUCK/BOOST circuit 320 is connected to a DC load 230 such as a DC charging pile, the battery module 220 is controlled to start discharging gradually.
  • Controlling the battery module 220 to discharge gradually means that the discharge voltage of the battery module 220 gradually increases to meet the voltage requirements of the DC bus 101.
  • the bus voltage of the DC bus 101 drops to 450V, the BUCK/BOOST circuit 320 is turned off, and the DC bus 101 stops supplying power to the DC load 230.
  • control method in this embodiment further includes step S440 and step S451. S441.
  • Step S440 when the bus voltage drops from the third preset voltage to the fourth preset voltage, the DC/DC conversion circuit 120 is controlled to operate at the maximum discharge power to convert the direct current output by the battery module 220 and output it to the DC bus 101 .
  • the bus voltage on the DC bus 101 continues to decrease.
  • the BUCK/BOOST circuit 320 has stopped working.
  • the DC/DC conversion circuit 120 operates at the maximum discharge power to convert the DC power output by the battery module 220 and output it to the DC bus 101.
  • Step S441 When the bus voltage starts to drop from the fourth preset voltage, a pulse modulation signal is generated.
  • the pulse modulation signal is configured to increase the conversion power of the AC/DC conversion circuit 110 to meet the required power of the first device 210 .
  • the bus voltage on the DC bus 101 decreases to the fourth preset voltage and continues to decrease from the fourth preset voltage.
  • the fourth preset voltage may be 400 V.
  • the DC/DC conversion circuit 120 is controlled to fully discharge.
  • the DC/DC conversion circuit 120 converts the voltage of the battery module 220 and outputs it to the DC bus 101.
  • the AC/DC conversion circuit 110 converts the DC power on the DC bus 101 into AC power to ensure the power supply of the first device 210.
  • the duty cycle of the switch tube in the AC/DC conversion circuit 110 is increased, thereby increasing the conversion power of the AC/DC conversion circuit 110 to meet the power demand of the first device 210.
  • control method in this embodiment further includes step S450 .
  • Step S450 when the bus voltage drops to the fifth preset voltage, the AC/DC conversion circuit 110 is controlled to stop working, and the DC/DC conversion circuit 120 is controlled to enter the charging mode. In the charging mode, the DC/DC conversion circuit 120 converts the DC power on the DC bus 101 to charge the battery module 220.
  • the output power of the first photovoltaic assembly 240 continues to decrease, when the bus voltage on the DC bus 101 decreases from the fourth preset voltage to the fifth preset voltage when the battery module 220 is discharged at the maximum power, it means that the discharge output of the battery module 220 can no longer meet the required power of the first device 210, and the battery module 220 is about to run out of power.
  • the AC/DC conversion circuit 110 stops working, and the DC/DC conversion circuit 120 enters the charging mode. In the charging mode, the DC/DC conversion circuit 120 converts the DC power on the DC bus 101 and charges the battery module 220.
  • the fifth preset voltage may be 360 V.
  • the bus voltage of the DC bus 101 is less than or equal to When the voltage is 360V, the AC/DC conversion current stops working, the related relays in the power supply circuit are disconnected, and the power supply to the first device 210 and the DC load 230 stops.
  • the working state of the DC/DC conversion circuit 120 is controlled to switch to the charging mode, and the DC/DC conversion circuit 120 converts the voltage of the DC power on the DC bus 101 to charge the battery module 220.
  • control method further includes step S600 .
  • Step S600 when the photovoltaic output voltage is less than the preset input voltage, the first device 210 is an AC power source, and the battery module 220 meets the charging conditions, the AC/DC conversion circuit 110 and the DC/DC conversion circuit 120 are controlled to enter the charging mode to use the AC power source to charge the battery module 220.
  • the first device 210 is an AC power source.
  • the output power of the first photovoltaic component 240 is small, and the photovoltaic output voltage of the first photovoltaic component 240 is less than the preset input voltage.
  • the voltage of the battery module 220 is less than the preset value, which means that the battery module 220 has a low power level, and the battery module 220 meets the charging condition, that is, the AC/DC conversion circuit 110 and the DC/DC conversion circuit 120 are controlled to enter the charging mode.
  • the AC/DC conversion circuit 110 converts the AC power provided by the AC power source into DC power and outputs it to the DC bus 101.
  • the DC/DC conversion circuit 120 converts the voltage of the DC power on the DC bus 101 and charges the battery module 220, thereby using the AC power source to charge the battery module 220.
  • the preset input voltage is 0V
  • the photovoltaic output voltage of the first photovoltaic assembly 240 is less than the preset input voltage, which may indicate that the first photovoltaic assembly 240 has almost no voltage output.
  • the environment where the first photovoltaic assembly 240 is located is night, and the battery module 220 is charged by the AC power supply.
  • control method further includes step S710 and step S720 .
  • Step S710 when the photovoltaic output voltage is less than the preset input voltage, the first device 210 is an AC load, and the DC load 230 has a power demand, the DC/DC conversion circuit 120 is controlled to enter the discharge mode. In the discharge mode, the DC/DC conversion circuit 120 converts the DC power output by the battery module 220 according to the rated conversion power and outputs it to the DC bus 101.
  • the first device 210 is an AC load. If the light in the environment where the first photovoltaic component 240 is located is weak, its output power is small. At this time, the photovoltaic output voltage of the first photovoltaic component 240 is less than the preset input voltage. If the DC load 230 has a power demand, the DC/DC conversion circuit 120 is controlled to enter the discharge mode, and the DC/DC conversion circuit 120 converts the DC power output by the battery module 220 according to the rated conversion power and outputs it to the DC bus 101. The BUCK/BOOST circuit 320 converts the DC power on the DC bus 101 into a voltage and outputs it to the DC load 230, thereby meeting the power demand of the DC load 230.
  • step S720 the AC/DC conversion circuit 110 and the BUCK/BOOST circuit 320 are controlled to perform power conversion according to the target power, so as to supply power to the AC load and the DC load 230 .
  • the DC/DC conversion circuit 120 converts the DC power output by the battery module 220 into a DC power output by the battery module 220 according to the rated conversion power. After power conversion, the power is output to the DC bus 101.
  • the AC/DC conversion circuit 110 converts the DC power on the DC bus 101 into AC power according to the target power and outputs it to the AC load.
  • the BUCK/BOOST circuit 320 converts the DC power on the DC bus 101 into AC power according to the target power and outputs it to the DC load 230.
  • the target power is half of its rated conversion power, thereby meeting the power requirements of the AC load and the DC load 230 at the same time.
  • the embodiment of the present application further provides a power supply circuit.
  • the power supply circuit in the embodiment includes: an AC/DC conversion circuit 110 , a DC/DC conversion circuit 120 , a BOOST circuit 310 , a BUCK/BOOST circuit 320 and a main control circuit 400 .
  • the first end of the AC/DC conversion circuit 110 is configured to be connected to the first device 210, and the second end of the AC/DC conversion circuit 110 is connected to the first end of the DC/DC conversion circuit 120 through the DC bus 101.
  • the second end of the DC/DC conversion circuit 120 is configured to be connected to the battery module 220.
  • the input end of the BOOST circuit 310 is configured to be connected to the first photovoltaic panel, the output end of the BOOST circuit 310 and the first end of the BUCK/BOOST circuit 320 are connected to the DC bus 101, and the second end of the BUCK/BOOST circuit 320 is configured to be connected to the DC load 230.
  • the main control circuit 400 is respectively connected to the AC/DC conversion circuit 110, the DC/DC conversion circuit 120, the BOOST circuit 310, the BUCK/BOOST circuit 320 and the DC bus 101.
  • the main control circuit 400 is configured to execute the control method of any of the above embodiments.
  • the energy storage device 900 includes a battery module 220 and a power supply circuit 910 .
  • the power supply circuit 910 may be the power supply circuit in any of the above embodiments.
  • the energy storage device 900 may further include a grid-connected interface circuit, and the energy storage device may be configured to be connected to other energy storage devices through the grid-connected interface circuit.
  • the battery module 220 includes a first switch S1 , a second switch S2 , a first diode D1 , a second diode D2 , and a battery module BAT.
  • the DC/DC conversion circuit 120 is connected to the battery module 220 via a first positive terminal P+ and a first negative terminal P-.
  • a first switch S1, a second switch S2, a first diode D1, and a second diode D2 constitute a switch circuit in the battery module 220.
  • the switch circuit is connected to a power management system BMS in the battery module 220.
  • a first end of the first switch S1 and an anode of the first diode D1 are connected to a positive electrode B+ of the battery module BAT, a second end of the first switch S1, a cathode of the first diode D1, a cathode of the second diode D2, and a first end of the second switch S2 are connected to a first positive terminal P+, and a cathode B- of the battery module BAT is connected to a first negative terminal P-.
  • the main control circuit 400 can control the charging, discharging and standby switching of the battery module BAT by controlling the switch states of the first switch S1 and the second switch S2. For example, when the BMS receives the first instruction signal sent by the main control circuit 400, it controls the first switch S1 to be disconnected and the second switch S2 to be turned on, and the battery module BAT changes from the charging state to the discharging state. state. When the BMS receives the second indication signal, it controls the first switch S1 to be turned on and the second switch S2 to be turned off, and the battery module BAT changes from the discharge state to the charging state.
  • the BMS When the BMS receives the standby signal, it controls the first switch S1 and the second switch S2 to be turned off, and the battery module BAT is in the standby state. It should be noted that when the first switch S1 is turned off and the second switch S2 is turned on, the battery module BAT is in the pre-discharge state, and in the pre-discharge state, the electric energy of the battery module is output through the first diode D1 and the second switch S2. When the first switch S1 is closed, the electric energy of the battery module BAT is output through the first switch S1 and the second switch S2, and the battery module BAT is in a fully discharged state.
  • the battery module BAT When the first switch S1 is turned on and the second switch S2 is turned off, the battery module BAT is in the pre-charge state, and in the pre-charge state, the externally provided electric energy is input through the second diode D2 and the first switch S1. When the second switch S2 is closed, the externally provided electric energy is input through the first switch S1 and the second switch S2, and the battery module BAT is in a fully charged state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种供电电路的控制方法,供电电路包括共接于直流母线的AC/DC变换电路、DC/DC变换电路、BOOST电路和BUCK/BOOST电路,第一设备连接AC/DC变换电路的第一端,直流负载连接BUCK/BOOST电路的第二端,通过获取直流母线的母线电压和第一光伏组件的光伏输出电压,在光伏输出电压大于预设输入电压时,根据第一设备的需求功率、电池模块的需求功率、直流负载的需求功率以及母线电压,分别对AC/DC变换电路、DC/DC变换电路、BOOST电路以及BUCK/BOOST电路的工作状态进行控制。

Description

供电电路的控制方法、供电电路及储能设备
相关申请的交叉引用
本申请要求于2023年03月31日提交中国专利局、申请号为202310369008.4、发明名称为“供电电路的控制方法及储能设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于供电技术领域,尤其涉及一种供电电路的控制方法及储能设备。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成示例性技术。
供电系统就是由电源系统和输配电系统组成的产生电能并供应和输送给用电设备的系统。确定供电系统的一般原则是:供电可靠,操作方便、运行安全灵活,经济合理,具有发展的可能性。
多电源供电是应急供电不可缺少的技术保障。众所周知,两种及以上电源的投切需要相互之间保持一致,否则供电系统会产生输出故障甚至瘫痪。传统技术通常采用常规电网作为主电源供电,并利用如燃油发电机等其他电源作为第二电源。在供电电源切换时先切出再投入,因而存在一个供电的间隔缝隙,影响用电设备对高质量电力的要求。
在相关技术中,接入多种电源或者接入多个负载的储能设备在使用过程中,当有电源掉电或者出现输入异常时,所接入的负载会存在掉电的情况,而且供电控制的灵活性差,响应速度慢,用户体验感差的问题。
发明内容
根据本申请的各种实施例,提供了一种供电电路的控制方法、供电电路及储能设备。
本申请实施例第一方面提供了一种供电电路的控制方法,所述供电电路包括:AC/DC变换电路、DC/DC变换电路、BOOST电路、BUCK/BOOST电路;其中,所述AC/DC变换电路的第一端被配置为连接第一设备,所述AC/DC变换电路的第二端通过直流母线与所述DC/DC 变换电路的第一端连接,所述DC/DC变换电路的第二端被配置为连接电池模块,所述BOOST电路的输入端被配置为连接第一光伏组件,所述BOOST电路的输出端与所述BUCK/BOOST电路的第一端共接于所述直流母线,所述BUCK/BOOST电路的第二端被配置为连接直流负载;所述供电电路的控制方法包括:
获取所述直流母线的母线电压;
获取所述第一光伏组件的光伏输出电压;
获取所述第一设备的需求功率、所述电池模块的需求功率以及所述直流负载的需求功率;
在所述光伏输出电压大于预设输入电压时,根据所述第一设备的需求功率、所述电池模块的需求功率、所述直流负载的需求功率以及所述母线电压,分别对所述AC/DC变换电路、所述DC/DC变换电路、所述BOOST电路以及所述BUCK/BOOST电路的工作状态进行控制,以满足对所述直流负载、所述第一设备和所述电池模块的用电需求。
本申请实施例第二方面提供了一种供电电路,所述供电电路包括:AC/DC变换电路、DC/DC变换电路、BOOST电路、BUCK/BOOST电路以及主控电路;其中,所述AC/DC变换电路的第一端被配置为连接第一设备,所述AC/DC变换电路的第二端通过直流母线与所述DC/DC变换电路的第一端连接,所述DC/DC变换电路的第二端被配置为连接电池模块,所述BOOST电路的输入端被配置为连接第一光伏板,所述BOOST电路的输出端与所述BUCK/BOOST电路的第一端共接于所述直流母线,所述BUCK/BOOST电路的第二端被配置为连接直流负载,所述主控电路分别与所述AC/DC变换电路、所述DC/DC变换电路、所述BOOST电路、所述BUCK/BOOST电路以及所述直流母线连接;
所述主控电路被配置为执行如上述任一项实施例所述的控制方法。
本申请实施例第三方面提供了一种储能设备,所述储能设备包括电池模块和实施例所述的供电电路。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或示例性技术中的技术方案,下面将对实施例或示例性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可 以根据这些附图获得其他实施例的附图。
图1是本申请一实施例提供的供电电路的结构示意图。
图2是本申请一实施例提供的供电电路的控制方法的流程图。
图3是本申请又一实施例提供的供电电路的控制方法的流程图。
图4是本申请又一实施例提供的供电电路的控制方法的流程图。
图5是本申请又一实施例提供的供电电路的控制方法的流程图。
图6是本申请又一实施例提供的供电电路的控制方法的流程图。
图7是本申请又一实施例提供的供电电路的控制方法的流程图。
图8是本申请又一实施例提供的供电电路的控制方法的流程图。
图9是本申请又一实施例提供的供电电路的控制方法的流程图。
图10是本申请又一实施例提供的供电电路的控制方法的流程图。
图11是本申请另一实施例提供的供电电路的结构示意图。
图12是本申请一实施例提供的储能设备的结构示意图。
图13是本申请一实施例提供的电池模块的结构示意图。
具体实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是一个或一个以上,除非另有明确具体的限定。
传统的储能设备在使用过程中,会存在接入多种电源及接入多个负载的情况。在具体的使用过程中,由于储能设备的设置问题,当有电源掉电或者出现输入异常时,所接入的负载会存在掉电的情况,导致该储能设备供电控制的灵活性差,且存在响应速度慢、用户体验感差的问题。
为了解决上述技术问题,本申请实施例提供了一种供电电路的控制方法。参见图1所示,本实施例中的供电电路包括:AC/DC变换电路110、DC/DC变换电路120、BOOST电路310和BUCK/BOOST电路320。
具体的,AC/DC变换电路110的第一端被配置为连接第一设备210,AC/DC变换电路110的第二端通过直流母线101与DC/DC变换电路120的第一端连接。DC/DC变换电路120的第二端被配置为连接电池模块220。BOOST电路310的输入端被配置为连接第一光伏组件240,BOOST电路310的输出端与BUCK/BOOST电路320的第一端共接于直流母线101。BUCK/BOOST电路320的第二端被配置为连接直流负载230。
在本实施例中,AC/DC变换电路110可以被配置为将直流母线101上的直流电转换为交流电输出至第一设备210。DC/DC变换电路120可以被配置为将直流母线101上的直流电进行电压变换后,给电池模块220充电。该DC/DC变换电路120也可以根据指令将电池模块220输出的直流电进行电压变换后,输出给直流母线101,即该DC/DC变换电路120能够控制电池模块220放电。该BOOST电路310被配置为将第一光伏组件240生成的直流电进行升压处理,并将升压处理得到的直流电输出至直流母线101。BUCK/BOOST电路320还被配置为从直流母线101取电,并将直流母线101提供的直流电进行电压转换后输出至直流负载230,电压转换包括升压或者降压。
在一个实施例中,DC/DC变换电路120可以为双向LLC电路。
在一个实施例中,第一设备210可以为交流设备,例如三相电机等。
在一个实施例中,第一设备210可以为交流电源,例如市电、三相电网等。AC/DC变换电路110还可以被配置为将第一设备210提供的交流电转换为直流电输出至直流母线101。
在一个实施例中,第一光伏组件240可以为光伏阵列。
在一个实施例中,第一光伏组件240与BOOST电路310的输入端之间还设有光伏最大功率追踪(Maximum Power Point Tracking,MPPT)电路。MPPT电路通过自身的功率变换电路将该光伏阵列输入的电压进行功率转换后输出给BOOST电路310的输入端。
在一个实施例中,直流负载230可以为直流充电桩。
在一个实施例中,直流充电桩的工作电压范围可以为300V-750V。
在一个实施例中,直流母线101上设有母线电容。
参见图2所示,本实施例中的供电电路的控制方法包括步骤S100至步骤S400。
步骤S100,获取直流母线101的母线电压。
步骤S200,获取第一光伏组件240的光伏输出电压。
在本实施例中,第一光伏组件240和电池模块220均可以作为直流电源对直流母线101供电。通过控制DC/DC变换电路120的工作状态可以控制电池模块220的充放电状态。通过控制BOOST电路310的工作状态,可以控制第一光伏组件240的功率输出。
在本实施例中,可以通过多个电压采样电路分别对第一光伏组件240的光伏输出电压和直流母线101上的母线电压进行电压采样。
步骤S300,获取AC/DC变换电路110的第一端连接的第一设备210的需求功率、电池模块220的需求功率以及直流负载230的需求功率。
在本实施例中,当第一光伏组件240作为输入电源,第一设备210、电池模块220和直流负载230可以作为用电负载。通过控制AC/DC变换电路110、DC/DC变换电路120、BOOST电路310和BUCK/BOOST电路320的工作状态以及工作参数,可以对第一光伏组件240的输出功率进行分配,从而将第一光伏组件240的输出功率分配至各个用电负载。第一设备210、电池模块220和直流负载230的需求功率之和等于第一光伏组件240的输出功率。
步骤S400,在光伏输出电压大于预设输入电压时,根据第一设备210的需求功率、电池模块220的需求功率、直流负载230的需求功率以及母线电压,分别对AC/DC变换电路110、DC/DC变换电路120、BOOST电路310以及BUCK/BOOST电路320的工作状态进行控制,以满足对直流负载230、第一设备210和电池模块220的用电需求。
在本实施例中,当光伏输出电压大于预设输入电压时,BOOST电路310将第一光伏组件240的光伏输出电压进行升压处理后输出至直流母线101,此时第一设备210、电池模块220和直流负载230均作为用电负载。由于各个用电负载的需求功率不同,且各个用电负载的优先级不同,此时需要基于直流母线101上的母线电压对第一光伏组件240的输出功率进行分配。即基于第一设备210的需求功率、电池模块220的需求功率、直流负载230的需求功率以及直流母线101上的母线电压控制AC/DC变换电路110、DC/DC变换电路120、BOOST电路310以及BUCK/BOOST电路320的工作状态。通过分别控制AC/DC变换电路110、DC/DC变换电路120、BOOST电路310以及BUCK/BOOST电路320的转换功率,从而满足直流负载230、第一设备210和电池模块220的用电需求。
在一个实施例中,第一设备210、电池模块220和直流负载230的需求功率之和等于或者小于第一光伏组件240的输出功率,则控制AC/DC变换电路110按照第一设备210的需求功率将直流母线101上的直流电转换为交流电输出至第一设备210。DC/DC变换电路120按照电池模块220的需求功率将直流母线101上的直流电转换为对应的直流电压对电池模块220充电。BUCK/BOOST电路320根据直流负载230的需求功率将直流母线101上的直流电转换为对应的直流电压输出至直流负载230。通过上述控制可以实现由第一光伏组件240对所有的用电负载供电,并完成AC/DC变换电路110、DC/DC变换电路120、BOOST电路310以及BUCK/BOOST电路320的工作状态切换,和第一光伏组件240的输出功率的分配。
在一个实施例中,第一设备210、电池模块220和直流负载230的需求功率之和小于第一光伏组件240的输出功率的条件下,BOOST电路310通过对第一光伏组件240的光伏输出电压进行转换,使得第一设备210、电池模块220和直流负载230的需求功率刚好等于BOOST电路310的输出功率。
在一个实施例中,参见图3所示,本实施例中的控制方法还包括步骤S500至步骤S600。
步骤S500,获取第一设备210、电池模块220、直流负载230的优先级,并根据第一设备210、电池模块220、直流负载230的优先级确定AC/DC变换电路110、DC/DC变换电路120以及BUCK/BOOST电路320的工作优先级。
在本实施例中,直流母线101的母线电压与第一光伏组件240的输出电压对应。由于用电负载的需求条件不同,例如,在直流母线101的母线电压较低时,无法同时对第一设备210、电池模块220、直流负载230按照其需求功率对其供电,此时电池模块220的用电情况并不紧急,因此可以减小DC/DC变换电路120的转换功率,以优先满足第一设备210和直流负载230的用电。此时可以基于第一设备210、电池模块220、直流负载230的优先级确定AC/DC变换电路110、DC/DC变换电路120以及BUCK/BOOST电路320的工作优先级,从而对第一光伏组件240的输出功率进行分配,避免直流母线101的母线电压较低的情况下出现过载导致设备损坏、或者无法满足所接入负载需求的问题。
步骤S600,根据工作优先级和母线电压,控制AC/DC变换电路110、DC/DC变换电路120或BUCK/BOOST电路320的工作状态。
在本实施例中,基于AC/DC变换电路110、DC/DC变换电路120以及BUCK/BOOST电路320的工作优先级以及直流母线101上的母线电压确定AC/DC变换电路110、DC/DC变换电路120或BUCK/BOOST电路320的转换功率。从而使得AC/DC变换电路110、DC/DC变换电路120或BUCK/BOOST电路320的转换功率等于第一光伏组件240的输出功率,避免直流母线101的母线电压较低的情况下出现过载导致设备损坏的问题。
在一个实施例中,参见图4所示,步骤S400中,根据第一设备210的需求功率、电池模块220的需求功率、直流负载230的需求功率以及母线电压,分别对AC/DC变换电路110、DC/DC变换电路120、BOOST电路310以及BUCK/BOOST电路320的工作状态进行控制,具体包括步骤S410。
步骤S410,在母线电压大于等于第一预设电压的条件下,则根据第一设备210的需求功率、直流负载230的需求功率以及电池模块220的需求功率生成第一控制信号。第一控制信号被配置为控制AC/DC变换电路110、DC/DC变换电路120以及BUCK/BOOST电路320 的转换功率,以满足第一设备210、直流负载230以及电池模块220的功率需求。
在本实施例中,第一设备210为交流用电设备时,第一光伏组件240作为唯一供电电源为直流母线101供电。直流母线101上的母线电压大于等于第一预设电压时,此时第一设备210、电池模块220和直流负载230的需求功率之和等于或者小于第一光伏组件240的输出功率,第一光伏组件240可以同时满足第一设备210、电池模块220和直流负载230的需求功率。根据第一设备210的需求功率、直流负载230的需求功率以及电池模块220的需求功率生成第一控制信号,第一控制信号被配置为控制AC/DC变换电路110、DC/DC变换电路120以及BUCK/BOOST电路320的转换功率,以满足第一设备210、直流负载230以及电池模块220的功率需求。
例如,在一个实施例中,第一预设电压为550V。直流母线101的母线电压相当于BOOST电路310输出的电压,当直流母线101的母线电压大于550V时,AC/DC变换电路110正常工作输出交流电给第一设备210。此时DC/DC变换电路120正常工作给电池模块220充电,BUCK/BOOST电路320也正常工作,输出直流电给充电桩。
需要说明的是,在本工况的具体应用环境下,可以根据供电电路的接入情况进行相关的控制。在直流负载230为充电桩,第一设备210为交流设备时,根据接入情况确定充电桩、交流设备所在支路的开关器件的通断,该开关器件可以是继电器。
在一个实施例中,参见图5所示,本实施例中的控制方法还包括步骤S420。
步骤S420,在母线电压从第一预设电压下降到第二预设电压的过程中,生成第二控制信号。第二控制信号被配置为控制DC/DC变换电路120的转换功率逐渐减小,并在母线电压等于第二预设电压时,控制DC/DC变换电路120停止工作。
在本实施例中,若直流母线101上的母线电压从第一预设电压下降至第二预设电压,此时第一设备210、电池模块220和直流负载230的需求功率之和大于第一光伏组件240的输出功率。由于对电池模块220充电的优先级小于对直流负载230供电和对第一设备210供电的优先级,此时通过向DC/DC变换电路120发送第二控制信号,由第二控制信号控制DC/DC变换电路120的转换功率逐渐减小。在母线电压等于第二预设电压时,控制DC/DC变换电路120停止工作,从而停止向电池模块220充电。
在一个实施例中,第二预设电压可以为500V。当直流母线101的母线电压大于500V且小于550V时,控制DC/DC变换电路120的转换功率逐渐减小,BUCK/BOOST电路320正常工作。具体地,在该电池模块220确定需要充电的情况下,在第一光伏组件240的光伏输出电压逐渐降低的过程中,该控制DC/DC变换电路120根据该光伏输出电压进行电压转换,以对该电池模块220进行充电,直至该母线电压降至500V。控制DC/DC变换电路120 根据该光伏输出电压进行电压转换包括:控制DC/DC变换电路120中的开关管的通断频率,通过降低其占空比降低DC/DC变换电路120的转换功率。
在一个实施例中,参见图6所示,本实施例中的控制方法还包括步骤S430和步骤S431。
步骤S430,在母线电压从第二预设电压下降到第三预设电压过程中,生成第三控制信号。第三控制信号被配置为控制DC/DC变换电路120进入预设放电模式,DC/DC变换电路120在预设放电模式下,将电池模块220输出的直流电进行转换后输出至直流母线101,且输入至直流母线101的电压逐渐增大。
在本实施例中,当母线电压从第二预设电压继续下降时,说明此时第一光伏组件240的输出功率继续下降。为了满足第一设备210和直流负载230的需求功率,则向DC/DC变换电路120发送第三控制信号,由第三控制信号控制DC/DC变换电路120进入预设放电模式,DC/DC变换电路120将电池模块220输出的直流电进行转换后输出至直流母线101。为了减慢母线电压的下降或者提升母线电压,DC/DC变换电路120的转换功率也逐渐增加,DC/DC变换电路120输出至直流母线101的电压逐渐增大。
步骤S431,在母线电压下降至第三预设电压时,控制BUCK/BOOST电路320停止工作。
在本实施例中,母线电压从第二预设电压开始下降时,则DC/DC变换电路120进入预设放电模式。DC/DC变换电路120在预设放电模式下,将电池模块220输出的直流电进行转换后输出至直流母线101。为了减慢母线电压的下降或者提升母线电压,该DC/DC变换电路120输入至直流母线101的电压逐渐增大。当直流母线101的母线电压下降至第三预设电压时,由于第一设备210的优先级大于直流负载230的优先级,因此为了满足第一设备210的需求功率,此时控制BUCK/BOOST电路320停止工作。
在一个实施例中,第三预设电压可以为450V。当直流母线101的母线电压大于450V且小于500V时,表示此时第一光伏组件240的光伏输出电压无法满足第一设备210的需求功率和直流负载230的需求功率,则控制BUCK/BOOST电路320不工作,断开BUCK/BOOST电路320输出端的开关。此时如果BUCK/BOOST电路320的输出端若连接有如直流充电桩的直流负载230,则控制电池模块220开始逐渐放电。控制该电池模块220逐渐放电表示该电池模块220的放电电压逐渐增大,以满足直流母线101的电压需求。当直流母线101的母线电压下降到450V时,关闭BUCK/BOOST电路320,直流母线101停止为直流负载230供电。
在一个实施例中,参见图7所示,本实施例中的控制方法还包括步骤S440和步骤 S441。
步骤S440,在母线电压从第三预设电压下降到第四预预设电压过程中,控制DC/DC变换电路120以最大放电功率运行,以将电池模块220输出的直流电进行转换后输出至直流母线101。
在本实施例中,若第一光伏组件240的输出功率继续下降,此时直流母线101上的母线电压继续下降。母线电压从第三预设电压下降的过程中,BUCK/BOOST电路320已经停止工作。为了减慢母线电压的下降或者提升母线电压,DC/DC变换电路120以最大放电功率运行,以将电池模块220输出的直流电进行转换后输出至直流母线101。
步骤S441,在母线电压从第四预设电压开始下降时,生成脉冲调制信号。脉冲调制信号被配置为提高AC/DC变换电路110的转换功率,以满足第一设备210的需求功率。
在本实施例中,若第一光伏组件240的输出功率继续下降,此时直流母线101上的母线电压下降至第四预设电压,并由第四预设电压继续下降。通过提升AC/DC变换电路110中开关管的占空比,提高其转换效率,达到满足第一设备210的需求功率的目的。
在一个实施例中,第四预设电压可以为400V。当直流母线101的母线电压大于400V且小于450V时,控制DC/DC变换电路120满额放电。DC/DC变换电路120满额放电下,DC/DC变换电路120将电池模块220的电压进行转换后输出至直流母线101。然后由AC/DC变换电路110将直流母线101上的直流电转换为交流电以保证第一设备210的供电。
当直流母线101的母线电压大于360V且小于400V时,提高AC/DC变换电路110中的开关管的占空比,从而提高AC/DC变换电路110的转换功率,以满足第一设备210的功率需求。
在一个实施例中,参见图8所示,本实施例中的控制方法还包括步骤S450。
步骤S450,在母线电压下降到第五预设电压时,控制AC/DC变换电路110停止工作,并控制DC/DC变换电路120进入充电模式。DC/DC变换电路120在充电模式下,将直流母线101上的直流电进行转换后给电池模块220充电。
在本实施例中,若第一光伏组件240的输出功率继续下降,在电池模块220以最大功率放电的情况下,直流母线101上的母线电压由第四预设电压下降至第五预设电压时,则说明电池模块220的放电输出已经无法满足第一设备210的需求功率,电池模块220的电量即将耗尽。此时AC/DC变换电路110停止工作,DC/DC变换电路120进入充电模式,DC/DC变换电路120在充电模式下,将直流母线101上的直流电进行转换后给电池模块220充电。
在一个实施例中,第五预设电压可以为360V。当直流母线101的母线电压小于等于 360V时,该AC/DC变换电流停止工作,该供电电路中的相关继电器断开,停止对第一设备210、直流负载230供电。此时控制DC/DC变换电路120的工作状态切换至充电模式,由DC/DC变换电路120将直流母线101上的直流电进行电压变换后,给电池模块220充电。
在一个实施例中,参见图9所示,控制方法还包括步骤S600。
步骤S600,在光伏输出电压小于预设输入电压,第一设备210为交流电源,且电池模块220满足充电条件时,则控制AC/DC变换电路110和DC/DC变换电路120进入充电模式,以利用交流电源为电池模块220充电。
在本实施例中,第一设备210为交流电源。第一光伏组件240在光照较弱时,其输出功率较小,此时第一光伏组件240的光伏输出电压小于预设输入电压。而此时电池模块220的电压小于预设值,则表示电池模块220的电量较低,电池模块220满足充电条件,即控制AC/DC变换电路110和DC/DC变换电路120进入充电模式。在该充电模式下,AC/DC变换电路110将交流电源提供的交流电转换为直流电输出至直流母线101,DC/DC变换电路120将直流母线101上的直流电进行电压变换后,给电池模块220充电,从而利用交流电源为电池模块220充电。
在一个实施例中,预设输入电压为0V,第一光伏组件240的光伏输出电压小于预设输入电压,可以表示第一光伏组件240几乎没有电压输出。此时第一光伏组件240所处的环境为夜晚,则由交流电源为电池模块220充电。
在一个实施例中,参见图10所示,控制方法还包括步骤S710和步骤S720。
步骤S710,在光伏输出电压小于预设输入电压、第一设备210为交流负载、且直流负载230存在需求功率时,控制DC/DC变换电路120进入放电模式。在放电模式下,DC/DC变换电路120按照额定转换功率将电池模块220输出的直流电进行功率转换后输出至直流母线101。
在本实施例中,第一设备210为交流负载。若第一光伏组件240所处环境的光照较弱,其输出功率较小,此时第一光伏组件240的光伏输出电压小于预设输入电压。若直流负载230存在需求功率时,则控制DC/DC变换电路120进入放电模式,由DC/DC变换电路120按照额定转换功率将电池模块220输出的直流电进行功率转换后输出至直流母线101。BUCK/BOOST电路320将直流母线101上的直流电进行电压转换后输出至直流负载230,从而满足直流负载230的需求功率。
在步骤S720中,控制AC/DC变换电路110和BUCK/BOOST电路320分别按照目标功率进行功率转换,以为交流负载和直流负载230供电。
在本实施例中,DC/DC变换电路120按照额定转换功率将电池模块220输出的直流电 进行功率转换后输出至直流母线101。AC/DC变换电路110将直流母线101上的直流电按照目标功率转换为交流电输出至交流负载。BUCK/BOOST电路320将直流母线101上的直流电按照目标功率转换后输出至直流负载230,该目标功率为其额定转换功率的一半,从而同时满足交流负载和直流负载230的需求功率。
本申请实施例还提供了一种供电电路,参见图11所示,本实施例中的供电电路包括:AC/DC变换电路110、DC/DC变换电路120、BOOST电路310、BUCK/BOOST电路320以及主控电路400。
具体的,AC/DC变换电路110的第一端被配置为连接第一设备210,AC/DC变换电路110的第二端通过直流母线101与DC/DC变换电路120的第一端连接。DC/DC变换电路120的第二端被配置为连接电池模块220。BOOST电路310的输入端被配置为连接第一光伏板,BOOST电路310的输出端与BUCK/BOOST电路320的第一端共接于直流母线101,BUCK/BOOST电路320的第二端被配置为连接直流负载230。主控电路400分别与AC/DC变换电路110、DC/DC变换电路120、BOOST电路310、BUCK/BOOST电路320以及直流母线101连接。
在本实施例中,主控电路400被配置为执行如上述任一项实施例的控制方法。
本申请实施例提供了一种储能设备,参见图12所示,储能设备900包括电池模块220和供电电路910,供电电路910可以为上述任一项实施例中的供电电路。
在一个实施例中,储能设备900还可以包括并网接口电路,储能设备可以被配置为通过该并网接口电路与其他储能设备相连接。
在一个实施例中,参见图13所示,电池模块220包括第一开关S1、第二开关S2、第一二极管D1、第二二极管D2以及电池模组BAT。
具体的,DC/DC变换电路120通过第一正极端P+和第一负极端P-与电池模块220连接。第一开关S1、第二开关S2、第一二极管D1、第二二极管D2组成该电池模块220中的开关电路。该开关电路与该电池模块220中的电源管理系统BMS连接。第一开关S1的第一端与第一二极管D1的阳极共接于电池模组BAT的正极B+,第一开关S1的第二端、第一二极管D1的阴极、第二二极管D2的阴极以及第二开关S2的第一端共接,第二二极管D2的阳极与第二开关S2的第二端共接第一正极端P+,电池模组BAT的负极B-连接第一负极端P-。
在本实施例中,主控电路400可以通过控制第一开关S1和第二开关S2的开关状态控制电池模组BAT的充电、放电以及待机切换。例如,BMS接收到主控电路400发送的第一指示信号时,控制第一开关S1断开,第二开关S2导通,电池模组BAT从充电状态变成放电 状态。BMS接收到第二指示信号时,控制第一开关S1导通,第二开关S2断开,电池模组BAT从放电状态变成充电状态。BMS接收到待机信号时,控制第一开关S1和第二开关S2断开,此时电池模组BAT处于待机状态。需要说明的是,该第一开关S1断开、第二开关S2导通时,该电池模组BAT处于预放电状态,在预放电状态下,电池模组的电能通过第一二极管D1和第二开关S2输出。当第一开关S1闭合时,电池模组BAT的电能通过第一开关S1和第二开关S2输出,此时电池模组BAT处于完全放电状态。该第一开关S1导通、第二开关S2断开时,该电池模组BAT处于预充电状态,在预充电状态下,外部提供的电能通过第二二极管D2和第一开关S1输入。当第二开关S2闭合时,外部提供的电能通过第一开关S1和第二开关S2输入,此时电池模组BAT处于完全充电状态。
在一个实施例中,第一开关S1和第二开关S2可以为继电器或者MOS管等开关器件。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种供电电路的控制方法,所述供电电路包括:AC/DC变换电路、DC/DC变换电路、BOOST电路和BUCK/BOOST电路;其中,所述AC/DC变换电路的第一端被配置为连接第一设备,所述AC/DC变换电路的第二端通过直流母线与所述DC/DC变换电路的第一端连接,所述DC/DC变换电路的第二端被配置为连接电池模块,所述BOOST电路的输入端被配置为连接第一光伏组件,所述BOOST电路的输出端与所述BUCK/BOOST电路的第一端共接于所述直流母线,所述BUCK/BOOST电路的第二端被配置为连接直流负载;所述供电电路的控制方法包括:
    获取所述直流母线的母线电压;
    获取所述第一光伏组件的光伏输出电压;
    获取所述第一设备的需求功率、所述电池模块的需求功率以及所述直流负载的需求功率;
    在所述光伏输出电压大于预设输入电压时,根据所述第一设备的需求功率、所述电池模块的需求功率、所述直流负载的需求功率以及所述母线电压,分别对所述AC/DC变换电路、所述DC/DC变换电路、所述BOOST电路以及所述BUCK/BOOST电路的工作状态进行控制,以满足对所述直流负载、所述第一设备和所述电池模块的用电需求。
  2. 根据权利要求1所述的供电电路的控制方法,其中,所述控制方法还包括:
    获取所述第一设备、所述电池模块、所述直流负载的优先级,并根据所述第一设备、所述电池模块、所述直流负载的优先级确定所述AC/DC变换电路、所述DC/DC变换电路以及所述BUCK/BOOST电路的工作优先级;
    根据所述工作优先级和所述母线电压,控制所述AC/DC变换电路、所述DC/DC变换电路或所述BUCK/BOOST电路的工作状态。
  3. 根据权利要求1所述的供电电路的控制方法,其中,所述根据所述第一设备的需求功率、所述电池模块的需求功率、所述直流负载的需求功率以及所述母线电压,分别对所述AC/DC变换电路、所述DC/DC变换电路、所述BOOST电路以及所述BUCK/BOOST电路的工作状态进行控制,包括:
    在所述母线电压大于等于第一预设电压的条件下,则根据所述第一设备的需求功率、 所述直流负载的需求功率以及所述电池模块的需求功率生成第一控制信号,所述第一控制信号被配置为控制所述AC/DC变换电路、所述DC/DC变换电路以及所述BUCK/BOOST电路的转换功率,以满足所述第一设备、所述直流负载以及所述电池模块的功率需求。
  4. 根据权利要求3所述的供电电路的控制方法,其中,所述控制方法还包括:
    在所述母线电压从所述第一预设电压下降到第二预设电压过程中,生成第二控制信号,所述第二控制信号被配置为控制所述DC/DC变换电路的转换功率逐渐减小,并在所述母线电压等于所述第二预设电压时,控制所述DC/DC变换电路停止工作。
  5. 根据权利要求4所述的供电电路的控制方法,其中,所述控制方法还包括:
    在所述母线电压从所述第二预设电压下降到第三预设电压过程中,生成第三控制信号,所述第三控制信号被配置为控制DC/DC变换电路进入预设放电模式,所述DC/DC变换电路在预设放电模式下,将所述电池模块输出的直流电进行转换后输出至所述直流母线且输入至所述直流母线的电压逐渐增大;
    在所述母线电压下降至所述第三预设电压时,控制所述BUCK/BOOST电路停止工作。
  6. 根据权利要求5所述的供电电路的控制方法,其中,所述控制方法还包括:
    在所述母线电压从所述第三预设电压下降到第四预预设电压过程中,控制所述DC/DC变换电路以最大放电功率运行,以将所述电池模块输出的直流电进行转换后输出至所述直流母线;
    在所述母线电压从所述第四预设电压开始下降时,生成脉冲调制信号,所述脉冲调制信号被配置为提高所述AC/DC变换电路的转换功率,以满足所述第一设备的需求功率。
  7. 根据权利要求6所述的供电电路的控制方法,其中,所述控制方法还包括:
    在所述母线电压下降到第五预设电压时,控制所述AC/DC变换电路停止工作,并控制所述DC/DC变换电路进入充电模式,所述DC/DC变换电路在所述充电模式下,将所述直流母线上的直流电进行转换后给所述电池模块充电。
  8. 根据权利要求1所述的供电电路的控制方法,其中,所述控制方法还包括:
    在所述光伏输出电压小于所述预设输入电压,所述第一设备为交流电源,且所述电池模块满足充电条件时,则控制所述AC/DC变换电路和所述DC/DC变换电路进入充电模式, 以利用所述交流电源为所述电池模块充电。
  9. 根据权利要求1所述的供电电路的控制方法,其中,所述控制方法还包括:
    在所述光伏输出电压小于预设输入电压、所述第一设备为交流负载且所述直流负载存在需求功率时,控制所述DC/DC变换电路进入放电模式;在所述放电模式下,所述DC/DC变换电路按照额定转换功率将所述电池模块输出的直流电进行功率转换后输出至所述直流母线;
    控制所述AC/DC变换电路和所述BUCK/BOOST电路分别按照目标功率进行功率转换,以为所述交流负载和所述直流负载供电;其中,所述目标功率为所述额定转换功率的一半。
  10. 一种供电电路,所述供电电路包括:AC/DC变换电路、DC/DC变换电路、BOOST电路、BUCK/BOOST电路以及主控电路;其中,所述AC/DC变换电路的第一端被配置为连接第一设备,所述AC/DC变换电路的第二端通过直流母线与所述DC/DC变换电路的第一端连接,所述DC/DC变换电路的第二端被配置为连接电池模块,所述BOOST电路的输入端被配置为连接第一光伏板,所述BOOST电路的输出端与所述BUCK/BOOST电路的第一端共接于所述直流母线,所述BUCK/BOOST电路的第二端被配置为连接直流负载,所述主控电路分别与所述AC/DC变换电路、所述DC/DC变换电路、所述BOOST电路、所述BUCK/BOOST电路以及所述直流母线连接;
    所述主控电路被配置为执行如权利要求1-9任一项所述的控制方法。
  11. 一种储能设备,所述储能设备包括电池模块、AC/DC变换电路、DC/DC变换电路、BOOST电路、BUCK/BOOST电路以及主控电路;其中,所述AC/DC变换电路的第一端被配置为连接第一设备,所述AC/DC变换电路的第二端通过直流母线与所述DC/DC变换电路的第一端连接,所述DC/DC变换电路的第二端被配置为连接电池模块,所述BOOST电路的输入端被配置为连接第一光伏板,所述BOOST电路的输出端与所述BUCK/BOOST电路的第一端共接于所述直流母线,所述BUCK/BOOST电路的第二端被配置为连接直流负载,所述主控电路分别与所述AC/DC变换电路、所述DC/DC变换电路、所述BOOST电路、所述BUCK/BOOST电路以及所述直流母线连接;
    所述主控电路被配置为执行如权利要求1-9任一项所述的控制方法。
PCT/CN2024/083149 2023-03-31 2024-03-22 供电电路的控制方法、供电电路及储能设备 WO2024199094A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310369008.4 2023-03-31
CN202310369008.4A CN116247778A (zh) 2023-03-31 2023-03-31 供电电路的控制方法及储能设备

Publications (1)

Publication Number Publication Date
WO2024199094A1 true WO2024199094A1 (zh) 2024-10-03

Family

ID=86624447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/083149 WO2024199094A1 (zh) 2023-03-31 2024-03-22 供电电路的控制方法、供电电路及储能设备

Country Status (2)

Country Link
CN (1) CN116247778A (zh)
WO (1) WO2024199094A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116247778A (zh) * 2023-03-31 2023-06-09 深圳市正浩创新科技股份有限公司 供电电路的控制方法及储能设备
CN117175765B (zh) * 2023-09-01 2024-07-23 青岛天盈华智科技有限公司 一种太阳能控制器、控制方法及光伏控制系统
CN116961206B (zh) * 2023-09-21 2024-01-09 深圳鹏城新能科技有限公司 电压变换电路的控制方法、电压变换电路及储能设备
CN117526528B (zh) * 2024-01-04 2024-04-23 西安图为电气技术有限公司 用电设备的负载供电方法、装置和设备
CN118473059B (zh) * 2024-07-10 2024-10-18 杭州海康威视数字技术股份有限公司 控制充电电路
CN119030108B (zh) * 2024-10-28 2025-03-11 中关村芯海择优科技有限公司 电池电路、控制方法、车辆和计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209516643U (zh) * 2019-03-01 2019-10-18 重庆水利电力职业技术学院 能源路由器
CN111231713A (zh) * 2020-03-27 2020-06-05 上海电气集团股份有限公司 一种电动汽车充放电系统及控制方法
CN112421600A (zh) * 2020-10-21 2021-02-26 国网河北省电力有限公司雄安新区供电公司 一种高灵活性户用直流供电系统及其供电方法
CN112838612A (zh) * 2020-12-18 2021-05-25 西安新艾电气技术有限公司 一种直流微电网系统及其控制方法
CN116247778A (zh) * 2023-03-31 2023-06-09 深圳市正浩创新科技股份有限公司 供电电路的控制方法及储能设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209516643U (zh) * 2019-03-01 2019-10-18 重庆水利电力职业技术学院 能源路由器
CN111231713A (zh) * 2020-03-27 2020-06-05 上海电气集团股份有限公司 一种电动汽车充放电系统及控制方法
CN112421600A (zh) * 2020-10-21 2021-02-26 国网河北省电力有限公司雄安新区供电公司 一种高灵活性户用直流供电系统及其供电方法
CN112838612A (zh) * 2020-12-18 2021-05-25 西安新艾电气技术有限公司 一种直流微电网系统及其控制方法
CN116247778A (zh) * 2023-03-31 2023-06-09 深圳市正浩创新科技股份有限公司 供电电路的控制方法及储能设备

Also Published As

Publication number Publication date
CN116247778A (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
WO2024199094A1 (zh) 供电电路的控制方法、供电电路及储能设备
CN114899913A (zh) 一种混合储能逆变器离网模式下电池充放电电流控制方法
US9190915B2 (en) Electric-power conversion device
JP2012135179A (ja) 放電制御装置及び放電制御方法
WO2012144358A1 (ja) 電力供給装置、電力供給装置の制御方法、および直流給電システム
JP2019106869A (ja) 高電圧電池管理及び平衡化回路並びにその応用
CN114928102A (zh) 一种分布式储能光伏智能发电系统
CN110970928A (zh) 一种光伏与市电同时互补供电的储能离网逆变器及控制方法
CN114844099A (zh) 一种基于光储柴微网系统的电池补电方法与终端
CN116345514A (zh) 储能系统和储能管理系统
CN115483744A (zh) 一种储能系统的转换电源和自主补电方法
CN116365653B (zh) 供电电路、功率转换设备及储能设备
CN109861200A (zh) 离网黑启动的光储直流电网系统及其运行方法
CN211579680U (zh) 一种锂电池直流电源系统
EP4027476A1 (en) Power energy storage system and energy storage power supply system
WO2024255013A1 (zh) 一种智能家庭储能系统及其实现方法
CN116365652A (zh) 电池包控制方法、电池包及储能设备
JP6722295B2 (ja) 電力変換システム、電力供給システムおよび電力変換装置
CN212162838U (zh) 电池均衡管理电路
CN220306999U (zh) 一种电源管理装置及供电系统
CN222147556U (zh) 一种逆变器电路、光伏系统及用电设备
CN219980490U (zh) 一种可多途径充电的储能系统
CN222169332U (zh) 一种具有抗冲击负荷功能的新型储能系统
CN115313612B (zh) 48v直流储备一体电源系统,其充放电控制方法与应用
US11509142B2 (en) Electrical power system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24777883

Country of ref document: EP

Kind code of ref document: A1