WO2024193166A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2024193166A1
WO2024193166A1 PCT/CN2023/142359 CN2023142359W WO2024193166A1 WO 2024193166 A1 WO2024193166 A1 WO 2024193166A1 CN 2023142359 W CN2023142359 W CN 2023142359W WO 2024193166 A1 WO2024193166 A1 WO 2024193166A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
function network
user plane
pin
plane function
Prior art date
Application number
PCT/CN2023/142359
Other languages
English (en)
French (fr)
Inventor
于游洋
张继东
李汉成
周汉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024193166A1 publication Critical patent/WO2024193166A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels

Definitions

  • the present application relates to the field of communication technology, and in particular to a communication method and device.
  • multiple terminal devices can form a group, such as various terminal devices in a home forming a group.
  • multiple terminal devices can also form a group, such as the terminal devices of enterprise employees forming a group.
  • Such a group composed of multiple terminal devices can be called a personal internet of things network (PIN).
  • PIN members may need to communicate across regions, and for this purpose, a connection needs to be established between PIN members that communicate across regions. Taking the home PIN as an example, if a terminal device that moves to the far field needs to access the terminal device at home, it needs to establish a connection with the terminal device at home.
  • the fifth-generation mobile communication (5th-generation, 5G) core network supports cross-regional communication between user plane functional network elements in two regions by establishing tunnels. Different members in the same PIN can share the same tunnel, but different tunnels need to be established between members of different PINs. If the number of PINs for cross-regional communication is large, the number of tunnels that need to be established between user plane functional network elements is also large, and network resources are consumed more.
  • the embodiments of the present application provide a communication method and device for reducing the number of tunnels established between user plane functional network elements during cross-regional communication and reducing the consumption of network resources.
  • an embodiment of the present application provides a communication method, which can be executed by a first user plane function network element, or by a component of the first user plane function network element, without limitation.
  • the first user plane function network element can obtain the endpoint information of the second user plane function network element; and transmit the service data of at least one PIN according to the endpoint information of the second user plane function network element.
  • the endpoint information may include a tunnel endpoint identifier (TEID) and an Internet protocol (IP) address, without limitation.
  • TEID tunnel endpoint identifier
  • IP Internet protocol
  • the first user plane functional network element can transmit the service data of one PIN or transmit the service data of multiple PINs according to the endpoint information of the second user plane functional network element, which means that when the first user plane functional network element and the second user plane functional network element are located in different areas, the first user plane functional network element can transmit the service data of multiple PINs based on the endpoint information of the second user plane functional network element, that is, the first user plane functional network element can realize cross-regional communication of multiple PINs with the second user plane functional network element through one tunnel.
  • the embodiment of the present application can reduce the number of tunnels established between the first user plane functional network element and the second user plane functional network element, thereby reducing the consumption of network resources and improving the utilization of network resources.
  • the first user plane function network element obtains the endpoint information of the second user plane function network element by: the first user plane function network element receives a first message from the session management function network element, the first message is used to instruct the first user plane function network element to allocate the endpoint information of the first user plane function network element; according to the first message, sends the endpoint information of the first user plane function network element to the session management function network element; and, receives the endpoint information of the second user plane function network element from the session management function network element.
  • the first user plane function network element can establish a tunnel with the second user plane function network element under the triggering of the session management function, and obtain the endpoint information of the second user plane function network element during the tunnel establishment process.
  • the first message may instruct the first user plane function network element to allocate endpoint information of the first user plane function network element in the following manner: the first message includes first indication information, and the first indication information is used to instruct the first user plane function network element to allocate endpoint information of the first user plane function network element.
  • the first message itself can be used to indicate the first user plane function network element to allocate the endpoint information of the first user plane function network element, or it can carry the first indication information to indicate the first user plane function network element to allocate the endpoint information of the first user plane function network element.
  • the implementation method is flexible.
  • the method may further include: the first user plane function network element sends an identifier of at least one PIN served by the first user plane function network element to the session management function network element.
  • the first user plane function network element sends an identifier of at least one PIN served by the first user plane function network element to the second user plane function network element through the session management function network element.
  • the first user plane function network element sends the identifier of at least one PIN of its own service to the session management function network element, so that the session management function network element forwards the identifier of at least one PIN served by the first user plane function network element to the second user plane function network element, and then the second user plane function network element can associate the endpoint information of the first user plane function network element with the identifier of at least one PIN served by the first user plane function network element.
  • the above method may also include: the first user plane function network element can obtain the identifier of at least one PIN served by the second user plane function network element; and associate the endpoint information on the second user plane function network element side with the identifier of at least one PIN served by the second user plane function network element.
  • the first user plane function network element can associate the endpoint information of the second user plane function network element with the identifier of at least one PIN served by the second user plane function network element, so that after subsequently receiving the service data of the at least one PIN, the service data of the at least one PIN can be transmitted according to the endpoint information of the second user plane function network element.
  • At least one PIN served by the second user plane functional network element includes a first PIN.
  • the above method may also include: the first user plane functional network element receives a first data packet from a first terminal device based on a first session, wherein the first session is a session of the first PIN; the first user plane functional network element transmits the service data of at least one personal Internet of Things network PIN according to the endpoint information of the second user plane functional network element.
  • the first user plane functional network element sends a second data packet to the second user plane functional network element through the endpoint information of the second user plane functional network element according to the first PIN, and the service data included in the first data packet is the same as the service data included in the second data packet.
  • the first user plane function network element before sending the second data packet to the second user plane function network element through the endpoint information of the second user plane function network element, can also encapsulate the header outside the first data packet to obtain the second data packet, wherein the header carries the identifier of the first PIN.
  • the first user plane function network element before sending the second data packet to the second user plane function network element through the endpoint information of the second user plane function network element, can also determine, based on the destination address of the first data packet, that the destination address of the first data packet is not the address allocated by the first user plane function network element; and determine the endpoint information of the second user plane function network element based on the association relationship between the endpoint information of the second user plane function network element and the identifier of at least one PIN served by the second user plane function network element and the identifier of the first PIN.
  • the first user plane functional network element may also receive a second message from the session management functional network element, wherein the second message is used to request establishment of a first session of the first PIN; and establish the first session based on the second message.
  • the first user plane function network element can send the service data of the PIN to the second user plane function network element according to the endpoint information of the second user plane function network element.
  • At least one PIN served by the first user plane functional network element includes a second PIN.
  • the above method may also include: the first user plane functional network element receives a third data packet from the second user plane functional network element, and the third data packet header includes an identifier of the second PIN; determines a second session based on the second PIN and/or the destination address of the third data packet, wherein the second session is a session of the second PIN; and, sends a fourth data packet based on the second session, and the service data included in the fourth data packet is the same as the service data included in the third data packet.
  • the first user plane function network element can receive the service data of the PIN from the second user plane function network element.
  • an embodiment of the present application provides a communication method, which can be executed by a first session management function network element, or by a component of the first session management function network element, without limitation.
  • the first session management function network element can obtain the endpoint information of the second user plane function network element; and send the endpoint information of the second user plane function network element to the first user plane function network element; wherein the endpoint information of the second user plane function network element is used by the first user plane function network element to transmit the service data of at least one personal Internet of Things network PIN.
  • the method may further include: the first session management function network element sends a first message to the first user plane function network element, the first message being used to instruct the first user plane function network element to allocate the endpoint information of the first user plane function network element; receiving the endpoint information of the first user plane function network element from the first user plane function network element; And, sending the endpoint information of the first user plane function network element to the second user plane function network element.
  • the first session management function network element may send the endpoint information of the first user plane function network element to the second user plane function network element in the following manner: the first session management function network element sends the endpoint information of the first user plane function network element to the second user plane function network element through the second session management function network element.
  • At least one PIN served by the first user plane function network element includes a first PIN.
  • the method may further include: the first session management function network element may receive a third message from a third session management function network element, the third message including an identifier of at least one session management function network element providing services for the first PIN and/or an identifier of at least one user plane function network element providing services for the first PIN, wherein at least one session management function network element includes a second session management function network element, and at least one user plane function network element includes a second user plane function network element.
  • the first session management function network element can obtain the identifier of at least one session management function network element that provides services for the first PIN and/or the identifier of at least one user plane function network element that provides services for the first PIN, so that the first session management function network element can determine whether to establish a tunnel between the first user plane function network element and the at least one user plane function network element based on the identifier of the at least one session management function network element and/or the identifier of the at least one user plane function network element, so as to subsequently transmit the service data of the first PIN across regions.
  • the method may further include: the first session management function network element determines to send the first message to the first user plane function network element according to the identifier of the second session management function network element and/or the identifier of the second user plane function network element.
  • the first session management function network element can determine whether to establish a tunnel between the first user plane function network element and the second user plane function network element based on the identifier of the second session management function network element and/or the identifier of the second user plane function network element. If the tunnel is not established, the first session management function network element can trigger the first user plane function network element to establish a tunnel between the first user plane function network element and the second user plane function network element.
  • the first session management function network element may further send a fourth message to the third session management function network element, where the fourth message is used to subscribe to an event of the first PIN.
  • the third session management function network element can actively send the third message to the first session management function network element, or can also send the third message to the first session management function network element in response to the subscription message of the first session management function network element.
  • the implementation method is flexible.
  • the above method may also include: the first session management function network element sends the identifier of the first PIN and first information to the third session management function network element, and the first information includes the identifier of the first session management function network element and/or the identifier of the first user plane function network element.
  • the first session management function network element can report the identifier of the first PIN and the identifier of the first session management function network element providing services for the first PIN and/or the identifier of the first user plane function network element providing services for the first PIN to the third session management function network element.
  • the third message is used to instruct to establish a tunnel for the first PIN between the first user plane function network element and the second user plane function network element.
  • the third message may indicate establishment of a tunnel for the first PIN between the first user plane function network element and the second user plane function network element in the following manner: the third message includes second indication information, and the second indication information is used to indicate establishment of a tunnel for the first PIN between the first user plane function network element and the second user plane function network element.
  • the third message itself can be used to indicate the establishment of a tunnel for the first PIN between the first user plane function network element and the second user plane function network element, or it can be used to indicate the establishment of a tunnel for the first PIN between the first user plane function network element and the second user plane function network element through the included second indication information, and the implementation method is flexible.
  • the first session management function network element may also receive a fifth message from the access management function network element, wherein the fifth message is used to request to establish a first session for the first terminal device with the first PIN; and, based on the fifth message, send a second message to the first user plane function network element, wherein the second message is used to request to establish a first session for the first PIN.
  • the first message may instruct the first user plane function network element to allocate endpoint information of the first user plane function network element in the following manner: the first message includes first indication information, and the first indication information is used to instruct the first user plane function network element to allocate endpoint information of the first user plane function network element.
  • the first session management function network element may obtain the endpoint information of the second user plane function network element in the following manner: the first session management function network element receives the endpoint information of the second user plane function network element from the second session management network element.
  • the method may further include: the first session management function network element receives a message from the first user plane function The identifier of at least one PIN of the first user plane function network element service provided by the network element; and the identifier of at least one PIN of the first user plane function network element service provided by the network element are sent to the second user plane function network element.
  • the method may further include: the first session management function network element receiving an identifier of at least one PIN served by the second user plane function network element; and sending an identifier of at least one PIN served by the second user plane function network element to the first user plane function network element.
  • an embodiment of the present application provides a communication method, which can be executed by a third session management function network element, or by a component of the third session management function network element, without limitation.
  • the third session management function network element receives endpoint information of a second user plane function network element from a second user plane function network element; and sends endpoint information of the second user plane function network element to the first user plane function network element; wherein the endpoint information of the second user plane function network element is used by the first user plane function network element to transmit service data of at least one personal Internet of Things network PIN.
  • the third session management function network element may also send a first message to the first user plane function network element, the first message being used to instruct the first user plane function network element to allocate the endpoint information of the first user plane function network element; receive the endpoint information of the first user plane function network element from the first user plane function network element; and send the endpoint information of the first user plane function network element to the second user plane function network element.
  • the third session management function network element may also receive an identifier of at least one PIN of a first user plane function network element service from the first user plane function network element; and send an identifier of at least one PIN of a first user plane function network element service to the second user plane function network element.
  • the third session management function network element may also receive an identifier of at least one PIN of a second user plane function network element service from the second user plane function network element; and send an identifier of at least one PIN of a second user plane function network element service to the first user plane function network element.
  • the first message may instruct the first user plane function network element to allocate endpoint information of the first user plane function network element in the following manner: the first message includes first indication information, and the first indication information is used to instruct the first user plane function network element to allocate endpoint information of the first user plane function network element.
  • the third session management function network element receives the endpoint information of the second user plane function network element from the second user plane function network element, which can be: the third session management function network element receives the endpoint information of the second user plane function network element from the second user plane function network element through the second session management function network element; the third session management function network element sends the endpoint information of the second user plane function network element to the first user plane function network element, which can be: the third session management function network element sends the endpoint information of the second user plane function network element to the first user plane function network element through the first session management function network element.
  • the third session management function network element may also receive the endpoint information of the first user plane function network element from the first session management function network element; and send the endpoint information of the first user plane function network element to the second user plane function network element through the second session management function network element.
  • the third session management function network element may also receive an identifier of at least one PIN of a first user plane function network element service from the first session management function network element; send an identifier of at least one PIN of a first user plane function network element service to the second user plane function network element through the second session management function network element; receive an identifier of at least one PIN of a second user plane function network element service from the second session management function network element; and send an identifier of at least one PIN of a second user plane function network element service to the first session management function network element.
  • At least one PIN includes a first PIN
  • the third session management function network element may also send a third message to the second session management function network element, the third message including an identifier of at least one session management function network element providing services for the first PIN and/or an identifier of at least one user plane function network element providing services for the first PIN.
  • the third message is used to instruct to establish a tunnel for the first PIN between the first user plane function network element and the second user plane function network element.
  • the third message may indicate establishment of a tunnel for the first PIN between the first user plane function network element and the second user plane function network element in the following manner: the third message includes second indication information, and the second indication information is used to indicate establishment of a tunnel for the first PIN between the first user plane function network element and the second user plane function network element.
  • the third session management function network element may also receive a fourth message from the second session management function network element, where the fourth message is used to subscribe to an event of the first PIN.
  • the at least one PIN includes a first PIN
  • the third session management function network element may also receive a The identifier of the first PIN of the first session management device and the first information, the first information including the identifier of the first session management function network element and/or the identifier of the first user plane function network element.
  • the third session management function network element may also create a context of the first PIN based on the first information, and the context of the first PIN includes the first information; or, the third session management function network element adds the first information to the context of the first PIN, and determines, based on the context of the first PIN, the identifier of at least one session management function network element that provides services for the first PIN and/or determines the identifier of at least one user plane function network element that provides services for the first PIN.
  • an embodiment of the present application provides a communication device.
  • the communication device is used to execute the method described in the first aspect and any possible implementation thereof.
  • the communication device is, for example, a first user plane function network element, or a functional module in the first user plane function network element, such as a baseband device or a chip system.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication device includes a processing unit (sometimes also referred to as a processing module) and a transceiver unit (sometimes also referred to as a transceiver module).
  • the transceiver unit can implement a sending function and a receiving function.
  • a sending unit sometimes also referred to as a sending module
  • a receiving unit sometimes also referred to as a receiving module
  • the sending unit and the receiving unit can be the same functional unit, which is called a transceiver unit, and the functional unit can implement a sending function and a receiving function; or, the sending unit and the receiving unit can be different functional units, and the transceiver unit is a general term for these functional units.
  • an embodiment of the present application provides a communication device.
  • the communication device is used to execute the method described in the second aspect and any possible implementation thereof.
  • the communication device is, for example, a first session management function network element, or a functional module in the first session management function network element, such as a baseband device or a chip system.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication device includes a processing unit (sometimes also referred to as a processing module) and a transceiver unit (sometimes also referred to as a transceiver module).
  • the transceiver unit can implement a sending function and a receiving function.
  • a sending unit sometimes also referred to as a sending module
  • a receiving unit sometimes also referred to as a receiving module
  • the sending unit and the receiving unit can be the same functional unit, which is called a transceiver unit, and the functional unit can implement a sending function and a receiving function; or, the sending unit and the receiving unit can be different functional units, and the transceiver unit is a general term for these functional units.
  • an embodiment of the present application provides a communication device.
  • the communication device is used to execute the method described in the third aspect and any possible implementation thereof.
  • the communication device is, for example, a third session management function network element, or a functional module in the third session management function network element, such as a baseband device or a chip system.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication device includes a processing unit (sometimes also referred to as a processing module) and a transceiver unit (sometimes also referred to as a transceiver module).
  • the transceiver unit can implement a sending function and a receiving function.
  • a sending unit sometimes also referred to as a sending module
  • a receiving unit sometimes also referred to as a receiving module
  • the sending unit and the receiving unit can be the same functional unit, which is called a transceiver unit, and the functional unit can implement a sending function and a receiving function; or, the sending unit and the receiving unit can be different functional units, and the transceiver unit is a general term for these functional units.
  • an embodiment of the present application further provides a communication device.
  • the communication device may include one or more processors.
  • the communication device may also include a memory.
  • the memory is used to store one or more computer programs or instructions.
  • the one or more processors are used to execute the one or more computer programs or instructions stored in the memory, so that the communication device executes the method described in the first aspect and any possible implementation thereof, or executes the method described in the second aspect and any possible implementation thereof, or executes the method described in the third aspect and any possible implementation thereof.
  • an embodiment of the present application further provides a communication system, which includes one or more of the following: the communication device described in the fourth aspect, the communication device described in the fifth aspect, or the communication device described in the sixth aspect.
  • an embodiment of the present application provides a computer-readable storage medium, which is used to store computer programs or instructions.
  • the computer-readable storage medium is executed, the method described in the first aspect and any possible implementation thereof is implemented, or the method described in the second aspect and any possible implementation thereof is implemented, or the method described in the third aspect and any possible implementation thereof is implemented.
  • an embodiment of the present application also provides a computer program product comprising instructions, which, when executed on a computer, enables the method described in the first aspect and any possible implementation thereof to be implemented, or enables the method described in the second aspect and any possible implementation thereof to be implemented, or enables the method described in the third aspect and any possible implementation thereof to be implemented.
  • an embodiment of the present application further provides a chip, wherein the chip is coupled to a memory and is used to read and execute program instructions in the memory, so that the device where the chip is located implements the method described in the first aspect and any possible implementation thereof. Or implement the method described in the above second aspect and any possible implementation thereof, or implement the method described in the above third aspect and any possible implementation thereof.
  • FIG1a is a schematic diagram of a 5G network architecture based on a service-oriented architecture
  • FIG1b is a schematic diagram of a 5G network architecture based on a point-to-point interface
  • FIG1c is a schematic diagram of another 5G network architecture based on a point-to-point interface
  • FIG2a is a schematic diagram of a network architecture for cross-regional communication
  • FIG2b is a schematic diagram of another cross-region communication network architecture
  • FIG3 is a flow chart of a communication method provided in an embodiment of the present application.
  • FIG4 is a flow chart of a communication method provided in an embodiment of the present application.
  • FIG5 is a flow chart of another communication method provided in an embodiment of the present application.
  • FIG6 is a flow chart of another communication method provided in an embodiment of the present application.
  • FIG7 is a flow chart of another communication method provided in an embodiment of the present application.
  • FIG8 is a flow chart of another communication method provided in an embodiment of the present application.
  • FIG9 is a schematic diagram of a transmission path provided in an embodiment of the present application.
  • FIG10 is a flow chart of another communication method provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of another transmission path provided in an embodiment of the present application.
  • FIG12 is a flow chart of another communication method provided in an embodiment of the present application.
  • FIG13 is a schematic diagram of another transmission path provided in an embodiment of the present application.
  • FIG14 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG15 is a schematic diagram of the structure of another communication device provided in an embodiment of the present application.
  • “multiple” may refer to two or more than two. In view of this, in the embodiments of the present application, “multiple” may also be understood as “at least two". "At least one” may be understood as one or more, for example, one, two or more. For example, “including at least one” means including one, two or more. For example, including at least one of A, B and C, then A, B, C, A and B, A and C, B and C, or A, B and C may be included. "And/or” describes the association relationship of associated objects. Specifically, there may be three relationships. For example, A and/or B may represent: A exists alone, A and B exist at the same time, and B exists alone. In addition, the character "/", unless otherwise specified, generally indicates that the previously associated objects are in an "or" relationship.
  • system and “network” in the embodiments of the present application may be used interchangeably, and “according to” and “based on” may be used interchangeably.
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are generally used to distinguish different objects, and are not used to limit the order, timing, priority or importance of multiple objects.
  • the first user plane function network element and the second user plane function network element in the embodiments of the present application are used to distinguish two user plane function network elements, and do not limit the priority or importance of the two user plane function network elements.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as long term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD) system, fifth generation (5G) communication system, or new radio (NR) system, and can also be applied to future communication systems or other similar communication systems.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • NR new radio
  • FIG1a provides a network architecture of a 5G communication system based on a service-oriented architecture, wherein the network architecture may include a user equipment (UE) and an operator network part.
  • the network architecture may also include a data network (DN) and/or an application function (AF) network element.
  • DN data network
  • AF application function
  • UE also known as terminal equipment, is a device with wireless transceiver capabilities. It can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; it can also be deployed on the water (such as ships); it can also be deployed in the air (such as airplanes, balloons, and satellites).
  • UE can be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, a wireless terminal in industrial control, a wireless terminal in self driving, a wireless terminal in remote medical, a wireless terminal in smart grid, a wireless terminal in transportation safety, a wireless terminal in a smart city, a wireless terminal in a smart home, a terminal device in the Internet of Things (IOT) (such as a terminal device in a smart factory, a terminal device in the smart manufacturing industry, etc.), a terminal device supporting sparklink short-range communication technology, etc.
  • IOT Internet of Things
  • the operator network may include, but is not limited to, one or more of the following network elements: network storage function network element, access management function network element, policy control function network element, unified data management network element, session management function network element, user plane function network element, and access network (AN).
  • network elements network storage function network element, access management function network element, policy control function network element, unified data management network element, session management function network element, user plane function network element, and access network (AN).
  • the part other than the access network part may be referred to as the core network (CN) part.
  • the operator network may also include AF.
  • the above-mentioned terminal device can establish a connection with the operator network through the interface provided by the operator network (such as N1, etc.), and use the data and/or voice services provided by the operator network.
  • the terminal device can also access the DN through the operator network, use the operator services deployed on the DN, and/or services provided by a third party.
  • the above-mentioned third party may be a service provider other than the operator network and the terminal device, and can provide data and/or voice services to the terminal device.
  • the specific form of expression of the above-mentioned third party can be determined according to the actual application scenario, and is not limited here.
  • the network storage function network element is responsible for providing the network element discovery function and providing network element information corresponding to the network element type based on the requests of other network elements.
  • the network storage function network element can also provide network element management services, such as network element registration, update, deregistration, and network element status subscription and push.
  • the network storage function network element can be a network storage function network element (network repository function, NRF) network element.
  • NRF network repository function
  • the network storage function network element can also have other names without limitation.
  • the access management function network element is responsible for the access control and mobility management of terminal devices accessing the operator's network, such as mobile state management, allocation of user temporary identity, authentication and authorization, etc.
  • the access management function network element can be the access and mobility management function (AMF) network element.
  • AMF access and mobility management function
  • the access management function network element can also have other names, without limitation.
  • the unified data management network element is responsible for generating authentication credentials, user identification processing (such as storing and managing user permanent identities, etc.), contract data management, etc.
  • the unified data management network element can be a unified data management (UDM) network element.
  • the unified data management network element can also have other names without limitation.
  • the session management function network element is mainly responsible for session management in the mobile network, such as session establishment, modification, or release.
  • the session management function network element can also allocate Internet protocol (IP) addresses to users, select user plane function network elements that provide message forwarding functions, etc.
  • IP Internet protocol
  • the session management function network element can be a session management function (SMF) network element.
  • SMF session management function
  • the session management function network element can also have other names, without limitation.
  • the policy control function network element mainly provides policy rules and is responsible for obtaining user contract information related to policy decisions.
  • the policy control function network element can be a policy and charging rules function (PCRF) network element.
  • the policy control function network element can be a policy control function (PCF) network element.
  • PCF policy control function
  • the policy control function network element can also have other names without limitation.
  • the PCFs connected to AMF and SMF correspond to AM PCF (PCF for access and mobility control) and SM PCF (PCF for session management), respectively, and may not be the same PCF entity in actual deployment scenarios.
  • the user plane function network element is responsible for receiving and forwarding user data. For example, user data can be received from the DN and transmitted to the terminal device through the access network device; the user plane function network element can also receive user data from the terminal device through the access network device and forward it to the DN.
  • the user plane function network element can be a user plane function (UPF) network element.
  • the user plane functional network element can also have other names without limitation.
  • the AN includes AN equipment.
  • the AN equipment is used to access the terminal equipment to the wireless network.
  • the AN equipment can also be called an access network element, a base station, a radio access network (RAN) node (or equipment, or network element), an access point (AP), a small tower, etc.
  • RAN radio access network
  • AP access point
  • next generation node B in the 5G communication system
  • the evolved node B in the LTE system
  • the radio network controller RNC
  • the node B NB
  • the base station controller BSC
  • the base transceiver station BTS
  • the home node B HNB
  • the baseband unit BBU
  • WiFi wireless fidelity
  • the devices with base station functions may be different.
  • the device in a 5G communication system, the device may be called gNB or 5G NodeB; in an LTE system, the device may be called an evolved NodeB (eNB or eNodeB); in a third generation (3G) communication system, it may be called a NodeB, etc.
  • gNB 5G NodeB
  • eNB evolved NodeB
  • 3G third generation
  • DN is a network outside the mobile communication system that can provide services to users.
  • DN can be a packet data network (PDN), such as the Internet, Internet protocol multimedia service (IMS) network, some application-specific data networks, Ethernet, Internet protocol (IP) local network, etc.
  • PDN packet data network
  • IMS Internet protocol multimedia service
  • IP Internet protocol
  • DN can deploy a variety of services to provide data and/or voice services to terminal devices.
  • AS application servers
  • AF mainly transmits the requirements of the application side to the network side, such as quality of service (QoS) requirements or user status event subscription.
  • QoS quality of service
  • AF can be a third-party functional entity or an application service deployed by an operator, such as IMS voice call service.
  • Figure 1a mainly introduces the network elements that may be involved in the various embodiments of the present application.
  • the communication system shown in Figure 1a may also involve other network elements.
  • the core network may also include one or more of the following: unified data storage (UDR) network element, network slice selection function (NSSF) network element, authentication server function (AUSF) network element, or network exposure function (NEF) network element, etc., not shown in Figure 1a.
  • UDR unified data storage
  • NSSF network slice selection function
  • AUSF authentication server function
  • NEF network exposure function
  • Nnrf, Namf, Npcf, Nsmf, Nudm, Naf, N1, N2, N3, N4, and N6 are interface serial numbers.
  • the meanings of these interface serial numbers can be found in the definition of the 3rd Generation Partnership Project (3GPP) standard protocol and are not limited here.
  • the 5G network architecture supports the access of 3GPP-defined radio access technology (RAT) to the core network.
  • the 3GPP-defined RAT includes long term evolution (LTE), 5G RAN, etc.
  • the 5G network architecture also supports non-3GPP (N3G) access technology to access the core network through non-3GPP interworking function (N3IWF) or next generation packet data gateway (ngPDG).
  • N3G non-3GPP interworking function
  • ngPDG next generation packet data gateway
  • the 5G network architecture based on the point-to-point interface is shown in Figure 1b.
  • the access network includes a 3GPP access network and an untrusted non-3GPP access network.
  • the access device in the 3GPP access network can be called a RAN device.
  • the access device in the untrusted non-3GPP access network can be called an N3IWF device.
  • the N3IWF device can include, for example, a router, etc.
  • Figure 1b is a schematic diagram of a 5G network architecture based on a point-to-point interface.
  • the introduction of the functions of the network elements therein can refer to the introduction of the functions of the corresponding network elements in Figure 1a, and will not be repeated here.
  • the main difference between Figure 1b and Figure 1a is that the interface between the network elements in Figure 1b is a point-to-point interface, while the interface between the network elements in Figure 1a is a service-oriented interface.
  • N1, N2, N3, N4, N6, N11, NWu, and Y1 are interface serial numbers. The meanings of these interface serial numbers can be found in the meanings defined in the 3GPP standard protocol, without limitation.
  • the 5G network architecture based on the point-to-point interface is shown in FIG1c.
  • the access network includes a 3GPP access network and a trusted non-3GPP access network
  • the access device in the trusted non-3GPP access network can be called a trusted non-3GPP access gateway (trusted non-3GPP gateway function, TNGF).
  • the access network includes a 3GPP access network and a wired network, such as a fixed home network, etc., and the TNGF is replaced by a wired network access gateway (wireline access gateway function, W-AGF) (not shown in FIG1c).
  • the access network devices between the UE and the access gateway may include a WLAN access point, a fixed access network device (fixed access network, FAN), a switch, a router, etc.
  • Figure 1c is a schematic diagram of a 5G network architecture based on a point-to-point interface.
  • the functions of the network elements can be found in the corresponding Figure 1a. The introduction of the functions of the network elements is not repeated here.
  • the main difference between Figure 1c and Figure 1a is that the interface between the network elements in Figure 1c is a point-to-point interface, while the interface between the network elements in Figure 1a is a service-oriented interface.
  • N1, N2, N3, N6, N11, NWu and Uu are interface serial numbers. The meanings of these interface serial numbers can be found in the meanings defined in the 3GPP standard protocol without limitation.
  • the core network can adopt the 3GPP access core network architecture and service interface shown in Figure 1a, or can adopt the network architecture and point-to-point interface protocol shown in Figure 1b or Figure 1c.
  • the network element or function shown in any communication architecture in FIG. 1a, FIG. 1b and FIG. 1c can be a network element in a hardware device, a software function running on dedicated hardware, or a virtualized function instantiated on a platform (e.g., a cloud platform).
  • a platform e.g., a cloud platform.
  • the above network element or function can be implemented by one device, or by multiple devices together, or can be a functional module in one device, which is not specifically limited.
  • the device names mentioned in this application may omit "network element".
  • SMF network element and SMF express the same meaning.
  • UPF network element and UPF express the same meaning.
  • the communication system shown in any of Figures 1a, 1b and 1c does not constitute a limitation on the communication system to which the embodiments of the present application are applicable.
  • the communication method provided in the embodiments of the present application can also be applicable to various communication systems, such as: LTE communication system, 5G communication system, 6G communication system and future communication system, vehicle to everything (V2X), LTE-vehicle (LTE-V), vehicle to vehicle (V2V), vehicle networking, machine type communications (MTC), IoT, LTE-machine to machine (LTE-M), machine to machine (M2M), Internet of Things, etc.
  • V2X vehicle to everything
  • LTE-V LTE-vehicle
  • V2V vehicle networking
  • MTC machine type communications
  • IoT LTE-machine to machine
  • M2M machine to machine
  • Internet of Things etc.
  • each network element may have other names.
  • the physical device may also have other names.
  • multiple terminal devices can form a group, such as various terminal devices in a user's home forming a group.
  • multiple terminal devices can also form a group, such as the terminal devices of enterprise employees forming a group.
  • Such a group composed of multiple terminal devices can be called a personal Internet of Things (IoT) network (personal internet of things network, PIN).
  • IoT personal Internet of Things
  • PIN personal internet of things network
  • PIN can be a subnet composed of multiple terminal devices in a home, or a subnet composed of multiple terminal devices in an enterprise (or campus).
  • PIN members may need to communicate across regions, so a connection needs to be established between PIN members. Taking the home PIN as an example, if a terminal device moved to the far field needs to access the terminal device at home, it needs to establish a connection with the terminal device at home.
  • FIG2a provides a network architecture of an inter-regional communication system.
  • FIG2a takes a home PIN as an example.
  • the home can be replaced by a campus.
  • the system mainly enhances the functions of SMF and UPF.
  • the enhanced SMF is mainly responsible for the session management of PINs in the entire public land mobile network (PLMN), or for the session management of PINs in at least one area in the PLMN.
  • the enhanced SMF can still be called SMF, or can also be called PIN-SMF.
  • the embodiment of the present application does not limit the name of the enhanced SMF.
  • PIN-SMF is taken as an example below.
  • the number of PIN-SMFs deployed in the PLMN can be one or more, without limitation.
  • the number of PIN-SMFs can be 2, recorded as PIN-SMF1 and PIN-SMF2, the PIN-SMF1 is responsible for the session management of PIN1 to PIN5000, and the PIN-SMF2 is responsible for the session management of PIN5001 to PIN10000.
  • FIG2 a takes a PIN-SMF as an example, and the PIN-SMF is responsible for session management of PINs in areas 1 , 2 , and 3 .
  • the enhanced UPF is mainly responsible for receiving and forwarding user data of PINs in the entire PLMN, or for receiving and forwarding user data of all or part of the PINs in an area of the PLMN.
  • the enhanced UPF can still be called UPF, or it can also be called PIN-UPF.
  • the name of the enhanced UPF is not limited in the embodiment of the present application.
  • the PIN-UPF is taken as an example below.
  • the number of PIN-UPFs deployed in the PLMN can be one or more, without limitation. Unless otherwise specified, the deployment of multiple PIN-UPFs in the PLMN is taken as an example below.
  • One PIN-UPF or multiple PIN-UPFs can be deployed in one area, without limitation.
  • Figure 2a takes the deployment of one PIN-UPF in one area as an example.
  • PIN-UPF1 is deployed in area 1, responsible for receiving and forwarding user data of all PINs in area 1;
  • PIN-UPF2 is deployed in area 2, responsible for receiving and forwarding user data of all PINs in area 2;
  • PIN-UPF3 is deployed in area 3, responsible for receiving and forwarding user data of all PINs in area 3.
  • PIN-UPFs in different regions may establish connections, such as N19 connections, to achieve cross-region communication.
  • a connection may or may not be established between a PIN-UPF and a PIN-SMF, as indicated by a dotted line in FIG2a.
  • One or more SMFs can be deployed in an area to be responsible for the session management of PINs in the area.
  • the SMF deployed in this area can still be called SMF, or it can also be called local SMF (denoted as L-SMF).
  • L-SMF local SMF
  • the name of the SMF deployed in this area is not limited in the embodiment of the present application.
  • L-SMF is taken as an example below. Connections can be established between multiple L-SMFs in an area. Connections may or may not be established between multiple L-SMFs in different areas, which is represented by dotted lines in Figure 2a.
  • a connection can be established between the PIN-SMF and the L-SMFs in multiple areas served by the PIN-SMF.
  • a connection can be established between the PIN-UPF and the L-SMFs in the area served by the PIN-UPF.
  • one or more UPFs may be deployed in an area to be responsible for receiving and forwarding user data of PINs in the area, as shown in Figure 2b.
  • the UPF deployed in this area may still be referred to as UPF, or may also be referred to as a local UPF (denoted as L-UPF).
  • L-UPF local UPF
  • the embodiment of the present application does not limit the name of the UPF deployed in this area.
  • the following text takes L-UPF as an example.
  • a connection may be established between multiple L-UPFs in an area, such as establishing an N19 connection, or no connection may be established, without limitation.
  • a connection may be established between a PIN-UPF and an L-UPF in the area served by the PIN-UPF, such as establishing an N19 connection.
  • N19 is the interface serial number. The specific meaning can be found in the meaning defined in the 3GPP standard protocol and is not limited.
  • the communication system shown in Figures 2a and 2b may also involve other network elements, such as AMF, UDM, UDR, NRF, etc., which are not shown in Figures 2a and 2b.
  • AMF Access Management Function
  • UDM User Data Management Function
  • UDR User Data Retention Function
  • NRF Network Radio Function
  • the 5G core network supports cross-regional communication between PIN-UPFs in two regions by establishing tunnels between the two regions. Different members in the same PIN can share the same tunnel, but different tunnels need to be established between members of different PINs. Then, when the number of PINs for cross-regional communication is large, the number of tunnels that need to be established between PIN-UPFs is also large, which is not conducive to management, and the signaling overhead of establishing tunnels is also large, resulting in large consumption of network resources.
  • the PIN network gateway function device (PIN element with gateway capability, PEGC) 1 and UE2 in FIG. 2a or FIG. 2b are members of PIN1, and UE2 moves from area 1 to area 2.
  • PEGC PIN element with gateway capability
  • UE2 moves from area 1 to area 2.
  • a connection needs to be established between UE2 and PEGC1, for example, Tunnel 1 is established between PIN-UPF1 and PIN-UPF2 for PIN1 to achieve cross-regional communication between UE2 and PEGC1.
  • PIN-UPF2 can achieve cross-regional communication between UE2 and UE1 through Tunnel 1.
  • PEGC1 and UE2 in FIG. 2a or FIG. 2b are members of PIN1
  • UE1 and UE2 are members of PIN2
  • UE2 moves from area 1 to area 2.
  • tunnel 1 is established between PIN-UPF1 and PIN-UPF2 for PIN1 to achieve cross-region communication between UE2 and PEGC1.
  • tunnel 1 established between PIN-UPF1 and PIN-UPF2 for PIN1 cannot be reused, so a connection needs to be established between UE2 and UE1, for example, tunnel 2 is established between PIN-UPF1 and PIN-UPF2 for PIN2 to achieve cross-region communication between UE2 and UE1. It can be seen that when the number of PINs for cross-region communication between PIN-UPF1 and PIN-UPF2 is large, more tunnels need to be established between PIN-UPF1 and PIN-UPF2, and network resources are consumed more.
  • an embodiment of the present application provides a communication method and device for reducing the number of tunnels established between UPFs during cross-regional communication and reducing the consumption of network resources.
  • the method can be applied to any communication system shown in Figure 1a, Figure 1b, Figure 1c, Figure 2a or Figure 2b, but is not limited thereto.
  • the technical terms involved in the embodiments of the present application are first introduced below.
  • the following text will refer to the first user plane function network element as the first UPF, the second user plane function network element as the second UPF, the first session management function network element as the first SMF, the second session management function network element as the second SMF, the third session management function network element as the third SMF, and the access management function network element as the AMF.
  • PIN which can also be called subnet, networking, PIN subnet, or PIN group
  • PIN can be understood as a network composed of at least one terminal device, a subnet composed of at least one terminal device, or a group composed of at least one terminal device.
  • a network composed of at least one terminal device in a home is another example.
  • the identifier of the PIN can be used to identify the PIN.
  • the identifier of the PIN can be the identifier of the PIN itself, or it can also be the data network name (DNN), or it can also be slice information, or it can also be DNN and slice information, etc.
  • the DNN and/or slice information can be used to implicitly identify the PIN.
  • the identifier of the PIN can be the DNN.
  • the slice information can uniquely identify the PIN, that is, the slice information and the PIN have a one-to-one correspondence
  • the identification of the PIN may be the slice information.
  • the combination of the DNN and the slice information can uniquely identify the PIN, that is, when the combination of the DNN and the slice information corresponds to the PIN one by one, the identification of the PIN may be the DNN and the slice information.
  • the first UPF may be a PIN-UPF or a component in a PIN-UPF in the network architecture shown in FIG. 2a or FIG. 2b, or may be an L-UPF or a component in an L-UPF in the network architecture shown in FIG. 2b, without limitation.
  • the following text takes the first UPF as an example of a PIN-UPF in the network architecture shown in FIG. 2a or FIG. 2b.
  • the first SMF may be the L-SMF or a component in the L-SMF in the network architecture shown in FIG. 2a or FIG. 2b, without limitation.
  • the first SMF and the first UPF are located in the same area.
  • the second UPF may be a PIN-UPF or a component in a PIN-UPF in the network architecture shown in FIG. 2a or FIG. 2b, or may be an L-UPF or a component in an L-UPF in the network architecture shown in FIG. 2b, without limitation. If the second UPF is a PIN-UPF (or a component in a PIN-UPF), the second UPF and the first UPF are located in different areas. To facilitate understanding of the embodiments of the present application, unless otherwise specified, the following text takes the second UPF as the PIN-UPF in the network architecture shown in FIG. 2a or FIG. 2b as an example.
  • the second SMF can be a PIN-SMF or a component in a PIN-SMF in the network architecture shown in FIG. 2a or FIG. 2b, or can be an L-SMF or a component in an L-SMF in the network architecture shown in FIG. 2a or FIG. 2b, without limitation. If the second SMF is an L-SMF (or a component in an L-SMF), the second SMF and the second UPF are located in the same area. In order to facilitate understanding of the embodiments of the present application, unless otherwise specified, the following text takes the second SMF as an L-SMF in the network architecture shown in FIG. 2a or FIG. 2b as an example.
  • the third SMF may be a PIN-SMF or a component in a PIN-SMF in the network architecture shown in FIG2a or FIG2b. If the second SMF is a PIN-SMF, the second SMF and the third SMF may be the same PIN-SMF or different PIN-SMFs without limitation.
  • connection established between UPF and UPF can be called a tunnel, or a channel, or a transmission path, etc., without limitation.
  • the tunnel can be a general packet radio service tunnel protocol user plane (GTP-U) tunnel, or a tunnel defined by other protocols, without limitation.
  • GTP-U general packet radio service tunnel protocol user plane
  • the following text takes a tunnel as an example.
  • the tunnel established between the first UPF and the second UPF is referred to as the first tunnel in the embodiment of the present application.
  • the first tunnel can be used to transmit the business data of one PIN or to transmit the business data of multiple PINs.
  • the first tunnel can be used to transmit the business data of one PIN.
  • the first UPF and the second UPF are PIN-UPFs in different areas, the first tunnel can be used to transmit the business data of one PIN or to transmit the business data of multiple PINs. It should be pointed out that the embodiment of the present application does not limit the specific division rules of the area.
  • business data of at least one PIN involved in the embodiments of the present application can be replaced with "business data of one PIN or business data of multiple PINs", and "business data of one or more PINs” can be replaced with "business data of one PIN or business data of multiple PINs", which will not be repeated below.
  • the interface between PIN-UPF and PIN-UPF can still be called N19 interface, or N19+ interface, or N20 interface, or Nx interface, etc., without limitation.
  • Fig. 3 shows a schematic flow chart of a communication method provided in an embodiment of the present application. As shown in Fig. 3, the method may include the following steps.
  • the first UPF obtains the endpoint information of the second UPF.
  • the endpoint information may include TEID and IP address, but the embodiments of the present application are not limited to this.
  • the endpoint information of the second UPF can be understood as the endpoint information of the first tunnel on the second UPF side.
  • the first tunnel can be used to transmit the business data of at least one PIN.
  • at least one PIN includes a first PIN.
  • the first UPF can obtain the endpoint information of the second UPF in response to establishing a tunnel between the first UPF and the second UPF for the first PIN, so as to establish a first tunnel for transmitting at least one PIN; or, after the first tunnel is established, the first UPF can obtain the endpoint information of the second UPF in response to the received business data of the first PIN, so as to forward the business data of the first PIN to the second UPF through the first tunnel.
  • the embodiments of the present application do not limit the triggering conditions for the first UPF to obtain the endpoint information of the second UPF.
  • the first UPF may obtain the endpoint information of the second UPF based on the following methods.
  • Mode 1 The first SMF sends the endpoint information of the second UPF to the first UPF; accordingly, the first UPF can receive the endpoint information of the second UPF from the first SMF.
  • the first SMF is an L-SMF, which is located in the same area as the first UPF.
  • Mode 2 The third SMF sends the endpoint information of the second UPF to the first UPF; accordingly, the first UPF can receive the endpoint information of the second UPF from the third SMF, where the third SMF is a PIN-SMF.
  • the first UPF can determine the endpoint information of the second UPF based on the parameters stored in itself. After the first tunnel between UPFs is established, the first UPF can determine the endpoint information of the second UPF based on the parameters stored in itself without restriction.
  • the first UPF transmits service data of at least one PIN according to the endpoint information of the second UPF.
  • the first UPF transmitting the business data of at least one PIN according to the endpoint information of the second UPF can be replaced by: the first UPF transmitting the business data of one PIN or transmitting the business data of multiple PINs according to the endpoint information of the second UPF.
  • the first UPF can send the business data of at least one PIN to the second UPF according to the endpoint information of the second UPF; accordingly, the second UPF receives the business data of at least one PIN from the first UPF.
  • the first UPF transmitting the service data of at least one PIN according to the endpoint information of the second UPF can be replaced by: the first UPF transmitting the service data of at least one PIN through the first tunnel.
  • the first UPF sends the service data of at least one PIN to the second UPF through the first tunnel; accordingly, the second UPF receives the service data of at least one PIN from the first UPF through the first tunnel.
  • the first UPF and the second UPF are two L-UPFs in the same area or L-UPF and PIN-UPF in the same area, the first UPF can transmit the service data of a PIN (such as recorded as the first PIN) according to the endpoint information of the second UPF.
  • the first UPF and the second UPF are PIN-UPFs in different areas, the first UPF can transmit the service data of at least one PIN according to the endpoint information of the second UPF, and the at least one PIN includes the first PIN.
  • the first UPF transmits the business data of at least one PIN according to the endpoint information of the second UPF, which means that when the first UPF and the second UPF are PIN-UPFs located in different areas, the first UPF can transmit the business data of multiple PINs based on the endpoint information of the second UPF, and realize cross-regional communication of the multiple PINs through one tunnel, which can reduce the number of tunnels established between UPFs during cross-regional communication and reduce the consumption of network resources.
  • the method may further include: the first SMF triggers the first UPF to establish a first session of the first PIN for the first terminal device.
  • the first terminal device sends a sixth message to the AMF, and the sixth message is used to request to establish a first session of the first PIN for the first terminal device;
  • the AMF receives the sixth message from the first terminal device, and sends a fifth message to the first SMF according to the sixth message, and the fifth message is used to request to establish a first session of the first PIN for the first terminal device;
  • the first SMF receives the fifth message from the AMF, and sends a second message to the first UPF according to the fifth message, and the second message is used to request to establish a first session of the first PIN;
  • the first UPF receives the second message from the first SMF, and establishes the first session according to the second message, as shown in FIG4.
  • S401 The first terminal device sends a sixth message to the AMF.
  • the AMF receives a sixth message from the first terminal device.
  • the first terminal device may send the sixth message to the AMF via the RAN; accordingly, the AMF receives the sixth message from the first terminal device via the RAN, which is not shown in FIG. 4 .
  • the sixth message can be used to request to establish a first session of the first PIN for the first terminal device.
  • the sixth message can be a UL NAS transport message, and the UL NAS transport message can include a PDU session establishment request message.
  • the sixth message can also be a PDU session establishment request message.
  • the embodiment of the present application does not limit the specific implementation method of the sixth message.
  • the sixth message may include the second information.
  • the second information may include one or more of the following: an identifier of the first PIN, a DNN, or slice information.
  • the DNN and/or slice information may implicitly indicate the first PIN, such as the identifier of the first PIN may be the DNN and/or slice information.
  • the identifier of the first PIN may be the DNN and/or slice information.
  • AMF determines the first SMF according to the second information.
  • AMF can select L-SMF according to the second information.
  • the embodiment of the present application takes the example of AMF selecting the first SMF according to the second information.
  • AMF can select the first SMF according to the identifier of the first PIN.
  • the identifier of the first PIN can come from the first terminal device (such as the second information includes the identifier of the first PIN), or it can also be determined by AMF, without limitation.
  • the second information includes DNN
  • AMF can obtain the contract data of the first terminal device, determine the identifier of the first PIN according to the contract data and DNN, and the contract data includes the information of the correspondence between the identifier of the PIN and the DNN.
  • the second information includes slice information
  • AMF can obtain the contract data of the first terminal device, determine the identifier of the first PIN according to the contract data and slice information, and the contract data includes the information of the correspondence between the identifier of the PIN and the slice information.
  • the second information includes DNN and slice information
  • AMF can obtain the contract data of the first terminal device, determine the identifier of the first PIN according to the contract data, DNN and slice information, and the contract data includes the information of the correspondence between the identifier of the PIN and the DNN and slice information.
  • the contract data may also include one or more of the following: PIN The information on the correspondence between the identifier and the identifier of the L-SMF, the information on the correspondence between the identifier of the DNN and the identifier of the L-SMF, the information on the correspondence between the slice information and the identifier of the L-SMF, or the information on the correspondence between the DNN and the slice information and the identifier of the L-SMF.
  • PIN The information on the correspondence between the identifier and the identifier of the L-SMF, the information on the correspondence between the identifier of the DNN and the identifier of the L-SMF, the information on the correspondence between the slice information and the identifier of the L-SMF, or the information on the correspondence between the DNN and the slice information and the identifier of the L-SMF.
  • the AMF may send the second information to the NRF, and the NRF selects the L-SMF (i.e., the SMF serving a certain area, or the SMF serving the PLMN) and feeds back the selection result to the AMF.
  • the NRF receives the second information and determines the identifier of the first SMF according to the NRF policy and the second information.
  • the NRF stores the correspondence between the identifier of the PIN and the identifier of the L-SMF, which may be the correspondence between the identifier of at least one PIN (or the identifier segment of the PIN) and the identifier of the L-SMF (or the identifier segment).
  • PIN1 to PIN10 correspond to L-SMF1
  • PIN11 to PIN20 correspond to L-SMF2.
  • PIN1 to PIN10 correspond to L-SMF1 to L-SMF5
  • PIN11 to PIN20 correspond to L-SMF6 to L-SMF10.
  • the NRF determines one or more L-SMFs corresponding to the first PIN based on the correspondence between the second information and the identifier of the PIN and the identifier of the L-SMF, and determines the first SMF from the one or more L-SMFs corresponding to the first PIN.
  • the NRF can also determine the first SMF from the multiple L-SMFs corresponding to the first PIN according to the DNN and/or slice information, such as selecting an L-SMF that supports the DNN and/or supports the slice information as the first SMF from the multiple L-SMFs. Further, the NRF sends the identifier of the first SMF to the AMF; accordingly, the AMF receives the identifier of the first SMF from the NRF, and then determines the first SMF.
  • the identifier of the PIN mentioned above may be a DNN, and accordingly, the correspondence between the identifier of the PIN stored in NRF and the identifier of the L-SMF may be replaced by the correspondence between the identifier of the DNN stored in NRF and the identifier of the L-SMF, such as the correspondence between the identifier of at least one DNN and the identifier of the L-SMF.
  • DNN1 to DNN10 correspond to L-SMF1
  • DNN11 to DNN20 correspond to L-SMF2 without limitation.
  • NRF may determine the first SMF based on the second information and the correspondence between the identifier of the DNN and the identifier of the L-SMF.
  • NRF may determine the first SMF based on the second information and the correspondence between the identifier of the DNN and the identifier of the L-SMF.
  • the identifier of the PIN mentioned above can be slice information. Accordingly, the correspondence between the identifier of the PIN stored in NRF and the identifier of L-SMF can be replaced by the correspondence between the slice information stored in NRF and the identifier of L-SMF, such as the correspondence between at least one slice information and the identifier of L-SMF.
  • slices 1 to 5 correspond to L-SMF1
  • slices 6 to 10 correspond to L-SMF2, without limitation.
  • NRF can determine the first SMF based on the correspondence between the second information and the slice information and the identifier of L-SMF. For details, please refer to the above content and will not be repeated.
  • the aforementioned PIN identifier can be a combination of DNN and slice information. Accordingly, the correspondence between the identifier of the PIN stored in NRF and the identifier of L-SMF can be replaced by the correspondence between the identifier of DNN and slice information and L-SMF stored in NRF.
  • DNN1 and slice 1, DNN2 and slice 2, DNNn and slice n correspond to L-SMF1, without limitation.
  • NRF can determine the first SMF based on the correspondence between the identifier of DNN and slice information and L-SMF and the second information. For details, please refer to the aforementioned content and will not be repeated here.
  • the AMF local policy is configured with information on the correspondence between the identifier of the PIN and the identifier of the L-SMF, and the AMF can determine the first SMF based on the local policy and the second information.
  • the AMF receives the second information, determines the identifier of the first SMF based on the local policy and the second information, and the specific implementation process can refer to the previous example, that is, replacing the NRF with the AMF, and replacing the NRF policy with the local policy, which will not be repeated.
  • the contract data of the first terminal device includes information on the correspondence between the identifier of the PIN and the identifier of the L-SMF, and the AMF can determine (or select) the first SMF based on the identifier of the first PIN and the contract data. Specifically, the AMF determines (or selects) the first SMF based on the correspondence between the identifier of the PIN and the identifier of the L-SMF and the identifier of the first PIN.
  • the information on the correspondence between the identifier of the PIN and the identifier of the L-SMF can be replaced with information on the correspondence between the identifier of the DNN and the identifier of the L-SMF, or replaced with information on the correspondence between the slice information and the identifier of the L-SMF, or replaced with information on the correspondence between the DNN and the identifier of the slice information and the L-SMF.
  • the AMF locally stores information on the correspondence between the identifier of the PIN and the identifier of the L-SMF, and the AMF can determine (or select) the first SMF based on the correspondence between the identifier of the PIN and the identifier of the L-SMF stored locally and the identifier of the first PIN.
  • the information on the correspondence between the identifier of the PIN and the identifier of the L-SMF can be replaced by information on the correspondence between the identifier of the DNN and the identifier of the L-SMF, or by information on the correspondence between the slice information and the identifier of the L-SMF, or by information on the correspondence between the DNN and the identifier of the slice information and the L-SMF.
  • AMF sends a fifth message to the first SMF.
  • the first SMF receives the fifth message from the AMF.
  • the fifth message may be used to request to establish a first session of the first PIN for the first terminal device.
  • the fifth message may include a PDU session establishment request message, and the first SMF may parse the fifth message to obtain the PDU session establishment request message.
  • the fifth message may also include a PDU session establishment request message. It may be a PDU session establishment request message.
  • the embodiment of the present application does not limit the specific implementation of the fifth message.
  • the fifth message includes the third information, such as the PDU session establishment request message in the fifth message includes the third information.
  • the third information may include one or more of the following: an identifier of the first PIN, a DNN, or slice information.
  • the AMF and the first SMF may interact directly, or may interact through other SMFs (such as intermediate SMF (I-SMF)), that is, the AMF is first connected to the I-SMF, and the I-SMF is then connected to the first SMF, without limitation.
  • I-SMF intermediate SMF
  • S403 may be expressed as: the AMF sends the fifth message to the I-SMF; the I-SMF receives the fifth message from the AMF and sends the fifth message to the first SMF; the first SMF receives the fifth message from the I-SMF.
  • the first SMF determines the first UPF according to the third information.
  • the first SMF can select a PIN-UPF based on the third information.
  • the embodiment of the present application takes the first SMF selecting the first UPF based on the third information as an example.
  • the first SMF can select the first UPF based on the identifier of the first PIN.
  • the identifier of the first PIN can come from the AMF (such as the third information includes the identifier of the first PIN), or it can also be determined by the first SMF, without limitation.
  • the third information includes DNN
  • the first SMF can obtain the contract data of the first terminal device, determine the identifier of the first PIN according to the contract data and DNN, and the contract data includes the information of the correspondence between the identifier of the PIN and the DNN.
  • the third information includes slice information
  • the first SMF can obtain the contract data of the first terminal device, determine the identifier of the first PIN according to the contract data and the slice information
  • the contract data includes the information of the correspondence between the identifier of the PIN and the slice information.
  • the third information includes DNN and slice information
  • the first SMF can obtain the contract data of the first terminal device, determine the identifier of the first PIN according to the contract data, DNN and slice information
  • the contract data includes the information of the correspondence between the identifier of the PIN and the DNN and the slice information.
  • the contract data may also include one or more of the following: information on the correspondence between the PIN identifier and the PIN-UPF identifier, information on the correspondence between the DNN identifier and the PIN-UPF identifier, information on the correspondence between the slice information and the PIN-UPF identifier, or information on the correspondence between the DNN and the slice information and the PIN-UPF identifier.
  • the embodiment of the present application does not limit the specific implementation process of the first SMF obtaining the contract data of the first terminal device.
  • the first SMF can send the third information to the NRF, and the NRF selects the PIN-UPF and feeds back the selection result to the first SMF.
  • the NRF receives the third information, determines the identifier of the first UPF according to the NRF policy and the third information, and the specific implementation process can refer to the relevant content of S402, that is, replaces the second information with the third information and replaces the L-SMF with the PIN-UPF.
  • the NRF sends the identifier of the first UPF to the first SMF; accordingly, the first SMF receives the identifier of the first UPF from the URF, and then determines the first UPF.
  • the local policy of the first SMF is configured with information on the correspondence between the identifier of the PIN and the identifier of the PIN-UPF, and the first SMF can determine the first UPF based on the local policy and the third information.
  • the information on the correspondence between the identifier of the PIN and the identifier of the PIN-UPF can be replaced with information on the correspondence between the identifier of the DNN and the identifier of the PIN-UPF, or replaced with information on the correspondence between the slice information and the identifier of the PIN-UPF, or replaced with information on the correspondence between the DNN and the slice information and the identifier of the PIN-UPF.
  • the specific implementation process can refer to the relevant content of S402 and will not be repeated here.
  • the contract data of the first terminal device includes information on the correspondence between the identifier of the PIN and the identifier of the PIN-UPF
  • the first SMF can determine (or select) the first UPF based on the identifier of the first PIN and the contract data.
  • the first SMF determines (or selects) the first UPF based on the correspondence between the identifier of the PIN and the identifier of the PIN-UPF and the identifier of the first PIN.
  • the information on the correspondence between the identifier of the PIN and the identifier of the PIN-UPF can be replaced with information on the correspondence between the identifier of the DNN and the identifier of the PIN-UPF, or replaced with information on the correspondence between the slice information and the identifier of the PIN-UPF, or replaced with information on the correspondence between the DNN and the slice information and the identifier of the PIN-UPF.
  • the specific implementation process please refer to the relevant content of S402 and will not be repeated here.
  • the first SMF locally stores information on the correspondence between the identifier of the PIN and the identifier of the PIN-UPF.
  • the first SMF can determine (or select) the first UPF based on the correspondence between the identifier of the PIN and the identifier of the PIN-UPF stored locally and the identifier of the first PIN.
  • the information on the correspondence between the identifier of the PIN and the identifier of the PIN-UPF can be replaced with information on the correspondence between the identifier of the DNN and the identifier of the PIN-UPF, or with information on the correspondence between the slice information and the identifier of the PIN-UPF, or with information on the correspondence between the DNN and the slice information and the identifier of the PIN-UPF.
  • the specific implementation process please refer to the relevant content of S402 and will not be repeated here.
  • the first SMF sends a second message to the first UPF.
  • the first UPF receives the second message from the first SMF.
  • the second message may be used to request the establishment of a first session for the first PIN, such as requesting the establishment of a first session for the first terminal device.
  • the second message may include an identifier of the first PIN and an identifier of the first terminal device.
  • the second message may be, for example, a packet Packet forwarding control protocol (PFCP) session, not limited.
  • PFCP packet Packet forwarding control protocol
  • the second message may also include one or more of the following: an identifier of the first PIN, a DNN, or slice information, and at least one of the identifier, DNN, or slice information of the first PIN may be used to indicate that the PFCP session is a PFCP session of the first PIN.
  • the first UPF establishes the first session in response to the second message, such as assigning an IP address to the first terminal device, etc.
  • the embodiment of the present application does not limit the specific implementation process of the first UPF establishing the first session.
  • the first UPF can associate the first session with the first PIN.
  • the first UPF associates the first session with the first PIN based on at least one of the identifier, DNN or slice information of the first PIN, so as to subsequently determine the session corresponding to the PIN.
  • the first SMF may also determine whether a tunnel is established between the first UPF and the PIN-UPF in the area where the first UPF is located. If no tunnel is established, the first SMF instructs the first UPF to establish a tunnel with the PIN-UPF in the area where the first UPF is located, such as establishing an N19 connection, and the specific implementation process is not limited.
  • the first terminal device can transmit the service data of the first PIN based on the first session.
  • the first terminal device and the third terminal device both belong to the first PIN, and the third terminal device and the first UPF can establish the fifth session of the first PIN.
  • the first UPF can store (or maintain) the correspondence between the identifier of the PIN and multiple sessions of the PIN.
  • the first UPF can store the correspondence between the identifier of the first PIN and the identifier of the first session and the identifier of the third session.
  • the identifier of the PIN can be replaced by the identifier of the DNN corresponding to the PIN, or replaced by the slice information corresponding to the PIN, or replaced by the DNN and slice information corresponding to the PIN.
  • the first UPF can transmit the business data of the PIN between the multiple sessions based on the local switch scheme. Specifically, the first UPF can determine that multiple sessions correspond to the same PIN based on the correspondence between at least one of the PIN identifier, DNN, and slice information and the session identifier, that is, multiple sessions correspond to the same PIN identifier (or correspond to the same DNN and/or slice information), and transmit the business data of the PIN between the multiple sessions according to the local switch scheme.
  • the first UPF can determine that the first session and the fifth session are both sessions of the first PIN based on the correspondence between the PIN identifier and the session, the identifier of the first session, and the identifier of the fifth session, and transmit the business data of the first PIN between the first session and the fifth session according to the local switch scheme.
  • the first UPF may transmit the service data of the first PIN between the first session and the fifth session according to the following steps:
  • Step A1 The first terminal device sends a fifth data packet to the first UPF based on the first session; accordingly, the first UPF receives the fifth data packet from the first terminal device.
  • the first UPF determines the fifth session of the first PIN. Specifically, the first UPF can determine the packet detection rule (PDR) that matches the fifth data packet based on the flow description information of the fifth data packet, and obtain the indication information that the destination interface of the fifth data packet is the internal interface and/or the identifier of the first PIN according to the forwarding action rule (FAR) associated with the PDR.
  • the first UPF determines that the first session is the session of the first PIN, deletes the external header of the fifth data packet to obtain the sixth data packet, and sends the sixth data packet to the internal interface. Further, the first UPF performs PDR matching based on the destination address of the sixth data packet and/or the identifier of the first PIN to obtain the PDR of the fifth session, thereby determining the fifth session of the first PIN.
  • PDR packet detection rule
  • FAR forwarding action rule
  • Step A3 The first UPF sends a seventh data packet to the third terminal device based on the fifth session; accordingly, the third terminal device receives the seventh data packet from the first UPF.
  • the first UPF can encapsulate the sixth data packet based on the FAR associated with the PDR of the fifth session to obtain the seventh data packet.
  • the first UPF can obtain the endpoint information of the second UPF through method 1, method 2 or method 3, which is described in detail below in conjunction with FIG. 5 , FIG. 6 and FIG. 7 .
  • S301 i.e., the first UPF obtains the endpoint information of the second UPF
  • the above method can also include S501 to S503, which are represented by dotted lines in Figure 5.
  • the first SMF sends a first message to the first UPF.
  • the first UPF receives the first message from the first SMF.
  • the first message may be used to instruct (or trigger, or request) the first UPF to allocate the endpoint information of the first UPF, or may be used to instruct (or trigger) the first UPF to allocate the endpoint information of the first tunnel on the first UPF side, or may be used to instruct (or trigger) to establish a tunnel (i.e., the first tunnel) with the second UPF, etc., without limitation.
  • the first message may be, for example, a PFCP session. Make limitations.
  • the first message can indicate the first UPF to allocate the endpoint information of the first UPF through the message itself; or, the first message can also indicate the first UPF to allocate the endpoint information of the first UPF through the information contained in the message itself, without limitation.
  • the first message can include first indication information, and the first indication information can be used to indicate (or trigger) the first UPF to allocate the endpoint information of the first UPF, or can be used to indicate (or trigger) the first UPF to allocate the endpoint information of the first tunnel on the first UPF side, or can be used to indicate (or trigger) the establishment of a tunnel (i.e., the first tunnel) with the second UPF, etc., without limitation.
  • the first SMF may determine to send a first message to the first UPF, or determine to instruct (or trigger) the first UPF to establish a first tunnel. For example, assuming that at least one PIN served (or maintained) by the first SMF includes the first PIN, or that at least one PIN served (or maintained) by the first UPF includes the first PIN, the first SMF may receive a third message from a third SMF, and determine whether to send the first message to the first UPF.
  • the third SMF is a PIN-SMF.
  • the third message includes an identifier of at least one SMF that provides services for the first PIN, such as an identifier of at least one L-SMF that provides services for the first PIN; or includes an identifier of at least one UPF that provides services for the first PIN, such as an identifier of at least one PIN-UPF that provides services for the first PIN; or includes an identifier of at least one SMF that provides services for the first PIN (such as at least one L-SMF) and an identifier of at least one UPF that provides services for the first PIN (such as at least one PIN-UPF).
  • the at least one SMF providing services for the first PIN includes a second SMF.
  • the at least one UPF providing services for the first PIN includes a second UPF.
  • the second SMF and the second UPF are located in the same area.
  • the description of the second SMF reference may be made to the foregoing content and will not be repeated here.
  • the third message can be used to indicate the establishment of a tunnel for the first PIN between UPFs (such as establishing a tunnel for the first PIN between L-UPF and PIN-UPF, and/or establishing a tunnel for the first PIN between PIN-UPF and PIN-UPF), or to indicate that there is a need for cross-regional communication for the first PIN, or to indicate that the first PIN is accessed in other devices.
  • the third message can be used to indicate the establishment of a tunnel for the first PIN between the first UPF and the second UPF, that is, to indicate the establishment of the first tunnel.
  • the third SMF determines that no tunnel is established between the first UPF and the second UPF, and uses the third message to indicate the establishment of a tunnel for the first PIN between the first UPF and the second UPF.
  • the third SMF does not store the endpoint information of the first UPF and/or the endpoint information of the second UPF, then the third SMF can determine that no tunnel is established between the first UPF and the second UPF. It should be understood that the embodiment of the present application does not limit the specific implementation process of the third SMF determining that no tunnel is established between the first UPF and the second UPF.
  • the third message can indicate the establishment of a tunnel for the first PIN between the first UPF and the second UPF through the message itself; or, the third message can also indicate the establishment of a tunnel for the first PIN between the first UPF and the second UPF through the information contained in the third message itself, without limitation.
  • the third message can include second indication information, and the second indication information can be used to establish a tunnel for the first PIN between UPFs (such as establishing a tunnel for the first PIN between L-UPF and PIN-UPF, and/or, establishing a tunnel for the first PIN between PIN-UPF and PIN-UPF), or to indicate that the first PIN has a need for cross-regional communication, or to indicate that the first PIN is accessed in other devices, etc.
  • the embodiment of the present application does not limit the specific implementation method of the third message.
  • the first SMF may determine to send the first message to the first UPF based on the identifier of the second SMF; or, the first SMF may also determine to send the first message to the first UPF based on the identifier of the second UPF; or, the first SMF may also determine to send the first message to the first UPF based on the identifier of the second SMF and the identifier of the second UPF.
  • the first SMF may determine whether to establish a first tunnel between the first UPF and the second UPF, or determine whether to establish a tunnel for transmitting business data of at least one PIN between the first UPF and the second UPF, or determine whether to establish a device-granular tunnel between the first UPF and the second UPF, based on the identifier of the second SMF and/or the identifier of the second UPF.
  • the first SMF determines that the first tunnel is not established between the first UPF and the second UPF, the first SMF sends a first message to the first UPF or the first SMF determines to send the first message to the first UPF.
  • the first SMF may send the identifier of the first PIN and the endpoint information of the second UPF (and/or the correspondence between the identifier of the first PIN and the identifier of the second UPF) to the first UPF.
  • the first UPF may associate the identifier of the first PIN and the endpoint information of the second UPF based on the identifier of the first PIN and the endpoint information of the second UPF (and/or the correspondence between the identifier of the first PIN and the identifier of the second UPF) (such as associating and storing them), so that the first UPF can subsequently transmit the business data of the first PIN through the endpoint information of the second UPF.
  • the first UPF associating the identifier of the first PIN with the endpoint information of the second UPF can be replaced by: the first UPF associates the identifier of the first PIN with the first tunnel.
  • the embodiment of the present application takes the case where the first tunnel is not established between the first UPF and the second UPF as an example.
  • the embodiment of the present application does not limit the specific implementation process of the first SMF determining whether the first tunnel is established between the first UPF and the second UPF.
  • the third SMF may actively send the third message to the first SMF, or may send the third message to the first SMF in response to the subscription request of the first SMF, or may send the third message to the first SMF in response to the reporting information of the first SMF, without limitation.
  • the reporting information may include the identifier of the first PIN, or include the identifier of the first PIN and the first information.
  • the first information may include one or more of the following: the identifier of the first SMF, or the identifier of the first UPF.
  • the first SMF may send a fourth message to the third SMF; accordingly, the third SMF receives the fourth message from the first SMF, and the fourth message may be used to subscribe to the event of the first PIN. Further, the third SMF may send a third message to the first SMF according to the fourth message.
  • the event of the first PIN can be understood as: the identifier of at least one SMF (such as L-SMF) that provides services for the first PIN, such as the identifier of the L-SMF that has provided services for the first PIN and the identifier of the L-SMF that is added later to provide services for the first PIN; it can also be understood as: the identifier of at least one UPF (such as PIN-UPF) that provides services for the first PIN, such as the identifier of the PIN-UPF that has provided services for the first PIN and the identifier of the PIN-UPF that is added later to provide services for the first PIN; it can also be understood as: the identifier of at least one SMF (such as L-SMF) that provides services for the first PIN and the identifier of at least one UPF (such as PIN-UPF) that provides services for the first PIN, such as the identifier of the L-SMF that has provided services for the first PIN, the
  • the fourth message can subscribe to the event of the first PIN through the message itself; or, the fourth message can also subscribe to the event of the first PIN through the information contained in itself, such as the event identifier, or the event identifier and the identifier of the first PIN, etc.
  • the embodiment of the present application does not limit the specific implementation method of the fourth message.
  • the first SMF may send the identifier of the first PIN to the third SMF; accordingly, the third SMF receives the identifier of the first PIN from the first SMF. Further, the third SMF may send a third message to the first SMF according to the identifier of the first PIN.
  • the way in which the first SMF obtains the identifier of the first PIN can refer to the relevant content in the embodiment shown in Figure 4, and will not be repeated.
  • the first SMF may also send the first information to the third SMF. For example, the first SMF may determine whether to send the identifier of the first PIN to the third SMF according to the first PIN.
  • the first SMF may determine to send the identifier of the first PIN to the third SMF; or, if the first SMF does not establish a session for the first PIN for the first time, the first SMF determines not to send the identifier of the first PIN to the third SMF.
  • the first SMF may determine whether the first SMF establishes a session for the first PIN for the first time according to the identifier of the first PIN and the association relationship between the stored session and the identifier of the PIN.
  • the embodiment of the present application takes the first time that the first SMF establishes a session for the first PIN as an example.
  • the first SMF can send the fourth message and the reporting information to the third SMF respectively, or carry the reporting information in the fourth message, without limitation.
  • the fourth message can include one or more of the following: an identifier of the first PIN, an identifier of the first SMF, or an identifier of the first UPF.
  • the third SMF after the third SMF receives the identifier of the first PIN from the first SMF, it can obtain the context of the first PIN according to the identifier of the first PIN. For example, the third SMF can create the context of the first PIN according to the first information, and the context of the first PIN includes the first information. For another example, the third SMF adds the first information to the context of the first PIN. Among them, the first information can come from the first SMF, or it can be determined by the third SMF, without limitation.
  • the third SMF can create the context of the first PIN according to the first information; or, if the third SMF does not receive the identifier of the first PIN for the first time, the third SMF searches for the context of the first PIN according to the identifier of the first PIN, and adds the first information to the context of the first PIN. Further, the third SMF can determine the identifier of at least one SMF that provides services for the first PIN and/or the identifier of at least one UPF that provides services for the first PIN according to the context of the first PIN.
  • the first SMF may send the fourth message and/or report information to the third SMF during the process of establishing the first session for the first PIN, such as after S404 and before S406; alternatively, the first SMF may send the fourth message and/or report information to the third SMF after the first session is established, such as after S406, without restriction.
  • the first UPF sends the endpoint information of the first UPF to the first SMF.
  • the first SMF receives endpoint information from the first UPF.
  • the endpoint information of the first UPF can be understood as the endpoint information of the first tunnel on the first UPF side.
  • the endpoint information may include TEID and IP address, but the embodiment of the present application is not limited thereto.
  • the first UPF may send the endpoint information of the first UPF to the first SMF according to the first message. For example, the first UPF allocates the endpoint information in response to the first message and sends the endpoint information of the first UPF to the first SMF.
  • the first UPF may also send an identifier of at least one PIN served by the first UPF to the first SMF; accordingly, the first The SMF receives an identification of at least one PIN served by the first UPF.
  • the first SMF sends the endpoint information of the first UPF to the second UPF.
  • the second UPF receives the endpoint information of the first UPF from the first SMF.
  • the first SMF can send the endpoint information of the first UPF to the second UPF, and accordingly, the second UPF receives the endpoint information of the first UPF from the first SMF.
  • the first SMF can send the endpoint information of the first UPF to the second UPF through the L-SMF located in the same area as the second UPF, and accordingly, the second UPF receives the endpoint information of the first UPF through the L-SMF.
  • the first SMF can send the endpoint information of the first UPF to the second UPF through the second SMF
  • the second SMF is an L-SMF located in the same area as the second UPF.
  • S503 can be implemented through S503a and S503b: S503a, the first SMF sends the endpoint information of the first UPF to the second SMF, and accordingly, the second SMF receives the endpoint information of the first UPF from the first SMF; S503b, the second SMF sends the endpoint information of the first UPF to the second UPF, and accordingly, the second UPF receives the endpoint information of the first UPF.
  • FIG. 5 it is taken as an example that S503 is implemented by S503a and S503b, the first UPF and the first SMF are located in area 1, and the second UPF and the second SMF are located in area 2.
  • the first SMF may also send the identifier of at least one PIN of the first UPF service to the second UPF, such as sending the identifier of at least one PIN of the first UPF service to the second UPF through the second SMF; accordingly, the second UPF receives the identifier of at least one PIN of the first UPF service.
  • the second UPF may associate the endpoint information of the first UPF with the identifier of at least one PIN of the first UPF service, such as by associating and storing.
  • the first SMF obtains the endpoint information of the second UPF.
  • the first SMF may receive the endpoint information of the second UPF from the second UPF; or, the first SMF may also obtain the endpoint information of the second UPF using parameters stored in itself. Therefore, S501 to S503 are optional steps.
  • the second UPF may allocate endpoint information, and send the endpoint information of the second UPF to the first SMF.
  • the second UPF may allocate the endpoint information of the second UPF in response to the endpoint information of the first UPF, without limitation.
  • the second UPF can send the endpoint information of the second UPF to the first SMF, and accordingly, the first SMF receives the endpoint information of the second UPF from the second UPF.
  • the second UPF can send the endpoint information of the second UPF to the first SMF through the L-SMF located in the same area as the second UPF, and accordingly, the first SMF receives the endpoint information of the second UPF through the L-SMF.
  • the first SMF can receive the endpoint information of the second UPF through the second SMF, and the second SMF is an L-SMF located in the same area as the second UPF.
  • S504 can be implemented through S504a and S504b: S504a, the second UPF sends the endpoint information of the second UPF to the second SMF, and accordingly, the second SMF receives the endpoint information of the second UPF from the second UPF; S504b, the second SMF sends the endpoint information of the second UPF to the first SMF, and accordingly, the first SMF receives the endpoint information of the second UPF.
  • FIG5 takes the implementation of S504 through S504a and S504b as an example.
  • the first SMF may receive an identifier of at least one PIN of a second UPF service from a second UPF, such as receiving an identifier of at least one PIN of the second UPF service from the second UPF via the second SMF.
  • the first SMF sends the endpoint information of the second UPF to the first UPF.
  • the first UPF receives endpoint information of the second UPF from the first SMF.
  • the first SMF may also send the identifier of at least one PIN of the second UPF service to the first UPF; accordingly, the first UPF receives the identifier of at least one PIN of the second UPF service. Further, the first UPF may associate the endpoint information of the second UPF with the identifier of at least one PIN of the second UPF service, such as by associating and storing.
  • the first UPF transmits business data of at least one PIN according to the endpoint information of the second UPF.
  • S506 may refer to S302 and will not be described in detail.
  • the first SMF and the second SMF can interact directly or through the third SMF without limitation.
  • S503a can be expressed as: the first SMF sends the endpoint information of the first UPF to the third SMF; the third SMF receives the endpoint information of the first UPF from the first SMF, and sends the endpoint information of the first UPF to the second SMF; the second SMF receives the endpoint information of the first UPF from the third SMF.
  • S503b can be expressed as: the second SMF sends the endpoint information of the second UPF to the third SMF; the third SMF receives the endpoint information of the second UPF from the second SMF, and sends the endpoint information of the second UPF to the first SMF; the first SMF receives the endpoint information of the second UPF from the third SMF.
  • S301 i.e., the first UPF obtains the endpoint information of the second UPF
  • the above method may also include S601 to S603, which are represented by dotted lines in Figure 6.
  • the first UPF and the second UPF are PIN-UPFs located in different areas.
  • Figure 6 takes the first UPF located in area 1 and the second UPF located in area 2 as an example.
  • the main difference of the embodiment shown in Figure 6 is that the first UPF and the second UPF interact through a PIN-SMF (such as the third SMF) without going through an L-SMF (such as the first SMF and the second SMF).
  • a PIN-SMF such as the third SMF
  • L-SMF such as the first SMF and the second SMF
  • the third SMF sends a first message to the first UPF.
  • the first UPF receives the first message from the third SMF.
  • the first message can be used to instruct (or trigger) the first UPF to allocate the endpoint information of the first UPF, or can be used to instruct (or trigger) the first UPF to allocate the endpoint information of the first tunnel on the first UPF side, or can be used to instruct (or trigger) to establish a tunnel (i.e., the first tunnel) with the second UPF, etc.
  • a tunnel i.e., the first tunnel
  • the third SMF may determine to send a first message to the first UPF, or determine to instruct (or trigger) the first UPF to establish a first tunnel. For example, the third SMF may determine whether to establish a first tunnel between the first UPF and the second UPF based on the identifier of the first PIN, or determine whether to establish a tunnel for transmitting business data of multiple PINs between the first UPF and the second UPF, or determine whether to establish a device-granular tunnel between the first UPF and the second UPF.
  • the third SMF determines that the first tunnel is not established between the first UPF and the second UPF, the third SMF sends a first message to the first UPF or the third SMF determines to send the first message to the first UPF.
  • the third SMF may send the identifier of the first PIN and the endpoint information of the second UPF (and/or the correspondence between the identifier of the first PIN and the identifier of the second UPF) to the first UPF.
  • the first UPF may associate the identifier of the first PIN and the endpoint information of the second UPF based on the identifier of the first PIN and the endpoint information of the second UPF (and/or the correspondence between the identifier of the first PIN and the identifier of the second UPF) (such as associating and storing them), so that the first UPF can subsequently transmit the business data of the first PIN through the endpoint information of the second UPF.
  • the first UPF associating the identifier of the first PIN with the endpoint information of the second UPF can be replaced by: the first UPF associates the identifier of the first PIN with the first tunnel.
  • the embodiment of the present application takes the case where the first tunnel is not established between the first UPF and the second UPF as an example.
  • the embodiment of the present application does not limit the specific implementation process of the third SMF determining whether the first tunnel is established between the first UPF and the second UPF.
  • the identifier of the first PIN may come from the first SMF without limitation.
  • the first SMF may send the identifier of the first PIN to the third SMF, and accordingly, the third SMF may receive the identifier of the first PIN from the first SMF.
  • the first SMF may also send the first information to the third SMF, and accordingly, the third SMF receives the first information from the first SMF, and the first information includes one or more of the following: the identifier of the first SMF, or the identifier of the first UPF.
  • the first SMF may determine whether to send the identifier of the first PIN to the third SMF based on the first PIN.
  • the specific implementation process may refer to the content of S501 and will not be repeated here.
  • the first SMF may send the identifier of the first PIN to the third SMF during the process of establishing the first session for the first PIN; alternatively, the first SMF may send the identifier of the first PIN to the third SMF after the first session is established, without restriction.
  • the third SMF may obtain the context of the first PIN according to the identifier of the first PIN.
  • the third SMF may create the context of the first PIN according to the first information, and the context of the first PIN includes the first information.
  • the third SMF may add the first information to the context of the first PIN.
  • the first information may come from the first SMF or may be determined by the third SMF, without limitation.
  • the specific implementation process may refer to the content of S501, which will not be described in detail.
  • the third SMF may also send a third message to the first SMF.
  • the first SMF receives a third message from the third SMF, where the third message includes an identifier of at least one SMF (such as L-SMF) providing services for the first PIN and/or an identifier of at least one UPF (such as PIN-UPF) providing services for the first PIN.
  • SMF such as L-SMF
  • UPF such as PIN-UPF
  • the first SMF may send a fourth message to the third SMF; accordingly, the third SMF receives a fourth message from the first SMF, and the fourth message may be used to subscribe to events of the first PIN.
  • the specific implementation process may refer to the content of S501 and will not be described in detail.
  • the first UPF sends the endpoint information of the first UPF to the third SMF.
  • the third SMF receives endpoint information from the first UPF.
  • the endpoint information of the first UPF can refer to the above content and will not be repeated here.
  • the first UPF may send the endpoint information of the first UPF to the third SMF according to the first message. For example, the first UPF allocates the endpoint information in response to the first message and sends the endpoint information of the first UPF to the third SMF.
  • the first UPF may also send the identifier of at least one PIN served by the first UPF to the third SMF; accordingly, the third SMF receives the identifier of at least one PIN served by the first UPF.
  • the third SMF sends the endpoint information of the first UPF to the second UPF.
  • the second UPF receives the endpoint information of the first UPF from the third SMF.
  • the third SMF may also send the identifier of at least one PIN of the first UPF service to the second UPF; accordingly, the second UPF receives the identifier of at least one PIN of the first UPF service from the third SMF. Further, the second UPF may associate the endpoint information of the first UPF with the identifier of at least one PIN of the first UPF service, such as by associating and storing.
  • the third SMF obtains the endpoint information of the second UPF.
  • the third SMF can receive the endpoint information of the second UPF from the second UPF; alternatively, the third SMF can also obtain the endpoint information of the second UPF using parameters stored in itself. Therefore, S601 to S603 are optional steps.
  • FIG6 an example is taken in which the second UPF sends the endpoint information of the second UPF to the third SMF, and the third SMF receives the endpoint information of the second UPF from the second UPF.
  • the second UPF can allocate the endpoint information of the second UPF and send the endpoint information of the second UPF to the third SMF.
  • the second UPF can allocate the endpoint information of the second UPF in response to the endpoint information of the first UPF, without limitation.
  • the second UPF may also send the identifier of at least one PIN of the second UPF service to the third SMF, and accordingly, the third SMF receives the identifier of at least one PIN of the second UPF service from the second UPF.
  • the third SMF sends the endpoint information of the second UPF to the first UPF.
  • the first UPF receives the endpoint information of the second UPF from the third SMF.
  • the third SMF may also send the identifier of at least one PIN of the second UPF service to the first UPF; accordingly, the first UPF receives the identifier of at least one PIN of the second UPF service from the third SMF. Further, the first UPF may associate the endpoint information of the second UPF with the identifier of at least one PIN of the second UPF service, such as by associating and storing.
  • the first UPF transmits business data of at least one PIN according to the endpoint information of the second UPF.
  • S606 may refer to S302 and will not be described in detail.
  • S301 i.e., the first UPF obtains the endpoint information of the second UPF
  • S706b the first UPF and the second UPF are PIN-UPFs located in different areas.
  • Figure 7 takes the first UPF located in area 1 and the second UPF located in area 2 as an example. Since in this embodiment, the first UPF obtains the endpoint information of the second UPF after the first tunnel is established, S705 to S708 in the embodiment shown in Figure 7 can be understood as the specific implementation process of S506 in the embodiment shown in Figure 5, and/or understood as the specific implementation process of S606 in the embodiment shown in Figure 6.
  • the above method may also include the second UPF transmitting the business data of at least one PIN according to the endpoint information of the first UPF, that is, executing the contents of S709 to S712, which is represented by dotted lines in Figure 7.
  • the second UPF obtains the identifier of at least one PIN served by the first UPF.
  • the second UPF may receive an identifier of at least one PIN of the first UPF service from the first UPF.
  • the first UPF may send an identifier of at least one PIN of the first UPF service to the second UPF after receiving a first message from the first SMF or the third SMF, without limitation.
  • the second UPF may receive the identifier of at least one PIN of the first UPF service from the first UPF through the first SMF and the second SMF.
  • the first UPF sends the identifier of at least one PIN of the first UPF service to the first SMF;
  • the first SMF receives the identifier of at least one PIN of the first UPF service from the first UPF, and sends the identifier of at least one PIN of the first UPF service to the second SMF;
  • the second SMF receives the identifier of at least one PIN of the first UPF service from the first SMF, and sends the identifier of at least one PIN of the first UPF service to the second UPF;
  • the second UPF receives the identifier of at least one PIN of the first UPF service from the second SMF.
  • the second UPF may also receive the identifier of at least one PIN of the first UPF service from the first UPF through the first SMF, the second SMF and the third SMF.
  • the first UPF sends the identifier of at least one PIN of the first UPF service to the first SMF;
  • the first SMF receives the identifier of at least one PIN of the first UPF service from the first UPF, and sends the identifier of at least one PIN of the first UPF service to the third SMF;
  • the third SMF receives the identifier of at least one PIN of the first UPF service from the first SMF, and sends the identifier of at least one PIN of the first UPF service to the second SMF;
  • the second SMF receives the identifier of at least one PIN of the first UPF service from the third SMF, and sends the identifier of at least one PIN of the first UPF service to the second UPF;
  • the second UPF receives the identifier of at least
  • the second UPF may also receive the identifier of at least one PIN of the first UPF service from the first UPF through the third SMF.
  • the first UPF sends the identifier of at least one PIN of the first UPF service to the third SMF;
  • the third SMF receives the identifier of at least one PIN of the first UPF service from the first UPF, and sends the identifier of at least one PIN of the first UPF service to the second UPF;
  • the second UPF receives the identifier of at least one PIN of the first UPF service from the third SMF.
  • the identifier of at least one PIN of the first UPF service and the endpoint information of the first UPF can be carried in the same message, or in different messages, without limitation.
  • the second UPF associates the endpoint information of the first UPF with the identifier of at least one PIN served by the first UPF.
  • the second UPF associates and stores the endpoint information of the first UPF and the identifier of at least one PIN served by the first UPF.
  • the second UPF may obtain the endpoint information of the first UPF.
  • the first UPF obtains the identifier of at least one PIN served by the second UPF.
  • the first UPF may receive an identifier of at least one PIN of the second UPF service from the second UPF.
  • the second UPF may send an identifier of at least one PIN of the second UPF service to the first UPF after receiving the endpoint information of the first UPF, without limitation.
  • the first UPF may receive the identifier of at least one PIN of the second UPF service from the second UPF through the first SMF and the second SMF.
  • the second UPF sends the identifier of at least one PIN of the second UPF service to the second SMF;
  • the second SMF receives the identifier of at least one PIN of the second UPF service from the second UPF, and sends the identifier of at least one PIN of the second UPF service to the first SMF;
  • the first SMF receives the identifier of at least one PIN of the second UPF service from the second SMF, and sends the identifier of at least one PIN of the second UPF service to the first UPF;
  • the first UPF receives the identifier of at least one PIN of the second UPF service from the first SMF.
  • the first UPF may also receive the identifier of at least one PIN of the second UPF service from the second UPF through the first SMF, the second SMF, and the third SMF.
  • the second UPF sends the identifier of at least one PIN of the second UPF service to the second SMF;
  • the second SMF receives the identifier of at least one PIN of the second UPF service from the second UPF, and sends the identifier of at least one PIN of the second UPF service to the third SMF;
  • the third SMF receives the identifier of at least one PIN of the second UPF service from the second SMF, and sends the identifier of at least one PIN of the second UPF service to the first SMF;
  • the first SMF receives the identifier of at least one PIN of the second UPF service from the second SMF, and sends the identifier of at least one PIN of the second UPF service to the first UPF;
  • the first UPF receives the identifier of at
  • the first UPF may also receive the identifier of at least one PIN of the second UPF service from the second UPF through the third SMF.
  • the second UPF sends the identifier of at least one PIN of the second UPF service to the third SMF;
  • the third SMF receives the identifier of at least one PIN of the second UPF service from the second UPF, and sends the identifier of at least one PIN of the second UPF service to the first UPF;
  • the first UPF receives the identifier of at least one PIN of the second UPF service from the third SMF.
  • the identifier of at least one PIN of the second UPF service and the endpoint information of the second UPF can be carried in the same message, or in different messages, without limitation.
  • the first UPF associates the endpoint information of the second UPF with the identifier of at least one PIN served by the second UPF.
  • the first UPF may associate and store the endpoint information of the second UPF with the identifier of at least one PIN served by the second UPF.
  • the first UPF may obtain the endpoint information of the second UPF.
  • the first terminal device sends a first data packet to the first UPF based on the first session.
  • the first UPF receives a first data packet from the first terminal device based on the first session.
  • the process of establishing the first session may refer to the embodiment shown in FIG. 4 , and will not be described in detail.
  • the first UPF sends a second data packet to the second UPF according to the first PIN through the endpoint information of the second UPF.
  • the second UPF receives the second data packet from the first UFP.
  • S706 can be implemented through S706a, S706b and S706c ( Figure 7 takes S706a, S706b and S706c as examples): S706a, the first UPF determines that the destination address of the first data packet is not the address assigned by the first UPF; S706b, the first UPF determines the endpoint information of the second UPF based on the association between the endpoint information of the second UPF and the identifier of at least one PIN served by the second UPF and the identifier of the first PIN; S706c, the first UPF sends a second data packet to the second UPF based on the endpoint information of the second UPF, and accordingly, the second UPF receives the second data packet from the first UPF.
  • S706a the first UPF determines that the destination address of the first data packet is not the address assigned by the first UPF
  • S706b the first UPF determines the endpoint information of the second UPF based on the association between the endpoint information of the
  • the first UPF may determine whether the destination address of the first data packet is the address allocated by the first UPF. If the destination address of the first data packet is the address assigned by the first UPF, the first data packet is sent to the second terminal device, or the first data packet is sent to the second terminal device through the L-UPF. For details, please refer to the relevant content of the first UPF transmitting the service data of the first PIN between the first session and the fifth session, which will not be repeated here. Alternatively, if the destination address of the first data packet is not the address assigned by the first UPF, S706b is executed. The embodiment of the present application takes the case where the destination address of the first data packet is not the address assigned by the first UPF as an example.
  • the first UPF may also obtain the identifier of the first PIN.
  • the first data packet includes the identifier of the first PIN, and the first UPF may parse the first data packet to obtain the identifier of the first PIN; or the first UPF may also obtain the identifier of the first PIN based on the correspondence between the identifier of the PIN and the session and the first session, without limitation.
  • the service data included in the first data packet is the same as the service data included in the second data packet, or the payload part of the first data packet is the same as the payload part of the second data packet.
  • the first UPF can encapsulate the header outside the first data packet to obtain the second data packet, and the header carries the identification of the first PIN, without limitation.
  • the second UPF determines the third session of the first PIN according to the first PIN and/or the destination address of the second data packet.
  • the second UPF After receiving the second data packet, the second UPF can determine the third session of the first PIN according to the destination address of the first PIN and/or the second data packet, and transmit the first data packet based on the third session, that is, execute the content of S708.
  • the destination address of the second data packet may correspond to one or more sessions.
  • the second UPF determines the one session as the third session.
  • the second UPF may determine the third session from the multiple sessions according to the identifier of the first PIN.
  • the second UPF sends a first data packet to the second terminal device based on the third session.
  • the second terminal device receives the first data packet from the second UPF based on the third session.
  • the second UPF may discard the header of the second data packet, that is, the header encapsulated in S706, obtain the first data packet, and send the first data packet to the second terminal device based on the third session.
  • the first data packet of the first terminal device in area 1 is transmitted to the second terminal device in area 2, thereby realizing cross-area communication between the first terminal device and the second terminal device.
  • the second terminal device sends a fourth data packet to the second UPF based on the second session.
  • the second UPF receives a fourth data packet from the second terminal device based on the second session.
  • the process of establishing the second session can refer to the embodiment shown in FIG4 , and will not be described in detail.
  • the embodiment of the present application does not limit the order of establishing the first session and the second session.
  • the second UPF sends a third data packet to the first UPF through the endpoint information of the first UPF according to the second PIN.
  • the first UPF receives the third data packet from the second UFP.
  • S710 can be implemented through S710a, S710b and S710c ( Figure 7 takes S710a, S710b and S710c as examples): S710a, the second UPF determines that the destination address of the fourth data packet is not the address assigned by the second UPF; S710b, the second UPF determines the endpoint information of the first UPF based on the association between the endpoint information of the first UPF and the identifier of at least one PIN served by the first UPF and the identifier of the second PIN; S710c, the second UPF sends a third data packet to the first UPF based on the endpoint information of the first UPF, and accordingly, the first UPF receives the third data packet from the second UPF.
  • the second UPF may determine whether the destination address of the fourth data packet is the address allocated by the second UPF.
  • the specific implementation process may refer to the content of S706 and will not be described in detail.
  • the second UPF may also obtain the identifier of the second PIN.
  • the specific implementation process reference may be made to the content of S706 and will not be repeated here.
  • the service data included in the third data packet is the same as the service data included in the fourth data packet, or the payload part of the third data packet is the same as the payload part of the fourth data packet.
  • the second UPF can encapsulate the header outside the fourth data packet to obtain the third data packet, and the header carries the identification of the second PIN, which is not limited.
  • the first UPF determines a second session of the second PIN according to the second PIN and/or the destination address of the third data packet.
  • the first UPF After receiving the third data packet, the first UPF can determine the second session of the second PIN according to the second PIN and/or the destination address of the third data packet, and transmit the fourth data packet based on the second session, that is, execute the content of S711.
  • the destination address of the third data packet may correspond to one or more sessions.
  • the first UPF determines the one session as the second session.
  • the destination address of the third data packet corresponds to multiple sessions, the first UPF may determine the second session from the multiple sessions according to the identifier of the second PIN.
  • the first UPF sends a fourth data packet to the first terminal device based on the second session.
  • the first terminal device receives a fourth data packet from the first UPF based on the second session.
  • the first UPF may discard the header of the third data packet, that is, the header encapsulated in S710, obtain the fourth data packet, and send the fourth data packet to the first terminal device based on the second session.
  • the fourth data packet of the second terminal device in area 2 is transmitted to the first terminal device in area 1, thereby realizing cross-area communication between the first terminal device and the second terminal device.
  • FIG8 shows a flow chart of yet another communication method provided in an embodiment of the present application.
  • This embodiment takes the communication architecture shown in FIG2a as an example.
  • the first UPF is PIN-UPF1 in FIG2a
  • the second UPF is PIN-UPF2 in FIG2a
  • the first SMF is L-SMF1 in FIG2a
  • the second SMF is L-SMF2 in FIG2a
  • the third SMF is PIN-SMF in FIG2a
  • the first terminal device and the second terminal device are UE1 and UE2 in FIG2a, respectively.
  • PIN-UPF1 and L-SMF1 are located in area 1
  • PIN-UPF2 and L-SMF2 are located in area 2.
  • PIN-UPF1 and PIN-UPF2 need to communicate through L-SMF1 and L-SMF2.
  • the method may include the following steps.
  • S801 UE1 sends a sixth message to AMF.
  • AMF receives the sixth message from UE1.
  • the sixth message includes second information, which is used to request to establish a first session of the first PIN for UE1.
  • the second information may include one or more of the following: an identifier of the first PIN, DNN or slice information.
  • AMF determines L-SMF1 based on the second information.
  • the AMF determines, according to the second information, that L-SMF1 provides services for the first PIN.
  • AMF sends the fifth message to L-SMF1.
  • L-SMF1 receives the fifth message from AMF.
  • the fifth message includes third information, which is used to request to establish a first session of the first PIN for UE1.
  • the third information may include one or more of the following: an identifier of the first PIN, DNN or slice information.
  • L-SMF1 determines PIN-UPF1 according to the third information.
  • L-SMF1 determines, based on the third information, that PIN-UPF1 provides service for the first PIN.
  • L-SMF1 sends a second message to PIN-UPF1.
  • PIN-UPF1 receives the second message from L-SMF1.
  • the second message may include an identifier of the first PIN, and is used to request to establish a first session of the first PIN.
  • PIN-UPF1 establishes a first session of the first PIN according to the second message.
  • S801 to S806 may refer to the relevant content in the embodiment shown in FIG. 4 , and will not be described in detail.
  • L-SMF1 sends a fourth message to PIN-SMF.
  • PIN-SMF receives the fourth message from L-SMF1.
  • the fourth message may be used to subscribe to the event of the first PIN.
  • the fourth message may also include the identifier of the first PIN and the first information, and the first information includes the identifier of the L-SMF1 and/or the identifier of the PIN-UPF1.
  • L-SMF1 determines to send the identifier and first information of the first PIN to PIN-SMF; or, if L-SMF1 does not establish a session for the first PIN for the first time, L-SMF1 determines not to send the identifier and first information of the first PIN to PIN-SMF.
  • FIG8 it is taken as an example that a session is established for the first PIN for the first time and the fourth message includes the identifier of the first PIN and the first information.
  • the PIN-SMF receives the identification of the first PIN not for the first time, and adds the first information to the context of the first PIN.
  • the PIN-SMF may obtain the context of the first PIN. If the PIN-SMF receives the identifier of the first PIN for the first time, the PIN-SMF creates the context of the first PIN according to the first information, and the context of the first PIN includes the first information; or, if the PIN-SMF receives the identifier of the first PIN not for the first time, the PIN-SMF adds the first information to the context of the first PIN.
  • FIG8 takes the case where the PIN-SMF receives the identifier of the first PIN not for the first time as an example.
  • the PIN-SMF may also determine the identifier of at least one L-SMF providing services for the first PIN and/or the identifier of at least one PIN-UPF providing services for the first PIN according to the context of the first PIN.
  • the at least one L-SMF providing services for the first PIN includes L-SMF2.
  • the at least one PIN-UPF providing services for the first PIN includes PIN-UPF2.
  • PIN-SMF sends a third message to L-SMF1.
  • L-SMF1 receives the third message from PIN-SMF.
  • the third message includes an identifier of at least one L-SMF providing services for the first PIN and/or an identifier of at least one PIN-UPF providing services for the first PIN.
  • the third message includes the identifier of L-SMF1 and/or the identifier of PIN-UPF2.
  • L-SMF1 determines that no connection is established between PIN-UPF1 and PIN-UPF2.
  • L-SMF1 can determine whether PIN-UPF1 is connected to PIN-UPF2 according to the identification of L-SMF1 and/or the identification of PIN-UPF2. Establish a connection (or whether to establish the first tunnel). If no connection is established between PIN-UPF1 and PIN-UPF2, execute the content of S811; or, if a connection is established between PIN-UPF1 and PIN-UPF2 (such as the first tunnel has been established), the first SMF can send the identifier of the first PIN and the endpoint information of PIN-UPF2 (and/or the corresponding relationship between the identifier of the first PIN and the identifier of PIN-UPF2) to PIN-UPF1.
  • PIN-UPF1 can associate the identifier of the first PIN with the endpoint information of PIN-UPF2 (such as associating and storing) based on the identifier of the first PIN and the endpoint information of PIN-UPF2 (and/or the corresponding relationship between the identifier of the first PIN and the identifier of PIN-UPF2), that is, associate the identifier of the first PIN with the first tunnel, so that PIN-UPF1 can subsequently transmit the business data of the first PIN through the first tunnel.
  • PIN-UPF2 such as associating and storing
  • FIG8 takes the case where no connection is established between PIN-UPF1 and PIN-UPF2 as an example.
  • L-SMF1 sends a first message to PIN-UPF1.
  • PIN-UPF1 receives the first message from L-SMF1.
  • the first message may be used to instruct PIN-UPF1 to allocate endpoint information of PIN-UPF1.
  • PIN-UPF1 sends the endpoint information of PIN-UPF1 and the identifier of at least one PIN served by PIN-UPF1 to L-SMF1.
  • L-SMF1 receives, from PIN-UPF1, the endpoint information of the PIN-UPF1 and the identification of at least one PIN served by PIN-UPF1.
  • PIN-UPF1 allocates endpoint information and sends the endpoint information of PIN-UPF1 to L-SMF1.
  • PIN-UPF1 may also send an identifier of at least one PIN served by the PIN-UPF to L-SMF1.
  • L-SMF1 sends the endpoint information of PIN-UPF1 and the identifier of at least one PIN served by PIN-UPF1 to L-SMF2.
  • L-SMF2 receives the endpoint information of PIN-UPF1 and the identification of at least one PIN served by PIN-UPF1 from L-SMF1.
  • L-SMF2 sends the endpoint information of PIN-UPF1 and the identifier of at least one PIN served by PIN-UPF1 to PIN-UPF2.
  • PIN-UPF2 receives the endpoint information of PIN-UPF1 and the identification of at least one PIN served by PIN-UPF1 from L-SMF2.
  • PIN-UPF2 associates the endpoint information of PIN-UPF1 with the identifier of at least one PIN served by PIN-UPF1.
  • PIN-UPF2 sends the endpoint information of PIN-UPF2 and the identifier of at least one PIN served by PIN-UPF2 to L-SMF2.
  • the L-SMF receives from the PIN-UPF2 the endpoint information of the PIN-UPF2 and the identification of at least one PIN served by the PIN-UPF2.
  • PIN-UPF2 allocates endpoint information and sends the endpoint information of PIN-UPF2 to L-SMF2.
  • PIN-UPF2 may also send the identifier of at least one PIN served by PIN-UPF2 to L-SMF2.
  • PIN-UPF2 sending the endpoint information of PIN-UPF2 and the identifier of at least one PIN served by PIN-UPF2 to L-SMF2 is taken as an example.
  • L-SMF2 sends the endpoint information of PIN-UPF2 and the identifier of at least one PIN served by PIN-UPF2 to L-SMF1.
  • L-SMF1 receives the endpoint information of PIN-UPF2 and the identification of at least one PIN served by PIN-UPF2 from L-SFM2.
  • L-SMF1 sends the endpoint information of PIN-UPF2 and the identifier of at least one PIN served by PIN-UPF2 to PIN-UPF1.
  • PIN-UPF1 receives the endpoint information of PIN-UPF2 and the identification of at least one PIN served by PIN-UPF2 from L-SMF1.
  • PIN-UPF1 associates the endpoint information of PIN-UPF2 and the identifier of at least one PIN served by PIN-UPF2.
  • S812 to S814 and S816 to S818 can refer to S502 to S505 in the embodiment shown in Figure 5, and will not be repeated here.
  • PIN-UPF1 can send service data of multiple PINs to PIN-UPF2 through the first tunnel.
  • S820 UE1 sends a first data packet to PIN-UPF1 based on the first session.
  • PIN-UPF1 receives a first data packet from UE1 based on the first session.
  • PIN-UPF1 determines that the destination address of the first data packet is not the address allocated by PIN-UPF1.
  • PIN-UPF1 determines the endpoint information of PIN-UPF2 according to the association between the endpoint information of PIN-UPF2 and the identifier of at least one PIN served by PIN-UPF2 and the identifier of the first PIN.
  • PIN-UPF1 sends a second data packet to PIN-UPF2 according to the endpoint information of PIN-UPF2.
  • PIN-UPF2 receives the second data packet from PIN-UPF2.
  • PIN-UPF1 sends a second data packet to PIN-UPF2 through the first tunnel.
  • the service data included in the second data packet is the same as the service data included in the first data packet.
  • the second data packet carries the identifier of the first PIN.
  • PIN-UPF2 determines the third session of the first PIN according to the first PIN and/or the destination address of the second data packet.
  • the process of establishing the third session may refer to the process of establishing the first session, which will not be described in detail.
  • PIN-UPF2 sends a first data packet to UE2 based on the third session.
  • UE2 receives a first data packet from PIN-UPF2 based on the third session.
  • S820 to S825 may refer to the relevant content in the embodiment shown in FIG. 7 , and will not be described in detail.
  • the first data packet of UE1 in area 1 is transmitted to UE2 in area 2.
  • the embodiment shown in FIG8 may further include PIN-UPF2 transmitting business data of at least one PIN according to the endpoint information of PIN-UPF1 (not shown in FIG8 ).
  • PIN-UPF2 transmitting business data of at least one PIN according to the endpoint information of PIN-UPF1 (not shown in FIG8 ).
  • FIG7 the relevant contents of FIG7 , which will not be repeated here.
  • the transmission path of the cross-region communication between UE1 and UE2 is: UE1—PIN-UPF1—PIN-UPF2—UE2, wherein a first tunnel is established between PIN-UPF2 and PIN-UPF2, or an N19+ connection (or N20 connection, etc.) is established to transmit the service data of multiple PINs, as shown in FIG9 .
  • the transmission path of the cross-region communication between UE1 and UE2 is represented by a thick black solid line.
  • FIG10 shows a flow chart of yet another communication method provided in an embodiment of the present application.
  • This embodiment takes the communication architecture shown in FIG2a as an example.
  • the first UPF is PIN-UPF1 in FIG2a
  • the second UPF is PIN-UPF2 in FIG2a
  • the first SMF is L-SMF1 in FIG2a
  • the third SMF is PIN-SMF in FIG2a
  • the first terminal device and the second terminal device are UE1 and UE2 in FIG2a, respectively.
  • PIN-UPF1 and L-SMF1 are located in area 1
  • PIN-UPF2 is located in area 2.
  • PIN-UPF1 and PIN-UPF2 need to communicate through PIN-SMF, without passing through L-SMF1 and L-SMF2.
  • S1001 to S1008, S1013, S1016 to S1022 in the embodiment shown in FIG10 correspond to S801 to S808, S815, S819 to S825 in the embodiment shown in FIG8 , respectively, except that:
  • PIN-SMF determines that no connection is established between PIN-UPF1 and UPF2.
  • PIN-SMF sends a first message to PIN-UPF1.
  • PIN-UPF1 receives the first message from PIN-SMF.
  • PIN-UPF1 sends the endpoint information of PIN-UPF1 and the identifier of at least one PIN served by PIN-UPF1 to PIN-SMF.
  • PIN-SMF receives the endpoint information of PIN-UPF1 and the identifier of at least one PIN served by PIN-UPF1 from PIN-UPF1.
  • PIN-SMF sends the endpoint information of PIN-UPF1 and the identifier of at least one PIN served by PIN-UPF1 to PIN-UPF2.
  • PIN-UPF2 receives the endpoint information of PIN-UPF1 and the identifier of at least one PIN served by PIN-UPF1 from PIN-SMF.
  • PIN-UPF2 sends the endpoint information of PIN-UPF2 and the identifier of at least one PIN served by PIN-UPF2 to PIN-SMF.
  • PIN-SMF receives the endpoint information of PIN-UPF2 and the identifier of at least one PIN served by PIN-UPF2 from PIN-UPF2.
  • PIN-SMF sends the endpoint information of PIN-UPF2 and the identifier of at least one PIN served by PIN-UPF2 to PIN-UPF1.
  • PIN-UPF1 receives the endpoint information of PIN-UPF2 and the identifier of at least one PIN served by PIN-UPF2 from PIN-SMF.
  • the transmission path of the cross-region communication between UE1 and UE2 is: UE1—PIN-UPF1—PIN-UPF2—UE2, wherein a first tunnel is established between PIN-UPF2 and PIN-UPF2, or an N19+ connection (or N20 connection, etc.) is established to transmit the service data of multiple PINs, as shown in FIG11.
  • a thick black solid line represents the transmission path of the cross-region communication between UE1 and UE2.
  • FIG12 shows a flow chart of yet another communication method provided in an embodiment of the present application.
  • This embodiment takes the communication architecture shown in FIG2b as an example, that is, an L-UPF is deployed between PIN-UPF1 and UE1.
  • the first UPF is PIN-UPF1 in FIG2b or L-UPF1 in FIG2b
  • the second UPF is PIN-UPF2 in FIG2b
  • the first SMF is L-SMF1 in FIG2b
  • the third SMF is PIN-SMF in FIG2b
  • the first terminal device and the second terminal device are UE1 and UE2 in FIG2b, respectively.
  • PIN-UPF1, L-UPF1 and L-SMF1 are located in area 1
  • PIN-UPF2 is located in area 2.
  • PIN-UPF1 can establish a first tunnel with PIN-UPF2 through L-SMF1 and L-SMF2, and specifically refer to the embodiment shown in Figure 8; or PIN-UPF1 can also establish a first tunnel with PIN-UPF2 through PIN-SMF, and specifically refer to the embodiment shown in Figure 10.
  • Figure 12 takes the establishment of a first tunnel between PIN-UPF1 and PIN-UPF2 through PIN-SMF as an example.
  • S1201 to S1203, S1207 to S1209, S1212 to S1218, and S1222 to S1226 in the embodiment shown in FIG. 12 correspond to S1001 to 1003, S1007 to S1016, and S1018 to S1022 in the embodiment shown in FIG. 10 , respectively, except that:
  • L-SMF1 determines L-UPF1 according to the third information.
  • L-SMF1 determines that L-UPF1 provides service for the first PIN according to the third information.
  • the specific implementation process of L-SMF1 determining L-UPF1 according to the third information can refer to the content of L-SMF1 determining PIN-UPF1 according to the third information, which will not be repeated here.
  • L-SMF1 sends a second message to L-UPF1.
  • L-UPF1 receives the second message from L-SMF1.
  • the second message may be used to request to establish a first session of the first PIN, such as request to establish a first session of the first PIN for UE1.
  • L-UPF1 establishes a first session of the first PIN according to the second message.
  • L-UPF1 establishes the first session, such as allocating an IP address to UE1.
  • the embodiment of the present application does not limit the specific implementation process of the first UPF establishing the first session.
  • the IP address of UE1 can also be allocated by L-SMF1 without limitation.
  • PIN-SMF sends a third message to L-SMF1.
  • L-SMF receives the third message from PIN-SMF.
  • the third message includes the identifier of at least one L-SMF providing services for the first PIN and/or the identifier of at least one PIN-UPF providing services for the first PIN, which is used to indicate that a tunnel is established between UPFs for the first PIN.
  • the at least one L-SMF providing services for the first PIN includes L-SMF2.
  • the at least one PIN-UPF providing services for the first PIN includes PIN-UPF2.
  • the third message may indicate that a tunnel is established between UPFs for the first PIN through the second indication information.
  • the description of the third message can refer to the relevant content of S501 and will not be repeated here.
  • FIG12 takes the example in which the third message includes the second indication information, and the identifier of L-SMF2 and/or the identifier of PIN-UPF2.
  • PIN-SMF establishes a connection between L-UPF1 and PIN-UPF1 according to the third message.
  • the PIN-SMF triggers the establishment of a connection between the L-UPF1 and the PIN-UPF1. For example, a connection is established for the first PIN.
  • the connection is based on the PIN granularity and is used to transmit the service data of the first PIN.
  • the embodiment of the present application does not limit the specific implementation process of establishing a connection between the L-UPF1 and the PIN-UPF1.
  • S1219 UE1 sends a first data packet to L-UPF1 based on the first session.
  • L-UPF1 receives the first data packet from UE1 based on the first session.
  • L-UPF1 determines that the destination address of the first data packet is not the address allocated by L-UPF1.
  • L-UPF1 can determine whether the destination address of the first data packet is the address assigned by L-UPF1 according to the destination address of the first data packet. If L-UPF1 determines that the destination address of the first data packet is the address assigned by L-UPF1, L-UPF1 sends the first data packet without going through PIN-UPF, which can achieve the nearest forwarding of service data in the area and reduce the data transmission delay of the service. Alternatively, if L-UPF1 determines that the destination address of the first data packet is not the address assigned by L-UPF1, the content of S1221 is executed. FIG12 takes the case where L-UPF1 determines that the destination address of the first data packet is not the address assigned by L-UPF1 as an example.
  • L-UPF1 sends a first data packet to PIN-UPF1.
  • PIN-UPF1 receives the first data packet from L-UPF1.
  • the transmission path of the cross-region communication between UE1 and UE2 is: UE1—L-UPF1—PIN-UPF1—PIN-UPF2—UE2.
  • a first tunnel is established between PIN-UPF1 and PIN-UPF2, or an N19+ connection (or N20 connection, etc.) is established to transmit the service data of multiple PINs; an N19 connection is established between L-UPF1 and PIN-UPF1, and the connection is used to transmit the service data of the first PIN, as shown in FIG13.
  • a thick black solid line represents the transmission path of the cross-region communication between UE1 and UE2.
  • an L-UPF is deployed between the UE and the PIN-UPF, which can realize the nearest forwarding within the area and reduce the data transmission delay.
  • the L-UPF and PIN-UPF can be the same device or different devices; or the L-UPF and PIN-UPF can be set together or not, without limitation.
  • N19 connection is The connection between different L-UPFs in a region is based on the PIN granularity. N19 is established between multiple L-UPFs in a region, and one of the multiple L-UPFs can serve as the PIN-UPF of the region.
  • L-SMF1 may send the fourth message to PIN-SMF after the first session is established; or may send the fourth message to PIN-SMF during the first session establishment process; or may send the fourth message to PIN-SMF before the first session is established and after sending the second message, without limitation.
  • each of the above network elements may include a hardware structure and/or a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • Fig. 14 shows a schematic diagram of the structure of a communication device 1400.
  • the communication device 1400 can implement the functions or steps implemented by the first user plane function network element, the first session management function network element, and the third session management function network element in the above-mentioned various method embodiments.
  • the communication device 1400 may include a processing unit 1401 and a transceiver unit 1402.
  • the processing unit 1401 may be used to execute the steps of any network element (e.g., a first user plane function network element, a first session management function network element, and a third session management function network element) in any of the above method embodiments; the transceiver unit 1402 may be used to receive or send relevant data, information or messages.
  • any network element e.g., a first user plane function network element, a first session management function network element, and a third session management function network element
  • the communication device 1400 may include a transceiver unit 1402, which can be used to execute the steps or methods of any network element (for example, a first user plane function network element, a first session management function network element, and a third session management function network element) in any of the above method embodiments.
  • a transceiver unit 1402 can be used to execute the steps or methods of any network element (for example, a first user plane function network element, a first session management function network element, and a third session management function network element) in any of the above method embodiments.
  • the transceiver unit 1402 may include a transmitting unit and a receiving unit.
  • the communication device 1400 can implement the functions or steps implemented by the first user plane function network element in any of the above method embodiments.
  • the processing unit 1401 may be used to obtain the endpoint information of the second user plane function network element.
  • the transceiver unit 1402 may be used to transmit the service data of at least one PIN according to the endpoint information of the second user plane function network element.
  • the transceiver unit 1402 when the processing unit 1401 obtains the endpoint information of the second user plane function network element, the transceiver unit 1402 is specifically used to receive a first message from the session management function network element, the first message being used to instruct the first user plane function network element to allocate the endpoint information of the first user plane function network element; according to the first message, the endpoint information of the first user plane function network element is sent to the session management function network element; and, the endpoint information of the second user plane function network element is received from the session management function network element.
  • the first message may instruct the first user plane function network element to allocate endpoint information of the first user plane function network element in the following manner: the first message includes first indication information, and the first indication information is used to instruct the first user plane function network element to allocate endpoint information of the first user plane function network element.
  • the transceiver unit 1402 is further used to send an identifier of at least one PIN served by the first user plane function network element to the session management function network element; or, to send an identifier of at least one PIN served by the first user plane function network element to the second user plane function network element through the session management function network element.
  • the processing unit 1401 is further used to obtain the identifier of at least one PIN of the second user plane function network element service; and associate the endpoint information on the second user plane function network element side with the identifier of at least one PIN of the second user plane function network element service.
  • At least one PIN of the second user plane functional network element service includes a first PIN
  • the transceiver unit 1402 is further used to receive a first data packet from the first terminal device based on the first session, wherein the first session is a session of the first PIN; according to the first PIN, a second data packet is sent to the second user plane functional network element through the endpoint information of the second user plane functional network element, and the service data included in the first data packet is the same as the service data included in the second data packet.
  • the processing unit 1401 is further configured to encapsulate a header outside the first data packet to obtain a second data packet, wherein the header carries an identifier of the first PIN.
  • the processing unit 1401 is further configured to determine the first The destination address of the data packet is not the address assigned by the first user plane function network element; and, the endpoint information of the second user plane function network element is determined based on the association between the endpoint information of the second user plane function network element and the identifier of at least one PIN served by the second user plane function network element and the identifier of the first PIN.
  • the transceiver unit 1402 is further used to receive a second message from the session management function network element, wherein the second message is used to request to establish a first session of the first PIN; the processing unit 1401 is further used to establish the first session according to the second message.
  • At least one PIN of the first user plane function network element service includes a second PIN
  • the transceiver unit 1402 is further used to receive a third data packet from the second user plane function network element, and the third data packet header includes an identifier of the second PIN
  • the processing unit 1401 is further used to determine a second session based on the second PIN and/or the destination address of the third data packet, wherein the second session is a session of the second PIN
  • the transceiver unit 1402 is further used to send a fourth data packet based on the second session, and the service data included in the fourth data packet is the same as the service data included in the third data packet.
  • the communication device 1400 can implement the functions or steps implemented by the first session management function network element in any of the above method embodiments.
  • the processing unit 1401 is used to obtain the endpoint information of the second user plane function network element; the transceiver unit 1402 is used to send the endpoint information of the second user plane function network element to the first user plane function network element; wherein the endpoint information of the second user plane function network element is used for the first user plane function network element to transmit the business data of at least one personal Internet of Things network PIN.
  • the transceiver unit 1402 is further used to send a first message to the first user plane function network element, the first message being used to instruct the first user plane function network element to allocate endpoint information of the first user plane function network element; receive endpoint information of the first user plane function network element from the first user plane function network element; and send endpoint information of the first user plane function network element to the second user plane function network element.
  • the transceiver unit 1402 is specifically configured to send endpoint information of the first user plane function network element to the second user plane function network element through the second session management function network element.
  • At least one PIN served by the first user plane function network element includes a first PIN
  • the transceiver unit 1402 is further used to receive a third message from a third session management function network element, the third message including an identifier of at least one session management function network element providing services for the first PIN and/or an identifier of at least one user plane function network element providing services for the first PIN, wherein at least one session management function network element includes a second session management function network element, and at least one user plane function network element includes a second user plane function network element.
  • the processing unit 1401 is further configured to determine, according to an identifier of the second session management function network element and/or an identifier of the second user plane function network element, to send the first message to the first user plane function network element.
  • the transceiver unit 1402 before receiving the third message from the third session management function network element, is further configured to send a fourth message to the third session management function network element, where the fourth message is used to subscribe to an event of the first PIN.
  • the transceiver unit 1402 is further configured to send an identifier of the first PIN and first information to a third session management function network element, where the first information includes an identifier of the first session management function network element and/or an identifier of the first user plane function network element.
  • the third message is used to instruct to establish a tunnel for the first PIN between the first user plane function network element and the second user plane function network element.
  • the third message may indicate establishment of a tunnel for the first PIN between the first user plane function network element and the second user plane function network element in the following manner: the third message includes second indication information, and the second indication information is used to indicate establishment of a tunnel for the first PIN between the first user plane function network element and the second user plane function network element.
  • the transceiver unit 1402 before receiving a third message from a third session management function network element, is further used to receive a fifth message from an access management function network element, wherein the fifth message is used to request establishment of a first session for a first terminal device with a first PIN; and, based on the fifth message, send a second message to the first user plane function network element, wherein the second message is used to request establishment of a first session for the first PIN.
  • the first message may instruct the first user plane function network element to allocate endpoint information of the first user plane function network element in the following manner: the first message includes first indication information, and the first indication information is used to instruct the first user plane function network element to allocate endpoint information of the first user plane function network element.
  • the transceiver unit 1402 is further configured to receive endpoint information of a second user plane function network element from a second session management network element.
  • the transceiver unit 1402 is further used to receive an identifier of at least one PIN of a first user plane function network element service from the first user plane function network element; and send an identifier of at least one PIN of the first user plane function network element service to the second user plane function network element.
  • the transceiver unit 1402 is further configured to receive an identifier of at least one PIN of a second user plane function network element service; and send an identifier of at least one PIN of a second user plane function network element service to the first user plane function network element.
  • the communication device 1400 can implement the functions or steps implemented by the third session management function network element in any of the above method embodiments.
  • the transceiver unit 1402 is used to receive endpoint information of a second user plane function network element from the second user plane function network element; and to send endpoint information of the second user plane function network element to the first user plane function network element; wherein the endpoint information of the second user plane function network element is used for the first user plane function network element to transmit business data of at least one personal Internet of Things network PIN.
  • the transceiver unit 1402 before receiving the endpoint information of the second user plane function network element from the second user plane function network element, the transceiver unit 1402 is further used to send a first message to the first user plane function network element, the first message being used to instruct the first user plane function network element to allocate the endpoint information of the first user plane function network element; receiving the endpoint information of the first user plane function network element from the first user plane function network element; and sending the endpoint information of the first user plane function network element to the second user plane function network element.
  • the transceiver unit 1402 is further used to receive an identifier of at least one PIN of a first user plane function network element service from a first user plane function network element; and to send an identifier of at least one PIN of a first user plane function network element service to a second user plane function network element.
  • the transceiver unit 1402 is further used to receive an identifier of at least one PIN of a second user plane function network element service from the second user plane function network element; and send an identifier of at least one PIN of the second user plane function network element service to the first user plane function network element.
  • the first message may instruct the first user plane function network element to allocate endpoint information of the first user plane function network element in the following manner: the first message includes first indication information, and the first indication information is used to instruct the first user plane function network element to allocate endpoint information of the first user plane function network element.
  • the transceiver unit 1402 is specifically used to receive endpoint information of a second user plane function network element from a second user plane function network element through a second session management function network element; and send endpoint information of the second user plane function network element to the first user plane function network element through the first session management function network element.
  • the transceiver unit 1402 before receiving the endpoint information of the second user plane function network element from the second user plane function network element through the second session management function network element, is further used to receive the endpoint information of the first user plane function network element from the first session management function network element; and send the endpoint information of the first user plane function network element to the second user plane function network element through the second session management function network element.
  • the transceiver unit 1402 is further used to receive an identifier of at least one PIN of a first user plane function network element service from a first session management function network element; send an identifier of at least one PIN of a first user plane function network element service to a second user plane function network element through a second session management function network element; receive an identifier of at least one PIN of a second user plane function network element service from the second session management function network element; and send an identifier of at least one PIN of a second user plane function network element service to the first session management function network element.
  • At least one PIN includes a first PIN
  • the transceiver unit 1402 is further used to send a third message to the second session management function network element, where the third message includes an identifier of at least one session management function network element that provides services for the first PIN and/or an identifier of at least one user plane function network element that provides services for the first PIN.
  • the third message is used to instruct to establish a tunnel for the first PIN between the first user plane function network element and the second user plane function network element.
  • the third message may indicate establishment of a tunnel for the first PIN between the first user plane function network element and the second user plane function network element in the following manner: the third message includes second indication information, and the second indication information is used to indicate establishment of a tunnel for the first PIN between the first user plane function network element and the second user plane function network element.
  • the transceiver unit 1402 is further configured to receive a fourth message from the second session management function network element, where the fourth message is used to subscribe to an event of the first PIN.
  • At least one PIN includes a first PIN
  • the transceiver unit 1402 is further used to receive an identifier and first information of the first PIN from a first session management device, where the first information includes an identifier of a first session management function network element and/or an identifier of a first user plane function network element.
  • the processing unit 1401 is used to create a context of a first PIN based on the first information, where the context of the first PIN includes the first information; or, to add the first information to the context of the first PIN, and to determine, based on the context of the first PIN, an identifier of at least one session management function network element that provides services for the first PIN and/or determine an identifier of at least one user plane function network element that provides services for the first PIN.
  • processing unit 1401 and the transceiver unit 1402 can be obtained by directly referring to the relevant description in the method embodiments shown in any one of Figures 3 to 8, 10, and 12, and will not be repeated here.
  • an embodiment of the present application provides a structural diagram of a communication device 1500.
  • the communication device 1500 may include a processor 1520, which is used to implement or support the communication device 1500 to implement the functions of the first user plane function network element, the first session management function network element, or the third session management function network element in any method embodiment of the present application.
  • the processor 1520 is used to read and execute program instructions through a communication interface so that the communication device 1500 implements the corresponding method.
  • the processor 1520 may include one or more processors without limitation.
  • the communication device 1500 can be a first user plane functional network element or a functional module located in the first user plane functional network element, which can implement the function of the first user plane functional network element in any method embodiment of the present application; or, the communication device 1500 can be a first session management functional network element or a functional module located in the first session management functional network element, which can implement the function of the first session management functional network element in any method embodiment of the present application; or, the communication device 1500 can be a third session management functional network element or a functional module located in the third session management functional network element, which can implement the function of the third session management functional network element in any method embodiment of the present application.
  • the communication device 1500 may be a chip system, wherein the chip system may be composed of a chip, or may include a chip and other discrete devices, without limitation.
  • the communication device 1500 may further include a memory 1530 for storing program instructions and/or data.
  • the memory 1530 is coupled to the processor 1520.
  • the coupling may be understood as an indirect coupling or communication connection between devices, units or modules, which may be electrical, mechanical or other forms, for information exchange between devices, units or modules.
  • the processor 1520 may operate in coordination with the memory 1530.
  • the memory 1530 may include one or more memories, without limitation.
  • the processor 1520 is used to execute program instructions stored in the memory 1530 so that the communication device 1500 implements a corresponding method.
  • one or more memories in the memory 1530 may be included in the processor, and the memory 1530 may also exist independently, such as an off-chip memory, connected to the processor 1520 via a communication bus (indicated by a thick line 1540 in FIG. 15).
  • the memory 1530 and the processor 1520 may also be integrated together.
  • the communication device 1500 further includes a communication interface 1510 (indicated by a dotted line in FIG. 15 ), which is used to communicate with other devices through a transmission medium, so that the device used in the communication device 1500 can communicate with other devices.
  • a communication interface 1510 (indicated by a dotted line in FIG. 15 ), which is used to communicate with other devices through a transmission medium, so that the device used in the communication device 1500 can communicate with other devices.
  • the communication device is a first user plane function network element
  • the other device may be a first session management function network element or a third session management function network element, etc.
  • the processor 1520 may use the communication interface 1510 to send and receive data.
  • the communication interface 1510 may be a transceiver.
  • the transceiver may be used to implement the functions of the transceiver unit 1402 , and the transceiver is integrated in the communication device 1500 to form the communication interface 1510 .
  • connection medium between the above-mentioned communication interface 1510, processor 1520 and memory 1530 is not limited in the embodiment of the present application.
  • the memory 1530, processor 1520 and communication interface 1510 are connected through a communication bus 1540, and the connection method between other components is only for schematic illustration and is not limited.
  • the communication bus 1540 can be divided into an address bus, a data bus, a control bus, etc. For ease of representation, only one thick line is used in Figure 15, but it does not mean that there is only one communication bus or one type of communication bus.
  • the processor 1520 may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component.
  • the general-purpose processor may be a microprocessor or any conventional processor, etc.
  • the method disclosed in the embodiment of the present application may be executed by hardware in the processor, or by a combination of hardware and software in the processor.
  • the memory 1530 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), or a volatile memory, such as a random-access memory (RAM).
  • the memory may also be any other medium for carrying or storing program codes in the form of instructions or data structures and accessible by a computer; or, it may be a circuit or any other device capable of implementing a storage function, for storing Stores program instructions and/or data.
  • the embodiment of the present application also provides a communication system, which may include one or more of the following: a first user plane function network element, a first session management function network element, or a third session management function network element.
  • the communication system may also include a second user plane function network element and/or a second session management function network element.
  • the first user plane function network element, the first session management function network element, or the third session management function network element, the second user plane function network element, and the second session management function network element can all refer to the description in the aforementioned method embodiments and will not be repeated here.
  • a computer-readable storage medium is also provided in an embodiment of the present application, including program instructions, which, when executed on a computer, enables the computer to execute the method or steps of any network element in the above-mentioned embodiments (for example, a first user plane function network element, a first session management function network element, or a third session management function network element).
  • a computer program product is also provided in an embodiment of the present application, including program instructions, which, when executed on a computer, enable the computer to execute the method or steps of any network element in the above-mentioned embodiments (for example, a first user plane function network element, a first session management function network element, or a third session management function network element).
  • the embodiment of the present application provides a chip system, which includes a processor, and is used to implement the functions of the first user plane function network element, the first session management function network element, or the third session management function network element in the aforementioned method (for example, execute the corresponding method or step).
  • the chip system can be composed of a chip, or it can include a chip and other discrete devices.
  • the chip system also includes a memory, which is used to store program instructions so that the above-mentioned processor can read and execute them to implement the corresponding method.
  • the size of the serial numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be essentially or partly embodied in the form of a software product that contributes to the prior art.
  • the computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例涉及通信技术领域,提供一种通信方法及装置。在该方法中,第一用户面功能网元,获取第二用户面功能网元的端点信息(S301);以及,根据该第二用户面功能网元的端点信息,传输至少一个个人物联网网络PIN的业务数据(S302)。由于第一用户面功能网元能够根据第二用户面功能网元的端点信息传输多个PIN的业务数据,因此能够减少跨区域通信时用户面功能网元之间所建立的隧道的数量,进而减少网络资源的消耗。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2023年03月17日提交中国国家知识产权局、申请号为202310274028.3、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在面向消费者(to cunsumer,toC)的个人业务中,多个终端设备可以组成群组,如家庭中的各种终端设备组成一个群组。类似地,在面向企业(to business,toB)的业务中,多个终端设备也可以组成群组,如企业员工的终端设备组成一个群组。这样由多个终端设备组成的群组可以称为个人物联网网络(personal internet of things network,PIN)。PIN成员之间可能需要跨区域通信,为此跨区域通信的PIN成员间需要建立连接。以家庭PIN为例,移动到远场的终端设备需要访问家里的终端设备,则需要建立与家里的终端设备之间的连接。
目前,第五代移动通信(5th-generation,5G)核心网支持两个区域中的用户面功能网元之间通过建立隧道实现这两个区域间的跨区域通信,同一个PIN中的不同成员可以共享同一个隧道,但不同PIN的成员间需要建立不同的隧道。那么当跨区域通信的PIN的数量较多时,用户面功能网元之间需要建立的隧道的数量也较多,网络资源消耗较大。
发明内容
本申请实施例提供一种通信方法及装置,用于减少跨区域通信时用户面功能网元之间所建立的隧道的数量,减少网络资源的消耗。
第一方面,本申请实施例提供一种通信方法,该方法可以由第一用户面功能网元执行,或者由第一用户面功能网元的部件执行,不予限制。在该方法中,第一用户面功能网元可以获取第二用户面功能网元的端点信息;并根据第二用户面功能网元的端点信息,传输至少一个PIN的业务数据。
可选地,该端点信息可以包括隧道端点标识(tunnel endpoint identifier,TEID)和因特网协议(internet protocol,IP)地址,不予限制。
在上述实施例中,第一用户面功能网元根据第二用户面功能网元的端点信息可以传输一个PIN的业务数据或者传输多个PIN的业务数据,意味着当第一用户面功能网元与第二用户面功能网元位于不同区域时,第一用户面功能网元能够基于第二用户面功能网元的端点信息传输多个PIN的业务数据,也即是第一用户面功能网元可以通过一个隧道实现与第二用户面功能网元之间的多个PIN的跨区域通信,相较于跨区域通信时不同PIN建立不同的隧道而言,能够减少跨区域通信时用户面功能网元之间所建立的隧道的数量,便于隧道管理。由于隧道的建立过程需要消耗网络资源,本申请实施例能够减少第一用户面功能网元与第二用户面功能网元之间所建立的隧道的数量,因此还可以减少网络资源的消耗,提高网络资源的利用率。
在一种可能的实现方式中,第一用户面功能网元获取第二用户面功能网元的端点信息具体可以为:第一用户面功能网元接收来自会话管理功能网元的第一消息,第一消息用于指示第一用户面功能网元分配第一用户面功能网元的端点信息;根据第一消息,向会话管理功能网元发送第一用户面功能网元的端点信息;以及,接收来自会话管理功能网元的第二用户面功能网元的端点信息。
通过上述实现方式,第一用户面功能网元可以在会话管理功能的触发下建立与第二用户面功能网元之间的隧道,并在隧道建立过程中,获得该第二用户面功能网元的端点信息。
在一种可能的实现方式中,第一消息可通过如下方式指示第一用户面功能网元分配第一用户面功能网元的端点信息:第一消息包括第一指示信息,第一指示信息用于指示第一用户面功能网元分配第一用户面功能网元的端点信息。
通过上述实现方式,第一消息自身可以用于指示第一用户面功能网元分配第一用户面功能网元的端点信息,也可以携带第一指示信息来指示第一用户面功能网元分配第一用户面功能网元的端点信息,实现方式灵活。
在一种可能的实现方式中,上述方法还可以包括:第一用户面功能网元向会话管理功能网元发送第一用户面功能网元服务的至少一个PIN的标识。或者,第一用户面功能网元通过会话管理功能网元向第二用户面功能网元发送第一用户面功能网元服务的至少一个PIN的标识。
通过上述实现方式,第一用户面功能网元将自身服务的至少一个PIN的标识发送给会话管理功能网元,以便该会话管理功能网元将第一用户面功能网元服务的至少一个PIN的标识转发给第二用户面功能网元,进而该第二用户面功能网元可以对第一用户面功能网元的端点信息和该第一用户面功能网元服务的至少一个PIN的标识进行关联。
在一种可能的实现方式中,上述方法还可以包括:第一用户面功能网元可以获取第二用户面功能网元服务的至少一个PIN的标识;对第二用户面功能网元侧的端点信息和第二用户面功能网元服务的至少一个PIN的标识进行关联。
通过上述实现方式,第一用户面功能网元可以对第二用户面功能网元的端点信息和该第二用户面功能网元服务的至少一个PIN的标识进行关联,以便后续接收到该至少一个PIN的业务数据后可以根据该第二用户面功能网元的端点信息传输该至少一个PIN的业务数据。
在一种可能的实现方式中,第二用户面功能网元服务的至少一个PIN中包括第一PIN,上述方法还可以包括:第一用户面功能网元基于第一会话接收来自第一终端设备的第一数据包,其中,第一会话为第一PIN的会话;第一用户面功能网元根据第二用户面功能网元的端点信息,传输至少一个个人物联网网络PIN的业务数据具体可以为:第一用户面功能网元根据第一PIN,通过第二用户面功能网元的端点信息向第二用户面功能网元发送第二数据包,第一数据包所包括的业务数据与第二数据包所包括的业务数据相同。
可选地,基于上述实现方式,在通过第二用户面功能网元的端点信息向第二用户面功能网元发送第二数据包之前,第一用户面功能网元还可以在第一数据包外封装包头获得第二数据包,其中,包头中携带第一PIN的标识。
可选地,基于上述实现方式,在通过第二用户面功能网元的端点信息向第二用户面功能网元发送第二数据包之前,第一用户面功能网元还可以根据第一数据包的目的地址,确定第一数据包的目的地址不是第一用户面功能网元分配的地址;以及,根据第二用户面功能网元的端点信息与第二用户面功能网元服务的至少一个PIN的标识之间的关联关系和第一PIN的标识,确定第二用户面功能网元的端点信息。
可选地,基于上述实现方式,在基于第一会话接收来自第一终端设备的第一数据包之前,第一用户面功能网元还可以接收来自会话管理功能网元的第二消息,其中,第二消息用于请求建立第一PIN的第一会话;以及根据第二消息,建立第一会话。
通过上述实现方式,第一用户面功能网元可以根据第二用户面功能网元的端点信息将PIN的业务数据发送给第二用户面功能网元。
在一种可能的实现方式中,第一用户面功能网元服务的至少一个PIN中包括第二PIN,上述方式还可以包括:第一用户面功能网元接收来自第二用户面功能网元的第三数据包,第三数据包包头中包括第二PIN的标识;根据第二PIN和/或第三数据包的目的地址,确定第二会话,其中,第二会话为第二PIN的会话;以及,基于第二会话发送第四数据包,第四数据包所包括的业务数据与第三数据包所包括的业务数据相同。
通过上述实现方式,第一用户面功能网元可以接收来自第二用户面功能网元的PIN的业务数据。
第二方面,本申请实施例提供一种通信方法,该方法可以由第一会话管理功能网元执行,或者由第一会话管理功能网元的部件执行,不予限制。在该方法中,第一会话管理功能网元可以获取第二用户面功能网元的端点信息;以及向第一用户面功能网元发送第二用户面功能网元的端点信息;其中,第二用户面功能网元的端点信息用于第一用户面功能网元传输至少一个个人物联网网络PIN的业务数据。
在一种可能的实现方式中,在获取第二用户面功能网元的端点信息之前,上述方法还可以包括:第一会话管理功能网元向第一用户面功能网元发送第一消息,第一消息用于指示第一用户面功能网元分配第一用户面功能网元的端点信息;接收来自第一用户面功能网元的第一用户面功能网元的端点信息; 以及,向第二用户面功能网元发送第一用户面功能网元的端点信息。
可选地,第一会话管理功能网元可通过如下方式向第二用户面功能网元发送第一用户面功能网元的端点信息:第一会话管理功能网元通过第二会话管理功能网元向第二用户面功能网元发送第一用户面功能网元的端点信息。
在一种可能的实现方式中,第一用户面功能网元服务的至少一个PIN中包括第一PIN,在向第一用户面功能网元发送第一消息之前,上述方法还可以包括:第一会话管理功能网元可以接收来自第三会话管理功能网元的第三消息,第三消息包括为第一PIN提供服务的至少一个会话管理功能网元的标识和/或为第一PIN提供服务的至少一个用户面功能网元的标识,其中,至少一个会话管理功能网元包括第二会话管理功能网元,至少一个用户面功能网元包括第二用户面功能网元。
通过上述实现方式,第一会话管理功能网元可以获取为第一PIN提供服务的至少一个会话管理功能网元的标识和/或为第一PIN提供服务的至少一个用户面功能网元的标识,从而第一会话管理功能网元可以根据该至少一个会话管理功能网元的标识和/或至少一个用户面功能网元的标识确定第一用户面功能网元与该至少一个用户面功能网元之间是否建立隧道,以便后续跨区域传输该第一PIN的业务数据。
在一种可能的实现方式中,上述方法还可以包括:第一会话管理功能网元根据第二会话管理功能网元的标识和/或第二用户面功能网元的标识,确定向第一用户面功能网元发送第一消息。
通过上述实现方式,第一会话管理功能网元可以根据第二会话管理功能网元的标识和/或第二用户面功能网元的标识确定第一用户面功能网元与第二用户面功能网元之间是否建立隧道,在未建立隧道的情况下,第一会话管理功能网元可以触发第一用户面功能网元建立与第二用户面功能网元之间的隧道。
在一种可能的实现方式中,在接收来自第三会话管理功能网元的第三消息之前,第一会话管理功能网元还可以向第三会话管理功能网元发送第四消息,第四消息用于订阅第一PIN的事件。
通过上述实现方式,第三会话管理功能网元可主动向第一会话管理功能网元发送第三消息,或者也可以响应于第一会话管理功能网元的订阅消息向该第一会话管理功能网元发送第三消息,实现方式灵活。
在一种可能的实现方式中,上述方法还可以包括:第一会话管理功能网元向第三会话管理功能网元发送第一PIN的标识和第一信息,第一信息包括第一会话管理功能网元的标识和/或第一用户面功能网元的标识。
通过上述实现方式,第一会话管理功能网元可以向第三会话管理功能网元上报第一PIN的标识以及为第一PIN提供服务的第一会话管理功能网元的标识和/或为第一PIN提供服务的第一用户面功能网元的标识。
在一种可能的实现方式中,第三消息用于指示在第一用户面功能网元与第二用户面功能网元之间为第一PIN建立隧道。
可选地,第三消息可通过如下方式指示在第一用户面功能网元与第二用户面功能网元之间为第一PIN建立隧道:第三消息包括第二指示信息,该第二指示信息用于指示在第一用户面功能网元与第二用户面功能网元之间为第一PIN建立隧道。
通过上述实现方式,第三消息自身可用于指示在第一用户面功能网元与第二用户面功能网元之间为第一PIN建立隧道,也可以通过包括的第二指示信息指示在第一用户面功能网元与第二用户面功能网元之间为第一PIN建立隧道,实现方式灵活。
在一种可能的实现方式中,在接收来自第三会话管理功能网元的第三消息之前,第一会话管理功能网元还可以接收来自接入管理功能网元的第五消息,其中,第五消息用于请求为第一终端设备建立第一PIN的第一会话;以及,根据第五消息,向第一用户面功能网元发送第二消息,其中,第二消息用于请求建立第一PIN的第一会话。
在一种可能的实现方式中,第一消息可通过如下方式指示第一用户面功能网元分配第一用户面功能网元的端点信息:第一消息包括第一指示信息,第一指示信息用于指示第一用户面功能网元分配第一用户面功能网元的端点信息。
在一种可能的实现方式中,第一会话管理功能网元可通过如下方式获取第二用户面功能网元的端点信息:第一会话管理功能网元接收来自第二会话管理网元的第二用户面功能网元的端点信息。
在一种可能的实现方式中,上述方法还可以包括:第一会话管理功能网元接收来自第一用户面功 能网元的第一用户面功能网元服务的至少一个PIN的标识;向第二用户面功能网元发送第一用户面功能网元服务的至少一个PIN的标识。
在一种可能的实现方式中,上述方法还可以包括:第一会话管理功能网元接收第二用户面功能网元服务的至少一个PIN的标识;向第一用户面功能网元发送第二用户面功能网元服务的至少一个PIN的标识。
第三方面,本申请实施例提供一种通信方法,该方法可以由第三会话管理功能网元执行,或者由第三会话管理功能网元的部件执行,不予限制。在该方法中,第三会话管理功能网元接收来自第二用户面功能网元的第二用户面功能网元的端点信息;以及,向第一用户面功能网元发送第二用户面功能网元的端点信息;其中,第二用户面功能网元的端点信息用于第一用户面功能网元传输至少一个个人物联网网络PIN的业务数据。
在一种可能的实现方式中,在接收来自第二用户面功能网元的第二用户面功能网元的端点信息之前,第三会话管理功能网元还可以向第一用户面功能网元发送第一消息,第一消息用于指示第一用户面功能网元分配第一用户面功能网元的端点信息;接收来自第一用户面功能网元的第一用户面功能网元的端点信息;以及,向第二用户面功能网元发送第一用户面功能网元的端点信息。
在一种可能的实现方式中,第三会话管理功能网元还可以接收来自第一用户面功能网元的第一用户面功能网元服务的至少一个PIN的标识;以及,向第二用户面功能网元发送第一用户面功能网元服务的至少一个PIN的标识。
在一种可能的实现方式中,第三会话管理功能网元还可以接收来自第二用户面功能网元的第二用户面功能网元服务的至少一个PIN的标识;向第一用户面功能网元发送第二用户面功能网元服务的至少一个PIN的标识。
在一种可能的实现方式中,第一消息可通过如下方式指示第一用户面功能网元分配第一用户面功能网元的端点信息:第一消息包括第一指示信息,第一指示信息用于指示第一用户面功能网元分配第一用户面功能网元的端点信息。
在一种可能的实现方式中,第三会话管理功能网元接收来自第二用户面功能网元的第二用户面功能网元的端点信息可以为:第三会话管理功能网元通过第二会话管理功能网元接收来自第二用户面功能网元的第二用户面功能网元的端点信息;第三会话管理功能网元向第一用户面功能网元发送第二用户面功能网元的端点信息可以为:第三会话管理功能网元通过第一会话管理功能网元向第一用户面功能网元发送第二用户面功能网元的端点信息。
在一种可能的实现方式中,在通过第二会话管理功能网元接收来自第二用户面功能网元的第二用户面功能网元的端点信息之前,第三会话管理功能网元还可以接收来自第一会话管理功能网元的第一用户面功能网元的端点信息;通过第二会话管理功能网元向第二用户面功能网元发送第一用户面功能网元的端点信息。
在一种可能的实现方式中,第三会话管理功能网元还可以接收来自第一会话管理功能网元的第一用户面功能网元服务的至少一个PIN的标识;通过第二会话管理功能网元向第二用户面功能网元发送第一用户面功能网元服务的至少一个PIN的标识;接收来自第二会话管理功能网元的第二用户面功能网元服务的至少一个PIN的标识;向第一会话管理功能网元发送第二用户面功能网元服务的至少一个PIN的标识。
在一种可能的实现方式中,至少一个PIN包括第一PIN,第三会话管理功能网元还可以向第二会话管理功能网元发送第三消息,第三消息包括为第一PIN提供服务的至少一个会话管理功能网元的标识和/或为第一PIN提供服务的至少一个用户面功能网元的标识。
在一种可能的实现方式中,第三消息用于指示在第一用户面功能网元与第二用户面功能网元之间为第一PIN建立隧道。
可选地,第三消息可通过如下方式指示在第一用户面功能网元与第二用户面功能网元之间为第一PIN建立隧道:第三消息包括第二指示信息,第二指示信息用于指示在第一用户面功能网元与第二用户面功能网元之间为第一PIN建立隧道。
在一种可能的实现方式中,第三会话管理功能网元还可以接收来自第二会话管理功能网元的第四消息,第四消息用于订阅第一PIN的事件。
在一种可能的实现方式中,至少一个PIN包括第一PIN,第三会话管理功能网元还可以接收来自 第一会话管理设备的第一PIN的标识和第一信息,第一信息包括第一会话管理功能网元的标识和/或第一用户面功能网元的标识。
在一种可能的实现方式中,第三会话管理功能网元还可以根据第一信息创建第一PIN的上下文,第一PIN的上下文包括第一信息;或者,第三会话管理功能网元将第一信息添加到第一PIN的上下文中,以及根据第一PIN的上下文,确定为第一PIN提供服务的至少一个会话管理功能网元和/或确定为第一PIN提供服务的至少一个用户面功能网元的标识。
第四方面,本申请实施例提供一种通信装置。所述通信装置用于执行为上述第一方面及其任一项可能的实现方式中所述的方法。该通信装置例如为第一用户面功能网元,或为第一用户面功能网元中的功能模块,例如基带装置或芯片系统等。一种可能的实现方式中,所述通信装置包括基带装置和射频装置。
另一种可能的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。收发单元能够实现发送功能和接收功能,在收发单元实现发送功能时,可称为发送单元(有时也称为发送模块),在收发单元实现接收功能时,可称为接收单元(有时也称为接收模块)。发送单元和接收单元可以是同一个功能单元,该功能单元称为收发单元,该功能单元能实现发送功能和接收功能;或者,发送单元和接收单元可以是不同的功能单元,收发单元是对这些功能单元的统称。
第五方面,本申请实施例提供一种通信装置。所述通信装置用于执行为上述第二方面及其任一项可能的实现方式中所述的方法。该通信装置例如为第一会话管理功能网元,或为第一会话管理功能网元中的功能模块,例如基带装置或芯片系统等。一种可能的实现方式中,所述通信装置包括基带装置和射频装置。
另一种可能的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。收发单元能够实现发送功能和接收功能,在收发单元实现发送功能时,可称为发送单元(有时也称为发送模块),在收发单元实现接收功能时,可称为接收单元(有时也称为接收模块)。发送单元和接收单元可以是同一个功能单元,该功能单元称为收发单元,该功能单元能实现发送功能和接收功能;或者,发送单元和接收单元可以是不同的功能单元,收发单元是对这些功能单元的统称。
第六方面,本申请实施例提供一种通信装置。所述通信装置用于执行为上述第三方面及其任一项可能的实现方式中所述的方法。该通信装置例如为第三会话管理功能网元,或为第三会话管理功能网元中的功能模块,例如基带装置或芯片系统等。一种可能的实现方式中,所述通信装置包括基带装置和射频装置。
另一种可能的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。收发单元能够实现发送功能和接收功能,在收发单元实现发送功能时,可称为发送单元(有时也称为发送模块),在收发单元实现接收功能时,可称为接收单元(有时也称为接收模块)。发送单元和接收单元可以是同一个功能单元,该功能单元称为收发单元,该功能单元能实现发送功能和接收功能;或者,发送单元和接收单元可以是不同的功能单元,收发单元是对这些功能单元的统称。
第七方面,本申请实施例还提供一种通信装置。所述通信装置可以包括一个或多个处理器。可选地,该通信装置还可以包括存储器。其中,所述存储器用于存储一个或多个计算机程序或指令。所述一个或多个处理器用于执行所述存储器存储的所述一个或多个计算机程序或指令,以使得所述通信装置执行上述第一方面及其任一项可能的实现方式中所述的方法,或者执行上述第二方面及其任一项可能的实现方式中所述的方法,或者执行上述第三方面及其任一项可能的实现方式中所述的方法。
第八方面,本申请实施例还提供一种通信系统。所述通信系统包括如下中的一项或多项:上述第四方面所述的通信装置,上述第五方面所述的通信装置,或上述第六方面所述的通信装置。
第九方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序或指令,当其被运行时,使得上述第一方面及其任一项可能的实现方式中所述的方法被实现,或者使得上述第二方面及其任一项可能的实现方式中所述的方法被实现,或者使得上述第三方面及其任一项可能的实现方式中所述的方法被实现。
第十方面,本申请实施例还提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得上述第一方面及其任一项可能的实现方式中所述的方法被实现,或者使得上述第二方面及其任一项可能的实现方式中所述的方法被实现,或者使得上述第三方面及其任一项可能的实现方式中所述的方法被实现。
第十一方面,本申请实施例还提供一种芯片,所述芯片与存储器耦合,用于读取并执行所述存储器中的程序指令,以使得所述芯片所在装置实现上述第一方面及其任一项可能的实现方式中所述的方法, 或者实现上述第二方面及其任一项可能的实现方式中所述的方法,或者实现上述第三方面及其任一项可能的实现方式中所述的方法。
上述第二方面至第十一方面及其任一项可能的实现方式所能达到的技术效果请相应参照上述第一方面及其任一项可能的实现方式所能达到的技术效果,不再重复赘述。
附图说明
图1a为一种基于服务化架构的5G网络架构示意图;
图1b为一种基于点对点接口的5G网络架构示意图;
图1c为另一种基于点对点接口的5G网络架构示意图;
图2a为一种跨区域通信的网络架构示意图;
图2b为另一种跨区域通的网络架构示意图;
图3为本申请实施例提供的一种通信方法的流程示意图;
图4为本申请实施例提供的一种通信方法的流程示意图;
图5为本申请实施例提供的又一种通信方法的流程示意图;
图6为本申请实施例提供的又一种通信方法的流程示意图;
图7为本申请实施例提供的又一种通信方法的流程示意图;
图8为本申请实施例提供的再一种通信方法的流程示意图;
图9为本申请实施例提供的一种传输路径的示意图;
图10为本申请实施例提供的再一种通信方法的流程示意图;
图11为本申请实施例提供的又一种传输路径的示意图;
图12为本申请实施例提供的再一种通信方法的流程示意图;
图13为本申请实施例提供的再一种传输路径的示意图;
图14为本申请实施例提供的一种通信装置的结构示意图;
图15为本申请实施例提供的又一种通信装置的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例中“多个”可以是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或多个。例如,“包括至少一个”,是指包括一个、两个或多个,例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C、A和B、A和C、B和C、或A、B和C。“和/或”,描述关联对象的关联关系,具体可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
此外,本申请实施例中的术语“系统”和“网络”可被互换使用,“根据”和“基于”可被互换使用。
本申请实施例提及的“第一”、“第二”等序数词通常用于对不同对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度等。例如,本申请实施例中的第一用户面功能网元和第二用户面功能网元用于对两个用户面功能网元进行区别,并不限定这两个用户面功能网元的优先级或重要程度等。
本申请实施例将围绕包括多个设备、组件、模块等的系统来呈现。应当理解的是,该系统可以包括其它未提及的设备、组件、模块等,也可以仅包括实施例中提及的部分设备、组件、或模块等。
下面先介绍本申请实施例适用的通信系统。
本申请实施例的技术方案可以应用于各种通信系统,例如,长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代(5th generation,5G)通信系统、或新无线(new radio,NR)系统,还可以应用于未来的通信系统或其它类似的通信系统等。本申请实施例以5G移动通信系统为例进行描述,在将本申请实施例的 技术方案应用于其它通信系统时,可以将实施例中的设备、组件、模块等替换成其它通信系统中的相应设备、组件、模块,不予限制。
图1a提供了一种为基于服务化架构的5G通信系统的网络架构,该网络架构中可以包括用户设备(user equipment,UE)和运营商网络部分。该网络架构还可以包括数据网络(data network,DN)和/或应用功能(application function,AF)网元。
UE,也可以称为终端设备(terminal device)、或终端等,是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。具体地,UE可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、物联网(internet of things,IOT)中的终端设备(如智能工厂的终端设备、智能制造业的终端设备等)、支持星闪(sparklink)短距离通信技术的终端设备等。
运营商网络可以包括但不限定于以下网元中的一个或多个:网络存储功能网元、接入管理功能网元、策略控制功能网元、统一数据管理网元、会话管理功能网元、用户面功能网元,以及接入网(access network,AN)等。上述运营商网络中,除接入网部分之外的部分可以称为核心网(core network,CN)部分。在一种可能的实现方法中,运营商网络中还可以包括AF。
上述终端设备可通过运营商网络提供的接口(例如N1等)与运营商网络建立连接,使用运营商网络提供的数据和/或语音等服务。终端设备还可通过运营商网络访问DN,使用DN上部署的运营商业务,和/或第三方提供的业务。其中,上述第三方可为除了运营商网络和终端设备之外的服务方,可为终端设备提供数据和/或语音等服务。其中,上述第三方的具体表现形式,具体可根据实际应用场景确定,在此不做限制。
下面对核心网中的部分网元进行介绍。
网络存储功能网元,负责提供网元发现功能,基于其他网元的请求,提供网元类型对应的网元信息。可选地,网络存储功能网元还可以提供网元管理服务,如网元注册、更新、去注册以及网元状态订阅和推送等。在5G通信系统中,该网络存储功能网元可以是网络存储功能网元(network repository function,NRF)网元。在未来通信系统中,网络存储功能网元还可以有其它的名称,不做限定。
接入管理功能网元,负责终端设备接入运营商网络的接入控制和移动性管理等,例如,移动状态管理,分配用户临时身份标识,认证和授权等功能。在5G通信系统中,该接入管理功能网元可以是接入与移动性管理功能(access and mobility management function,AMF)网元。在未来通信系统中,接入管理功能网元还可以有其它的名称,不做限定。
统一数据管理网元,负责生成认证信任状,用户标识处理(如存储和管理用户永久身份等),签约数据管理等。在5G通信系统中,该统一数据管理网元可以是统一数据管理(unified data management,UDM)网元。在未来通信系统中,该统一数据管理网元还可以有其它的名称,不做限定。
会话管理功能网元,主要负责移动网络中的会话管理,例如,会话建立、修改、或释放等。会话管理功能网元还可以为用户分配因特网协议(internet protocol,IP)地址、选择提供报文转发功能的用户面功能网元等。在5G通信系统中,该会话管理功能网元可以是会话管理功能(session management function,SMF)网元。在未来通信系统中,会话管理功能网元还可以有其它的名称,不做限定。
策略控制功能网元,主要提供策略规则,同时负责获取与策略决策相关的用户签约信息。在4G通信系统中,该策略控制功能网元可以是策略和计费规则功能(policy and charging rules function,PCRF)网元。在5G通信系统中,该策略控制功能网元可以是策略控制功能(policy control function,PCF)网元。在未来通信系统中,策略控制功能网元还可以有其它的名称,不做限定。AMF与SMF所连接的PCF分别对应AM PCF(PCF for access and mobility control)和SM PCF(PCF for session management),在实际部署场景中可能不是同一个PCF实体。
用户面功能网元,负责用户数据的接收和转发。例如,可以从DN接收用户数据,通过接入网设备传输给终端设备;用户面功能网元还可以通过接入网设备从终端设备接收用户数据,并转发到DN。在5G通信系统中,该用户面功能网元可以是用户面功能(user plane function,UPF)网元。在未来通 信系统中,用户面功能网元还可以有其它的名称,不做限定。
AN包括AN设备。该AN设备用于将终端设备接入到无线网络。AN设备作为接入网中的节点,还可以称为接入网网元、基站、无线接入网(radio access network,RAN)节点(或设备、或网元)、接入点(access point,AP)、小塔等。例如,5G通信系统中的下一代节点B(next generation nodeB,gNB)、LTE系统中的演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home node B,HNB)、基带单元(baseband unit,BBU)、无线保真(wireless fidelity,WiFi)接入点、传输接收点(transmission reception point,TRP)、传输点(transmission point,TP)、或移动交换中心等。
需要指出的是,在采用不同无线接入技术的通信系统中,具备基站功能的设备可能会有所不同。例如,在5G通信系统中,该设备可以称为gNB或5G NodeB;在LTE系统中,该设备可以称为演进的节点B(evolved NodeB,eNB或者eNodeB);在第三代(3rd generation,3G)通信系统中,称为节点B(Node B)等。
DN,位于移动通信系统之外的网络,可以为用户提供业务。例如,DN可以是分组数据网络(packet data network,PDN),如因特网(Internet)、因特网协议多媒体业务(internet protocol multi-media service,IMS)网络、某些应用专用的数据网络、以太网、因特网协议(internet protocol,IP)本地网络等。DN可部署多种业务,为终端设备提供数据和/或语音等服务。DN中可以有多个应用服务器(application server,AS),每个AS可以提供至少一种业务。
AF,主要传递应用侧对网络侧的需求,例如,服务质量(quality of service,QoS)需求或用户状态事件订阅等。AF可以是第三方功能实体,也可以是运营商部署的应用服务,如IMS语音呼叫业务。
如上,图1a主要介绍了本申请的各个实施例可能涉及的网元,图1a所示的通信系统还可以涉及其他网元,例如,核心网还可以包括如下一项或多项:统一数据存储(unified data repository,UDR)网元,网络切片选择功能(network slice selection function,NSSF)网元,鉴权服务器功能(authentication server function,AUSF)网元,或网络开放功能(network exposure function,NEF)网元等,图1a中未示出。
图1a中Nnrf、Namf、Npcf、Nsmf、Nudm、Naf、N1、N2、N3、N4、以及N6为接口序列号。这些接口序列号的含义可参见第三代合作伙伴计划(3rd generation partnership project,3GPP)标准协议中定义的含义,在此不做限制。
5G网络架构支持3GPP定义的无线接入技术(radio access technology,RAT)接入核心网络,3GPP定义的RAT包括长期演进(long term evolution,LTE),5G RAN等。5G网络架构还支持非3GPP(non-3GPP,N3G)接入技术通过non-3GPP转换功能(non-3GPP interworking function,N3IWF)或下一代接入网关(next generation packet data gateway,ngPDG)接入核心网络。
当5G核心网支持非受信的non-3GPP接入时,则基于点对点接口的5G网络架构如图1b所示。其中,接入网包括3GPP接入网和非受信的non-3GPP接入网。3GPP接入网中的接入设备可以称为RAN设备。非受信的non-3GPP接入网中的接入设备可以称为N3IWF设备。N3IWF设备例如可以包括路由器等。
图1b为基于点对点接口的5G网络架构示意图,其中的网元的功能的介绍可以参考图1a中对应的网元的功能的介绍,不再赘述。图1b与图1a的主要区别在于:图1b中的各个网元之间的接口是点对点的接口,而图1a中的各个网元之间的接口是服务化的接口。图1b中N1、N2、N3、N4、N6、N11、NWu、以及Y1为接口序列号。这些接口序列号的含义可参见3GPP标准协议中定义的含义,不做限制。
当5G核心网络支持受信的non-3GPP接入和/或有线网络接入时,则基于点对点接口的5G网络架构如图1c所示。其中,若5G核心网络支持受信的non-3GPP接入,则接入网包括3GPP接入网和受信的non-3GPP接入网,受信的non-3GPP接入网中的接入设备可以称为受信的non-3GPP接入网关(trusted non-3GPP gateway function,TNGF)。若5G核心网络支持有线网络接入,则接入网包括3GPP接入网和有线网络,例如固定家庭网络等,以及将TNGF替换为有线网络接入网关(wireline access gateway function,W-AGF)(图1c中未示出)。UE与接入网关之间的接入网设备可以包括WLAN接入点,固定接入网设备(fixed access network,FAN),交换机,路由器等。
图1c为基于点对点接口的5G网络架构示意图,其中的网元的功能的介绍可以参考图1a中对应的 网元的功能的介绍,不再赘述。图1c与图1a的主要区别在于:图1c中的各个网元之间的接口是点对点的接口,而图1a中的各个网元之间的接口是服务化的接口。图1c中N1、N2、N3、N6、N11、NWu以及Uu为接口序列号。这些接口序列号的含义可参见3GPP标准协议中定义的含义,不做限制。
可见,核心网络可以采用图1a所示的3GPP接入核心网络架构以及服务接口,或者可以采用图1b或图1c所示的网络架构以及点对点接口协议。
可以理解的是,图1a、图1b和图1c中任一通信架构所示的网元或者功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。一种可能的实现方式,上述网元或者功能可以由一个设备实现,也可以由多个设备共同实现,还可以是一个设备内的一个功能模块,对此不作具体限定。
另外,为了方便描述,本申请提及的设备名称可以省略“网元”。例如,SMF网元与SMF表达同一含义。又例如,UPF网元与UPF表达同一含义。
应理解的是,图1a、图1b和图1c中任一所示的通信系统并不构成对本申请实施例适用的通信系统的限定,本申请实施例提供的通信方法还可以适用于各种通信系统,例如:LTE通信系统、5G通信系统、6G通信系统以及未来通信系统、车到万物(vehicle to everything,V2X)、LTE-车联网(LTE-vehicle,LTE-V)、车到车(vehicle to vehicle,V2V)、车联网、机器类通信(machine type communications,MTC)、IoT、LTE-机器到机器(LTE-machine to machine,LTE-M)、机器到机器(machine to machine,M2M)、物联网等。
另外,本申请实施例也不对通信系统中各网元的名称进行限定,例如,在不同制式的通信系统中,各网元可以有其它名称;又例如,当多个网元融合在同一物理设备中时,该物理设备也可以有其他名称。
接下来,对本申请实施例涉及的技术特征进行介绍。
在面向消费者的个人业务中,多个终端设备可以组成群组,如用户家庭中的各种终端设备组成一个群组。类似地,在面向企业的业务中,多个终端设备也可以组成群组,如企业员工的终端设备组成一个群组。这样由多个终端设备组成的群组可以称为个人物联网(internet of things,IoT)网络(personal internet of things network,PIN)。为了便于描述,后文以PIN为例进行介绍。换言之,PIN可以是家庭中的多个终端设备组成的子网,或者是企业(或园区)中的多个终端设备组成的子网。PIN成员之间可能需要跨区域互通,因此PIN成员间需要建立连接。以家庭PIN为例,移动到远场的终端设备需要访问家里的终端设备,则需要建立与家里的终端设备之间的连接。
图2a提供了一种跨区域通信系统的网络架构。图2a以家庭PIN为例。可选地,该家庭可替换为园区。相比于图1a、图1b或图1c所示的系统架构,该系统主要增强了SMF和UPF的功能。
增强后的SMF,主要负责整个公共陆地移动网(public land mobile network,PLMN)中的PIN的会话管理,或者负责PLMN中的至少一个区域中的PIN的会话管理。该增强后的SMF仍然可以称为SMF,或者也可以称为PIN-SMF,本申请实施例对增强后的SMF的名称不做限定。为了便于描述,后文以PIN-SMF为例。PLMN中部署的PIN-SMF的数量可以是一个,也可以是多个,不做限定。例如,假设PIN的数量为10000个,记为PIN1、PIN2、……、PIN10000,PIN-SMF的数量可以为2个,记为PIN-SMF1和PIN-SMF2,该PIN-SMF1负责PIN1至PIN5000的会话管理,该PIN-SMF2则负责PIN5001至PIN10000的会话管理。当部署多个PIN-SMF时,一个PIN由一个PIN-SMF管理。图2a中以一个PIN-SMF为例,该PIN-SMF负责区域1、区域2和区域3中的PIN的会话管理。
增强后的UPF,主要负责整个PLMN中的PIN的用户数据的接收和转发,或者负责PLMN中的一个区域中的所有或部分PIN的用户数据的接收和转发。该增强后的UPF仍然可以称为UPF,或者也可以称为PIN-UPF,本申请实施例对增强后的UPF的名称不做限定。为了便于描述,后文以PIN-UPF为例。PLMN中部署的PIN-UPF的数量可以是一个,也可以是多个,不做限定。在不做特殊说明的情况下,后文以PLMN中部署多个PIN-UPF为例。一个区域中可以部署一个PIN-UPF,也可以部署多个PIN-UPF,不做限定。图2a中以一个区域部署一个PIN-UPF为例。具体地,PIN-UPF1部署在区域1中,负责该区域1中的所有PIN的用户数据的接收和转发;PIN-UPF2部署在区域2中,负责该区域2中的所有PIN的用户数据的接收和转发;PIN-UPF3部署在区域3中,负责该区域3中的所有PIN的用户数据的接收和转发。不同区域间的PIN-UPF之间可以建立连接,如建立N19连接,用以实现跨区域通信。PIN-UPF与PIN-SMF之间可以建立连接,也可以不建立连接,图2a中以虚线表示。
一个区域可以部署一个或多个SMF,用于负责该区域内的PIN的会话管理。本区域部署的SMF仍然可以称为SMF,或者也可以称为本地(local)SMF(记为L-SMF),本申请实施例对本区域部署的SMF的名称不做限定。为了便于区分,后文以L-SMF为例。一个区域内的多个L-SMF之间可以建立连接。不同区域内的多个L-SMF之间可以建立连接,也可以不建立连接,图2a中用虚线表示。
PIN-SMF与该PIN-SMF服务的多个区域中的L-SMF之间可以建立连接。PIN-UPF与该PIN-UPF服务的区域中的L-SMF之间可以建立连接。
一种可能的实现方式中,一个区域内还可以部署一个或多个UPF,用于负责该区域内的PIN的用户数据的接收和转发,如图2b所示。本区域部署的UPF仍然可以称为UPF,或者也可以称为本地(local)UPF(记为L-UPF),本申请实施例对本区域部署的UPF的名称不做限定。为了便于区分,后文以L-UPF为例。一个区域内的多个L-UPF之间可以建立连接,如建立N19连接,也可以不建立连接,不做限定。PIN-UPF与该PIN-UPF服务的区域中的L-UPF之间可以建立连接,如建立N19连接。
需要指出的是,N19为接口序列号,具体含义可参见3GPP标准协议中定义的含义,不做限制。
需要指出的是,图2a和图2b所示的通信系统还可以涉及其他网元,例如,AMF、UDM、UDR、NRF等,图2a和图2b中未示出,具体可以参考前述图1a、图1b或图1c中任一所示的通信系统,不再赘述。在图2a和图2b中,区域1、区域2和区域3的划分用粗虚线表示。另外,本申请对各个区域的具体划分规则不做限定。
目前,5G核心网支持两个区域中的PIN-UPF之间通过建立隧道实现这两个区域间的跨区域通信。其中,同一个PIN中的不同成员可以共享同一个隧道,但不同PIN的成员间需要建立不同的隧道。那么当跨区域通信的PIN的数量较多时,PIN-UPF之间需要建立的隧道的数量也较多,不利于管理,且建立隧道的信令开销也大,导致网络资源消耗较大。
一个举例,假设图2a或图2b中的PIN网络网关功能设备(PIN element with gateway capability,PEGC)1和UE2为PIN1中的成员,UE2从区域1移动到区域2,当UE2需要与PEGC1通信时,UE2与PEGC1之间需要建立连接,例如,PIN-UPF1与PIN-UPF2之间为PIN1建立隧道1,用以实现UE2与PEGC1之间的跨区域通信。进一步地,若UE1也是PIN1的成员,当UE2需要与UE1通信时,由于UE1是PIN1的成员,且PIN-UPF1与PIN-UPF2之间已经为PIN1建立了隧道1,因此PIN-UPF2可以通过隧道1实现UE2与UE1之间的跨区域通信。
又一个举例,假设图2a或图2b中的PEGC1和UE2为PIN1中的成员,UE1和UE2为PIN2中的成员,UE2从区域1移动到区域2,当UE2需要与PEGC1通信时,PIN-UPF1与PIN-UPF2之间为PIN1建立隧道1,用以实现UE2与PEGC1之间的跨区域通信。进一步地,当UE2需要与UE1通信时,由于UE1是PIN2的成员,不能复用PIN-UPF1与PIN-UPF2之间为PIN1建立的隧道1,因此UE2与UE1之间需要建立连接,例如,PIN-UPF1与PIN-UPF2之间为PIN2建立隧道2,用以实现UE2与UE1之间的跨区域通信。可见,当PIN-UPF1与PIN-UPF2之间跨区域通信的PIN的数量较多时,PIN-UPF1与PIN-UPF2之间需要建立的隧道也较多,网络资源消耗较大。
鉴于此,本申请实施例提供一种通信方法及装置,用于减少跨区域通信时UPF之间所建立的隧道的数量,减少网络资源的消耗。该方法可以应用于图1a、图1b、图1c、图2a或图2b中任一所示的通信系统中,但不限定于此。下面先对本申请实施例涉及的技术术语进行介绍。
为了便于描述,下文将第一用户面功能网元表述为第一UPF,第二用户面功能网元表述为第二UPF,第一会话管理功能网元表述为第一SMF,第二会话管理功能网元表述为第二SMF,第三会话管理功能网元表述为第三SMF,接入管理功能网元表述为AMF。
PIN,又可以称为子网、组网、PIN子网、或PIN群组等,可理解为由至少一个终端设备组成的网络,也可以理解为由至少一个终端设备组成的子网络,还可以理解为由至少一个终端设备组成的群组。例如,家庭中的至少一个终端设备组成的网络。又例如,企业(或园区)中的至少一个终端设备组成的网络。
PIN的标识,可用于标识PIN。该PIN的标识可以是PIN自身的标识,或者也可以是数据网络名称(data network name,DNN),或者还可以是切片信息,或者还可以是DNN和切片信息等。换言之,DNN和/或切片信息可用于隐式标识PIN。例如,当DNN可唯一标识PIN,即DNN与PIN一一对应时,该PIN的标识可以是该DNN。或者,当切片信息可唯一标识PIN,即切片信息与PIN一一对应时,该 PIN的标识可以是该切片信息。或者,当DNN和切片信息的组合可唯一标识PIN,即DNN和切片信息的组合与PIN一一对应时,该PIN的标识可以是DNN和切片信息。
第一UPF可以为图2a或图2b所示网络架构中的PIN-UPF或PIN-UPF中的部件,也可以为图2b所示网络架构中的L-UPF或L-UPF中的部件,不予限制。为了便于理解本申请实施例,在不作特殊说明的情况下,后文以第一UPF为图2a或图2b所示网络架构中的PIN-UPF为例。
第一SMF可以为图2a或图2b所示网络架构中的L-SMF或L-SMF中的部件,不予限制。该第一SMF与第一UPF位于同一区域中。
第二UPF可以为图2a或图2b所示网络架构中的PIN-UPF或PIN-UPF中的部件,也可以为图2b所示网络架构中的L-UPF或L-UPF中的部件,不予限制。若第二UPF为PIN-UPF(或为PIN-UPF中的部件),则该第二UPF与第一UPF位于不同区域。为了便于理解本申请实施例,在不作特殊说明的情况下,后文以第二UPF为图2a或图2b所示网络架构中的PIN-UPF为例。
第二SMF可以为图2a或图2b所示网络架构中的PIN-SMF或PIN-SMF中的部件,也可以为图2a或图2b所示网络架构中的L-SMF或L-SMF中的部件,不予限制。若第二SMF为L-SMF(或为L-SMF中的部件),则该第二SMF与第二UPF位于同一区域中。为了便于理解本申请实施例,在不作特殊说明的情况下,后文以第二SMF为图2a或图2b所示网络架构中的L-SMF为例。
第三SMF可以为图2a或图2b所示网络架构中的PIN-SMF或PIN-SMF中的部件。若第二SMF为PIN-SMF,该第二SMF与第三SMF可以为同一个PIN-SMF,也可以是不同的PIN-SMF,不予限制。
本申请实施例中UPF与UPF之间所建立的连接可以称为隧道,或者也可以称为通道,或者还可以称为传输路径等,不做限定。其中的隧道可以为通用分组无线服务隧道协议用户面(general packet radio service tunnel protocol,GTP-U)隧道,或者也可以为其它协议定义的隧道,不做限定。为了便于理解,后文以隧道为例。
为了便于描述,本申请实施例将第一UPF与第二UPF之间建立的隧道称为第一隧道。该第一隧道可用于传输一个PIN的业务数据或用于传输多个PIN的业务数据。例如,如果第一UPF和第二UPF为同一区域内的两个L-UPF或者为同一区域内的L-UPF和PIN-UPF,则该第一隧道可用于传输一个PIN的业务数据。或者,如果第一UPF和第二UPF为不同区域内的PIN-UPF,则该第一隧道可用于传输一个PIN的业务数据或用于传输多个PIN的业务数据。需要指出的是,本申请实施例对区域的具体划分规则不做限定。
本申请实施例涉及的术语“至少一个PIN的业务数据”可替换为“一个PIN的业务数据或者多个PIN的业务数据”,以及,“一个或多个PIN的业务数据”可替换为“一个PIN的业务数据或者多个PIN的业务数据”,后文不再赘述。
本申请实施例中PIN-UPF与PIN-UPF之间的接口仍然可以称为N19接口,或者也可以称为N19+接口,或者也可以称为N20接口,或者还可以称为Nx接口等,不做限定。
图3示出了本申请实施例提供的一种通信方法的流程示意图。如图3所示,该方法可以包括如下步骤。
S301:第一UPF获取第二UPF的端点信息。
其中,端点信息可以包括TEID和IP地址,但本申请实施例并不限定于此。第二UPF的端点信息,可以理解为第一隧道在第二UPF侧的端点信息。第一隧道可用于传输至少一个PIN的业务数据,第一隧道的描述请参考前述内容,不再赘述。其中,至少一个PIN包括第一PIN。例如,第一UPF可以响应于为第一PIN建立第一UPF与第二UPF之间的隧道,获取第二UPF的端点信息,用以建立传输至少一个PIN的第一隧道;或者,第一隧道建立完成后,第一UPF可以响应于接收的第一PIN的业务数据,获取第二UPF的端点信息,用以通过第一隧道向第二UPF转发该第一PIN的业务数据。本申请实施例对第一UPF获取第二UPF的端点信息的触发条件不做限定。
示例性地,第一UPF可以基于以下几种方式获取第二UPF的端点信息。
方式1,第一SMF向第一UPF发送该第二UPF的端点信息;相应地,第一UPF可以接收来自第一SMF的该第二UPF的端点信息。其中,第一SMF为L-SMF,与第一UPF位于同一区域中。
方式2,第三SMF向第一UPF发送该第二UPF的端点信息;相应地,第一UPF可以接收来自第三SMF的该第二UPF的端点信息。其中,第三SMF为PIN-SMF。
方式3,第一UPF可以基于自身存储的参数确定该第二UPF的端点信息。例如,第一UPF与第二 UPF之间的第一隧道建立完成后该第一UPF可以基于自身存储的参数确定该第二UPF的端点信息,不予限制。
需要指出的是,本申请实施例涉及的技术术语,例如,第一UPF,第二UPF,第一SMF,第三SMF,PIN均可以参考前述内容,此处不再赘述。
S302:第一UPF根据第二UPF的端点信息传输至少一个PIN的业务数据。
其中,第一UPF根据第二UPF的端点信息传输至少一个PIN的业务数据可替换为:第一UPF根据第二UPF的端点信息传输一个PIN的业务数据或者传输多个PIN的业务数据。例如,第一UPF根据第二UPF的端点信息可以向该第二UPF发送至少一个PIN的业务数据;相应地,第二UPF接收来自第一UPF的至少一个PIN的业务数据。
示例性地,第一UPF根据第二UPF的端点信息传输至少一个PIN的业务数据可替换为:第一UPF通过第一隧道传输至少一个PIN的业务数据。例如,第一UPF通过第一隧道向第二UPF发送至少一个PIN的业务数据;相应地,第二UPF通过该第一隧道接收来自第一UPF的至少一个PIN的业务数据。
需要指出的是,如果第一UPF和第二UPF为同一区域内的两个L-UPF或者为同一区域内的L-UPF和PIN-UPF,则第一UPF根据第二UPF的端点信息可以传输一个PIN(如记为第一PIN)的业务数据。或者,如果第一UPF和第二UPF为不同区域内的PIN-UPF,则第一UPF根据第二UPF的端点信息可以传输至少一个PIN的业务数据,该至少一个PIN包括第一PIN。
在图3所示的实施例中,第一UPF根据第二UPF的端点信息传输至少一个PIN的业务数据,意味着当第一UPF和第二UPF为位于不同区域的PIN-UPF时,该第一UPF能够基于第二UPF的端点信息传输多个PIN的业务数据,通过一个隧道实现该多个PIN的跨区域通信,能够减少跨区域通信时UPF之间所建立的隧道的数量,减少网络资源的消耗。
在上述图3所示的实施例的基础上,上述方法还可以包括:第一SMF触发第一UPF为第一终端设备建立第一PIN的第一会话。例如,第一终端设备向AMF发送第六消息,该第六消息用于请求为第一终端设备建立第一PIN的第一会话;AMF接收来自第一终端设备的第六消息,根据第六消息向第一SMF发送第五消息,该第五消息用于请求为第一终端设备建立第一PIN的第一会话;第一SMF接收来自AMF的第五消息,根据第五消息向第一UPF发送第二消息,该第二消息用于请求建立第一PIN的第一会话;第一UPF接收来自第一SMF的第二消息,根据第二消息建立第一会话,如图4所示。
S401:第一终端设备向AMF发送第六消息。
相应地,AMF接收来自第一终端设备的第六消息。
示例性地,第一终端设备可通过RAN向AMF发送第六消息;相应地,AMF通过RAN接收来自第一终端设备的第六消息,图4中未示出。
其中,第六消息可用于请求为第一终端设备建立第一PIN的第一会话。该第六消息可以为UL NAS transport消息,该UL NAS transport消息中可以包括PDU会话建立(PDU session establishment)请求消息。或者,该第六消息也可以为PDU会话建立请求消息。本申请实施例对第六消息的具体实现方式不做限定。
其中,第六消息可以包括第二信息。该第二信息可以包括如下一项或多项:第一PIN的标识,DNN,或切片信息。其中,DNN和/或切片信息可以隐式指示第一PIN,如第一PIN的标识可以为DNN和/或切片信息,具体可以参考前述技术术语的内容,不再赘述。
S402:AMF根据第二信息确定第一SMF。
AMF可以根据第二信息选择L-SMF。本申请实施例以AMF根据第二信息选择第一SMF为例。例如,AMF可以根据第一PIN的标识选择第一SMF。其中,第一PIN的标识可以来自于第一终端设备(如第二信息包括第一PIN的标识),或者也可以是AMF确定的,不予限制。例如,第二信息包括DNN,AMF可以获取第一终端设备的签约数据,根据签约数据和DNN确定第一PIN的标识,该签约数据包括PIN的标识与DNN之间的对应关系的信息。又例如,第二信息包括切片信息,AMF可以获取第一终端设备的签约数据,根据签约数据和切片信息确定第一PIN的标识,该签约数据包括PIN的标识与切片信息之间的对应关系的信息。再例如,第二信息包括DNN和切片信息,AMF可以获取第一终端设备的签约数据,根据签约数据、DNN和切片信息确定第一PIN的标识,该签约数据包括PIN的标识与DNN和切片信息之间的对应关系的信息。可选地,该签约数据还可以包括以下一项或多项:PIN的 标识与L-SMF的标识之间的对应关系的信息,DNN的标识与L-SMF的标识之间的对应关系的信息,切片信息与L-SMF的标识之间的对应关系的信息,或DNN和切片信息与L-SMF的标识之间的对应关系的信息。本申请实施例对AMF获取第一终端设备的签约数据的具体实现过程不做限定。
作为一个示例,AMF可以向NRF发送第二信息,由NRF进行L-SMF(即服务某区域的SMF,或者服务PLMN的SMF)选择并向AMF反馈选择结果。例如,NRF接收第二信息,根据NRF策略和第二信息确定第一SMF的标识。具体地,NRF存储PIN的标识与L-SMF的标识之间的对应关系,可以为至少一个PIN的标识(或PIN的标识段)与L-SMF的标识(或标识段)之间的对应关系。例如,PIN1至PIN10对应于L-SMF1,PIN11至PIN20对应于L-SMF2。又例如,PIN1至PIN10对应于L-SMF1至L-SMF5,PIN11至PIN20对应于L-SMF6至L-SMF10。NRF根据第二信息和PIN的标识与L-SMF的标识之间的对应关系,确定第一PIN对应的一个或多个L-SMF,并从该第一PIN对应的一个或多个L-SMF中确定第一SMF。可选地,当第一PIN对应多个L-SMF时,NRF还可以根据DNN和/或切片信息从第一PIN对应的多个L-SMF中确定第一SMF,如从该多个L-SMF中选择支持该DNN和/或支持该切片信息的L-SMF为第一SMF。进一步地,NRF向AMF发送第一SMF的标识;相应地,AMF接收来自NRF的第一SMF的标识,进而确定第一SMF。
可选地,前述提到PIN的标识可以为DNN,相应地,NRF存储PIN的标识与L-SMF的标识之间的对应关系可替换为NRF存储DNN的标识与L-SMF的标识之间的对应关系,如至少一个DNN的标识与L-SMF的标识之间的对应关系。例如,DNN1至DNN10对应于L-SMF1,DNN11至DNN20对应于L-SMF2,不予限制。进一步地,NRF可以根据第二信息和DNN的标识与L-SMF的标识之间的对应关系确定第一SMF,具体可以参考前述内容,不再赘述。
可选地,前述提到PIN的标识可以为切片信息,相应地,NRF存储PIN的标识与L-SMF的标识之间的对应关系可以替换为NRF存储切片信息与L-SMF的标识之间的对应关系,如至少一个切片信息与L-SMF的标识之间的对应关系。例如,切片1至切片5对应于L-SMF1,切片6至切片10对应于L-SMF2,不予限制。进一步地,NRF可以根据第二信息和切片信息与L-SMF的标识之间的对应关系确定第一SMF,具体可以参考前述内容,不再赘述。
可选地,前述提到PIN的标识可以为DNN和切片信息的组合,相应地,NRF存储PIN的标识与L-SMF的标识之间的对应关系可以替换为NRF存储DNN和切片信息与L-SMF的标识之间的对应关系。例如,DNN1与切片1,DNN2与切片2,DNNn与切片n对应于L-SMF1,不予限制。进一步地,NRF可以根据DNN和切片信息与L-SMF的标识之间的对应关系和第二信息确定第一SMF,具体可以参考前述内容,不再赘述。
作为又一种示例,AMF本地策略配置有PIN的标识与L-SMF的标识之间的对应关系的信息,AMF可以根据本地策略和第二信息确定第一SMF。例如,AMF接收第二信息,根据本地策略和第二信息确定第一SMF的标识,具体实现过程可以参考上一个示例,即将NRF替换成AMF,NRF策略替换成本地策略,不再赘述。
作为又一个示例,第一终端设备的签约数据包括PIN的标识与L-SMF的标识之间的对应关系的信息,AMF可以根据第一PIN的标识和该签约数据确定(或选择)第一SMF。具体地,AMF根据PIN的标识与L-SMF的标识之间的对应关系和第一PIN的标识,确定(或选择)第一SMF。其中,PIN的标识与L-SMF的标识之间的对应关系的信息可替换为DNN的标识与L-SMF的标识之间的对应关系的信息,或替换为切片信息与L-SMF的标识之间的对应关系的信息,或替换为DNN和切片信息与L-SMF的标识之间的对应关系的信息。
作为再一个示例,AMF本地存储有PIN的标识与L-SMF的标识之间的对应关系的信息,AMF可以根据本地存储的PIN的标识与L-SMF的标识之间的对应关系和第一PIN的标识,确定(或选择)第一SMF。其中,PIN的标识与L-SMF的标识之间的对应关系的信息可替换为DNN的标识与L-SMF的标识之间的对应关系的信息,或替换为切片信息与L-SMF的标识之间的对应关系的信息,或替换为DNN和切片信息与L-SMF的标识之间的对应关系的信息。
S403:AMF向第一SMF发送第五消息。
相应地,第一SMF接收来自AMF的第五消息。
其中,第五消息可用于请求为第一终端设备建立第一PIN的第一会话。该第五消息可以包括PDU会话建立请求消息,第一SMF解析第五消息可以得到该PDU会话建立请求消息。或者,该第五消息也 可以是PDU会话建立请求消息。本申请实施例对第五消息的具体实现方式不做限定。
其中,第五消息包括第三信息,如第五消息中的PDU会话建立请求消息中包括该第三信息。该第三信息可以包括如下一项或多项:第一PIN的标识,DNN,或切片信息。
需要指出的是,AMF与第一SMF之间可以直接交互,或者也可以通过其它SMF(如中间SMF(intermediate SMF,I-SMF))交互,即,AMF先连接到I-SMF,I-SMF再连接到第一SMF,不予限制。例如,S403又可以表述为:AMF向I-SMF发送第五消息;I-SMF接收来自AMF的第五消息,向第一SMF发送第五消息;第一SMF接收来自I-SMF的第五消息。
S404:第一SMF根据第三信息确定第一UPF。
第一SMF可以根据第三信息选择PIN-UPF。本申请实施例以第一SMF根据第三信息选择第一UPF为例。例如,第一SMF可以根据第一PIN的标识选择第一UPF。其中,第一PIN的标识可以来自于AMF(如第三信息包括第一PIN的标识),或者也可以是第一SMF确定的,不予限制。例如,第三信息包括DNN,第一SMF可以获取第一终端设备的签约数据,根据签约数据和DNN确定第一PIN的标识,该签约数据包括PIN的标识与DNN之间的对应关系的信息。又例如,第三信息包括切片信息,第一SMF可以获取第一终端设备的签约数据,根据签约数据和切片信息确定第一PIN的标识,该签约数据包括PIN的标识与切片信息之间的对应关系的信息。再例如,第三信息包括DNN和切片信息,第一SMF可以获取第一终端设备的签约数据,根据签约数据、DNN和切片信息确定第一PIN的标识,该签约数据包括PIN的标识与DNN和切片信息之间的对应关系的信息。可选地,该签约数据还可以包括以下一项或多项:PIN的标识与PIN-UPF的标识之间的对应关系的信息,DNN的标识与PIN-UPF的标识之间的对应关系的信息,切片信息与PIN-UPF的标识之间的对应关系的信息,或DNN和切片信息与PIN-UPF的标识之间的对应关系的信息。本申请实施例对第一SMF获取第一终端设备的签约数据的具体实现过程不做限定。
作为一种示例,第一SMF可以向NRF发送第三信息,由NRF进行PIN-UPF选择并向第一SMF反馈选择结果。例如,NRF接收第三信息,根据NRF策略和第三信息确定第一UPF的标识,具体实现过程可以参考S402的相关内容,即将第二信息替换成第三信息以及将L-SMF替换成PIN-UPF。进一步地,NRF向第一SMF发送第一UPF的标识;相应地,第一SMF接收来自URF的第一UPF的标识,进而确定第一UPF。
作为又一个示例,第一SMF的本地策略配置有PIN的标识与PIN-UPF的标识之间的对应关系的信息,第一SMF可以根据本地策略和第三信息确定第一UPF。其中,PIN的标识与PIN-UPF的标识之间的对应关系的信息可替换为DNN的标识与PIN-UPF的标识之间的对应关系的信息,或替换为切片信息与PIN-UPF的标识之间的对应关系的信息,或替换为DNN和切片信息与PIN-UPF的标识之间的对应关系的信息。具体实现过程可以参考S402的相关内容,不再赘述。
作为又一个示例,第一终端设备的签约数据包括PIN的标识与PIN-UPF的标识之间的对应关系的信息,第一SMF可以根据第一PIN的标识和该签约数据确定(或选择)第一UPF。具体地,第一SMF根据PIN的标识与PIN-UPF的标识之间的对应关系和第一PIN的标识,确定(或选择)第一UPF。其中,PIN的标识与PIN-UPF的标识之间的对应关系的信息可替换为DNN的标识与PIN-UPF的标识之间的对应关系的信息,或替换为切片信息与PIN-UPF的标识之间的对应关系的信息,或替换为DNN和切片信息与PIN-UPF的标识之间的对应关系的信息。具体实现过程可以参考S402的相关内容,不再赘述。
作为再一个示例,第一SMF本地存储有PIN的标识与PIN-UPF的标识之间的对应关系的信息,第一SMF可以根据本地存储的PIN的标识与PIN-UPF的标识之间的对应关系和第一PIN的标识,确定(或选择)第一UPF。其中,PIN的标识与PIN-UPF的标识之间的对应关系的信息可替换为DNN的标识与PIN-UPF的标识之间的对应关系的信息,或替换为切片信息与PIN-UPF的标识之间的对应关系的信息,或替换为DNN和切片信息与PIN-UPF的标识之间的对应关系的信息。具体实现过程可以参考S402的相关内容,不再赘述。
S405:第一SMF向第一UPF发送第二消息。
相应地,第一UPF接收来自第一SMF的第二消息。
该第二消息可用于请求建立第一PIN的第一会话,如请求为第一终端设备建立第一PIN的第一会话。可选地,该第二消息可以包括第一PIN的标识和第一终端设备的标识。该第二消息例如可以为包 转发控制协议(packet forwarding control protocol,PFCP)会话(session),不做限定。可选地,该第二消息还可以包括以下一项或多项:第一PIN的标识、DNN、或切片信息,第一PIN的标识、DNN或切片信息中的至少一项可用于指示该PFCP会话为第一PIN的PFCP会话。
S406:第一UPF根据第二消息建立第一会话。
第一UPF响应于第二消息,建立第一会话,如为第一终端设备分配IP地址等,本申请实施例对第一UPF建立第一会话的具体实现过程不做限定。可选地,第一UPF可以对第一会话和第一PIN进行关联。具体地,第一UPF基于第一PIN的标识、DNN或切片信息中的至少一个将第一会话与第一PIN进行关联,以便后续确定该PIN对应的会话。
可选地,如果第一UPF为L-UPF,第一SMF还可以确定该第一UPF与该第一UPF所在区域的PIN-UPF之间是否建立隧道。在未建立隧道的情况下,第一SMF指示第一UPF与该第一UPF所在区域的PIN-UPF之间建立隧道,如建立N19连接,具体实现过程不做限定。
至此,第一会话建立完成。之后,第一终端设备可基于第一会话传输第一PIN的业务数据。
需要指出的是,与第一终端设备属于相同PIN的其他终端设备也可采用上述方案建立第一PIN的会话。例如,第一终端设备与第三终端设备皆属于第一PIN,该第三终端设备与第一UPF可以建立第一PIN的第五会话,具体可以参考第一会话的实现过程,不再赘述。可选地,第一UPF可以存储(或维护)PIN的标识与该PIN的多个会话之间的对应关系。例如,第一UPF可以存储第一PIN的标识与第一会话的标识和第三会话的标识之间的对应关系。其中,PIN的标识可替换为该PIN对应的DNN的标识,或替换为该PIN对应的切片信息,或替换为该PIN对应的DNN和切片信息。
进一步地,当多个会话连接到第一UPF,且该多个会话皆属于相同的PIN时,第一UPF可以基于本地交换(local switch)方案在该多个会话之间传输该PIN的业务数据。具体地,第一UPF可以根据PIN的标识、DNN、切片信息中的至少一个与会话的标识之间的对应关系确定多个会话对应相同的PIN,即多个会话对应相同的PIN的标识(或对应相同的DNN或/和切片信息),并根据本地交换方案在多个会话之间传输该PIN的业务数据。例如,第一UPF可以根据PIN的标识与会话之间的对应关系、第一会话的标识和第五会话的标识,确定第一会话和第五会话皆是第一PIN的会话,以及根据本地交换方案在第一会话和第五会话之间传输第一PIN的业务数据。
举例而言,第一UPF可以按照如下步骤在第一会话和第五会话之间传输第一PIN的业务数据:
步骤A1,第一终端设备基于第一会话向第一UPF发送第五数据包;相应地,第一UPF接收来自第一终端设备的第五数据包。
步骤A2,第一UPF确定第一PIN的第五会话。具体地,第一UPF可以根据第五数据包的流描述信息确定与该第五数据包匹配的包检测规则(packet detection rule,PDR),根据该PDR关联的转发动作规则(packet detection rule,FAR)获取第五数据包的目的接口为内部接口的指示信息和/或第一PIN的标识。第一UPF确定第一会话是第一PIN的会话,以及删除第五数据包外部的包头获得第六数据包,并将第六数据包发送到内部接口。进一步地,第一UPF根据第六数据包的目的地址和/或第一PIN的标识进行PDR匹配,获得第五会话的PDR,从而确定该第一PIN的第五会话。
步骤A3,第一UPF基于第五会话向第三终端设备发送第七数据包;相应地,第三终端设备接收来自第一UPF的第七数据包。例如,第一UPF可以基于第五会话的PDR关联的FAR封装第六数据包获得第七数据包。
在图3所示的实施例中提到第一UPF可以通过方式1、方式2或方式3获取第二UPF的端点信息,下面结合图5、图6和图7进行详细介绍。
如图5所示,针对上述方式1,S301(即第一UPF获取第二UPF的端点信息)可以通过S504和S505实现。可选地,在图3或图4所示实施例的基础上,上述方法还可以包括S501至S503,图5中用虚线表示。
S501:第一SMF向第一UPF发送第一消息。
相应地,第一UPF接收来自第一SMF的第一消息。
其中,第一消息可用于指示(或触发、或请求)第一UPF分配第一UPF的端点信息,或者可用于指示(或触发)第一UPF分配第一隧道在第一UPF侧的端点信息,或者可用于指示(或触发)建立与第二UPF之间的隧道(即第一隧道)等,不予限制。该第一消息例如可以为PFCP会话(session),不 做限定。
需要指出的是,第一消息可以通过消息自身指示第一UPF分配第一UPF的端点信息;或者,第一消息也可以通过自身所包含的信息指示第一UPF分配第一UPF的端点信息,不做限定。可选地,第一消息中可以包括第一指示信息,该第一指示信息可用于指示(或触发)第一UPF分配第一UPF的端点信息,或者可用于指示(或触发)第一UPF分配第一隧道在第一UPF侧的端点信息,或者可用于指示(或触发)建立与第二UPF之间的隧道(即第一隧道)等,不予限制。
在一种可能的实现方式中,第一SMF可以确定向第一UPF发送第一消息,或者确定指示(或触发)第一UPF建立第一隧道。例如,假设第一SMF服务(或维护)的至少一个PIN包括第一PIN,或者说第一UPF服务(或维护)的至少一个PIN包括第一PIN,第一SMF可以接收来自第三SMF的第三消息,以及确定是否向第一UPF发送第一消息。其中,第三SMF为PIN-SMF。第三消息包括为第一PIN提供服务的至少一个SMF的标识,如为第一PIN提供服务的至少一个L-SMF的标识;或者包括为第一PIN提供服务的至少一个UPF的标识,如为第一PIN提供服务的至少一个PIN-UPF的标识;或者包括为第一PIN提供服务的至少一个SMF(如至少一个L-SMF)的标识和为第一PIN提供服务的至少一个UPF(如至少一个PIN-UPF)的标识。
可选地,该为第一PIN提供服务的至少一个SMF中包括第二SMF。可选地,该为第一PIN提供服务的至少一个UPF中包括第二UPF。第二SMF与第二UPF位于同一区域。有关第二SMF的描述可以参考前述内容,不再赘述。
可选地,该第三消息可用于指示在UPF之间为第一PIN建立隧道(如在L-UPF与PIN-UPF之间为第一PIN建立隧道,和/或,在PIN-UPF与PIN-UPF之间为第一PIN建立隧道),或用于指示第一PIN存在跨区域通信的需求,或用于指示第一PIN在其它设备接入。例如,该第三消息可用于指示在第一UPF与第二UPF之间为第一PIN建立隧道,即指示建立第一隧道。示例性地,第三SMF确定第一UPF与第二UPF之间未建立隧道,并使用第三消息指示在第一UPF与第二UPF之间为第一PIN建立隧道。例如,第三SMF未存储第一UPF的端点信息和/或第二UPF的端点信息,则该第三SMF可以确定第一UPF与第二UPF之间未建立隧道。应理解的是,本申请实施例对第三SMF确定第一UPF与第二UPF之间未建立隧道的具体实现过程不做限定。
需要指出的是,第三消息可以通过消息自身指示在第一UPF与第二UPF之间为第一PIN建立隧道;或者,第三消息也可以通过自身所包含的信息指示在第一UPF与第二UPF之间为第一PIN建立隧道,不做限定。可选地,第三消息中可以包括第二指示信息,该第二指示信息可用于在UPF之间为第一PIN建立隧道(如在L-UPF与PIN-UPF之间为第一PIN建立隧道,和/或,在PIN-UPF与PIN-UPF之间为第一PIN建立隧道),或用于指示第一PIN存在跨区域通信的需求,或用于指示第一PIN在其它设备接入等,本申请实施例对第三消息的具体实现方式不做限定。
示例性地,该第一SMF可以根据第二SMF的标识确定向第一UPF发送第一消息;或者,第一SMF也可以根据第二UPF的标识确定向第一UPF发送第一消息;或者,第一SMF还可以根据第二SMF的标识和第二UPF的标识确定向第一UPF发送第一消息。例如,第一SMF可以根据第二SMF的标识和/或第二UPF的标识,确定第一UPF与第二UPF之间是否建立第一隧道,或者确定第一UPF与第二UPF之间是否建立用于传输至少一个PIN的业务数据的隧道,或者确定第一UPF与第二UPF之间是否建立设备粒度的隧道。
一种示例中,如果第一SMF确定第一UPF与第二UPF之间未建立第一隧道,则第一SMF向第一UPF发送第一消息或者第一SMF确定向第一UPF发送第一消息。
另一种示例中,如果第一SMF确定第一UPF与第二UPF之间已建立第一隧道,则第一SMF可以向第一UPF发送第一PIN的标识和第二UPF的端点信息(和/或第一PIN的标识和第二UPF的标识之间的对应关系)。进一步地,第一UPF可以根据该第一PIN的标识和第二UPF的端点信息(和/或第一PIN的标识和第二UPF的标识之间的对应关系),对第一PIN的标识和第二UPF的端点信息进行关联(如进行关联存储),以便后续第一UPF可以通过第二UPF的端点信息传输第一PIN的业务数据。其中,第一UPF对第一PIN的标识和第二UPF的端点信息进行关联可以替换为:第一UPF对第一PIN的标识和第一隧道进行关联。
需要指出的是,本申请实施例以第一UPF与第二UPF之间未建立第一隧道为例。本申请实施例对第一SMF确定第一UPF与第二UPF之间是否建立第一隧道的具体实现过程不做限定。
需要指出的是,第三SMF可以主动向第一SMF发送第三消息,也可以响应于第一SMF的订阅请求向第一SMF发送第三消息,还可以响应于第一SMF的上报信息向第一SMF发送第三消息,不予限制。其中,上报信息可以包括第一PIN的标识,或者包括第一PIN的标识和第一信息。该第一信息可以包括如下一项或多项:第一SMF的标识,或第一UPF的标识。
作为一个示例,第一SMF可以向第三SMF发送第四消息;相应地,第三SMF接收来自第一SMF的第四消息,该第四消息可用于订阅第一PIN的事件。进一步地,第三SMF可以根据该第四消息向第一SMF发送第三消息。其中,该第一PIN的事件可以理解为:为第一PIN提供服务的至少一个SMF(如L-SMF)的标识,如已经为第一PIN提供服务的L-SMF的标识以及后续新增的为第一PIN提供服务的L-SMF的标识;也可以理解为:为第一PIN提供服务的至少一个UPF(如PIN-UPF)的标识,如已经为第一PIN提供服务的PIN-UPF的标识以及后续新增的为第一PIN提供服务的PIN-UPF的标识;还可以理解为:为第一PIN提供服务的至少一个SMF的标识(如L-SMF)和为第一PIN提供服务的至少一个UPF(如PIN-UPF)的标识,如已经为第一PIN提供服务的L-SMF的标识、后续新增的为第一PIN提供服务的L-SMF的标识、已经为第一PIN提供服务的PIN-UPF的标识以及后续新增的为第一PIN提供服务的PIN-UPF的标识。换言之,该第四消息可用于订阅为第一PIN提供服务的至少一个L-SMF的标识,和/或,用于订阅为第一PIN服务的至少一个PIN-UPF的标识。
需要指出的是,第四消息可以通过消息自身订阅第一PIN的事件;或者,第四消息也可以通过自身所包含的信息订阅第一PIN的事件,如事件标识,或事件标识与第一PIN的标识等,本申请实施例对第四消息的具体实现方式不做限定。
作为又一个示例,第一SMF可以向第三SMF发送第一PIN的标识;相应地,第三SMF接收来自第一SMF的第一PIN的标识。进一步地,第三SMF可以根据第一PIN的标识向第一SMF发送第三消息。其中,第一SMF获取第一PIN的标识的方式可以参考图4所示实施例中的相关内容,不再赘述。可选地,第一SMF还可以向第三SMF发送第一信息。例如,第一SMF可以根据第一PIN确定是否向第三SMF发送第一PIN的标识。具体地,如果第一SMF首次为第一PIN建立会话,则第一SMF可以确定向第三SMF发送第一PIN的标识;或者,如果第一SMF非首次为第一PIN建立会话,则第一SMF确定不向第三SMF发送第一PIN的标识。例如,第一SMF可以根据第一PIN的标识以及存储的会话与PIN的标识之间的关联关系确定第一SMF是否首次为第一PIN建立会话。本申请实施例以第一SMF首次为第一PIN建立会话为例。
需要指出的是,第一SMF可以分别向第三SMF发送第四消息和上报信息,也可以在第四消息中携带该上报信息,不予限制。可选地,该第四消息可以包括如下一项或多项:第一PIN的标识,第一SMF的标识,或者第一UPF的标识。
示例性地,第三SMF接收到来自第一SMF的第一PIN的标识后,可以根据该第一PIN的标识获取第一PIN的上下文。例如,第三SMF可以根据第一信息创建第一PIN的上下文,该第一PIN的上下文包括该第一信息。又例如,第三SMF将第一信息添加到第一PIN的上下文中。其中,该第一信息可以来自第一SMF,也可以是第三SMF确定的,不予限制。具体地,如果第三SMF首次接收到第一PIN的标识,则第三SMF可以根据第一信息创建第一PIN的上下文;或者,如果第SMF非首次接收到第一PIN的标识,则第三SMF根据该第一PIN的标识查找第一PIN的上下文,并将第一信息添加到第一PIN的上下文中。进一步地,该第三SMF可以根据第一PIN的上下文,确定为第一PIN提供服务的至少一个SMF的标识和/或确定为第一PIN提供服务的至少一个UPF的标识。
需要指出的是,第一SMF可以在为第一PIN建立第一会话的过程中,如在S404之后且在S406之前,向第三SMF发送第四消息和/或发送上报信息;或者,第一SMF也可以在第一会话建立完成后,如在S406之后,向第三SMF发送第四消息和/或发送上报信息,不予限制。
S502:第一UPF向第一SMF发送第一UPF的端点信息。
相应地,第一SMF接收来自第一UPF的端点信息。
其中,第一UPF的端点信息,可以理解为第一隧道在第一UPF侧的端点信息。端点信息可以包括TEID和IP地址,但本申请实施例并不限定于此。
示例性地,第一UPF可以根据第一消息向第一SMF发送第一UPF的端点信息。例如,第一UPF响应于第一消息,分配端点信息,并向第一SMF发送第一UPF的端点信息。
可选地,第一UPF还可以向第一SMF发送第一UPF服务的至少一个PIN的标识;相应地,第一 SMF接收来自第一UPF服务的至少一个PIN的标识。
S503:第一SMF向第二UPF发送第一UPF的端点信息。
相应地,第二UPF接收来自第一SMF的第一UPF的端点信息。
其中,如果第二UPF和第一UPF位于同一区域,则第一SMF可以向第二UPF发送第一UPF的端点信息,相应地,第二UPF接收来自第一SMF的第一UPF的端点信息。或者,如果第一UPF和第二UPF为不同区域内的PIN-UPF,则第一SMF可以通过与第二UPF位于同一区域的L-SMF向第二UPF发送第一UPF的端点信息,相应地,第二UPF通过该L-SMF接收第一UPF的端点信息。例如,第一SMF可以通过第二SMF向第二UPF发送第一UPF的端点信息,第二SMF为与第二UPF位于同于区域的L-SMF。具体地,S503可以通过S503a和S503b实现:S503a,第一SMF向第二SMF发送第一UPF的端点信息,相应地,第二SMF接收来自第一SMF的第一UPF的端点信息;S503b,第二SMF向第二UPF发送第一UPF的端点信息,相应地,第二UPF接收该第一UPF的端点信息。
图5中以S503通过S503a和S503b实现,第一UPF与第一SMF位于区域1,以及第二UPF与第二SMF位于区域2为例。
可选地,第一SMF还可以向第二UPF发送第一UPF服务的至少一个PIN的标识,如通过第二SMF向第二UPF发送第一UPF服务的至少一个PIN的标识;相应地,第二UPF接收第一UPF服务的至少一个PIN的标识。进一步地,第二UPF可以对第一UPF的端点信息和第一UPF服务的至少一个PIN的标识进行关联,如关联存储。
S504:第一SMF获取第二UPF的端点信息。
示例性地,第一SMF可以接收来自第二UPF的第二UPF的端点信息;或者,第一SMF也可以自身存储的参数获取第二UPF的端点信息。因此,S501至S503为可选步骤。例如,第二UPF可以分配端点信息,以及向第一SMF发送第二UPF的端点信息。例如,第二UPF可以响应于第一UPF的端点信息分配第二UPF的端点信息,不做限定。
其中,如果第二UPF和第一UPF位于同一区域,则第二UPF可以向第一SMF发送第二UPF的端点信息,相应地,第一SMF接收来自第二UPF的第二UPF的端点信息。或者,如果第一UPF和第二UPF为不同区域内的PIN-UPF,则第二UPF可以通过与第二UPF位于同一区域的L-SMF向第一SMF发送第二UPF的端点信息,相应地,第一SMF通过该L-SMF接收第二UPF的端点信息。例如,第一SMF可以通过第二SMF接收第二UPF的端点信息,第二SMF为与第二UPF位于同于区域的L-SMF。
具体地,S504可通过S504a和S504b实现:S504a,第二UPF向第二SMF发送第二UPF的端点信息,相应地,第二SMF接收来自第二UPF的第二UPF的端点信息;S504b,第二SMF向第一SMF发送第二UPF的端点信息,相应地,第一SMF接收该第二UPF的端点信息。图5中以S504通过S504a和S504b实现为例。
可选地,第一SMF可以接收来自第二UPF的第二UPF服务的至少一个PIN的标识,如通过第二SMF接收来自第二UPF的该第二UPF服务的至少一个PIN的标识。
S505:第一SMF向第一UPF发送第二UPF的端点信息。
相应地,第一UPF接收来自第一SMF的第二UPF的端点信息。
可选地,第一SMF还可以向第一UPF发送第二UPF服务的至少一个PIN的标识;相应地,第一UPF接收第二UPF服务的至少一个PIN的标识。进一步地,第一UPF可以对第二UPF的端点信息和该第二UPF服务的至少一个PIN的标识进行关联,如关联存储。
至此,第一UPF与第二UPF之间的第一隧道建立完成。
S506:第一UPF根据第二UPF的端点信息传输至少一个PIN的业务数据。
其中,S506的实现过程可以参考S302,不再赘述。
需要指出的是,在图5所示的实施例中,第一SMF与第二SMF之间可以直接交互,也可以通过第三SMF交互,不予限制。例如,S503a又可以表述为:第一SMF向第三SMF发送第一UPF的端点信息;第三SMF接收来自第一SMF的第一UPF的端点信息,并向第二SMF发送第一UPF的端点信息;第二SMF接收来自第三SMF的第一UPF的端点信息。又例如,S503b又可以表述为:第二SMF向第三SMF发送第二UPF的端点信息;第三SMF接收来自第二SMF的第二UPF的端点信息,并向第一SMF发送第二UPF的端点信息;第一SMF接收来自第三SMF的第二UPF的端点信息。
如图6所示,针对上述方式2,S301(即第一UPF获取第二UPF的端点信息)可以通过S604和S605实现。可选地,在图3或图4所示实施例的基础上,上述方法还可以包括S601至S603,图6中用虚线表示。在本实施例中,第一UPF与第二UPF为位于不同区域的PIN-UPF,图6以第一UPF位于区域1,第二UPF位于区域2为例。相较于图5所示的实施例,图6所示的实施例主要区别在于:第一UPF与第二UPF之间通过PIN-SMF(如第三SMF)交互,无需通过L-SMF(如第一SMF和第二SMF)。
S601:第三SMF向第一UPF发送第一消息。
相应地,第一UPF接收来自第三SMF的第一消息。
其中,第一消息可用于指示(或触发)第一UPF分配第一UPF的端点信息,或者可用于指示(或触发)第一UPF分配第一隧道在第一UPF侧的端点信息,或者可用于指示(或触发)建立与第二UPF之间的隧道(即第一隧道)等,具体可以参考S501的内容,不再赘述。
在一种可能的实现方式中,第三SMF可以确定向第一UPF发送第一消息,或者确定指示(或触发)第一UPF建立第一隧道。例如,第三SMF可以根据第一PIN的标识,确定第一UPF与第二UPF之间是否建立第一隧道,或者确定第一UPF与第二UPF之间是否建立用于传输多个PIN的业务数据的隧道,或者确定第一UPF与第二UPF之间是否建立设备粒度的隧道。
一种示例中,如果第三SMF确定第一UPF与第二UPF之间未建立第一隧道,则第三SMF向第一UPF发送第一消息或者第三SMF确定向第一UPF发送第一消息。
另一种示例中,第三SMF确定第一UPF与第二UPF之间已建立第一隧道,则第三SMF可以向第一UPF发送第一PIN的标识和第二UPF的端点信息(和/或第一PIN的标识和第二UPF的标识之间的对应关系)。进一步地,第一UPF可以根据该第一PIN的标识和第二UPF的端点信息(和/或第一PIN的标识和第二UPF的标识之间的对应关系),对第一PIN的标识和第二UPF的端点信息进行关联(如进行关联存储),以便后续第一UPF可以通过第二UPF的端点信息传输第一PIN的业务数据。其中,第一UPF对第一PIN的标识和第二UPF的端点信息进行关联可以替换为:第一UPF对第一PIN的标识和第一隧道进行关联。
需要指出的是,本申请实施例以第一UPF与第二UPF之间未建立第一隧道为例。本申请实施例对第三SMF确定第一UPF与第二UPF之间是否建立第一隧道的具体实现过程不做限定。
该第一PIN的标识可以来自于第一SMF,不予限制。例如,第一SMF可以向第三SMF发送第一PIN的标识,相应地,第三SMF可以接收来自第一SMF的第一PIN的标识。可选地,第一SMF还可以向第三SMF发送第一信息,相应地,第三SMF接收来自第一SMF的第一信息,该第一信息包括如下一项或多项:第一SMF的标识,或第一UPF的标识。例如,第一SMF可以根据第一PIN确定是否向第三SMF发送第一PIN的标识,具体实现过程可以参考S501的内容,不再赘述。
需要指出的是,第一SMF可以在为第一PIN建立第一会话的过程中,向第三SMF发送第一PIN的标识;或者,第一SMF也可以在第一会话建立完成后,向第三SMF发送第一PIN的标识,不予限制。
示例性地,第三SMF可以根据第一PIN的标识获取第一PIN的上下文。例如,第三SMF可以根据第一信息创建第一PIN的上下文,该第一PIN的上下文包括该第一信息。又例如,第三SMF可以将第一信息添加到第一PIN的上下文中。其中,该第一信息可以来自第一SMF,也可以是第三SMF确定的,不予限制。具体实现过程可以参考S501的内容,不再赘述。
可选地,第三SMF还可以向第一SMF发送第三消息,相应地,第一SMF接收来自第三SMF的第三消息,该第三消息包括为第一PIN提供服务的至少一个SMF(如L-SMF)的标识和/或为第一PIN提供服务的至少一个UPF(如PIN-UPF)的标识,具体实现过程可以参考S501的内容,不再赘述。
可选地,第一SMF可以向第三SMF发送第四消息;相应地,第三SMF接收来自第一SMF的第四消息,该第四消息可用于订阅第一PIN的事件,具体实现过程可以参考S501的内容,不再赘述。
S602:第一UPF向第三SMF发送第一UPF的端点信息。
相应地,第三SMF接收来自第一UPF的端点信息。
其中,第一UPF的端点信息可以参考前述内容,不再赘述。
示例性地,第一UPF可以根据第一消息向第三SMF发送第一UPF的端点信息。例如,第一UPF响应于第一消息,分配端点信息,并向第三SMF发送第一UPF的端点信息。
可选地,第一UPF还可以向第三SMF发送第一UPF服务的至少一个PIN的标识;相应地,第三SMF接收来自第一UPF服务的至少一个PIN的标识。
S603:第三SMF向第二UPF发送第一UPF的端点信息。
相应地,第二UPF接收来自第三SMF的第一UPF的端点信息。
可选地,第三SMF还可以向第二UPF发送第一UPF服务的至少一个PIN的标识;相应地,第二UPF接收来自第三SMF的第一UPF服务的至少一个PIN的标识。进一步地,第二UPF可以对第一UPF的端点信息和第一UPF服务的至少一个PIN的标识进行关联,如关联存储。
S604:第三SMF获取第二UPF的端点信息。
示例性地,第三SMF可以接收来自第二UPF的第二UPF的端点信息;或者,第三SMF也可以自身存储的参数获取第二UPF的端点信息。因此,S601至S603为可选步骤。图6中以第二UPF向第三SMF发送第二UPF的端点信息,第三SMF接收来自第二UPF的该第二UPF的端点信息为例。例如,第二UPF可以分配第二UPF的端点信息,并向第三SMF发送该第二UPF的端点信息。例如,第二UPF可以响应于第一UPF的端点信息分配第二UPF的端点信息,不做限定。
可选地,第二UPF还可以向第三SMF发送第二UPF服务的至少一个PIN的标识,相应地,第三SMF接收来自第二UPF的第二UPF服务的至少一个PIN的标识。
S605:第三SMF向第一UPF发送第二UPF的端点信息。
相应地,第一UPF接收来自第三SMF的第二UPF的端点信息。
可选地,第三SMF还可以向第一UPF发送第二UPF服务的至少一个PIN的标识;相应地,第一UPF接收来自第三SMF的第二UPF服务的至少一个PIN的标识。进一步地,第一UPF可以对第二UPF的端点信息和该第二UPF服务的至少一个PIN的标识进行关联,如关联存储。
至此,第一UPF与第二UPF之间的第一隧道建立完成。
S606:第一UPF根据第二UPF的端点信息传输至少一个PIN的业务数据。
其中,S606的实现过程可以参考S302,不再赘述。
如图7所示,针对上述方式3,S301(即第一UPF获取第二UPF的端点信息)可以通过S706b实现。在本实施例中,第一UPF与第二UPF为位于不同区域的PIN-UPF,图7以第一UPF位于区域1,第二UPF位于区域2为例。由于本实施例中第一UPF在第一隧道建立完成后获取第二UPF的端点信息,因此图7所示实施例中的S705至S708可理解为图5所示实施例中的S506的具体实现过程,和/或理解为图6所示实施例中的S606的具体实现过程。可选地,在图3至图6中任一所述实施例中,上述方法还可以包括第二UPF根据第一UPF的端点信息传输至少一个PIN的业务数据,即执行S709至S712的内容,图7中用虚线表示。
S701:第二UPF获取第一UPF服务的至少一个PIN的标识。
示例性地,第二UPF可以接收来自第一UPF的第一UPF服务的至少一个PIN的标识。例如,第一UPF可以在接收到来自第一SMF或第三SMF的第一消息后,向第二UPF发送第一UPF服务的至少一个PIN的标识,不予限制。
一个示例,第二UPF可以通过第一SMF和第二SMF接收来自第一UPF的该第一UPF服务的至少一个PIN的标识。具体地,第一UPF向第一SMF发送第一UPF服务的至少一个PIN的标识;第一SMF接收来自第一UPF的该第一UPF服务的至少一个PIN的标识,向第二SMF发送该第一UPF服务的至少一个PIN的标识;第二SMF接收来自第一SMF的该第一UPF服务的至少一个PIN的标识,并向第二UPF发送该第一UPF服务的至少一个PIN的标识;第二UPF接收来自第二SMF的该第一UPF服务的至少一个PIN的标识。
又一个示例,第二UPF也可以通过第一SMF、第二SMF和第三SMF接收来自第一UPF的该第一UPF服务的至少一个PIN的标识。具体地,第一UPF向第一SMF发送第一UPF服务的至少一个PIN的标识;第一SMF接收来自第一UPF的该第一UPF服务的至少一个PIN的标识,向第三SMF发送该第一UPF服务的至少一个PIN的标识;第三SMF接收来自第一SMF的该第一UPF服务的至少一个PIN的标识,向第二SMF发送该第一UPF服务的至少一个PIN的标识;第二SMF接收来自第三SMF的该第一UPF服务的至少一个PIN的标识,并向第二UPF发送该第一UPF服务的至少一个PIN的标识;第二UPF接收来自第二SMF的该第一UPF服务的至少一个PIN的标识。
再一个示例,第二UPF还可以通过第三SMF接收来自第一UPF的该第一UPF服务的至少一个PIN的标识。具体地,第一UPF向第三SMF发送该第一UPF服务的至少一个PIN的标识;第三SMF接收来自第一UPF的该第一UPF服务的至少一个PIN的标识,并向第二UPF发送该第一UPF服务的至少一个PIN的标识;第二UPF接收来自第三SMF的该第一UPF服务的至少一个PIN的标识。
可选地,该第一UPF服务的至少一个PIN的标识与第一UPF的端点信息可以承载在同一个消息中,或者也可以承载在不同的消息中,不予限制。
S702:第二UPF对第一UPF的端点信息和第一UPF服务的至少一个PIN的标识进行关联。
例如,第二UPF对第一UPF的端点信息和第一UPF服务的至少一个PIN的标识进行关联存储。在S702中,第二UPF可以获取第一UPF的端点信息,具体可以参考图5或图6所示实施例的相关内容,不再赘述。
S703:第一UPF获取第二UPF服务的至少一个PIN的标识。
示例性地,第一UPF可以接收来自第二UPF的该第二UPF服务的至少一个PIN的标识。例如,第二UPF可以在接收到第一UPF的端点信息后,向第一UPF发送第二UPF服务的至少一个PIN的标识,不予限制。
一个示例,第一UPF可以通过第一SMF和第二SMF接收来自第二UPF的该第二UPF服务的至少一个PIN的标识。具体地,第二UPF向第二SMF发送第二UPF服务的至少一个PIN的标识;第二SMF接收来自第二UPF的该第二UPF服务的至少一个PIN的标识,向第一SMF发送该第二UPF服务的至少一个PIN的标识;第一SMF接收来自第二SMF的该第二UPF服务的至少一个PIN的标识,并向第一UPF发送该第二UPF服务的至少一个PIN的标识;第一UPF接收来自第一SMF的该第二UPF服务的至少一个PIN的标识。
又一个示例,第一UPF也可以通过第一SMF、第二SMF和第三SMF接收来自第二UPF的该第二UPF服务的至少一个PIN的标识。具体地,第二UPF向第二SMF发送第二UPF服务的至少一个PIN的标识;第二SMF接收来自第二UPF的该第二UPF服务的至少一个PIN的标识,向第三SMF发送该第二UPF服务的至少一个PIN的标识;第三SMF接收来自第二SMF的该第二UPF服务的至少一个PIN的标识,向第一SMF发送该第二UPF服务的至少一个PIN的标识;第一SMF接收来自第二SMF的该第二UPF服务的至少一个PIN的标识,并向第一UPF发送该第二UPF服务的至少一个PIN的标识;第一UPF接收来自第一SMF的该第二UPF服务的至少一个PIN的标识。
再一个示例,第一UPF还可以通过第三SMF接收来自第二UPF的该第二UPF服务的至少一个PIN的标识。具体地,第二UPF向第三SMF发送第二UPF服务的至少一个PIN的标识;第三SMF接收来自第二UPF的该第二UPF服务的至少一个PIN的标识,并向第一UPF发送该第二UPF服务的至少一个PIN的标识;第一UPF接收来自第三SMF的该第二UPF服务的至少一个PIN的标识。
可选地,该第二UPF服务的至少一个PIN的标识与第二UPF的端点信息可以承载在同一个消息中,或者也可以承载在不同的消息中,不予限制。
S704:第一UPF对第二UPF的端点信息和第二UPF服务的至少一个PIN的标识进行关联。
例如,第一UPF可以对第二UPF的端点信息和第二UPF服务的至少一个PIN的标识进行关联存储。在S704中,第一UPF可以获取第二UPF的端点信息,具体可以参考图5或图6所示实施例的相关内容,不再赘述。
S705:第一终端设备基于第一会话向第一UPF发送第一数据包。
相应地,第一UPF基于第一会话接收来自第一终端设备的第一数据包。
其中,第一会话的建立过程可以参考图4所示的实施例,不再赘述。
S706:第一UPF根据第一PIN,通过第二UPF的端点信息向第二UPF发送第二数据包。
相应地,第二UPF接收来自第一UFP的第二数据包。
示例性地,S706可通过S706a、S706b和S706c实现(图7以S706a、S706b和S706c为例):S706a,第一UPF确定第一数据包的目的地址不是第一UPF分配的地址;S706b,第一UPF根据第二UPF的端点信息与第二UPF服务的至少一个PIN的标识之间的关联关系和第一PIN的标识,确定第二UPF的端点信息;S706c,第一UPF根据第二UPF的端点信息向第二UPF发送第二数据包,相应地,第二UPF接收来自第一UPF的第二数据包。
在S706a中,第一UPF可以根据第一数据包的目的地址确定是否为第一UPF分配的地址。例如, 如果第一数据包的目的地址是第一UPF分配的地址,则向第二终端设备发送第一数据包,或通过L-UPF向第二终端设备发送第一数据包,具体可以参考前述第一UPF在第一会话和第五会话之间传输第一PIN的业务数据的相关内容,不再赘述。或者,如果第一数据包的目的地址不是第一UPF分配的地址,则执行S706b。本申请实施例以第一数据包的目的地址不是第一UPF分配的地址为例。
在S706b中,第一UPF还可以获取第一PIN的标识。例如,第一数据包中包括第一PIN的标识,第一UPF可以解析该第一数据包获得第一PIN的标识;或者第一UPF也可以根据PIN的标识与会话之间的对应关系和第一会话获得第一PIN的标识,不予限制。
其中,第一数据包所包括的业务数据与第二数据包所包括的业务数据相同,或者,第一数据包的净荷部分与第二数据包的净荷部分相同。例如,第一UPF可以在第一数据包外封装包头获得第二数据包,该包头中携带第一PIN的标识,不做限定。
S707:第二UPF根据第一PIN和/或第二数据包的目的地址,确定第一PIN的第三会话。
第二UPF接收到第二数据包后,可以根据第一PIN和/或第二数据包的目的地址,确定第一PIN的第三会话,并基于第三会话传输第一数据包,即执行S708的内容。
示例性地,第二数据包的目的地址可以对应一个或多个会话。当第二数据包的目的地址对应于一个会话时,第二UPF确定该一个会话为第三会话。当第二数据包的目的地址对应于多个会话时,第二UPF可以根据第一PIN的标识从该多个会话中确定第三会话。
S708:第二UPF基于第三会话向第二终端设备发送第一数据包。
相应地,第二终端设备基于第三会话接收来自第二UPF的第一数据包。
例如,第二UPF可以丢弃第二数据包的包头,即在S706封装的包头,获得第一数据包,并基于第三会话向第二终端设备发送第一数据包。
至此,区域1中的第一终端设备的第一数据包传输至区域2中的第二终端设备,实现了第一终端设备与第二终端设备之间的跨区域通信。
S709:第二终端设备基于第二会话向第二UPF发送第四数据包。
相应地,第二UPF基于第二会话接收来自第二终端设备的第四数据包。
其中,第二会话的建立过程可以参考图4所示的实施例,不再赘述。以及,本申请实施例对第一会话、第二会话的建立顺序不做限定。
S710:第二UPF根据第二PIN,通过第一UPF的端点信息向第一UPF发送第三数据包。
相应地,第一UPF接收来自第二UFP的第三数据包。
示例性地,S710可通过S710a、S710b和S710c实现(图7以S710a、S710b和S710c为例):S710a,第二UPF确定第四数据包的目的地址不是第二UPF分配的地址;S710b,第二UPF根据第一UPF的端点信息与第一UPF服务的至少一个PIN的标识之间的关联关系和第二PIN的标识,确定第一UPF的端点信息;S710c,第二UPF根据第一UPF的端点信息向第一UPF发送第三数据包,相应地,第一UPF接收来自第二UPF的第三数据包。
在S710a中,第二UPF可以根据第四数据包的目的地址确定是否为第二UPF分配的地址,具体实现过程可以参考S706的内容,不再赘述。
在S710b中,第二UPF还可以获取第二PIN的标识,具体实现过程可以参考S706的内容,不再赘述。
其中,第三数据包所包括的业务数据与第四数据包所包括的业务数据相同,或者,第三数据包的净荷部分与第四数据包的净荷部分相同。例如,第二UPF可以在第四数据包外封装包头获得第三数据包,该包头中携带第二PIN的标识,不做限定。
S711:第一UPF根据第二PIN和/或第三数据包的目的地址,确定第二PIN的第二会话。
第一UPF接收到第三数据包后,可以根据第二PIN和/或第三数据包的目的地址,确定第二PIN的第二会话,并基于第二会话传输第四数据包,即执行S711的内容。
示例性地,第三数据包的目的地址可以对应一个或多个会话。当第三数据包的目的地址对应于一个会话时,第一UPF确定该一个会话为第二会话。当第三数据包的目的地址对应于多个会话时,第一UPF可以根据第二PIN的标识从该多个会话中确定第二会话。
S712:第一UPF基于第二会话向第一终端设备发送第四数据包。
相应地,第一终端设备基于第二会话接收来自第一UPF的第四数据包。
例如,第一UPF可以丢弃第三数据包的包头,即在S710封装的包头,获得第四数据包,并基于第二会话向第一终端设备发送第四数据包。
至此,区域2中的第二终端设备的第四数据包传输至区域1中的第一终端设备,实现了第一终端设备与第二终端设备之间的跨区域通信。
图8示出了本申请实施例提供的再一种通信方法的流程示意图。
本实施例以图2a所示的通信架构为例。例如,第一UPF为图2a中的PIN-UPF1,第二UPF为图2a中的PIN-UPF2,第一SMF为图2a中L-SMF1,第二SMF为图2a中的L-SMF2,第三SMF为图2a中的PIN-SMF,第一终端设备和第二在终端设备分别为图2a中的UE1和UE2。PIN-UPF1和L-SMF1位于区域1,PIN-UPF2与L-SMF2位于区域2。
本实施例中,在第一隧道的建立过程中PIN-UPF1与PIN-UPF2之间需要通过L-SMF1和L-SMF2通信。
如图8所示,该方法可以包括如下步骤。
S801:UE1向AMF发送第六消息。相应地,AMF接收来自UE1的第六消息。
其中,第六消息包括第二信息,用于请求为UE1建立第一PIN的第一会话。第二信息可以包括如下一项或多项:第一PIN的标识,DNN或切片信息。
S802:AMF根据第二信息确定L-SMF1。
AMF根据第二信息确定L-SMF1为第一PIN提供服务。
S803:AMF向L-SMF1发送第五消息。相应地,L-SMF1接收来自AMF的第五消息。
其中,第五消息包括第三信息,用于请求为UE1建立第一PIN的第一会话。第三信息可以包括如下一项或多项:第一PIN的标识,DNN或切片信息。
S804:L-SMF1根据第三信息确定PIN-UPF1。
L-SMF1根据第三信息确定PIN-UPF1为第一PIN提供服务。
S805:L-SMF1向PIN-UPF1发送第二消息。相应地,PIN-UPF1接收来自L-SMF1的第二消息。
其中,第二消息可以包括第一PIN的标识,用于请求建立第一PIN的第一会话。
S806:PIN-UPF1根据第二消息建立第一PIN的第一会话。
其中,S801至S806的具体实现过程可以参考图4所示实施例中的相关内容,不再赘述。
S807:L-SMF1向PIN-SMF发送第四消息。相应地,PIN-SMF接收来自L-SMF1的第四消息。
其中,第四消息可用于订阅第一PIN的事件。可选地,第四消息还可以包括第一PIN的标识和第一信息,第一信息包括L-SMF1的标识和/或PIN-UPF1的标识。
可选地,如果L-SMF1首次为第一PIN建立会话,则L-SMF1确定向PIN-SMF发送第一PIN的标识和第一信息;或者,如果L-SMF1非首次为第一PIN建立会话,则L-SMF1确定不向PIN-SMF发送第一PIN的标识和第一信息。
图8中以首次为第一PIN建立会话,第四消息包括第一PIN的标识和第一信息为例。
S808:PIN-SMF非首次收到第一PIN的标识,在第一PIN的上下文中添加第一信息。
例如,PIN-SMF可以获取第一PIN的上下文。如果PIN-SMF首次到第一PIN的标识,则PIN-SMF根据第一信息创建第一PIN的上下文,该第一PIN的上下文包括第一信息;或者,如果PIN-SMF非首次收到第一PIN的标识,则PIN-SMF在第一PIN的上下文中添加第一信息。图8中以PIN-SMF非首次收到第一PIN的标识为例。
可选地,PIN-SMF还可以根据第一PIN的上下文确定为第一PIN提供服务的至少一个L-SMF的标识和/或为第一PIN提供服务的至少一个PIN-UPF的标识。其中,为第一PIN提供服务的至少一个L-SMF包括L-SMF2。为第一PIN提供服务的至少一个PIN-UPF包括PIN-UPF2。
S809:PIN-SMF向L-SMF1发送第三消息。相应地,L-SMF1接收来自PIN-SMF的第三消息。
其中,第三消息包括为第一PIN提供服务的至少一个L-SMF的标识和/或为第一PIN提供服务的至少一个PIN-UPF的标识。
图8中以第三消息包括L-SMF1的标识和/或PIN-UPF2的标识为例。
S810:L-SMF1确定PIN-UPF1与PIN-UPF2之间未建立连接。
L-SMF1可以根据L-SMF1的标识和/或PIN-UPF2的标识,确定PIN-UPF1与PIN-UPF2之间是否 建立连接(或是否建立第一隧道)。如果PIN-UPF1与PIN-UPF2之间未建立连接,则执行S811的内容;或者,如果PIN-UPF1与PIN-UPF2之间已建立连接(如已建立第一隧道),则第一SMF可以向PIN-UPF1发送第一PIN的标识和PIN-UPF2的端点信息(和/或第一PIN的标识和PIN-UPF2的标识之间的对应关系)。进一步地,PIN-UPF1可以根据该第一PIN的标识和PIN-UPF2的端点信息(和/或第一PIN的标识和PIN-UPF2的标识之间的对应关系),对第一PIN的标识和PIN-UPF2的端点信息进行关联(如进行关联存储),即对第一隧道关联第一PIN的标识,以便后续PIN-UPF1通过第一隧道传输第一PIN的业务数据。
图8中以PIN-UPF1与PIN-UPF2之间未建立连接为例。
S811:L-SMF1向PIN-UPF1发送第一消息。相应地,PIN-UPF1接收来自L-SMF1的第一消息。
其中,第一消息可用于指示PIN-UPF1分配PIN-UPF1的端点信息。
S807至S811的具体实现过程可以参考图5所示实施例中的S501的相关内容,不再赘述。
S812:PIN-UPF1向L-SMF1发送PIN-UPF1的端点信息和PIN-UPF1服务的至少一个PIN的标识。
相应地,L-SMF1接收来自PIN-UPF1的该PIN-UPF1的端点信息和PIN-UPF1服务的至少一个PIN的标识。
PIN-UPF1响应于第一消息,分配端点信息,以及向L-SMF1发送PIN-UPF1的端点信息。可选地,PIN-UPF1还可以向L-SMF1发送PIN-UPF服务的至少一个PIN的标识。
图8中以PIN-UPF1相关L-SMF1发送PIN-UPF1的端点信息和PIN-UPF1服务的至少一个PIN的标识为例。
S813:L-SMF1向L-SMF2发送PIN-UPF1的端点信息和PIN-UPF1服务的至少一个PIN的标识。
相应地,L-SMF2接收来自L-SMF1的PIN-UPF1的端点信息和PIN-UPF1服务的至少一个PIN的标识。
S814:L-SMF2向PIN-UPF2发送PIN-UPF1的端点信息和PIN-UPF1服务的至少一个PIN的标识。
相应地,PIN-UPF2接收来自L-SMF2的PIN-UPF1的端点信息和PIN-UPF1服务的至少一个PIN的标识。
S815:PIN-UPF2对PIN-UPF1的端点信息和PIN-UPF1服务的至少一个PIN的标识进行关联。
S816:PIN-UPF2向L-SMF2发送PIN-UPF2的端点信息和PIN-UPF2服务的至少一个PIN的标识。
相应地,L-SMF接收来自PIN-UPF2该PIN-UPF2的端点信息和PIN-UPF2服务的至少一个PIN的标识。
PIN-UPF2分配端点信息,以及向L-SMF2发送PIN-UPF2的端点信息。可选地,PIN-UPF2还可以向L-SMF2发送PIN-UPF2服务的至少一个PIN的标识。
图8中以PIN-UPF2向L-SMF2发送PIN-UPF2的端点信息和PIN-UPF2服务的至少一个PIN的标识为例。
S817:L-SMF2向L-SMF1发送PIN-UPF2的端点信息和PIN-UPF2服务的至少一个PIN的标识。
相应地,L-SMF1接收来自L-SFM2的该PIN-UPF2的端点信息和PIN-UPF2服务的至少一个PIN的标识。
S818:L-SMF1向PIN-UPF1发送PIN-UPF2的端点信息和PIN-UPF2服务的至少一个PIN的标识。
相应地,PIN-UPF1接收来自L-SMF1的该PIN-UPF2的端点信息和PIN-UPF2服务的至少一个PIN的标识
S819:PIN-UPF1对PIN-UPF2的端点信息和PIN-UPF2服务的至少一个PIN的标识进行关联。
其中,S812至S814、S816至S818的具体实现过程可以参考图5所示实施例中的S502至S505,不再赘述。
至此,PIN-UPF1与PIN-UPF2之间的连接建立完成,或者PIN-UPF1与PIN-UPF2之间的第一隧道建立完成。之后,PIN-UPF1可通过第一隧道向PIN-UPF2发送多个PIN的业务数据。
S820:UE1基于第一会话向PIN-UPF1发送第一数据包。相应地,PIN-UPF1基于第一会话接收来自UE1的第一数据包。
S821:PIN-UPF1确定第一数据包的目的地址不是PIN-UPF1分配的地址。
S822:PIN-UPF1根据PIN-UPF2的端点信息与PIN-UPF2服务的至少一个PIN的标识之间的关联关系和第一PIN的标识,确定PIN-UPF2的端点信息。
S823:PIN-UPF1根据PIN-UPF2的端点信息,向PIN-UPF2发送第二数据包。
相应地,PIN-UPF2接收来自PIN-UPF2的第二数据包。
即PIN-UPF1通过第一隧道向PIN-UPF2发送第二数据包。第二数据包所包括的业务数据与第一数据包所包括的业务数据相同。该第二数据包携带有第一PIN的标识。
S824:PIN-UPF2根据第一PIN和/或第二数据包的目的地址,确定第一PIN的第三会话。
其中,第三会话的建立过程可以参考第一会话的建立过程,不再赘述。
S825:PIN-UPF2基于第三会话向UE2发送第一数据包。相应地,UE2基于第三会话接收来自PIN-UPF2的第一数据包。
其中,S820至S825的具体实现过程可以参考图7所示实施例中的相关内容,不再赘述。
至此,区域1中的UE1的第一数据包传输到区域2中的UE2。
可选地,图8所示的实施例中还可以包括PIN-UPF2根据PIN-UPF1的端点信息传输至少一个PIN的业务数据(图8未示出)具体可以参考图7的相关内容,这里不再赘述。
在图8所示的实施例中,UE1与UE2之间的跨区域通信的传输路径为:UE1—PIN-UPF1—PIN-UPF2—UE2,其中PIN-UPF2与PIN-UPF2之间建立第一隧道,或建立N19+连接(或N20连接等),用于传输多个PIN的业务数据,如图9所示。图9中用黑粗实线表示UE1与UE2之间的跨区域通信的传输路径。
图10示出了本申请实施例提供的再一种通信方法的流程示意图。
本实施例以图2a所示的通信架构为例。例如,第一UPF为图2a中的PIN-UPF1,第二UPF为图2a中的PIN-UPF2,第一SMF为图2a中L-SMF1,第三SMF为图2a中的PIN-SMF,第一终端设备和第二在终端设备分别为图2a中的UE1和UE2。PIN-UPF1和L-SMF1位于区域1,PIN-UPF2位于区域2。
本实施例中,在第一隧道的建立过程中PIN-UPF1与PIN-UPF2之间需要通过PIN-SMF通信,无需经过L-SMF1和L-SMF2。
其中,图10所示实施例中的S1001至S1008、S1013、S1016至S1022分别对图8所示实施例中的S801至S808、S815、S819至S825对应相同,不同之处在于:
S1009:PIN-SMF确定PIN-UPF1与UPF2之间未建立连接。
S1010:PIN-SMF向PIN-UPF1发送第一消息。相应地,PIN-UPF1接收来自PIN-SMF的第一消息。
S1011:PIN-UPF1向PIN-SMF发送PIN-UPF1的端点信息和PIN-UPF1服务的至少一个PIN的标识。相应地,PIN-SMF接收来自PIN-UPF1的该PIN-UPF1的端点信息和PIN-UPF1服务的至少一个PIN的标识。
S1012:PIN-SMF向PIN-UPF2发送PIN-UPF1的端点信息和PIN-UPF1服务的至少一个PIN的标识。相应地,PIN-UPF2接收来自PIN-SMF的PIN-UPF1的端点信息和PIN-UPF1服务的至少一个PIN的标识。
S1014:PIN-UPF2向PIN-SMF发送PIN-UPF2的端点信息和PIN-UPF2服务的至少一个PIN的标识。相应地,PIN-SMF接收来自PIN-UPF2的该PIN-UPF2的端点信息和PIN-UPF2服务的至少一个PIN的标识。
S1015:PIN-SMF向PIN-UPF1发送PIN-UPF2的端点信息和PIN-UPF2服务的至少一个PIN的标识。相应地,PIN-UPF1接收来自PIN-SMF的PIN-UPF2的端点信息和PIN-UPF2服务的至少一个PIN的标识。
其中,S1009至S1012、S1014和S1015的具体实现过程可以参考图6所示实施例中的相关内容,不再赘述。
在图10所示的实施例中,UE1与UE2之间的跨区域通信的传输路径为:UE1—PIN-UPF1—PIN-UPF2—UE2,其中PIN-UPF2与PIN-UPF2之间建立第一隧道,或建立N19+连接(或N20连接等),用于传输多个PIN的业务数据,如图11所示。图11中用黑粗实线表示UE1与UE2之间的跨区域通信的传输路径。相较于图9所示的通信架构,图11所示的通信架构中,PIN-SMF与PIN-UPF之间建立连接,PIN-SMF与PIN-UPF之间通信无需经过L-SMF。
图12示出了本申请实施例提供的再一种通信方法的流程示意图。
本实施例以图2b所示的通信架构为例,即,PIN-UPF1与UE1之间部署有L-UPF。例如,第一UPF为图2b中的PIN-UPF1或图2b中的L-UPF1,第二UPF为图2b中的PIN-UPF2,第一SMF为图2b中L-SMF1,第三SMF为图2b中的PIN-SMF,第一终端设备和第二在终端设备分别为图2b中的UE1和UE2。PIN-UPF1、L-UPF1和L-SMF1位于区域1,PIN-UPF2位于区域2。
在本实施例中,PIN-UPF1可通过L-SMF1和L-SMF2与PIN-UPF2建立第一隧道,具体可以参考图8所示的实施例;或者PIN-UPF1也可以通过PIN-SMF与PIN-UPF2建立第一隧道,具体可以参考图10所示的实施例。图12中以PIN-UPF1通过PIN-SMF与PIN-UPF2建立第一隧道为例。
其中,图12所示实施例中的S1201至S1203、S1207至S1209、S1212至S1218、S1222至S1226分别与图10所示实施例中的S1001至1003、S1007至S1016、S1018至S1022对应相同,不同之处在于:
S1204:L-SMF1根据第三信息确定L-UPF1。
在本实施例中,L-SMF1根据第三信息确定L-UPF1为第一PIN提供服务。其中,L-SMF1根据第三信息确定L-UPF1的具体实现过程可以参考L-SMF1根据第三信息确定PIN-UPF1的内容,不再赘述。
S1205:L-SMF1向L-UPF1发送第二消息。相应地,L-UPF1接收来自L-SMF1的第二消息。
该第二消息可用于请求建立第一PIN的第一会话,如请求为UE1建立第一PIN的第一会话。
S1206:L-UPF1根据第二消息建立第一PIN的第一会话。
L-UPF1响应于第二消息,建立第一会话,如为UE1分配IP地址等,本申请实施例对第一UPF建立第一会话的具体实现过程不做限定。可选地,UE1的IP地址也可以是由L-SMF1分配的,不予限制。
S1210:PIN-SMF向L-SMF1发送第三消息。相应地,L-SMF接收来自PIN-SMF的第三消息。
第三消息包括为第一PIN提供服务的至少一个L-SMF的标识和/或为第一PIN提供服务的至少一个PIN-UPF的标识,用于指示在UPF之间为第一PIN建立隧道。该为第一PIN提供服务的至少一个L-SMF包括L-SMF2。为第一PIN提供服务的至少一个PIN-UPF包括PIN-UPF2。可选地,第三消息可通过第二指示信息指示在UPF之间为第一PIN建立隧道。第三消息的描述可以参考S501的相关内容,不再赘述。
图12中以第三消息包括第二指示信息,以及L-SMF2的标识和/或PIN-UPF2的标识为例。
S1211:PIN-SMF根据第三消息建立L-UPF1与PIN-UPF1之间的连接。
PIN-SMF响应于第三消息触发L-UPF1与PIN-UPF1之间建立连接,如为第一PIN建立连接,该连接是以PIN为粒度的,用于传输第一PIN的业务数据。本申请实施例对L-UPF1与PIN-UPF1之间建立连接的具体实现过程不做限定。
S1219:UE1基于第一会话向L-UPF1发送第一数据包。相应地,L-UPF1基于第一会话接收来自UE1的第一数据包。
S1220:L-UPF1确定第一数据包的目的地址不是L-UPF1分配的地址。
L-UPF1可以根据第一数据包的目的地址确定该第一数据包的目的地址是否为L-UPF1分配的地址。如果L-UPF1确定第一数据包的目的地址是L-UPF1分配的地址,则L-UPF1发送该第一数据包,无需通过PIN-UPF,可以实现对本区域内业务数据的就近转发,能够减少业务的数据传输时延。或者,如果L-UPF1确定第一数据包的目的地址不是L-UPF1分配的地址,则执行S1221的内容。图12中以L-UPF1确定第一数据包的目的地址不是L-UPF1分配的地址为例。
S1221:L-UPF1向PIN-UPF1发送第一数据包。相应地,PIN-UPF1接收来自L-UPF1的第一数据包。
在图12所示的实施例中,UE1与UE2之间的跨区域通信的传输路径为:UE1—L-UPF1—PIN-UPF1—PIN-UPF2—UE2。其中,PIN-UPF1与PIN-UPF2之间建立第一隧道,或建立N19+连接(或N20连接等),用于传输多个PIN的业务数据;L-UPF1与PIN-UPF1之间建立N19连接,该连接用于传输第一PIN的业务数据,如图13所示。图13中用黑粗实线表示UE1与UE2之间的跨区域通信的传输路径。相较于图9或图11所示的通信架构,图12所示的通信架构中,UE与PIN-UPF之间部署有L-UPF,可以实现本区域内的就近转发,减少数据传输时延。
需要指出的是,L-UPF与PIN-UPF可以为同一个设备,也可以为不同的设备;或者,L-UPF与PIN-UPF可以合设,也可以不合设,不予限制。当L-UPF与PIN-UPF为同一个设备时,N19连接为本 区域内不同L-UPF之间的以PIN为粒度的连接。一个区域内的多个L-UPF之间建立N19建立,该多个L-UPF中的一个L-UPF可以作为该区域的PIN-UPF。
可以理解的是,图8、图10和图12中任一所示实施例中的各个步骤的执行顺序作为一种示例,本申请实施例并不限定于此。例如,L-SMF1可以在第一会话建立完成后,向PIN-SMF发送第四消息;或者也可以在第一会话建立过程中,向PIN-SMF发送第四消息;或者,还可以在第一会话建立之前且在发送第二消息之后,向PIN-SMF发送第四消息,不予限制。
在本申请中,从第一用户面功能网元、第一会话管理功能网元、以及第三会话管理功能网元等多个网元之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现本申请中各实施例提供的方法,上述各网元均可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。
下面结合附图介绍本申请实施例中用来实现上述方法的通信装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图14示出了一种通信装置1400的结构示意图。该通信装置1400可以实现上述各个方法实施例中由第一用户面功能网元、第一会话管理功能网元、以及第三会话管理功能网元实现的功能或者步骤。
在一种可能的实现方式中,通信装置1400可以包括处理单元1401和收发单元1402。其中,处理单元1401可以用于执行上述任一方法实施例中任一网元(例如,第一用户面功能网元、第一会话管理功能网元、以及第三会话管理功能网元)的步骤;收发单元1402可以用于接收或发送相关的数据,信息或消息。
在另一种可能的实现方式中,通信装置1400可以包括收发单元1402,收发单元1402可以用于执行上述任一方法实施例中任一网元(例如,第一用户面功能网元、第一会话管理功能网元、以及第三会话管理功能网元)的步骤或方法。
需要指出的是,上述各个单元可以独立设置,也可以部分或者全部集成。例如,收发单元1402可包括发送单元和接收单元。
作为一个示例,通信装置1400可实现上述任一方法实施例中第一用户面功能网元实现的功能或步骤。
例如,处理单元1401,可用于获取第二用户面功能网元的端点信息。收发单元1402,可用于根据第二用户面功能网元的端点信息,传输至少一个PIN的业务数据。
在一种可能的实现方式中,在处理单元1401获取第二用户面功能网元的端点信息时,收发单元1402,具体用于接收来自会话管理功能网元的第一消息,第一消息用于指示第一用户面功能网元分配第一用户面功能网元的端点信息;根据第一消息,向会话管理功能网元发送第一用户面功能网元的端点信息;以及,接收来自会话管理功能网元的第二用户面功能网元的端点信息。
在一种可能的实现方式中,第一消息可通过如下方式指示第一用户面功能网元分配第一用户面功能网元的端点信息:第一消息包括第一指示信息,第一指示信息用于指示第一用户面功能网元分配第一用户面功能网元的端点信息。
在一种可能的实现方式中,收发单元1402,进一步用于向会话管理功能网元发送第一用户面功能网元服务的至少一个PIN的标识;或者,通过会话管理功能网元向第二用户面功能网元发送第一用户面功能网元服务的至少一个PIN的标识。
在一种可能的实现方式中,处理单元1401,进一步用于获取第二用户面功能网元服务的至少一个PIN的标识;对第二用户面功能网元侧的端点信息和第二用户面功能网元服务的至少一个PIN的标识进行关联。
在一种可能的实现方式中,第二用户面功能网元服务的至少一个PIN中包括第一PIN,收发单元1402进一步用于基于第一会话接收来自第一终端设备的第一数据包,其中,第一会话为第一PIN的会话;根据第一PIN,通过第二用户面功能网元的端点信息向第二用户面功能网元发送第二数据包,第一数据包所包括的业务数据与第二数据包所包括的业务数据相同。
可选地,基于上述实现方式,处理单元1401,进一步用于在第一数据包外封装包头获得第二数据包,其中,包头中携带第一PIN的标识。
可选地,基于上述实现方式,处理单元1401,进一步用于根据第一数据包的目的地址,确定第一 数据包的目的地址不是第一用户面功能网元分配的地址;以及,根据第二用户面功能网元的端点信息与第二用户面功能网元服务的至少一个PIN的标识之间的关联关系和第一PIN的标识,确定第二用户面功能网元的端点信息。
可选地,基于上述实现方式,收发单元1402,进一步用于接收来自会话管理功能网元的第二消息,其中,第二消息用于请求建立第一PIN的第一会话;处理单元1401,进一步用于根据第二消息,建立第一会话。
在一种可能的实现方式中,第一用户面功能网元服务的至少一个PIN中包括第二PIN,收发单元1402,进一步用于接收来自第二用户面功能网元的第三数据包,第三数据包包头中包括第二PIN的标识;处理单元1401,进一步用于根据第二PIN和/或第三数据包的目的地址,确定第二会话,其中,第二会话为第二PIN的会话;以及,收发单元1402,进一步用于基于第二会话发送第四数据包,第四数据包所包括的业务数据与第三数据包所包括的业务数据相同。
作为又一个示例,通信装置1400可实现上述任一方法实施例中第一会话管理功能网元实现的功能或步骤。
例如,处理单元1401,用于获取第二用户面功能网元的端点信息;收发单元1402,用于向第一用户面功能网元发送第二用户面功能网元的端点信息;其中,第二用户面功能网元的端点信息用于第一用户面功能网元传输至少一个个人物联网网络PIN的业务数据。
在一种可能的实现方式中,收发单元1402,进一步用于向第一用户面功能网元发送第一消息,第一消息用于指示第一用户面功能网元分配第一用户面功能网元的端点信息;接收来自第一用户面功能网元的第一用户面功能网元的端点信息;以及,向第二用户面功能网元发送第一用户面功能网元的端点信息。
可选地,收发单元1402具体用于通过第二会话管理功能网元向第二用户面功能网元发送第一用户面功能网元的端点信息。
在一种可能的实现方式中,第一用户面功能网元服务的至少一个PIN中包括第一PIN,收发单元1402,进一步用于接收来自第三会话管理功能网元的第三消息,第三消息包括为第一PIN提供服务的至少一个会话管理功能网元的标识和/或为第一PIN提供服务的至少一个用户面功能网元的标识,其中,至少一个会话管理功能网元包括第二会话管理功能网元,至少一个用户面功能网元包括第二用户面功能网元。
在一种可能的实现方式中,处理单元1401,进一步用于根据第二会话管理功能网元的标识和/或第二用户面功能网元的标识,确定向第一用户面功能网元发送第一消息。
在一种可能的实现方式中,在接收来自第三会话管理功能网元的第三消息之前,收发单元1402,进一步用于向第三会话管理功能网元发送第四消息,第四消息用于订阅第一PIN的事件。
在一种可能的实现方式中,收发单元1402,进一步用于向第三会话管理功能网元发送第一PIN的标识和第一信息,第一信息包括第一会话管理功能网元的标识和/或第一用户面功能网元的标识。
在一种可能的实现方式中,第三消息用于指示在第一用户面功能网元与第二用户面功能网元之间为第一PIN建立隧道。
可选地,第三消息可通过如下方式指示在第一用户面功能网元与第二用户面功能网元之间为第一PIN建立隧道:第三消息包括第二指示信息,该第二指示信息用于指示在第一用户面功能网元与第二用户面功能网元之间为第一PIN建立隧道。
在一种可能的实现方式中,在接收来自第三会话管理功能网元的第三消息之前,收发单元1402,进一步用于接收来自接入管理功能网元的第五消息,其中,第五消息用于请求为第一终端设备建立第一PIN的第一会话;以及,根据第五消息,向第一用户面功能网元发送第二消息,其中,第二消息用于请求建立第一PIN的第一会话。
在一种可能的实现方式中,第一消息可通过如下方式指示第一用户面功能网元分配第一用户面功能网元的端点信息:第一消息包括第一指示信息,第一指示信息用于指示第一用户面功能网元分配第一用户面功能网元的端点信息。
在一种可能的实现方式中,收发单元1402,进一步用于接收来自第二会话管理网元的第二用户面功能网元的端点信息。
在一种可能的实现方式中,收发单元1402,进一步用于接收来自第一用户面功能网元的第一用户面功能网元服务的至少一个PIN的标识;向第二用户面功能网元发送第一用户面功能网元服务的至少一个PIN的标识。
在一种可能的实现方式中,收发单元1402,进一步用于接收第二用户面功能网元服务的至少一个PIN的标识;向第一用户面功能网元发送第二用户面功能网元服务的至少一个PIN的标识。
作为又一个示例,通信装置1400可实现上述任一方法实施例中第三会话管理功能网元实现的功能或步骤。
例如,收发单元1402,用于接收来自第二用户面功能网元的第二用户面功能网元的端点信息;以及,向第一用户面功能网元发送第二用户面功能网元的端点信息;其中,第二用户面功能网元的端点信息用于第一用户面功能网元传输至少一个个人物联网网络PIN的业务数据。
在一种可能的实现方式中,在接收来自第二用户面功能网元的第二用户面功能网元的端点信息之前,收发单元1402,进一步用于向第一用户面功能网元发送第一消息,第一消息用于指示第一用户面功能网元分配第一用户面功能网元的端点信息;接收来自第一用户面功能网元的第一用户面功能网元的端点信息;以及,向第二用户面功能网元发送第一用户面功能网元的端点信息。
在一种可能的实现方式中,收发单元1402,进一步用于接收来自第一用户面功能网元的第一用户面功能网元服务的至少一个PIN的标识;以及,向第二用户面功能网元发送第一用户面功能网元服务的至少一个PIN的标识。
在一种可能的实现方式中,收发单元1402,进一步用于接收来自第二用户面功能网元的第二用户面功能网元服务的至少一个PIN的标识;向第一用户面功能网元发送第二用户面功能网元服务的至少一个PIN的标识。
在一种可能的实现方式中,第一消息可通过如下方式指示第一用户面功能网元分配第一用户面功能网元的端点信息:第一消息包括第一指示信息,第一指示信息用于指示第一用户面功能网元分配第一用户面功能网元的端点信息。
在一种可能的实现方式中,收发单元1402,具体用于通过第二会话管理功能网元接收来自第二用户面功能网元的第二用户面功能网元的端点信息;通过第一会话管理功能网元向第一用户面功能网元发送第二用户面功能网元的端点信息。
在一种可能的实现方式中,在通过第二会话管理功能网元接收来自第二用户面功能网元的第二用户面功能网元的端点信息之前,收发单元1402,进一步用于接收来自第一会话管理功能网元的第一用户面功能网元的端点信息;通过第二会话管理功能网元向第二用户面功能网元发送第一用户面功能网元的端点信息。
在一种可能的实现方式中,收发单元1402,进一步用于接收来自第一会话管理功能网元的第一用户面功能网元服务的至少一个PIN的标识;通过第二会话管理功能网元向第二用户面功能网元发送第一用户面功能网元服务的至少一个PIN的标识;接收来自第二会话管理功能网元的第二用户面功能网元服务的至少一个PIN的标识;向第一会话管理功能网元发送第二用户面功能网元服务的至少一个PIN的标识。
在一种可能的实现方式中,至少一个PIN包括第一PIN,收发单元1402,进一步用于向第二会话管理功能网元发送第三消息,第三消息包括为第一PIN提供服务的至少一个会话管理功能网元的标识和/或为第一PIN提供服务的至少一个用户面功能网元的标识。
在一种可能的实现方式中,第三消息用于指示在第一用户面功能网元与第二用户面功能网元之间为第一PIN建立隧道。
可选地,第三消息可通过如下方式指示在第一用户面功能网元与第二用户面功能网元之间为第一PIN建立隧道:第三消息包括第二指示信息,第二指示信息用于指示在第一用户面功能网元与第二用户面功能网元之间为第一PIN建立隧道。
在一种可能的实现方式中,收发单元1402,进一步用于接收来自第二会话管理功能网元的第四消息,第四消息用于订阅第一PIN的事件。
在一种可能的实现方式中,至少一个PIN包括第一PIN,收发单元1402,进一步用于接收来自第一会话管理设备的第一PIN的标识和第一信息,第一信息包括第一会话管理功能网元的标识和/或第一用户面功能网元的标识。
在一种可能的实现方式中,处理单元1401,用于根据第一信息创建第一PIN的上下文,第一PIN的上下文包括第一信息;或者,将第一信息添加到第一PIN的上下文中,以及根据第一PIN的上下文,确定为第一PIN提供服务的至少一个会话管理功能网元和/或确定为第一PIN提供服务的至少一个用户面功能网元的标识。
有关上述处理单元1401和收发单元1402更详细的描述可以直接参考图3至图8、图10、以及图12中任一项所示的方法实施例中相关描述直接得到,这里不加赘述。
如图15所示,本申请实施例提供一种通信装置1500的结构示意图。通信装置1500可以包括处理器1520,用于实现或用于支持通信装置1500实现本申请任一方法实施例中第一用户面功能网元、第一会话管理功能网元、或第三会话管理功能网元的功能,具体可以参见前述方法实施例中的详细描述,此处不做赘述。例如,处理器1520用于通过通信接口读取并执行程序指令,以使得通信装置1500实现相应的方法。处理器1520可以包含一个或多个处理器,不予限制。
具体地,通信装置1500可以是第一用户面功能网元或位于第一用户面功能网元中的功能模块,能够实现本申请任一方法实施例中第一用户面功能网元的功能;或者,通信装置1500可以是第一会话管理功能网元或位于第一会话管理功能网元中的功能模块,能够实现本申请任一方法实施例中第一会话管理功能网元的功能;或者,通信装置1500可以是第三会话管理功能网元或位于第三会话管理功能网元中的功能模块,能够实现本申请任一方法实施例中第三会话管理功能网元的功能。
需要指出的是,上述提及的功能模块可以是由硬件实现,也可以由硬件和软件结合实现,不予限制。
例如,该通信装置1500可以为芯片系统。其中,芯片系统可以由芯片构成,也可以包含芯片和其它分立器件,不予限制。
可选地,通信装置1500还可以包括存储器1530,用于存储程序指令和/或数据。存储器1530和处理器1520耦合。其中,耦合可以理解为装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1520可能和存储器1530协同操作。存储器1530可以包括一个或多个存储器,不予限制。
进一步地,处理器1520,用于执行存储器1530中存储的程序指令,以使得通信装置1500实现相应的方法。
其中,存储器1530中的一个或多个存储器可以包含于处理器中,存储器1530也可以是独立存在,例如片外存储器,通过通信总线(图15中以粗线1540表示)与处理器1520相连接。存储器1530和处理器1520也可以集成在一起。
可选地,通信装置1500还包括通信接口1510(图15中以虚线表示),用于通过传输介质和其它设备进行通信,从而用于通信装置1500中的装置可以与其它设备进行通信。示例性地,当该通信装置为第一用户面功能网元时,其它设备可以为第一会话管理功能网元或第三会话管理功能网元等。处理器1520可以利用通信接口1510收发数据。
其中,通信接口1510具体可以是收发器。在硬件实现上,收发器可以用于实现上述收发单元1402的功能,收发器集成在通信装置1500中构成通信接口1510。
需要说明的是,本申请实施例中不限定上述通信接口1510、处理器1520以及存储器1530之间的具体连接介质。图15中以存储器1530、处理器1520以及通信接口1510之间通过通信总线1540连接,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。通信总线1540可以分为地址总线、数据总线、控制总线等。为便于表示,图15中仅用一条粗线表示,但并不表示仅有一根通信总线或一种类型的通信总线。
在本申请实施例中,处理器1520可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法可以由处理器中的硬件执行完成,或者由处理器中的硬件及软件组合执行完成。
在本申请实施例中,存储器1530可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器还可以是用于携带或存储具有指令或数据结构形式的程序代码并能够由计算机存取的任何其它介质;或者,是电路或者其它任意能够实现存储功能的装置,用于存 储程序指令和/或数据。
本申请实施例还提供一种通信系统,该通信系统可以包括如下一项或多项:第一用户面功能网元,第一会话管理功能网元,或者第三会话管理功能网元。可选地,该通信系统还可以包括第二用户面功能网元和/或第二会话管理功能网元。
其中,第一用户面功能网元,第一会话管理功能网元,或者第三会话管理功能网元,第二用户面功能网元,以及第二会话管理功能网元均可以参见前述各方法实施例中的描述,不再赘述。
本申请实施例中还提供一种计算机可读存储介质,包括程序指令,当其在计算机上运行时,使得计算机执行上述各个实施例中任一网元(例如,第一用户面功能网元,第一会话管理功能网元,或者第三会话管理功能网元)的方法或步骤。
本申请实施例中还提供一种计算机程序产品,包括程序指令,当其在计算机上运行时,使得计算机执行上述各个实施例中任一网元(例如,第一用户面功能网元,第一会话管理功能网元,或者第三会话管理功能网元)的方法或步骤。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于实现前述方法中第一用户面功能网元、第一会话管理功能网元、或者第三会话管理功能网元的功能(例如,执行相应的方法或步骤)。该芯片系统可以由芯片构成,也可以包含芯片和其它分立器件。
可选地,该芯片系统还包括存储器,该存储器用于存储程序指令,以使得上述处理器读取并执行,以实现相应的方法。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应所述以权利要求的保护范围为准。

Claims (81)

  1. 一种通信方法,其特征在于,应用于第一用户面功能网元,所述方法包括:
    获取第二用户面功能网元的端点信息;
    根据所述第二用户面功能网元的端点信息,传输至少一个个人物联网网络PIN的业务数据。
  2. 根据权利要求1所述的方法,其特征在于,所述获取第二用户面功能网元的端点信息,包括:
    接收来自会话管理功能网元的第一消息,所述第一消息用于指示所述第一用户面功能网元分配所述第一用户面功能网元的端点信息;
    根据所述第一消息,向所述会话管理功能网元发送所述第一用户面功能网元的端点信息;
    接收来自所述会话管理功能网元的所述第二用户面功能网元的端点信息。
  3. 根据权利要求2所述的方法,其特征在于,所述第一消息用于指示所述第一用户面功能网元分配所述第一用户面功能网元的端点信息,包括:
    所述第一消息包括第一指示信息,所述第一指示信息用于指示所述第一用户面功能网元分配所述第一用户面功能网元的端点信息。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    向所述会话管理功能网元发送所述第一用户面功能网元服务的至少一个PIN的标识。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    获取所述第二用户面功能网元服务的至少一个PIN的标识;
    对所述第二用户面功能网元侧的端点信息和所述第二用户面功能网元服务的至少一个PIN的标识进行关联。
  6. 根据权利要求5所述的方法,其特征在于,所述第二用户面功能网元服务的至少一个PIN中包括第一PIN,所述方法还包括:
    基于第一会话接收来自第一终端设备的第一数据包,其中,所述第一会话为所述第一PIN的会话;
    所述根据所述第二用户面功能网元的端点信息,传输至少一个个人物联网网络PIN的业务数据,包括:
    根据所述第一PIN,通过所述第二用户面功能网元的端点信息向所述第二用户面功能网元发送第二数据包,所述第一数据包所包括的业务数据与所述第二数据包所包括的业务数据相同。
  7. 根据权利要求6所述的方法,其特征在于,在通过所述第二用户面功能网元的端点信息向所述第二用户面功能网元发送第二数据包之前,所述方法还包括:
    在所述第一数据包外封装包头获得所述第二数据包,其中,所述包头中携带所述第一PIN的标识。
  8. 根据权利要求6或7所述的方法,其特征在于,在通过所述第二用户面功能网元的端点信息向所述第二用户面功能网元发送第二数据包之前,所述方法还包括:
    根据所述第一数据包的目的地址,确定所述第一数据包的目的地址不是所述第一用户面功能网元分配的地址;
    根据所述第二用户面功能网元的端点信息与所述第二用户面功能网元服务的至少一个PIN的标识之间的关联关系和所述第一PIN的标识,确定所述第二用户面功能网元的端点信息。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,在基于第一会话接收来自第一终端设备的第一数据包之前,所述方法还包括:
    接收来自会话管理功能网元的第二消息,其中,所述第二消息用于请求建立所述第一PIN的所述第一会话;
    根据所述第二消息,建立所述第一会话。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第一用户面功能网元服务的至少一个PIN中包括第二PIN,所述方法还包括:
    接收来自所述第二用户面功能网元的第三数据包,所述第三数据包包头中包括所述第二PIN的标识;
    根据所述第二PIN和/或所述第三数据包的目的地址,确定第二会话,其中,所述第二会话为所述第二PIN的会话;
    基于所述第二会话发送第四数据包,所述第四数据包所包括的业务数据与所述第三数据包所包括的业务数据相同。
  11. 一种通信方法,其特征在于,应用于第一会话管理功能网元,所述方法包括:
    获取第二用户面功能网元的端点信息;
    向第一用户面功能网元发送所述第二用户面功能网元的端点信息;
    其中,所述第二用户面功能网元的端点信息用于所述第一用户面功能网元传输至少一个个人物联网网络PIN的业务数据。
  12. 根据权利要求11所述的方法,其特征在于,在获取第二用户面功能网元的端点信息之前,所述方法还包括:
    向所述第一用户面功能网元发送第一消息,所述第一消息用于指示所述第一用户面功能网元分配所述第一用户面功能网元的端点信息;
    接收来自所述第一用户面功能网元的所述第一用户面功能网元的端点信息;
    向所述第二用户面功能网元发送所述第一用户面功能网元的端点信息。
  13. 根据权利要求12所述的方法,其特征在于,所述向第二用户面功能网元发送所述第一用户面功能网元的端点信息,包括:
    通过第二会话管理功能网元向所述第二用户面功能网元发送所述第一用户面功能网元的端点信息。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第一用户面功能网元服务的至少一个PIN中包括第一PIN,在向所述第一用户面功能网元发送第一消息之前,所述方法还包括:
    接收来自第三会话管理功能网元的第三消息,所述第三消息包括为所述第一PIN提供服务的至少一个会话管理功能网元的标识和/或为所述第一PIN提供服务的至少一个用户面功能网元的标识,其中,所述至少一个会话管理功能网元包括第二会话管理功能网元,所述至少一个用户面功能网元包括所述第二用户面功能网元。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    根据所述第二会话管理功能网元的标识和/或所述第二用户面功能网元的标识,确定向所述第一用户面功能网元发送所述第一消息。
  16. 根据权利要求14或15所述的方法,其特征在于,在接收来自第三会话管理功能网元的第三消息之前,所述方法还包括:
    向所述第三会话管理功能网元发送第四消息,所述第四消息用于订阅所述第一PIN的事件。
  17. 根据权利要求14至16中任一项所述的方法,其特征在于,所述方法还包括:
    向所述第三会话管理功能网元发送所述第一PIN的标识和第一信息,所述第一信息包括所述第一会话管理功能网元的标识和/或所述第一用户面功能网元的标识。
  18. 根据权利要求14至17中任一项所述的方法,其特征在于,所述第三消息用于指示在所述第一用户面功能网元与所述第二用户面功能网元之间为所述第一PIN建立隧道。
  19. 根据权利要求18所述的方法,其特征在于,所述第三消息用于指示在所述第一用户面功能网元与所述第二用户面功能网元之间为所述第一PIN建立隧道,包括:
    所述第三消息包括第二指示信息,所述第二指示信息用于指示在所述第一用户面功能网元与所述第二用户面功能网元之间为所述第一PIN建立隧道。
  20. 根据权利要求14至19中任一项所述的方法,其特征在于,在接收来自第三会话管理功能网元的第三消息之前,所述方法还包括:
    接收来自接入管理功能网元的第五消息,其中,所述第五消息用于请求为第一终端设备建立第一PIN的第一会话;
    根据所述第五消息,向所述第一用户面功能网元发送第二消息,其中,所述第二消息用于请求建立所述第一PIN的所述第一会话。
  21. 根据权利要求12至20中任一项所述的方法,其特征在于,所述第一消息用于指示所述第一用户面功能网元分配所述第一用户面功能网元的端点信息,包括:
    所述第一消息包括第一指示信息,所述第一指示信息用于指示所述第一用户面功能网元分配所述第一用户面功能网元的端点信息。
  22. 根据权利要求11至21中任一项所述的方法,其特征在于,所述获取第二用户面功能网元的端点信息,包括:
    接收来自第二会话管理网元的所述第二用户面功能网元的端点信息。
  23. 根据权利要求11至22中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一用户面功能网元的所述第一用户面功能网元服务的至少一个PIN的标识;
    向所述第二用户面功能网元发送所述第一用户面功能网元服务的至少一个PIN的标识。
  24. 根据权利要求11至23中任一项所述的方法,其特征在于,所述方法还包括:
    接收所述第二用户面功能网元服务的至少一个PIN的标识;
    向所述第一用户面功能网元发送所述第二用户面功能网元服务的至少一个PIN的标识。
  25. 一种通信方法,其特征在于,应用于第三会话管理功能网元,所述方法包括:
    接收来自第二用户面功能网元的所述第二用户面功能网元的端点信息;
    向第一用户面功能网元发送所述第二用户面功能网元的端点信息;
    其中,所述第二用户面功能网元的端点信息用于所述第一用户面功能网元传输至少一个个人物联网网络PIN的业务数据。
  26. 根据权利要求25所述的方法,其特征在于,在接收来自第二用户面功能网元的所述第二用户面功能网元的端点信息之前,所述方法还包括:
    向所述第一用户面功能网元发送第一消息,第一消息用于指示所述第一用户面功能网元分配所述第一用户面功能网元的端点信息;
    接收来自所述第一用户面功能网元的所述第一用户面功能网元的端点信息;
    向所述第二用户面功能网元发送所述第一用户面功能网元的端点信息。
  27. 根据权利要求25或26所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一用户面功能网元的所述第一用户面功能网元服务的至少一个PIN的标识;
    向所述第二用户面功能网元发送所述第一用户面功能网元服务的至少一个PIN的标识。
  28. 根据权利要求25至27中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自第二用户面功能网元的所述第二用户面功能网元服务的至少一个PIN的标识;
    向所述第一用户面功能网元发送所述第二用户面功能网元服务的至少一个PIN的标识。
  29. 根据权利要求26至28中任一项所述的方法,其特征在于,所述第一消息用于指示所述第一用户面功能网元分配所述第一用户面功能网元的端点信息,包括:
    所述第一消息包括第一指示信息,所述第一指示信息用于指示所述第一用户面功能网元分配所述第一用户面功能网元的端点信息。
  30. 根据权利要求25所述的方法,其特征在于,所述接收来自第二用户面功能网元的所述第二用户面功能网元的端点信息,包括:
    通过第二会话管理功能网元接收来自所述第二用户面功能网元的所述第二用户面功能网元的端点信息;
    所述向第一用户面功能网元发送所述第二用户面功能网元的端点信息,包括:
    通过第一会话管理功能网元向所述第一用户面功能网元发送所述第二用户面功能网元的端点信息。
  31. 根据权利要求30所述的方法,其特征在于,在通过第二会话管理功能网元接收来自所述第二用户面功能网元的所述第二用户面功能网元的端点信息之前,所述方法还包括:
    接收来自所述第一会话管理功能网元的所述第一用户面功能网元的端点信息;
    通过所述第二会话管理功能网元向所述第二用户面功能网元发送所述第一用户面功能网元的端点信息。
  32. 根据权利要求31所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一会话管理功能网元的所述第一用户面功能网元服务的至少一个PIN的标识;
    通过所述第二会话管理功能网元向所述第二用户面功能网元发送所述第一用户面功能网元服务的至少一个PIN的标识;
    接收来自所述第二会话管理功能网元的所述第二用户面功能网元服务的至少一个PIN的标识;
    向所述第一会话管理功能网元发送所述第二用户面功能网元服务的至少一个PIN的标识。
  33. 根据权利要求30至32中任一所述的方法,其特征在于,所述至少一个PIN包括第一PIN,所述方法还包括:
    向所述第二会话管理功能网元发送第三消息,所述第三消息包括为所述第一PIN提供服务的至少一个会话管理功能网元的标识和/或为所述第一PIN提供服务的至少一个用户面功能网元的标识。
  34. 根据权利要求33所述的方法,其特征在于,所述第三消息用于指示在所述第一用户面功能网元与所述第二用户面功能网元之间为所述第一PIN建立隧道。
  35. 根据权利要求34所述的方法,其特征在于,所述第三消息用于指示在所述第一用户面功能网元与所述第二用户面功能网元之间为所述第一PIN建立隧道,包括:
    所述第三消息包括第二指示信息,所述第二指示信息用于指示在所述第一用户面功能网元与所述第二用户面功能网元之间为所述第一PIN建立隧道。
  36. 根据权利要求33至35中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自第二会话管理功能网元的第四消息,所述第四消息用于订阅第一PIN的事件。
  37. 根据权利要求25至36中任一项所述的方法,其特征在于,所述至少一个PIN包括第一PIN,所述方法还包括:
    接收来自第一会话管理设备的第一PIN的标识和第一信息,所述第一信息包括所述第一会话管理功能网元的标识和/或所述第一用户面功能网元的标识。
  38. 根据权利要求37所述的方法,其特征在于,所述方法还包括:
    根据所述第一信息创建所述第一PIN的上下文,所述第一PIN的上下文包括所述第一信息;或者,
    将所述第一信息添加到所述第一PIN的上下文中,以及根据所述第一PIN的上下文,确定为所述第一PIN提供服务的至少一个会话管理功能网元和/或确定为所述第一PIN提供服务的至少一个用户面功能网元的标识。
  39. 一种通信装置,其特征在于,所述通信装置包括处理单元和收发单元,其中:
    所述处理单元,用于获取第二用户面功能网元的端点信息;
    所述收发单元,用于根据所述第二用户面功能网元的端点信息,传输至少一个个人物联网网络PIN的业务数据。
  40. 根据权利要求39所述的装置,其特征在于,在获取第二用户面功能网元的端点信息时:
    所述收发单元,用于接收来自会话管理功能网元的第一消息,所述第一消息用于指示所述通信装置分配所述通信装置的端点信息;根据所述第一消息,向所述会话管理功能网元发送所述通信装置的端点信息;以及,接收来自所述会话管理功能网元的所述第二用户面功能网元的端点信息。
  41. 根据权利要求40所述的装置,其特征在于,所述第一消息用于指示所述通信装置分配所述通信装置的端点信息,包括:
    所述第一消息包括第一指示信息,所述第一指示信息用于指示所述通信装置分配所述通信装置的端点信息。
  42. 根据权利要求39至41中任一项所述的装置,其特征在于,所述收发单元还用于:
    向所述会话管理功能网元发送所述通信装置服务的至少一个PIN的标识。
  43. 根据权利要求39至42中任一项所述的装置,其特征在于,所述处理单元还用于:
    获取所述第二用户面功能网元服务的至少一个PIN的标识;
    对所述第二用户面功能网元侧的端点信息和所述第二用户面功能网元服务的至少一个PIN的标识进行关联。
  44. 根据权利要求43所述的装置,其特征在于,所述第二用户面功能网元服务的至少一个PIN中包括第一PIN,所述收发单元还用于基于第一会话接收来自第一终端设备的第一数据包,其中,所述第一会话为所述第一PIN的会话;
    在根据所述第二用户面功能网元的端点信息,传输至少一个个人物联网网络PIN的业务数据时:
    所述收发单元用于根据所述第一PIN,通过所述第二用户面功能网元的端点信息向所述第二用户面功能网元发送第二数据包,所述第一数据包所包括的业务数据与所述第二数据包所包括的业务数据相同。
  45. 根据权利要求44所述的装置,其特征在于,在通过所述第二用户面功能网元的端点信息向所述第二用户面功能网元发送第二数据包之前,所述处理单元还用于:
    在所述第一数据包外封装包头获得所述第二数据包,其中,所述包头中携带所述第一PIN的标识。
  46. 根据权利要求44或45所述的装置,其特征在于,在通过所述第二用户面功能网元的端点信息向所述第二用户面功能网元发送第二数据包之前,所述处理单元还用于:
    根据所述第一数据包的目的地址,确定所述第一数据包的目的地址不是所述通信装置分配的地址;
    根据所述第二用户面功能网元的端点信息与所述第二用户面功能网元服务的至少一个PIN的标识之间的关联关系和所述第一PIN的标识,确定所述第二用户面功能网元的端点信息。
  47. 根据权利要求44至46中任一项所述的装置,其特征在于,在基于第一会话接收来自第一终端设备的第一数据包之前:
    所述收发单元还用于接收来自会话管理功能网元的第二消息,其中,所述第二消息用于请求建立所述第一PIN的所述第一会话;
    所述处理单元还用于根据所述第二消息,建立所述第一会话。
  48. 根据权利要求39至47中任一项所述的装置,其特征在于,所述通信装置服务的至少一个PIN中包括第二PIN:
    所述收发单元还用于接收来自所述第二用户面功能网元的第三数据包,所述第三数据包包头中包括所述第二PIN的标识;
    所述处理单元还用于根据所述第二PIN和/或所述第三数据包的目的地址,确定第二会话,其中,所述第二会话为所述第二PIN的会话;
    所述收发单元还用于基于所述第二会话发送第四数据包,所述第四数据包所包括的业务数据与所述第三数据包所包括的业务数据相同。
  49. 一种通信装置,其特征在于,所述通信装置包括处理单元和收发单元,其中:
    所述处理单元,用于获取第二用户面功能网元的端点信息;
    所述收发单元,用于向第一用户面功能网元发送所述第二用户面功能网元的端点信息;
    其中,所述第二用户面功能网元的端点信息用于所述第一用户面功能网元传输至少一个个人物联网网络PIN的业务数据。
  50. 根据权利要求49所述的装置,其特征在于,在获取第二用户面功能网元的端点信息之前,所述收发单元还用于:
    向所述第一用户面功能网元发送第一消息,所述第一消息用于指示所述第一用户面功能网元分配所述第一用户面功能网元的端点信息;
    接收来自所述第一用户面功能网元的所述第一用户面功能网元的端点信息;
    向所述第二用户面功能网元发送所述第一用户面功能网元的端点信息。
  51. 根据权利要求50所述的装置,其特征在于,在向第二用户面功能网元发送所述第一用户面功能网元的端点信息时,所述收发单元用于:
    通过第二会话管理功能网元向所述第二用户面功能网元发送所述第一用户面功能网元的端点信息。
  52. 根据权利要求50或51所述的装置,其特征在于,所述第一用户面功能网元服务的至少一个PIN中包括第一PIN,在向所述第一用户面功能网元发送第一消息之前,所述收发单元还用于:
    接收来自第三会话管理功能网元的第三消息,所述第三消息包括为所述第一PIN提供服务的至少一个会话管理功能网元的标识和/或为所述第一PIN提供服务的至少一个用户面功能网元的标识,其中,所述至少一个会话管理功能网元包括第二会话管理功能网元,所述至少一个用户面功能网元包括所述第二用户面功能网元。
  53. 根据权利要求52所述的装置,其特征在于,所述处理单元还用于:
    根据所述第二会话管理功能网元的标识和/或所述第二用户面功能网元的标识,确定向所述第一用户面功能网元发送所述第一消息。
  54. 根据权利要求52或53所述的装置,其特征在于,在接收来自第三会话管理功能网元的第三消息之前,所述收发单元还用于:
    向所述第三会话管理功能网元发送第四消息,所述第四消息用于订阅所述第一PIN的事件。
  55. 根据权利要求52至54中任一项所述的装置,其特征在于,所述收发单元还用于:
    向所述第三会话管理功能网元发送所述第一PIN的标识和第一信息,所述第一信息包括所述通信装置的标识和/或所述第一用户面功能网元的标识。
  56. 根据权利要求52至55中任一项所述的装置,其特征在于,所述第三消息用于指示在所述第一用户面功能网元与所述第二用户面功能网元之间为所述第一PIN建立隧道。
  57. 根据权利要求56所述的装置,其特征在于,所述第三消息用于指示在所述第一用户面功能网元与所述第二用户面功能网元之间为所述第一PIN建立隧道,包括:
    所述第三消息包括第二指示信息,所述第二指示信息用于指示在所述第一用户面功能网元与所述第二用户面功能网元之间为所述第一PIN建立隧道。
  58. 根据权利要求52至57中任一项所述的装置,其特征在于,在接收来自第三会话管理功能网元的第三消息之前,所述收发单元还用于:
    接收来自接入管理功能网元的第五消息,其中,所述第五消息用于请求为第一终端设备建立第一PIN的第一会话;
    根据所述第五消息,向所述第一用户面功能网元发送第二消息,其中,所述第二消息用于请求建立所述第一PIN的所述第一会话。
  59. 根据权利要求50至58中任一项所述的装置,其特征在于,所述第一消息用于指示所述第一用户面功能网元分配所述第一用户面功能网元的端点信息,包括:
    所述第一消息包括第一指示信息,所述第一指示信息用于指示所述第一用户面功能网元分配所述第一用户面功能网元的端点信息。
  60. 根据权利要求49至59中任一项所述的装置,其特征在于,在获取第二用户面功能网元的端点信息时,所述收发单元用于:
    接收来自第二会话管理网元的所述第二用户面功能网元的端点信息。
  61. 根据权利要求49至60中任一项所述的装置,其特征在于,所述收发单元还用于:
    接收来自所述第一用户面功能网元的所述第一用户面功能网元服务的至少一个PIN的标识;
    向所述第二用户面功能网元发送所述第一用户面功能网元服务的至少一个PIN的标识。
  62. 根据权利要求49至61中任一项所述的装置,其特征在于,所述收发单元还用于:
    接收所述第二用户面功能网元服务的至少一个PIN的标识;
    向所述第一用户面功能网元发送所述第二用户面功能网元服务的至少一个PIN的标识。
  63. 一种通信装置,其特征在于,所述通信装置包括收发单元;
    所述收发单元,用于接收来自第二用户面功能网元的所述第二用户面功能网元的端点信息;以及,向第一用户面功能网元发送所述第二用户面功能网元的端点信息;
    其中,所述第二用户面功能网元的端点信息用于所述第一用户面功能网元传输至少一个个人物联网网络PIN的业务数据。
  64. 根据权利要求63所述的装置,其特征在于,在接收来自第二用户面功能网元的所述第二用户面功能网元的端点信息之前,所述收发单元还用于:
    向所述第一用户面功能网元发送第一消息,第一消息用于指示所述第一用户面功能网元分配所述第一用户面功能网元的端点信息;
    接收来自所述第一用户面功能网元的所述第一用户面功能网元的端点信息;
    向所述第二用户面功能网元发送所述第一用户面功能网元的端点信息。
  65. 根据权利要求63或64所述的装置,其特征在于,所述收发单元还用于:
    接收来自所述第一用户面功能网元的所述第一用户面功能网元服务的至少一个PIN的标识;
    向所述第二用户面功能网元发送所述第一用户面功能网元服务的至少一个PIN的标识。
  66. 根据权利要求63至65中任一项所述的装置,其特征在于,所述收发单元还用于:
    接收来自第二用户面功能网元的所述第二用户面功能网元服务的至少一个PIN的标识;
    向所述第一用户面功能网元发送所述第二用户面功能网元服务的至少一个PIN的标识。
  67. 根据权利要求64至66中任一项所述的装置,其特征在于,所述第一消息用于指示所述第一用户面功能网元分配所述第一用户面功能网元的端点信息,包括:
    所述第一消息包括第一指示信息,所述第一指示信息用于指示所述第一用户面功能网元分配所述第一用户面功能网元的端点信息。
  68. 根据权利要求63所述的装置,其特征在于,在接收来自第二用户面功能网元的所述第二用户面功能网元的端点信息时:所述收发单元用于通过第二会话管理功能网元接收来自所述第二用户面功能网元的所述第二用户面功能网元的端点信息;
    在向第一用户面功能网元发送所述第二用户面功能网元的端点信息时:所述收发单元用于通过第一会话管理功能网元向所述第一用户面功能网元发送所述第二用户面功能网元的端点信息。
  69. 根据权利要求68所述的装置,其特征在于,在通过第二会话管理功能网元接收来自所述第二用 户面功能网元的所述第二用户面功能网元的端点信息之前,所述收发单元还用于:
    接收来自所述第一会话管理功能网元的所述第一用户面功能网元的端点信息;
    通过所述第二会话管理功能网元向所述第二用户面功能网元发送所述第一用户面功能网元的端点信息。
  70. 根据权利要求69所述的装置,其特征在于,所述装置还包括:
    接收来自所述第一会话管理功能网元的所述第一用户面功能网元服务的至少一个PIN的标识;
    通过所述第二会话管理功能网元向所述第二用户面功能网元发送所述第一用户面功能网元服务的至少一个PIN的标识;
    接收来自所述第二会话管理功能网元的所述第二用户面功能网元服务的至少一个PIN的标识;
    向所述第一会话管理功能网元发送所述第二用户面功能网元服务的至少一个PIN的标识。
  71. 根据权利要求68至70中任一所述的装置,其特征在于,所述至少一个PIN包括第一PIN,所述收发单元还用于:
    向所述第二会话管理功能网元发送第三消息,所述第三消息包括为所述第一PIN提供服务的至少一个会话管理功能网元的标识和/或为所述第一PIN提供服务的至少一个用户面功能网元的标识。
  72. 根据权利要求71所述的装置,其特征在于,所述第三消息用于指示在所述第一用户面功能网元与所述第二用户面功能网元之间为所述第一PIN建立隧道。
  73. 根据权利要求72所述的装置,其特征在于,所述第三消息用于指示在所述第一用户面功能网元与所述第二用户面功能网元之间为所述第一PIN建立隧道,包括:
    所述第三消息包括第二指示信息,所述第二指示信息用于指示在所述第一用户面功能网元与所述第二用户面功能网元之间为所述第一PIN建立隧道。
  74. 根据权利要求71至73中任一项所述的装置,其特征在于,所述收发单元还用于:
    接收来自第二会话管理功能网元的第四消息,所述第四消息用于订阅第一PIN的事件。
  75. 根据权利要求63至74中任一项所述的装置,其特征在于,所述至少一个PIN包括第一PIN,所述收发单元还用于:
    接收来自第一会话管理设备的第一PIN的标识和第一信息,所述第一信息包括所述第一会话管理功能网元的标识和/或所述第一用户面功能网元的标识。
  76. 根据权利要求75所述的装置,其特征在于,所述通信装置还包括处理单元,所述处理单元用于:
    根据所述第一信息创建所述第一PIN的上下文,所述第一PIN的上下文包括所述第一信息;或者,
    将所述第一信息添加到所述第一PIN的上下文中,以及根据所述第一PIN的上下文,确定为所述第一PIN提供服务的至少一个会话管理功能网元和/或确定为所述第一PIN提供服务的至少一个用户面功能网元的标识。
  77. 一种通信装置,其特征在于,所述通信装置包括至少一个处理器和存储器;
    其中,所述存储器用于存储计算机程序或指令;
    所述至少一个处理器用于执行所述存储器中的所述计算机程序或指令,使得权利要求1至10中任一项所述的方法被执行,或使得权利要求11至24中任一项所述的方法被执行,或使得权利要求25至38中任一项所述的方法被执行。
  78. 一种通信系统,其特征在于,所述通信系统包括如下一项或多项:第一用户面功能网元,第一会话管理功能网元,或第三会话管理功能网元;
    其中,所述第一用户面功能网元用于执行如权利要求1至10中任一项所述的方法,所述第一会话管理功能网元用于执行如权利要求11至24中任一项所述的方法,所述第三会话管理功能网元用于执行如权利要求25至38中任一项所述的方法。
  79. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,当所述计算机指令被执行时,使所述计算机执行如权利要求1至10中任一项所述的方法,或者使所述计算机执行如权利要求11至24中任一项所述的方法,或者执行如权利要求25至38中任一项所述的方法。
  80. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,所述计算机程序代码被计算机运行时,使得所述计算机执行如权利要求1至10中任一项所述的方法,或者执行如权利要求11至24中任一项所述的方法,或者执行如权利要求25至38中任一项所述的方法。
  81. 一种芯片系统,其特征在于,所述芯片系统包括处理器,所述处理器用于执行如权利要求1至 10中任一项所述的方法,或者用于执行如权利要求11至24中任一项所述的方法,或者用于执行如权利要求25至38中任一项所述的方法。
PCT/CN2023/142359 2023-03-17 2023-12-27 一种通信方法及装置 WO2024193166A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310274028.3A CN118678489A (zh) 2023-03-17 2023-03-17 一种通信方法及装置
CN202310274028.3 2023-03-17

Publications (1)

Publication Number Publication Date
WO2024193166A1 true WO2024193166A1 (zh) 2024-09-26

Family

ID=92720140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/142359 WO2024193166A1 (zh) 2023-03-17 2023-12-27 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN118678489A (zh)
WO (1) WO2024193166A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113225697A (zh) * 2021-07-07 2021-08-06 中兴通讯股份有限公司 群组用户通信方法、装置、网络设备和存储介质
CN113225242A (zh) * 2021-07-07 2021-08-06 中兴通讯股份有限公司 跨区域通信方法、设备和存储介质
WO2021165243A1 (en) * 2020-02-17 2021-08-26 Ntt Docomo, Inc. Communication terminal, method for configuring a communication terminal, access management component and method for access management of a non-public network
CN113950077A (zh) * 2020-07-17 2022-01-18 华为技术有限公司 路由配置方法及装置
CN114040450A (zh) * 2021-09-28 2022-02-11 华为技术有限公司 一种通信方法及装置
CN114285787A (zh) * 2021-12-30 2022-04-05 中国电信股份有限公司 跨用户面转发方法、系统和计算机可读存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021165243A1 (en) * 2020-02-17 2021-08-26 Ntt Docomo, Inc. Communication terminal, method for configuring a communication terminal, access management component and method for access management of a non-public network
CN113950077A (zh) * 2020-07-17 2022-01-18 华为技术有限公司 路由配置方法及装置
CN113225697A (zh) * 2021-07-07 2021-08-06 中兴通讯股份有限公司 群组用户通信方法、装置、网络设备和存储介质
CN113225242A (zh) * 2021-07-07 2021-08-06 中兴通讯股份有限公司 跨区域通信方法、设备和存储介质
CN114040450A (zh) * 2021-09-28 2022-02-11 华为技术有限公司 一种通信方法及装置
CN114285787A (zh) * 2021-12-30 2022-04-05 中国电信股份有限公司 跨用户面转发方法、系统和计算机可读存储介质

Also Published As

Publication number Publication date
CN118678489A (zh) 2024-09-20

Similar Documents

Publication Publication Date Title
CN112514422B (zh) 支持组通信的系统与方法
WO2020168840A1 (zh) 网络节点选择方法及装置
WO2022257549A1 (zh) 网络切片方法、设备及存储介质
WO2019196643A1 (zh) 通信的方法和通信装置
KR20210024160A (ko) 통신 방법 및 장치
EP4221005A1 (en) Multipath transmission method and communication apparatus
EP4185009A1 (en) Packet forwarding method, apparatus and system
WO2022033543A1 (zh) 一种中继通信方法及通信装置
EP4333477A1 (en) Communication method and communication apparatus
US20240155418A1 (en) Method and apparatus for connecting qos flow based terminal in wireless communication system
WO2024051313A1 (zh) 通信资源管理方法、装置、系统及存储介质
US11985652B2 (en) P-BSR enhancements for IAB networks to improve E2E latency
EP4262244A1 (en) Method and device for determining mec access point
WO2024193166A1 (zh) 一种通信方法及装置
WO2024164837A1 (zh) 一种信息处理方法及通信装置
KR20200092070A (ko) 무선 통신 시스템에서 등록 관리 방법 및 장치
WO2023116560A1 (zh) 通信的方法与装置
WO2023020046A1 (zh) 一种通信方法及通信装置
WO2023143212A1 (zh) 一种通信方法及装置
US20240244107A1 (en) Method for determining application server
WO2024169468A1 (zh) 通信方法和通信装置
WO2023050828A1 (zh) 一种通信方法及装置
WO2023015973A1 (zh) 一种网络切片准入控制方法和装置
WO2024199202A1 (zh) 通信方法和通信装置
WO2024146404A1 (zh) 通信方法和通信装置