WO2024190447A1 - Coloring composition, film, color filter, solid-state imaging element, and image display device - Google Patents

Coloring composition, film, color filter, solid-state imaging element, and image display device Download PDF

Info

Publication number
WO2024190447A1
WO2024190447A1 PCT/JP2024/007661 JP2024007661W WO2024190447A1 WO 2024190447 A1 WO2024190447 A1 WO 2024190447A1 JP 2024007661 W JP2024007661 W JP 2024007661W WO 2024190447 A1 WO2024190447 A1 WO 2024190447A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
mass
coloring composition
dye
Prior art date
Application number
PCT/JP2024/007661
Other languages
French (fr)
Japanese (ja)
Inventor
和朗 榎本
貴洋 大谷
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024190447A1 publication Critical patent/WO2024190447A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/12Polymers provided for in subclasses C08C or C08F
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/90Assemblies of multiple devices comprising at least one organic light-emitting element

Definitions

  • the present invention relates to a coloring composition containing a dye.
  • the present invention also relates to a film, a color filter, a solid-state imaging device, and an image display device that use the coloring composition.
  • Color filters are used as key devices in displays and optical elements. Color filters usually have pixels of the three primary colors, red, green, and blue, and serve to separate transmitted light into the three primary colors.
  • the pixels of each color of the color filter are manufactured, for example, by forming a pattern by photolithography using a coloring composition containing a colorant.
  • Patent Document 1 describes the formation of pixels of a color filter by forming a pattern by photolithography using a coloring composition containing an acid dye, a binder resin, a specific ionic compound whose maximum molar absorption coefficient ⁇ in the visible light region is 0 to 3000, and an organic solvent.
  • dyes tend to have lower light resistance than pigments, and there is room for further improvement in the light resistance of films obtained using coloring compositions containing dyes.
  • the present invention provides the following:
  • a colorant A containing a dye A polymerization initiator B; A polymerizable compound C, A compound D which is a salt of a compound d1 having an acid group and a cationic group and a counter anion d2 having a molecular weight of 50 or more, the compound D having a weight average molecular weight of 2000 or more and a specific absorbance of 5 or less and represented by the formula (A ⁇ ),
  • ⁇ 2> The colored composition according to ⁇ 1>, in which the cationic group contained in the compound d1 is a quaternary ammonium cationic group.
  • the counter anion d2 is an anion represented by any one of formulas (BZ-1) to (BZ-8).
  • R 111 represents -SO 2 -R 201 or -CO-R 201
  • R 112 represents an alkyl group, an aryl group, -SO 2 -R 202 or -CO-R 202
  • R 201 and R 202 each independently represent a halogen atom, an alkyl group or an aryl group, and R 111 and R 112 may be bonded to form a ring
  • R 113 represents -SO 2 -R 203 or -CO-R 203
  • R 114 and R 115 each independently represent -SO 2 -R 204 , -CO-R 204 or a cyano group
  • R 203 and R 204 each independently represent a halogen atom, an alkyl group or an aryl group, and R 113 and R 114 or R 115 may be bonded to form a ring
  • R 116 to R 119 each independently represent a halogen
  • ⁇ 4> The colored composition according to ⁇ 1> or ⁇ 2>, wherein the counter anion d2 is a bis(fluoroalkylsulfonyl)imide anion.
  • ⁇ 5> The colored composition according to any one of ⁇ 1> to ⁇ 4>, wherein the compound D has a polymerizable group.
  • the polymerizable group is an ethylenically unsaturated bond-containing group,
  • the compound d1 is a polymer having a repeating unit d1-1 having an acid group and a repeating unit d1-2 having a cationic group
  • the counter anion d2 is coordinated to the cationic group of the repeating unit d1-2 to form a salt
  • ⁇ 11> The coloring composition according to any one of ⁇ 1> to ⁇ 10>, wherein the dye includes a xanthene dye.
  • ⁇ 12> The coloring composition according to any one of ⁇ 1> to ⁇ 11>, wherein the dye includes a dye multimer.
  • ⁇ 13> The colored composition according to any one of ⁇ 1> to ⁇ 12>, wherein the content of the polymerizable compound C in the total solid content of the colored composition is 5 to 30 mass %.
  • ⁇ 14> The colored composition according to any one of ⁇ 1> to ⁇ 13>, wherein a chloride ion concentration in the colored composition is 100 ppm by mass or less.
  • ⁇ 15> A film obtained by using the colored composition according to any one of ⁇ 1> to ⁇ 14>.
  • ⁇ 16> A color filter having the film according to ⁇ 15>.
  • ⁇ 17> A solid-state imaging device having the film according to ⁇ 15>.
  • ⁇ 18> An image display device having the film according to ⁇ 15>.
  • the present invention can provide a coloring composition capable of forming a film with excellent light resistance.
  • the present invention can also provide a film, a color filter, a solid-state imaging device, and an image display device using the coloring composition.
  • alkyl group encompasses not only alkyl groups that have no substituents (unsubstituted alkyl groups) but also alkyl groups that have substituents (substituted alkyl groups).
  • exposure includes not only exposure using light but also drawing using particle beams such as electron beams and ion beams.
  • Examples of light used for exposure include the bright line spectrum of a mercury lamp, far ultraviolet light represented by an excimer laser, extreme ultraviolet light (EUV light), X-rays, active rays or radiation such as electron beams.
  • (meth)acrylate refers to both or either of acrylate and methacrylate
  • (meth)acrylic refers to both or either of acrylic and methacrylic
  • (meth)acryloyl refers to both or either of acryloyl and methacryloyl.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • Ph represents a phenyl group.
  • the weight average molecular weight and number average molecular weight are values calculated in terms of polystyrene measured by GPC (gel permeation chromatography).
  • the total solids content refers to the total mass of all components of the composition excluding the solvent.
  • a pigment means a coloring material that is difficult to dissolve in a solvent.
  • a dye means a coloring material that is easily soluble in a solvent.
  • cation refers to a positively charged atom or group of atoms.
  • anion refers to a negatively charged atom or group of atoms.
  • symbols e.g., A, B, C, and D
  • process refers not only to an independent process, but also to a process that cannot be clearly distinguished from other processes, as long as the intended effect of the process is achieved.
  • the coloring composition of the present invention comprises A colorant A containing a dye; A polymerization initiator B; A polymerizable compound C, A compound D which is a salt of a compound d1 having an acid group and a cationic group and a counter anion d2 having a molecular weight of 50 or more, the compound D having a weight average molecular weight of 2000 or more and a specific absorbance of 5 or less and represented by the formula (A ⁇ ),
  • the present invention is characterized by comprising:
  • the coloring composition of the present invention can form a film with excellent light resistance.
  • the detailed reason why such an effect is obtained is unknown, but it is speculated to be due to the following. Since the coloring composition of the present invention contains the above-mentioned compound D, it is speculated that the above-mentioned compound D can promote the formation of dye associations during film formation. In addition, since compound D is a compound with a relatively large molecular weight, it is speculated that compound D can pseudo-crosslink film-forming components such as polymerizable compound C, thereby suppressing the outflow of compound D and dye from the film during development. For this reason, it is speculated that a film with excellent light resistance can be formed by using the coloring composition of the present invention.
  • the coloring composition of the present invention it is also possible to form pixels in which chipping is suppressed.
  • the coloring composition of the present invention contains the above-mentioned compound D, the above-mentioned compound D can pseudo-crosslink film-forming components such as polymerizable compound C during film formation.
  • the coloring composition of the present invention a strong film can be formed by exposure to light, and as a result, chipping of the film in the exposed areas can be suppressed when the unexposed areas are developed and removed.
  • the coloring composition of the present invention can be preferably used as a coloring composition for color filters. More specifically, it can be preferably used as a coloring composition for forming pixels of a color filter. Examples of the types of pixels in a color filter include red pixels, green pixels, blue pixels, magenta pixels, cyan pixels, and yellow pixels.
  • the coloring composition of the present invention can also be preferably used for the pixel configuration described in WO 2019/102887. Each component used in the coloring composition of the present invention will be described below.
  • the coloring composition of the present invention contains a colorant A (hereinafter referred to as a colorant).
  • a colorant include a pigment and a dye.
  • the colorant contained in the coloring composition of the present invention preferably contains a dye.
  • the type of dye is not limited. Known dyes can be used as the dye. Examples of the dye include red dyes, blue dyes, green dyes, cyan dyes, magenta dyes, and yellow dyes. In one embodiment, at least one dye selected from the group consisting of cyan dyes, magenta dyes, and yellow dyes is used.
  • the dye is preferably a compound having a dye structure selected from a triarylmethane dye structure, a xanthene dye structure, an anthraquinone dye structure, a cyanine dye structure, a squarylium dye structure, a quinophthalone dye structure, a phthalocyanine dye structure, a subphthalocyanine dye structure, an azo dye structure, a pyrazolotriazole dye structure, a dipyrromethene dye structure, an isoindoline dye structure, a thiazole dye structure, a benzimidazolone dye structure, a perinone dye structure, a pyrrolopyrrole dye structure, a diketopyrrolopyrrole dye structure, a diiminium dye structure, a naphthalocyanine dye structure, a rylene dye structure, a dibenzofuranone dye structure, a merocyanine dye structure, a croconium dye structure, and an ox
  • the amount of dye dissolved in 100 g of propylene glycol methyl ether acetate at 25°C is preferably 0.01 g or more, more preferably 0.5 g or more, and even more preferably 1 g or more.
  • the dye used in the present invention is preferably a dye having a chemical structure containing a cation and an anion.
  • the dye having a chemical structure containing a cation and an anion is also referred to as dye A.
  • the cation of dye A is referred to as “cation AX + ".
  • the anion of dye A is referred to as “anion AZ - ".
  • anion AZ - may exist outside the molecule of cation AX + .
  • "Anion AZ - exists outside the molecule of cation AX +" means that anion AZ - is not bonded to cation AX + via a covalent bond and exists as a structural unit independent of cation AX + .
  • Examples of the form of dye A as described above include salts.
  • an anion existing outside the molecule of a cation is also referred to as a counter anion.
  • anion AZ - is preferably bonded to cation AX + via a covalent bond. That is, the form of dye A is preferably an intramolecular salt (also referred to as a zwitterion).
  • anion AZ- examples include a fluorine anion, a chlorine anion, a bromine anion, an iodine anion, a cyanide ion, a perchlorate anion, a carboxylate anion, a sulfonate anion, an anion containing a phosphorus atom, an imide anion, a methide anion, a borate anion, and SbF6- .
  • the imide anion, the methide anion, and the borate anion are preferable, the imide anion and the methide anion are more preferable, and the imide anion is even more preferable because of its low nucleophilicity.
  • the imide anion is preferably a bis(sulfonyl)imide anion.
  • the methide anion is preferably a tris(sulfonyl)methide anion.
  • the borate anion includes a tetraarylborate anion, a tetracyanoborate anion, and a tetrafluoroborate anion.
  • Examples of the type of cation AX + include a cation having a xanthene dye structure, a cation having a triarylmethane dye structure, a cation having a cyanine dye structure, and a cation having a squarylium dye structure.
  • Cation AX + is preferably a cation having a xanthene dye structure or a cation having a triarylmethane dye structure, and more preferably a cation having a xanthene dye structure because the effects of the present invention are more likely to be obtained.
  • R xt1 to R xt4 each independently represent a hydrogen atom, an alkyl group or an aryl group
  • R xt5 represents a substituent
  • m represents an integer of 0 to 5
  • Z xt represents a counter anion.
  • Z xt is not present, at least one of R xt1 to R xt5 contains an anion.
  • the alkyl group and aryl group represented by R xt1 to R xt4 may have a substituent, such as the groups exemplified as the substituent T described below and polymerizable groups.
  • substituent represented by R xt5 include the groups exemplified as the substituent T described below and polymerizable groups.
  • Z xt represents a counter anion.
  • the counter anion include a fluorine anion, a chlorine anion, a bromine anion, an iodine anion, a cyanide ion, a perchlorate anion, a carboxylate anion, a sulfonate anion, an anion containing a phosphorus atom, an imide anion, a methide anion, a borate anion, SbF 6 - , and the like.
  • the imide anion, the methide anion, and the borate anion are preferred, the imide anion and the methide anion are more preferred, and the imide anion is even more preferred.
  • the imide anion is preferably a bis(sulfonyl)imide anion.
  • the methide anion is preferably a tris(sulfonyl)methide anion.
  • the borate anion is preferably a tetraarylborate anion, a tetracyanoborate anion, a tetrafluoroborate anion, and the like.
  • the molecular weight of the counter anion is preferably 100 to 1000, and more preferably 200 to 500.
  • the anion when at least one of R xt1 to R xt5 contains an anion, the anion may be a carboxylate anion, a sulfonate anion, an anion containing a phosphorus atom, an imide anion, a methide anion, or a borate anion.
  • the imide anion, the methide anion, or the borate anion are preferred, the imide anion and the methide anion are more preferred, and the imide anion is even more preferred.
  • the imide anion is preferably a bis(sulfonyl)imide anion.
  • the methide anion is preferably a tris(sulfonyl)methide anion.
  • R xt1 to R xt5 is preferably a group containing a partial structure represented by formula (AZ-1) or a group containing a partial structure represented by formula (AZ-2), and more preferably a group containing a partial structure represented by formula (AZ-1).
  • R xt1 to R xt5 contains an anion
  • R xt1 to R xt5 has a substituent represented by formula (P-1).
  • L 1 represents a single bond or a divalent linking group, and is preferably a single bond.
  • the divalent linking group represented by L 1 include an alkylene group having 1 to 6 carbon atoms, an arylene group having 6 to 12 carbon atoms, -O-, -S-, or a group consisting of a combination thereof.
  • L 2 represents -SO 2 - or -CO-.
  • G represents a carbon atom or a nitrogen atom.
  • n1 represents 2 when G is a carbon atom, and represents 1 when G is a nitrogen atom.
  • R 6 represents an alkyl group containing a fluorine atom or an aryl group containing a fluorine atom. When n1 is 2, the two R 6 may be the same or different.
  • the number of carbon atoms of the alkyl group containing a fluorine atom represented by R 6 is preferably 1 to 10, more preferably 1 to 6, and even more preferably 1 to 3.
  • the number of carbon atoms of the aryl group containing a fluorine atom represented by R 6 is preferably 6 to 20, more preferably 6 to 14, and even more preferably 6 to 10.
  • the fluorine atom-containing alkyl group and the fluorine atom-containing aryl group may further have a substituent, such as the substituent T described below or a polymerizable group.
  • An example of a dye having a cation AX + of a triarylmethane dye structure is a compound represented by formula (TP-1).
  • R tp1 to R tp4 each independently represent a hydrogen atom, an alkyl group, or an aryl group
  • R tp5 represents a hydrogen atom, an alkyl group, an aryl group, or NR tp9 R tp10
  • R tp6 , R tp7 , and R tp8 each independently represent a substituent
  • a, b, and c each independently represent an integer of 0 to 4
  • R tp6s , R tp7s and R tp8s may be linked to each other to form a ring
  • Z tp represents a counter anion
  • at least one of R tp1 to R tp8 includes an anion.
  • the alkyl group and aryl group represented by R tp1 to R tp5 , R tp9 and R tp10 may have a substituent.
  • substituents include the groups exemplified as the substituent T described later and polymerizable groups.
  • substituent represented by R tp6 , R tp7 and R tp8 include the groups exemplified as the substituent T described below and polymerizable groups.
  • Z tp represents a counter anion.
  • the counter anion include the counter anions described in formula (XT-1) above.
  • examples of the anion include the anions described above.
  • substituent T examples include the following groups: an alkyl group (preferably an alkyl group having 1 to 30 carbon atoms), an alkenyl group (preferably an alkenyl group having 2 to 30 carbon atoms), an alkynyl group (preferably an alkynyl group having 2 to 30 carbon atoms), an aryl group (preferably an aryl group having 6 to 30 carbon atoms), an amino group (preferably an amino group having 0 to 30 carbon atoms), an alkoxy group (preferably an alkoxy group having 1 to 30 carbon atoms), an aryloxy group (preferably an aryloxy group having 6 to 30 carbon atoms), a heteroaryloxy group, and an acyl group (preferably an acyl group having 1 to 30 carbon atoms).
  • an alkyl group preferably an alkyl group having 1 to 30 carbon atoms
  • an alkenyl group preferably an alkenyl group having 2 to 30 carbon atoms
  • an alkynyl group preferably an alkynyl
  • An alkoxycarbonyl group (preferably an alkoxycarbonyl group having 2 to 30 carbon atoms), an aryloxycarbonyl group (preferably an aryloxycarbonyl group having 7 to 30 carbon atoms), an acyloxy group (preferably an acyloxy group having 2 to 30 carbon atoms), an acylamino group (preferably an acylamino group having 2 to 30 carbon atoms), an alkoxycarbonylamino group (preferably an alkoxycarbonylamino group having 2 to 30 carbon atoms), an aryloxycarbonylamino group (preferably an aryloxycarbonylamino group having 7 to 30 carbon atoms).
  • a sulfamoyl group (preferably a sulfamoyl group having 0 to 30 carbon atoms), a carbamoyl group (preferably a carbamoyl group having 1 to 30 carbon atoms), an alkylthio group (preferably an alkylthio group having 1 to 30 carbon atoms), an arylthio group (preferably an arylthio group having 6 to 30 carbon atoms), a heteroarylthio group (preferably a carbon number of 1 to 30), an alkylsulfonyl group (preferably a carbon number of 1 to 30), an arylsulfonyl group (preferably a carbon number of 6 to 30), a heteroarylsulfonyl group (preferably a carbon number of 1 to 30).
  • alkylsulfinyl group (preferably having 1 to 30 carbon atoms), arylsulfinyl group (preferably having 6 to 30 carbon atoms), heteroarylsulfinyl group (preferably having 1 to 30 carbon atoms), ureido group (preferably having 1 to 30 carbon atoms), hydroxy group, carboxyl group, sulfo group, phosphoric acid group, carboxylic acid amide group, sulfonic acid amide group, imide acid group, mercapto group, halogen atom, cyano group, alkylsulfino group, arylsulfino group, hydrazino group, imino group, heteroaryl group (preferably having 1 to 30 carbon atoms).
  • substituent include the groups explained above as the substituent T, polymerizable groups, and the like.
  • polymerizable groups examples include vinyl groups, allyl groups, (meth)acryloyl groups, and other ethylenically unsaturated bond-containing groups, epoxy groups, and oxetanyl groups.
  • the dye (preferably dye A) is preferably a compound having a polymerizable group, since this makes it easier to obtain a film with high crosslink density and excellent performance in various areas.
  • the dye is a dye polymer because this makes it easier to reduce the generation of residues during development.
  • a dye polymer is a dye compound that has two or more dye structures in one molecule, and preferably has three or more dye structures. There is no particular upper limit, but it can be 100 or less.
  • the dye structures in one molecule may be the same dye structure or different dye structures.
  • the weight average molecular weight (Mw) of the dye polymer is preferably 2,000 to 50,000.
  • the lower limit is more preferably 3,000 or more, and even more preferably 6,000 or more.
  • the upper limit is more preferably 30,000 or less, and even more preferably 20,000 or less.
  • the structure of the dye multimer includes dye multimers (A) to (D) described in paragraphs 0047 to 0103 of WO 2016/208524.
  • the dye multimer is preferably a dye multimer having a repeating unit represented by formula (A) described below and a dye multimer represented by formula (D) described below.
  • the dye multimer having a repeating unit represented by formula (A) is also referred to as dye multimer (A).
  • the dye multimer represented by formula (D) is also referred to as dye multimer (D).
  • the dye multimer (A) preferably contains a repeating unit represented by formula (A).
  • the proportion of the repeating unit represented by formula (A) is preferably 10% by mass or more, more preferably 20% by mass or more, even more preferably 30% by mass or more, and particularly preferably 50% by mass or more, of all repeating units constituting the dye multimer (A).
  • the upper limit may be set to 100% by mass or less, or may be set to 95% by mass or less.
  • X1 represents a trivalent linking group
  • L1 represents a single bond or a divalent linking group
  • D1 represents a structure derived from a dye compound.
  • Examples of the trivalent linking group represented by X1 in formula (A) include a poly(meth)acrylic linking group, a polyalkyleneimine linking group, a polyester linking group, a polyurethane linking group, a polyurea linking group, a polyamide linking group, a polyether linking group, and a polystyrene linking group.
  • a poly(meth)acrylic linking group or a polyalkyleneimine linking group is preferable, and a poly(meth)acrylic linking group is more preferable.
  • L1 represents a single bond or a divalent linking group.
  • R represents a hydrogen atom, an alkyl group, an aryl group, or a heteroaryl group.
  • the number of carbon atoms in the alkylene group is preferably 1 to 30.
  • the upper limit is more preferably 25 or less, and even more preferably 20 or less.
  • the lower limit is more preferably 2 or more, and even more preferably 3 or more.
  • the alkylene group may be linear, branched, or cyclic.
  • the alkylene group may have a substituent or may be unsubstituted. Examples of the substituent include the groups explained in the substituent group T.
  • the number of carbon atoms in the arylene group is preferably 6 to 20, and more preferably 6 to 12.
  • the arylene group may have a substituent or may be unsubstituted. Examples of the substituent include the groups described in the substituent group T.
  • the heterocyclic group is preferably a 5-membered or 6-membered ring.
  • the heteroatoms in the heterocyclic group are preferably an oxygen atom, a nitrogen atom, or a sulfur atom.
  • the number of heteroatoms in the heterocyclic group is preferably 1 to 3.
  • the heterocyclic group may have a substituent or may be unsubstituted. Examples of the substituent include the groups explained in the substituent group T.
  • Examples of the structure derived from a dye compound represented by D1 include a residue obtained by removing one or more hydrogen atoms from a compound having a dye structure selected from a triarylmethane dye structure, a xanthene dye structure, an anthraquinone dye structure, a cyanine dye structure, a squarylium dye structure, a quinophthalone dye structure, a phthalocyanine dye structure, a subphthalocyanine dye structure, an azo dye structure, a pyrazolotriazole dye structure, a dipyrromethene dye structure, an isoindoline dye structure, a thiazole dye structure, a benzimidazolone dye structure, a perrinone dye structure, a pyrrolopyrrole dye structure, a diketopyrrolopyrrole dye structure, a diiminium dye structure, a naphthalocyanine dye structure, a rylene dye structure, a dibenzofuranone
  • the structure derived from the dye compound represented by D1 is preferably a structure derived from a compound represented by formula (XT-1) or a structure derived from a compound represented by formula (TP-1), and more preferably a structure derived from a compound represented by formula (XT-1).
  • the dye polymer (A) may contain other repeating units in addition to the repeating unit represented by formula (A).
  • the other repeating units may contain functional groups such as polymerizable groups and acid groups, or may not contain these functional groups.
  • polymerizable groups include ethylenically unsaturated bond-containing groups such as vinyl groups and (meth)acryloyl groups.
  • acid groups include carboxyl groups, sulfo groups, and phosphate groups.
  • the proportion of repeating units having a polymerizable group is preferably 0 to 50% by mass of all repeating units constituting the dye multimer (A).
  • the lower limit is preferably 1% by mass or more, and more preferably 3% by mass or more.
  • the upper limit is preferably 35% by mass or less, and more preferably 30% by mass or less.
  • the proportion of repeating units having an acid group is preferably 0 to 50% by mass of all repeating units constituting the dye multimer (A).
  • the lower limit is preferably 1% by mass or more, and more preferably 3% by mass or more.
  • the upper limit is preferably 35% by mass or less, and more preferably 30% by mass or less.
  • the dye multimer (D) is preferably represented by formula (D).
  • L 4 represents a (n+k)-valent linking group
  • L 41 and L 42 each independently represent a single bond or a divalent linking group
  • D 4 represents a structure derived from a dye compound
  • P 4 represents a substituent
  • n represents 2 to 15
  • k represents 0 to 13
  • n+k is 2 to 15.
  • the n D 4s may be different from each other or may be the same.
  • k is 2 or more, the multiple P 4s may be different from each other or may be the same.
  • n is preferably 2 to 14, more preferably 2 to 8, particularly preferably 2 to 7, and even more preferably 2 to 6.
  • k is preferably 1 to 13, more preferably 1 to 10, even more preferably 1 to 8, particularly preferably 1 to 7, and even more preferably 1 to 6.
  • L 41 and L 42 each independently represent a single bond or a divalent linking group.
  • the divalent linking group include an alkylene group, an arylene group, -CH ⁇ CH-, -O-, -S-, -CO-, -COO-, -NR-, -CONR-, -OCO-, -SO-, -SO 2 -, and a group formed by linking two or more of these.
  • R each independently represents a hydrogen atom, an alkyl group, or an aryl group.
  • L 42 and L 43 each independently represent a group containing -S-, and more preferably -S-.
  • the (n+k)-valent linking group represented by L4 includes a group consisting of 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, 1 to 200 hydrogen atoms, and 0 to 20 sulfur atoms.
  • the (n+k)-valent linking group can include the following structural units or groups consisting of two or more of the following structural units combined together (which may form a ring structure). * in the following formulas represents a bond.
  • (n+k)-valent linking groups include the linking groups described in paragraph 0084 of WO 2016/208524.
  • Examples of the structure derived from a dye compound represented by D4 include a residue obtained by removing one or more hydrogen atoms from a compound having a dye structure selected from a triarylmethane dye structure, a xanthene dye structure, an anthraquinone dye structure, a cyanine dye structure, a squarylium dye structure, a quinophthalone dye structure, a phthalocyanine dye structure, a subphthalocyanine dye structure, an azo dye structure, a pyrazolotriazole dye structure, a dipyrromethene dye structure, an isoindoline dye structure, a thiazole dye structure, a benzimidazolone dye structure, a perrinone dye structure, a pyrrolopyrrole dye structure, a diketopyrrolopyrrole dye structure, a diiminium dye structure, a naphthalocyanine dye structure, a rylene dye structure, a dibenzofuranone
  • the structure derived from the dye compound represented by D4 is preferably a structure derived from a compound represented by formula (XT-1) or a structure derived from a compound represented by formula (TP-1), and more preferably a structure derived from a compound represented by formula (XT-1).
  • Examples of the substituent represented by P4 include an acid group and a polymerizable group.
  • the substituent represented by P4 may be a monovalent polymer chain having a repeating unit.
  • the monovalent polymer chain having a repeating unit is preferably a monovalent polymer chain having a repeating unit derived from a vinyl compound.
  • k P4s may be the same or different.
  • the pigment may be either an inorganic pigment or an organic pigment, but from the standpoint of a wide range of color variations, ease of dispersion, safety, and the like, an organic pigment is preferred.
  • Organic pigments include phthalocyanine pigments, dioxazine pigments, quinacridone pigments, anthraquinone pigments, perylene pigments, azo pigments, azomethine pigments, azomethine pigments, diketopyrrolopyrrole pigments, pyrrolopyrrole pigments, isoindoline pigments, quinophthalone pigments, triarylmethane pigments, xanthene pigments, cyanine pigments, quinoline pigments, and pteridine pigments.
  • the average primary particle diameter of the pigment is preferably 1 to 200 nm.
  • the lower limit is preferably 5 nm or more, and more preferably 10 nm or more.
  • the upper limit is preferably 180 nm or less, more preferably 150 nm or less, and even more preferably 100 nm or less.
  • the primary particle diameter of the pigment can be determined from a photograph obtained by observing the primary particles of the pigment with a transmission electron microscope. Specifically, the projected area of the primary particles of the pigment is determined, and the corresponding circle equivalent diameter is calculated as the primary particle diameter of the pigment.
  • the average primary particle diameter in the present invention is the arithmetic mean value of the primary particle diameters of 400 primary particles of the pigment.
  • the primary particles of the pigment refer to independent particles that are not aggregated.
  • the crystallite size of the pigment is preferably 0.1 to 50 nm, more preferably 0.5 to 30 nm, and even more preferably 1 to 15 nm.
  • the crystallite size can be determined from the half-width of the diffraction angle peak using an X-ray diffraction device, and is calculated using Scherrer's formula.
  • the crystallite size of the pigment can be adjusted by known methods such as adjusting the manufacturing conditions or pulverizing after manufacturing.
  • the specific surface area of the pigment is preferably 1 to 300 m 2 /g.
  • the lower limit is preferably 10 m 2 /g or more, more preferably 30 m 2 /g or more.
  • the upper limit is preferably 250 m 2 /g or less, more preferably 200 m 2 /g or less.
  • the value of the specific surface area can be measured according to DIN 66131: determination of the specific surface area of solids by gas adsorption according to the BET (Brunauer, Emmett and Teller) method.
  • the amount of pigment dissolved in 100 g of propylene glycol methyl ether acetate at 25°C is preferably less than 0.01 g, more preferably less than 0.005 g, and even more preferably less than 0.001 g.
  • Pigments include yellow pigments, orange pigments, red pigments, green pigments, purple pigments, blue pigments, etc.
  • Red pigments include diketopyrrolopyrrole pigments, anthraquinone pigments, azo pigments, naphthol pigments, azomethine pigments, xanthene pigments, quinacridone pigments, perylene pigments, and thioindigo pigments, with diketopyrrolopyrrole pigments, anthraquinone pigments, and azo pigments being preferred, and diketopyrrolopyrrole pigments being more preferred.
  • Specific examples of red pigments include C.I.
  • C.I. Pigment Red 122, 177, 224, 254, 255, 264, 269, and 272 are preferred, C.I. Pigment Red 254, 264, and 272 are more preferred, and C.I. Pigment Red 254 and 272 are even more preferred.
  • Green pigments include phthalocyanine pigments and squarylium pigments, and phthalocyanine pigments are preferred. Specific examples of green pigments include C.I. Pigment Green 7, 10, 36, 37, 58, 59, 62, 63, 64, 65, and 66. In addition, halogenated zinc phthalocyanine pigments having an average of 10 to 14 halogen atoms, an average of 8 to 12 bromine atoms, and an average of 2 to 5 chlorine atoms in one molecule can also be used as a green pigment. Specific examples include the compounds described in WO 2015/118720. In addition, compounds described in paragraph 0029 of WO 2022/085485, aluminum phthalocyanine compounds described in JP 2020-070426 A, and diarylmethane compounds described in JP 2020-504758 A can also be used as green colorants.
  • Orange pigments include diketopyrrolopyrrole pigments and azo pigments, and diketopyrrolopyrrole pigments are preferred. Specific examples of orange pigments include C.I. Pigment Orange 2, 5, 13, 16, 17:1, 31, 34, 36, 38, 43, 46, 48, 49, 51, 52, 55, 59, 60, 61, 62, 64, 71, and 73.
  • yellow pigments examples include azo pigments, azomethine pigments, isoindoline pigments, pteridine pigments, quinophthalone pigments, and perylene pigments, and isoindoline pigments, quinophthalone pigments, and azo pigments are preferred.
  • Specific examples of yellow pigments include C.I.
  • an azobarbituric acid nickel complex having the following structure can also be used.
  • Purple pigments include dioxazine pigments, quinacridone pigments, perylene pigments, and thioindigo pigments. Specific examples of purple pigments include C.I. Pigment Violet 1, 19, 23, 27, 32, 37, 42, 60, and 61.
  • blue pigments examples include phthalocyanine pigments and squarylium pigments, with phthalocyanine pigments being preferred.
  • Specific examples of blue pigments include C.I. Pigment Blue 1, 2, 15, 15:1, 15:2, 15:3, 15:4, 15:6, 16, 22, 29, 60, 64, 66, 79, 80, 87, and 88.
  • Aluminum phthalocyanine compounds having phosphorus atoms can also be used as blue pigments. Specific examples include the compounds described in paragraphs 0022 to 0030 of JP-A No. 2012-247591 and paragraph 0047 of JP-A No. 2011-157478.
  • triarylmethane dye polymers described in Korean Patent Publication No. 10-2020-0028160 As colorants, triarylmethane dye polymers described in Korean Patent Publication No. 10-2020-0028160, xanthene compounds described in JP 2020-117638 A, phthalocyanine compounds described in WO 2020/174991 A, isoindoline compounds or salts thereof described in JP 2020-160279 A, compounds represented by formula 1 described in Korean Patent Publication No. 10-2020-0069442 A, compounds represented by formula 1 described in Korean Patent Publication No. 10-2020-0069730 A, compounds represented by formula 1 described in Korean Patent Publication No. 10-2020-0069070 A Compounds represented by the formula 1 described in Korean Patent Publication No. 10-2020-0069067, compounds represented by the formula 1 described in Korean Patent Publication No.
  • 10-2020-0069062 halogenated zinc phthalocyanine pigments described in Japanese Patent No. 6809649, isoindoline compounds described in JP-A-2020-180176, phenothiazine compounds described in JP-A-2021-187913, halogenated zinc phthalocyanines described in WO 2022/004261, and halogenated zinc phthalocyanines described in WO 2021/250883 can be used.
  • the other colorant may be a rotaxane, and the dye skeleton may be used in the cyclic structure of the rotaxane, may be used in the rod-shaped structure, or may be used in both structures.
  • Other colorants include quinophthalone compounds represented by formula 1 in Korean Patent Publication No.
  • 10-2020-0030759 polymer dyes described in Korean Patent Publication No. 10-2020-0061793, colorants described in JP-A-2022-029701, isoindoline compounds described in WO 2022/014635, aluminum phthalocyanine compounds described in WO 2022/024926, compounds described in JP-A-2022-045895, compounds described in WO 2022/050051, compounds described in JP-A-2020-090676, compounds described in JP-A-2020-055956, compounds described in JP-A-2021-031681, compounds described in JP-A-2022-056354, and compounds described in U.S. Patent Application Publication No.
  • the content of the colorant in the total solid content of the coloring composition is preferably 40% by mass or more, more preferably 50% by mass or more, and even more preferably 60% by mass or more.
  • the upper limit is preferably 80% by mass or less, and more preferably 75% by mass or less.
  • the dye content in the total solid content of the coloring composition is preferably 5% by mass or more, more preferably 8% by mass or more, even more preferably 10% by mass or more, and particularly preferably 15% by mass or more.
  • the upper limit is preferably 80% by mass or less, more preferably 70% by mass or less, even more preferably 60% by mass or less, even more preferably 50% by mass or less, particularly preferably 40% by mass or less, and most preferably 30% by mass or less.
  • the dye content in the colorant contained in the coloring composition is preferably 5% by mass or more, more preferably 10% by mass or more, even more preferably 15% by mass or more, even more preferably 20% by mass or more, and particularly preferably 25% by mass or more.
  • the upper limit can be 100% by mass or less, can be 90% by mass or less, can be 80% by mass or less, can be 70% by mass or less, can be 60% by mass or less, or can be 50% by mass or less.
  • the content of the pigment is preferably 10 to 1,000 parts by mass per 100 parts by mass of the dye.
  • the lower limit is preferably 100 parts by mass or more, more preferably 150 parts by mass or more, and even more preferably 200 parts by mass or more.
  • the upper limit is preferably 600 parts by mass or less, and more preferably 400 parts by mass or less.
  • the coloring composition of the present invention contains a polymerization initiator B (hereinafter referred to as a polymerization initiator).
  • the polymerization initiator is preferably a photopolymerization initiator.
  • the photopolymerization initiator is not particularly limited and can be appropriately selected from known photopolymerization initiators. For example, a compound having photosensitivity to light rays in the ultraviolet to visible regions is preferred.
  • the photopolymerization initiator is preferably a photoradical polymerization initiator.
  • Photopolymerization initiators include halogenated hydrocarbon derivatives (e.g., compounds having a triazine skeleton, compounds having an oxadiazole skeleton, etc.), acylphosphine compounds, hexaarylbiimidazole compounds, oxime compounds, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, ⁇ -hydroxyketone compounds, ⁇ -aminoketone compounds, etc.
  • halogenated hydrocarbon derivatives e.g., compounds having a triazine skeleton, compounds having an oxadiazole skeleton, etc.
  • acylphosphine compounds e.g., acylphosphine compounds, hexaarylbiimidazole compounds, oxime compounds, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, ⁇ -hydroxyketone compounds, ⁇ -aminoketone compounds, etc.
  • the photopolymerization initiator is preferably a trihalomethyltriazine compound, a benzyl dimethyl ketal compound, an ⁇ -hydroxyketone compound, an ⁇ -aminoketone compound, an acylphosphine compound, a phosphine oxide compound, a metallocene compound, an oxime compound, a hexaarylbiimidazole compound, an onium compound, a benzothiazole compound, a benzophenone compound, an acetophenone compound, a cyclopentadiene-benzene-iron complex, a halomethyloxadiazole compound, or a 3-aryl substituted coumarin compound, more preferably a compound selected from an oxime compound, an ⁇ -hydroxyketone compound, an ⁇ -aminoketone compound, and an acylphosphine compound, and even more preferably an oxime compound.
  • examples of the photopolymerization initiator include the compounds described in paragraphs 0065 to 0111 of JP 2014-130173 A, the compounds described in Japanese Patent No. 6301489 A, and the compounds described in MATERIAL STAGE 37 to 60p, vol. 19, No.
  • hexaarylbiimidazole compounds include 2,2',4-tris(2-chlorophenyl)-5-(3,4-dimethoxyphenyl)-4,5-diphenyl-1,1'-biimidazole.
  • ⁇ -hydroxyketone compounds include Omnirad 184, Omnirad 1173, Omnirad 2959, Omnirad 127 (all manufactured by IGM Resins B.V.), Irgacure 184, Irgacure 1173, Irgacure 2959, Irgacure 127 (all manufactured by BASF), etc.
  • Commercially available ⁇ -aminoketone compounds include Omnirad 907, Omnirad 369, Omnirad 369E, Omnirad 379EG (all manufactured by IGM Resins B.V.), Irgacure 907, Irgacure 369, Irgacure 369E, Irgacure 379EG (all manufactured by BASF), etc.
  • Commercially available acylphosphine compounds include Omnirad 819, Omnirad TPO (all manufactured by IGM Resins B.V.), Irgacure 819, Irgacure TPO (all manufactured by BASF), etc.
  • Examples of oxime compounds include the compound described in paragraph 0142 of WO 2022/085485, the compound described in Japanese Patent No. 5,430,746, the compound described in Japanese Patent No. 5,647,738, the compound represented by general formula (1) and the compounds described in paragraphs 0022 to 0024 of JP 2021-173858 A, the compound represented by general formula (1) and the compounds described in paragraphs 0117 to 0120 of JP 2021-170089 A, and the like.
  • oxime compound examples include 3-benzoyloxyiminobutan-2-one, 3-acetoxyiminobutan-2-one, 3-propionyloxyiminobutan-2-one, 2-acetoxyiminopentan-3-one, 2-acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropan-1-one, 3-(4-toluenesulfonyloxy)iminobutan-2-one, 2-ethoxycarbonyloxyimino-1-phenylpropan-1-one, 1-[4-(phenylthio)phenyl]-3-cyclohexyl-propane-1,2-dione-2-(O-acetyloxime), and the like.
  • an oxime compound having a fluorene ring an oxime compound having a skeleton in which at least one benzene ring of a carbazole ring is replaced with a naphthalene ring, an oxime compound having a fluorine atom, an oxime compound having a nitro group, an oxime compound having a benzofuran skeleton, an oxime compound in which a substituent having a hydroxyl group is bonded to a carbazole skeleton, or a compound described in paragraphs 0143 to 0149 of WO 2022/085485 can be used.
  • oxime compounds that are preferably used in the present invention are shown below, but the present invention is not limited to these.
  • the oxime compound is preferably a compound having a maximum absorption wavelength in the wavelength range of 350 to 500 nm, more preferably a compound having a maximum absorption wavelength in the wavelength range of 360 to 480 nm.
  • the molar absorption coefficient of the oxime compound at a wavelength of 365 nm or 405 nm is preferably high, more preferably 1000 to 300,000, even more preferably 2000 to 300,000, and particularly preferably 5000 to 200,000.
  • the molar absorption coefficient of the compound can be measured using a known method. For example, it is preferable to measure using a spectrophotometer (Varian Cary-5 spectrophotometer) at a concentration of 0.01 g/L using ethyl acetate as a solvent.
  • a bifunctional or trifunctional or higher functional photoradical polymerization initiator may be used as the photopolymerization initiator.
  • a photoradical polymerization initiator two or more radicals are generated from one molecule of the photoradical polymerization initiator, so good sensitivity can be obtained.
  • crystallinity is reduced and solubility in solvents is improved, making it less likely to precipitate over time, and the stability over time of the coloring composition can be improved.
  • Specific examples of bifunctional or trifunctional or higher functional photoradical polymerization initiators include the compounds described in paragraph 0148 of WO 2022/065215.
  • the content of the polymerization initiator in the total solid content of the coloring composition is preferably 0.1 to 30% by mass.
  • the lower limit is preferably 0.5% by mass or more, and more preferably 1% by mass or more.
  • the upper limit is preferably 20% by mass or less, and more preferably 15% by mass or less.
  • only one type of polymerization initiator may be used, or two or more types may be used. When two or more types are used, it is preferable that the total amount thereof is within the above range.
  • the coloring composition of the present invention contains a polymerizable compound C (hereinafter, referred to as a polymerizable compound).
  • a polymerizable compound examples include a compound having an ethylenically unsaturated bond-containing group. Examples of the contained group include a vinyl group, a (meth)allyl group, a (meth)acryloyl group, etc.
  • the polymerizable compound used in the present invention is preferably a radically polymerizable compound.
  • the polymerizable compound may be in any chemical form, such as a monomer, prepolymer, or oligomer, but is preferably a monomer.
  • the molecular weight of the polymerizable compound is preferably 100 to 3000.
  • the upper limit is more preferably 2000 or less, and even more preferably 1500 or less.
  • the lower limit is more preferably 150 or more, and even more preferably 250 or more.
  • the polymerizable compound is preferably a compound containing 3 or more ethylenically unsaturated bond-containing groups, more preferably a compound containing 3 to 15 ethylenically unsaturated bond-containing groups, and even more preferably a compound containing 3 to 6 ethylenically unsaturated bond-containing groups.
  • the polymerizable compound is preferably a 3-15 functional (meth)acrylate compound, and more preferably a 3-6 functional (meth)acrylate compound.
  • Specific examples of the polymerizable compound include the compounds described in paragraphs 0075 to 0083 of WO 2022/065215.
  • Preferred polymerizable compounds include dipentaerythritol tri(meth)acrylate (commercially available product is KAYARAD D-330; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetra(meth)acrylate (commercially available product is KAYARAD D-320; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol penta(meth)acrylate (commercially available product is KAYARAD D-310; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol hexa(meth)acrylate (commercially available products are KAYARAD DPHA; manufactured by Nippon Kayaku Co., Ltd., and NK Ester A-DPH-12E; manufactured by Shin-Nakamura Chemical Co., Ltd.), and compounds in which the (meth)acryloyl groups are bonded via ethylene glycol and/or propylene glycol residues (e.g.,
  • Examples of the polymerizable compound include diglycerol EO (ethylene oxide) modified (meth)acrylate (commercially available product is M-460; manufactured by Toagosei Co., Ltd.), pentaerythritol tetraacrylate (NK Ester A-TMMT, manufactured by Shin-Nakamura Chemical Co., Ltd.), 1,6-hexanediol diacrylate (KAYARAD HDDA, manufactured by Nippon Kayaku Co., Ltd.), RP-1040 (manufactured by Nippon Kayaku Co., Ltd.), and Aronix TO-2349 (manufactured by Toagosei Co., Ltd.).
  • diglycerol EO ethylene oxide
  • methacrylate commercially available product is M-460; manufactured by Toagosei Co., Ltd.
  • NK Ester A-TMMT pentaerythritol tetraacrylate
  • KAYARAD HDDA 1,6-hexanedio
  • NK Oligo UA-7200 (Shin-Nakamura Chemical Co., Ltd.), DPHA-40H (Nippon Kayaku Co., Ltd.), UA-306H, UA-306T, UA-306I, AH-600, T-600, AI-600, LINC-202UA (Kyoeisha Chemical Co., Ltd.), 8UH-1006, 8UH-1012 (all manufactured by Taisei Fine Chemical Co., Ltd.), Light Acrylate POB-A0 (Kyoeisha Chemical Co., Ltd.), etc. can also be used.
  • the content of the polymerizable compound in the total solid content of the coloring composition is preferably 1 to 35 mass%, and more preferably 5 to 30 mass%.
  • the upper limit is preferably 25 mass% or less, and more preferably 20 mass% or less.
  • the lower limit is preferably 8 mass% or more, and more preferably 10 mass% or more.
  • the coloring composition of the present invention may contain only one type of polymerizable compound, or may contain two or more types. When two or more types of polymerizable compounds are contained, it is preferable that the total amount thereof is within the above range.
  • the coloring composition of the present invention contains a compound D which is a salt of a compound d1 having an acid group and a cationic group and a counter anion d2 having a molecular weight of 50 or more, and has a weight average molecular weight of 2000 or more and a specific absorbance of 5 or less and is represented by the formula (A ⁇ ).
  • E 1 A 1 / (c 1 ⁇ l 1 ) ... (A ⁇ )
  • E 1 represents the specific absorbance of compound D at the maximum absorption wavelength in the wavelength range of 400 to 700 nm
  • a 1 represents the absorbance of compound D at the maximum absorption wavelength in the wavelength range of 400 to 700 nm
  • l1 represents the cell length in cm
  • c1 represents the concentration of compound D in the solution, expressed in mg/ml.
  • the specific absorbance of compound D represented by formula (A ⁇ ) is 5 or less, preferably 3 or less, and more preferably 1 or less.
  • the specific absorbance represented by formula (A ⁇ ) is an index showing the degree to which compound D absorbs light in the visible range. The smaller the specific absorbance represented by formula (A ⁇ ), the lower the absorbency of light in the visible range. There is no lower limit to the specific absorbance. When a lower limit is set for the specific absorbance, the specific absorbance represented by formula (A ⁇ ) may be determined to be in the range of 0.001 or more.
  • the absorbance represented by "A 1 " in formula (A ⁇ ) is measured by the following method.
  • a measurement sample is prepared using compound D and a solvent in which compound D is sufficiently soluble.
  • methanol is used as the solvent.
  • compound D does not have sufficient solubility in methanol, cyclohexanone is used as the solvent.
  • the absorbance of the measurement sample at 25°C (room temperature) is measured using a cell with an optical path length of 1 cm.
  • the weight average molecular weight of compound D is 2000 or more, preferably 3000 or more, and more preferably 4000 or more.
  • the upper limit is preferably 1,000,000 or less, more preferably 100,000 or less, and even more preferably 20,000 or less.
  • the acid value of compound D is preferably 0.10 to 1.50 mmol/g, and from the viewpoint of developability, it is more preferably 0.20 to 1.20 mmol/g.
  • Compound D may have a polymerizable group.
  • the polymerizable group include ethylenically unsaturated bond-containing groups such as vinyl groups, allyl groups, and (meth)acryloyl groups, epoxy groups, and oxetanyl groups, and an ethylenically unsaturated bond-containing group is preferable.
  • compound d1 may have a polymerizable group
  • counter anion d2 may have a polymerizable group, but it is preferable that compound d1 has a polymerizable group because this can further improve the curability.
  • the polymerizable group value of compound D is preferably 0.1 mmol/g or more, more preferably 0.5 mmol/g or more, even more preferably 0.7 mmol/g or more, even more preferably 1.0 mmol/g or more, and particularly preferably 1.5 mmol/g or more.
  • the upper limit is preferably 5.0 mmol/g or less, more preferably 4.0 mmol/g or less, and even more preferably 3.0 mmol/g or less.
  • the upper limit is preferably 5.0 mmol/g or less, more preferably 4.0 mmol/g or less, and even more preferably 3.0 mmol/g or less.
  • the polymerizable group value of compound D is a numerical value representing the molar amount of polymerizable groups per 1 g of solid content of compound D.
  • the value calculated from the structural formula is used.
  • the value calculated from the raw materials used in the synthesis of compound D is used.
  • the value measured using a hydrolysis method is used.
  • the component (a) of the polymerizable group site is extracted from compound D by alkali treatment, and its content is measured by high performance liquid chromatography (HPLC), and calculated from the following formula.
  • HPLC high performance liquid chromatography
  • the value measured by NMR is used.
  • Polymerizable group value of compound D [mmol/g] (content of component (a) [ppm]/molecular weight of component (a) [g/mol])/(weight of compound D [g] ⁇ (solid content of compound D [mass%]/100) ⁇ 10)
  • the amount of compound D dissolved in 100 g of 1-methoxy-2-propanol at 25°C is preferably 0.1 g or more, more preferably 0.5 g or more, and even more preferably 1 g or more.
  • the amount of compound D dissolved in 100 g of cyclohexanone at 25°C is preferably 0.1 g or more, more preferably 0.5 g or more, and even more preferably 1 g or more.
  • compound D examples include compounds AP-1 to AP-20 shown in the examples below.
  • the weight average molecular weight of compound d1 is preferably 2000 or more, more preferably 3000 or more, and even more preferably 4000 or more.
  • the upper limit is preferably 1,000,000 or less, more preferably 100,000 or less, and even more preferably 20,000 or less.
  • the acid group possessed by compound d1 may be a carboxy group, a phosphate group, a sulfo group, a phenolic hydroxy group, etc., and a carboxy group is preferred because it can suppress the generation of development residues.
  • the acid value of compound d1 is preferably 0.10 to 1.50 mmol/g, and more preferably 0.20 to 1.20 mmol/g.
  • Examples of the cationic group contained in the compound d1 include a quaternary ammonium cationic group, a pyridinium cationic group, and an imidazolium cationic group, and the quaternary ammonium cationic group is preferable.
  • the quaternary ammonium cationic group is preferably a group represented by the formula (Cat-1).
  • R cat1 to R cat3 each independently represent an alkyl group or an aryl group, and * represents a bond.
  • the number of carbon atoms in the alkyl group represented by R cat1 to R cat3 is preferably 1 to 20, more preferably 1 to 10, and further preferably 1 to 5.
  • the alkyl group represented by R cat1 to R cat3 is preferably linear or branched, and more preferably linear.
  • the aryl group represented by R cat1 to R cat3 preferably has 6 to 20 carbon atoms, and more preferably has 6 to 12 carbon atoms.
  • R cat1 to R cat3 are each independently an alkyl group. It is preferable that R cat1 and R cat2 are each independently an alkyl group having 1 to 5 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, even more preferably a methyl group or an ethyl group, and particularly preferably a methyl group. It is preferable that R cat3 is an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms, even more preferably an alkyl group having 1 to 3 carbon atoms, even more preferably a methyl group or an ethyl group, and particularly preferably a methyl group.
  • the cationic group value of compound d1 is preferably 0.1 to 3.0 mmol/g, and more preferably 0.2 to 1.5 mmol/g, because this can improve the light resistance of the resulting film.
  • Compound d1 may have a polymerizable group.
  • the polymerizable group include ethylenically unsaturated bond-containing groups such as vinyl groups, allyl groups, and (meth)acryloyl groups, epoxy groups, and oxetanyl groups, and the like.
  • An ethylenically unsaturated bond-containing group is preferable.
  • the polymerizable group value of compound d1 is preferably 0.1 mmol/g or more, more preferably 0.5 mmol/g or more, even more preferably 0.7 mmol/g or more, even more preferably 1.0 mmol/g or more, and particularly preferably 1.5 mmol/g or more.
  • the upper limit is preferably 5.0 mmol/g or less, more preferably 4.0 mmol/g or less, and even more preferably 3.0 mmol/g or less.
  • the upper limit is preferably 5.0 mmol/g or less, more preferably 4.0 mmol/g or less, and even more preferably 3.0 mmol/g or less.
  • Compound d1 is preferably a polymer having a repeating unit d1-1 having an acid group and a repeating unit d1-2 having a cationic group.
  • compound D When compound d1 is a polymer having repeating unit d1-1 having an acid group and repeating unit d1-2 having a cationic group, compound D preferably has counter anion d2 coordinated to the cationic group of repeating unit d1-2 to form a salt.
  • the ClogP value of the salt structure formed by repeating unit d1-2 and counter anion d2 is preferably -10.0 to 0.3, more preferably -5.0 to 0, and even more preferably -3.0 to -1.0, because this can improve the light resistance of the resulting film.
  • the CLogP value is the calculated value of LogP, which is the common logarithm of the 1-octanol/water partition coefficient P.
  • the CLogP value is a value obtained by predictive calculation using ChemDraw Professional ver. 20.1.1.125 (manufactured by PerkinElmer).
  • the ClogP value of the salt structure formed by the repeating unit d1-2 and the counter anion d2 is the ClogP value of the structure of the portion surrounded by the dashed line in the polymer having the following structure.
  • the ClogP value of the structure of the portion surrounded by the dashed line is ⁇ 1.24.
  • Examples of the repeating unit d1-1 having an acid group include a repeating unit represented by formula (d1-1).
  • a d10 represents a trivalent linking group
  • L d10 represents a single bond or a divalent linking group
  • R d10 represents an acid group
  • Examples of the trivalent linking group represented by A d10 include a poly(meth)acrylic linking group, a polyalkyleneimine linking group, a polyester linking group, a polyurethane linking group, a polyurea linking group, a polyamide linking group, a polyether linking group, and a polystyrene linking group.
  • a poly(meth)acrylic linking group or a polyalkyleneimine linking group is preferable, and a poly(meth)acrylic linking group is more preferable.
  • Examples of the divalent linking group represented by L d10 include an alkylene group (preferably an alkylene group having 1 to 10 carbon atoms), an arylene group (preferably an arylene group having 6 to 20 carbon atoms), -NH-, -SO-, -SO 2 -, -CO-, -O-, -COO-, OCO-, -CONR x1 -, -S-, and a group consisting of two or more of these groups.
  • R x1 represents a hydrogen atom, an alkyl group, or an aryl group.
  • the alkylene group and arylene group may have a substituent, such as a hydroxy group, an alkoxy group, an acyl group, or a polymerizable group.
  • the content of repeating units d1-1 having an acid group in compound d1 is preferably 0.1 to 40% by mass.
  • the upper limit is preferably 35% by mass or less, more preferably 30% by mass or less, even more preferably 20% by mass or less, and even more preferably 10% by mass or less.
  • the lower limit is preferably 1% by mass or more, and more preferably 3% by mass or more.
  • repeating unit d1-2 having a cationic group examples include a repeating unit represented by formula (d1-2).
  • a d20 represents a trivalent linking group
  • L d20 represents a single bond or a divalent linking group
  • R d20 represents a cationic group
  • Examples of the trivalent linking group represented by A d20 include a poly(meth)acrylic linking group, a polyalkyleneimine linking group, a polyester linking group, a polyurethane linking group, a polyurea linking group, a polyamide linking group, a polyether linking group, and a polystyrene linking group.
  • a poly(meth)acrylic linking group or a polyalkyleneimine linking group is preferable, and a poly(meth)acrylic linking group is more preferable.
  • Examples of the divalent linking group represented by L d20 include an alkylene group (preferably an alkylene group having 1 to 10 carbon atoms), an arylene group (preferably an arylene group having 6 to 20 carbon atoms), -NH-, -SO-, -SO 2 -, -CO-, -O-, -COO-, OCO-, -CONR x2 -, -S-, and a group consisting of two or more of these groups.
  • R x2 represents a hydrogen atom, an alkyl group, or an aryl group.
  • the alkylene group and arylene group may have a substituent, such as a hydroxy group, an alkoxy group, an acyl group, or a polymerizable group.
  • the content of repeating units d1-2 having a cationic group in compound d1 is preferably 0.1 to 70% by mass.
  • the upper limit is preferably 60% by mass or less, more preferably 55% by mass or less, even more preferably 50% by mass or less, even more preferably 40% by mass or less, and even more preferably 30% by mass or less.
  • the lower limit is preferably 1% by mass or more, more preferably 5% by mass or more, and even more preferably 10% by mass or more.
  • the compound d1 may further include a repeating unit d1-3 having a polymerizable group.
  • Examples of the repeating unit d1-3 having a polymerizable group include a repeating unit represented by formula (d1-3).
  • a d30 represents a trivalent linking group
  • L d30 represents a single bond or a divalent linking group
  • R d30 represents a polymerizable group
  • Examples of the trivalent linking group represented by A d30 include a poly(meth)acrylic linking group, a polyalkyleneimine linking group, a polyester linking group, a polyurethane linking group, a polyurea linking group, a polyamide linking group, a polyether linking group, and a polystyrene linking group.
  • a poly(meth)acrylic linking group or a polyalkyleneimine linking group is preferable, and a poly(meth)acrylic linking group is more preferable.
  • Examples of the divalent linking group represented by L d30 include an alkylene group (preferably an alkylene group having 1 to 10 carbon atoms), an arylene group (preferably an arylene group having 6 to 20 carbon atoms), -NH-, -SO-, -SO 2 -, -CO-, -O-, -COO-, OCO-, -CONR x3 -, -S-, and a group combining two or more of these groups.
  • R x3 represents a hydrogen atom, an alkyl group, or an aryl group.
  • the alkylene group and arylene group may have a substituent, such as a hydroxy group, an alkoxy group, or an acyl group.
  • the content of repeating units d1-3 having a polymerizable group in compound d1 is preferably 1 to 95% by mass.
  • the upper limit is preferably 90% by mass or less, and more preferably 80% by mass or less.
  • the lower limit is preferably 10% by mass or more, more preferably 20% by mass or more, and even more preferably 40% by mass or more.
  • Compound d1 may further have repeating units other than the above-mentioned units d1-1 to d1-3.
  • the counter anion d2 that forms a salt with the specific cation described above is an anion having a molecular weight of 50 or more.
  • the counter anion d2 may be an imide anion, a methide anion, a borate anion, a sulfonate anion, a carboxylate anion, a phosphate anion, or an anion containing a phosphorus atom or an antimony atom, and is preferably an imide anion because it can further improve the light resistance of the resulting film.
  • the imide anion is a bis(fluoroalkylsulfonyl)imide anion.
  • the molecular weight of the counter anion d2 is 50 or more, preferably 51 to 900, more preferably 100 to 600, and even more preferably 150 to 400.
  • the counter anion d2 may have a polymerizable group.
  • the polymerizable group include an ethylenically unsaturated bond-containing group such as a vinyl group, an allyl group, or a (meth)acryloyl group, an epoxy group, or an oxetanyl group, and the like.
  • An ethylenically unsaturated bond-containing group is preferable.
  • the counter anion d2 is preferably an anion represented by any one of formulas (BZ-1) to (BZ-8), and is preferably an anion represented by formula (BZ-1) because this can further improve the light resistance of the resulting film.
  • R 111 represents -SO 2 -R 201 or -CO-R 201
  • R 112 represents an alkyl group, an aryl group, -SO 2 -R 202 or -CO-R 202
  • R 201 and R 202 each independently represent a halogen atom, an alkyl group or an aryl group, and R 111 and R 112 may be bonded to form a ring.
  • the number of carbon atoms in the alkyl group represented by R 112 , R 201 and R 202 is preferably 1 to 10, and more preferably 1 to 6.
  • the alkyl group represented by R 112 , R 201 and R 202 is preferably an alkyl group having a halogen atom as a substituent, and more preferably an alkyl group having a fluorine atom as a substituent.
  • the number of carbon atoms in the aryl group represented by R 112 , R 201 and R 202 is preferably 6 to 20, and more preferably 6 to 12.
  • the aryl group represented by R 112 , R 201 and R 202 is preferably an aryl group having a halogen atom as a substituent, and more preferably an aryl group having a fluorine atom as a substituent.
  • Examples of the halogen atom represented by R 201 and R 202 include a fluorine atom, a chlorine atom and a bromine atom, and a fluorine atom is preferable.
  • R 111 and R 112 may be bonded to form a ring.
  • the ring thus formed is preferably a 5- or 6-membered ring.
  • R 111 is preferably —SO 2 —R 201
  • R 112 is preferably —SO 2 —R 202.
  • R 201 and R 202 are each preferably independently a fluorine atom, an alkyl group having a fluorine atom as a substituent, or an aryl group having a fluorine atom as a substituent, more preferably a fluorine atom or an alkyl group having a fluorine atom as a substituent, and even more preferably an alkyl group having a fluorine atom as a substituent.
  • R 113 represents -SO 2 -R 203 or -CO-R 203 ;
  • R 114 and R 115 each independently represent -SO 2 -R 204 , -CO-R 204 or a cyano group;
  • R 203 and R 204 each independently represent a halogen atom, an alkyl group or an aryl group; and
  • R 113 and R 114 or R 115 may be bonded to form a ring.
  • the carbon number of the alkyl group represented by R 203 and R 204 is preferably 1 to 10, and more preferably 1 to 6.
  • the alkyl group represented by R 203 and R 204 is preferably an alkyl group having a halogen atom as a substituent, and more preferably an alkyl group having a fluorine atom as a substituent.
  • the number of carbon atoms of the aryl group represented by R 203 and R 204 is preferably 6 to 20, and more preferably 6 to 12.
  • the aryl group represented by R 203 and R 204 is preferably an aryl group having a halogen atom as a substituent, and more preferably an aryl group having a fluorine atom as a substituent.
  • halogen atom represented by R 203 and R 204 examples include a fluorine atom, a chlorine atom and a bromine atom, and a fluorine atom is preferable.
  • R 113 and R 114 or R 115 may be bonded to form a ring.
  • the ring thus formed is preferably a 5-membered or 6-membered ring.
  • R 113 is preferably -SO 2 -R 203.
  • R 114 and R 115 are each preferably independently -SO 2 -R 204 or -CO-R 204 , more preferably -SO 2 -R 204.
  • R 203 and R 204 are each preferably independently a fluorine atom, an alkyl group having a fluorine atom as a substituent, or an aryl group having a fluorine atom as a substituent, more preferably a fluorine atom or an alkyl group having a fluorine atom as a substituent, and even more preferably an alkyl group having a fluorine atom as a substituent.
  • R 116 to R 119 each independently represent a halogen atom, an alkyl group, an aryl group, an alkoxy group, an aryloxy group, or a cyano group.
  • the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom, and a fluorine atom is preferable.
  • the alkyl group, the aryl group, the alkoxy group, and the aryloxy group may have a substituent or may be unsubstituted.
  • the substituent is a halogen atom or an alkyl group substituted with a halogen atom, and it is more preferable that the substituent is a fluorine atom or an alkyl group substituted with a fluorine atom.
  • R to R 119 is a cyano group , a fluorine atom, an alkyl group having a fluorine atom as a substituent, an aryl group having a fluorine atom as a substituent, or an aryl group having an alkyl group substituted with a fluorine atom as a substituent, it is more preferable that all of R to R 119 are a cyano group, a fluorine atom, an alkyl group having a fluorine atom as a substituent, or an aryl group having a fluorine atom as a substituent, and it is even more preferable that they are fluorine atoms.
  • R 120 represents an alkyl group or an aryl group.
  • the number of carbon atoms of the alkyl group represented by R 120 is preferably 1 to 10, and more preferably 1 to 6.
  • the alkyl group represented by R 120 may have a substituent. Examples of the substituent include a halogen atom, an alkoxy group, an aryl group, an aryloxy group, an acyl group, and an acyloxy group.
  • the number of carbon atoms of the aryl group represented by R 120 is preferably 6 to 20, and more preferably 6 to 12.
  • the aryl group represented by R 120 may have a substituent. Examples of the substituent include a halogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an acyl group, and an acyloxy group.
  • R 121 represents an alkyl group or an aryl group.
  • the number of carbon atoms of the alkyl group represented by R 121 is preferably 1 to 10, and more preferably 1 to 6.
  • the alkyl group represented by R 121 may have a substituent. Examples of the substituent include a halogen atom, an alkoxy group, an aryl group, an aryloxy group, an acyl group, and an acyloxy group.
  • the number of carbon atoms of the aryl group represented by R 121 is preferably 6 to 20, and more preferably 6 to 12.
  • the aryl group represented by R 121 may have a substituent. Examples of the substituent include a halogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an acyl group, and an acyloxy group.
  • R 122 represents an alkyl group or an aryl group
  • R 123 represents a hydrogen atom, an alkyl group, or an aryl group.
  • the number of carbon atoms of the alkyl group represented by R 122 and R 123 is preferably 1 to 10, more preferably 1 to 6.
  • the alkyl group represented by R 122 and R 123 may have a substituent. Examples of the substituent include a halogen atom, an alkoxy group, an aryl group, an aryloxy group, an acyl group, and an acyloxy group.
  • the number of carbon atoms of the aryl group represented by R 122 and R 123 is preferably 6 to 20, more preferably 6 to 12.
  • the aryl group represented by R 122 and R 123 may have a substituent.
  • substituents include a halogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an acyl group, and an acyloxy group.
  • R 124 to R 129 each independently represent a halogen atom or a halogenated hydrocarbon group.
  • the halogen atom represented by R 124 to R 129 include a fluorine atom, a chlorine atom, and a bromine atom, and a fluorine atom is preferable.
  • the halogenated hydrocarbon group represented by R 124 to R 129 is preferably an alkyl group having a halogen atom as a substituent, and more preferably an alkyl group having a fluorine atom as a substituent.
  • the number of carbon atoms in the halogenated hydrocarbon group is preferably 1 to 10, and more preferably 1 to 6.
  • R 130 to R 135 each independently represent a halogen atom or a halogenated hydrocarbon group.
  • the halogen atom represented by R 130 to R 135 include a fluorine atom, a chlorine atom, and a bromine atom, and a fluorine atom is preferable.
  • the halogenated hydrocarbon group represented by R 130 to R 135 is preferably an alkyl group having a halogen atom as a substituent, and more preferably an alkyl group having a fluorine atom as a substituent.
  • the number of carbon atoms in the halogenated hydrocarbon group is preferably 1 to 10, and more preferably 1 to 6.
  • counter anion d2 examples include anions having the structures shown below.
  • the content of compound D in the total solid content of the coloring composition is preferably 1 to 60 mass%.
  • the upper limit is preferably 50 mass% or less, and more preferably 40 mass% or less.
  • the lower limit is preferably 3 mass% or more, and more preferably 6 mass% or more. If the content of compound D is within the above range, the effects of the present invention are more pronounced.
  • the content of compound D is preferably 5 to 1000 parts by mass relative to 100 parts by mass of dye.
  • the upper limit is preferably 600 parts by mass or less, and more preferably 300 parts by mass or less.
  • the lower limit is preferably 10 parts by mass or more, and more preferably 20 parts by mass or more. If the content of compound D is within the above range, the effects of the present invention are more pronounced.
  • the coloring composition of the present invention preferably further contains a resin in addition to the above-mentioned compound D.
  • the resin is blended, for example, for dispersing particles such as pigments in the coloring composition or for use as a binder.
  • a resin used mainly for dispersing particles such as pigments is also called a dispersant.
  • such uses of the resin are merely examples, and the resin may be used for purposes other than these uses.
  • the weight average molecular weight (Mw) of the resin is preferably 3,000 to 2,000,000.
  • the upper limit is preferably 1,000,000 or less, and more preferably 500,000 or less.
  • the lower limit is preferably 4,000 or more, and more preferably 5,000 or more.
  • resins examples include (meth)acrylic resins, epoxy resins, (meth)acrylamide resins, ene-thiol resins, polycarbonate resins, polyether resins, polyarylate resins, polysulfone resins, polyethersulfone resins, polyphenylene resins, polyarylene ether phosphine oxide resins, polyimide resins, polyamideimide resins, polyolefin resins, cyclic olefin resins, polyester resins, styrene resins, and siloxane resins.
  • the resin there are resins described in paragraphs 0091 to 0099 of WO 2022/065215, block polyisocyanate resins described in JP 2016-222891 A, resins described in JP 2020-122052 A, resins described in JP 2020-111656 A, resins described in JP 2020-139021 A, and structural units having a ring structure in the main chain and side chains described in JP 2017-138503 A and a structural unit having a biphenyl group, the resin described in paragraphs 0199 to 0233 of JP 2020-186373 A, the alkali-soluble resin described in JP 2020-186325 A, the resin represented by formula 1 described in Korean Patent Publication No. 10-2020-0078339 A, the copolymer containing an epoxy group and an acid group described in WO 2022/030445 A, and the compound described in JP 2018-135514 A can also be used.
  • a resin having an acid group can be used as an alkali-soluble resin.
  • the acid group include a carboxy group, a phosphate group, a sulfo group, and a phenolic hydroxy group.
  • the acid value of the resin having acid groups is preferably 30 to 500 mgKOH/g.
  • the lower limit is more preferably 40 mgKOH/g or more, and particularly preferably 50 mgKOH/g or more.
  • the upper limit is more preferably 400 mgKOH/g or less, even more preferably 300 mgKOH/g or less, and particularly preferably 200 mgKOH/g or less.
  • the weight average molecular weight (Mw) of the resin having acid groups is preferably 5,000 to 100,000, and more preferably 5,000 to 50,000.
  • the number average molecular weight (Mn) of the resin having acid groups is preferably 1,000 to 20,000.
  • the resin having an acid group preferably contains a repeating unit having an acid group on the side chain, and more preferably contains 5 to 70 mol% of the repeating units having an acid group on the side chain out of all the repeating units of the resin.
  • the upper limit of the content of repeating units having an acid group on the side chain is preferably 50 mol% or less, and more preferably 30 mol% or less.
  • the lower limit of the content of repeating units having an acid group on the side chain is preferably 10 mol% or more, and more preferably 20 mol% or more.
  • the coloring composition of the present invention also preferably contains a resin having a basic group.
  • the resin having a basic group is preferably a resin containing a repeating unit having a basic group in the side chain, more preferably a copolymer having a repeating unit having a basic group in the side chain and a repeating unit not having a basic group, and even more preferably a block copolymer having a repeating unit having a basic group in the side chain and a repeating unit not having a basic group.
  • the resin having a basic group can also be used as a dispersant.
  • the amine value of the resin having a basic group is preferably 5 to 300 mgKOH/g.
  • the lower limit is preferably 10 mgKOH/g or more, and more preferably 20 mgKOH/g or more.
  • the upper limit is preferably 200 mgKOH/g or less, and more preferably 100 mgKOH/g or less.
  • resins with basic groups include DISPERBYK-161, 162, 163, 164, 166, 167, 168, 174, 182, 183, 184, 185, 2000, 2001, 2050, 2150, 2163, 2164, BYK-LPN6919 (all manufactured by BYK-Chemie), Solsperse 11200, 13240, 13650, 13940, 24 000, 26000, 28000, 32000, 32500, 32550, 32600, 33000, 34750, 35100, 35200, 37500, 38500, 39000, 53095, 56000, 7100 (all manufactured by Lubrizol Japan), Efka PX 4300, 4330, 4046, 4060, 4080 (all manufactured by BASF), and the like.
  • the resin having a basic group may be a block copolymer (B) described in paragraphs 0063 to 0112 of JP 2014-219665 A, a block copolymer A1 described in paragraphs 0046 to 0076 of JP 2018-156021 A, or a vinyl resin having a basic group described in paragraphs 0150 to 0153 of JP 2019-184763 A, the contents of which are incorporated herein by reference.
  • the coloring composition of the present invention contains both a resin having an acid group and a resin having a basic group. According to this embodiment, the storage stability of the coloring composition can be further improved.
  • the content of the resin having a basic group is preferably 20 to 500 parts by mass, more preferably 30 to 300 parts by mass, and even more preferably 50 to 200 parts by mass, per 100 parts by mass of the resin having an acid group.
  • a resin having an aromatic carboxy group As the resin, it is also preferable to use a resin having an aromatic carboxy group.
  • the aromatic carboxy group may be included in the main chain of a repeating unit, or may be included in a side chain of the repeating unit. It is preferable that the aromatic carboxy group is included in the main chain of a repeating unit.
  • an aromatic carboxy group refers to a group having a structure in which one or more carboxy groups are bonded to an aromatic ring.
  • the number of carboxy groups bonded to an aromatic ring is preferably 1 to 4, and more preferably 1 to 2.
  • resins having an aromatic carboxy group include the resins described in paragraphs 0082 to 0107 of WO 2021/166858.
  • the coloring composition of the present invention preferably contains a resin as a dispersant.
  • dispersants include acidic dispersants (acidic resins) and basic dispersants (basic resins).
  • the acidic dispersant (acidic resin) refers to a resin in which the amount of acid groups is greater than the amount of basic groups.
  • the acidic dispersant (acidic resin) is preferably a resin in which the amount of acid groups is 70 mol% or more when the total amount of the acid groups and the basic groups is 100 mol%.
  • the acid group possessed by the acidic dispersant (acidic resin) is preferably a carboxy group.
  • the acid value of the acidic dispersant (acidic resin) is preferably 10 to 105 mgKOH/g.
  • the basic dispersant refers to a resin in which the amount of basic groups is greater than the amount of acid groups.
  • the basic dispersant (basic resin) is preferably a resin in which the amount of basic groups is greater than the amount of acid groups when the total amount of the acid groups and the basic groups is 100 mol%.
  • the basic group possessed by the basic dispersant is preferably an amino group.
  • the resin used as the dispersant is a graft resin.
  • the graft resin please refer to the description in paragraphs 0025 to 0094 of JP 2012-255128 A, the contents of which are incorporated herein by reference.
  • the resin used as the dispersant is a resin having an aromatic carboxy group.
  • resins having an aromatic carboxy group include those mentioned above.
  • the resin used as the dispersant is preferably a polyimine-based dispersant containing nitrogen atoms in at least one of the main chain and side chain.
  • the polyimine-based dispersant is preferably a resin having a main chain with a partial structure having a functional group with a pKa of 14 or less, a side chain with 40 to 10,000 atoms, and having a basic nitrogen atom in at least one of the main chain and side chain.
  • the basic nitrogen atom so long as it is a nitrogen atom that exhibits basicity.
  • polyimine-based dispersants please refer to the description in paragraphs 0102 to 0166 of JP 2012-255128 A, the contents of which are incorporated herein by reference.
  • the resin used as the dispersant is preferably one having a structure in which multiple polymer chains are bonded to a core portion.
  • resins include dendrimers (including star-shaped polymers).
  • dendrimers include polymer compounds C-1 to C-31 described in paragraphs 0196 to 0209 of JP2013-043962A.
  • the resin used as the dispersant is also preferably a resin containing a repeating unit having an ethylenically unsaturated bond-containing group in the side chain.
  • the content of the repeating unit having an ethylenically unsaturated bond-containing group in the side chain is preferably 10 mol % or more of the total repeating units of the resin, more preferably 10 to 80 mol %, and even more preferably 20 to 70 mol %.
  • resins described in JP 2018-087939 A, block copolymers (EB-1) to (EB-9) described in paragraphs 0219 to 0221 of Japanese Patent No. 6,432,077 A, polyethyleneimine having a polyester side chain described in WO 2016/104803 A, block copolymers described in WO 2019/125940 A, block polymers having an acrylamide structural unit described in JP 2020-066687 A, block polymers having an acrylamide structural unit described in JP 2020-066688 A, dispersants described in WO 2016/104803 A, and the like can also be used.
  • Dispersants are also available as commercially available products, and specific examples include the DISPERBYK series manufactured by BYK Chemie, the SOLSPERSE series manufactured by Lubrizol Nippon, the Efka series manufactured by BASF, and the AJISPER series manufactured by Ajinomoto Fine-Techno Co., Ltd.
  • the products described in paragraph 0129 of JP 2012-137564 A and the products described in paragraph 0235 of JP 2017-194662 A can also be used as dispersants.
  • the content of the resin in the total solid content of the coloring composition is preferably 50% by mass or less, more preferably 40% by mass or less, even more preferably 35% by mass or less, and even more preferably 30% by mass or less.
  • the lower limit can be 0% by mass or more, 1% by mass or more, or 2% by mass or more.
  • the content of the resin having an acid group (alkali-soluble resin) in the total solid content of the coloring composition is preferably 50% by mass or less, more preferably 40% by mass or less, even more preferably 35% by mass or less, and even more preferably 30% by mass or less.
  • the lower limit can be 0% by mass or more, 1% by mass or more, or 2% by mass or more.
  • the content of the resin having an acid group (alkali-soluble resin) in the total amount of resin is preferably 30% by mass or more, more preferably 50% by mass or more, even more preferably 70% by mass or more, and particularly preferably 80% by mass or more, because excellent developability is easily obtained.
  • the upper limit can be 100% by mass, can be 95% by mass, or can be 90% by mass or less.
  • the coloring composition of the present invention may contain only one type of resin, or may contain two or more types. When two or more types of resins are contained, it is preferable that the total amount thereof is within the above range.
  • the coloring composition of the present invention may contain a compound having a cyclic ether group.
  • the cyclic ether group include an epoxy group and an oxetanyl group.
  • the compound having a cyclic ether group is preferably a compound having an epoxy group (hereinafter also referred to as an epoxy compound).
  • the epoxy compound include compounds having one or more epoxy groups in one molecule, and compounds having two or more epoxy groups are preferred.
  • the epoxy compound is preferably a compound having 1 to 100 epoxy groups in one molecule.
  • the upper limit of the epoxy groups contained in the epoxy compound can be, for example, 10 or less, or 5 or less.
  • the lower limit of the epoxy groups contained in the epoxy compound is preferably 2 or more.
  • Examples of compounds having a cyclic ether group include those described in paragraphs 0034 to 0036 of JP-A-2013-011869, 0147 to 0156 of JP-A-2014-043556, and 0085 to 0092 of JP-A-2014-089408.
  • Compounds described in JP-A-2017-179172, xanthene-type epoxy resins described in JP-A-2021-195421, and xanthene-type epoxy resins described in JP-A-2021-195422 can also be used.
  • the compound having a cyclic ether group may be a low molecular weight compound (e.g., a molecular weight of less than 2000, or even less than 1000) or a high molecular weight compound (macromolecule) (e.g., a molecular weight of 1000 or more, or in the case of a polymer, a weight average molecular weight of 1000 or more).
  • the weight average molecular weight of the compound having an epoxy group is preferably 200 to 100,000, more preferably 500 to 50,000.
  • the upper limit of the weight average molecular weight is more preferably 10,000 or less, particularly preferably 5,000 or less, and even more preferably 3,000 or less.
  • EHPE3150 manufactured by Daicel Corporation
  • EPICLON N-695 manufactured by DIC Corporation
  • Marproof G-0150M G-0105SA, G-0130SP, G-0250SP, G-1005S, G-1005SA, G-1010S, G-2050M, G-01100, and G-01758 (all manufactured by NOF Corporation, epoxy group-containing polymers).
  • the content of the compound having a cyclic ether group in the total solid content of the coloring composition is preferably 0.1 to 20% by mass.
  • the lower limit is preferably 0.5% by mass or more, and more preferably 1% by mass or more.
  • the upper limit is preferably 15% by mass or less, and more preferably 10% by mass or less. Only one type of compound having a cyclic ether group may be used, or two or more types may be used. When two or more types are used, it is preferable that the total amount thereof is within the above range.
  • the coloring composition of the present invention may contain a pigment derivative.
  • the pigment derivative include a compound having at least one structure selected from the group consisting of a dye structure and a triazine structure, and an acid group or a basic group.
  • the above dye structures include a quinoline dye structure, a benzimidazolone dye structure, a benzisoindole dye structure, a benzothiazole dye structure, an iminium dye structure, a squarylium dye structure, a croconium dye structure, an oxonol dye structure, a pyrrolopyrrole dye structure, a diketopyrrolopyrrole dye structure, an azo dye structure, an azomethine dye structure, a phthalocyanine dye structure, a naphthalocyanine dye structure, an anthraquinone dye structure, a quinacridone dye structure, a dioxazine dye structure, a perinone dye structure, a perylene dye structure, a thiazineindigo dye structure, a thioindigo dye structure, an isoindoline dye structure, an isoindolinone dye structure, a quinophthalone dye structure, a dithiol dye structure
  • Examples of the acid group possessed by the pigment derivative include a carboxy group, a sulfo group, a phosphate group, a boronic acid group, an imide acid group, and salts thereof.
  • Examples of the atom or atomic group constituting the salt include an alkali metal ion (Li + , Na + , K +, etc.), an alkaline earth metal ion (Ca 2+ , Mg 2+ , etc.), an ammonium ion, an imidazolium ion, a pyridinium ion, and a phosphonium ion.
  • Examples of the imide acid group include -SO 2 NHSO 2 R X1 , -CONHSO 2 R X2 , -CONHCOR X3 , and -SO 2 NHCOR X4 , and -SO 2 NHSO 2 R X1 , -CONHSO 2 R X2 , and -SO 2 NHCOR X4 are more preferable, and -SO 2 NHSO 2 R X1 or -CONHSO 2 R X2 are even more preferable.
  • R X1 to R X4 each independently represent an alkyl group or an aryl group.
  • the alkyl group and aryl group represented by R X1 to R X4 may have a substituent.
  • the substituent is preferably a halogen atom, more preferably a fluorine atom.
  • R X1 to R X4 each independently represent an alkyl group containing a fluorine atom or an aryl group containing a fluorine atom, more preferably an alkyl group containing a fluorine atom.
  • the number of carbon atoms of the alkyl group containing a fluorine atom is preferably 1 to 10, more preferably 1 to 5, and even more preferably 1 to 3.
  • the number of carbon atoms of the aryl group containing a fluorine atom is preferably 6 to 20, more preferably 6 to 12, and even more preferably 6.
  • Basic groups contained in pigment derivatives include amino groups, pyridinyl groups and their salts, salts of ammonium groups, and phthalimidomethyl groups.
  • Atoms or atomic groups that constitute the salts include hydroxide ions, halogen ions, carboxylate ions, sulfonate ions, and phenoxide ions.
  • amino group examples include a group represented by --NR.sub.x11R.sub.x12 and a cyclic amino group.
  • R x11 and R x12 each independently represent a hydrogen atom, an alkyl group or an aryl group, and are preferably an alkyl group. That is, the amino group is preferably a dialkylamino group.
  • the number of carbon atoms of the alkyl group is preferably 1 to 10, more preferably 1 to 5, and even more preferably 1 to 3.
  • the alkyl group may be linear, branched, or cyclic, but is preferably linear or branched, and more preferably linear.
  • the alkyl group may have a substituent. Examples of the substituent include the above-mentioned substituent T.
  • the number of carbon atoms of the aryl group is preferably 6 to 30, more preferably 6 to 20, and even more preferably 6 to 12.
  • the aryl group may have a substituent. Examples of the substituent include the above-mentioned substituent T.
  • Cyclic amino groups include pyrrolidine groups, piperidine groups, piperazine groups, and morpholine groups. These groups may further have a substituent.
  • the pigment derivative may be a pigment derivative having excellent visible transparency (hereinafter, also referred to as a transparent pigment derivative).
  • the maximum molar absorption coefficient ( ⁇ max) of the transparent pigment derivative in the wavelength region of 400 to 700 nm is preferably 3000 L ⁇ mol -1 ⁇ cm -1 or less, more preferably 1000 L ⁇ mol -1 ⁇ cm -1 or less, and even more preferably 100 L ⁇ mol -1 ⁇ cm -1 or less.
  • the lower limit of ⁇ max is, for example, 1 L ⁇ mol -1 ⁇ cm -1 or more, and may be 10 L ⁇ mol- 1 ⁇ cm -1 or more.
  • pigment derivatives include the compounds described in the Examples below, the compounds described in paragraph 0124 of WO 2022/085485, the benzimidazolone compounds or salts thereof described in JP 2018-168244 A, and compounds having an isoindoline skeleton described in general formula (1) of Japanese Patent No. 6996282.
  • the content of the pigment derivative in the total solid content of the coloring composition is preferably 0.3 to 20 mass%.
  • the lower limit is preferably 0.6 mass% or more, and more preferably 0.9 mass% or more.
  • the upper limit is preferably 15 mass% or less, more preferably 12.5 mass% or less, and even more preferably 10 mass% or less.
  • the content of the pigment derivative is preferably 1 to 30 mass parts relative to 100 mass parts of pigment.
  • the lower limit is preferably 2 mass parts or more, and more preferably 3 mass parts or more.
  • the upper limit is preferably 25 mass parts or less, more preferably 20 mass parts or less, and even more preferably 15 mass parts or less.
  • the coloring composition of the present invention may contain only one type of pigment derivative, or may contain two or more types. When two or more types of pigment derivatives are contained, it is preferable that the total amount thereof is within the above range.
  • the coloring composition of the present invention may contain a silane coupling agent.
  • the silane coupling agent include silane compounds having a hydrolyzable group, and it is preferable that the silane coupling agent is a silane compound having a hydrolyzable group and other functional groups.
  • the hydrolyzable group refers to a substituent that is directly bonded to a silicon atom and can generate a siloxane bond by at least one of a hydrolysis reaction and a condensation reaction.
  • Examples of the hydrolyzable group include a halogen atom, an alkoxy group, and an acyloxy group, and an alkoxy group is preferable.
  • the silane coupling agent is preferably a compound having an alkoxysilyl group.
  • functional groups other than the hydrolyzable group include a vinyl group, a (meth)allyl group, a (meth)acryloyl group, a mercapto group, an epoxy group, an oxetanyl group, an amino group, a ureido group, a sulfide group, an isocyanate group, and a phenyl group, and an amino group, a (meth)acryloyl group, and an epoxy group are preferable.
  • Specific examples of the silane coupling agent include the compounds described in paragraph 0177 of International Publication No.
  • the content of the silane coupling agent in the total solid content of the coloring composition is preferably 0.01 to 15.0% by mass, more preferably 0.05 to 10.0% by mass.
  • the silane coupling agent may be one type or two or more types. In the case of two or more types, it is preferable that the total amount is within the above range.
  • the coloring composition of the present invention preferably contains a solvent.
  • the solvent include organic solvents.
  • the type of solvent is not particularly limited as long as the solubility of each component and the coatability of the composition are satisfied.
  • the organic solvent include ester-based solvents, ketone-based solvents, alcohol-based solvents, amide-based solvents, ether-based solvents, and hydrocarbon-based solvents.
  • ester-based solvents substituted with a cyclic alkyl group and ketone-based solvents substituted with a cyclic alkyl group can also be preferably used.
  • organic solvents include polyethylene glycol monomethyl ether, dichloromethane, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl cellosolve acetate, ethyl lactate, diethylene glycol dimethyl ether, butyl acetate, methyl 3-methoxypropionate, 2-heptanone, 2-pentanone, 3-pentanone, 4-heptanone, cyclohexanone, 2-methylcyclohexanone, 3-methylcyclohexanone, 4-methylcyclohexanone, cycloheptanone, cyclooctanone, cyclohexyl acetate, cyclopentanone, ethyl carbitol acetate, butyl carbitol acetate, propylene glycol monomethyl ether, propylene glycol dimethyl ether, butyl acetate ...
  • Examples of the ethylene glycol monomethyl ether acetate include 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, propylene glycol diacetate, 3-methoxybutanol, methyl ethyl ketone, gamma butyrolactone, sulfolane, anisole, 1,4-diacetoxybutane, diethylene glycol monoethyl ether acetate, butane-1,3-diyl diacetate, dipropylene glycol methyl ether acetate, diacetone alcohol (also known as diacetone alcohol and 4-hydroxy-4-methyl-2-pentanone), 2-methoxypropyl acetate, 2-methoxy-1-propanol, and isopropyl alcohol.
  • diacetone alcohol also known as diacetone alcohol and 4-hydroxy-4-methyl-2-pentanone
  • 2-methoxypropyl acetate 2-methoxy-1-propanol,
  • the amount of aromatic hydrocarbons (benzene, toluene, xylene, ethylbenzene, etc.) used as organic solvents for environmental reasons, etc. (for example, the amount can be 50 ppm (parts per million) by mass or less, 10 ppm by mass or less, or 1 ppm by mass or less, relative to the total amount of organic solvents).
  • an organic solvent with a low metal content it is preferable to use an organic solvent with a low metal content.
  • the metal content of the organic solvent is preferably, for example, 10 parts per billion (ppb) by mass or less. If necessary, an organic solvent with a mass ppt (parts per trillion) level may be used, and such an organic solvent is provided, for example, by Toyo Gosei Co., Ltd. (The Chemical Daily, November 13, 2015).
  • Methods for removing impurities such as metals from organic solvents include, for example, distillation (molecular distillation, thin-film distillation, etc.) and filtration using a filter.
  • the filter used for filtration preferably has a pore size of 10 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 3 ⁇ m or less.
  • the filter material is preferably polytetrafluoroethylene, polyethylene, or nylon.
  • the organic solvent may contain isomers (compounds with the same number of atoms but different structures).
  • the organic solvent may contain only one type of isomer, or multiple types of isomers.
  • the peroxide content in the organic solvent is preferably 0.8 mmol/L or less, and more preferably substantially free of peroxide.
  • the content of the solvent in the coloring composition is preferably 10 to 95% by mass, more preferably 20 to 90% by mass, and even more preferably 30 to 90% by mass.
  • the coloring composition of the present invention is substantially free of environmentally regulated substances.
  • substantially free of environmentally regulated substances means that the content of environmentally regulated substances in the coloring composition is 50 ppm by mass or less, preferably 30 ppm by mass or less, more preferably 10 ppm by mass or less, and particularly preferably 1 ppm by mass or less.
  • environmentally regulated substances include benzene; alkylbenzenes such as toluene and xylene; and halogenated benzenes such as chlorobenzene.
  • distillation methods can be performed at any stage, such as the stage of the raw materials, the stage of the product obtained by reacting the raw materials (for example, a resin solution or a polyfunctional monomer solution after polymerization), or the stage of a colored composition prepared by mixing these compounds.
  • the coloring composition of the present invention may contain a polymerization inhibitor.
  • the polymerization inhibitor include hydroquinone, p-methoxyphenol, di-tert-butyl-p-cresol, pyrogallol, tert-butylcatechol, benzoquinone, 4,4'-thiobis(3-methyl-6-tert-butylphenol), 2,2'-methylenebis(4-methyl-6-t-butylphenol), and N-nitrosophenylhydroxyamine salts (ammonium salts, cerous salts, etc.).
  • p-methoxyphenol is preferred.
  • the content of the polymerization inhibitor in the total solid content of the coloring composition is preferably 0.0001 to 5% by mass.
  • the polymerization inhibitor may be one type or two or more types. In the case of two or more types, the total amount is preferably within the above range.
  • the coloring composition of the present invention may contain a surfactant.
  • a surfactant various surfactants such as a fluorine-based surfactant, a nonionic surfactant, a cationic surfactant, an anionic surfactant, and a silicone-based surfactant may be used.
  • the surfactant is preferably a silicone-based surfactant or a fluorine-based surfactant, and more preferably a silicone-based surfactant.
  • Nonionic surfactants include the compounds described in paragraph 0174 of WO 2022/085485.
  • Silicone surfactants include DOWSIL SH8400, SH8400 FLUID, FZ-2122, 67 Additive, 74 Additive, M Additive, SF 8419 OIL (all manufactured by Dow Toray Co., Ltd.), TSF-4300, TSF-4445, TSF-4460, and TSF-4452 (all manufactured by Momen Co., Ltd.).
  • Examples include BYK-307, BYK-322, BYK-323, BYK-330, BYK-333, BYK-3760, and BYK-UV3510 (manufactured by BYK-Chemie), etc.
  • silicone surfactant may also be a compound having the following structure:
  • the content of the surfactant in the total solid content of the coloring composition is preferably 0.001% by mass to 5.0% by mass, and more preferably 0.005% by mass to 3.0% by mass.
  • the surfactant may be one type or two or more types. When two or more types are used, it is preferable that the total amount is within the above range.
  • the coloring composition of the present invention may contain an ultraviolet absorber.
  • ultraviolet absorbers include conjugated diene compounds, aminodiene compounds, salicylate compounds, benzophenone compounds, benzotriazole compounds, acrylonitrile compounds, hydroxyphenyltriazine compounds, indole compounds, triazine compounds, and dibenzoyl compounds. Specific examples of such compounds include the compounds described in paragraph 0179 of International Publication No. 2022/085485, the reactive triazine ultraviolet absorbers described in JP-A-2021-178918, the ultraviolet absorbers described in JP-A-2022-007884, and the compounds described in Korean Patent Publication No. 10-2022-0014454.
  • the content of the ultraviolet absorber in the total solid content of the coloring composition is preferably 0.01 to 10% by mass, more preferably 0.01 to 5% by mass.
  • only one type of ultraviolet absorber may be used, or two or more types may be used. When two or more types are used, it is preferable that the total amount is within the above range.
  • the coloring composition of the present invention may contain an antioxidant.
  • the antioxidant include phenolic compounds, phosphite compounds, and thioether compounds.
  • the phenolic compound any phenolic compound known as a phenolic antioxidant may be used.
  • a preferred phenolic compound is a hindered phenolic compound.
  • a compound having a substituent at the site (ortho position) adjacent to the phenolic hydroxy group is preferred.
  • a substituted or unsubstituted alkyl group having 1 to 22 carbon atoms is preferred.
  • the antioxidant is also preferably a compound having a phenolic group and a phosphite group in the same molecule.
  • a phosphorus-based antioxidant may also be suitably used as the antioxidant.
  • phosphorus-based antioxidants include tris[2-[[2,4,8,10-tetrakis(1,1-dimethylethyl)dibenzo[d,f][1,3,2]dioxaphosphepin-6-yl]oxy]ethyl]amine, tris[2-[(4,6,9,11-tetra-tert-butyldibenzo[d,f][1,3,2]dioxaphosphepin-2-yl)oxy]ethyl]amine, and ethylbis(2,4-di-tert-butyl-6-methylphenyl)phosphite.
  • antioxidants include, for example, Adeka STAB AO-20, Adeka STAB AO-30, Adeka STAB AO-40, Adeka STAB AO-50, Adeka STAB AO-50F, Adeka STAB AO-60, Adeka STAB AO-60G, Adeka STAB AO-80, and Adeka STAB AO-330 (manufactured by ADEKA Corporation).
  • the antioxidant may be a compound described in paragraphs 0023 to 0048 of Japanese Patent No. 6268967, a compound described in International Publication No. WO 2017/006600, a compound described in International Publication No. WO 2017/164024, or a compound described in Korean Patent Publication No. 10-2019-0059371.
  • the content of the antioxidant in the total solid content of the coloring composition is preferably 0.01 to 20 mass%, more preferably 0.3 to 15 mass%. Only one type of antioxidant may be used, or two or more types may be used. When two or more types are used, it is preferable that the total amount is in the above range.
  • the coloring composition of the present invention may contain a curing accelerator.
  • the curing accelerator include a thiol compound, a methylol compound, an amine compound, a phosphonium salt compound, an amidine salt compound, an amide compound, a base generator, an isocyanate compound, an alkoxysilane compound, and an onium salt compound.
  • Specific examples of the curing accelerator include the compound described in paragraph 0164 of International Publication No. 2022/085485 and the compound described in JP-A-2021-181406.
  • the content of the curing accelerator in the total solid content of the coloring composition is preferably 0.3 to 8.9% by mass, more preferably 0.8 to 6.4% by mass.
  • the coloring composition of the present invention may contain, as necessary, a sensitizer, a plasticizer, and other auxiliaries (for example, conductive particles, fillers, defoamers, flame retardants, leveling agents, peeling promoters, fragrances, surface tension regulators, chain transfer agents, etc.).
  • auxiliaries for example, conductive particles, fillers, defoamers, flame retardants, leveling agents, peeling promoters, fragrances, surface tension regulators, chain transfer agents, etc.
  • the coloring composition of the present invention may contain a metal oxide in order to adjust the refractive index of the resulting film.
  • the metal oxide include TiO 2 , ZrO 2 , Al 2 O 3 , and SiO 2 .
  • the primary particle size of the metal oxide is preferably 1 to 100 nm, more preferably 3 to 70 nm, and even more preferably 5 to 50 nm.
  • the metal oxide may have a core-shell structure. In this case, the core may be hollow.
  • the coloring composition of the present invention may contain a light resistance improver.
  • the light resistance improver include the compounds described in paragraph 0183 of WO 2022/085485.
  • the coloring composition of the present invention is substantially free of terephthalic acid esters.
  • substantially free means that the content of terephthalic acid esters in the total amount of the coloring composition is 1000 ppb by mass or less, more preferably 100 ppb by mass or less, and particularly preferably zero.
  • the coloring composition of the present invention preferably has a melamine content of 10,000 ppm by mass or less.
  • the colored composition of the present invention preferably has a free metal content of 100 ppm by mass or less, more preferably 50 ppm by mass or less, and preferably has a free halogen content of 100 ppm by mass or less, more preferably 50 ppm by mass or less.
  • the chloride ion concentration in the colored composition is preferably 100 ppm by mass or less, and more preferably 50 ppm by mass or less.
  • Methods for reducing the amount of free metals and halogens in the colored composition include washing with ion-exchanged water, filtration, ultrafiltration, purification with ion-exchange resins, and the like.
  • perfluoroalkylsulfonic acid and its salts may be restricted.
  • the content of perfluoroalkylsulfonic acid (particularly perfluoroalkylsulfonic acid having 6 to 8 carbon atoms in the perfluoroalkyl group) and its salts, and perfluoroalkylcarboxylic acid (particularly perfluoroalkylcarboxylic acid having 6 to 8 carbon atoms in the perfluoroalkyl group) and its salts is preferably in the range of 0.01 ppb to 1,000 ppb, more preferably in the range of 0.05 ppb to 500 ppb, and even more preferably in the range of 0.1 ppb to 300 ppb, based on the total solid content of the coloring composition.
  • the coloring composition of the present invention may be substantially free of perfluoroalkylsulfonic acid and its salts, and perfluoroalkylcarboxylic acid and its salts.
  • a coloring composition that is substantially free of perfluoroalkylsulfonic acid and its salts, and perfluoroalkylcarboxylic acid and its salts may be selected by using a compound that can be a substitute for perfluoroalkylsulfonic acid and its salts, and a compound that can be a substitute for perfluoroalkylcarboxylic acid and its salts.
  • Examples of compounds that can be a substitute for regulated compounds include compounds that are excluded from the scope of regulation due to the difference in the number of carbon atoms in the perfluoroalkyl group. However, the above content does not prevent the use of perfluoroalkylsulfonic acid and its salts, and perfluoroalkylcarboxylic acid and its salts.
  • the coloring composition of the present invention may contain perfluoroalkylsulfonic acid and its salts, and perfluoroalkylcarboxylic acid and its salts, within the maximum allowable range.
  • the water content of the coloring composition of the present invention is usually 3% by mass or less, preferably 0.01 to 1.5% by mass, and more preferably in the range of 0.1 to 1.0% by mass.
  • the water content can be measured by the Karl Fischer method.
  • the coloring composition of the present invention can be used by adjusting the viscosity for the purpose of adjusting the film surface state (flatness, etc.), adjusting the film thickness, etc.
  • the viscosity value can be appropriately selected as needed, but for example, it is preferably 0.3 mPa ⁇ s to 50 mPa ⁇ s at 25°C, and more preferably 0.5 mPa ⁇ s to 20 mPa ⁇ s.
  • the viscosity can be measured, for example, using a cone-plate type viscometer with the temperature adjusted to 25°C.
  • the container for storing the coloring composition is not particularly limited, and a known container can be used.
  • the container described in paragraph 0187 of WO 2022/085485 can be used as the container.
  • the coloring composition of the present invention can be prepared by mixing the above-mentioned components.
  • all the components may be dissolved and/or dispersed in a solvent at the same time to prepare the coloring composition, or, if necessary, each component may be appropriately prepared as two or more solutions or dispersions, which are mixed at the time of use (at the time of application) to prepare the coloring composition.
  • the preparation of the coloring composition includes a process for dispersing the pigment.
  • examples of mechanical forces used to disperse the pigment include compression, squeezing, impact, shear, and cavitation. Specific examples of these processes include bead mills, sand mills, roll mills, ball mills, paint shakers, microfluidizers, high-speed impellers, sand grinders, flow jet mixers, high-pressure wet atomization, and ultrasonic dispersion.
  • beads with a small diameter increase the bead packing rate, and perform the process under conditions that increase the grinding efficiency.
  • the process and dispersing machine for dispersing the pigment can be suitably used as described in "Dispersion Technology Encyclopedia, published by Joho Kika Co., Ltd., July 15, 2005” or "Dispersion Technology and Industrial Applications Focused on Suspension (Solid/Liquid Dispersion System) - Comprehensive Data Collection, published by Management Development Center Publishing Department, October 10, 1978", and in paragraph 0022 of JP2015-157893A.
  • a salt milling process may be performed to refine the particles.
  • the descriptions in, for example, JP2015-194521A and JP2012-046629A can be referred to.
  • the coloring composition When preparing the coloring composition, it is preferable to filter the coloring composition with a filter for the purpose of removing foreign matter and reducing defects.
  • filters and filtration methods used for filtration include the filters and filtration methods described in paragraphs 0196 to 0199 of WO 2022/085485.
  • the film of the present invention is a film obtained from the above-mentioned colored composition of the present invention.
  • the film of the present invention can be used for color filters and the like. Specifically, it can be preferably used as a colored layer (pixel) of a color filter. Examples of colored pixels include red pixels, green pixels, blue pixels, magenta pixels, cyan pixels, and yellow pixels.
  • the film thickness of the film of the present invention can be appropriately adjusted depending on the purpose. For example, the film thickness is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less.
  • the lower limit of the film thickness is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, and even more preferably 0.3 ⁇ m or more.
  • the color filter of the present invention has the above-mentioned film of the present invention. More preferably, the film of the present invention is used as a pixel of the color filter.
  • the color filter of the present invention can be used in solid-state imaging devices such as CCDs (charge-coupled devices) and CMOSs (complementary metal-oxide semiconductors), image display devices, and the like.
  • the thickness of the film of the present invention in the color filter of the present invention can be adjusted appropriately depending on the purpose.
  • the film thickness is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less.
  • the lower limit of the film thickness is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, and even more preferably 0.3 ⁇ m or more.
  • the width of the pixels included in the color filter is preferably 0.5 to 20.0 ⁇ m.
  • the lower limit is preferably 1.0 ⁇ m or more, and more preferably 2.0 ⁇ m or more.
  • the upper limit is preferably 15.0 ⁇ m or less, and more preferably 10.0 ⁇ m or less.
  • the Young's modulus of the pixels is preferably 0.5 to 20 GPa, and more preferably 2.5 to 15 GPa.
  • Each pixel included in the color filter preferably has high flatness.
  • the surface roughness Ra of the pixel is preferably 100 nm or less, more preferably 40 nm or less, and even more preferably 15 nm or less. Although the lower limit is not specified, it is preferably 0.1 nm or more, for example.
  • the surface roughness of the pixel can be measured using, for example, an AFM (atomic force microscope) Dimension 3100 manufactured by Veeco.
  • the contact angle of water on the pixel can be set to an appropriate preferred value, but is typically in the range of 50 to 110°. The contact angle can be measured using, for example, a contact angle meter CV-DT-A type (manufactured by Kyowa Interface Science Co., Ltd.).
  • the volume resistance value of the pixel is high.
  • the volume resistance value of the pixel is preferably 10 9 ⁇ cm or more, more preferably 10 11 ⁇ cm or more.
  • the upper limit is not specified, it is preferably 10 14 ⁇ cm or less, for example.
  • the volume resistance value of the pixel can be measured using, for example, an Ultra High Resistance Meter 5410 (manufactured by Advantest Corporation).
  • a protective layer may be provided on the surface of the film of the present invention.
  • various functions such as oxygen blocking, low reflection, hydrophilicity/hydrophobicity, and shielding of light of a specific wavelength (ultraviolet rays, near infrared rays, etc.) can be imparted.
  • the thickness of the protective layer is preferably 0.01 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m.
  • Methods for forming the protective layer include a method of forming the protective layer by applying a resin composition dissolved in an organic solvent, a chemical vapor deposition method, and a method of attaching a molded resin with an adhesive.
  • the components constituting the protective layer include (meth)acrylic resin, ene-thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, polyethersulfone resin, polyphenylene resin, polyarylene ether phosphine oxide resin, polyimide resin, polyamideimide resin, polyolefin resin, cyclic olefin resin, polyester resin, styrene resin, polyol resin, polyvinylidene chloride resin, melamine resin, urethane resin, aramid resin, polyamide resin, alkyd resin, epoxy resin, modified silicone resin, fluorine resin, polyacrylonitrile resin, cellulose resin, Si, C, W, Al 2 O 3 , Mo, SiO 2 , and Si 2 N 4 , and may contain two or more of these components.
  • the protective layer in the case of a protective layer intended for oxygen blocking, preferably contains a polyol resin, SiO 2 , and Si 2 N 4.
  • the protective layer in the case of a protective layer intended for low reflection, preferably contains a (meth)acrylic resin and a fluorine resin.
  • a protective layer by applying a resin composition When forming a protective layer by applying a resin composition, known methods such as spin coating, casting, screen printing, and inkjet can be used as a method for applying the resin composition.
  • Known organic solvents e.g., propylene glycol 1-monomethyl ether 2-acetate, cyclopentanone, ethyl lactate, etc.
  • thermal chemical vapor deposition, plasma chemical vapor deposition, photochemical vapor deposition can be used as the chemical vapor deposition method.
  • the protective layer may contain additives such as organic or inorganic fine particles, absorbents for light of specific wavelengths (e.g., ultraviolet light, near infrared light, etc.), refractive index adjusters, antioxidants, adhesion agents, and surfactants, as necessary.
  • organic or inorganic fine particles include polymer fine particles (e.g., silicone resin fine particles, polystyrene fine particles, melamine resin fine particles), titanium oxide, zinc oxide, zirconium oxide, indium oxide, aluminum oxide, titanium nitride, titanium oxynitride, magnesium fluoride, hollow silica, silica, calcium carbonate, and barium sulfate.
  • Known absorbents can be used as absorbents for light of specific wavelengths.
  • the content of these additives can be adjusted as appropriate, but is preferably 0.1 to 70% by mass, and more preferably 1 to 60% by mass, based on the total mass of the protective layer.
  • the protective layer may also be the one described in paragraphs 0073 to 0092 of JP2017-151176A.
  • the manufacturing method of the color filter preferably includes a step of forming a coloring composition layer on a support using the coloring composition of the present invention, a step of exposing the coloring composition layer in a pattern, and a step of developing and removing the unexposed part of the coloring composition layer to form a pattern (pixel). If necessary, a step of baking the coloring composition layer (pre-baking step) and a step of baking the developed pattern (pixel) (post-baking step) may be provided.
  • the coloring composition layer is formed on a support using the coloring composition of the present invention.
  • the support is not particularly limited and can be appropriately selected depending on the application.
  • a glass substrate, a silicon substrate, etc. can be mentioned, and a silicon substrate is preferable.
  • a charge-coupled device (CCD), a complementary metal oxide semiconductor (CMOS), a transparent conductive film, etc. may be formed on the silicon substrate.
  • CMOS complementary metal oxide semiconductor
  • a black matrix that isolates each pixel may be formed on the silicon substrate.
  • a base layer may be provided on the silicon substrate to improve adhesion with the upper layer, prevent diffusion of substances, or flatten the substrate surface.
  • the surface contact angle of the base layer is preferably 20 to 70° when measured with diiodomethane. It is also preferable that the surface contact angle is 30 to 80° when measured with water.
  • a known method can be used as a method for applying the coloring composition.
  • a dropping method drop casting
  • a slit coating method for example, a spray method; a roll coating method; a rotary coating method (spin coating); a casting coating method; a slit and spin method
  • a pre-wetting method for example, a method described in JP-A-2009-145395
  • various printing methods such as inkjet (for example, on-demand method, piezo method, thermal method), ejection printing such as nozzle jet, flexographic printing, screen printing, gravure printing, reverse offset printing, and metal mask printing
  • a transfer method using a mold or the like for example, a transfer method using a mold or the like.
  • the application method described in paragraph 0207 of WO 2022/085485 can also be used.
  • the colored composition layer formed on the support may be dried (prebaked).
  • prebaking may not be performed.
  • the prebaking temperature is preferably 150°C or less, more preferably 120°C or less, and even more preferably 110°C or less.
  • the lower limit can be, for example, 50°C or more, and can also be 80°C or more.
  • the prebaking time is preferably 10 to 300 seconds, more preferably 40 to 250 seconds, and even more preferably 80 to 220 seconds. Prebaking can be performed using a hot plate, an oven, etc.
  • the colored composition layer is exposed to light in a pattern (exposure step).
  • the colored composition layer can be exposed to light in a pattern by using a stepper exposure machine or a scanner exposure machine through a mask having a predetermined mask pattern. This allows the exposed parts to be cured.
  • Radiation (light) that can be used for exposure includes g-rays and i-rays.
  • Light with a wavelength of 300 nm or less (preferably light with a wavelength of 180 to 300 nm) can also be used.
  • Examples of light with a wavelength of 300 nm or less include KrF rays (wavelength 248 nm) and ArF rays (wavelength 193 nm), with KrF rays (wavelength 248 nm) being preferred.
  • Long-wave light sources of 300 nm or more can also be used.
  • As light sources electrodeless ultraviolet lamp systems and hybrid curing of ultraviolet and infrared rays can be used.
  • Pulse exposure is an exposure method in which light is applied and paused repeatedly in short cycles (e.g., milliseconds or less).
  • the irradiation amount is, for example, preferably 0.03 to 2.5 J/cm 2 , more preferably 0.05 to 1.0 J/cm 2.
  • the oxygen concentration during exposure can be appropriately selected, and in addition to being performed under air, for example, exposure may be performed under a low-oxygen atmosphere with an oxygen concentration of 19 volume% or less (e.g., 15 volume%, 5 volume%, or substantially oxygen-free), or under a high-oxygen atmosphere with an oxygen concentration of more than 21 volume% (e.g., 22 volume%, 30 volume%, or 50 volume%).
  • the exposure illuminance can be appropriately set, and can usually be selected from the range of 1000 W/m 2 to 100,000 W/m 2 (e.g., 5,000 W/m 2 , 15,000 W/m 2 , or 35,000 W/m 2 ).
  • the oxygen concentration and exposure illuminance may be appropriately combined. For example, an oxygen concentration of 10% by volume and an illuminance of 10,000 W/m 2 , and an oxygen concentration of 35% by volume and an illuminance of 20,000 W/m 2 , can be used.
  • the unexposed parts of the coloring composition layer are developed and removed to form a pattern (pixels).
  • the unexposed parts of the coloring composition layer can be developed and removed using a developer.
  • the coloring composition layer in the unexposed parts in the exposure step dissolves into the developer, and only the photocured parts remain.
  • the temperature of the developer is preferably, for example, 20 to 30°C.
  • the development time is preferably 20 to 180 seconds.
  • the process of shaking off the developer every 60 seconds and then supplying new developer may be repeated several times.
  • the developer may be an organic solvent or an alkaline developer, with an alkaline developer being preferred.
  • the developer and the washing (rinsing) method after development may be as described in paragraph 0214 of WO 2022/085485.
  • Additional exposure processing and post-baking are curing processing after development to complete curing.
  • the heating temperature in post-baking is, for example, preferably 100 to 300°C, more preferably 200 to 270°C.
  • Post-baking can be performed continuously or batchwise using a heating means such as a hot plate, a convection oven (hot air circulation dryer), or a high-frequency heater to achieve the above conditions for the developed film.
  • a heating means such as a hot plate, a convection oven (hot air circulation dryer), or a high-frequency heater to achieve the above conditions for the developed film.
  • the light used for exposure has a wavelength of 400 nm or less.
  • additional exposure processing may be performed by the method described in Korean Patent Publication No. 10-2017-0122130.
  • the solid-state imaging device of the present invention has the above-mentioned film of the present invention.
  • the configuration of the solid-state imaging device is not particularly limited as long as it has the film of the present invention and functions as a solid-state imaging device, and examples thereof include the following configurations.
  • the substrate has a plurality of photodiodes constituting the light receiving area of a solid-state imaging element (such as a CCD (charge-coupled device) image sensor or a CMOS (complementary metal-oxide semiconductor) image sensor) and a transfer electrode made of polysilicon or the like, a light-shielding film that opens only the light receiving portion of the photodiode on the photodiode and the transfer electrode, a device protection film made of silicon nitride or the like formed on the light-shielding film so as to cover the entire light-shielding film and the light receiving portion of the photodiode, and a color filter on the device protection film.
  • a solid-state imaging element such as a CCD (charge-coupled device) image sensor or a CMOS (complementary metal-oxide semiconductor) image sensor
  • a transfer electrode made of polysilicon or the like
  • a light-shielding film that opens only the light receiving portion of the photodio
  • the device protection film may have a light-collecting means (e.g., a microlens, etc.; the same applies below) on the device protection film and below the color filter (the side closer to the substrate), or a light-collecting means on the color filter.
  • the color filter may have a structure in which each colored pixel is embedded in a space partitioned by partitions, for example in a lattice shape. In this case, it is preferable that the partitions have a lower refractive index than each colored pixel. Examples of imaging devices having such a structure include those described in JP 2012-227478 A, JP 2014-179577 A, and WO 2018/043654 A.
  • an ultraviolet absorbing layer may be provided in the structure of the solid-state imaging element to improve light resistance.
  • the imaging device equipped with the solid-state imaging element of the present invention can be used for digital cameras, electronic devices with imaging functions (such as mobile phones), as well as in-vehicle cameras and surveillance cameras.
  • the image display device of the present invention has the above-mentioned film of the present invention.
  • Examples of the image display device include liquid crystal display devices and organic electroluminescence display devices.
  • the definition of the image display device and details of each image display device are described, for example, in "Electronic Display Devices” (written by Akio Sasaki, published by Kogyo Chosakai Co., Ltd. in 1990) and “Display Devices” (written by Junsho Ibuki, published by Sangyo Tosho Co., Ltd. in 1989).
  • the liquid crystal display device is described, for example, in “Next Generation Liquid Crystal Display Technology” (edited by Tatsuo Uchida, published by Kogyo Chosakai Co., Ltd. in 1994).
  • There is no particular limitation on the liquid crystal display device to which the present invention can be applied and the present invention can be applied to various types of liquid crystal display devices described in the above "Next Generation Liquid Crystal Display Technology".
  • N-(2-(methacryloyloxy)ethyl)-N,N-dimethylbutan-1-aminium chloride prepared separately was added dropwise over 10 minutes. After stirring for 1 hour, 100 mL of butyl acetate was added and stirred for 30 minutes. The mixture was transferred to a separatory funnel and allowed to stand for 5 minutes, after which the lower organic layer was removed and the upper aqueous layer was discarded. The organic layer was returned to the separatory funnel again, 100 mL of water was added and the mixture was shaken. After allowing to stand for 5 minutes, the lower organic layer was transferred to a 500 mL measuring flask.
  • the mixture was transferred to a separatory funnel and allowed to stand for 5 minutes, after which the lower organic layer was removed and the upper aqueous layer was discarded.
  • the organic layer was returned to the previous three-neck flask, and a separately prepared methacroylcholine chloride aqueous solution was added dropwise over 10 minutes while stirring. After stirring for 30 minutes, the mixture was transferred to a separatory funnel and allowed to stand for 5 minutes, after which the lower organic layer was removed and the upper aqueous layer was discarded.
  • the organic layer was returned to the separatory funnel again, 100 mL of water was added, and the mixture was shaken. After standing for 5 minutes, the lower organic layer was transferred to a 500 mL measuring flask.
  • the mixture was transferred to a separatory funnel and left to stand for 5 minutes, after which the lower organic layer was removed and the upper aqueous layer was discarded.
  • the organic layer was returned to the previous three-neck flask, and a separately prepared methacroylcholine chloride aqueous solution was added dropwise over 10 minutes while stirring. After stirring for 30 minutes, the mixture was transferred to a separatory funnel and left to stand for 5 minutes, after which the lower organic layer was removed and the upper aqueous layer was discarded.
  • the organic layer was returned to the separatory funnel again, and 100 mL of water was added and shaken. After standing for 5 minutes, the lower organic layer was transferred to a 500 mL measuring flask.
  • the weight average molecular weight was measured using GPC (eluent: hexafluoro-2-propanol, column: Tosoh TSKgel Super AW3000, and molecular weight standard: polyethylene glycol) and found to be 8,000.
  • the concentration was adjusted to 0.030 g/mL using 1-methoxy-2-propanol, and the kinetic viscosity measured with an Ubbelohde viscometer (manufactured by Shibata Scientific Co., Ltd.) with a viscometer constant of 0.005 was 1.97 cSt.
  • the kinetic viscosity was 1.63 cSt.
  • the weight average molecular weight measured using GPC (eluent hexafluoro-2-propanol, column Tosoh TSKgel Super AW3000, and polyethylene glycol as molecular weight standard) was 7000.
  • the concentration was adjusted to 0.030 g/mL using 1-methoxy-2-propanol, and the kinetic viscosity measured with an Ubbelohde viscometer (manufactured by Shibata Scientific Co., Ltd.) with a viscometer constant of 0.005 was 2.18 cSt.
  • the kinetic viscosity was 1.63 cSt.
  • the weight average molecular weight measured using GPC (eluent hexafluoro-2-propanol, column Tosoh TSKgel Super AW3000, and polyethylene glycol as molecular weight standard) was 20,000.
  • the concentration was adjusted to 0.030 g/mL using 1-methoxy-2-propanol, and the kinetic viscosity measured with an Ubbelohde viscometer (manufactured by Shibata Scientific Co., Ltd.) with a viscometer constant of 0.005 was 2.10 cSt.
  • the kinetic viscosity was 1.63 cSt.
  • the weight average molecular weight measured using GPC (eluent hexafluoro-2-propanol, column Tosoh TSKgel Super AW3000, and polyethylene glycol as molecular weight standard) was 16,000.
  • the structures of compounds AP-1 to AP-21 and BP-1 are as follows.
  • the numbers attached to the main chain are mass ratios, and the numbers attached to the side chains are the number of repeating units.
  • the concentration was adjusted to 0.030 g/ml using 1-methoxy-2-propanol, and the kinetic viscosity measured with an Ubbelohde viscometer (manufactured by Shibata Scientific Co., Ltd.) with a viscometer constant of 0.005 was 1.97 cSt.
  • the kinetic viscosity of the 1-methoxy-2-propanol solvent was measured in the same manner, and was 1.63 cSt.
  • the weight average molecular weight measured using GPC (eluent hexafluoro-2-propanol, column Tosoh TSKgel Super AW3000, and polyethylene glycol as molecular weight standard) was 7000.
  • the specific absorbance of each compound was less than 5.
  • the specific absorbance of each compound was measured using 1-methoxy-2-propanol as a solvent.
  • Compounds AP-1 to AP-22 are salts of a compound d1 having an acid group and a cationic group and a counter anion d2 having a molecular weight of 50 or more, and have a weight average molecular weight of 2000 or more and a specific absorbance represented by the following formula (A ⁇ ) of 5 or less.
  • Compound BP-1 is a comparative compound.
  • E 1 A 1 / (c 1 ⁇ l 1 ) ... (A ⁇ )
  • E 1 Specific absorbance of the compound at the maximum absorption wavelength in the wavelength range of 400 to 700 nm
  • a 1 Absorbance of the compound at the maximum absorption wavelength in the wavelength range of 400 to 700 nm l 1 : Cell length in cm 1 : Concentration of a compound in solution, expressed in mg/ml
  • the ClogP value of the portion surrounded by the dotted line was calculated based on the monomer structure before polymerization.
  • the cationic group value of the portion corresponding to compound d1 constituting compound D is also shown in the table below.
  • PS-1 BYK-SYNERGIST 2100 (BYK)
  • PS-2 BYK-SYNERGIST 2105 (BYK)
  • PS-3 to PS-9 Compounds having the following structures
  • D-1 DISPERBYK-161 (manufactured by BYK-Chemie)
  • D-2 30% by mass propylene glycol monomethyl ether acetate solution of a resin having the following structure (the number added to the main chain is the molar ratio. The weight average molecular weight of the resin is 11,000)
  • D-3 30% by mass propylene glycol monomethyl ether acetate solution of a resin having the following structure (the number attached to the main chain is the molar ratio, and the number attached to the side chain is the number of repeating units.
  • the weight average molecular weight of the resin is 7000.
  • Dispersions 1 to 9 Dispersions 1 to 9 described above
  • A-2 A cyclohexanone solution (solids concentration: 12.3% by mass) of a dye having the following structure (xanthene dye, molecular weight: 704.24).
  • A-3 A cyclohexanone solution (solids concentration: 12.3% by mass) of a dye having the following structure (xanthene dye, weight average molecular weight: 10,000).
  • A-4 A cyclohexanone solution (solids concentration: 12.3% by mass) of a dye having the following structure (xanthene dye, molecular weight: 1,115.28).
  • A-5 A cyclohexanone solution (solid content: 12.3% by mass) of a dye having the following structure (molecular weight: 1,165.32)
  • A-6 A cyclohexanone solution (solid content: 12.3% by mass) of a dye having the following structure (molecular weight: 774.97)
  • A-7 A cyclohexanone solution (solid content: 12.3% by mass) of a dye having the following structure (molecular weight: 410.52)
  • A-8 C.I. Acid Red 289 (xanthene dye, molecular weight: 676.73) in cyclohexanone (solids concentration: 12.3% by weight)
  • A-9 A cyclohexanone solution (solids concentration: 12.3% by mass) of a colored polymer having the following structure (xanthene dye, weight average molecular weight: 9000)
  • A-10 A cyclohexanone solution (solid content: 12.3% by mass) of a dye having the following structure (molecular weight: 324.42)
  • A-11 A cyclohexanone solution (solid content: 12.3% by mass) of a dye having the following structure (molecular weight: 374.33).
  • A-20 Cyclohexanone solution of Acid Green 27 (solid content: 12.3% by mass)
  • A-21 Cyclohexanone solution of Acid Yellow 23 (solid content: 12.3% by mass)
  • A-22 Cyclohexanone solution of Solvent Blue 25 (solid content: 12.3% by mass)
  • A-23 Cyclohexanone solution of Acid Red 52 (solid content: 12.3% by mass)
  • A-24 A cyclohexanone solution of a dye having the following structure (solid content: 12.3% by mass)
  • A-25 A cyclohexanone solution of a dye having the following structure (solid content: 12.3% by mass)
  • A-26 A cyclohexanone solution of a dye having the following structure (solid content: 12.3% by mass)
  • A-27 A cyclohexanone solution of a dye having the following structure (solid content: 12.3% by mass)
  • A-28 A cyclohexanone solution of a dye having the following structure (solid content: 12.3% by mass)
  • A-29
  • the weight average molecular weight of the resin is 11,000.
  • P-4 40% by mass propylene glycol monomethyl ether acetate solution of a resin having the following structure (the number added to the main chain is the molar ratio of the repeating unit.
  • the weight average molecular weight of the resin is 11,000.
  • M-1 KAYARAD DPHA (a mixture of dipentaerythritol hexaacrylate and dipentaerythritol pentaacrylate, Nippon Kayaku Co., Ltd.)
  • M-2 and M-3 Compounds having the following structures
  • E-1 Compound having the following structure (ultraviolet absorber)
  • E-2 Compound having the following structure (weight average molecular weight 3500, compound having a cyclic ether group)
  • E-3 Compound having the following structure (weight average molecular weight 2300, compound having a cyclic ether group)
  • E-4 Compound having the following structure (silane coupling agent)
  • E-5 Compound having the following structure (silane coupling agent)
  • E-6 Compound having the following structure (silane coupling agent)
  • E-7 Compound having the following structure (antioxidant)
  • E-8 Lithium bis(trifluoromethanesulfonyl)imide
  • E-9 Sodium p-toluenesulfonate
  • E-10 Compound having the following structure (multifunctional thiol compound)
  • E-11 Compound having the following structure (multifunctional thiol compound)
  • ⁇ Performance evaluation> ⁇ Evaluation of Examples 1 to 69 and Comparative Examples 1 to 3>> (Evaluation of Light Fastness)
  • Each colored composition was applied onto a glass substrate by spin coating, and heat-treated (pre-baked) at 120°C for 120 seconds using a hot plate.
  • the obtained coating film was exposed to light through a mask with a 1.0 ⁇ m square dot pattern using an i-line stepper exposure device FPA-3000i5+ (Canon Inc.). Specifically, the coating film was irradiated with light having a wavelength of 365 nm at an exposure dose of 1000 mJ/ cm2 .
  • the glass substrate on which the exposed coating film was formed was placed on the horizontal rotating table of a spin-shower developer (DW-30 type, Chemitronics Co., Ltd.), and then paddle development was performed at 23°C for 60 seconds using a 60% diluted solution of CD-2000 (FUJIFILM Electronic Materials Co., Ltd.) to form a colored pattern.
  • the glass substrate on which the colored pattern was formed was fixed to a horizontal rotating table by a vacuum chuck method, and then the silicon wafer was rotated at a rotation speed of 50 rpm using a rotating device, while pure water was supplied from a spray nozzle in the form of a shower from above the center of rotation to perform a rinsing treatment, and then spray-dried.
  • a heat treatment (post-bake) was performed for 300 seconds using a hot plate at 200°C to form a colored pattern (pixel) with a thickness of 0.6 ⁇ m.
  • the obtained pixels were measured for light transmittance (transmittance) in the wavelength range of 400 to 700 nm using MCPD-3000 manufactured by Otsuka Electronics Co., Ltd.
  • the pixels prepared above were irradiated with light of 100,000 Lux for 2000 hours using a light resistance tester (Super Xenon Weather Meter SX75, manufactured by Suga Test Instruments Co., Ltd.) (total irradiation amount: 200 million Luxhr).
  • the transmittance of the pixels after light irradiation was measured, and the light resistance was evaluated according to the following criteria.
  • A The integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm after light irradiation is 98% or more of the integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm before light irradiation.
  • B The integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm after light irradiation is 94% or more and less than 98% of the integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm before light irradiation.
  • C The integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm after light irradiation is 90% or more and less than 94% of the integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm before light irradiation.
  • D The integrated value of the transmittance of the colored pixel at wavelengths of 400 to 700 nm after light irradiation is less than 90% of the integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm before light irradiation.
  • the silicon wafer on which the exposed composition layer had been formed was placed on the horizontal rotation table of a spin-shower developer (DW-30 model, manufactured by Chemitronics Corporation) and paddle-developed for 60 seconds at 23° C. using a developer (CD-2000, manufactured by FUJIFILM Electronic Materials Co., Ltd.).
  • a spin-shower developer DW-30 model, manufactured by Chemitronics Corporation
  • CD-2000 manufactured by FUJIFILM Electronic Materials Co., Ltd.
  • pure water was supplied in the form of a shower from a spray nozzle from above the center of rotation to perform a rinsing treatment, and then the wafer was spray-dried to form a pattern (pixels).
  • the obtained pattern was observed while changing the specific exposure dose, and the minimum exposure dose at which a square pattern with a side length of 1.0 ⁇ m was resolved was determined and evaluated according to the following evaluation criteria.
  • C The minimum exposure amount was 200 or more and less than 500 mJ/cm 2 .
  • D The minimum exposure amount was 500 or more and less than 1000 mJ/cm 2 .
  • E The minimum exposure amount was 1000 mJ/cm 2 or more.
  • CT-4000L (FUJIFILM Electronic Materials Co., Ltd.) was applied to an 8-inch (20.32 cm) silicon wafer by spin coating so that the thickness after post-baking was 0.1 ⁇ m, and heated at 220 ° C. for 300 seconds using a hot plate to form an undercoat layer, thereby obtaining a silicon wafer (support) with an undercoat layer.
  • Each coloring composition was applied by spin coating so that the thickness after post-baking was 0.6 ⁇ m, and then heated at 100 ° C. for 2 minutes using a hot plate.
  • the obtained coating film was exposed through a mask with a dot pattern of 1.0 ⁇ m square using an i-line stepper exposure device FPA-3000i5 + (Canon Inc.).
  • the coating film was irradiated with light having a wavelength of 365 nm at an exposure dose of 1000 mJ / cm 2 .
  • the silicon wafer on which the exposed coating film was formed was placed on the horizontal rotating table of a spin-shower developer (DW-30 type, Chemitronics Co., Ltd.), and then paddle development was performed for 60 seconds at 23 ° C. using a 60% diluted solution of CD-2000 (FUJIFILM Electronic Materials Co., Ltd.) to form a colored pattern on the silicon wafer.
  • the silicon wafer on which the colored pattern was formed was fixed to the horizontal rotating table by a vacuum chuck method, and then, while rotating the silicon wafer at a rotation speed of 50 rpm using a rotating device, pure water was supplied from a spray nozzle in the form of a shower from above the center of rotation to perform a rinse treatment, and then spray-dried.
  • a colored pattern (pixel) was formed by performing a heat treatment (post-bake) for 300 seconds using a hot plate at 200 ° C.
  • the silicon wafer on which the pixels were formed was observed using a scanning electron microscope (SEM) (magnification: 10,000 times), and the developability was evaluated according to the following evaluation criteria.
  • SEM scanning electron microscope
  • the rate of occurrence of voids was greater than 0 and equal to or less than 0.1.
  • 3 The rate of occurrence of voids was greater than 0.1 and equal to or less than 0.2.
  • 2 The rate of occurrence of voids was greater than 0.2 and equal to or less than 0.5.
  • 1 The rate of occurrence of voids was greater than 0.5 and equal to or less than 1.0.
  • the coating film was exposed to light (KrF line) with a wavelength of 248 nm through a patterned mask (0.5 ⁇ m ⁇ 0.5 ⁇ m) using a KrF scanner exposure machine under conditions of an illuminance of 35,000 W/m 2 and an exposure dose of 20 mJ/cm 2 .
  • the exposed coating film was subjected to shower development using a 0.3 mass % aqueous solution of tetramethylammonium hydroxide (TMAH) as a developer at 23° C. for 60 seconds, followed by rinsing with pure water by spin shower and post-baking at 230° C. for 2 minutes to form a colored pattern (pixels).
  • TMAH tetramethylammonium hydroxide
  • the exposure amount was changed in increments of 10 mJ/cm 2 up to 200 mJ/cm 2 , and the exposure amount capable of forming a pixel having a line width of 0.7 ⁇ m was examined, and the sensitivity was evaluated based on the following evaluation criteria.
  • C The exposure amount was more than 100 mJ/cm 2 and 150 mJ/cm 2 or less.
  • D The exposure amount was more than 150 mJ/ cm2 and 200 mJ/cm2 or less.
  • E The exposure amount was 200 mJ/cm 2 or more.
  • Pixels were formed in the same manner as in the evaluation of sensitivity, except that the exposure dose was set to 100 mJ/ cm2 .
  • the obtained pixels were observed at a magnification of 20,000 times using a scanning electron microscope (S-4800H, manufactured by Hitachi High-Technologies Corporation).
  • S-4800H scanning electron microscope
  • the number of peeled pixels out of the total number of pixels (1071 ⁇ 1071) formed in a partial region of the observed image was counted, and the adhesion was evaluated based on the following evaluation criteria.
  • B The number of peeled pixels was more than 10 and 20 or less.
  • C The number of peeled pixels was more than 20 and 50 or less.
  • D The number of peeled pixels was more than 50 and 200 or less.
  • E The number of peeled pixels was more than 200.
  • Each colored composition was applied onto a glass substrate by spin coating, and then heat-treated (pre-baked) at 120° C. for 120 seconds using a hot plate.
  • the obtained coating film was exposed by irradiating light (KrF line) having a wavelength of 248 nm through a mask (0.5 ⁇ m ⁇ 0.5 ⁇ m) having a pattern, using a KrF scanner exposure machine, under conditions of an illuminance of 35,000 W/m 2 and an exposure dose of 100 mJ/cm 2.
  • the glass substrate on which the exposed coating film was formed was placed on the horizontal rotating table of a spin-shower developer (DW-30 type, Chemitronics Corporation), and then paddle development was performed for 60 seconds at 23° C.
  • the glass substrate on which the colored pattern was formed was fixed to a horizontal rotating table by a vacuum chuck method, and then the silicon wafer was rotated at a rotation speed of 50 rpm using a rotating device, while pure water was showered from a spray nozzle from above the center of rotation to perform a rinsing treatment, and then spray-dried.
  • a heat treatment (post-bake) was performed for 300 seconds using a hot plate at 200°C to form a colored pattern (pixel) with a thickness of 0.45 ⁇ m.
  • the obtained pixels were measured for light transmittance (transmittance) in the wavelength range of 400 to 700 nm using MCPD-3000 manufactured by Otsuka Electronics Co., Ltd.
  • the pixels prepared above were irradiated with light of 100,000 Lux for 2000 hours using a light resistance tester (Super Xenon Weather Meter SX75, manufactured by Suga Test Instruments Co., Ltd.) (total irradiation amount: 200 million Luxhr).
  • the transmittance of the pixels after light irradiation was measured, and the light resistance was evaluated according to the following criteria.
  • A The integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm after light irradiation is 98% or more of the integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm before light irradiation.
  • B The integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm after light irradiation is 94% or more and less than 98% of the integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm before light irradiation.
  • C The integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm after light irradiation is 90% or more and less than 94% of the integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm before light irradiation.
  • D The integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm after light irradiation is less than 90% of the integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm before light irradiation.
  • the examples had better light resistance ratings than the comparative examples.
  • Examples 501 to 510> The Green composition was applied onto a silicon wafer by spin coating so that the film thickness after film formation was 1.0 ⁇ m. Then, a hot plate was used to heat the composition at 100° C. for 2 minutes. Then, an i-line stepper exposure device FPA-3000i5+ (manufactured by Canon Inc.) was used to expose the composition through a mask with a 2 ⁇ m square dot pattern at 1,000 mJ/cm 2. Then, a 0.3% by mass aqueous solution of tetramethylammonium hydroxide (TMAH) was used to perform paddle development at 23° C. for 60 seconds. Then, the composition was rinsed with a spin shower and further washed with pure water.
  • TMAH tetramethylammonium hydroxide
  • Examples 501 to 510 the colored compositions prepared in Examples 1 to 10 were used as the Blue composition.
  • Examples 501 to 510 correspond to examples in which the coloring compositions prepared in Examples 1 to 10 were used as the Blue composition.
  • the Green and Red compositions used in Examples 501 to 510 will be described later.
  • the Bayer pattern is a repeated pattern of a 2 ⁇ 2 array of color filter elements having one red element, two green elements, and one blue element, as disclosed in U.S. Pat. No. 3,971,065.
  • the obtained color filter was incorporated into a solid-state imaging device according to a known method. By using the coloring compositions prepared in Examples 1 to 10, a solid-state imaging device having suitable image recognition function and light resistance was obtained.
  • Green and Red compositions used in Examples 501 to 510 are as follows:
  • Green composition The following components were mixed and stirred, and then filtered through a nylon filter having a pore size of 0.45 ⁇ m (manufactured by Nippon Pall Co., Ltd.) to prepare a Green composition.
  • Green pigment dispersion 73.7 parts by mass Resin 4 (40 mass% PGMEA solution): 0.3 parts by mass Polymerizable compound 1: 1.2 parts by mass Photopolymerization initiator 1: 0.6 parts by mass Surfactant 1 : 4.2 parts by mass Ultraviolet absorber 1: 0.5 parts by mass PGMEA: 19.5 parts by mass
  • Red composition The following components were mixed and stirred, and then filtered through a nylon filter having a pore size of 0.45 ⁇ m (manufactured by Nippon Pall Corporation) to prepare a Red composition.
  • Red pigment dispersion 51.7 parts by weight
  • Resin 4 (40% by weight PGMEA solution): 0.6 parts by weight
  • Polymerizable compound 4 0.6 parts by weight
  • Photopolymerization initiator 1 0.3 parts by weight
  • Surfactant 1 4.2 parts by weight PGMEA: 42.6 parts by weight
  • Pigment Yellow 139 6.8 parts by mass of dispersant (DISPERBYK-161, BYK Chemie), and 79.3 parts by mass of PGMEA was mixed and dispersed for 3 hours using a bead mill (zirconia beads 0.3 mm diameter) to prepare a pigment dispersion. Thereafter, a dispersion treatment was performed using a high-pressure disperser NANO-3000-10 (Japan BEE Co., Ltd.) with a pressure reducing mechanism at a flow rate of 500 g/min under a pressure of 2,000 kg/cm3. This dispersion treatment was repeated 10 times to obtain a red pigment dispersion.
  • Polymerizable compound 1 KAYARAD DPHA (a mixture of dipentaerythritol hexaacrylate and dipentaerythritol pentaacrylate, Nippon Kayaku Co., Ltd.)
  • Polymerizable compound 4 a compound having the following structure
  • Resin 4 Resin having the following structure (the numbers added to the main chain are the molar ratios of the repeating units.
  • the weight average molecular weight of the resin is 11,000, and the acid value is 70 mgKOH/g.
  • Photopolymerization initiator 1 Irgacure OXE01 (BASF)
  • Surfactant 1 1% by mass PGMEA solution of the following mixture (weight average molecular weight 14,000): In the following formula, the units of % (62% and 38%) indicating the proportion of repeating units are % by mass.
  • Ultraviolet absorber 1 UV-503, manufactured by Daito Chemical Co., Ltd.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Optical Filters (AREA)
  • Materials For Photolithography (AREA)

Abstract

This coloring composition comprises: a coloring agent A containing a dye; a polymerization initiator B; a polymerizable compound C; and a compound D that is a salt formed by a compound d1 having an acid group and a cationic group and a counter anion d2 having a molecular weight of 50 or more, that has a specific absorbance of 5 or less as represented by formula (Aλ), and that has a weight average molecular weight of 2000 or more. In this film, this color filter, this solid-state imaging element, and this image display device, said coloring composition is used.

Description

着色組成物、膜、カラーフィルタ、固体撮像素子および画像表示装置Coloring composition, film, color filter, solid-state imaging device, and image display device
 本発明は、染料を含む着色組成物に関する。また、本発明は着色組成物を用いた膜、カラーフィルタ、固体撮像素子および画像表示装置に関する。 The present invention relates to a coloring composition containing a dye. The present invention also relates to a film, a color filter, a solid-state imaging device, and an image display device that use the coloring composition.
 近年、デジタルカメラ、スマートフォン等の普及から、相補型金属酸化膜半導体(CMOS)イメージセンサなどの固体撮像素子の需要が大きく伸びている。ディスプレイや光学素子のキーデバイスとしてカラーフィルタが使用されている。カラーフィルタは、通常、赤、緑及び青の3原色の画素を備えており、透過光を3原色へ分解する役割を果たしている。 In recent years, the popularity of digital cameras and smartphones has led to a large increase in demand for solid-state imaging elements such as complementary metal-oxide semiconductor (CMOS) image sensors. Color filters are used as key devices in displays and optical elements. Color filters usually have pixels of the three primary colors, red, green, and blue, and serve to separate transmitted light into the three primary colors.
 カラーフィルタの各色の画素は、例えば、着色剤を含む着色組成物を用い、フォトリソグラフィ法にてパターン形成を行って製造されている。例えば、特許文献1には、酸性染料と、バインダ樹脂と、可視光領域におけるモル吸光係数εの最大値が0以上3000以下である所定のイオン性化合物と、有機溶剤とを含有する着色組成物を用いて、フォトリソグラフィ法にてパターン形成を行ってカラーフィルタの画素を形成することが記載されている。 The pixels of each color of the color filter are manufactured, for example, by forming a pattern by photolithography using a coloring composition containing a colorant. For example, Patent Document 1 describes the formation of pixels of a color filter by forming a pattern by photolithography using a coloring composition containing an acid dye, a binder resin, a specific ionic compound whose maximum molar absorption coefficient ε in the visible light region is 0 to 3000, and an organic solvent.
特開2016-133604号公報JP 2016-133604 A
 一般的に染料は顔料よりも耐光性が低い傾向にあり、染料を含む着色組成物を用いて得られる膜の耐光性については、更なる改善の余地があった。 In general, dyes tend to have lower light resistance than pigments, and there is room for further improvement in the light resistance of films obtained using coloring compositions containing dyes.
 本発明者が特許文献1に記載された着色組成物について検討を進めたところ、この着色組成物であっても、現像後に得られる膜の耐光性については、更なる改善の余地があることが分かった。 As the inventors further investigated the coloring composition described in Patent Document 1, they found that even with this coloring composition, there was room for further improvement in the light resistance of the film obtained after development.
 よって、本発明の目的は、耐光性に優れた膜を形成することができる着色組成物を提供することにある。また、本発明の目的は、膜、カラーフィルタ、固体撮像素子および画像表示装置を提供することにある。 Therefore, an object of the present invention is to provide a coloring composition capable of forming a film having excellent light resistance. Another object of the present invention is to provide a film, a color filter, a solid-state imaging device, and an image display device.
 本発明は以下を提供する。 The present invention provides the following:
 <1> 染料を含む着色剤Aと、
 重合開始剤Bと、
 重合性化合物Cと、
 酸基及びカチオン性基を有する化合物d1と、分子量が50以上の対アニオンd2との塩であって、式(Aλ)で表される比吸光度が5以下である重量平均分子量2000以上の化合物Dと、
 を含む着色組成物;
 E=A/(c×l)   ・・・(Aλ)
 式(Aλ)中、Eは、波長400~700nmの範囲での最大吸収波長における化合物Dの比吸光度を表し、
 Aは、波長400~700nmの範囲での最大吸収波長における化合物Dの吸光度を表し、
 lは、単位がcmで表されるセル長を表し、
 cは、単位がmg/mlで表される、溶液中の化合物Dの濃度を表す。
 <2> 上記化合物d1が有する上記カチオン性基は、4級アンモニウムカチオン基である、<1>に記載の着色組成物。
 <3> 上記対アニオンd2は、式(BZ-1)~(BZ-8)のいずれかで表されるアニオンである、<1>または<2>に記載の着色組成物;
 式(BZ-1)中、R111は、-SO-R201または-CO-R201を表し、R112は、アルキル基、アリール基、-SO-R202または-CO-R202を表し、R201およびR202はそれぞれ独立して、ハロゲン原子、アルキル基またはアリール基を表し、R111とR112は、結合して環を形成していてもよい;
 式(BZ-2)中、R113は、-SO-R203または-CO-R203を表し、R114およびR115は、それぞれ独立して-SO-R204、-CO-R204またはシアノ基を表し、R203およびR204はそれぞれ独立して、ハロゲン原子、アルキル基またはアリール基を表し、R113と、R114またはR115は結合して環を形成していてもよい;
 式(BZ-3)中、R116~R119は、それぞれ独立して、ハロゲン原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基またはシアノ基を表す;
 式(BZ-4)中、R120は、アルキル基またはアリール基を表す;
 式(BZ-5)中、R121は、アルキル基またはアリール基を表す;
 式(BZ-6)中、R122は、アルキル基またはアリール基を表し、R123は、水素原子、アルキル基またはアリール基を表す;
 式(BZ-7)中、R124~R129は、それぞれ独立してハロゲン原子またはハロゲン化炭化水素基を表す;
 式(BZ-8)中、R130~R135は、それぞれ独立してハロゲン原子またはハロゲン化炭化水素基を表す。
 <4> 上記対アニオンd2はビス(フルオロアルキルスルホニル)イミドアニオンである、<1>または<2>に記載の着色組成物。
 <5> 上記化合物Dは重合性基を有する、<1>~<4>のいずれか1つに記載の着色組成物。
 <6> 上記重合性基はエチレン不飽和結合含有基であり、
 上記化合物Dのエチレン性不飽和結合価が0.7mmol/g以上である、<5>に記載の着色組成物。
 <7> 上記化合物d1が有する酸基はカルボキシ基である、<1>~<6>のいずれか1つに記載の着色組成物。
 <8> 上記化合物Dの酸価が0.20~1.20mmol/gである、<1>~<7>のいずれか1つに記載の着色組成物。
 <9> 上記化合物d1は、酸基を有する繰り返し単位d1-1と、カチオン性基を有する繰り返し単位d1-2とを有するポリマーであり、
 上記化合物Dは、上記繰り返し単位d1-2のカチオン性基に、上記対アニオンd2が配位して塩を形成しており、
 上記繰り返し単位d1-2と上記対アニオンd2とで形成される塩構造のClogP値が-10.0~0.3である、<1>~<8>のいずれか1つに記載の着色組成物。
 <10> 上記染料はカチオン及びアニオンを含む化学構造を有する染料を含む、<1>~<9>のいずれか1つに記載の着色組成物。
 <11> 上記染料はキサンテン染料を含む、<1>~<10>のいずれか1つに記載の着色組成物。
 <12> 上記染料は染料多量体を含む、<1>~<11>のいずれか1つに記載の着色組成物。
 <13> 上記着色組成物の全固形分中における上記重合性化合物Cの含有量が5~30質量%である、<1>~<12>のいずれか1つに記載の着色組成物。
 <14> 上記着色組成物中における塩化物イオン濃度が100質量ppm以下である、<1>~<13>のいずれか1つに記載の着色組成物。
 <15> <1>~<14>のいずれか1つに記載の着色組成物を用いて得られる膜。
 <16> <15>に記載の膜を有するカラーフィルタ。
 <17> <15>に記載の膜を有する固体撮像素子。
 <18> <15>に記載の膜を有する画像表示装置。
<1> A colorant A containing a dye;
A polymerization initiator B;
A polymerizable compound C,
A compound D which is a salt of a compound d1 having an acid group and a cationic group and a counter anion d2 having a molecular weight of 50 or more, the compound D having a weight average molecular weight of 2000 or more and a specific absorbance of 5 or less and represented by the formula (Aλ),
A coloring composition comprising:
E 1 = A 1 / (c 1 × l 1 ) ... (Aλ)
In formula (Aλ), E 1 represents the specific absorbance of compound D at the maximum absorption wavelength in the wavelength range of 400 to 700 nm;
A 1 represents the absorbance of compound D at the maximum absorption wavelength in the wavelength range of 400 to 700 nm;
l1 represents the cell length in cm;
c1 represents the concentration of compound D in the solution, expressed in mg/ml.
<2> The colored composition according to <1>, in which the cationic group contained in the compound d1 is a quaternary ammonium cationic group.
<3> The colored composition according to <1> or <2>, wherein the counter anion d2 is an anion represented by any one of formulas (BZ-1) to (BZ-8).
In formula (BZ-1), R 111 represents -SO 2 -R 201 or -CO-R 201 , R 112 represents an alkyl group, an aryl group, -SO 2 -R 202 or -CO-R 202 , R 201 and R 202 each independently represent a halogen atom, an alkyl group or an aryl group, and R 111 and R 112 may be bonded to form a ring;
In formula (BZ-2), R 113 represents -SO 2 -R 203 or -CO-R 203 , R 114 and R 115 each independently represent -SO 2 -R 204 , -CO-R 204 or a cyano group, R 203 and R 204 each independently represent a halogen atom, an alkyl group or an aryl group, and R 113 and R 114 or R 115 may be bonded to form a ring;
In formula (BZ-3), R 116 to R 119 each independently represent a halogen atom, an alkyl group, an aryl group, an alkoxy group, an aryloxy group, or a cyano group;
In formula (BZ-4), R 120 represents an alkyl group or an aryl group;
In formula (BZ-5), R 121 represents an alkyl group or an aryl group;
In formula (BZ-6), R 122 represents an alkyl group or an aryl group, and R 123 represents a hydrogen atom, an alkyl group, or an aryl group;
In formula (BZ-7), R 124 to R 129 each independently represent a halogen atom or a halogenated hydrocarbon group;
In formula (BZ-8), R 130 to R 135 each independently represent a halogen atom or a halogenated hydrocarbon group.
<4> The colored composition according to <1> or <2>, wherein the counter anion d2 is a bis(fluoroalkylsulfonyl)imide anion.
<5> The colored composition according to any one of <1> to <4>, wherein the compound D has a polymerizable group.
<6> The polymerizable group is an ethylenically unsaturated bond-containing group,
The colored composition according to <5>, wherein the compound D has an ethylenically unsaturated bond valence of 0.7 mmol/g or more.
<7> The colored composition according to any one of <1> to <6>, wherein the acid group contained in the compound d1 is a carboxy group.
<8> The colored composition according to any one of <1> to <7>, wherein the acid value of the compound D is 0.20 to 1.20 mmol/g.
<9> The compound d1 is a polymer having a repeating unit d1-1 having an acid group and a repeating unit d1-2 having a cationic group,
In the compound D, the counter anion d2 is coordinated to the cationic group of the repeating unit d1-2 to form a salt,
The colored composition according to any one of <1> to <8>, wherein a ClogP value of a salt structure formed by the repeating unit d1-2 and the counter anion d2 is −10.0 to 0.3.
<10> The coloring composition according to any one of <1> to <9>, wherein the dye includes a dye having a chemical structure including a cation and an anion.
<11> The coloring composition according to any one of <1> to <10>, wherein the dye includes a xanthene dye.
<12> The coloring composition according to any one of <1> to <11>, wherein the dye includes a dye multimer.
<13> The colored composition according to any one of <1> to <12>, wherein the content of the polymerizable compound C in the total solid content of the colored composition is 5 to 30 mass %.
<14> The colored composition according to any one of <1> to <13>, wherein a chloride ion concentration in the colored composition is 100 ppm by mass or less.
<15> A film obtained by using the colored composition according to any one of <1> to <14>.
<16> A color filter having the film according to <15>.
<17> A solid-state imaging device having the film according to <15>.
<18> An image display device having the film according to <15>.
 本発明は、耐光性に優れた膜を形成することができる着色組成物を提供することができる。また、本発明は、着色組成物を用いた膜、カラーフィルタ、固体撮像素子および画像表示装置を提供することができる。 The present invention can provide a coloring composition capable of forming a film with excellent light resistance. The present invention can also provide a film, a color filter, a solid-state imaging device, and an image display device using the coloring composition.
 以下において、本発明の内容について詳細に説明する。
 本明細書において、「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書における基(原子団)の表記において、置換および無置換を記していない表記は、置換基を有さない基(原子団)と共に置換基を有する基(原子団)をも包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。
 本明細書において「露光」とは、特に断らない限り、光を用いた露光のみならず、電子線、イオンビーム等の粒子線を用いた描画も露光に含める。また、露光に用いられる光としては、水銀灯の輝線スペクトル、エキシマレーザに代表される遠紫外線、極紫外線(EUV光)、X線、電子線等の活性光線または放射線が挙げられる。
 本明細書において、「(メタ)アクリレート」は、アクリレートおよびメタクリレートの双方、または、いずれかを表し、「(メタ)アクリル」は、アクリルおよびメタクリルの双方、または、いずれかを表し、「(メタ)アクリロイル」は、アクリロイルおよびメタクリロイルの双方、または、いずれかを表す。
 本明細書において、構造式中のMeはメチル基を表し、Etはエチル基を表し、Buはブチル基を表し、Phはフェニル基を表す。
 本明細書において、重量平均分子量および数平均分子量は、GPC(ゲルパーミエーションクロマトグラフィ)法により測定したポリスチレン換算値である。
 本明細書において、全固形分とは、組成物の全成分から溶剤を除いた成分の総質量をいう。
 本明細書において、顔料とは、溶剤に対して溶解しにくい色材を意味する。
 本明細書において、染料とは、溶剤に対して溶解しやすい色材を意味する。
 本明細書において、カチオンとは、正電荷を有する原子、又は正電荷を有する原子団を意味する。
 本明細書において、アニオンとは、負電荷を有する原子、又は負電荷を有する原子団を意味する。
 本明細書において、名称の前、又は名称の後に付記される記号(例えば、A、B、C、及びDなど)は、構成要素を区別するために使用する用語であり、構成要素の種類、構成要素の数、及び構成要素の優劣を制限するものではない。
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
The present invention will be described in detail below.
In this specification, the use of "to" means that the numerical values before and after it are included as the lower limit and upper limit.
In the description of groups (atomic groups) in this specification, when there is no indication of whether they are substituted or unsubstituted, the term encompasses both unsubstituted groups (atomic groups) and substituted groups (atomic groups). For example, the term "alkyl group" encompasses not only alkyl groups that have no substituents (unsubstituted alkyl groups) but also alkyl groups that have substituents (substituted alkyl groups).
In this specification, unless otherwise specified, the term "exposure" includes not only exposure using light but also drawing using particle beams such as electron beams and ion beams. Examples of light used for exposure include the bright line spectrum of a mercury lamp, far ultraviolet light represented by an excimer laser, extreme ultraviolet light (EUV light), X-rays, active rays or radiation such as electron beams.
In this specification, "(meth)acrylate" refers to both or either of acrylate and methacrylate, "(meth)acrylic" refers to both or either of acrylic and methacrylic, and "(meth)acryloyl" refers to both or either of acryloyl and methacryloyl.
In this specification, in the structural formulae, Me represents a methyl group, Et represents an ethyl group, Bu represents a butyl group, and Ph represents a phenyl group.
In this specification, the weight average molecular weight and number average molecular weight are values calculated in terms of polystyrene measured by GPC (gel permeation chromatography).
In this specification, the total solids content refers to the total mass of all components of the composition excluding the solvent.
In this specification, a pigment means a coloring material that is difficult to dissolve in a solvent.
In this specification, a dye means a coloring material that is easily soluble in a solvent.
As used herein, cation refers to a positively charged atom or group of atoms.
As used herein, anion refers to a negatively charged atom or group of atoms.
In this specification, symbols (e.g., A, B, C, and D) added before or after a name are terms used to distinguish components, and do not limit the type, number, or superiority of the components.
In this specification, the term "process" refers not only to an independent process, but also to a process that cannot be clearly distinguished from other processes, as long as the intended effect of the process is achieved.
<着色組成物>
 本発明の着色組成物は、
 染料を含む着色剤Aと、
 重合開始剤Bと、
 重合性化合物Cと、
 酸基及びカチオン性基を有する化合物d1と、分子量が50以上の対アニオンd2との塩であって、式(Aλ)で表される比吸光度が5以下である重量平均分子量2000以上の化合物Dと、
 を含むことを特徴とする。
<Coloring Composition>
The coloring composition of the present invention comprises
A colorant A containing a dye;
A polymerization initiator B;
A polymerizable compound C,
A compound D which is a salt of a compound d1 having an acid group and a cationic group and a counter anion d2 having a molecular weight of 50 or more, the compound D having a weight average molecular weight of 2000 or more and a specific absorbance of 5 or less and represented by the formula (Aλ),
The present invention is characterized by comprising:
 本発明の着色組成物は、耐光性に優れた膜を形成することができる。このような効果が得られる詳細な理由は不明であるが、次によるものであると推測される。本発明の着色組成物は上述した化合物Dを含むので、製膜時において上述した化合物Dによって染料の会合形成を促進させることができると推測される。また、化合物Dは、比較的分子量の大きい化合物であるため、化合物Dによって重合性化合物Cなどの膜形成成分を疑似架橋して、現像時において、膜からの化合物Dや染料の流出を抑制できると推測される。このため、本発明の着色組成物を用いることにより、耐光性に優れた膜を形成することができたと推測される。 The coloring composition of the present invention can form a film with excellent light resistance. The detailed reason why such an effect is obtained is unknown, but it is speculated to be due to the following. Since the coloring composition of the present invention contains the above-mentioned compound D, it is speculated that the above-mentioned compound D can promote the formation of dye associations during film formation. In addition, since compound D is a compound with a relatively large molecular weight, it is speculated that compound D can pseudo-crosslink film-forming components such as polymerizable compound C, thereby suppressing the outflow of compound D and dye from the film during development. For this reason, it is speculated that a film with excellent light resistance can be formed by using the coloring composition of the present invention.
 また、本発明の着色組成物によれば、欠けの抑制された画素を形成することもできる。このような効果が得られる詳細な理由は不明であるが、本発明の着色組成物は上述した化合物Dを含むので、製膜時において上述した化合物Dによって重合性化合物Cなどの膜形成成分を疑似架橋させることができると推測される。このため、本発明の着色組成物によれば、露光によって強固な膜を形成することができ、その結果、未露光部を現像除去する際において、露光部の膜についての欠けなどを抑制できたためであると推測される。 Furthermore, with the coloring composition of the present invention, it is also possible to form pixels in which chipping is suppressed. Although the detailed reasons why such an effect is obtained are unclear, it is speculated that since the coloring composition of the present invention contains the above-mentioned compound D, the above-mentioned compound D can pseudo-crosslink film-forming components such as polymerizable compound C during film formation. For this reason, it is speculated that with the coloring composition of the present invention, a strong film can be formed by exposure to light, and as a result, chipping of the film in the exposed areas can be suppressed when the unexposed areas are developed and removed.
 本発明の着色組成物は、カラーフィルタ用の着色組成物として好ましく用いることができる。より詳しくは、カラーフィルタの画素形成用の着色組成物として好ましく用いることができる。カラーフィルタにおける画素の種類としては、赤色画素、緑色画素、青色画素、マゼンタ色画素、シアン色画素、黄色画素などが挙げられる。本発明の着色組成物は、国際公開第2019/102887号に記載された画素構成にも好適に使用することができる。以下、本発明の着色組成物に用いられる各成分について説明する。 The coloring composition of the present invention can be preferably used as a coloring composition for color filters. More specifically, it can be preferably used as a coloring composition for forming pixels of a color filter. Examples of the types of pixels in a color filter include red pixels, green pixels, blue pixels, magenta pixels, cyan pixels, and yellow pixels. The coloring composition of the present invention can also be preferably used for the pixel configuration described in WO 2019/102887. Each component used in the coloring composition of the present invention will be described below.
<<着色剤A>>
 本発明の着色組成物は着色剤A(以下、着色剤という)を含有する。着色剤としては、顔料および染料が挙げられる。本発明の着色組成物に含まれる着色剤は、染料を含むことが好ましい。
<<Colorant A>>
The coloring composition of the present invention contains a colorant A (hereinafter referred to as a colorant). Examples of the colorant include a pigment and a dye. The colorant contained in the coloring composition of the present invention preferably contains a dye.
-染料-
 染料の種類は制限されない。染料としては、公知の染料を利用することができる。赤色染料、青色染料、緑色染料、シアン色染料、マゼンタ色染料及び黄色染料などが挙げられる。一態様として、シアン色染料、マゼンタ色染料及び黄色染料から選ばれる少なくとも1種を用いる態様が挙げられる。
-dye-
The type of dye is not limited. Known dyes can be used as the dye. Examples of the dye include red dyes, blue dyes, green dyes, cyan dyes, magenta dyes, and yellow dyes. In one embodiment, at least one dye selected from the group consisting of cyan dyes, magenta dyes, and yellow dyes is used.
 染料としては、トリアリールメタン色素構造、キサンテン色素構造、アントラキノン色素構造、シアニン色素構造、スクアリリウム色素構造、キノフタロン色素構造、フタロシアニン色素構造、サブフタロシアニン色素構造、アゾ色素構造、ピラゾロトリアゾール色素構造、ジピロメテン色素構造、イソインドリン色素構造、チアゾール色素構造、ベンズイミダゾロン色素構造、ぺリノン色素構造、ピロロピロール色素構造、ジケトピロロピロール色素構造、ジイミニウム色素構造、ナフタロシアニン色素構造、リレン色素構造、ジベンゾフラノン色素構造、メロシアニン色素構造、クロコニウム色素構造およびオキソノール色素構造から選ばれる色素構造を有する化合物であることが好ましく、トリアリールメタン色素構造、キサンテン色素構造、アントラキノン色素構造、シアニン色素構造、スクアリリウム色素構造、キノフタロン色素構造、フタロシアニン色素構造、サブフタロシアニン色素構造、アゾ色素構造、チアゾール色素構造、ピラゾロトリアゾール色素構造およびジピロメテン色素構造から選ばれる色素構造を有する化合物であることがより好ましく、トリアリールメタン色素構造、キサンテン色素構造、シアニン色素構造およびスクアリリウム色素構造から選ばれる色素構造を有する化合物であることが更に好ましく、トリアリールメタン色素構造またはキサンテン色素構造を有する化合物であることがより一層好ましく、キサンテン色素構造を有する化合物であることが特に好ましい。すなわち、染料はキサンテン染料であることが好ましい。 The dye is preferably a compound having a dye structure selected from a triarylmethane dye structure, a xanthene dye structure, an anthraquinone dye structure, a cyanine dye structure, a squarylium dye structure, a quinophthalone dye structure, a phthalocyanine dye structure, a subphthalocyanine dye structure, an azo dye structure, a pyrazolotriazole dye structure, a dipyrromethene dye structure, an isoindoline dye structure, a thiazole dye structure, a benzimidazolone dye structure, a perinone dye structure, a pyrrolopyrrole dye structure, a diketopyrrolopyrrole dye structure, a diiminium dye structure, a naphthalocyanine dye structure, a rylene dye structure, a dibenzofuranone dye structure, a merocyanine dye structure, a croconium dye structure, and an oxonol dye structure, and It is more preferable that the dye is a compound having a dye structure selected from an arylmethane dye structure, a xanthene dye structure, an anthraquinone dye structure, a cyanine dye structure, a squarylium dye structure, a quinophthalone dye structure, a phthalocyanine dye structure, a subphthalocyanine dye structure, an azo dye structure, a thiazole dye structure, a pyrazolotriazole dye structure, and a dipyrromethene dye structure, and it is even more preferable that the dye is a compound having a dye structure selected from a triarylmethane dye structure, a xanthene dye structure, a cyanine dye structure, and a squarylium dye structure, and it is even more preferable that the dye is a compound having a triarylmethane dye structure or a xanthene dye structure, and it is particularly preferable that the dye is a compound having a xanthene dye structure. That is, it is preferable that the dye is a xanthene dye.
 25℃のプロピレングリコールメチルエーテルアセテート100gに対する染料の溶解量は、0.01g以上であることが好ましく、0.5g以上であることがより好ましく、1g以上であることが更に好ましい。 The amount of dye dissolved in 100 g of propylene glycol methyl ether acetate at 25°C is preferably 0.01 g or more, more preferably 0.5 g or more, and even more preferably 1 g or more.
 本発明で用いられる染料は、カチオン及びアニオンを含む化学構造を有する染料であることが好ましい。以下、カチオン及びアニオンを含む化学構造を有する染料を染料Aともいう。また、染料Aのカチオンを「カチオンAX」という。また、染料Aのアニオンを「アニオンAZ」という。 The dye used in the present invention is preferably a dye having a chemical structure containing a cation and an anion. Hereinafter, the dye having a chemical structure containing a cation and an anion is also referred to as dye A. The cation of dye A is referred to as "cation AX + ". The anion of dye A is referred to as "anion AZ - ".
 染料Aにおいて、アニオンAZは、カチオンAXの分子外に存在していてもよい。「アニオンAZはカチオンAXの分子外に存在している」とは、アニオンAZが、カチオンAXと共有結合を介して結合しておらず、カチオンAXとは独立した構造単位として存在している状態をいう。上記のような染料Aの形態としては、例えば、塩が挙げられる。以下、カチオンの分子外に存在するアニオンを対アニオンともいう。染料Aにおいて、アニオンAZは、カチオンAXと共有結合を介して結合していることが好ましい。すなわち、染料Aの形態は、分子内塩(両性イオンともいう)であることが好ましい。 In dye A, anion AZ - may exist outside the molecule of cation AX + . "Anion AZ - exists outside the molecule of cation AX + " means that anion AZ - is not bonded to cation AX + via a covalent bond and exists as a structural unit independent of cation AX + . Examples of the form of dye A as described above include salts. Hereinafter, an anion existing outside the molecule of a cation is also referred to as a counter anion. In dye A, anion AZ - is preferably bonded to cation AX + via a covalent bond. That is, the form of dye A is preferably an intramolecular salt (also referred to as a zwitterion).
 アニオンAZの種類としては、フッ素アニオン、塩素アニオン、臭素アニオン、ヨウ素アニオン、シアン化物イオン、過塩素酸アニオン、カルボン酸アニオン、スルホン酸アニオン、リン原子を含むアニオン、イミドアニオン、メチドアニオン、ボレートアニオン、SbF 等が挙げられ、イミドアニオン、メチドアニオンおよびボレートアニオンであることが好ましく、イミドアニオンおよびメチドアニオンであることがより好ましく、低求核性であるという理由からイミドアニオンであることが更に好ましい。イミドアニオンとしては、ビス(スルホニル)イミドアニオンが好ましい。メチドアニオンとしては、トリス(スルホニル)メチドアニオンが好ましい。ボレートアニオンとしては、テトラアリールボレートアニオン、テトラシアノボレートアニオン、テトラフルオロボレートアニオンなどが挙げられる。 Examples of the anion AZ- include a fluorine anion, a chlorine anion, a bromine anion, an iodine anion, a cyanide ion, a perchlorate anion, a carboxylate anion, a sulfonate anion, an anion containing a phosphorus atom, an imide anion, a methide anion, a borate anion, and SbF6- . The imide anion, the methide anion, and the borate anion are preferable, the imide anion and the methide anion are more preferable, and the imide anion is even more preferable because of its low nucleophilicity. The imide anion is preferably a bis(sulfonyl)imide anion. The methide anion is preferably a tris(sulfonyl)methide anion. The borate anion includes a tetraarylborate anion, a tetracyanoborate anion, and a tetrafluoroborate anion.
 カチオンAXの種類としては、例えば、キサンテン色素構造を有するカチオン、トリアリールメタン色素構造を有するカチオン、シアニン色素構造を有するカチオン、及びスクアリリウム色素構造を有するカチオンが挙げられる。カチオンAXは、キサンテン色素構造を有するカチオンまたはトリアリールメタン色素構造を有するカチオンであることが好ましく、本発明の効果がより顕著に得られやすいという理由から、キサンテン色素構造を有するカチオンであることがより好ましい。 Examples of the type of cation AX + include a cation having a xanthene dye structure, a cation having a triarylmethane dye structure, a cation having a cyanine dye structure, and a cation having a squarylium dye structure.Cation AX + is preferably a cation having a xanthene dye structure or a cation having a triarylmethane dye structure, and more preferably a cation having a xanthene dye structure because the effects of the present invention are more likely to be obtained.
 キサンテン色素構造のカチオンAXを有する染料としては、式(XT-1)で表される化合物が挙げられる。 An example of a dye having a xanthene dye structure having a cation AX + is a compound represented by formula (XT-1).
 式(XT-1)中、Rxt1~Rxt4は、それぞれ独立して、水素原子、アルキル基またはアリール基を表し、Rxt5は置換基を表し、mは0~5の整数を表し、Zxtは対アニオンを表す。Zxtが存在しない場合は、Rxt1~Rxt5の少なくとも1つはアニオンを含む。 In formula (XT-1), R xt1 to R xt4 each independently represent a hydrogen atom, an alkyl group or an aryl group, R xt5 represents a substituent, m represents an integer of 0 to 5, and Z xt represents a counter anion. When Z xt is not present, at least one of R xt1 to R xt5 contains an anion.
 Rxt1~Rxt4が表すアルキル基およびアリール基は、置換基を有していてもよい。置換基としては、後述する置換基Tで挙げた基および重合性基などが挙げられる。
 Rxt5が表す置換基としては、後述する置換基Tで挙げた基および重合性基などが挙げられる。
The alkyl group and aryl group represented by R xt1 to R xt4 may have a substituent, such as the groups exemplified as the substituent T described below and polymerizable groups.
Examples of the substituent represented by R xt5 include the groups exemplified as the substituent T described below and polymerizable groups.
 式(XT-1)において、Zxtは、対アニオンを表す。対アニオンは、フッ素アニオン、塩素アニオン、臭素アニオン、ヨウ素アニオン、シアン化物イオン、過塩素酸アニオン、カルボン酸アニオン、スルホン酸アニオン、リン原子を含むアニオン、イミドアニオン、メチドアニオン、ボレートアニオン、SbF 等が挙げられ、イミドアニオン、メチドアニオンおよびボレートアニオンが好ましく、イミドアニオンおよびメチドアニオンがより好ましく、イミドアニオンが更に好ましい。イミドアニオンとしては、ビス(スルホニル)イミドアニオンが好ましい。メチドアニオンとしては、トリス(スルホニル)メチドアニオンが好ましい。ボレートアニオンとしては、テトラアリールボレートアニオン、テトラシアノボレートアニオン、テトラフルオロボレートアニオンなどが挙げられる。対アニオンの分子量は、100~1000が好ましく、200~500がより好ましい。 In formula (XT-1), Z xt represents a counter anion. Examples of the counter anion include a fluorine anion, a chlorine anion, a bromine anion, an iodine anion, a cyanide ion, a perchlorate anion, a carboxylate anion, a sulfonate anion, an anion containing a phosphorus atom, an imide anion, a methide anion, a borate anion, SbF 6 - , and the like. The imide anion, the methide anion, and the borate anion are preferred, the imide anion and the methide anion are more preferred, and the imide anion is even more preferred. The imide anion is preferably a bis(sulfonyl)imide anion. The methide anion is preferably a tris(sulfonyl)methide anion. The borate anion is preferably a tetraarylborate anion, a tetracyanoborate anion, a tetrafluoroborate anion, and the like. The molecular weight of the counter anion is preferably 100 to 1000, and more preferably 200 to 500.
 式(XT-1)において、Rxt1~Rxt5の少なくとも1つがアニオンを含む場合、アニオンとしては、カルボン酸アニオン、スルホン酸アニオン、リン原子を含むアニオン、イミドアニオン、メチドアニオンおよびボレートアニオンが挙げられ、イミドアニオン、メチドアニオンおよびボレートアニオンが好ましく、イミドアニオンおよびメチドアニオンがより好ましく、イミドアニオンが更に好ましい。イミドアニオンとしては、ビス(スルホニル)イミドアニオンが好ましい。メチドアニオンとしては、トリス(スルホニル)メチドアニオンが好ましい。具体的には、Rxt1~Rxt5の少なくとも1つが、式(AZ-1)で表される部分構造を含む基であるか、式(AZ-2)で表される部分構造を含む基であることが好ましく、式(AZ-1)で表される部分構造を含む基であることがより好ましい。
In the formula (XT-1), when at least one of R xt1 to R xt5 contains an anion, the anion may be a carboxylate anion, a sulfonate anion, an anion containing a phosphorus atom, an imide anion, a methide anion, or a borate anion. The imide anion, the methide anion, or the borate anion are preferred, the imide anion and the methide anion are more preferred, and the imide anion is even more preferred. The imide anion is preferably a bis(sulfonyl)imide anion. The methide anion is preferably a tris(sulfonyl)methide anion. Specifically, at least one of R xt1 to R xt5 is preferably a group containing a partial structure represented by formula (AZ-1) or a group containing a partial structure represented by formula (AZ-2), and more preferably a group containing a partial structure represented by formula (AZ-1).
 上記式中の波線は他の原子または原子団との結合手を表す。 The wavy lines in the above formula represent bonds to other atoms or atomic groups.
 Rxt1~Rxt5の少なくとも1つがアニオンを含む場合、Rxt1~Rxt5の少なくとも1つが式(P-1)で表される置換基を有することも好ましい。
 式(P-1)中、Lは、単結合または2価の連結基を表し、単結合であることが好ましい。Lが表す2価の連結基としては、炭素数1~6のアルキレン基、炭素数6~12のアリーレン基、-O-、-S-、またはこれらの組み合わせからなる基等が挙げられる。Lは、-SO-または-CO-を表す。Gは、炭素原子または窒素原子を表す。n1は、Gが炭素原子の場合2を表し、Gが窒素原子の場合1を表す。Rは、フッ素原子を含むアルキル基またはフッ素原子を含むアリール基を表す。n1が2の場合、2つのRはそれぞれ同一でも異なっていても良い。Rが表すフッ素原子を含むアルキル基の炭素数は、1~10が好ましく、1~6がより好ましく、1~3がさらに好ましい。Rが表すフッ素原子を含むアリール基の炭素数は、6~20が好ましく、6~14がより好ましく、6~10がさらに好ましい。フッ素原子を含むアルキル基およびフッ素原子を含むアリール基はさらに置換基を有していてもよい。置換基としては、後述する置換基Tや重合性基などが挙げられる。
When at least one of R xt1 to R xt5 contains an anion, it is also preferable that at least one of R xt1 to R xt5 has a substituent represented by formula (P-1).
In formula (P-1), L 1 represents a single bond or a divalent linking group, and is preferably a single bond. Examples of the divalent linking group represented by L 1 include an alkylene group having 1 to 6 carbon atoms, an arylene group having 6 to 12 carbon atoms, -O-, -S-, or a group consisting of a combination thereof. L 2 represents -SO 2 - or -CO-. G represents a carbon atom or a nitrogen atom. n1 represents 2 when G is a carbon atom, and represents 1 when G is a nitrogen atom. R 6 represents an alkyl group containing a fluorine atom or an aryl group containing a fluorine atom. When n1 is 2, the two R 6 may be the same or different. The number of carbon atoms of the alkyl group containing a fluorine atom represented by R 6 is preferably 1 to 10, more preferably 1 to 6, and even more preferably 1 to 3. The number of carbon atoms of the aryl group containing a fluorine atom represented by R 6 is preferably 6 to 20, more preferably 6 to 14, and even more preferably 6 to 10. The fluorine atom-containing alkyl group and the fluorine atom-containing aryl group may further have a substituent, such as the substituent T described below or a polymerizable group.
 トリアリールメタン色素構造のカチオンAXを有する染料としては、式(TP-1)で表される化合物が挙げられる。 An example of a dye having a cation AX + of a triarylmethane dye structure is a compound represented by formula (TP-1).
 式(TP-1)中、Rtp1~Rtp4は、それぞれ独立して、水素原子、アルキル基またはアリール基を表し、Rtp5は、水素原子、アルキル基、アリール基またはNRtp9tp10(Rtp9およびRtp10は水素原子、アルキル基またはアリール基を表す)を表し、Rtp6、Rtp7およびRtp8は、それぞれ独立して置換基を表し、
 a、bおよびcは、それぞれ独立して0~4の整数を表し、
 a、bおよびcが2以上の場合、R同士、Rtp7同士およびRtp8同士は、それぞれ連結して環を形成してもよく、
 Ztpは対アニオンを表し、Ztpが存在しない場合は、Rtp1~Rtp8の少なくとも1つがアニオンを含む。
In formula (TP-1), R tp1 to R tp4 each independently represent a hydrogen atom, an alkyl group, or an aryl group; R tp5 represents a hydrogen atom, an alkyl group, an aryl group, or NR tp9 R tp10 (R tp9 and R tp10 each independently represent a hydrogen atom, an alkyl group, or an aryl group); R tp6 , R tp7 , and R tp8 each independently represent a substituent;
a, b, and c each independently represent an integer of 0 to 4;
When a, b and c are 2 or more, R tp6s , R tp7s and R tp8s may be linked to each other to form a ring,
Z tp represents a counter anion, and when Z tp is not present, at least one of R tp1 to R tp8 includes an anion.
 Rtp1~Rtp5、Rtp9およびRtp10が表すアルキル基およびアリール基は、置換基を有していてもよい。置換基としては、後述する置換基Tで挙げた基および重合性基などが挙げられる。
 Rtp6、Rtp7およびRtp8が表す置換基は、後述する置換基Tで挙げた基および重合性基などが挙げられる。
The alkyl group and aryl group represented by R tp1 to R tp5 , R tp9 and R tp10 may have a substituent. Examples of the substituent include the groups exemplified as the substituent T described later and polymerizable groups.
Examples of the substituent represented by R tp6 , R tp7 and R tp8 include the groups exemplified as the substituent T described below and polymerizable groups.
 式(TP-1)において、Ztpは対アニオンを表す。Ztpが存在しない場合は、Rtp1~Rtp8の少なくとも1つがアニオンを含む。対アニオンとしては、上述した式(XT-1)で説明した対アニオンが挙げられる。また、式(TP-1)において、Rtp1~Rtp8の少なくとも1つがアニオンを含む場合、アニオンとしては、上述したアニオンが挙げられる。 In formula (TP-1), Z tp represents a counter anion. When Z tp is not present, at least one of R tp1 to R tp8 contains an anion. Examples of the counter anion include the counter anions described in formula (XT-1) above. In addition, in formula (TP-1), when at least one of R tp1 to R tp8 contains an anion, examples of the anion include the anions described above.
(置換基T)
 置換基Tとして、次の基が挙げられる。アルキル基(好ましくは炭素数1~30のアルキル基)、アルケニル基(好ましくは炭素数2~30のアルケニル基)、アルキニル基(好ましくは炭素数2~30のアルキニル基)、アリール基(好ましくは炭素数6~30のアリール基)、アミノ基(好ましくは炭素数0~30のアミノ基)、アルコキシ基(好ましくは炭素数1~30のアルコキシ基)、アリールオキシ基(好ましくは炭素数6~30のアリールオキシ基)、ヘテロアリールオキシ基、アシル基(好ましくは炭素数1~30のアシル基)、アルコキシカルボニル基(好ましくは炭素数2~30のアルコキシカルボニル基)、アリールオキシカルボニル基(好ましくは炭素数7~30のアリールオキシカルボニル基)、アシルオキシ基(好ましくは炭素数2~30のアシルオキシ基)、アシルアミノ基(好ましくは炭素数2~30のアシルアミノ基)、アルコキシカルボニルアミノ基(好ましくは炭素数2~30のアルコキシカルボニルアミノ基)、アリールオキシカルボニルアミノ基(好ましくは炭素数7~30のアリールオキシカルボニルアミノ基)、スルファモイル基(好ましくは炭素数0~30のスルファモイル基)、カルバモイル基(好ましくは炭素数1~30のカルバモイル基)、アルキルチオ基(好ましくは炭素数1~30のアルキルチオ基)、アリールチオ基(好ましくは炭素数6~30のアリールチオ基)、ヘテロアリールチオ基(好ましくは炭素数1~30)、アルキルスルホニル基(好ましくは炭素数1~30)、アリールスルホニル基(好ましくは炭素数6~30)、ヘテロアリールスルホニル基(好ましくは炭素数1~30)、アルキルスルフィニル基(好ましくは炭素数1~30)、アリールスルフィニル基(好ましくは炭素数6~30)、ヘテロアリールスルフィニル基(好ましくは炭素数1~30)、ウレイド基(好ましくは炭素数1~30)、ヒドロキシ基、カルボキシル基、スルホ基、リン酸基、カルボン酸アミド基、スルホン酸アミド基、イミド酸基、メルカプト基、ハロゲン原子、シアノ基、アルキルスルフィノ基、アリールスルフィノ基、ヒドラジノ基、イミノ基、ヘテロアリール基(好ましくは炭素数1~30)。これらの基は、さらに置換可能な基である場合、さらに置換基を有してもよい。置換基としては、上述した置換基Tとして説明した基、重合性基などが挙げられる。
(Substituent T)
Examples of the substituent T include the following groups: an alkyl group (preferably an alkyl group having 1 to 30 carbon atoms), an alkenyl group (preferably an alkenyl group having 2 to 30 carbon atoms), an alkynyl group (preferably an alkynyl group having 2 to 30 carbon atoms), an aryl group (preferably an aryl group having 6 to 30 carbon atoms), an amino group (preferably an amino group having 0 to 30 carbon atoms), an alkoxy group (preferably an alkoxy group having 1 to 30 carbon atoms), an aryloxy group (preferably an aryloxy group having 6 to 30 carbon atoms), a heteroaryloxy group, and an acyl group (preferably an acyl group having 1 to 30 carbon atoms). An alkoxycarbonyl group (preferably an alkoxycarbonyl group having 2 to 30 carbon atoms), an aryloxycarbonyl group (preferably an aryloxycarbonyl group having 7 to 30 carbon atoms), an acyloxy group (preferably an acyloxy group having 2 to 30 carbon atoms), an acylamino group (preferably an acylamino group having 2 to 30 carbon atoms), an alkoxycarbonylamino group (preferably an alkoxycarbonylamino group having 2 to 30 carbon atoms), an aryloxycarbonylamino group (preferably an aryloxycarbonylamino group having 7 to 30 carbon atoms). a sulfamoyl group (preferably a sulfamoyl group having 0 to 30 carbon atoms), a carbamoyl group (preferably a carbamoyl group having 1 to 30 carbon atoms), an alkylthio group (preferably an alkylthio group having 1 to 30 carbon atoms), an arylthio group (preferably an arylthio group having 6 to 30 carbon atoms), a heteroarylthio group (preferably a carbon number of 1 to 30), an alkylsulfonyl group (preferably a carbon number of 1 to 30), an arylsulfonyl group (preferably a carbon number of 6 to 30), a heteroarylsulfonyl group (preferably a carbon number of 1 to 30). , alkylsulfinyl group (preferably having 1 to 30 carbon atoms), arylsulfinyl group (preferably having 6 to 30 carbon atoms), heteroarylsulfinyl group (preferably having 1 to 30 carbon atoms), ureido group (preferably having 1 to 30 carbon atoms), hydroxy group, carboxyl group, sulfo group, phosphoric acid group, carboxylic acid amide group, sulfonic acid amide group, imide acid group, mercapto group, halogen atom, cyano group, alkylsulfino group, arylsulfino group, hydrazino group, imino group, heteroaryl group (preferably having 1 to 30 carbon atoms). When these groups are further substitutable groups, they may further have a substituent. Examples of the substituent include the groups explained above as the substituent T, polymerizable groups, and the like.
 重合性基としては、ビニル基、アリル基、(メタ)アクリロイル基などのエチレン性不飽和結合含有基、エポキシ基、オキセタニル基等が挙げられる。 Examples of polymerizable groups include vinyl groups, allyl groups, (meth)acryloyl groups, and other ethylenically unsaturated bond-containing groups, epoxy groups, and oxetanyl groups.
 染料(好ましくは染料A)は、架橋密度が高く、各種性能に優れた膜が得られやすいという理由から重合性基を有する化合物であることが好ましい。 The dye (preferably dye A) is preferably a compound having a polymerizable group, since this makes it easier to obtain a film with high crosslink density and excellent performance in various areas.
 また、染料(好ましくは染料A)は、現像時の残渣の発生を低減しやすいという理由から色素多量体であることも好ましい。色素多量体とは、一分子中に、色素構造を2以上有する色素化合物であり、色素構造を3以上有することが好ましい。上限は、特に限定はないが、100以下とすることもできる。一分子中に有する色素構造は、同一の色素構造であってもよく、異なる色素構造であってもよい。 Furthermore, it is also preferable that the dye (preferably dye A) is a dye polymer because this makes it easier to reduce the generation of residues during development. A dye polymer is a dye compound that has two or more dye structures in one molecule, and preferably has three or more dye structures. There is no particular upper limit, but it can be 100 or less. The dye structures in one molecule may be the same dye structure or different dye structures.
 色素多量体の重量平均分子量(Mw)は、2000~50000が好ましい。下限は、3000以上がより好ましく、6000以上がさらに好ましい。上限は、30000以下がより好ましく、20000以下がさらに好ましい。 The weight average molecular weight (Mw) of the dye polymer is preferably 2,000 to 50,000. The lower limit is more preferably 3,000 or more, and even more preferably 6,000 or more. The upper limit is more preferably 30,000 or less, and even more preferably 20,000 or less.
 色素多量体の構造としては、国際公開第2016/208524号の段落番号0047~0103に記載された色素多量体(A)~(D)が挙げられる。色素多量体としては、後述する式(A)で表される繰り返し単位を有する色素多量体および後述する式(D)で表される色素多量体であることが好ましい。以下、式(A)で表される繰り返し単位を有する色素多量体を色素多量体(A)ともいう。また、式(D)で表される色素多量体を色素多量体(D)ともいう。 The structure of the dye multimer includes dye multimers (A) to (D) described in paragraphs 0047 to 0103 of WO 2016/208524. The dye multimer is preferably a dye multimer having a repeating unit represented by formula (A) described below and a dye multimer represented by formula (D) described below. Hereinafter, the dye multimer having a repeating unit represented by formula (A) is also referred to as dye multimer (A). The dye multimer represented by formula (D) is also referred to as dye multimer (D).
 色素多量体(A)は、式(A)で表される繰り返し単位を含むことが好ましい。式(A)で表される繰り返し単位の割合は、色素多量体(A)を構成する全繰り返し単位の10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上が更に好ましく、50質量%以上が特に好ましい。上限は、100質量%以下とすることもでき、95質量%以下とすることもできる。
 式(A)中、Xは3価の連結基を表し、Lは単結合または2価の連結基を表し、Dは色素化合物由来の構造を表す。
The dye multimer (A) preferably contains a repeating unit represented by formula (A). The proportion of the repeating unit represented by formula (A) is preferably 10% by mass or more, more preferably 20% by mass or more, even more preferably 30% by mass or more, and particularly preferably 50% by mass or more, of all repeating units constituting the dye multimer (A). The upper limit may be set to 100% by mass or less, or may be set to 95% by mass or less.
In formula (A), X1 represents a trivalent linking group, L1 represents a single bond or a divalent linking group, and D1 represents a structure derived from a dye compound.
 式(A)のXが表す3価の連結基としては、ポリ(メタ)アクリル系連結基、ポリアルキレンイミン系連結基、ポリエステル系連結基、ポリウレタン系連結基、ポリウレア系連結基、ポリアミド系連結基、ポリエーテル系連結基、ポリスチレン系連結基などが挙げられ、ポリ(メタ)アクリル系連結基またはポリアルキレンイミン系連結基であることが好ましく、ポリ(メタ)アクリル系連結基であることがより好ましい。 Examples of the trivalent linking group represented by X1 in formula (A) include a poly(meth)acrylic linking group, a polyalkyleneimine linking group, a polyester linking group, a polyurethane linking group, a polyurea linking group, a polyamide linking group, a polyether linking group, and a polystyrene linking group. A poly(meth)acrylic linking group or a polyalkyleneimine linking group is preferable, and a poly(meth)acrylic linking group is more preferable.
 Lは単結合または2価の連結基を表す。Lが表す2価の連結基としては、炭素数1~30のアルキレン基、炭素数6~30のアリーレン基、複素環基、-CH=CH-、-O-、-S-、-C(=O)-、-COO-、-NR-、-CONR-、-OCO-、-SO-、-SO-およびこれらを2個以上連結して形成される基が挙げられる。ここで、Rは、水素原子、アルキル基、アリール基、またはヘテロアリール基を表す。 L1 represents a single bond or a divalent linking group. Examples of the divalent linking group represented by L1 include an alkylene group having 1 to 30 carbon atoms, an arylene group having 6 to 30 carbon atoms, a heterocyclic group, -CH=CH-, -O-, -S-, -C(=O)-, -COO-, -NR-, -CONR-, -OCO-, -SO-, -SO 2 -, and groups formed by linking two or more of these. Here, R represents a hydrogen atom, an alkyl group, an aryl group, or a heteroaryl group.
 アルキレン基の炭素数は、1~30が好ましい。上限は、25以下がより好ましく、20以下が更に好ましい。下限は、2以上がより好ましく、3以上が更に好ましい。アルキレン基は、直鎖、分岐、環状のいずれでもよい。アルキレン基は、置換基を有していてもよく、無置換であってもよい。置換基としては、置換基T群で説明した基が挙げられる。
 アリーレン基の炭素数は、6~20が好ましく、6~12がより好ましい。アリーレン基は置換基を有していてもよく、無置換であってもよい。置換基としては、置換基T群で説明した基が挙げられる。
 複素環基は、5員環または6員環が好ましい。複素環基が有するヘテロ原子は、酸素原子、窒素原子および硫黄原子が好ましい。複素環基が有するヘテロ原子の数は、1~3個が好ましい。複素環基は、置換基を有していてもよく、無置換であってもよい。置換基としては、置換基T群で説明した基が挙げられる。
The number of carbon atoms in the alkylene group is preferably 1 to 30. The upper limit is more preferably 25 or less, and even more preferably 20 or less. The lower limit is more preferably 2 or more, and even more preferably 3 or more. The alkylene group may be linear, branched, or cyclic. The alkylene group may have a substituent or may be unsubstituted. Examples of the substituent include the groups explained in the substituent group T.
The number of carbon atoms in the arylene group is preferably 6 to 20, and more preferably 6 to 12. The arylene group may have a substituent or may be unsubstituted. Examples of the substituent include the groups described in the substituent group T.
The heterocyclic group is preferably a 5-membered or 6-membered ring. The heteroatoms in the heterocyclic group are preferably an oxygen atom, a nitrogen atom, or a sulfur atom. The number of heteroatoms in the heterocyclic group is preferably 1 to 3. The heterocyclic group may have a substituent or may be unsubstituted. Examples of the substituent include the groups explained in the substituent group T.
 Dが表す色素化合物由来の構造としては、トリアリールメタン色素構造、キサンテン色素構造、アントラキノン色素構造、シアニン色素構造、スクアリリウム色素構造、キノフタロン色素構造、フタロシアニン色素構造、サブフタロシアニン色素構造、アゾ色素構造、ピラゾロトリアゾール色素構造、ジピロメテン色素構造、イソインドリン色素構造、チアゾール色素構造、ベンズイミダゾロン色素構造、ぺリノン色素構造、ピロロピロール色素構造、ジケトピロロピロール色素構造、ジイミニウム色素構造、ナフタロシアニン色素構造、リレン色素構造、ジベンゾフラノン色素構造、メロシアニン色素構造、クロコニウム色素構造およびオキソノール色素構造から選ばれる色素構造を有する化合物から水素原子を1個以上除いた残基などが挙げられる。Dが表す色素化合物由来の構造としては、式(XT-1)で表される化合物由来の構造、または、式(TP-1)で表される化合物由来の構造であることが好ましく、式(XT-1)で表される化合物由来の構造であることがより好ましい。 Examples of the structure derived from a dye compound represented by D1 include a residue obtained by removing one or more hydrogen atoms from a compound having a dye structure selected from a triarylmethane dye structure, a xanthene dye structure, an anthraquinone dye structure, a cyanine dye structure, a squarylium dye structure, a quinophthalone dye structure, a phthalocyanine dye structure, a subphthalocyanine dye structure, an azo dye structure, a pyrazolotriazole dye structure, a dipyrromethene dye structure, an isoindoline dye structure, a thiazole dye structure, a benzimidazolone dye structure, a perrinone dye structure, a pyrrolopyrrole dye structure, a diketopyrrolopyrrole dye structure, a diiminium dye structure, a naphthalocyanine dye structure, a rylene dye structure, a dibenzofuranone dye structure, a merocyanine dye structure, a croconium dye structure, and an oxonol dye structure. The structure derived from the dye compound represented by D1 is preferably a structure derived from a compound represented by formula (XT-1) or a structure derived from a compound represented by formula (TP-1), and more preferably a structure derived from a compound represented by formula (XT-1).
 色素多量体(A)は、式(A)で表される繰り返し単位の他に、他の繰り返し単位を含んでいてもよい。他の繰り返し単位は、重合性基や酸基等の官能基を含んでいてもよく、これらの官能基を含んでいなくてもよい。重合性基としては、ビニル基、(メタ)アクリロイル基などのエチレン性不飽和結合含有基等が挙げられる。酸基としては、カルボキシル基、スルホ基、リン酸基が挙げられる。 The dye polymer (A) may contain other repeating units in addition to the repeating unit represented by formula (A). The other repeating units may contain functional groups such as polymerizable groups and acid groups, or may not contain these functional groups. Examples of polymerizable groups include ethylenically unsaturated bond-containing groups such as vinyl groups and (meth)acryloyl groups. Examples of acid groups include carboxyl groups, sulfo groups, and phosphate groups.
 重合性基を有する繰り返し単位の割合は、色素多量体(A)を構成する全繰り返し単位の0~50質量%であることが好ましい。下限は、1質量%以上が好ましく、3質量%以上がより好ましい。上限は、35質量%以下が好ましく、30質量%以下がより好ましい。 The proportion of repeating units having a polymerizable group is preferably 0 to 50% by mass of all repeating units constituting the dye multimer (A). The lower limit is preferably 1% by mass or more, and more preferably 3% by mass or more. The upper limit is preferably 35% by mass or less, and more preferably 30% by mass or less.
 酸基を有する繰り返し単位の割合は、色素多量体(A)を構成する全繰り返し単位の0~50質量%であることが好ましい。下限は、1質量%以上が好ましく、3質量%以上がより好ましい。上限は、35質量%以下が好ましく、30質量%以下がより好ましい。 The proportion of repeating units having an acid group is preferably 0 to 50% by mass of all repeating units constituting the dye multimer (A). The lower limit is preferably 1% by mass or more, and more preferably 3% by mass or more. The upper limit is preferably 35% by mass or less, and more preferably 30% by mass or less.
 色素多量体(D)は、式(D)で表されることが好ましい。
 式(D)中、Lは(n+k)価の連結基を表し、L41およびL42は、それぞれ独立に、単結合または2価の連結基を表し、Dは色素化合物由来の構造を表し、Pは置換基を表す;nは2~15を表し、kは0~13を表し、n+kは2~15である。n個のDは互いに異なっていても良く、同一であってもよい。kが2以上の場合、複数のPは互いに異なっていても良く、同一であってもよい。
The dye multimer (D) is preferably represented by formula (D).
In formula (D), L 4 represents a (n+k)-valent linking group, L 41 and L 42 each independently represent a single bond or a divalent linking group, D 4 represents a structure derived from a dye compound, P 4 represents a substituent; n represents 2 to 15, k represents 0 to 13, and n+k is 2 to 15. The n D 4s may be different from each other or may be the same. When k is 2 or more, the multiple P 4s may be different from each other or may be the same.
 nは2~14が好ましく、2~8がより好ましく、2~7が特に好ましく、2~6が一層好ましい。kは1~13が好ましく、1~10がより好ましく、1~8がさらにより好ましく、1~7が特に好ましく、1~6が一層好ましい。 n is preferably 2 to 14, more preferably 2 to 8, particularly preferably 2 to 7, and even more preferably 2 to 6. k is preferably 1 to 13, more preferably 1 to 10, even more preferably 1 to 8, particularly preferably 1 to 7, and even more preferably 1 to 6.
 L41およびL42は、それぞれ独立して、単結合または2価の連結基を表す。2価の連結基としては、アルキレン基、アリーレン基、-CH=CH-、-O-、-S-、-CO-、-COO-、-NR-、-CONR-、-OCO-、-SO-、-SO-およびこれらを2個以上連結して形成される基が挙げられる。ここで、Rは、それぞれ独立して、水素原子、アルキル基またはアリール基を表す。L42およびL43はそれぞれ独立して-S-を含む基であることが好ましく、-S-であることがより好ましい。 L 41 and L 42 each independently represent a single bond or a divalent linking group. Examples of the divalent linking group include an alkylene group, an arylene group, -CH═CH-, -O-, -S-, -CO-, -COO-, -NR-, -CONR-, -OCO-, -SO-, -SO 2 -, and a group formed by linking two or more of these. Here, R each independently represents a hydrogen atom, an alkyl group, or an aryl group. L 42 and L 43 each independently represent a group containing -S-, and more preferably -S-.
 Lが表す(n+k)価の連結基としては、1から100個までの炭素原子、0個から10個までの窒素原子、0個から50個までの酸素原子、1個から200個までの水素原子、および0個から20個までの硫黄原子から成り立つ基が含まれる。(n+k)価の連結基としては、下記の構造単位または以下の構造単位が2以上組み合わさって構成される基(環構造を形成していてもよい)を挙げることができる。以下の式中の*は結合手を表す。 The (n+k)-valent linking group represented by L4 includes a group consisting of 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, 1 to 200 hydrogen atoms, and 0 to 20 sulfur atoms. The (n+k)-valent linking group can include the following structural units or groups consisting of two or more of the following structural units combined together (which may form a ring structure). * in the following formulas represents a bond.
 (n+k)価の連結基の具体例としては、国際公開第2016/208524号の段落番号0084に記載された連結基が挙げられる。 Specific examples of (n+k)-valent linking groups include the linking groups described in paragraph 0084 of WO 2016/208524.
 Dが表す色素化合物由来の構造としては、トリアリールメタン色素構造、キサンテン色素構造、アントラキノン色素構造、シアニン色素構造、スクアリリウム色素構造、キノフタロン色素構造、フタロシアニン色素構造、サブフタロシアニン色素構造、アゾ色素構造、ピラゾロトリアゾール色素構造、ジピロメテン色素構造、イソインドリン色素構造、チアゾール色素構造、ベンズイミダゾロン色素構造、ぺリノン色素構造、ピロロピロール色素構造、ジケトピロロピロール色素構造、ジイミニウム色素構造、ナフタロシアニン色素構造、リレン色素構造、ジベンゾフラノン色素構造、メロシアニン色素構造、クロコニウム色素構造およびオキソノール色素構造から選ばれる色素構造を有する化合物から水素原子を1個以上除いた残基などが挙げられる。Dが表す色素化合物由来の構造としては、式(XT-1)で表される化合物由来の構造、または、式(TP-1)で表される化合物由来の構造であることが好ましく、式(XT-1)で表される化合物由来の構造であることがより好ましい。 Examples of the structure derived from a dye compound represented by D4 include a residue obtained by removing one or more hydrogen atoms from a compound having a dye structure selected from a triarylmethane dye structure, a xanthene dye structure, an anthraquinone dye structure, a cyanine dye structure, a squarylium dye structure, a quinophthalone dye structure, a phthalocyanine dye structure, a subphthalocyanine dye structure, an azo dye structure, a pyrazolotriazole dye structure, a dipyrromethene dye structure, an isoindoline dye structure, a thiazole dye structure, a benzimidazolone dye structure, a perrinone dye structure, a pyrrolopyrrole dye structure, a diketopyrrolopyrrole dye structure, a diiminium dye structure, a naphthalocyanine dye structure, a rylene dye structure, a dibenzofuranone dye structure, a merocyanine dye structure, a croconium dye structure, and an oxonol dye structure. The structure derived from the dye compound represented by D4 is preferably a structure derived from a compound represented by formula (XT-1) or a structure derived from a compound represented by formula (TP-1), and more preferably a structure derived from a compound represented by formula (XT-1).
 Pが表す置換基としては、酸基、重合性基等が挙げられる。また、Pが表す置換基は、繰り返し単位を有する1価のポリマー鎖であってもよい。繰り返し単位を有する1価のポリマー鎖は、ビニル化合物由来の繰り返し単位を有する1価のポリマー鎖が好ましい。kが2以上の場合、k個のPは、同一であっても、異なっていてもよい。 Examples of the substituent represented by P4 include an acid group and a polymerizable group. The substituent represented by P4 may be a monovalent polymer chain having a repeating unit. The monovalent polymer chain having a repeating unit is preferably a monovalent polymer chain having a repeating unit derived from a vinyl compound. When k is 2 or more, k P4s may be the same or different.
 -顔料-
 顔料は、無機顔料または有機顔料のいずれでもよいが、カラーバリエーションの多さ、分散の容易性、安全性等の観点から有機顔料であることが好ましい。
- Pigments -
The pigment may be either an inorganic pigment or an organic pigment, but from the standpoint of a wide range of color variations, ease of dispersion, safety, and the like, an organic pigment is preferred.
 有機顔料としては、フタロシアニン顔料、ジオキサジン顔料、キナクリドン顔料、アントラキノン顔料、ペリレン顔料、アゾ顔料、アゾメチン顔料、アゾメチン顔料、ジケトピロロピロール顔料、ピロロピロール顔料、イソインドリン顔料、キノフタロン顔料、トリアリールメタン顔料、キサンテン顔料、シアニン顔料、キノリン顔料、プテリジン顔料などが挙げられる。 Organic pigments include phthalocyanine pigments, dioxazine pigments, quinacridone pigments, anthraquinone pigments, perylene pigments, azo pigments, azomethine pigments, azomethine pigments, diketopyrrolopyrrole pigments, pyrrolopyrrole pigments, isoindoline pigments, quinophthalone pigments, triarylmethane pigments, xanthene pigments, cyanine pigments, quinoline pigments, and pteridine pigments.
 顔料の平均一次粒子径は、1~200nmが好ましい。下限は5nm以上が好ましく、10nm以上がより好ましい。上限は、180nm以下が好ましく、150nm以下がより好ましく、100nm以下が更に好ましい。なお、本明細書において、顔料の一次粒子径は、顔料の一次粒子を透過型電子顕微鏡により観察し、得られた写真から求めることができる。具体的には、顔料の一次粒子の投影面積を求め、それに対応する円相当径を顔料の一次粒子径として算出する。また、本発明における平均一次粒子径は、400個の顔料の一次粒子についての一次粒子径の算術平均値とする。また、顔料の一次粒子とは、凝集のない独立した粒子をいう。 The average primary particle diameter of the pigment is preferably 1 to 200 nm. The lower limit is preferably 5 nm or more, and more preferably 10 nm or more. The upper limit is preferably 180 nm or less, more preferably 150 nm or less, and even more preferably 100 nm or less. In this specification, the primary particle diameter of the pigment can be determined from a photograph obtained by observing the primary particles of the pigment with a transmission electron microscope. Specifically, the projected area of the primary particles of the pigment is determined, and the corresponding circle equivalent diameter is calculated as the primary particle diameter of the pigment. In addition, the average primary particle diameter in the present invention is the arithmetic mean value of the primary particle diameters of 400 primary particles of the pigment. Furthermore, the primary particles of the pigment refer to independent particles that are not aggregated.
 顔料の結晶子サイズは、0.1~50nmであることが好ましく、0.5~30nmであることがより好ましく、1~15nmであることが更に好ましい。結晶子サイズはX線回折装置を用いて回折角のピークの半値幅より求めることができ、シェラーの式を用いて算出される。顔料の結晶子サイズは、製造条件の調整、製造後に粉砕するなどの公知の方法で調整することができる。 The crystallite size of the pigment is preferably 0.1 to 50 nm, more preferably 0.5 to 30 nm, and even more preferably 1 to 15 nm. The crystallite size can be determined from the half-width of the diffraction angle peak using an X-ray diffraction device, and is calculated using Scherrer's formula. The crystallite size of the pigment can be adjusted by known methods such as adjusting the manufacturing conditions or pulverizing after manufacturing.
 顔料の比表面積は1~300m/gであることが好ましい。下限は10m/g以上であることが好ましく、30m/g以上であることがより好ましい。上限は、250m/g以下であることが好ましく、200m/g以下であることがより好ましい。比表面積の値は、BET(Brunauer、EmmettおよびTeller)法に準じてDIN 66131:determination of the specific surface area  of solids by gas adsorption(ガス吸着による固体の比表面積の測定)に従って測定することができる。 The specific surface area of the pigment is preferably 1 to 300 m 2 /g. The lower limit is preferably 10 m 2 /g or more, more preferably 30 m 2 /g or more. The upper limit is preferably 250 m 2 /g or less, more preferably 200 m 2 /g or less. The value of the specific surface area can be measured according to DIN 66131: determination of the specific surface area of solids by gas adsorption according to the BET (Brunauer, Emmett and Teller) method.
 25℃のプロピレングリコールメチルエーテルアセテート100gに対する顔料の溶解量は、0.01g未満であることが好ましく、0.005g未満であることがより好ましく、0.001g未満であることが更に好ましい。 The amount of pigment dissolved in 100 g of propylene glycol methyl ether acetate at 25°C is preferably less than 0.01 g, more preferably less than 0.005 g, and even more preferably less than 0.001 g.
 顔料としては、黄色顔料、オレンジ色顔料、赤色顔料、緑色顔料、紫色顔料、青色顔料などが挙げられる。 Pigments include yellow pigments, orange pigments, red pigments, green pigments, purple pigments, blue pigments, etc.
 赤色顔料としては、ジケトピロロピロール顔料、アントラキノン顔料、アゾ顔料、ナフトール顔料、アゾメチン顔料、キサンテン顔料、キナクリドン顔料、ペリレン顔料、チオインジゴ顔料などが挙げられ、ジケトピロロピロール顔料、アントラキノン顔料、アゾ顔料であることが好ましく、ジケトピロロピロール顔料であることがより好ましい。赤色顔料の具体例としては、C.I.(カラーインデックス)ピグメントレッド1,2,3,4,5,6,7,9,10,14,17,22,23,31,38,41,48:1,48:2,48:3,48:4,49,49:1,49:2,52:1,52:2,53:1,57:1,60:1,63:1,66,67,81:1,81:2,81:3,83,88,90,105,112,119,122,123,144,146,149,150,155,166,168,169,170,171,172,175,176,177,178,179,184,185,187,188,190,200,202,206,207,208,209,210,216,220,224,226,242,246,254,255,264,269,270,272,279,291,294,295,296,297等が挙げられる。また、赤色顔料として、国際公開第2022/085485号の段落番号0034に記載の化合物、特開2020-085947号公報に記載の臭素化ジケトピロロピロール化合物を用いることもできる。 Red pigments include diketopyrrolopyrrole pigments, anthraquinone pigments, azo pigments, naphthol pigments, azomethine pigments, xanthene pigments, quinacridone pigments, perylene pigments, and thioindigo pigments, with diketopyrrolopyrrole pigments, anthraquinone pigments, and azo pigments being preferred, and diketopyrrolopyrrole pigments being more preferred. Specific examples of red pigments include C.I. (Color Index) Pigment Red 1, 2, 3, 4, 5, 6, 7, 9, 10, 14, 17, 22, 23, 31, 38, 41, 48:1, 48:2, 48:3, 48:4, 49, 49:1, 49:2, 52:1, 52:2, 53:1, 57:1, 60:1, 63:1, 66, 67, 81:1, 81:2, 81:3, 83, 88, 90, 105, 112, 119, 122, 123, 144, 146, 1 49,150,155,166,168,169,170,171,172,175,176,177,178,179,184,185,187,188,190,200,202,206,207,208,209,210,216,220,224,226,242,246,254,255,264,269,270,272,279,291,294,295,296,297, etc. In addition, as a red pigment, a compound described in paragraph number 0034 of WO 2022/085485 and a brominated diketopyrrolopyrrole compound described in JP 2020-085947 A can also be used.
 赤色顔料としては、C.I.ピグメントレッド122,177,224,254,255,264,269,272が好ましく、C.I.ピグメントレッド254,264,272がより好ましく、C.I.ピグメントレッド254,272が更に好ましい。 As red pigments, C.I. Pigment Red 122, 177, 224, 254, 255, 264, 269, and 272 are preferred, C.I. Pigment Red 254, 264, and 272 are more preferred, and C.I. Pigment Red 254 and 272 are even more preferred.
 緑色顔料としては、フタロシアニン顔料、スクアリリウム顔料などが挙げられ、フタロシアニン顔料であることが好ましい。緑色顔料の具体例としては、C.I.ピグメントグリーン7,10,36,37,58,59,62,63,64,65,66等が挙げられる。また、緑色顔料として、1分子中のハロゲン原子数が平均10~14個であり、臭素原子数が平均8~12個であり、塩素原子数が平均2~5個であるハロゲン化亜鉛フタロシアニン顔料を用いることもできる。具体例としては、国際公開第2015/118720号に記載の化合物が挙げられる。また、緑色色材として国際公開第2022/085485号の段落番号0029に記載の化合物、特開2020-070426号公報に記載のアルミニウムフタロシアニン化合物、特表2020-504758号公報に記載のジアリールメタン化合物などを用いることもできる。 Green pigments include phthalocyanine pigments and squarylium pigments, and phthalocyanine pigments are preferred. Specific examples of green pigments include C.I. Pigment Green 7, 10, 36, 37, 58, 59, 62, 63, 64, 65, and 66. In addition, halogenated zinc phthalocyanine pigments having an average of 10 to 14 halogen atoms, an average of 8 to 12 bromine atoms, and an average of 2 to 5 chlorine atoms in one molecule can also be used as a green pigment. Specific examples include the compounds described in WO 2015/118720. In addition, compounds described in paragraph 0029 of WO 2022/085485, aluminum phthalocyanine compounds described in JP 2020-070426 A, and diarylmethane compounds described in JP 2020-504758 A can also be used as green colorants.
 緑色顔料としては、C.I.ピグメントグリーン7,36,58,62,63が好ましく、C.I.ピグメントグリーン36,58がより好ましい。 As green pigments, C.I. Pigment Green 7, 36, 58, 62, and 63 are preferred, and C.I. Pigment Green 36 and 58 are more preferred.
 オレンジ色顔料としては、ジケトピロロピロール顔料およびアゾ顔料などが挙げられ、ジケトピロロピロール顔料であることが好ましい。オレンジ色顔料の具体例としては、C.I.ピグメントオレンジ2,5,13,16,17:1,31,34,36,38,43,46,48,49,51,52,55,59,60,61,62,64,71,73等が挙げられる。 Orange pigments include diketopyrrolopyrrole pigments and azo pigments, and diketopyrrolopyrrole pigments are preferred. Specific examples of orange pigments include C.I. Pigment Orange 2, 5, 13, 16, 17:1, 31, 34, 36, 38, 43, 46, 48, 49, 51, 52, 55, 59, 60, 61, 62, 64, 71, and 73.
 黄色顔料としては、アゾ顔料、アゾメチン顔料、イソインドリン顔料、プテリジン顔料、キノフタロン顔料およびペリレン顔料が挙げられ、イソインドリン顔料、キノフタロン顔料またはアゾ顔料であることが好ましい。黄色顔料の具体例としては、C.I.ピグメントイエロー1,2,3,4,5,6,10,11,12,13,14,15,16,17,18,20,24,31,32,34,35,35:1,36,36:1,37,37:1,40,42,43,53,55,60,61,62,63,65,73,74,77,81,83,86,93,94,95,97,98,100,101,104,106,108,109,110,113,114,115,116,117,118,119,120,123,125,126,127,128,129,137,138,139,147,148,150,151,152,153,154,155,156,161,162,164,166,167,168,169,170,171,172,173,174,175,176,177,179,180,181,182,185,187,188,193,194,199,213,214,215,228,231,232,233,234,235,236等が挙げられる。 Examples of yellow pigments include azo pigments, azomethine pigments, isoindoline pigments, pteridine pigments, quinophthalone pigments, and perylene pigments, and isoindoline pigments, quinophthalone pigments, and azo pigments are preferred. Specific examples of yellow pigments include C.I. Pigment Yellow 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 24, 31, 32, 34, 35, 35:1, 36, 36:1, 37, 37:1, 40, 42, 43, 53, 55, 60, 61, 62, 63, 65, 73, 74, 77, 81, 83, 86, 93, 94, 95, 97, 98, 100, 101, 104, 106, 108, 109, 110, 113, 114, 115, 116, 117, 118, 119, 120, 123, 1 25, 126, 127, 128, 129, 137, 138, 139, 147, 148, 150, 151, 152, 153, 154, 155, 156, 161, 162, 164, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 179, 180, 181, 182, 185, 187, 188, 193, 194, 199, 213, 214, 215, 228, 231, 232, 233, 234, 235, 236, etc.
 また、黄色顔料としては、下記構造のアゾバルビツール酸ニッケル錯体を用いることもできる。
Furthermore, as the yellow pigment, an azobarbituric acid nickel complex having the following structure can also be used.
 紫色顔料としては、ジオキサジン顔料、キナクリドン顔料、ペリレン顔料、チオインジゴ顔料などが挙げられる。紫色顔料の具体例としては、C.I.ピグメントバイオレット1,19,23,27,32,37,42,60,61等が挙げられる。 Purple pigments include dioxazine pigments, quinacridone pigments, perylene pigments, and thioindigo pigments. Specific examples of purple pigments include C.I. Pigment Violet 1, 19, 23, 27, 32, 37, 42, 60, and 61.
 青色顔料としては、フタロシアニン顔料、スクアリリウム顔料などが挙げられ、フタロシアニン顔料であることが好ましい。青色顔料の具体例としては、C.I.ピグメントブルー1,2,15,15:1,15:2,15:3,15:4,15:6,16,22,29,60,64,66,79,80,87,88等が挙げられる。また、青色顔料として、リン原子を有するアルミニウムフタロシアニン化合物を用いることもできる。具体例としては、特開2012-247591号公報の段落番号0022~0030、特開2011-157478号公報の段落番号0047に記載の化合物が挙げられる。 Examples of blue pigments include phthalocyanine pigments and squarylium pigments, with phthalocyanine pigments being preferred. Specific examples of blue pigments include C.I. Pigment Blue 1, 2, 15, 15:1, 15:2, 15:3, 15:4, 15:6, 16, 22, 29, 60, 64, 66, 79, 80, 87, and 88. Aluminum phthalocyanine compounds having phosphorus atoms can also be used as blue pigments. Specific examples include the compounds described in paragraphs 0022 to 0030 of JP-A No. 2012-247591 and paragraph 0047 of JP-A No. 2011-157478.
 着色剤として、韓国公開特許第10-2020-0028160号公報に記載されたトリアリールメタン染料ポリマー、特開2020-117638号公報に記載のキサンテン化合物、国際公開第2020/174991号に記載のフタロシアニン化合物、特開2020-160279号公報に記載のイソインドリン化合物又はそれらの塩、韓国公開特許第10-2020-0069442号公報に記載の式1で表される化合物、韓国公開特許第10-2020-0069730号公報に記載の式1で表される化合物、韓国公開特許第10-2020-0069070号公報に記載の式1で表される化合物、韓国公開特許第10-2020-0069067号公報に記載の式1で表される化合物、韓国公開特許第10-2020-0069062号公報に記載の式1で表される化合物、特許第6809649号に記載のハロゲン化亜鉛フタロシアニン顔料、特開2020-180176号公報に記載のイソインドリン化合物、特開2021-187913号公報に記載のフェノチアジン系化合物、国際公開第2022/004261号に記載のハロゲン化亜鉛フタロシアニン、国際公開第2021/250883号に記載のハロゲン化亜鉛フタロシアニンを用いることができる。他の着色剤は、ロタキサンであってもよく、色素骨格はロタキサンの環状構造に使用されていてもよく、棒状構造に使用されていてもよく、両方の構造に使用されていてもよい。他の着色剤として、韓国公開特許第10-2020-0030759号公報の式1で表されるキノフタロン化合物、韓国公開特許第10-2020-0061793号公報に記載の高分子染料、特開2022-029701号公報に記載の着色剤、国際公開第2022/014635号に記載のイソインドリン化合物、国際公開第2022/024926号に記載のアルミニウムフタロシアニン化合物、特開2022-045895号公報に記載の化合物、国際公開第2022/050051号に記載の化合物、特開2020-090676号公報に記載の化合物、特開2020-055956号公報に記載の化合物、特開2021-031681号公報に記載の化合物、特開2022-056354号公報に記載の化合物、米国特許出願公開第2021/0355327号明細書に記載の化合物、国際公開第2022/065357号に記載の化合物、特開2020-045436号公報に記載の化合物、韓国公開特許第10-2021-0146726号公報に記載の化合物、特開2018-178039号公報に記載の化合物、中国特許出願公開第113881244号明細書に記載の化合物、中国特許出願公開第113881245号明細書に記載の化合物、中国特許出願公開第113881246号明細書に記載の化合物、特開2022-104822号公報に記載の化合物、特開2022-096701号公報に記載の化合物、特開2020-023652号公報に記載の化合物、色材協会誌(2022年発行)の80~84ページに記載の緑色顔料等を用いることもできる。 As colorants, triarylmethane dye polymers described in Korean Patent Publication No. 10-2020-0028160, xanthene compounds described in JP 2020-117638 A, phthalocyanine compounds described in WO 2020/174991 A, isoindoline compounds or salts thereof described in JP 2020-160279 A, compounds represented by formula 1 described in Korean Patent Publication No. 10-2020-0069442 A, compounds represented by formula 1 described in Korean Patent Publication No. 10-2020-0069730 A, compounds represented by formula 1 described in Korean Patent Publication No. 10-2020-0069070 A Compounds represented by the formula 1 described in Korean Patent Publication No. 10-2020-0069067, compounds represented by the formula 1 described in Korean Patent Publication No. 10-2020-0069062, halogenated zinc phthalocyanine pigments described in Japanese Patent No. 6809649, isoindoline compounds described in JP-A-2020-180176, phenothiazine compounds described in JP-A-2021-187913, halogenated zinc phthalocyanines described in WO 2022/004261, and halogenated zinc phthalocyanines described in WO 2021/250883 can be used. The other colorant may be a rotaxane, and the dye skeleton may be used in the cyclic structure of the rotaxane, may be used in the rod-shaped structure, or may be used in both structures. Other colorants include quinophthalone compounds represented by formula 1 in Korean Patent Publication No. 10-2020-0030759, polymer dyes described in Korean Patent Publication No. 10-2020-0061793, colorants described in JP-A-2022-029701, isoindoline compounds described in WO 2022/014635, aluminum phthalocyanine compounds described in WO 2022/024926, compounds described in JP-A-2022-045895, compounds described in WO 2022/050051, compounds described in JP-A-2020-090676, compounds described in JP-A-2020-055956, compounds described in JP-A-2021-031681, compounds described in JP-A-2022-056354, and compounds described in U.S. Patent Application Publication No. Compounds described in JP 2021/0355327, compounds described in WO 2022/065357, compounds described in JP 2020-045436, compounds described in Korean Patent Publication No. 10-2021-0146726, compounds described in JP 2018-178039, compounds described in Chinese Patent Application Publication No. 113881244, compounds described in Chinese Patent Application Publication No. 113881245, compounds described in Chinese Patent Application Publication No. 113881246, compounds described in JP 2022-104822, compounds described in JP 2022-096701, compounds described in JP 2020-023652, green pigments described on pages 80 to 84 of the Journal of the Color Materials Association (published in 2022), and the like can also be used.
 着色組成物の全固形分中における着色剤の含有量は、40質量%以上であることが好ましく、50質量%以上であることがより好ましく、60質量%以上であることが更に好ましい。上限は80質量%以下であることが好ましく、75質量%以下であることがより好ましい。 The content of the colorant in the total solid content of the coloring composition is preferably 40% by mass or more, more preferably 50% by mass or more, and even more preferably 60% by mass or more. The upper limit is preferably 80% by mass or less, and more preferably 75% by mass or less.
 着色組成物の全固形分中における染料の含有量は、5質量%以上であることが好ましく、8質量%以上であることがより好ましく、10質量%以上であることが更に好ましく、15質量%以上であることが特に好ましい。上限は80質量%以下であることが好ましく、70質量%以下であることがより好ましく、60質量%以下であることが更に好ましく、50質量%以下であることがより一層好ましく、40質量%以下であることが特に好ましく、30質量%以下であることが最も好ましい。また、着色組成物に含まれる着色剤中における染料の含有量は、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、15質量%以上であることが更に好ましく、20質量%以上であることがより一層好ましく、25質量%以上であることが特に好ましい。上限は100質量%以下とすることができ、90質量%以下とすることもでき、80質量%以下とすることもでき、70質量%以下とすることもでき、60質量%以下とすることもでき、50質量%以下とすることもできる。 The dye content in the total solid content of the coloring composition is preferably 5% by mass or more, more preferably 8% by mass or more, even more preferably 10% by mass or more, and particularly preferably 15% by mass or more. The upper limit is preferably 80% by mass or less, more preferably 70% by mass or less, even more preferably 60% by mass or less, even more preferably 50% by mass or less, particularly preferably 40% by mass or less, and most preferably 30% by mass or less. The dye content in the colorant contained in the coloring composition is preferably 5% by mass or more, more preferably 10% by mass or more, even more preferably 15% by mass or more, even more preferably 20% by mass or more, and particularly preferably 25% by mass or more. The upper limit can be 100% by mass or less, can be 90% by mass or less, can be 80% by mass or less, can be 70% by mass or less, can be 60% by mass or less, or can be 50% by mass or less.
 本発明の着色組成物が着色剤として顔料を含む場合、顔料の含有量は、染料の100質量部に対して、10~1000質量部であることが好ましい。下限は、100質量部以上であることが好ましく、150質量部以上であることがより好ましく、200質量部以上であることが更に好ましい。上限は、600質量部以下であることが好ましく、400質量部以下であることがより好ましい。 When the coloring composition of the present invention contains a pigment as a colorant, the content of the pigment is preferably 10 to 1,000 parts by mass per 100 parts by mass of the dye. The lower limit is preferably 100 parts by mass or more, more preferably 150 parts by mass or more, and even more preferably 200 parts by mass or more. The upper limit is preferably 600 parts by mass or less, and more preferably 400 parts by mass or less.
<<重合開始剤B>>
 本発明の着色組成物は重合開始剤B(以下、重合開始剤という)を含有する。重合開始剤は、光重合開始剤であることが好ましい。光重合開始剤としては、特に制限はなく、公知の光重合開始剤の中から適宜選択することができる。例えば、紫外線領域から可視領域の光線に対して感光性を有する化合物が好ましい。光重合開始剤は、光ラジカル重合開始剤であることが好ましい。
<<Polymerization initiator B>>
The coloring composition of the present invention contains a polymerization initiator B (hereinafter referred to as a polymerization initiator). The polymerization initiator is preferably a photopolymerization initiator. The photopolymerization initiator is not particularly limited and can be appropriately selected from known photopolymerization initiators. For example, a compound having photosensitivity to light rays in the ultraviolet to visible regions is preferred. The photopolymerization initiator is preferably a photoradical polymerization initiator.
 光重合開始剤としては、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有する化合物、オキサジアゾール骨格を有する化合物など)、アシルホスフィン化合物、ヘキサアリールビイミダゾール化合物、オキシム化合物、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、α-ヒドロキシケトン化合物、α-アミノケトン化合物などが挙げられる。光重合開始剤は、露光感度の観点から、トリハロメチルトリアジン化合物、ベンジルジメチルケタール化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、アシルホスフィン化合物、ホスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、ヘキサアリールビイミダゾール化合物、オニウム化合物、ベンゾチアゾール化合物、ベンゾフェノン化合物、アセトフェノン化合物、シクロペンタジエン-ベンゼン-鉄錯体、ハロメチルオキサジアゾール化合物および3-アリール置換クマリン化合物であることが好ましく、オキシム化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、および、アシルホスフィン化合物から選ばれる化合物であることがより好ましく、オキシム化合物であることが更に好ましい。また、光重合開始剤としては、特開2014-130173号公報の段落0065~0111に記載された化合物、特許第6301489号公報に記載された化合物、MATERIAL STAGE 37~60p,vol.19,No.3,2019に記載されたパーオキサイド系光重合開始剤、国際公開第2018/221177号に記載の光重合開始剤、国際公開第2018/110179号に記載の光重合開始剤、特開2019-043864号公報に記載の光重合開始剤、特開2019-044030号公報に記載の光重合開始剤、特開2019-167313号公報に記載の過酸化物系開始剤、特開2020-055992号公報に記載のオキサゾリジン基を有するアミノアセトフェノン系開始剤、特開2013-190459号公報に記載のオキシム系光重合開始剤、特開2020-172619号公報に記載の重合体、国際公開第2020/152120号に記載の式1で表される化合物、特開2021-181406号公報に記載の化合物、特開2022-013379号公報に記載の光重合開始剤、特開2022-015747号公報に記載の式(1)で表される化合物、特表2021-507058号公報に記載のフッ素含有フルオレンオキシムエステル系光開始剤、中国特許出願公開第110764367号明細書に記載の開始剤、特表2022-518535号公報に記載の開始剤、国際公開第2021/175855号に記載の開始剤、台湾特許出願公開第202200534号公報に記載の化合物、特開2022-078550号公報に記載の化合物、韓国公開特許第10-2017-0087330号公報に記載の化合物、国際公開第2022/075452号に記載の化合物などが挙げられる。 Photopolymerization initiators include halogenated hydrocarbon derivatives (e.g., compounds having a triazine skeleton, compounds having an oxadiazole skeleton, etc.), acylphosphine compounds, hexaarylbiimidazole compounds, oxime compounds, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, α-hydroxyketone compounds, α-aminoketone compounds, etc. From the viewpoint of exposure sensitivity, the photopolymerization initiator is preferably a trihalomethyltriazine compound, a benzyl dimethyl ketal compound, an α-hydroxyketone compound, an α-aminoketone compound, an acylphosphine compound, a phosphine oxide compound, a metallocene compound, an oxime compound, a hexaarylbiimidazole compound, an onium compound, a benzothiazole compound, a benzophenone compound, an acetophenone compound, a cyclopentadiene-benzene-iron complex, a halomethyloxadiazole compound, or a 3-aryl substituted coumarin compound, more preferably a compound selected from an oxime compound, an α-hydroxyketone compound, an α-aminoketone compound, and an acylphosphine compound, and even more preferably an oxime compound. In addition, examples of the photopolymerization initiator include the compounds described in paragraphs 0065 to 0111 of JP 2014-130173 A, the compounds described in Japanese Patent No. 6301489 A, and the compounds described in MATERIAL STAGE 37 to 60p, vol. 19, No. 3,2019, a photopolymerization initiator described in WO 2018/221177, a photopolymerization initiator described in WO 2018/110179, a photopolymerization initiator described in JP 2019-043864 A, a photopolymerization initiator described in JP 2019-044030 A, a peroxide-based initiator described in JP 2019-167313 A, an aminoacetophenone-based initiator having an oxazolidine group described in JP 2020-055992 A, an oxime-based photopolymerization initiator described in JP 2013-190459 A, a polymer described in JP 2020-172619 A, a compound represented by formula 1 described in WO 2020/152120 A, JP 2021-181406 Compounds described in JP 2022-013379 A, photopolymerization initiators described in JP 2022-015747 A, compounds represented by formula (1) described in JP 2022-015747 A, fluorine-containing fluorene oxime ester photoinitiators described in JP 2021-507058 A, initiators described in China Patent Application Publication No. 110764367, initiators described in JP 2022-518535 A, initiators described in WO 2021/175855, compounds described in Taiwan Patent Application Publication No. 202200534, compounds described in JP 2022-078550 A, compounds described in Korean Patent Publication No. 10-2017-0087330, compounds described in WO 2022/075452, and the like.
 ヘキサアリールビイミダゾール化合物の具体例としては、2,2’,4-トリス(2-クロロフェニル)-5-(3,4-ジメトキシフェニル)-4,5-ジフェニル-1,1’-ビイミダゾールなどが挙げられる。 Specific examples of hexaarylbiimidazole compounds include 2,2',4-tris(2-chlorophenyl)-5-(3,4-dimethoxyphenyl)-4,5-diphenyl-1,1'-biimidazole.
 α-ヒドロキシケトン化合物の市販品としては、Omnirad 184、Omnirad 1173、Omnirad 2959、Omnirad 127(以上、IGM Resins B.V.社製)、Irgacure 184、Irgacure 1173、Irgacure 2959、Irgacure 127(以上、BASF社製)などが挙げられる。α-アミノケトン化合物の市販品としては、Omnirad 907、Omnirad 369、Omnirad 369E、Omnirad 379EG(以上、IGM Resins B.V.社製)、Irgacure 907、Irgacure 369、Irgacure 369E、Irgacure 379EG(以上、BASF社製)などが挙げられる。アシルホスフィン化合物の市販品としては、Omnirad 819、Omnirad TPO(以上、IGM Resins B.V.社製)、Irgacure 819、Irgacure TPO(以上、BASF社製)などが挙げられる。 Commercially available α-hydroxyketone compounds include Omnirad 184, Omnirad 1173, Omnirad 2959, Omnirad 127 (all manufactured by IGM Resins B.V.), Irgacure 184, Irgacure 1173, Irgacure 2959, Irgacure 127 (all manufactured by BASF), etc. Commercially available α-aminoketone compounds include Omnirad 907, Omnirad 369, Omnirad 369E, Omnirad 379EG (all manufactured by IGM Resins B.V.), Irgacure 907, Irgacure 369, Irgacure 369E, Irgacure 379EG (all manufactured by BASF), etc. Commercially available acylphosphine compounds include Omnirad 819, Omnirad TPO (all manufactured by IGM Resins B.V.), Irgacure 819, Irgacure TPO (all manufactured by BASF), etc.
 オキシム化合物としては、国際公開第2022/085485号の段落番号0142に記載の化合物、特許第5430746号に記載の化合物、特許第5647738号に記載の化合物、特開2021-173858号公報の一般式(1)で表される化合物や段落0022から0024に記載の化合物、特開2021-170089号公報の一般式(1)で表される化合物や段落0117から0120に記載の化合物などが挙げられる。オキシム化合物の具体例としては、3-ベンゾイルオキシイミノブタン-2-オン、3-アセトキシイミノブタン-2-オン、3-プロピオニルオキシイミノブタン-2-オン、2-アセトキシイミノペンタン-3-オン、2-アセトキシイミノ-1-フェニルプロパン-1-オン、2-ベンゾイルオキシイミノ-1-フェニルプロパン-1-オン、3-(4-トルエンスルホニルオキシ)イミノブタン-2-オン、2-エトキシカルボニルオキシイミノ-1-フェニルプロパン-1-オン、1-[4-(フェニルチオ)フェニル]-3-シクロヘキシル-プロパン-1,2-ジオン-2-(O-アセチルオキシム)などが挙げられる。市販品としては、Irgacure OXE01、Irgacure OXE02、Irgacure OXE03、Irgacure OXE04(以上、BASF社製)、TR-PBG-301、TR-PBG-304、TR-PBG-327(TRONLY社製)、アデカオプトマーN-1919((株)ADEKA製、特開2012-014052号公報に記載の光重合開始剤2)が挙げられる。また、オキシム化合物としては、着色性が無い化合物や、透明性が高く変色し難い化合物を用いることも好ましい。市販品としては、アデカアークルズNCI-730、NCI-831、NCI-930(以上、(株)ADEKA製)などが挙げられる。 Examples of oxime compounds include the compound described in paragraph 0142 of WO 2022/085485, the compound described in Japanese Patent No. 5,430,746, the compound described in Japanese Patent No. 5,647,738, the compound represented by general formula (1) and the compounds described in paragraphs 0022 to 0024 of JP 2021-173858 A, the compound represented by general formula (1) and the compounds described in paragraphs 0117 to 0120 of JP 2021-170089 A, and the like. Specific examples of the oxime compound include 3-benzoyloxyiminobutan-2-one, 3-acetoxyiminobutan-2-one, 3-propionyloxyiminobutan-2-one, 2-acetoxyiminopentan-3-one, 2-acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropan-1-one, 3-(4-toluenesulfonyloxy)iminobutan-2-one, 2-ethoxycarbonyloxyimino-1-phenylpropan-1-one, 1-[4-(phenylthio)phenyl]-3-cyclohexyl-propane-1,2-dione-2-(O-acetyloxime), and the like. Commercially available products include Irgacure OXE01, Irgacure OXE02, Irgacure OXE03, and Irgacure OXE04 (all manufactured by BASF), TR-PBG-301, TR-PBG-304, and TR-PBG-327 (manufactured by TRONLY), and Adeka Optomer N-1919 (manufactured by ADEKA Corporation, photopolymerization initiator 2 described in JP 2012-014052 A). In addition, it is also preferable to use a compound that is not colorable or a compound that is highly transparent and does not easily discolor as the oxime compound. Commercially available products include Adeka Arcles NCI-730, NCI-831, and NCI-930 (all manufactured by ADEKA Corporation).
 光重合開始剤としては、フルオレン環を有するオキシム化合物、カルバゾール環の少なくとも1つのベンゼン環がナフタレン環となった骨格を有するオキシム化合物、フッ素原子を有するオキシム化合物、ニトロ基を有するオキシム化合物、ベンゾフラン骨格を有するオキシム化合物、カルバゾール骨格にヒドロキシ基を有する置換基が結合したオキシム化合物、国際公開第2022/085485号の段落番号0143~0149に記載の化合物を用いることもできる。 As the photopolymerization initiator, an oxime compound having a fluorene ring, an oxime compound having a skeleton in which at least one benzene ring of a carbazole ring is replaced with a naphthalene ring, an oxime compound having a fluorine atom, an oxime compound having a nitro group, an oxime compound having a benzofuran skeleton, an oxime compound in which a substituent having a hydroxyl group is bonded to a carbazole skeleton, or a compound described in paragraphs 0143 to 0149 of WO 2022/085485 can be used.
 本発明において好ましく使用されるオキシム化合物の具体例を以下に示すが、本発明はこれらに限定されるものではない。 Specific examples of oxime compounds that are preferably used in the present invention are shown below, but the present invention is not limited to these.
 オキシム化合物は、波長350~500nmの範囲に極大吸収波長を有する化合物が好ましく、波長360~480nmの範囲に極大吸収波長を有する化合物がより好ましい。また、オキシム化合物の波長365nm又は波長405nmにおけるモル吸光係数は、感度の観点から、高いことが好ましく、1000~300000であることがより好ましく、2000~300000であることが更に好ましく、5000~200000であることが特に好ましい。化合物のモル吸光係数は、公知の方法を用いて測定することができる。例えば、分光光度計(Varian社製Cary-5 spectrophotometer)にて、酢酸エチル溶媒を用い、0.01g/Lの濃度で測定することが好ましい。 The oxime compound is preferably a compound having a maximum absorption wavelength in the wavelength range of 350 to 500 nm, more preferably a compound having a maximum absorption wavelength in the wavelength range of 360 to 480 nm. From the viewpoint of sensitivity, the molar absorption coefficient of the oxime compound at a wavelength of 365 nm or 405 nm is preferably high, more preferably 1000 to 300,000, even more preferably 2000 to 300,000, and particularly preferably 5000 to 200,000. The molar absorption coefficient of the compound can be measured using a known method. For example, it is preferable to measure using a spectrophotometer (Varian Cary-5 spectrophotometer) at a concentration of 0.01 g/L using ethyl acetate as a solvent.
 光重合開始剤としては、2官能あるいは3官能以上の光ラジカル重合開始剤を用いてもよい。そのような光ラジカル重合開始剤を用いることにより、光ラジカル重合開始剤の1分子から2つ以上のラジカルが発生するため、良好な感度が得られる。また、非対称構造の化合物を用いた場合においては、結晶性が低下して溶剤などへの溶解性が向上して、経時で析出しにくくなり、着色組成物の経時安定性を向上させることができる。2官能あるいは3官能以上の光ラジカル重合開始剤の具体例としては、国際公開第2022/065215号の段落0148に記載の化合物が挙げられる。 As the photopolymerization initiator, a bifunctional or trifunctional or higher functional photoradical polymerization initiator may be used. By using such a photoradical polymerization initiator, two or more radicals are generated from one molecule of the photoradical polymerization initiator, so good sensitivity can be obtained. In addition, when a compound with an asymmetric structure is used, crystallinity is reduced and solubility in solvents is improved, making it less likely to precipitate over time, and the stability over time of the coloring composition can be improved. Specific examples of bifunctional or trifunctional or higher functional photoradical polymerization initiators include the compounds described in paragraph 0148 of WO 2022/065215.
 着色組成物の全固形分中における重合開始剤の含有量は0.1~30質量%が好ましい。下限は、0.5質量%以上が好ましく、1質量%以上がより好ましい。上限は、20質量%以下が好ましく、15質量%以下がより好ましい。本発明の着色組成物において、重合開始剤は1種のみを用いてもよく、2種以上を用いてもよい。2種以上を用いる場合は、それらの合計量が上記範囲となることが好ましい。 The content of the polymerization initiator in the total solid content of the coloring composition is preferably 0.1 to 30% by mass. The lower limit is preferably 0.5% by mass or more, and more preferably 1% by mass or more. The upper limit is preferably 20% by mass or less, and more preferably 15% by mass or less. In the coloring composition of the present invention, only one type of polymerization initiator may be used, or two or more types may be used. When two or more types are used, it is preferable that the total amount thereof is within the above range.
<<重合性化合物C>>
 本発明の着色組成物は、重合性化合物C(以下、重合性化合物という)を含有する。重合性化合物としては、エチレン性不飽和結合含有基を有する化合物などが挙げられる。エチレン性不飽和結合含有基としては、ビニル基、(メタ)アリル基、(メタ)アクリロイル基などが挙げられる。本発明で用いられる重合性化合物は、ラジカル重合性化合物であることが好ましい。
<<Polymerizable compound C>>
The coloring composition of the present invention contains a polymerizable compound C (hereinafter, referred to as a polymerizable compound). Examples of the polymerizable compound include a compound having an ethylenically unsaturated bond-containing group. Examples of the contained group include a vinyl group, a (meth)allyl group, a (meth)acryloyl group, etc. The polymerizable compound used in the present invention is preferably a radically polymerizable compound.
 重合性化合物としては、モノマー、プレポリマー、オリゴマーなどの化学的形態のいずれであってもよいが、モノマーが好ましい。重合性化合物の分子量は、100~3000が好ましい。上限は、2000以下がより好ましく、1500以下が更に好ましい。下限は、150以上がより好ましく、250以上が更に好ましい。 The polymerizable compound may be in any chemical form, such as a monomer, prepolymer, or oligomer, but is preferably a monomer. The molecular weight of the polymerizable compound is preferably 100 to 3000. The upper limit is more preferably 2000 or less, and even more preferably 1500 or less. The lower limit is more preferably 150 or more, and even more preferably 250 or more.
 重合性化合物は、エチレン性不飽和結合含有基を3個以上含む化合物であることが好ましく、エチレン性不飽和結合含有基を3~15個含む化合物であることがより好ましく、エチレン性不飽和結合含有基を3~6個含む化合物であることが更に好ましい。また、重合性化合物は、3~15官能の(メタ)アクリレート化合物であることが好ましく、3~6官能の(メタ)アクリレート化合物であることがより好ましい。重合性化合物の具体例としては、国際公開第2022/065215号の段落番号0075~0083に記載の化合物が挙げられる。 The polymerizable compound is preferably a compound containing 3 or more ethylenically unsaturated bond-containing groups, more preferably a compound containing 3 to 15 ethylenically unsaturated bond-containing groups, and even more preferably a compound containing 3 to 6 ethylenically unsaturated bond-containing groups. The polymerizable compound is preferably a 3-15 functional (meth)acrylate compound, and more preferably a 3-6 functional (meth)acrylate compound. Specific examples of the polymerizable compound include the compounds described in paragraphs 0075 to 0083 of WO 2022/065215.
 重合性化合物としては、ジペンタエリスリトールトリ(メタ)アクリレート(市販品としてはKAYARAD D-330;日本化薬(株)製)、ジペンタエリスリトールテトラ(メタ)アクリレート(市販品としてはKAYARAD D-320;日本化薬(株)製)、ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としてはKAYARAD D-310;日本化薬(株)製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としてはKAYARAD DPHA;日本化薬(株)製、NKエステルA-DPH-12E;新中村化学工業(株)製)、およびこれらの(メタ)アクリロイル基がエチレングリコールおよび/またはプロピレングリコール残基を介して結合している構造の化合物(例えば、サートマー社から市販されている、SR454、SR499)が好ましい。また、重合性化合物としては、ジグリセリンEO(エチレンオキシド)変性(メタ)アクリレート(市販品としてはM-460;東亞合成製)、ペンタエリスリトールテトラアクリレート(新中村化学工業(株)製、NKエステルA-TMMT)、1,6-ヘキサンジオールジアクリレート(日本化薬(株)製、KAYARAD HDDA)、RP-1040(日本化薬(株)製)、アロニックスTO-2349(東亞合成(株)製)、NKオリゴUA-7200(新中村化学工業(株)製)、DPHA-40H(日本化薬(株)製)、UA-306H、UA-306T、UA-306I、AH-600、T-600、AI-600、LINC-202UA(共栄社化学(株)製)、8UH-1006、8UH-1012(以上、大成ファインケミカル(株)製)、ライトアクリレートPOB-A0(共栄社化学(株)製)などを用いることもできる。 Preferred polymerizable compounds include dipentaerythritol tri(meth)acrylate (commercially available product is KAYARAD D-330; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetra(meth)acrylate (commercially available product is KAYARAD D-320; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol penta(meth)acrylate (commercially available product is KAYARAD D-310; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol hexa(meth)acrylate (commercially available products are KAYARAD DPHA; manufactured by Nippon Kayaku Co., Ltd., and NK Ester A-DPH-12E; manufactured by Shin-Nakamura Chemical Co., Ltd.), and compounds in which the (meth)acryloyl groups are bonded via ethylene glycol and/or propylene glycol residues (e.g., SR454, SR499, commercially available from Sartomer Corporation). Examples of the polymerizable compound include diglycerol EO (ethylene oxide) modified (meth)acrylate (commercially available product is M-460; manufactured by Toagosei Co., Ltd.), pentaerythritol tetraacrylate (NK Ester A-TMMT, manufactured by Shin-Nakamura Chemical Co., Ltd.), 1,6-hexanediol diacrylate (KAYARAD HDDA, manufactured by Nippon Kayaku Co., Ltd.), RP-1040 (manufactured by Nippon Kayaku Co., Ltd.), and Aronix TO-2349 (manufactured by Toagosei Co., Ltd.). ), NK Oligo UA-7200 (Shin-Nakamura Chemical Co., Ltd.), DPHA-40H (Nippon Kayaku Co., Ltd.), UA-306H, UA-306T, UA-306I, AH-600, T-600, AI-600, LINC-202UA (Kyoeisha Chemical Co., Ltd.), 8UH-1006, 8UH-1012 (all manufactured by Taisei Fine Chemical Co., Ltd.), Light Acrylate POB-A0 (Kyoeisha Chemical Co., Ltd.), etc. can also be used.
 着色組成物の全固形分中における重合性化合物の含有量は1~35質量%であることが好ましく、5~30質量%であることがより好ましい。上限は、25質量%以下であることが好ましく、20質量%以下であることがより好ましい。下限は、8質量%以上であることが好ましく、10質量%以上であることがより好ましい。本発明の着色組成物は、重合性化合物を、1種のみ含んでいてもよいし、2種以上含んでいてもよい。重合性化合物を2種以上含む場合は、それらの合計量が上記範囲となることが好ましい。 The content of the polymerizable compound in the total solid content of the coloring composition is preferably 1 to 35 mass%, and more preferably 5 to 30 mass%. The upper limit is preferably 25 mass% or less, and more preferably 20 mass% or less. The lower limit is preferably 8 mass% or more, and more preferably 10 mass% or more. The coloring composition of the present invention may contain only one type of polymerizable compound, or may contain two or more types. When two or more types of polymerizable compounds are contained, it is preferable that the total amount thereof is within the above range.
<<化合物D>>
 本発明の着色組成物は、酸基及びカチオン性基を有する化合物d1と、分子量が50以上の対アニオンd2との塩であって、式(Aλ)で表される比吸光度が5以下である重量平均分子量2000以上の化合物Dを含む。
<<Compound D>>
The coloring composition of the present invention contains a compound D which is a salt of a compound d1 having an acid group and a cationic group and a counter anion d2 having a molecular weight of 50 or more, and has a weight average molecular weight of 2000 or more and a specific absorbance of 5 or less and is represented by the formula (Aλ).
 E=A/(c×l)   ・・・(Aλ)
 式(Aλ)中、Eは、波長400~700nmの範囲での最大吸収波長における化合物Dの比吸光度を表し、
 Aは、波長400~700nmの範囲での最大吸収波長における化合物Dの吸光度を表し、
 lは、単位がcmで表されるセル長を表し、
 cは、単位がmg/mlで表される、溶液中の化合物Dの濃度を表す。
E 1 = A 1 / (c 1 × l 1 ) ... (Aλ)
In formula (Aλ), E 1 represents the specific absorbance of compound D at the maximum absorption wavelength in the wavelength range of 400 to 700 nm;
A 1 represents the absorbance of compound D at the maximum absorption wavelength in the wavelength range of 400 to 700 nm;
l1 represents the cell length in cm;
c1 represents the concentration of compound D in the solution, expressed in mg/ml.
 化合物Dの式(Aλ)で表される比吸光度は、5以下であり、3以下であることが好ましく、1以下であることがより好ましい。式(Aλ)で表される比吸光度は、化合物Dの可視域の光を吸収する度合を示す指標である。式(Aλ)で表される比吸光度が小さいほど、可視域の光の吸収性が低くなる。比吸光度の下限は、制限されない。比吸光度の下限を設ける場合、式(Aλ)で表される比吸光度は、0.001以上の範囲で決定すればよい。 The specific absorbance of compound D represented by formula (Aλ) is 5 or less, preferably 3 or less, and more preferably 1 or less. The specific absorbance represented by formula (Aλ) is an index showing the degree to which compound D absorbs light in the visible range. The smaller the specific absorbance represented by formula (Aλ), the lower the absorbency of light in the visible range. There is no lower limit to the specific absorbance. When a lower limit is set for the specific absorbance, the specific absorbance represented by formula (Aλ) may be determined to be in the range of 0.001 or more.
 式(Aλ)において「A」で表される吸光度は、以下の方法によって測定する。化合物D、及び化合物Dが十分に溶解する溶剤を用いて測定試料を調製する。化合物Dがメタノールに対して十分な溶解性を有する場合、溶剤としてメタノールを用いる。化合物Dがメタノールに対して十分な溶解性を有しない場合、溶剤として、シクロヘキサノンを用いる。25℃(室温)での上記測定試料の吸光度を、光路長が1cmのセルを用いて測定する。 The absorbance represented by "A 1 " in formula (Aλ) is measured by the following method. A measurement sample is prepared using compound D and a solvent in which compound D is sufficiently soluble. When compound D has sufficient solubility in methanol, methanol is used as the solvent. When compound D does not have sufficient solubility in methanol, cyclohexanone is used as the solvent. The absorbance of the measurement sample at 25°C (room temperature) is measured using a cell with an optical path length of 1 cm.
 化合物Dの重量平均分子量は、2000以上であり、3000以上であることが好ましく、4000以上であることがより好ましい。上限は、1000000以下であることが好ましく、100000以下であることがより好ましく、20000以下であることが更に好ましい。 The weight average molecular weight of compound D is 2000 or more, preferably 3000 or more, and more preferably 4000 or more. The upper limit is preferably 1,000,000 or less, more preferably 100,000 or less, and even more preferably 20,000 or less.
 化合物Dの酸価は、0.10~1.50mmol/gであることが好ましく、現像性の観点から0.20~1.20mmol/gであることがより好ましい。 The acid value of compound D is preferably 0.10 to 1.50 mmol/g, and from the viewpoint of developability, it is more preferably 0.20 to 1.20 mmol/g.
 化合物Dは、重合性基を有していてもよい。重合性基としては、ビニル基、アリル基、(メタ)アクリロイル基などのエチレン性不飽和結合含有基、エポキシ基、オキセタニル基等が挙げられ、エチレン不飽和結合含有基であることが好ましい。化合物Dが重合性基を有している場合、化合物d1が重合性基を有していてもよく、対アニオンd2が重合性基を有していてもよいが、硬化性をより向上させることができるという理由から化合物d1が重合性基を有していることが好ましい。 Compound D may have a polymerizable group. Examples of the polymerizable group include ethylenically unsaturated bond-containing groups such as vinyl groups, allyl groups, and (meth)acryloyl groups, epoxy groups, and oxetanyl groups, and an ethylenically unsaturated bond-containing group is preferable. When compound D has a polymerizable group, compound d1 may have a polymerizable group, and counter anion d2 may have a polymerizable group, but it is preferable that compound d1 has a polymerizable group because this can further improve the curability.
 化合物Dの重合性基価は、0.1mmol/g以上であることが好ましく、0.5mmol/g以上であることがより好ましく、0.7mmol/g以上であることが更に好ましく、1.0mmol/g以上であることがより一層好ましく、1.5mmol/g以上であることが特に好ましい。上限は、5.0mmol/g以下であることが好ましく、4.0mmol/g以下であることがより好ましく、3.0mmol/g以下であることが更に好ましい。 The polymerizable group value of compound D is preferably 0.1 mmol/g or more, more preferably 0.5 mmol/g or more, even more preferably 0.7 mmol/g or more, even more preferably 1.0 mmol/g or more, and particularly preferably 1.5 mmol/g or more. The upper limit is preferably 5.0 mmol/g or less, more preferably 4.0 mmol/g or less, and even more preferably 3.0 mmol/g or less.
 化合物Dが有する重合性基がエチレン不飽和結合含有基である場合、化合物Dのエチレン不飽和結合含有基価(以下、C=C価ともいう)は、0.1mmol/g以上であることが好ましく、0.5mmol/g以上であることがより好ましく、0.7mmol/g以上であることが更に好ましく、1.0mmol/g以上であることがより一層好ましく、1.5mmol/g以上であることが特に好ましい。上限は、5.0mmol/g以下であることが好ましく、4.0mmol/g以下であることがより好ましく、3.0mmol/g以下であることが更に好ましい。 When the polymerizable group of compound D is an ethylenically unsaturated bond-containing group, the ethylenically unsaturated bond-containing group value (hereinafter also referred to as C=C value) of compound D is preferably 0.1 mmol/g or more, more preferably 0.5 mmol/g or more, even more preferably 0.7 mmol/g or more, even more preferably 1.0 mmol/g or more, and particularly preferably 1.5 mmol/g or more. The upper limit is preferably 5.0 mmol/g or less, more preferably 4.0 mmol/g or less, and even more preferably 3.0 mmol/g or less.
 化合物Dの重合性基価は、化合物Dの固形分1gあたりの重合性基のモル量を表した数値である。化合物Dの構造式から重合性基価を算出できる場合には、構造式から算出した値を用いる。また、構造式から算出できない場合であって、化合物Dの合成に用いた原料から算出できるものについては仕込みの原料から算出した値を用いる。また、化合物Dの重合性基価について、化合物Dの合成に用いた原料から算出ができないものについては、加水分解法を用いて測定した値を用いる。具体的には、アルカリ処理によって化合物Dから重合性基部位の成分(a)を取り出し、その含有量を高速液体クロマトグラフィー(HPLC)により測定し、下記式から算出する。また、化合物Dから上記成分(a)をアルカリ処理で抽出することができない場合においては、NMR法(核磁気共鳴)にて測定した値を用いる。
 化合物Dの重合性基価[mmol/g]=(成分(a)の含有量[ppm]/成分(a)の分子量[g/mol])/(化合物Dの秤量値[g]×(化合物Dの固形分濃度[質量%]/100)×10)
The polymerizable group value of compound D is a numerical value representing the molar amount of polymerizable groups per 1 g of solid content of compound D. When the polymerizable group value can be calculated from the structural formula of compound D, the value calculated from the structural formula is used. When the polymerizable group value cannot be calculated from the structural formula and can be calculated from the raw materials used in the synthesis of compound D, the value calculated from the raw materials used in the synthesis of compound D is used. When the polymerizable group value of compound D cannot be calculated from the raw materials used in the synthesis of compound D, the value measured using a hydrolysis method is used. Specifically, the component (a) of the polymerizable group site is extracted from compound D by alkali treatment, and its content is measured by high performance liquid chromatography (HPLC), and calculated from the following formula. When the component (a) cannot be extracted from compound D by alkali treatment, the value measured by NMR (nuclear magnetic resonance) is used.
Polymerizable group value of compound D [mmol/g]=(content of component (a) [ppm]/molecular weight of component (a) [g/mol])/(weight of compound D [g]×(solid content of compound D [mass%]/100)×10)
 25℃の1-メトキシ-2-プロパノール100gに対する化合物Dの溶解量は0.1g以上であることが好ましく、0.5g以上であることがより好ましく、1g以上であることが更に好ましい。 The amount of compound D dissolved in 100 g of 1-methoxy-2-propanol at 25°C is preferably 0.1 g or more, more preferably 0.5 g or more, and even more preferably 1 g or more.
 25℃のシクロヘキサノン100gに対する化合物Dの溶解量は0.1g以上であることが好ましく、0.5g以上であることがより好ましく、1g以上であることが更に好ましい。 The amount of compound D dissolved in 100 g of cyclohexanone at 25°C is preferably 0.1 g or more, more preferably 0.5 g or more, and even more preferably 1 g or more.
 化合物Dの具体例としては、後述する実施例に示す化合物AP-1~AP-20が挙げられる。 Specific examples of compound D include compounds AP-1 to AP-20 shown in the examples below.
(化合物d1)
 化合物Dにおいて、対アニオンd2と塩を形成する上述した化合物d1は、酸基及びカチオン性基を有する化合物である。
(Compound d1)
In the compound D, the above-mentioned compound d1 which forms a salt with the counter anion d2 is a compound having an acid group and a cationic group.
 化合物d1の重量平均分子量は2000以上であることが好ましく、3000以上であることがより好ましく、4000以上であることが更に好ましい。上限は、1000000以下であることが好ましく、100000以下であることがより好ましく、20000以下であることが更に好ましい。 The weight average molecular weight of compound d1 is preferably 2000 or more, more preferably 3000 or more, and even more preferably 4000 or more. The upper limit is preferably 1,000,000 or less, more preferably 100,000 or less, and even more preferably 20,000 or less.
 化合物d1が有する酸基としては、カルボキシ基、リン酸基、スルホ基、フェノール性ヒドロキシ基などが挙げられ、現像残渣の発生を抑制できるという理由からカルボキシ基であることが好ましい。 The acid group possessed by compound d1 may be a carboxy group, a phosphate group, a sulfo group, a phenolic hydroxy group, etc., and a carboxy group is preferred because it can suppress the generation of development residues.
 化合物d1の酸価は0.10~1.50mmol/gであることが好ましく、0.20~1.20mmol/gであることがより好ましい。 The acid value of compound d1 is preferably 0.10 to 1.50 mmol/g, and more preferably 0.20 to 1.20 mmol/g.
 化合物d1が有するカチオン性基としては、4級アンモニウムカチオン基、ピリジウムカチオン基およびイミダゾリウムカチオン基が挙げられ、4級アンモニウムカチオン基であることが好ましい。4級アンモニウムカチオン基としては、式(Cat-1)で表される基であることが好ましい。
Examples of the cationic group contained in the compound d1 include a quaternary ammonium cationic group, a pyridinium cationic group, and an imidazolium cationic group, and the quaternary ammonium cationic group is preferable. The quaternary ammonium cationic group is preferably a group represented by the formula (Cat-1).
 式中、Rcat1~Rcat3は、それぞれ独立してアルキル基またはアリール基を表し、*は結合手を表す。 In the formula, R cat1 to R cat3 each independently represent an alkyl group or an aryl group, and * represents a bond.
 Rcat1~Rcat3が表すアルキル基の炭素数は、1~20であることが好ましく、1~10であることがより好ましく、1~5であることが更に好ましい。Rcat1~Rcat3が表すアルキル基は、直鎖または分岐であることが好ましく、直鎖であることがより好ましい。
 Rcat1~Rcat3が表すアリール基の炭素数は、6~20であることが好ましく、6~12であることがより好ましい。
The number of carbon atoms in the alkyl group represented by R cat1 to R cat3 is preferably 1 to 20, more preferably 1 to 10, and further preferably 1 to 5. The alkyl group represented by R cat1 to R cat3 is preferably linear or branched, and more preferably linear.
The aryl group represented by R cat1 to R cat3 preferably has 6 to 20 carbon atoms, and more preferably has 6 to 12 carbon atoms.
 Rcat1~Rcat3は、それぞれ独立してアルキル基であることが好ましい。Rcat1およびRcat2は、それぞれ独立して炭素数1~5のアルキル基であることが好ましく、炭素数1~3のアルキル基であることがより好ましく、メチル基またはエチル基であることが更に好ましく、メチル基であることが特に好ましい。Rcat3は、炭素数1~10のアルキル基であることが好ましく、炭素数1~5のアルキル基であることがより好ましく、炭素数1~3のアルキル基であることが更に好ましく、メチル基またはエチル基であることがより一層好ましく、メチル基であることが特に好ましい。 It is preferable that R cat1 to R cat3 are each independently an alkyl group. It is preferable that R cat1 and R cat2 are each independently an alkyl group having 1 to 5 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, even more preferably a methyl group or an ethyl group, and particularly preferably a methyl group. It is preferable that R cat3 is an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms, even more preferably an alkyl group having 1 to 3 carbon atoms, even more preferably a methyl group or an ethyl group, and particularly preferably a methyl group.
 化合物d1のカチオン性基価は、0.1~3.0mmol/gであることが好ましく、得られる膜の耐光性を向上させることができるという理由から0.2~1.5mmol/gであることがより好ましい。 The cationic group value of compound d1 is preferably 0.1 to 3.0 mmol/g, and more preferably 0.2 to 1.5 mmol/g, because this can improve the light resistance of the resulting film.
 化合物d1は、重合性基を有していてもよい。重合性基としては、ビニル基、アリル基、(メタ)アクリロイル基などのエチレン性不飽和結合含有基、エポキシ基、オキセタニル基等が挙げられ、エチレン不飽和結合含有基であることが好ましい。 Compound d1 may have a polymerizable group. Examples of the polymerizable group include ethylenically unsaturated bond-containing groups such as vinyl groups, allyl groups, and (meth)acryloyl groups, epoxy groups, and oxetanyl groups, and the like. An ethylenically unsaturated bond-containing group is preferable.
 化合物d1が重合性基を有している場合、化合物d1の重合性基価は、0.1mmol/g以上であることが好ましく、0.5mmol/g以上であることがより好ましく、0.7mmol/g以上であることが更に好ましく、1.0mmol/g以上であることがより一層好ましく、1.5mmol/g以上であることが特に好ましい。上限は、5.0mmol/g以下であることが好ましく、4.0mmol/g以下であることがより好ましく、3.0mmol/g以下であることが更に好ましい。 When compound d1 has a polymerizable group, the polymerizable group value of compound d1 is preferably 0.1 mmol/g or more, more preferably 0.5 mmol/g or more, even more preferably 0.7 mmol/g or more, even more preferably 1.0 mmol/g or more, and particularly preferably 1.5 mmol/g or more. The upper limit is preferably 5.0 mmol/g or less, more preferably 4.0 mmol/g or less, and even more preferably 3.0 mmol/g or less.
 化合物d1が有する重合性基がエチレン不飽和結合含有基である場合、化合物d1のC=C価は、0.1mmol/g以上であることが好ましく、0.5mmol/g以上であることがより好ましく、0.7mmol/g以上であることが更に好ましく、1.0mmol/g以上であることがより一層好ましく、1.5mmol/g以上であることが特に好ましい。上限は、5.0mmol/g以下であることが好ましく、4.0mmol/g以下であることがより好ましく、3.0mmol/g以下であることが更に好ましい。 When the polymerizable group possessed by compound d1 is an ethylenically unsaturated bond-containing group, the C=C value of compound d1 is preferably 0.1 mmol/g or more, more preferably 0.5 mmol/g or more, even more preferably 0.7 mmol/g or more, even more preferably 1.0 mmol/g or more, and particularly preferably 1.5 mmol/g or more. The upper limit is preferably 5.0 mmol/g or less, more preferably 4.0 mmol/g or less, and even more preferably 3.0 mmol/g or less.
 化合物d1は、酸基を有する繰り返し単位d1-1と、カチオン性基を有する繰り返し単位d1-2とを有するポリマーであることが好ましい。 Compound d1 is preferably a polymer having a repeating unit d1-1 having an acid group and a repeating unit d1-2 having a cationic group.
 化合物d1が、酸基を有する繰り返し単位d1-1と、カチオン性基を有する繰り返し単位d1-2とを有するポリマーである場合、化合物Dは、繰り返し単位d1-2のカチオン性基に、対アニオンd2が配位して塩を形成していることが好ましい。また、繰り返し単位d1-2と対アニオンd2とで形成される塩構造のClogP値は得られる膜の耐光性を向上させることができるという理由から-10.0~0.3であることが好ましく、-5.0~0であることがより好ましく、-3.0~-1.0であることが更に好ましい。 When compound d1 is a polymer having repeating unit d1-1 having an acid group and repeating unit d1-2 having a cationic group, compound D preferably has counter anion d2 coordinated to the cationic group of repeating unit d1-2 to form a salt. In addition, the ClogP value of the salt structure formed by repeating unit d1-2 and counter anion d2 is preferably -10.0 to 0.3, more preferably -5.0 to 0, and even more preferably -3.0 to -1.0, because this can improve the light resistance of the resulting film.
 なお、CLogP値とは、1-オクタノール/水の分配係数Pの常用対数であるLogPの計算値である。本明細書において、CLogP値は、ChemDrawProfessional ver.20.1.1.125(PerkinElmer社製)を用いて予測計算して求めた値である。 The CLogP value is the calculated value of LogP, which is the common logarithm of the 1-octanol/water partition coefficient P. In this specification, the CLogP value is a value obtained by predictive calculation using ChemDraw Professional ver. 20.1.1.125 (manufactured by PerkinElmer).
 ここで、化合物Dが下記構造のポリマーである場合、上述した繰り返し単位d1-2と対アニオンd2とで形成される塩構造のClogP値とは、下記構造のポリマーの破線で囲った部位の構造のClogP値のことである。なお、破線で囲った部位の構造のClogP値は-1.24である。
Here, when compound D is a polymer having the following structure, the ClogP value of the salt structure formed by the repeating unit d1-2 and the counter anion d2 is the ClogP value of the structure of the portion surrounded by the dashed line in the polymer having the following structure. The ClogP value of the structure of the portion surrounded by the dashed line is −1.24.
 酸基を有する繰り返し単位d1-1としては、式(d1-1)で表される繰り返し単位が挙げられる。
Examples of the repeating unit d1-1 having an acid group include a repeating unit represented by formula (d1-1).
 式中、Ad10は3価の連結基を表し、Ld10は単結合または2価の連結基を表し、Rd10は酸基を表す。 In the formula, A d10 represents a trivalent linking group, L d10 represents a single bond or a divalent linking group, and R d10 represents an acid group.
 Ad10が表す3価の連結基としては、ポリ(メタ)アクリル系連結基、ポリアルキレンイミン系連結基、ポリエステル系連結基、ポリウレタン系連結基、ポリウレア系連結基、ポリアミド系連結基、ポリエーテル系連結基、ポリスチレン系連結基などが挙げられ、ポリ(メタ)アクリル系連結基またはポリアルキレンイミン系連結基であることが好ましく、ポリ(メタ)アクリル系連結基であることがより好ましい。 Examples of the trivalent linking group represented by A d10 include a poly(meth)acrylic linking group, a polyalkyleneimine linking group, a polyester linking group, a polyurethane linking group, a polyurea linking group, a polyamide linking group, a polyether linking group, and a polystyrene linking group. A poly(meth)acrylic linking group or a polyalkyleneimine linking group is preferable, and a poly(meth)acrylic linking group is more preferable.
 Ld10が表す2価の連結基としては、アルキレン基(好ましくは炭素数1~10のアルキレン基)、アリーレン基(好ましくは炭素数6~20のアリーレン基)、-NH-、-SO-、-SO-、-CO-、-O-、-COO-、OCO-、-CONRx1-、-S-およびこれら基の2以上を組み合わせた基が挙げられる。Rx1は、水素原子、アルキル基またはアリール基を表す。
 上記アルキレン基およびアリーレン基は置換基を有していてもよい。置換基としては、ヒドロキシ基、アルコキシ基、アシル基、重合性基などが挙げられる。
Examples of the divalent linking group represented by L d10 include an alkylene group (preferably an alkylene group having 1 to 10 carbon atoms), an arylene group (preferably an arylene group having 6 to 20 carbon atoms), -NH-, -SO-, -SO 2 -, -CO-, -O-, -COO-, OCO-, -CONR x1 -, -S-, and a group consisting of two or more of these groups. R x1 represents a hydrogen atom, an alkyl group, or an aryl group.
The alkylene group and arylene group may have a substituent, such as a hydroxy group, an alkoxy group, an acyl group, or a polymerizable group.
 化合物d1中における酸基を有する繰り返し単位d1-1の含有量は0.1~40質量%であることが好ましい。上限は35質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることが更に好ましく、10質量%以下であることがより一層好ましい。下限は1質量%以上であることが好ましく、3質量%以上であることがより好ましい。 The content of repeating units d1-1 having an acid group in compound d1 is preferably 0.1 to 40% by mass. The upper limit is preferably 35% by mass or less, more preferably 30% by mass or less, even more preferably 20% by mass or less, and even more preferably 10% by mass or less. The lower limit is preferably 1% by mass or more, and more preferably 3% by mass or more.
 カチオン性基を有する繰り返し単位d1-2としては、式(d1-2)で表される繰り返し単位が挙げられる。
Examples of the repeating unit d1-2 having a cationic group include a repeating unit represented by formula (d1-2).
 式中、Ad20は3価の連結基を表し、Ld20は単結合または2価の連結基を表し、Rd20はカチオン性基を表す。 In the formula, A d20 represents a trivalent linking group, L d20 represents a single bond or a divalent linking group, and R d20 represents a cationic group.
 Ad20が表す3価の連結基としては、ポリ(メタ)アクリル系連結基、ポリアルキレンイミン系連結基、ポリエステル系連結基、ポリウレタン系連結基、ポリウレア系連結基、ポリアミド系連結基、ポリエーテル系連結基、ポリスチレン系連結基などが挙げられ、ポリ(メタ)アクリル系連結基またはポリアルキレンイミン系連結基であることが好ましく、ポリ(メタ)アクリル系連結基であることがより好ましい。 Examples of the trivalent linking group represented by A d20 include a poly(meth)acrylic linking group, a polyalkyleneimine linking group, a polyester linking group, a polyurethane linking group, a polyurea linking group, a polyamide linking group, a polyether linking group, and a polystyrene linking group. A poly(meth)acrylic linking group or a polyalkyleneimine linking group is preferable, and a poly(meth)acrylic linking group is more preferable.
 Ld20が表す2価の連結基としては、アルキレン基(好ましくは炭素数1~10のアルキレン基)、アリーレン基(好ましくは炭素数6~20のアリーレン基)、-NH-、-SO-、-SO-、-CO-、-O-、-COO-、OCO-、-CONRx2-、-S-およびこれら基の2以上を組み合わせた基が挙げられる。Rx2は、水素原子、アルキル基またはアリール基を表す。
 上記アルキレン基およびアリーレン基は置換基を有していてもよい。置換基としては、ヒドロキシ基、アルコキシ基、アシル基、重合性基などが挙げられる。
Examples of the divalent linking group represented by L d20 include an alkylene group (preferably an alkylene group having 1 to 10 carbon atoms), an arylene group (preferably an arylene group having 6 to 20 carbon atoms), -NH-, -SO-, -SO 2 -, -CO-, -O-, -COO-, OCO-, -CONR x2 -, -S-, and a group consisting of two or more of these groups. R x2 represents a hydrogen atom, an alkyl group, or an aryl group.
The alkylene group and arylene group may have a substituent, such as a hydroxy group, an alkoxy group, an acyl group, or a polymerizable group.
 化合物d1中におけるカチオン性基を有する繰り返し単位d1-2の含有量は0.1~70質量%であることが好ましい。上限は60質量%以下であることが好ましく、55質量%以下であることがより好ましく、50質量%以下であることが更に好ましく、40質量%以下であることがより一層好ましく、30質量%以下であることが更に一層好ましい。下限は1質量%以上であることが好ましく、5質量%以上であることがより好ましく、10質量%以上であることが更に好ましい。 The content of repeating units d1-2 having a cationic group in compound d1 is preferably 0.1 to 70% by mass. The upper limit is preferably 60% by mass or less, more preferably 55% by mass or less, even more preferably 50% by mass or less, even more preferably 40% by mass or less, and even more preferably 30% by mass or less. The lower limit is preferably 1% by mass or more, more preferably 5% by mass or more, and even more preferably 10% by mass or more.
 化合物d1は、更に重合性基を有する繰り返し単位d1-3を含んでいてもよい。重合性基を有する繰り返し単位d1-3としては、式(d1-3)で表される繰り返し単位が挙げられる。
The compound d1 may further include a repeating unit d1-3 having a polymerizable group. Examples of the repeating unit d1-3 having a polymerizable group include a repeating unit represented by formula (d1-3).
 式中、Ad30は3価の連結基を表し、Ld30は単結合または2価の連結基を表し、Rd30は重合性基を表す。 In the formula, A d30 represents a trivalent linking group, L d30 represents a single bond or a divalent linking group, and R d30 represents a polymerizable group.
 Ad30が表す3価の連結基としては、ポリ(メタ)アクリル系連結基、ポリアルキレンイミン系連結基、ポリエステル系連結基、ポリウレタン系連結基、ポリウレア系連結基、ポリアミド系連結基、ポリエーテル系連結基、ポリスチレン系連結基などが挙げられ、ポリ(メタ)アクリル系連結基またはポリアルキレンイミン系連結基であることが好ましく、ポリ(メタ)アクリル系連結基であることがより好ましい。 Examples of the trivalent linking group represented by A d30 include a poly(meth)acrylic linking group, a polyalkyleneimine linking group, a polyester linking group, a polyurethane linking group, a polyurea linking group, a polyamide linking group, a polyether linking group, and a polystyrene linking group. A poly(meth)acrylic linking group or a polyalkyleneimine linking group is preferable, and a poly(meth)acrylic linking group is more preferable.
 Ld30が表す2価の連結基としては、アルキレン基(好ましくは炭素数1~10のアルキレン基)、アリーレン基(好ましくは炭素数6~20のアリーレン基)、-NH-、-SO-、-SO-、-CO-、-O-、-COO-、OCO-、-CONRx3-、-S-およびこれら基の2以上を組み合わせた基が挙げられる。Rx3は、水素原子、アルキル基またはアリール基を表す。
 上記アルキレン基およびアリーレン基は置換基を有していてもよい。置換基としては、ヒドロキシ基、アルコキシ基、アシル基などが挙げられる。
Examples of the divalent linking group represented by L d30 include an alkylene group (preferably an alkylene group having 1 to 10 carbon atoms), an arylene group (preferably an arylene group having 6 to 20 carbon atoms), -NH-, -SO-, -SO 2 -, -CO-, -O-, -COO-, OCO-, -CONR x3 -, -S-, and a group combining two or more of these groups. R x3 represents a hydrogen atom, an alkyl group, or an aryl group.
The alkylene group and arylene group may have a substituent, such as a hydroxy group, an alkoxy group, or an acyl group.
 化合物d1が重合性基を有する繰り返し単位d1-3を含む場合、化合物d1中における重合性基を有する繰り返し単位d1-3の含有量は1~95質量%であることが好ましい。上限は90質量%以下であることが好ましく、80質量%以下であることがより好ましい。下限は10質量%以上であることが好ましく、20質量%以上であることがより好ましく、40質量%以上であることが更に好ましい。 When compound d1 contains repeating units d1-3 having a polymerizable group, the content of repeating units d1-3 having a polymerizable group in compound d1 is preferably 1 to 95% by mass. The upper limit is preferably 90% by mass or less, and more preferably 80% by mass or less. The lower limit is preferably 10% by mass or more, more preferably 20% by mass or more, and even more preferably 40% by mass or more.
 化合物d1は、更に、上述した単位d1-1~単位d1-3以外の繰り返し単位を有していてもよい。 Compound d1 may further have repeating units other than the above-mentioned units d1-1 to d1-3.
(対アニオンd2)
 化合物Dにおいて、上述した特定カチオンと塩を形成する対アニオンd2は、分子量が50以上のアニオンである。
(Counter anion d2)
In compound D, the counter anion d2 that forms a salt with the specific cation described above is an anion having a molecular weight of 50 or more.
 対アニオンd2としては、イミドアニオン、メチドアニオン、ボレートアニオン、スルホン酸アニオン、カルボン酸アニオン、リン酸アニオン、リン原子またはアンチモン原子を含むアニオンなどが挙げられ、得られる膜の耐光性をより向上させることができるという理由からイミドアニオンであることが好ましい。また、イミドアニオンはビス(フルオロアルキルスルホニル)イミドアニオンであることが更に好ましい。 The counter anion d2 may be an imide anion, a methide anion, a borate anion, a sulfonate anion, a carboxylate anion, a phosphate anion, or an anion containing a phosphorus atom or an antimony atom, and is preferably an imide anion because it can further improve the light resistance of the resulting film. Furthermore, it is more preferable that the imide anion is a bis(fluoroalkylsulfonyl)imide anion.
 対アニオンd2の分子量は、50以上であり、51~900であることが好ましく、100~600であることがより好ましく、150~400であることが更に好ましい。 The molecular weight of the counter anion d2 is 50 or more, preferably 51 to 900, more preferably 100 to 600, and even more preferably 150 to 400.
 対アニオンd2は、重合性基を有していてもよい。重合性基としては、ビニル基、アリル基、(メタ)アクリロイル基などのエチレン性不飽和結合含有基、エポキシ基、オキセタニル基等が挙げられ、エチレン不飽和結合含有基であることが好ましい。 The counter anion d2 may have a polymerizable group. Examples of the polymerizable group include an ethylenically unsaturated bond-containing group such as a vinyl group, an allyl group, or a (meth)acryloyl group, an epoxy group, or an oxetanyl group, and the like. An ethylenically unsaturated bond-containing group is preferable.
 対アニオンd2は、式(BZ-1)~(BZ-8)のいずれかで表されるアニオンであることが好ましく、得られる膜の耐光性をより向上させることができるという理由から式(BZ-1)で表されるアニオンであることが好ましい。
The counter anion d2 is preferably an anion represented by any one of formulas (BZ-1) to (BZ-8), and is preferably an anion represented by formula (BZ-1) because this can further improve the light resistance of the resulting film.
 式(BZ-1)中、R111は、-SO-R201または-CO-R201を表し、R112は、アルキル基、アリール基、-SO-R202または-CO-R202を表し、R201およびR202はそれぞれ独立して、ハロゲン原子、アルキル基またはアリール基を表し、R111とR112は、結合して環を形成していてもよい。 In formula (BZ-1), R 111 represents -SO 2 -R 201 or -CO-R 201 , R 112 represents an alkyl group, an aryl group, -SO 2 -R 202 or -CO-R 202 , R 201 and R 202 each independently represent a halogen atom, an alkyl group or an aryl group, and R 111 and R 112 may be bonded to form a ring.
 R112、R201およびR202が表すアルキル基の炭素数1~10が好ましく、1~6がより好ましい。R112、R201およびR202が表すアルキル基はハロゲン原子を置換基として有するアルキル基であることが好ましく、フッ素原子を置換基として有するアルキル基であることがより好ましい。
 R112、R201およびR202が表すアリール基の炭素数6~20が好ましく、6~12がより好ましい。R112、R201およびR202が表すアリール基はハロゲン原子を置換基として有するアリール基であることが好ましく、フッ素原子を置換基として有するアリール基であることがより好ましい。
 R201およびR202が表すハロゲン原子としては、フッ素原子、塩素原子及び臭素原子が挙げられ、フッ素原子であることが好ましい。
 式(BZ-1)において、R111とR112は、結合して環を形成していてもよい。形成される環は5員環または6員環であることが好ましい。
The number of carbon atoms in the alkyl group represented by R 112 , R 201 and R 202 is preferably 1 to 10, and more preferably 1 to 6. The alkyl group represented by R 112 , R 201 and R 202 is preferably an alkyl group having a halogen atom as a substituent, and more preferably an alkyl group having a fluorine atom as a substituent.
The number of carbon atoms in the aryl group represented by R 112 , R 201 and R 202 is preferably 6 to 20, and more preferably 6 to 12. The aryl group represented by R 112 , R 201 and R 202 is preferably an aryl group having a halogen atom as a substituent, and more preferably an aryl group having a fluorine atom as a substituent.
Examples of the halogen atom represented by R 201 and R 202 include a fluorine atom, a chlorine atom and a bromine atom, and a fluorine atom is preferable.
In formula (BZ-1), R 111 and R 112 may be bonded to form a ring. The ring thus formed is preferably a 5- or 6-membered ring.
 式(BZ-1)のR111は-SO-R201で、R112は-SO-R202であることが好ましい。また、R201およびR202はそれぞれ独立して、フッ素原子、フッ素原子を置換基として有するアルキル基またはフッ素原子を置換基として有するアリール基であることが好ましく、フッ素原子またはフッ素原子を置換基として有するアルキル基であることがより好ましく、フッ素原子を置換基として有するアルキル基であることが更に好ましい。 In formula (BZ-1), R 111 is preferably —SO 2 —R 201 , and R 112 is preferably —SO 2 —R 202. Furthermore, R 201 and R 202 are each preferably independently a fluorine atom, an alkyl group having a fluorine atom as a substituent, or an aryl group having a fluorine atom as a substituent, more preferably a fluorine atom or an alkyl group having a fluorine atom as a substituent, and even more preferably an alkyl group having a fluorine atom as a substituent.
 式(BZ-2)中、R113は、-SO-R203または-CO-R203を表し、R114およびR115は、それぞれ独立して-SO-R204、-CO-R204またはシアノ基を表し、R203およびR204はそれぞれ独立して、ハロゲン原子、アルキル基またはアリール基を表し、R113と、R114またはR115は結合して環を形成していてもよい。 In formula (BZ-2), R 113 represents -SO 2 -R 203 or -CO-R 203 ; R 114 and R 115 each independently represent -SO 2 -R 204 , -CO-R 204 or a cyano group; R 203 and R 204 each independently represent a halogen atom, an alkyl group or an aryl group; and R 113 and R 114 or R 115 may be bonded to form a ring.
 R203およびR204が表すアルキル基の炭素数1~10が好ましく、1~6がより好ましい。R203およびR204が表すアルキル基はハロゲン原子を置換基として有するアルキル基であることが好ましく、フッ素原子を置換基として有するアルキル基であることがより好ましい。
 R203およびR204が表すアリール基の炭素数6~20が好ましく、6~12がより好ましい。R203およびR204が表すアリール基はハロゲン原子を置換基として有するアリール基であることが好ましく、フッ素原子を置換基として有するアリール基であることがより好ましい。
 R203およびR204が表すハロゲン原子としては、フッ素原子、塩素原子及び臭素原子が挙げられ、フッ素原子であることが好ましい。
 式(BZ-2)において、R113と、R114またはR115は結合して環を形成していてもよい。形成される環は5員環または6員環であることが好ましい。
The carbon number of the alkyl group represented by R 203 and R 204 is preferably 1 to 10, and more preferably 1 to 6. The alkyl group represented by R 203 and R 204 is preferably an alkyl group having a halogen atom as a substituent, and more preferably an alkyl group having a fluorine atom as a substituent.
The number of carbon atoms of the aryl group represented by R 203 and R 204 is preferably 6 to 20, and more preferably 6 to 12. The aryl group represented by R 203 and R 204 is preferably an aryl group having a halogen atom as a substituent, and more preferably an aryl group having a fluorine atom as a substituent.
Examples of the halogen atom represented by R 203 and R 204 include a fluorine atom, a chlorine atom and a bromine atom, and a fluorine atom is preferable.
In formula (BZ-2), R 113 and R 114 or R 115 may be bonded to form a ring. The ring thus formed is preferably a 5-membered or 6-membered ring.
 式(BZ-2)において、R113は、-SO-R203であることが好ましい。R114およびR115は、それぞれ独立して-SO-R204または-CO-R204であることが好ましく、-SO-R204であることがより好ましい。また、R203およびR204はそれぞれ独立して、フッ素原子、フッ素原子を置換基として有するアルキル基またはフッ素原子を置換基として有するアリール基であることが好ましく、フッ素原子またはフッ素原子を置換基として有するアルキル基であることがより好ましく、フッ素原子を置換基として有するアルキル基であることが更に好ましい。 In formula (BZ-2), R 113 is preferably -SO 2 -R 203. R 114 and R 115 are each preferably independently -SO 2 -R 204 or -CO-R 204 , more preferably -SO 2 -R 204. Furthermore, R 203 and R 204 are each preferably independently a fluorine atom, an alkyl group having a fluorine atom as a substituent, or an aryl group having a fluorine atom as a substituent, more preferably a fluorine atom or an alkyl group having a fluorine atom as a substituent, and even more preferably an alkyl group having a fluorine atom as a substituent.
 式(BZ-3)中、R116~R119は、それぞれ独立して、ハロゲン原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基またはシアノ基を表す。ハロゲン原子としては、フッ素原子、塩素原子及び臭素原子が挙げられ、フッ素原子であることが好ましい。アルキル基、アリール基、アルコキシ基およびアリールオキシ基は、置換基を有していてもよく、無置換であってもよい。置換基を有する場合は、ハロゲン原子またはハロゲン原子で置換されたアルキル基であることが好ましく、フッ素原子またはフッ素原子で置換されたアルキル基であることがより好ましい。 In formula (BZ-3), R 116 to R 119 each independently represent a halogen atom, an alkyl group, an aryl group, an alkoxy group, an aryloxy group, or a cyano group. Examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom, and a fluorine atom is preferable. The alkyl group, the aryl group, the alkoxy group, and the aryloxy group may have a substituent or may be unsubstituted. When a substituent is present, it is preferable that the substituent is a halogen atom or an alkyl group substituted with a halogen atom, and it is more preferable that the substituent is a fluorine atom or an alkyl group substituted with a fluorine atom.
 式(BZ-3)において、R116~R119の少なくとも一つが、シアノ基、フッ素原子、フッ素原子を置換基として有するアルキル基、フッ素原子を置換基として有するアリール基、またはフッ素原子で置換されたアルキル基を置換基として有するアリール基であることが好ましく、R116~R119のすべてがシアノ基、フッ素原子、フッ素原子を置換基として有するアルキル基、または、フッ素原子を置換基として有するアリール基であることがより好ましく、フッ素原子であることが更に好ましい。 In formula (BZ-3), it is preferable that at least one of R to R 119 is a cyano group , a fluorine atom, an alkyl group having a fluorine atom as a substituent, an aryl group having a fluorine atom as a substituent, or an aryl group having an alkyl group substituted with a fluorine atom as a substituent, it is more preferable that all of R to R 119 are a cyano group, a fluorine atom, an alkyl group having a fluorine atom as a substituent, or an aryl group having a fluorine atom as a substituent, and it is even more preferable that they are fluorine atoms.
 式(BZ-4)中、R120は、アルキル基またはアリール基を表す。R120が表すアルキル基の炭素数1~10が好ましく、1~6がより好ましい。R120が表すアルキル基は置換基を有していてもよい。置換基としては、ハロゲン原子、アルコキシ基、アリール基、アリールオキシ基、アシル基、アシルオキシ基などが挙げられる。R120が表すアリール基の炭素数6~20が好ましく、6~12がより好ましい。R120が表すアリール基は置換基を有していてもよい。置換基としては、ハロゲン原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アシル基、アシルオキシ基などが挙げられる。 In formula (BZ-4), R 120 represents an alkyl group or an aryl group. The number of carbon atoms of the alkyl group represented by R 120 is preferably 1 to 10, and more preferably 1 to 6. The alkyl group represented by R 120 may have a substituent. Examples of the substituent include a halogen atom, an alkoxy group, an aryl group, an aryloxy group, an acyl group, and an acyloxy group. The number of carbon atoms of the aryl group represented by R 120 is preferably 6 to 20, and more preferably 6 to 12. The aryl group represented by R 120 may have a substituent. Examples of the substituent include a halogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an acyl group, and an acyloxy group.
 式(BZ-5)中、R121は、アルキル基またはアリール基を表す。R121が表すアルキル基の炭素数1~10が好ましく、1~6がより好ましい。R121が表すアルキル基は置換基を有していてもよい。置換基としては、ハロゲン原子、アルコキシ基、アリール基、アリールオキシ基、アシル基、アシルオキシ基などが挙げられる。R121が表すアリール基の炭素数6~20が好ましく、6~12がより好ましい。R121が表すアリール基は置換基を有していてもよい。置換基としては、ハロゲン原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アシル基、アシルオキシ基などが挙げられる。 In formula (BZ-5), R 121 represents an alkyl group or an aryl group. The number of carbon atoms of the alkyl group represented by R 121 is preferably 1 to 10, and more preferably 1 to 6. The alkyl group represented by R 121 may have a substituent. Examples of the substituent include a halogen atom, an alkoxy group, an aryl group, an aryloxy group, an acyl group, and an acyloxy group. The number of carbon atoms of the aryl group represented by R 121 is preferably 6 to 20, and more preferably 6 to 12. The aryl group represented by R 121 may have a substituent. Examples of the substituent include a halogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an acyl group, and an acyloxy group.
 式(BZ-6)中、R122は、アルキル基またはアリール基を表し、R123は、水素原子、アルキル基またはアリール基を表す。R122およびR123が表すアルキル基の炭素数1~10が好ましく、1~6がより好ましい。R122およびR123が表すアルキル基は置換基を有していてもよい。置換基としては、ハロゲン原子、アルコキシ基、アリール基、アリールオキシ基、アシル基、アシルオキシ基などが挙げられる。R122およびR123が表すアリール基の炭素数6~20が好ましく、6~12がより好ましい。R122およびR123が表すアリール基は置換基を有していてもよい。置換基としては、ハロゲン原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アシル基、アシルオキシ基などが挙げられる。 In formula (BZ-6), R 122 represents an alkyl group or an aryl group, and R 123 represents a hydrogen atom, an alkyl group, or an aryl group. The number of carbon atoms of the alkyl group represented by R 122 and R 123 is preferably 1 to 10, more preferably 1 to 6. The alkyl group represented by R 122 and R 123 may have a substituent. Examples of the substituent include a halogen atom, an alkoxy group, an aryl group, an aryloxy group, an acyl group, and an acyloxy group. The number of carbon atoms of the aryl group represented by R 122 and R 123 is preferably 6 to 20, more preferably 6 to 12. The aryl group represented by R 122 and R 123 may have a substituent. Examples of the substituent include a halogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an acyl group, and an acyloxy group.
 式(BZ-7)中、R124~R129は、それぞれ独立してハロゲン原子またはハロゲン化炭化水素基を表す。R124~R129が表すハロゲン原子としては、フッ素原子、塩素原子及び臭素原子が挙げられ、フッ素原子であることが好ましい。R124~R129が表すハロゲン化炭化水素基は、ハロゲン原子を置換基として有するアルキル基であることが好ましく、フッ素原子を置換基として有するアルキル基であることがより好ましい。ハロゲン化炭化水素基の炭素数は、1~10が好ましく、1~6がより好ましい。 In formula (BZ-7), R 124 to R 129 each independently represent a halogen atom or a halogenated hydrocarbon group. Examples of the halogen atom represented by R 124 to R 129 include a fluorine atom, a chlorine atom, and a bromine atom, and a fluorine atom is preferable. The halogenated hydrocarbon group represented by R 124 to R 129 is preferably an alkyl group having a halogen atom as a substituent, and more preferably an alkyl group having a fluorine atom as a substituent. The number of carbon atoms in the halogenated hydrocarbon group is preferably 1 to 10, and more preferably 1 to 6.
 式(BZ-8)中、R130~R135は、それぞれ独立してハロゲン原子またはハロゲン化炭化水素基を表す。R130~R135が表すハロゲン原子としては、フッ素原子、塩素原子及び臭素原子が挙げられ、フッ素原子であることが好ましい。R130~R135が表すハロゲン化炭化水素基は、ハロゲン原子を置換基として有するアルキル基であることが好ましく、フッ素原子を置換基として有するアルキル基であることがより好ましい。ハロゲン化炭化水素基の炭素数は、1~10が好ましく、1~6がより好ましい。 In formula (BZ-8), R 130 to R 135 each independently represent a halogen atom or a halogenated hydrocarbon group. Examples of the halogen atom represented by R 130 to R 135 include a fluorine atom, a chlorine atom, and a bromine atom, and a fluorine atom is preferable. The halogenated hydrocarbon group represented by R 130 to R 135 is preferably an alkyl group having a halogen atom as a substituent, and more preferably an alkyl group having a fluorine atom as a substituent. The number of carbon atoms in the halogenated hydrocarbon group is preferably 1 to 10, and more preferably 1 to 6.
 対アニオンd2の具体例としては、以下に示す構造のアニオンが挙げられる。
Specific examples of the counter anion d2 include anions having the structures shown below.
 また、SbF 、(CFPF 、(CPF 、(CPF 、[(CFCF]PF 、[(CFCF]PF、(n-CPF 、(n-CPF 、(n-CPF 、(C)(CFPF 、[(CFCFCFPF 、[(CFCFCFPF、(n-CPF 、(n-CPF 、(CH)(CFPF 、(CPF 、(C)(CFPF 、(CF、(CFBF、(CFBF 、(CF)BF 、(C、(CBF、(C)BF 、(CBF 、(CF)(CBF、(CF、(CBF 、(C)BF 、(C、B(CN)F 、B(CN) 、B(CN)、(CFB(CN)、(CFB(CN) 、(CB(CN)、(CB(CN) 、(n-CB(CN)、(n-CB(CN)、(n-CB(CN) 、(n-C13B(CN)、(CHFB(CN)、(CHFB(CN) 、(CHCFB(CN)、(CHCFB(CN) 、(CHB(CN)、(CHB(CN) 、(CHCHB(CN) 、(n-CCHB(CN) 、(CB(CN)、および下記構造のアニオンも、具体例として挙げられる。
Also, SbF 6 , (CF 3 ) 3 PF 3 , (C 2 F 5 ) 2 PF 4 , (C 2 F 5 ) 3 PF 3 , [(CF 3 ) 2 CF] 2 PF 4 , [(CF 3 ) 2 CF] 3 PF 3 , (n-C 3 F 7 ) 2 PF 4 - , (n-C 3 F 7 ) 3 PF 3 - , (n-C 4 F 9 ) 3 PF 3 - , (C 2 F 5 )(CF 3 ) 2 PF 3 , [(CF 3 ) 2 CFCF 2 ] 2 PF 4 , [(CF 3 ) 2 CFCF 2 ] 3 PF 3 , (n-C 4 F 9 ) 2 PF 4 - , (n-C 4 F 9 ) 3 PF 3 - , (C 2 F 4 H) (CF 3 ) 2 PF 3 - , (C 2 F 3 H 2 ) 3 PF 3 - , (C 2 F 5 ) (CF 3 ) 2 PF 3 - , (CF 3 ) 4 B - , (CF 3 ) 3 BF - , (CF 3 ) 2 BF 2 , (CF 3 )BF 3 , (C 2 F 5 ) 4 B , (C 2 F 5 ) 3 BF , (C 2 F 5 )BF 3 , (C 2 F 5 ) 2 BF 2 , (CF 3 )(C 2 F 5 ) 2 BF , (CF 3 C 6 H 4 ) 4 B , (C 6 F 5 ) 2 BF 2 - , (C 6 F 5 ) BF 3 - , (C 6 H 3 F 2 ) 4 B - , B(CN)F 3 - , B(CN) 2 F 2 - , B(CN) 3 F - , (CF 3 ) 3 B(CN) - , (CF 3 ) 2 B(CN) 2 - , (C 2 F 5 ) 3 B(CN) - , (C 2 F 5 ) 2 B(CN) 2 - , (n-C 3 F 7 ) 3 B(CN) - , (n-C 4 F 9 ) 3 B(CN) - , (n-C 4 F 9 ) 2 B(CN) 2 , (n-C 6 F 13 ) 3 B(CN) , (CHF 2 ) 3 B(CN) , (CHF 2 ) 2 B( CN) 2 , (CH 2 CF 3 ) 3 B(CN) , (CH 2 CF 3 ) 2 B(CN) 2 , (CH 2 C 2 F 5 ) 3 B(CN) - , ( CH2C2F5 ) 2B ( CN ) 2- , ( CH2CH2C3F7 ) 2B ( CN ) 2- , (n- C3F7CH2 ) 2B ( CN ) 2 , (C 6 H 5 ) 3 B(CN) , and anions of the following structure are also specific examples.
 着色組成物の全固形分中における化合物Dの含有量は、1~60質量%であることが好ましい。上限は50質量%以下であることが好ましく、40質量%以下であることがより好ましい。下限は3質量%以上であることが好ましく、6質量%以上であることがより好ましい。化合物Dの含有量が上記範囲であれば、本発明の効果がより顕著に発揮される。 The content of compound D in the total solid content of the coloring composition is preferably 1 to 60 mass%. The upper limit is preferably 50 mass% or less, and more preferably 40 mass% or less. The lower limit is preferably 3 mass% or more, and more preferably 6 mass% or more. If the content of compound D is within the above range, the effects of the present invention are more pronounced.
 化合物Dの含有量は、染料100質量部に対して、5~1000質量部であることが好ましい。上限は600質量部以下であることが好ましく、300質量部以下であることがより好ましい。下限は10質量部以上であることが好ましく、20質量部以上であることがより好ましい。化合物Dの含有量が上記範囲であれば、本発明の効果がより顕著に発揮される。 The content of compound D is preferably 5 to 1000 parts by mass relative to 100 parts by mass of dye. The upper limit is preferably 600 parts by mass or less, and more preferably 300 parts by mass or less. The lower limit is preferably 10 parts by mass or more, and more preferably 20 parts by mass or more. If the content of compound D is within the above range, the effects of the present invention are more pronounced.
<<樹脂>>
 本発明の着色組成物は、上述した化合物Dのほかに、更に樹脂を含有することが好ましい。樹脂は、例えば、顔料などの粒子を着色組成物中で分散させる用途やバインダの用途で配合される。なお、主に顔料などの粒子を分散させるために用いられる樹脂を分散剤ともいう。ただし、樹脂のこのような用途は一例であって、このような用途以外の目的で使用することもできる。
<<Resin>>
The coloring composition of the present invention preferably further contains a resin in addition to the above-mentioned compound D. The resin is blended, for example, for dispersing particles such as pigments in the coloring composition or for use as a binder. Note that a resin used mainly for dispersing particles such as pigments is also called a dispersant. However, such uses of the resin are merely examples, and the resin may be used for purposes other than these uses.
 樹脂の重量平均分子量(Mw)は、3000~2000000が好ましい。上限は、1000000以下が好ましく、500000以下がより好ましい。下限は、4000以上が好ましく、5000以上がより好ましい。 The weight average molecular weight (Mw) of the resin is preferably 3,000 to 2,000,000. The upper limit is preferably 1,000,000 or less, and more preferably 500,000 or less. The lower limit is preferably 4,000 or more, and more preferably 5,000 or more.
 樹脂としては、例えば、(メタ)アクリル樹脂、エポキシ樹脂、(メタ)アクリルアミド樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレン樹脂、ポリアリーレンエーテルホスフィンオキシド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、ポリエステル樹脂、スチレン樹脂、シロキサン樹脂などが挙げられる。また、樹脂としては、国際公開第2022/065215号の段落番号0091~0099に記載の樹脂、特開2016-222891号公報に記載されたブロックポリイソシアネート樹脂、特開2020-122052号公報に記載された樹脂、特開2020-111656号公報に記載された樹脂、特開2020-139021号公報に記載された樹脂、特開2017-138503号公報に記載の主鎖に環構造を有する構成単位と側鎖にビフェニル基を有する構成単位とを含む樹脂、特開2020-186373号公報の段落0199~0233に記載の樹脂、特開2020-186325号公報に記載のアルカリ可溶性樹脂、韓国公開特許第10-2020-0078339号公報に記載の式1で表される樹脂、国際公開第2022/030445号に記載のエポキシ基と酸基を含む共重合体、特開2018-135514号公報に記載の化合物を用いることもできる。 Examples of resins include (meth)acrylic resins, epoxy resins, (meth)acrylamide resins, ene-thiol resins, polycarbonate resins, polyether resins, polyarylate resins, polysulfone resins, polyethersulfone resins, polyphenylene resins, polyarylene ether phosphine oxide resins, polyimide resins, polyamideimide resins, polyolefin resins, cyclic olefin resins, polyester resins, styrene resins, and siloxane resins. Further, as the resin, there are resins described in paragraphs 0091 to 0099 of WO 2022/065215, block polyisocyanate resins described in JP 2016-222891 A, resins described in JP 2020-122052 A, resins described in JP 2020-111656 A, resins described in JP 2020-139021 A, and structural units having a ring structure in the main chain and side chains described in JP 2017-138503 A and a structural unit having a biphenyl group, the resin described in paragraphs 0199 to 0233 of JP 2020-186373 A, the alkali-soluble resin described in JP 2020-186325 A, the resin represented by formula 1 described in Korean Patent Publication No. 10-2020-0078339 A, the copolymer containing an epoxy group and an acid group described in WO 2022/030445 A, and the compound described in JP 2018-135514 A can also be used.
 樹脂としては、酸基を有する樹脂を用いることが好ましい。酸基を有する樹脂はアルカリ可溶性樹脂として用いることができる。酸基としては、例えば、カルボキシ基、リン酸基、スルホ基、フェノール性ヒドロキシ基などが挙げられる。 As the resin, it is preferable to use a resin having an acid group. A resin having an acid group can be used as an alkali-soluble resin. Examples of the acid group include a carboxy group, a phosphate group, a sulfo group, and a phenolic hydroxy group.
 酸基を有する樹脂の酸価は、30~500mgKOH/gが好ましい。下限は、40mgKOH/g以上がより好ましく、50mgKOH/g以上が特に好ましい。上限は、400mgKOH/g以下がより好ましく、300mgKOH/g以下が更に好ましく、200mgKOH/g以下が特に好ましい。酸基を有する樹脂の重量平均分子量(Mw)は、5000~100000が好ましく、5000~50000がより好ましい。また、酸基を有する樹脂の数平均分子量(Mn)は、1000~20000が好ましい。 The acid value of the resin having acid groups is preferably 30 to 500 mgKOH/g. The lower limit is more preferably 40 mgKOH/g or more, and particularly preferably 50 mgKOH/g or more. The upper limit is more preferably 400 mgKOH/g or less, even more preferably 300 mgKOH/g or less, and particularly preferably 200 mgKOH/g or less. The weight average molecular weight (Mw) of the resin having acid groups is preferably 5,000 to 100,000, and more preferably 5,000 to 50,000. The number average molecular weight (Mn) of the resin having acid groups is preferably 1,000 to 20,000.
 酸基を有する樹脂は、酸基を側鎖に有する繰り返し単位を含むことが好ましく、酸基を側鎖に有する繰り返し単位を樹脂の全繰り返し単位中5~70モル%含むことがより好ましい。酸基を側鎖に有する繰り返し単位の含有量の上限は、50モル%以下であることが好ましく、30モル%以下であることがより好ましい。酸基を側鎖に有する繰り返し単位の含有量の下限は、10モル%以上であることが好ましく、20モル%以上であることがより好ましい。 The resin having an acid group preferably contains a repeating unit having an acid group on the side chain, and more preferably contains 5 to 70 mol% of the repeating units having an acid group on the side chain out of all the repeating units of the resin. The upper limit of the content of repeating units having an acid group on the side chain is preferably 50 mol% or less, and more preferably 30 mol% or less. The lower limit of the content of repeating units having an acid group on the side chain is preferably 10 mol% or more, and more preferably 20 mol% or more.
 酸基を有する樹脂については、特開2012-208494号公報の段落番号0558~0571(対応する米国特許出願公開第2012/0235099号明細書の段落番号0685~0700)の記載、特開2012-198408号公報の段落番号0076~0099の記載を参酌でき、これらの内容は本明細書に組み込まれる。また、酸基を有する樹脂は市販品を用いることもできる。また、樹脂への酸基の導入方法としては、特に制限はないが、例えば、特許第6349629号公報に記載の方法が挙げられる。更に、樹脂への酸基の導入方法としては、エポキシ基の開環反応で生じたヒドロキシ基に酸無水物を反応させて酸基を導入する方法も挙げられる。 For the resin having an acid group, the description in paragraphs 0558 to 0571 of JP 2012-208494 A (corresponding paragraphs 0685 to 0700 of the specification of US Patent Application Publication No. 2012/0235099) and the description in paragraphs 0076 to 0099 of JP 2012-198408 A can be referred to, and the contents of these are incorporated herein. In addition, a commercially available product can also be used as the resin having an acid group. In addition, there is no particular restriction on the method of introducing an acid group into the resin, but an example of the method is the method described in Japanese Patent No. 6349629 A. Furthermore, as a method of introducing an acid group into a resin, a method of reacting an acid anhydride with a hydroxyl group generated by a ring-opening reaction of an epoxy group to introduce an acid group can also be used.
 本発明の着色組成物は、塩基性基を有する樹脂を含むことも好ましい。塩基性基を有する樹脂は、塩基性基を側鎖に有する繰り返し単位を含む樹脂であることが好ましく、塩基性基を側鎖に有する繰り返し単位と塩基性基を含まない繰り返し単位とを有する共重合体であることがより好ましく、塩基性基を側鎖に有する繰り返し単位と、塩基性基を含まない繰り返し単位とを有するブロック共重合体であることが更に好ましい。塩基性基を有する樹脂は分散剤として用いることもできる。塩基性基を有する樹脂のアミン価は、5~300mgKOH/gが好ましい。下限は、10mgKOH/g以上が好ましく、20mgKOH/g以上がより好ましい。上限は、200mgKOH/g以下が好ましく、100mgKOH/g以下がより好ましい。 The coloring composition of the present invention also preferably contains a resin having a basic group. The resin having a basic group is preferably a resin containing a repeating unit having a basic group in the side chain, more preferably a copolymer having a repeating unit having a basic group in the side chain and a repeating unit not having a basic group, and even more preferably a block copolymer having a repeating unit having a basic group in the side chain and a repeating unit not having a basic group. The resin having a basic group can also be used as a dispersant. The amine value of the resin having a basic group is preferably 5 to 300 mgKOH/g. The lower limit is preferably 10 mgKOH/g or more, and more preferably 20 mgKOH/g or more. The upper limit is preferably 200 mgKOH/g or less, and more preferably 100 mgKOH/g or less.
 塩基性基を有する樹脂の市販品としては、DISPERBYK-161、162、163、164、166、167、168、174、182、183、184、185、2000、2001、2050、2150、2163、2164、BYK-LPN6919(以上、ビックケミー社製)、ソルスパース11200、13240、13650、13940、24000、26000、28000、32000、32500、32550、32600、33000、34750、35100、35200、37500、38500、39000、53095、56000、7100(以上、日本ルーブリゾール社製)、Efka PX 4300、4330、4046、4060、4080(以上、BASF社製)等が挙げられる。また、塩基性基を有する樹脂は、特開2014-219665号公報の段落番号0063~0112に記載されたブロック共重合体(B)、特開2018-156021号公報の段落番号0046~0076に記載されたブロック共重合体A1、特開2019-184763号公報の段落番号0150~0153に記載された塩基性基を有するビニル樹脂を用いることもでき、これらの内容は本明細書に組み込まれる。 Commercially available resins with basic groups include DISPERBYK-161, 162, 163, 164, 166, 167, 168, 174, 182, 183, 184, 185, 2000, 2001, 2050, 2150, 2163, 2164, BYK-LPN6919 (all manufactured by BYK-Chemie), Solsperse 11200, 13240, 13650, 13940, 24 000, 26000, 28000, 32000, 32500, 32550, 32600, 33000, 34750, 35100, 35200, 37500, 38500, 39000, 53095, 56000, 7100 (all manufactured by Lubrizol Japan), Efka PX 4300, 4330, 4046, 4060, 4080 (all manufactured by BASF), and the like. In addition, the resin having a basic group may be a block copolymer (B) described in paragraphs 0063 to 0112 of JP 2014-219665 A, a block copolymer A1 described in paragraphs 0046 to 0076 of JP 2018-156021 A, or a vinyl resin having a basic group described in paragraphs 0150 to 0153 of JP 2019-184763 A, the contents of which are incorporated herein by reference.
 本発明の着色組成物は、酸基を有する樹脂と塩基性基を有する樹脂とをそれぞれ含むことも好ましい。この態様によれば、着色組成物の保存安定性をより向上できる。酸基を有する樹脂と塩基性基を有する樹脂とを併用する場合、塩基性基を有する樹脂の含有量は、酸基を有する樹脂の100質量部に対して20~500質量部であることが好ましく、30~300質量部であることがより好ましく、50~200質量部であることが更に好ましい。 It is also preferable that the coloring composition of the present invention contains both a resin having an acid group and a resin having a basic group. According to this embodiment, the storage stability of the coloring composition can be further improved. When a resin having an acid group and a resin having a basic group are used in combination, the content of the resin having a basic group is preferably 20 to 500 parts by mass, more preferably 30 to 300 parts by mass, and even more preferably 50 to 200 parts by mass, per 100 parts by mass of the resin having an acid group.
 樹脂としては、芳香族カルボキシ基を有する樹脂を用いることも好ましい。芳香族カルボキシ基を有する樹脂において、芳香族カルボキシ基は繰り返し単位の主鎖に含まれていてもよく、繰り返し単位の側鎖に含まれていてもよい。芳香族カルボキシ基は繰り返し単位の主鎖に含まれていることが好ましい。なお、本明細書において、芳香族カルボキシ基とは、芳香族環にカルボキシ基が1個以上結合した構造の基のことである。芳香族カルボキシ基において、芳香族環に結合したカルボキシ基の数は、1~4個であることが好ましく、1~2個であることがより好ましい。芳香族カルボキシ基を有する樹脂としては、国際公開第2021/166858号の段落0082~0107に記載された樹脂が挙げられる。 As the resin, it is also preferable to use a resin having an aromatic carboxy group. In a resin having an aromatic carboxy group, the aromatic carboxy group may be included in the main chain of a repeating unit, or may be included in a side chain of the repeating unit. It is preferable that the aromatic carboxy group is included in the main chain of a repeating unit. In this specification, an aromatic carboxy group refers to a group having a structure in which one or more carboxy groups are bonded to an aromatic ring. In an aromatic carboxy group, the number of carboxy groups bonded to an aromatic ring is preferably 1 to 4, and more preferably 1 to 2. Examples of resins having an aromatic carboxy group include the resins described in paragraphs 0082 to 0107 of WO 2021/166858.
 本発明の着色組成物は、分散剤としての樹脂を含有することが好ましい。分散剤としては、酸性分散剤(酸性樹脂)、塩基性分散剤(塩基性樹脂)が挙げられる。ここで、酸性分散剤(酸性樹脂)とは、酸基の量が塩基性基の量よりも多い樹脂を表す。酸性分散剤(酸性樹脂)としては、酸基の量と塩基性基の量の合計量を100モル%としたときに、酸基の量が70モル%以上である樹脂が好ましい。酸性分散剤(酸性樹脂)が有する酸基は、カルボキシ基が好ましい。酸性分散剤(酸性樹脂)の酸価は、10~105mgKOH/gが好ましい。また、塩基性分散剤(塩基性樹脂)とは、塩基性基の量が酸基の量よりも多い樹脂を表す。塩基性分散剤(塩基性樹脂)としては、酸基の量と塩基性基の量の合計量を100モル%としたときに、塩基性基の量が50モル%を超える樹脂が好ましい。塩基性分散剤が有する塩基性基は、アミノ基が好ましい。 The coloring composition of the present invention preferably contains a resin as a dispersant. Examples of dispersants include acidic dispersants (acidic resins) and basic dispersants (basic resins). Here, the acidic dispersant (acidic resin) refers to a resin in which the amount of acid groups is greater than the amount of basic groups. The acidic dispersant (acidic resin) is preferably a resin in which the amount of acid groups is 70 mol% or more when the total amount of the acid groups and the basic groups is 100 mol%. The acid group possessed by the acidic dispersant (acidic resin) is preferably a carboxy group. The acid value of the acidic dispersant (acidic resin) is preferably 10 to 105 mgKOH/g. The basic dispersant (basic resin) refers to a resin in which the amount of basic groups is greater than the amount of acid groups. The basic dispersant (basic resin) is preferably a resin in which the amount of basic groups is greater than the amount of acid groups when the total amount of the acid groups and the basic groups is 100 mol%. The basic group possessed by the basic dispersant is preferably an amino group.
 分散剤として用いる樹脂は、グラフト樹脂であることも好ましい。グラフト樹脂の詳細は、特開2012-255128号公報の段落番号0025~0094の記載を参酌でき、この内容は本明細書に組み込まれる。 It is also preferable that the resin used as the dispersant is a graft resin. For details of the graft resin, please refer to the description in paragraphs 0025 to 0094 of JP 2012-255128 A, the contents of which are incorporated herein by reference.
 分散剤として用いる樹脂は、芳香族カルボキシ基を有する樹脂であることも好ましい。芳香族カルボキシ基を有する樹脂としては上述したものが挙げられる。 It is also preferable that the resin used as the dispersant is a resin having an aromatic carboxy group. Examples of resins having an aromatic carboxy group include those mentioned above.
 分散剤として用いる樹脂は、主鎖及び側鎖の少なくとも一方に窒素原子を含むポリイミン系分散剤であることも好ましい。ポリイミン系分散剤としては、pKa14以下の官能基を有する部分構造を有する主鎖と、原子数40~10000の側鎖とを有し、かつ主鎖及び側鎖の少なくとも一方に塩基性窒素原子を有する樹脂が好ましい。塩基性窒素原子は、塩基性を呈する窒素原子であれば特に制限はない。ポリイミン系分散剤については、特開2012-255128号公報の段落番号0102~0166の記載を参酌でき、この内容は本明細書に組み込まれる。 The resin used as the dispersant is preferably a polyimine-based dispersant containing nitrogen atoms in at least one of the main chain and side chain. The polyimine-based dispersant is preferably a resin having a main chain with a partial structure having a functional group with a pKa of 14 or less, a side chain with 40 to 10,000 atoms, and having a basic nitrogen atom in at least one of the main chain and side chain. There are no particular restrictions on the basic nitrogen atom, so long as it is a nitrogen atom that exhibits basicity. For details of polyimine-based dispersants, please refer to the description in paragraphs 0102 to 0166 of JP 2012-255128 A, the contents of which are incorporated herein by reference.
 分散剤として用いる樹脂は、コア部に複数個のポリマー鎖が結合した構造の樹脂であることも好ましい。このような樹脂としては、例えば、デンドリマー(星型ポリマーを含む)が挙げられる。また、デンドリマーの具体例としては、特開2013-043962号公報の段落番号0196~0209に記載された高分子化合物C-1~C-31などが挙げられる。 The resin used as the dispersant is preferably one having a structure in which multiple polymer chains are bonded to a core portion. Examples of such resins include dendrimers (including star-shaped polymers). Specific examples of dendrimers include polymer compounds C-1 to C-31 described in paragraphs 0196 to 0209 of JP2013-043962A.
 分散剤として用いる樹脂は、エチレン性不飽和結合含有基を側鎖に有する繰り返し単位を含む樹脂であることも好ましい。エチレン性不飽和結合含有基を側鎖に有する繰り返し単位の含有量は、樹脂の全繰り返し単位中10モル%以上であることが好ましく、10~80モル%であることがより好ましく、20~70モル%であることが更に好ましい。 The resin used as the dispersant is also preferably a resin containing a repeating unit having an ethylenically unsaturated bond-containing group in the side chain. The content of the repeating unit having an ethylenically unsaturated bond-containing group in the side chain is preferably 10 mol % or more of the total repeating units of the resin, more preferably 10 to 80 mol %, and even more preferably 20 to 70 mol %.
 分散剤として、特開2018-087939号公報に記載された樹脂、特許第6432077号公報の段落番号0219~0221に記載されたブロック共重合体(EB-1)~(EB-9)、国際公開第2016/104803号に記載のポリエステル側鎖を有するポリエチレンイミン、国際公開第2019/125940号に記載のブロック共重合体、特開2020-066687号公報に記載のアクリルアミド構造単位を有するブロックポリマー、特開2020-066688号公報に記載のアクリルアミド構造単位を有するブロックポリマー、国際公開第2016/104803号に記載の分散剤などを用いることもできる。 As dispersants, resins described in JP 2018-087939 A, block copolymers (EB-1) to (EB-9) described in paragraphs 0219 to 0221 of Japanese Patent No. 6,432,077 A, polyethyleneimine having a polyester side chain described in WO 2016/104803 A, block copolymers described in WO 2019/125940 A, block polymers having an acrylamide structural unit described in JP 2020-066687 A, block polymers having an acrylamide structural unit described in JP 2020-066688 A, dispersants described in WO 2016/104803 A, and the like can also be used.
 分散剤は、市販品としても入手可能であり、そのような具体例としては、BYKChemie社製のDISPERBYKシリーズ、日本ルーブリゾール社製のSOLSPERSEシリーズ、BASF社製のEfkaシリーズ、味の素ファインテクノ(株)製のアジスパーシリーズ等が挙げられる。また、特開2012-137564号公報の段落番号0129に記載された製品、特開2017-194662号公報の段落番号0235に記載された製品を分散剤として用いることもできる。 Dispersants are also available as commercially available products, and specific examples include the DISPERBYK series manufactured by BYK Chemie, the SOLSPERSE series manufactured by Lubrizol Nippon, the Efka series manufactured by BASF, and the AJISPER series manufactured by Ajinomoto Fine-Techno Co., Ltd. In addition, the products described in paragraph 0129 of JP 2012-137564 A and the products described in paragraph 0235 of JP 2017-194662 A can also be used as dispersants.
 着色組成物の全固形分中における樹脂の含有量は、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、35質量%以下であることが更に好ましく、30質量%以下であることがより一層好ましい。下限は0質量%以上とすることができ、1質量%以上とすることもでき、2質量%以上とすることもできる。
 また、着色組成物の全固形分中における酸基を有する樹脂(アルカリ可溶性樹脂)の含有量は、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、35質量%以下であることが更に好ましく、30質量%以下であることがより一層好ましい。下限は0質量%以上とすることができ、1質量%以上とすることもでき、2質量%以上とすることもできる。
 また、樹脂全量中における酸基を有する樹脂(アルカリ可溶性樹脂)の含有量は、優れた現像性が得られやすいという理由から30質量%以上が好ましく、50質量%以上がより好ましく、70質量%以上が更に好ましく、80質量%以上が特に好ましい。上限は、100質量%とすることができ、95質量%とすることもでき、90質量%以下とすることもできる。本発明の着色組成物は、樹脂を1種のみ含んでいてもよいし、2種以上含んでいてもよい。樹脂を2種以上含む場合は、それらの合計量が上記範囲となることが好ましい。
The content of the resin in the total solid content of the coloring composition is preferably 50% by mass or less, more preferably 40% by mass or less, even more preferably 35% by mass or less, and even more preferably 30% by mass or less. The lower limit can be 0% by mass or more, 1% by mass or more, or 2% by mass or more.
The content of the resin having an acid group (alkali-soluble resin) in the total solid content of the coloring composition is preferably 50% by mass or less, more preferably 40% by mass or less, even more preferably 35% by mass or less, and even more preferably 30% by mass or less. The lower limit can be 0% by mass or more, 1% by mass or more, or 2% by mass or more.
In addition, the content of the resin having an acid group (alkali-soluble resin) in the total amount of resin is preferably 30% by mass or more, more preferably 50% by mass or more, even more preferably 70% by mass or more, and particularly preferably 80% by mass or more, because excellent developability is easily obtained. The upper limit can be 100% by mass, can be 95% by mass, or can be 90% by mass or less. The coloring composition of the present invention may contain only one type of resin, or may contain two or more types. When two or more types of resins are contained, it is preferable that the total amount thereof is within the above range.
<<環状エーテル基を有する化合物>>
 本発明の着色組成物は、環状エーテル基を有する化合物を含有することができる。環状エーテル基としては、エポキシ基、オキセタニル基などが挙げられる。環状エーテル基を有する化合物は、エポキシ基を有する化合物(以下、エポキシ化合物ともいう)であることが好ましい。エポキシ化合物としては、1分子内にエポキシ基を1つ以上有する化合物が挙げられ、エポキシ基を2つ以上有する化合物が好ましい。エポキシ化合物はエポキシ基を1分子内に1~100個有する化合物であることが好ましい。エポキシ化合物に含まれるエポキシ基の上限は、例えば、10個以下とすることもでき、5個以下とすることもできる。エポキシ化合物に含まれるエポキシ基の下限は、2個以上が好ましい。環状エーテル基を有する化合物としては、特開2013-011869号公報の段落番号0034~0036、特開2014-043556号公報の段落番号0147~0156、特開2014-089408号公報の段落番号0085~0092に記載された化合物、特開2017-179172号公報に記載された化合物、特開2021-195421号公報に記載のキサンテン型エポキシ樹脂、特開2021-195422号公報に記載のキサンテン型エポキシ樹脂を用いることもできる。
<<Compound Having Cyclic Ether Group>>
The coloring composition of the present invention may contain a compound having a cyclic ether group. Examples of the cyclic ether group include an epoxy group and an oxetanyl group. The compound having a cyclic ether group is preferably a compound having an epoxy group (hereinafter also referred to as an epoxy compound). Examples of the epoxy compound include compounds having one or more epoxy groups in one molecule, and compounds having two or more epoxy groups are preferred. The epoxy compound is preferably a compound having 1 to 100 epoxy groups in one molecule. The upper limit of the epoxy groups contained in the epoxy compound can be, for example, 10 or less, or 5 or less. The lower limit of the epoxy groups contained in the epoxy compound is preferably 2 or more. Examples of compounds having a cyclic ether group include those described in paragraphs 0034 to 0036 of JP-A-2013-011869, 0147 to 0156 of JP-A-2014-043556, and 0085 to 0092 of JP-A-2014-089408. Compounds described in JP-A-2017-179172, xanthene-type epoxy resins described in JP-A-2021-195421, and xanthene-type epoxy resins described in JP-A-2021-195422 can also be used.
 環状エーテル基を有する化合物は、低分子化合物(例えば、分子量2000未満、さらには、分子量1000未満)でもよいし、高分子化合物(macromolecule)(例えば、分子量1000以上、ポリマーの場合は、重量平均分子量が1000以上)でもよい。エポキシ基を有する化合物の重量平均分子量は、200~100000が好ましく、500~50000がより好ましい。重量平均分子量の上限は、10000以下がさらに好ましく、5000以下が特に好ましく、3000以下が一層好ましい。 The compound having a cyclic ether group may be a low molecular weight compound (e.g., a molecular weight of less than 2000, or even less than 1000) or a high molecular weight compound (macromolecule) (e.g., a molecular weight of 1000 or more, or in the case of a polymer, a weight average molecular weight of 1000 or more). The weight average molecular weight of the compound having an epoxy group is preferably 200 to 100,000, more preferably 500 to 50,000. The upper limit of the weight average molecular weight is more preferably 10,000 or less, particularly preferably 5,000 or less, and even more preferably 3,000 or less.
 環状エーテル基を有する化合物の市販品としては、例えば、EHPE3150((株)ダイセル製)、EPICLON N-695(DIC(株)製)、マープルーフG-0150M、G-0105SA、G-0130SP、G-0250SP、G-1005S、G-1005SA、G-1010S、G-2050M、G-01100、G-01758(以上、日油(株)製、エポキシ基含有ポリマー)等が挙げられる。 Commercially available compounds having a cyclic ether group include, for example, EHPE3150 (manufactured by Daicel Corporation), EPICLON N-695 (manufactured by DIC Corporation), Marproof G-0150M, G-0105SA, G-0130SP, G-0250SP, G-1005S, G-1005SA, G-1010S, G-2050M, G-01100, and G-01758 (all manufactured by NOF Corporation, epoxy group-containing polymers).
 着色組成物の全固形分中における環状エーテル基を有する化合物の含有量は、0.1~20質量%が好ましい。下限は、0.5質量%以上が好ましく、1質量%以上がより好ましい。上限は、15質量%以下が好ましく、10質量%以下がより好ましい。環状エーテル基を有する化合物は1種のみを用いてもよく、2種以上を用いてもよい。2種以上を用いる場合は、それらの合計量が上記範囲となることが好ましい。 The content of the compound having a cyclic ether group in the total solid content of the coloring composition is preferably 0.1 to 20% by mass. The lower limit is preferably 0.5% by mass or more, and more preferably 1% by mass or more. The upper limit is preferably 15% by mass or less, and more preferably 10% by mass or less. Only one type of compound having a cyclic ether group may be used, or two or more types may be used. When two or more types are used, it is preferable that the total amount thereof is within the above range.
<<顔料誘導体>>
 本発明の着色組成物は、顔料誘導体を含有することができる。顔料誘導体としては、色素構造およびトリアジン構造からなる群より選ばれる少なくとも1種の構造と、酸基または塩基性基とを有する化合物が挙げられる。
<<Pigment derivatives>>
The coloring composition of the present invention may contain a pigment derivative. Examples of the pigment derivative include a compound having at least one structure selected from the group consisting of a dye structure and a triazine structure, and an acid group or a basic group.
 上記色素構造としては、キノリン色素構造、ベンゾイミダゾロン色素構造、ベンゾイソインドール色素構造、ベンゾチアゾール色素構造、イミニウム色素構造、スクアリリウム色素構造、クロコニウム色素構造、オキソノール色素構造、ピロロピロール色素構造、ジケトピロロピロール色素構造、アゾ色素構造、アゾメチン色素構造、フタロシアニン色素構造、ナフタロシアニン色素構造、アントラキノン色素構造、キナクリドン色素構造、ジオキサジン色素構造、ペリノン色素構造、ペリレン色素構造、チアジンインジゴ色素構造、チオインジゴ色素構造、イソインドリン色素構造、イソインドリノン色素構造、キノフタロン色素構造、ジチオール色素構造、トリアリールメタン色素構造、ピロメテン色素構造等が挙げられる。 The above dye structures include a quinoline dye structure, a benzimidazolone dye structure, a benzisoindole dye structure, a benzothiazole dye structure, an iminium dye structure, a squarylium dye structure, a croconium dye structure, an oxonol dye structure, a pyrrolopyrrole dye structure, a diketopyrrolopyrrole dye structure, an azo dye structure, an azomethine dye structure, a phthalocyanine dye structure, a naphthalocyanine dye structure, an anthraquinone dye structure, a quinacridone dye structure, a dioxazine dye structure, a perinone dye structure, a perylene dye structure, a thiazineindigo dye structure, a thioindigo dye structure, an isoindoline dye structure, an isoindolinone dye structure, a quinophthalone dye structure, a dithiol dye structure, a triarylmethane dye structure, and a pyrromethene dye structure.
 顔料誘導体が有する酸基としては、カルボキシ基、スルホ基、リン酸基、ボロン酸基、イミド酸基及びこれらの塩等が挙げられる。塩を構成する原子または原子団としては、アルカリ金属イオン(Li、Na、Kなど)、アルカリ土類金属イオン(Ca2+、Mg2+など)、アンモニウムイオン、イミダゾリウムイオン、ピリジニウムイオン、ホスホニウムイオンなどが挙げられる。イミド酸基としては、-SONHSOX1、-CONHSOX2、-CONHCORX3または-SONHCORX4が好ましく、-SONHSOX1、-CONHSOX2、または-SONHCORX4がより好ましく、-SONHSOX1または-CONHSOX2が更に好ましい。RX1~RX4は、それぞれ独立に、アルキル基またはアリール基を表す。RX1~RX4が表すアルキル基及びアリール基は、置換基を有してもよい。置換基としてはハロゲン原子であることが好ましく、フッ素原子であることがより好ましい。RX1~RX4は、それぞれ独立に、フッ素原子を含むアルキル基またはフッ素原子を含むアリール基であることが好ましく、フッ素原子を含むアルキル基であることがより好ましい。フッ素原子を含むアルキル基の炭素数は1~10が好ましく、1~5がより好ましく、1~3が更に好ましい。フッ素原子を含むアリール基の炭素数は6~20が好ましく、6~12がより好ましく、6が更に好ましい。 Examples of the acid group possessed by the pigment derivative include a carboxy group, a sulfo group, a phosphate group, a boronic acid group, an imide acid group, and salts thereof. Examples of the atom or atomic group constituting the salt include an alkali metal ion (Li + , Na + , K +, etc.), an alkaline earth metal ion (Ca 2+ , Mg 2+ , etc.), an ammonium ion, an imidazolium ion, a pyridinium ion, and a phosphonium ion. Examples of the imide acid group include -SO 2 NHSO 2 R X1 , -CONHSO 2 R X2 , -CONHCOR X3 , and -SO 2 NHCOR X4 , and -SO 2 NHSO 2 R X1 , -CONHSO 2 R X2 , and -SO 2 NHCOR X4 are more preferable, and -SO 2 NHSO 2 R X1 or -CONHSO 2 R X2 are even more preferable. R X1 to R X4 each independently represent an alkyl group or an aryl group. The alkyl group and aryl group represented by R X1 to R X4 may have a substituent. The substituent is preferably a halogen atom, more preferably a fluorine atom. R X1 to R X4 each independently represent an alkyl group containing a fluorine atom or an aryl group containing a fluorine atom, more preferably an alkyl group containing a fluorine atom. The number of carbon atoms of the alkyl group containing a fluorine atom is preferably 1 to 10, more preferably 1 to 5, and even more preferably 1 to 3. The number of carbon atoms of the aryl group containing a fluorine atom is preferably 6 to 20, more preferably 6 to 12, and even more preferably 6.
 顔料誘導体が有する塩基性基としては、アミノ基、ピリジニル基およびその塩、アンモニウム基の塩、並びにフタルイミドメチル基が挙げられる。塩を構成する原子または原子団としては、水酸化物イオン、ハロゲンイオン、カルボン酸イオン、スルホン酸イオン、フェノキシドイオンなどが挙げられる。 Basic groups contained in pigment derivatives include amino groups, pyridinyl groups and their salts, salts of ammonium groups, and phthalimidomethyl groups. Atoms or atomic groups that constitute the salts include hydroxide ions, halogen ions, carboxylate ions, sulfonate ions, and phenoxide ions.
 アミノ基としては、-NRx11x12で表される基、および、環状アミノ基が挙げられる。 Examples of the amino group include a group represented by --NR.sub.x11R.sub.x12 and a cyclic amino group.
 -NRx11x12で表される基において、Rx11およびRx12は、それぞれ独立して、水素原子、アルキル基またはアリール基を表し、アルキル基であることが好ましい。すなわち、アミノ基は、ジアルキルアミノ基であることが好ましい。アルキル基の炭素数は、1~10が好ましく、1~5がより好ましく、1~3が更に好ましい。アルキル基は、直鎖状、分岐状、環状のいずれでもよいが、直鎖状または分岐状が好ましく、直鎖がより好ましい。アルキル基は、置換基を有していてもよい。置換基としては上述した置換基Tが挙げられる。アリール基の炭素数は、6~30が好ましく、6~20がより好ましく、6~12が更に好ましい。アリール基は、置換基を有していてもよい。置換基としては上述した置換基Tが挙げられる。 In the group represented by -NR x11 R x12 , R x11 and R x12 each independently represent a hydrogen atom, an alkyl group or an aryl group, and are preferably an alkyl group. That is, the amino group is preferably a dialkylamino group. The number of carbon atoms of the alkyl group is preferably 1 to 10, more preferably 1 to 5, and even more preferably 1 to 3. The alkyl group may be linear, branched, or cyclic, but is preferably linear or branched, and more preferably linear. The alkyl group may have a substituent. Examples of the substituent include the above-mentioned substituent T. The number of carbon atoms of the aryl group is preferably 6 to 30, more preferably 6 to 20, and even more preferably 6 to 12. The aryl group may have a substituent. Examples of the substituent include the above-mentioned substituent T.
 環状アミノ基としては、ピロリジン基、ピペリジン基、ピペラジン基、モルホリン基などが挙げられる。これらの基は更に置換基を有していてもよい。 Cyclic amino groups include pyrrolidine groups, piperidine groups, piperazine groups, and morpholine groups. These groups may further have a substituent.
 顔料誘導体は、可視透明性に優れた顔料誘導体(以下、透明顔料誘導体ともいう)を用いることもできる。透明顔料誘導体の400~700nmの波長領域におけるモル吸光係数の最大値(εmax)は3000L・mol-1・cm-1以下であることが好ましく、1000L・mol-1・cm-1以下であることがより好ましく、100L・mol-1・cm-1以下であることがさらに好ましい。εmaxの下限は、例えば1L・mol-1・cm-1以上であり、10L・mol-1・cm-1以上でもよい。 The pigment derivative may be a pigment derivative having excellent visible transparency (hereinafter, also referred to as a transparent pigment derivative). The maximum molar absorption coefficient (εmax) of the transparent pigment derivative in the wavelength region of 400 to 700 nm is preferably 3000 L·mol -1 ·cm -1 or less, more preferably 1000 L·mol -1 ·cm -1 or less, and even more preferably 100 L·mol -1 ·cm -1 or less. The lower limit of εmax is, for example, 1 L·mol -1 ·cm -1 or more, and may be 10 L·mol- 1 ·cm -1 or more.
 顔料誘導体の具体例としては、後述する実施例に記載の化合物、国際公開第2022/085485号の段落0124に記載の化合物、特開2018-168244号公報に記載のベンゾイミダゾロン化合物又はそれらの塩、特許第6996282号の一般式(1)に記載のイソインドリン骨格を有する化合物などが挙げられる。 Specific examples of pigment derivatives include the compounds described in the Examples below, the compounds described in paragraph 0124 of WO 2022/085485, the benzimidazolone compounds or salts thereof described in JP 2018-168244 A, and compounds having an isoindoline skeleton described in general formula (1) of Japanese Patent No. 6996282.
 本発明の着色組成物が顔料誘導体を含有する場合、着色組成物の全固形分中における顔料誘導体の含有量は0.3~20質量%であることが好ましい。下限は0.6質量%以上であることが好ましく、0.9質量%以上であることがより好ましい。上限は15質量%以下であることが好ましく、12.5質量%以下であることがより好ましく、10質量%以下であることが更に好ましい。また、顔料誘導体の含有量は顔料100質量部に対して1~30質量部であることが好ましい。下限は2質量部以上であることが好ましく、3質量部以上であることがより好ましい。上限は、25質量部以下であることが好ましく、20質量部以下であることがより好ましく、15質量部以下であることが更に好ましい。本発明の着色組成物は、顔料誘導体を1種のみ含んでいてもよいし、2種以上含んでいてもよい。顔料誘導体を2種以上含む場合は、それらの合計量が上記範囲となることが好ましい。 When the coloring composition of the present invention contains a pigment derivative, the content of the pigment derivative in the total solid content of the coloring composition is preferably 0.3 to 20 mass%. The lower limit is preferably 0.6 mass% or more, and more preferably 0.9 mass% or more. The upper limit is preferably 15 mass% or less, more preferably 12.5 mass% or less, and even more preferably 10 mass% or less. The content of the pigment derivative is preferably 1 to 30 mass parts relative to 100 mass parts of pigment. The lower limit is preferably 2 mass parts or more, and more preferably 3 mass parts or more. The upper limit is preferably 25 mass parts or less, more preferably 20 mass parts or less, and even more preferably 15 mass parts or less. The coloring composition of the present invention may contain only one type of pigment derivative, or may contain two or more types. When two or more types of pigment derivatives are contained, it is preferable that the total amount thereof is within the above range.
<<シランカップリング剤>>
 本発明の着色組成物は、シランカップリング剤を含有することができる。シランカップリング剤としては、加水分解性基を有するシラン化合物が挙げられ、加水分解性基とそれ以外の官能基とを有するシラン化合物であることが好ましい。加水分解性基とは、ケイ素原子に直結し、加水分解反応及び縮合反応の少なくともいずれかによってシロキサン結合を生じ得る置換基をいう。加水分解性基としては、例えば、ハロゲン原子、アルコキシ基、アシルオキシ基などが挙げられ、アルコキシ基が好ましい。すなわち、シランカップリング剤は、アルコキシシリル基を有する化合物が好ましい。また、加水分解性基以外の官能基としては、例えば、ビニル基、(メタ)アリル基、(メタ)アクリロイル基、メルカプト基、エポキシ基、オキセタニル基、アミノ基、ウレイド基、スルフィド基、イソシアネート基、フェニル基などが挙げられ、アミノ基、(メタ)アクリロイル基およびエポキシ基が好ましい。シランカップリング剤の具体例としては、国際公開第2022/085485号の段落0177に記載の化合物、特開2019-183020号公報に記載の化合物が挙げられる。着色組成物の全固形分中におけるシランカップリング剤の含有量は、0.01~15.0質量%が好ましく、0.05~10.0質量%がより好ましい。シランカップリング剤は、1種類のみでもよく、2種類以上でもよい。2種類以上の場合は、合計量が上記範囲となることが好ましい。
<<Silane coupling agents>>
The coloring composition of the present invention may contain a silane coupling agent. Examples of the silane coupling agent include silane compounds having a hydrolyzable group, and it is preferable that the silane coupling agent is a silane compound having a hydrolyzable group and other functional groups. The hydrolyzable group refers to a substituent that is directly bonded to a silicon atom and can generate a siloxane bond by at least one of a hydrolysis reaction and a condensation reaction. Examples of the hydrolyzable group include a halogen atom, an alkoxy group, and an acyloxy group, and an alkoxy group is preferable. That is, the silane coupling agent is preferably a compound having an alkoxysilyl group. In addition, examples of functional groups other than the hydrolyzable group include a vinyl group, a (meth)allyl group, a (meth)acryloyl group, a mercapto group, an epoxy group, an oxetanyl group, an amino group, a ureido group, a sulfide group, an isocyanate group, and a phenyl group, and an amino group, a (meth)acryloyl group, and an epoxy group are preferable. Specific examples of the silane coupling agent include the compounds described in paragraph 0177 of International Publication No. 2022/085485 and the compounds described in JP-A-2019-183020. The content of the silane coupling agent in the total solid content of the coloring composition is preferably 0.01 to 15.0% by mass, more preferably 0.05 to 10.0% by mass. The silane coupling agent may be one type or two or more types. In the case of two or more types, it is preferable that the total amount is within the above range.
<<溶剤>>
 本発明の着色組成物は、溶剤を含有することが好ましい。溶剤としては、有機溶剤が挙げられる。溶剤の種類は、各成分の溶解性や組成物の塗布性を満足すれば基本的には特に制限はない。有機溶剤としては、エステル系溶剤、ケトン系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤、炭化水素系溶剤などが挙げられる。これらの詳細については、国際公開第2015/166779号の段落番号0223を参酌でき、この内容は本明細書に組み込まれる。また、環状アルキル基が置換したエステル系溶剤、環状アルキル基が置換したケトン系溶剤も好ましく用いることもできる。有機溶剤の具体例としては、ポリエチレングリコールモノメチルエーテル、ジクロロメタン、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3-メトキシプロピオン酸メチル、2-ヘプタノン、2-ペンタノン、3-ペンタノン、4-ヘプタノン、シクロヘキサノン、2-メチルシクロヘキサノン、3-メチルシクロヘキサノン、4-メチルシクロヘキサノン、シクロヘプタノン、シクロオクタノン、酢酸シクロヘキシル、シクロペンタノン、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、プロピレングリコールジアセテート、3-メトキシブタノール、メチルエチルケトン、ガンマブチロラクトン、スルホラン、アニソール、1,4-ジアセトキシブタン、ジエチレングリコールモノエチルエーテルアセタート、二酢酸ブタン-1,3-ジイル、ジプロピレングリコールメチルエーテルアセタート、ジアセトンアルコール(別名としてダイアセトンアルコール、4-ヒドロキシ-4-メチル-2-ペンタノン)、2-メトキシプロピルアセテート、2-メトキシ-1-プロパノール、イソプロピルアルコールなどが挙げられる。ただし有機溶剤としての芳香族炭化水素類(ベンゼン、トルエン、キシレン、エチルベンゼン等)は、環境面等の理由により低減したほうがよい場合がある(例えば、有機溶剤全量に対して、50質量ppm(parts per million)以下とすることもでき、10質量ppm以下とすることもでき、1質量ppm以下とすることもできる)。
<<Solvent>>
The coloring composition of the present invention preferably contains a solvent. Examples of the solvent include organic solvents. The type of solvent is not particularly limited as long as the solubility of each component and the coatability of the composition are satisfied. Examples of the organic solvent include ester-based solvents, ketone-based solvents, alcohol-based solvents, amide-based solvents, ether-based solvents, and hydrocarbon-based solvents. For details of these, reference can be made to paragraph number 0223 of International Publication No. 2015/166779, the contents of which are incorporated herein by reference. In addition, ester-based solvents substituted with a cyclic alkyl group and ketone-based solvents substituted with a cyclic alkyl group can also be preferably used. Specific examples of organic solvents include polyethylene glycol monomethyl ether, dichloromethane, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl cellosolve acetate, ethyl lactate, diethylene glycol dimethyl ether, butyl acetate, methyl 3-methoxypropionate, 2-heptanone, 2-pentanone, 3-pentanone, 4-heptanone, cyclohexanone, 2-methylcyclohexanone, 3-methylcyclohexanone, 4-methylcyclohexanone, cycloheptanone, cyclooctanone, cyclohexyl acetate, cyclopentanone, ethyl carbitol acetate, butyl carbitol acetate, propylene glycol monomethyl ether, propylene glycol dimethyl ether, butyl acetate ... Examples of the ethylene glycol monomethyl ether acetate include 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, propylene glycol diacetate, 3-methoxybutanol, methyl ethyl ketone, gamma butyrolactone, sulfolane, anisole, 1,4-diacetoxybutane, diethylene glycol monoethyl ether acetate, butane-1,3-diyl diacetate, dipropylene glycol methyl ether acetate, diacetone alcohol (also known as diacetone alcohol and 4-hydroxy-4-methyl-2-pentanone), 2-methoxypropyl acetate, 2-methoxy-1-propanol, and isopropyl alcohol. However, there are cases where it is better to reduce the amount of aromatic hydrocarbons (benzene, toluene, xylene, ethylbenzene, etc.) used as organic solvents for environmental reasons, etc. (for example, the amount can be 50 ppm (parts per million) by mass or less, 10 ppm by mass or less, or 1 ppm by mass or less, relative to the total amount of organic solvents).
 本発明においては、金属含有量の少ない有機溶剤を用いることが好ましい。有機溶剤の金属含有量は、例えば、10質量ppb(parts per billion)以下であることが好ましい。必要に応じて質量ppt(parts per trillion)レベルの有機溶剤を用いてもよく、そのような有機溶剤は,例えば、東洋合成社が提供している(化学工業日報、2015年11月13日)。 In the present invention, it is preferable to use an organic solvent with a low metal content. The metal content of the organic solvent is preferably, for example, 10 parts per billion (ppb) by mass or less. If necessary, an organic solvent with a mass ppt (parts per trillion) level may be used, and such an organic solvent is provided, for example, by Toyo Gosei Co., Ltd. (The Chemical Daily, November 13, 2015).
 有機溶剤から金属等の不純物を除去する方法としては、例えば、蒸留(分子蒸留や薄膜蒸留等)やフィルタを用いたろ過を挙げることができる。ろ過に用いるフィルタのフィルタ孔径としては、10μm以下が好ましく、5μm以下がより好ましく、3μm以下が更に好ましい。フィルタの材質は、ポリテトラフロロエチレン、ポリエチレンまたはナイロンが好ましい。 Methods for removing impurities such as metals from organic solvents include, for example, distillation (molecular distillation, thin-film distillation, etc.) and filtration using a filter. The filter used for filtration preferably has a pore size of 10 μm or less, more preferably 5 μm or less, and even more preferably 3 μm or less. The filter material is preferably polytetrafluoroethylene, polyethylene, or nylon.
 有機溶剤は、異性体(原子数が同じであるが構造が異なる化合物)が含まれていてもよい。また、異性体は、1種のみが含まれていてもよいし、複数種含まれていてもよい。 The organic solvent may contain isomers (compounds with the same number of atoms but different structures). In addition, the organic solvent may contain only one type of isomer, or multiple types of isomers.
 有機溶剤中の過酸化物の含有率が0.8mmol/L以下であることが好ましく、過酸化物を実質的に含まないことがより好ましい。 The peroxide content in the organic solvent is preferably 0.8 mmol/L or less, and more preferably substantially free of peroxide.
 着色組成物中における溶剤の含有量は、10~95質量%であることが好ましく、20~90質量%であることがより好ましく、30~90質量%であることが更に好ましい。 The content of the solvent in the coloring composition is preferably 10 to 95% by mass, more preferably 20 to 90% by mass, and even more preferably 30 to 90% by mass.
 また、本発明の着色組成物は、環境規制の観点から環境規制物質を実質的に含有しないことが好ましい。なお、本発明において、環境規制物質を実質的に含有しないとは、着色組成物中における環境規制物質の含有量が50質量ppm以下であることを意味し、30質量ppm以下であることが好ましく、10質量ppm以下であることが更に好ましく、1質量ppm以下であることが特に好ましい。環境規制物質は、例えば、ベンゼン;トルエン、キシレン等のアルキルベンゼン類;クロロベンゼン等のハロゲン化ベンゼン類等が挙げられる。これらは、REACH(Registration Evaluation Authorization and Restriction of CHemicals)規則、PRTR(Pollutant Release and Transfer Register)法、VOC(Volatile Organic Compounds)規制等のもとに環境規制物質として登録されており、使用量や取り扱い方法が厳しく規制されている。これらの化合物は、着色組成物に用いられる各成分などを製造する際に溶媒として用いられることがあり、残留溶媒として着色組成物中に混入することがある。人への安全性、環境への配慮の観点よりこれらの物質は可能な限り低減することが好ましい。環境規制物質を低減する方法としては、系中を加熱や減圧して環境規制物質の沸点以上にして系中から環境規制物質を留去して低減する方法が挙げられる。また、少量の環境規制物質を留去する場合においては、効率を上げる為に該当溶媒と同等の沸点を有する溶媒と共沸させることも有用である。また、ラジカル重合性を有する化合物を含有する場合、減圧留去中にラジカル重合反応が進行して分子間で架橋してしまうことを抑制するために重合禁止剤等を添加して減圧留去してもよい。これらの留去方法は、原料の段階、原料を反応させた生成物(例えば、重合した後の樹脂溶液や多官能モノマー溶液)の段階、またはこれらの化合物を混ぜて作製した着色組成物の段階などのいずれの段階でも可能である。 Furthermore, from the viewpoint of environmental regulations, it is preferable that the coloring composition of the present invention is substantially free of environmentally regulated substances. In the present invention, substantially free of environmentally regulated substances means that the content of environmentally regulated substances in the coloring composition is 50 ppm by mass or less, preferably 30 ppm by mass or less, more preferably 10 ppm by mass or less, and particularly preferably 1 ppm by mass or less. Examples of environmentally regulated substances include benzene; alkylbenzenes such as toluene and xylene; and halogenated benzenes such as chlorobenzene. These substances are registered as environmentally regulated substances under the REACH (Registration Evaluation Authorization and Restriction of Chemicals) regulations, the PRTR (Pollutant Release and Transfer Register) Act, the VOC (Volatile Organic Compounds) regulations, etc., and their usage and handling methods are strictly regulated. These compounds may be used as solvents when producing each component used in the coloring composition, and may be mixed into the coloring composition as a residual solvent. From the viewpoint of human safety and environmental consideration, it is preferable to reduce these substances as much as possible. As a method for reducing the environmentally regulated substances, a method of reducing the environmentally regulated substances by heating or reducing the pressure in the system to a temperature above the boiling point of the environmentally regulated substances and distilling off the environmentally regulated substances from the system can be mentioned. In addition, when distilling off a small amount of environmentally regulated substances, it is useful to perform azeotropy with a solvent having a boiling point equivalent to that of the solvent in question in order to increase efficiency. In addition, when a radically polymerizable compound is contained, a polymerization inhibitor or the like may be added and then distilled off under reduced pressure in order to suppress the radical polymerization reaction from proceeding during distillation under reduced pressure and causing crosslinking between molecules. These distillation methods can be performed at any stage, such as the stage of the raw materials, the stage of the product obtained by reacting the raw materials (for example, a resin solution or a polyfunctional monomer solution after polymerization), or the stage of a colored composition prepared by mixing these compounds.
<<重合禁止剤>>
 本発明の着色組成物は、重合禁止剤を含有することができる。重合禁止剤としては、ハイドロキノン、p-メトキシフェノール、ジ-tert-ブチル-p-クレゾール、ピロガロール、tert-ブチルカテコール、ベンゾキノン、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、N-ニトロソフェニルヒドロキシアミン塩(アンモニウム塩、第一セリウム塩等)が挙げられる。中でも、p-メトキシフェノールが好ましい。着色組成物の全固形分中における重合禁止剤の含有量は、0.0001~5質量%が好ましい。重合禁止剤は、1種類のみでもよく、2種類以上でもよい。2種類以上の場合は、合計量が上記範囲となることが好ましい。
<<Polymerization inhibitor>>
The coloring composition of the present invention may contain a polymerization inhibitor. Examples of the polymerization inhibitor include hydroquinone, p-methoxyphenol, di-tert-butyl-p-cresol, pyrogallol, tert-butylcatechol, benzoquinone, 4,4'-thiobis(3-methyl-6-tert-butylphenol), 2,2'-methylenebis(4-methyl-6-t-butylphenol), and N-nitrosophenylhydroxyamine salts (ammonium salts, cerous salts, etc.). Among these, p-methoxyphenol is preferred. The content of the polymerization inhibitor in the total solid content of the coloring composition is preferably 0.0001 to 5% by mass. The polymerization inhibitor may be one type or two or more types. In the case of two or more types, the total amount is preferably within the above range.
<<界面活性剤>>
 本発明の着色組成物は、界面活性剤を含有することができる。界面活性剤としては、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、シリコーン系界面活性剤などの各種界面活性剤を使用することができる。界面活性剤はシリコーン系界面活性剤またはフッ素系界面活性剤であることが好ましく、シリコーン系界面活性剤であることがより好ましい。界面活性剤については、国際公開第2015/166779号の段落番号0238~0245に記載された界面活性剤を参照することができ、この内容は本明細書に組み込まれる。
<<Surfactants>>
The coloring composition of the present invention may contain a surfactant. As the surfactant, various surfactants such as a fluorine-based surfactant, a nonionic surfactant, a cationic surfactant, an anionic surfactant, and a silicone-based surfactant may be used. The surfactant is preferably a silicone-based surfactant or a fluorine-based surfactant, and more preferably a silicone-based surfactant. For the surfactant, reference may be made to the surfactants described in paragraphs 0238 to 0245 of WO 2015/166779, the contents of which are incorporated herein by reference.
 フッ素系界面活性剤としては、国際公開第2022/085485号の段落番号0167~0173に記載の化合物を用いることができる。 As fluorosurfactants, the compounds described in paragraphs 0167 to 0173 of WO 2022/085485 can be used.
 ノニオン系界面活性剤としては、国際公開第2022/085485号の段落0174に記載の化合物が挙げられる。 Nonionic surfactants include the compounds described in paragraph 0174 of WO 2022/085485.
 シリコーン系界面活性剤としては、DOWSIL SH8400、SH8400 FLUID、FZ-2122、67 Additive、74 Additive、M Additive、SF 8419 OIL(以上、ダウ・東レ(株)製)、TSF-4300、TSF-4445、TSF-4460、TSF-4452(以上、モメンティブ・パフォーマンス・マテリアルズ社製)、KP-341、KF-6000、KF-6001、KF-6002、KF-6003(以上、信越化学工業(株)製)、BYK-307、BYK-322、BYK-323、BYK-330、BYK-333、BYK-3760、BYK-UV3510(以上、ビックケミー社製)等が挙げられる。 Silicone surfactants include DOWSIL SH8400, SH8400 FLUID, FZ-2122, 67 Additive, 74 Additive, M Additive, SF 8419 OIL (all manufactured by Dow Toray Co., Ltd.), TSF-4300, TSF-4445, TSF-4460, and TSF-4452 (all manufactured by Momen Co., Ltd.). Examples include BYK-307, BYK-322, BYK-323, BYK-330, BYK-333, BYK-3760, and BYK-UV3510 (manufactured by BYK-Chemie), etc.
 また、シリコーン系界面活性剤には下記構造の化合物を用いることもできる。
Furthermore, the silicone surfactant may also be a compound having the following structure:
 着色組成物の全固形分中における界面活性剤の含有量は、0.001質量%~5.0質量%が好ましく、0.005~3.0質量%がより好ましい。界面活性剤は、1種類のみでもよく、2種類以上でもよい。2種類以上の場合は、合計量が上記範囲となることが好ましい。 The content of the surfactant in the total solid content of the coloring composition is preferably 0.001% by mass to 5.0% by mass, and more preferably 0.005% by mass to 3.0% by mass. The surfactant may be one type or two or more types. When two or more types are used, it is preferable that the total amount is within the above range.
<<紫外線吸収剤>>
 本発明の着色組成物は、紫外線吸収剤を含有することができる。紫外線吸収剤としては、共役ジエン化合物、アミノジエン化合物、サリシレート化合物、ベンゾフェノン化合物、ベンゾトリアゾール化合物、アクリロニトリル化合物、ヒドロキシフェニルトリアジン化合物、インドール化合物、トリアジン化合物、ジベンゾイル化合物などが挙げられる。このような化合物の具体例としては、国際公開第2022/085485号の段落番号0179に記載の化合物、特開2021-178918号公報に記載の反応性トリアジン紫外線吸収剤、特開2022-007884号公報に記載の紫外線吸収剤、韓国公開特許第10-2022-0014454号公報に記載の化合物を用いることもできる。着色組成物の全固形分中における紫外線吸収剤の含有量は、0.01~10質量%が好ましく、0.01~5質量%がより好ましい。本発明において、紫外線吸収剤は1種のみを用いてもよく、2種以上を用いてもよい。2種以上を用いる場合は、合計量が上記範囲となることが好ましい。
<<Ultraviolet absorbing agent>>
The coloring composition of the present invention may contain an ultraviolet absorber. Examples of ultraviolet absorbers include conjugated diene compounds, aminodiene compounds, salicylate compounds, benzophenone compounds, benzotriazole compounds, acrylonitrile compounds, hydroxyphenyltriazine compounds, indole compounds, triazine compounds, and dibenzoyl compounds. Specific examples of such compounds include the compounds described in paragraph 0179 of International Publication No. 2022/085485, the reactive triazine ultraviolet absorbers described in JP-A-2021-178918, the ultraviolet absorbers described in JP-A-2022-007884, and the compounds described in Korean Patent Publication No. 10-2022-0014454. The content of the ultraviolet absorber in the total solid content of the coloring composition is preferably 0.01 to 10% by mass, more preferably 0.01 to 5% by mass. In the present invention, only one type of ultraviolet absorber may be used, or two or more types may be used. When two or more types are used, it is preferable that the total amount is within the above range.
<<酸化防止剤>>
 本発明の着色組成物は、酸化防止剤を含有することができる。酸化防止剤としては、フェノール化合物、亜リン酸エステル化合物、チオエーテル化合物などが挙げられる。フェノール化合物としては、フェノール系酸化防止剤として知られる任意のフェノール化合物を使用することができる。好ましいフェノール化合物としては、ヒンダードフェノール化合物が挙げられる。フェノール性ヒドロキシ基に隣接する部位(オルト位)に置換基を有する化合物が好ましい。前述の置換基としては炭素数1~22の置換又は無置換のアルキル基が好ましい。また、酸化防止剤は、同一分子内にフェノール基と亜リン酸エステル基を有する化合物も好ましい。また、酸化防止剤は、リン系酸化防止剤も好適に使用することができる。リン系酸化防止剤としてはトリス[2-[[2,4,8,10-テトラキス(1,1-ジメチルエチル)ジベンゾ[d,f][1,3,2]ジオキサホスフェピン-6-イル]オキシ]エチル]アミン、トリス[2-[(4,6,9,11-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン-2-イル)オキシ]エチル]アミン、亜リン酸エチルビス(2,4-ジ-tert-ブチル-6-メチルフェニル)などが挙げられる。酸化防止剤の市販品としては、例えば、アデカスタブ AO-20、アデカスタブ AO-30、アデカスタブ AO-40、アデカスタブ AO-50、アデカスタブ AO-50F、アデカスタブ AO-60、アデカスタブ AO-60G、アデカスタブ AO-80、アデカスタブ AO-330(以上、(株)ADEKA製)などが挙げられる。また、酸化防止剤は、特許第6268967号公報の段落番号0023~0048に記載された化合物、国際公開第2017/006600号に記載された化合物、国際公開第2017/164024号に記載された化合物、韓国公開特許第10-2019-0059371号公報に記載された化合物を使用することもできる。着色組成物の全固形分中における酸化防止剤の含有量は、0.01~20質量%であることが好ましく、0.3~15質量%であることがより好ましい。酸化防止剤は1種のみを用いてもよく、2種以上を用いてもよい。2種以上を用いる場合は、合計量が上記範囲となることが好ましい。
<<Antioxidants>>
The coloring composition of the present invention may contain an antioxidant. Examples of the antioxidant include phenolic compounds, phosphite compounds, and thioether compounds. As the phenolic compound, any phenolic compound known as a phenolic antioxidant may be used. A preferred phenolic compound is a hindered phenolic compound. A compound having a substituent at the site (ortho position) adjacent to the phenolic hydroxy group is preferred. As the aforementioned substituent, a substituted or unsubstituted alkyl group having 1 to 22 carbon atoms is preferred. In addition, the antioxidant is also preferably a compound having a phenolic group and a phosphite group in the same molecule. In addition, a phosphorus-based antioxidant may also be suitably used as the antioxidant. Examples of phosphorus-based antioxidants include tris[2-[[2,4,8,10-tetrakis(1,1-dimethylethyl)dibenzo[d,f][1,3,2]dioxaphosphepin-6-yl]oxy]ethyl]amine, tris[2-[(4,6,9,11-tetra-tert-butyldibenzo[d,f][1,3,2]dioxaphosphepin-2-yl)oxy]ethyl]amine, and ethylbis(2,4-di-tert-butyl-6-methylphenyl)phosphite. Commercially available antioxidants include, for example, Adeka STAB AO-20, Adeka STAB AO-30, Adeka STAB AO-40, Adeka STAB AO-50, Adeka STAB AO-50F, Adeka STAB AO-60, Adeka STAB AO-60G, Adeka STAB AO-80, and Adeka STAB AO-330 (manufactured by ADEKA Corporation). In addition, the antioxidant may be a compound described in paragraphs 0023 to 0048 of Japanese Patent No. 6268967, a compound described in International Publication No. WO 2017/006600, a compound described in International Publication No. WO 2017/164024, or a compound described in Korean Patent Publication No. 10-2019-0059371. The content of the antioxidant in the total solid content of the coloring composition is preferably 0.01 to 20 mass%, more preferably 0.3 to 15 mass%. Only one type of antioxidant may be used, or two or more types may be used. When two or more types are used, it is preferable that the total amount is in the above range.
<<硬化促進剤>>
 本発明の着色組成物は、硬化促進剤を含んでもよい。硬化促進剤としては、チオール化合物、メチロール化合物、アミン化合物、ホスホニウム塩化合物、アミジン塩化合物、アミド化合物、塩基発生剤、イソシアネート化合物、アルコキシシラン化合物、オニウム塩化合物などが挙げられる。硬化促進剤の具体例としては、国際公開第2022/085485号の段落0164に記載の化合物、特開2021-181406号公報に記載の化合物などが挙げられる。着色組成物の全固形分中における硬化促進剤の含有量は0.3~8.9質量%が好ましく、0.8~6.4質量%がより好ましい。
<<Curing accelerator>>
The coloring composition of the present invention may contain a curing accelerator. Examples of the curing accelerator include a thiol compound, a methylol compound, an amine compound, a phosphonium salt compound, an amidine salt compound, an amide compound, a base generator, an isocyanate compound, an alkoxysilane compound, and an onium salt compound. Specific examples of the curing accelerator include the compound described in paragraph 0164 of International Publication No. 2022/085485 and the compound described in JP-A-2021-181406. The content of the curing accelerator in the total solid content of the coloring composition is preferably 0.3 to 8.9% by mass, more preferably 0.8 to 6.4% by mass.
<<その他成分>>
 本発明の着色組成物は、必要に応じて、増感剤、可塑剤及びその他の助剤類(例えば、導電性粒子、充填剤、消泡剤、難燃剤、レベリング剤、剥離促進剤、香料、表面張力調整剤、連鎖移動剤など)を含有してもよい。これらの成分を適宜含有させることにより、膜物性などの性質を調整することができる。これらの成分は、国際公開第2022/085485号の段落0182に記載の化合物を用いることができる。
<<Other ingredients>>
The coloring composition of the present invention may contain, as necessary, a sensitizer, a plasticizer, and other auxiliaries (for example, conductive particles, fillers, defoamers, flame retardants, leveling agents, peeling promoters, fragrances, surface tension regulators, chain transfer agents, etc.). By appropriately incorporating these components, properties such as film properties can be adjusted. As these components, the compounds described in paragraph 0182 of WO 2022/085485 can be used.
 本発明の着色組成物は、得られる膜の屈折率を調整するために金属酸化物を含有させてもよい。金属酸化物としては、TiO、ZrO、Al、SiO等が挙げられる。金属酸化物の一次粒子径は1~100nmが好ましく、3~70nmがより好ましく、5~50nmが更に好ましい。金属酸化物はコア-シェル構造を有していてもよい。また、この場合、コア部は中空状であってもよい。 The coloring composition of the present invention may contain a metal oxide in order to adjust the refractive index of the resulting film. Examples of the metal oxide include TiO 2 , ZrO 2 , Al 2 O 3 , and SiO 2 . The primary particle size of the metal oxide is preferably 1 to 100 nm, more preferably 3 to 70 nm, and even more preferably 5 to 50 nm. The metal oxide may have a core-shell structure. In this case, the core may be hollow.
 本発明の着色組成物は、耐光性改良剤を含んでもよい。耐光性改良剤としては、国際公開第2022/085485号の段落番号0183に記載の化合物が挙げられる。 The coloring composition of the present invention may contain a light resistance improver. Examples of the light resistance improver include the compounds described in paragraph 0183 of WO 2022/085485.
 本発明の着色組成物は、テレフタル酸エステルを実質的に含まないことも好ましい。ここで、「実質的に含まない」とは、テレフタル酸エステルの含有量が、着色組成物の全量中、1000質量ppb以下であることを意味し、100質量ppb以下であることがより好ましく、ゼロであることが特に好ましい。 It is also preferable that the coloring composition of the present invention is substantially free of terephthalic acid esters. Here, "substantially free" means that the content of terephthalic acid esters in the total amount of the coloring composition is 1000 ppb by mass or less, more preferably 100 ppb by mass or less, and particularly preferably zero.
 本発明の着色組成物は、環境規制の観点から、メラミンの含有量が10000質量ppm以下であることが好ましい。 In view of environmental regulations, the coloring composition of the present invention preferably has a melamine content of 10,000 ppm by mass or less.
 本発明の着色組成物は、遊離の金属含有量が100質量ppm以下であることが好ましく、50質量ppm以下であることがより好ましい。また、遊離のハロゲン含有量は100質量ppm以下であることが好ましく、50質量ppm以下であることがより好ましい。
 また、着色組成物中における塩化物イオン濃度が100質量ppm以下であることが好ましく、50質量ppm以下であることがより好ましい。
 着色組成物中の遊離の金属やハロゲンの低減方法としては、イオン交換水による洗浄、ろ過、限外ろ過、イオン交換樹脂による精製等の方法が挙げられる。
The colored composition of the present invention preferably has a free metal content of 100 ppm by mass or less, more preferably 50 ppm by mass or less, and preferably has a free halogen content of 100 ppm by mass or less, more preferably 50 ppm by mass or less.
The chloride ion concentration in the colored composition is preferably 100 ppm by mass or less, and more preferably 50 ppm by mass or less.
Methods for reducing the amount of free metals and halogens in the colored composition include washing with ion-exchanged water, filtration, ultrafiltration, purification with ion-exchange resins, and the like.
 環境規制の観点から、パーフルオロアルキルスルホン酸及びその塩、並びにパーフルオロアルキルカルボン酸及びその塩の使用が規制されることがある。本発明の着色組成物において、上記した化合物の含有率を小さくする場合、パーフルオロアルキルスルホン酸(特にパーフルオロアルキル基の炭素数が6~8のパーフルオロアルキルスルホン酸)及びその塩、並びにパーフルオロアルキルカルボン酸(特にパーフルオロアルキル基の炭素数が6~8のパーフルオロアルキルカルボン酸)及びその塩の含有率は、着色組成物の全固形分に対して、0.01ppb~1,000ppbの範囲であることが好ましく、0.05ppb~500ppbの範囲であることがより好ましく、0.1ppb~300ppbの範囲であることが更に好ましい。本発明の着色組成物は、パーフルオロアルキルスルホン酸及びその塩、並びにパーフルオロアルキルカルボン酸及びその塩を実質的に含まなくてもよい。例えば、パーフルオロアルキルスルホン酸及びその塩の代替となりうる化合物、並びにパーフルオロアルキルカルボン酸及びその塩の代替となりうる化合物を用いることで、パーフルオロアルキルスルホン酸及びその塩、並びにパーフルオロアルキルカルボン酸及びその塩を実質的に含まない着色組成物を選択してもよい。規制化合物の代替となりうる化合物としては、例えば、パーフルオロアルキル基の炭素数の違いによって規制対象から除外された化合物が挙げられる。ただし、上記した内容は、パーフルオロアルキルスルホン酸及びその塩、並びにパーフルオロアルキルカルボン酸及びその塩の使用を妨げるものではない。本発明の着色組成物は、許容される最大の範囲内で、パーフルオロアルキルスルホン酸及びその塩、並びにパーフルオロアルキルカルボン酸及びその塩を含んでもよい。 From the viewpoint of environmental regulations, the use of perfluoroalkylsulfonic acid and its salts, and perfluoroalkylcarboxylic acid and its salts may be restricted. When the content of the above-mentioned compounds is reduced in the coloring composition of the present invention, the content of perfluoroalkylsulfonic acid (particularly perfluoroalkylsulfonic acid having 6 to 8 carbon atoms in the perfluoroalkyl group) and its salts, and perfluoroalkylcarboxylic acid (particularly perfluoroalkylcarboxylic acid having 6 to 8 carbon atoms in the perfluoroalkyl group) and its salts is preferably in the range of 0.01 ppb to 1,000 ppb, more preferably in the range of 0.05 ppb to 500 ppb, and even more preferably in the range of 0.1 ppb to 300 ppb, based on the total solid content of the coloring composition. The coloring composition of the present invention may be substantially free of perfluoroalkylsulfonic acid and its salts, and perfluoroalkylcarboxylic acid and its salts. For example, a coloring composition that is substantially free of perfluoroalkylsulfonic acid and its salts, and perfluoroalkylcarboxylic acid and its salts may be selected by using a compound that can be a substitute for perfluoroalkylsulfonic acid and its salts, and a compound that can be a substitute for perfluoroalkylcarboxylic acid and its salts. Examples of compounds that can be a substitute for regulated compounds include compounds that are excluded from the scope of regulation due to the difference in the number of carbon atoms in the perfluoroalkyl group. However, the above content does not prevent the use of perfluoroalkylsulfonic acid and its salts, and perfluoroalkylcarboxylic acid and its salts. The coloring composition of the present invention may contain perfluoroalkylsulfonic acid and its salts, and perfluoroalkylcarboxylic acid and its salts, within the maximum allowable range.
 本発明の着色組成物の含水率は、通常3質量%以下であり、0.01~1.5質量%が好ましく、0.1~1.0質量%の範囲であることがより好ましい。含水率は、カールフィッシャー法にて測定することができる。 The water content of the coloring composition of the present invention is usually 3% by mass or less, preferably 0.01 to 1.5% by mass, and more preferably in the range of 0.1 to 1.0% by mass. The water content can be measured by the Karl Fischer method.
 本発明の着色組成物は、膜面状(平坦性など)の調整、膜厚の調整などを目的として粘度を調整して用いることができる。粘度の値は必要に応じて適宜選択することができるが、例えば、25℃において0.3mPa・s~50mPa・sが好ましく、0.5mPa・s~20mPa・sがより好ましい。粘度の測定方法としては、例えば、コーンプレートタイプの粘度計を使用し、25℃に温度調整を施した状態で測定することができる。 The coloring composition of the present invention can be used by adjusting the viscosity for the purpose of adjusting the film surface state (flatness, etc.), adjusting the film thickness, etc. The viscosity value can be appropriately selected as needed, but for example, it is preferably 0.3 mPa·s to 50 mPa·s at 25°C, and more preferably 0.5 mPa·s to 20 mPa·s. The viscosity can be measured, for example, using a cone-plate type viscometer with the temperature adjusted to 25°C.
<<収容容器>>
 着色組成物の収容容器としては、特に限定はなく、公知の収容容器を用いることができる。また、収容容器として、国際公開第2022/085485号の段落0187に記載の容器を用いることができる。
<<Storage container>>
The container for storing the coloring composition is not particularly limited, and a known container can be used. In addition, the container described in paragraph 0187 of WO 2022/085485 can be used as the container.
<着色組成物の調製方法>
 本発明の着色組成物は、前述の成分を混合して調製できる。着色組成物の調製に際しては、全成分を同時に溶剤に溶解および/または分散して着色組成物を調製してもよいし、必要に応じて、各成分を適宜2つ以上の溶液または分散液としておいて、使用時(塗布時)にこれらを混合して着色組成物を調製してもよい。
<Method of preparing coloring composition>
The coloring composition of the present invention can be prepared by mixing the above-mentioned components. When preparing the coloring composition, all the components may be dissolved and/or dispersed in a solvent at the same time to prepare the coloring composition, or, if necessary, each component may be appropriately prepared as two or more solutions or dispersions, which are mixed at the time of use (at the time of application) to prepare the coloring composition.
 また、着色組成物の調製に際して、顔料を分散させるプロセスを含むことが好ましい。顔料を分散させるプロセスにおいて、顔料の分散に用いる機械力としては、圧縮、圧搾、衝撃、剪断、キャビテーションなどが挙げられる。これらプロセスの具体例としては、ビーズミル、サンドミル、ロールミル、ボールミル、ペイントシェーカー、マイクロフルイダイザー、高速インペラー、サンドグラインダー、フロージェットミキサー、高圧湿式微粒化、超音波分散などが挙げられる。またサンドミル(ビーズミル)における顔料の粉砕においては、径の小さいビーズを使用する、ビーズの充填率を大きくする事等により粉砕効率を高めた条件で処理することが好ましい。また、粉砕処理後にろ過、遠心分離などで粗粒子を除去することが好ましい。また、顔料を分散させるプロセスおよび分散機は、「分散技術大全集、株式会社情報機構発行、2005年7月15日」や「サスペンション(固/液分散系)を中心とした分散技術と工業的応用の実際 総合資料集、経営開発センター出版部発行、1978年10月10日」、特開2015-157893号公報の段落番号0022に記載のプロセス及び分散機を好適に使用出来る。また顔料を分散させるプロセスにおいては、ソルトミリング工程にて粒子の微細化処理を行ってもよい。ソルトミリング工程に用いられる素材、機器、処理条件等は、例えば、特開2015-194521号公報、特開2012-046629号公報の記載を参酌できる。 In addition, it is preferable that the preparation of the coloring composition includes a process for dispersing the pigment. In the process for dispersing the pigment, examples of mechanical forces used to disperse the pigment include compression, squeezing, impact, shear, and cavitation. Specific examples of these processes include bead mills, sand mills, roll mills, ball mills, paint shakers, microfluidizers, high-speed impellers, sand grinders, flow jet mixers, high-pressure wet atomization, and ultrasonic dispersion. In addition, in the grinding of the pigment in a sand mill (bead mill), it is preferable to use beads with a small diameter, increase the bead packing rate, and perform the process under conditions that increase the grinding efficiency. In addition, it is preferable to remove coarse particles by filtration, centrifugation, or the like after the grinding process. In addition, the process and dispersing machine for dispersing the pigment can be suitably used as described in "Dispersion Technology Encyclopedia, published by Joho Kika Co., Ltd., July 15, 2005" or "Dispersion Technology and Industrial Applications Focused on Suspension (Solid/Liquid Dispersion System) - Comprehensive Data Collection, published by Management Development Center Publishing Department, October 10, 1978", and in paragraph 0022 of JP2015-157893A. In addition, in the process for dispersing the pigment, a salt milling process may be performed to refine the particles. For the materials, equipment, processing conditions, etc. used in the salt milling process, the descriptions in, for example, JP2015-194521A and JP2012-046629A can be referred to.
 着色組成物の調製にあたり、異物の除去や欠陥の低減などの目的で、着色組成物をフィルタでろ過することが好ましい。ろ過に用いるフィルタの種類およびろ過方法としては、国際公開第2022/085485号の段落番号0196~0199に記載のフィルタおよびろ過方法が挙げられる。 When preparing the coloring composition, it is preferable to filter the coloring composition with a filter for the purpose of removing foreign matter and reducing defects. Examples of the types of filters and filtration methods used for filtration include the filters and filtration methods described in paragraphs 0196 to 0199 of WO 2022/085485.
<膜>
 本発明の膜は、上述した本発明の着色組成物から得られる膜である。本発明の膜は、カラーフィルタなどに用いることができる。具体的には、カラーフィルタの着色層(画素)として好ましく用いることができる。着色画素としては、赤色画素、緑色画素、青色画素、マゼンタ色画素、シアン色画素、黄色画素などが挙げられる。本発明の膜の膜厚は、目的に応じて適宜調整できる。例えば、膜厚は、20μm以下が好ましく、10μm以下がより好ましく、5μm以下がさらに好ましい。膜厚の下限は、0.1μm以上が好ましく、0.2μm以上がより好ましく、0.3μm以上がさらに好ましい。
<Membrane>
The film of the present invention is a film obtained from the above-mentioned colored composition of the present invention. The film of the present invention can be used for color filters and the like. Specifically, it can be preferably used as a colored layer (pixel) of a color filter. Examples of colored pixels include red pixels, green pixels, blue pixels, magenta pixels, cyan pixels, and yellow pixels. The film thickness of the film of the present invention can be appropriately adjusted depending on the purpose. For example, the film thickness is preferably 20 μm or less, more preferably 10 μm or less, and even more preferably 5 μm or less. The lower limit of the film thickness is preferably 0.1 μm or more, more preferably 0.2 μm or more, and even more preferably 0.3 μm or more.
<カラーフィルタ>
 次に、本発明のカラーフィルタについて説明する。本発明のカラーフィルタは、上述した本発明の膜を有する。より好ましくは、カラーフィルタの画素として、本発明の膜を有する。本発明のカラーフィルタは、CCD(電荷結合素子)やCMOS(相補型金属酸化膜半導体)などの固体撮像素子や画像表示装置などに用いることができる。
<Color filter>
Next, the color filter of the present invention will be described. The color filter of the present invention has the above-mentioned film of the present invention. More preferably, the film of the present invention is used as a pixel of the color filter. The color filter of the present invention can be used in solid-state imaging devices such as CCDs (charge-coupled devices) and CMOSs (complementary metal-oxide semiconductors), image display devices, and the like.
 本発明のカラーフィルタにおいて本発明の膜の膜厚は、目的に応じて適宜調整できる。膜厚は、20μm以下が好ましく、10μm以下がより好ましく、5μm以下がさらに好ましい。膜厚の下限は、0.1μm以上が好ましく、0.2μm以上がより好ましく、0.3μm以上が更に好ましい。 The thickness of the film of the present invention in the color filter of the present invention can be adjusted appropriately depending on the purpose. The film thickness is preferably 20 μm or less, more preferably 10 μm or less, and even more preferably 5 μm or less. The lower limit of the film thickness is preferably 0.1 μm or more, more preferably 0.2 μm or more, and even more preferably 0.3 μm or more.
 カラーフィルタに含まれる画素の幅が0.5~20.0μmであることが好ましい。下限は、1.0μm以上であることが好ましく、2.0μm以上であることがより好ましい。上限は、15.0μm以下であることが好ましく、10.0μm以下であることがより好ましい。また、画素のヤング率は0.5~20GPaであることが好ましく、2.5~15GPaがより好ましい。 The width of the pixels included in the color filter is preferably 0.5 to 20.0 μm. The lower limit is preferably 1.0 μm or more, and more preferably 2.0 μm or more. The upper limit is preferably 15.0 μm or less, and more preferably 10.0 μm or less. The Young's modulus of the pixels is preferably 0.5 to 20 GPa, and more preferably 2.5 to 15 GPa.
 カラーフィルタに含まれる各画素は高い平坦性を有することが好ましい。具体的には、画素の表面粗さRaは、100nm以下であることが好ましく、40nm以下であることがより好ましく、15nm以下であることが更に好ましい。下限は規定されないが、例えば0.1nm以上であることが好ましい。画素の表面粗さは、例えばVeeco社製のAFM(原子間力顕微鏡) Dimension3100を用いて測定することができる。また、画素上の水の接触角は適宜好ましい値に設定することができるが、典型的には、50~110°の範囲である。接触角は、例えば接触角計CV-DT・A型(協和界面科学(株)製)を用いて測定できる。また、画素の体積抵抗値は高いことが好ましい。具体的には、画素の体積抵抗値は10Ω・cm以上であることが好ましく、1011Ω・cm以上であることがより好ましい。上限は規定されないが、例えば1014Ω・cm以下であることが好ましい。画素の体積抵抗値は、例えば超高抵抗計5410(アドバンテスト社製)を用いて測定することができる。 Each pixel included in the color filter preferably has high flatness. Specifically, the surface roughness Ra of the pixel is preferably 100 nm or less, more preferably 40 nm or less, and even more preferably 15 nm or less. Although the lower limit is not specified, it is preferably 0.1 nm or more, for example. The surface roughness of the pixel can be measured using, for example, an AFM (atomic force microscope) Dimension 3100 manufactured by Veeco. In addition, the contact angle of water on the pixel can be set to an appropriate preferred value, but is typically in the range of 50 to 110°. The contact angle can be measured using, for example, a contact angle meter CV-DT-A type (manufactured by Kyowa Interface Science Co., Ltd.). In addition, it is preferable that the volume resistance value of the pixel is high. Specifically, the volume resistance value of the pixel is preferably 10 9 Ω·cm or more, more preferably 10 11 Ω·cm or more. Although the upper limit is not specified, it is preferably 10 14 Ω·cm or less, for example. The volume resistance value of the pixel can be measured using, for example, an Ultra High Resistance Meter 5410 (manufactured by Advantest Corporation).
 カラーフィルタにおいては、本発明の膜の表面に保護層が設けられていてもよい。保護層を設けることで、酸素遮断化、低反射化、親疎水化、特定波長の光(紫外線、近赤外線等)の遮蔽等の種々の機能を付与することができる。保護層の厚さとしては、0.01~10μmが好ましく、0.1~5μmがより好ましい。保護層の形成方法としては、有機溶剤に溶解した樹脂組成物を塗布して形成する方法、化学気相蒸着法、成型した樹脂を接着剤で貼りつける方法等が挙げられる。保護層を構成する成分としては、(メタ)アクリル樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレン樹脂、ポリアリーレンエーテルホスフィンオキシド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、ポリエステル樹脂、スチレン樹脂、ポリオール樹脂、ポリ塩化ビニリデン樹脂、メラミン樹脂、ウレタン樹脂、アラミド樹脂、ポリアミド樹脂、アルキド樹脂、エポキシ樹脂、変性シリコーン樹脂、フッ素樹脂、ポリアクリロニトリル樹脂、セルロース樹脂、Si、C、W、Al、Mo、SiO、Siなどが挙げられ、これらの成分を二種以上含有しても良い。例えば、酸素遮断化を目的とした保護層の場合、保護層はポリオール樹脂と、SiOと、Siを含むことが好ましい。また、低反射化を目的とした保護層の場合、保護層は(メタ)アクリル樹脂とフッ素樹脂を含むことが好ましい。 In the color filter, a protective layer may be provided on the surface of the film of the present invention. By providing a protective layer, various functions such as oxygen blocking, low reflection, hydrophilicity/hydrophobicity, and shielding of light of a specific wavelength (ultraviolet rays, near infrared rays, etc.) can be imparted. The thickness of the protective layer is preferably 0.01 to 10 μm, more preferably 0.1 to 5 μm. Methods for forming the protective layer include a method of forming the protective layer by applying a resin composition dissolved in an organic solvent, a chemical vapor deposition method, and a method of attaching a molded resin with an adhesive. The components constituting the protective layer include (meth)acrylic resin, ene-thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, polyethersulfone resin, polyphenylene resin, polyarylene ether phosphine oxide resin, polyimide resin, polyamideimide resin, polyolefin resin, cyclic olefin resin, polyester resin, styrene resin, polyol resin, polyvinylidene chloride resin, melamine resin, urethane resin, aramid resin, polyamide resin, alkyd resin, epoxy resin, modified silicone resin, fluorine resin, polyacrylonitrile resin, cellulose resin, Si, C, W, Al 2 O 3 , Mo, SiO 2 , and Si 2 N 4 , and may contain two or more of these components. For example, in the case of a protective layer intended for oxygen blocking, the protective layer preferably contains a polyol resin, SiO 2 , and Si 2 N 4. In addition, in the case of a protective layer intended for low reflection, the protective layer preferably contains a (meth)acrylic resin and a fluorine resin.
 樹脂組成物を塗布して保護層を形成する場合、樹脂組成物の塗布方法としては、スピンコート法、キャスト法、スクリーン印刷法、インクジェット法等の公知の方法を用いることができる。樹脂組成物に含まれる有機溶剤は、公知の有機溶剤(例えば、プロピレングリコール1-モノメチルエーテル2-アセテート、シクロペンタノン、乳酸エチル等)を用いることが出来る。保護層を化学気相蒸着法にて形成する場合、化学気相蒸着法としては、公知の化学気相蒸着法(熱化学気相蒸着法、プラズマ化学気相蒸着法、光化学気相蒸着法)を用いることができる。 When forming a protective layer by applying a resin composition, known methods such as spin coating, casting, screen printing, and inkjet can be used as a method for applying the resin composition. Known organic solvents (e.g., propylene glycol 1-monomethyl ether 2-acetate, cyclopentanone, ethyl lactate, etc.) can be used as the organic solvent contained in the resin composition. When forming the protective layer by chemical vapor deposition, known chemical vapor deposition methods (thermal chemical vapor deposition, plasma chemical vapor deposition, photochemical vapor deposition) can be used as the chemical vapor deposition method.
 保護層は、必要に応じて、有機・無機微粒子、特定波長の光(例えば、紫外線、近赤外線等)の吸収剤、屈折率調整剤、酸化防止剤、密着剤、界面活性剤等の添加剤を含有しても良い。有機・無機微粒子の例としては、例えば、高分子微粒子(例えば、シリコーン樹脂微粒子、ポリスチレン微粒子、メラミン樹脂微粒子)、酸化チタン、酸化亜鉛、酸化ジルコニウム、酸化インジウム、酸化アルミニウム、窒化チタン、酸窒化チタン、フッ化マグネシウム、中空シリカ、シリカ、炭酸カルシウム、硫酸バリウム等が挙げられる。特定波長の光の吸収剤は公知の吸収剤を用いることができる。これらの添加剤の含有量は適宜調整できるが、保護層の全質量に対して0.1~70質量%が好ましく、1~60質量%がさらに好ましい。 The protective layer may contain additives such as organic or inorganic fine particles, absorbents for light of specific wavelengths (e.g., ultraviolet light, near infrared light, etc.), refractive index adjusters, antioxidants, adhesion agents, and surfactants, as necessary. Examples of organic or inorganic fine particles include polymer fine particles (e.g., silicone resin fine particles, polystyrene fine particles, melamine resin fine particles), titanium oxide, zinc oxide, zirconium oxide, indium oxide, aluminum oxide, titanium nitride, titanium oxynitride, magnesium fluoride, hollow silica, silica, calcium carbonate, and barium sulfate. Known absorbents can be used as absorbents for light of specific wavelengths. The content of these additives can be adjusted as appropriate, but is preferably 0.1 to 70% by mass, and more preferably 1 to 60% by mass, based on the total mass of the protective layer.
 また、保護層としては、特開2017-151176号公報の段落番号0073~0092に記載の保護層を用いることもできる。 The protective layer may also be the one described in paragraphs 0073 to 0092 of JP2017-151176A.
<カラーフィルタの製造方法>
 次に、本発明の着色組成物を用いたカラーフィルタの製造方法について説明する。カラーフィルタの製造方法は、本発明の着色組成物を用いて支持体上に着色組成物層を形成する工程と、着色組成物層をパターン状に露光する工程と、着色組成物層の未露光部を現像除去してパターン(画素)を形成する工程と、を含むことが好ましい。必要に応じて、着色組成物層をベークする工程(プリベーク工程)、および、現像されたパターン(画素)をベークする工程(ポストベーク工程)を設けてもよい。
<Manufacturing method of color filter>
Next, the manufacturing method of the color filter using the coloring composition of the present invention will be described. The manufacturing method of the color filter preferably includes a step of forming a coloring composition layer on a support using the coloring composition of the present invention, a step of exposing the coloring composition layer in a pattern, and a step of developing and removing the unexposed part of the coloring composition layer to form a pattern (pixel). If necessary, a step of baking the coloring composition layer (pre-baking step) and a step of baking the developed pattern (pixel) (post-baking step) may be provided.
 着色組成物層を形成する工程では、本発明の着色組成物を用いて、支持体上に着色組成物層を形成する。支持体としては、特に限定は無く、用途に応じて適宜選択できる。例えば、ガラス基板、シリコン基板などが挙げられ、シリコン基板であることが好ましい。また、シリコン基板には、電荷結合素子(CCD)、相補型金属酸化膜半導体(CMOS)、透明導電膜などが形成されていてもよい。また、シリコン基板には、各画素を隔離するブラックマトリクスが形成されている場合もある。また、シリコン基板には、上部の層との密着性改良、物質の拡散防止或いは基板表面の平坦化のために下地層が設けられていてもよい。下地層の表面接触角は、ジヨードメタンで測定した際に20~70°であることが好ましい。また、水で測定した際に30~80°であることが好ましい。 In the step of forming the coloring composition layer, the coloring composition layer is formed on a support using the coloring composition of the present invention. The support is not particularly limited and can be appropriately selected depending on the application. For example, a glass substrate, a silicon substrate, etc. can be mentioned, and a silicon substrate is preferable. A charge-coupled device (CCD), a complementary metal oxide semiconductor (CMOS), a transparent conductive film, etc. may be formed on the silicon substrate. A black matrix that isolates each pixel may be formed on the silicon substrate. A base layer may be provided on the silicon substrate to improve adhesion with the upper layer, prevent diffusion of substances, or flatten the substrate surface. The surface contact angle of the base layer is preferably 20 to 70° when measured with diiodomethane. It is also preferable that the surface contact angle is 30 to 80° when measured with water.
 着色組成物の塗布方法としては、公知の方法を用いることができる。例えば、滴下法(ドロップキャスト);スリットコート法;スプレー法;ロールコート法;回転塗布法(スピンコーティング);流延塗布法;スリットアンドスピン法;プリウェット法(例えば、特開2009-145395号公報に記載されている方法);インクジェット(例えば、オンデマンド方式、ピエゾ方式、サーマル方式)、ノズルジェット等の吐出系印刷、フレキソ印刷、スクリーン印刷、グラビア印刷、反転オフセット印刷、メタルマスク印刷などの各種印刷法;金型等を用いた転写法;ナノインプリント法などが挙げられる。また、国際公開第2022/085485号の段落番号0207に記載の塗布方法を用いることもできる。  A known method can be used as a method for applying the coloring composition. For example, a dropping method (drop casting); a slit coating method; a spray method; a roll coating method; a rotary coating method (spin coating); a casting coating method; a slit and spin method; a pre-wetting method (for example, a method described in JP-A-2009-145395); various printing methods such as inkjet (for example, on-demand method, piezo method, thermal method), ejection printing such as nozzle jet, flexographic printing, screen printing, gravure printing, reverse offset printing, and metal mask printing; a transfer method using a mold or the like; and a nanoimprint method. In addition, the application method described in paragraph 0207 of WO 2022/085485 can also be used.
 支持体上に形成した着色組成物層は、乾燥(プリベーク)してもよい。低温プロセスにより膜を製造する場合は、プリベークを行わなくてもよい。プリベークを行う場合、プリベーク温度は、150℃以下が好ましく、120℃以下がより好ましく、110℃以下が更に好ましい。下限は、例えば、50℃以上とすることができ、80℃以上とすることもできる。プリベーク時間は、10~300秒が好ましく、40~250秒がより好ましく、80~220秒がさらに好ましい。プリベークは、ホットプレート、オーブン等で行うことができる。 The colored composition layer formed on the support may be dried (prebaked). When a film is produced by a low-temperature process, prebaking may not be performed. When prebaking is performed, the prebaking temperature is preferably 150°C or less, more preferably 120°C or less, and even more preferably 110°C or less. The lower limit can be, for example, 50°C or more, and can also be 80°C or more. The prebaking time is preferably 10 to 300 seconds, more preferably 40 to 250 seconds, and even more preferably 80 to 220 seconds. Prebaking can be performed using a hot plate, an oven, etc.
 次に、着色組成物層をパターン状に露光する(露光工程)。例えば、着色組成物層に対し、ステッパー露光機やスキャナ露光機などを用いて、所定のマスクパターンを有するマスクを介して露光することで、パターン状に露光することができる。これにより、露光部分を硬化することができる。 Next, the colored composition layer is exposed to light in a pattern (exposure step). For example, the colored composition layer can be exposed to light in a pattern by using a stepper exposure machine or a scanner exposure machine through a mask having a predetermined mask pattern. This allows the exposed parts to be cured.
 露光に際して用いることができる放射線(光)としては、g線、i線等が挙げられる。また、波長300nm以下の光(好ましくは波長180~300nmの光)を用いることもできる。波長300nm以下の光としては、KrF線(波長248nm)、ArF線(波長193nm)などが挙げられ、KrF線(波長248nm)が好ましい。また、300nm以上の長波な光源も利用できる。光源としては、無電極紫外線ランプシステム、紫外線と赤外線のハイブリッド硬化を使用することができる。 Radiation (light) that can be used for exposure includes g-rays and i-rays. Light with a wavelength of 300 nm or less (preferably light with a wavelength of 180 to 300 nm) can also be used. Examples of light with a wavelength of 300 nm or less include KrF rays (wavelength 248 nm) and ArF rays (wavelength 193 nm), with KrF rays (wavelength 248 nm) being preferred. Long-wave light sources of 300 nm or more can also be used. As light sources, electrodeless ultraviolet lamp systems and hybrid curing of ultraviolet and infrared rays can be used.
 また、露光に際して、光を連続的に照射して露光してもよく、パルス的に照射して露光(パルス露光)してもよい。なお、パルス露光とは、短時間(例えば、ミリ秒レベル以下)のサイクルで光の照射と休止を繰り返して露光する方式の露光方法のことである。 In addition, during exposure, light may be applied continuously or in pulses (pulse exposure). Pulse exposure is an exposure method in which light is applied and paused repeatedly in short cycles (e.g., milliseconds or less).
 照射量(露光量)は、例えば、0.03~2.5J/cmが好ましく、0.05~1.0J/cmがより好ましい。露光時における酸素濃度については適宜選択することができ、大気下で行う他に、例えば、酸素濃度が19体積%以下の低酸素雰囲気下(例えば、15体積%、5体積%、または、実質的に無酸素)で露光してもよく、酸素濃度が21体積%を超える高酸素雰囲気下(例えば、22体積%、30体積%、または、50体積%)で露光してもよい。また、露光照度は適宜設定することが可能であり、通常1000W/m~100000W/m(例えば、5000W/m、15000W/m、または、35000W/m)の範囲から選択することができる。酸素濃度と露光照度は適宜条件を組み合わせてよく、例えば、酸素濃度10体積%で照度10000W/m、酸素濃度35体積%で照度20000W/mなどとすることができる。 The irradiation amount (exposure amount) is, for example, preferably 0.03 to 2.5 J/cm 2 , more preferably 0.05 to 1.0 J/cm 2. The oxygen concentration during exposure can be appropriately selected, and in addition to being performed under air, for example, exposure may be performed under a low-oxygen atmosphere with an oxygen concentration of 19 volume% or less (e.g., 15 volume%, 5 volume%, or substantially oxygen-free), or under a high-oxygen atmosphere with an oxygen concentration of more than 21 volume% (e.g., 22 volume%, 30 volume%, or 50 volume%). The exposure illuminance can be appropriately set, and can usually be selected from the range of 1000 W/m 2 to 100,000 W/m 2 (e.g., 5,000 W/m 2 , 15,000 W/m 2 , or 35,000 W/m 2 ). The oxygen concentration and exposure illuminance may be appropriately combined. For example, an oxygen concentration of 10% by volume and an illuminance of 10,000 W/m 2 , and an oxygen concentration of 35% by volume and an illuminance of 20,000 W/m 2 , can be used.
 次に、着色組成物層の未露光部を現像除去してパターン(画素)を形成する。着色組成物層の未露光部の現像除去は、現像液を用いて行うことができる。これにより、露光工程における未露光部の着色組成物層が現像液に溶出し、光硬化した部分だけが残る。現像液の温度は、例えば、20~30℃が好ましい。現像時間は、20~180秒が好ましい。また、残渣除去性を向上するため、現像液を60秒ごとに振り切り、さらに新たに現像液を供給する工程を数回繰り返してもよい。 Next, the unexposed parts of the coloring composition layer are developed and removed to form a pattern (pixels). The unexposed parts of the coloring composition layer can be developed and removed using a developer. As a result, the coloring composition layer in the unexposed parts in the exposure step dissolves into the developer, and only the photocured parts remain. The temperature of the developer is preferably, for example, 20 to 30°C. The development time is preferably 20 to 180 seconds. In addition, to improve residue removal, the process of shaking off the developer every 60 seconds and then supplying new developer may be repeated several times.
 現像液は、有機溶剤、アルカリ現像液などが挙げられ、アルカリ現像液が好ましく用いられる。現像液、および、現像後の洗浄(リンス)方法については、国際公開第2022/085485号の段落番号0214に記載の現像液や洗浄方法を用いることができる。 The developer may be an organic solvent or an alkaline developer, with an alkaline developer being preferred. The developer and the washing (rinsing) method after development may be as described in paragraph 0214 of WO 2022/085485.
 現像後、乾燥を施した後に追加露光処理や加熱処理(ポストベーク)を行うことが好ましい。追加露光処理やポストベークは、硬化を完全なものとするための現像後の硬化処理である。ポストベークにおける加熱温度は、例えば、100~300℃が好ましく、200~270℃がより好ましい。ポストベークは、現像後の膜を、上記条件になるようにホットプレートやコンベクションオーブン(熱風循環式乾燥機)、高周波加熱機等の加熱手段を用いて、連続式あるいはバッチ式で行うことができる。追加露光処理を行う場合、露光に用いられる光は、波長400nm以下の光であることが好ましい。また、追加露光処理は、韓国公開特許第10-2017-0122130号公報に記載された方法で行ってもよい。 After development and drying, it is preferable to perform additional exposure processing or heating processing (post-baking). Additional exposure processing and post-baking are curing processing after development to complete curing. The heating temperature in post-baking is, for example, preferably 100 to 300°C, more preferably 200 to 270°C. Post-baking can be performed continuously or batchwise using a heating means such as a hot plate, a convection oven (hot air circulation dryer), or a high-frequency heater to achieve the above conditions for the developed film. When additional exposure processing is performed, it is preferable that the light used for exposure has a wavelength of 400 nm or less. In addition, additional exposure processing may be performed by the method described in Korean Patent Publication No. 10-2017-0122130.
<固体撮像素子>
 本発明の固体撮像素子は、上述した本発明の膜を有する。固体撮像素子の構成としては、本発明の膜を備え、固体撮像素子として機能する構成であれば特に限定はないが、例えば、以下のような構成が挙げられる。
<Solid-state imaging element>
The solid-state imaging device of the present invention has the above-mentioned film of the present invention. The configuration of the solid-state imaging device is not particularly limited as long as it has the film of the present invention and functions as a solid-state imaging device, and examples thereof include the following configurations.
 基板上に、固体撮像素子(CCD(電荷結合素子)イメージセンサ、CMOS(相補型金属酸化膜半導体)イメージセンサ等)の受光エリアを構成する複数のフォトダイオードおよびポリシリコン等からなる転送電極を有し、フォトダイオードおよび転送電極上にフォトダイオードの受光部のみ開口した遮光膜を有し、遮光膜上に遮光膜全面およびフォトダイオード受光部を覆うように形成された窒化シリコン等からなるデバイス保護膜を有し、デバイス保護膜上に、カラーフィルタを有する構成である。更に、デバイス保護膜上であってカラーフィルタの下(基板に近い側)に集光手段(例えば、マイクロレンズ等。以下同じ)を有する構成や、カラーフィルタ上に集光手段を有する構成等であってもよい。また、カラーフィルタは、隔壁により例えば格子状に仕切られた空間に、各着色画素が埋め込まれた構造を有していてもよい。この場合の隔壁は各着色画素よりも低屈折率であることが好ましい。このような構造を有する撮像装置の例としては、特開2012-227478号公報、特開2014-179577号公報、国際公開第2018/043654号に記載の装置が挙げられる。また、特開2019-211559号公報の中で示しているように固体撮像素子の構造内に紫外線吸収層を設けて耐光性を改良してもよい。本発明の固体撮像素子を備えた撮像装置は、デジタルカメラや、撮像機能を有する電子機器(携帯電話等)の他、車載カメラや監視カメラ用としても用いることができる。 The substrate has a plurality of photodiodes constituting the light receiving area of a solid-state imaging element (such as a CCD (charge-coupled device) image sensor or a CMOS (complementary metal-oxide semiconductor) image sensor) and a transfer electrode made of polysilicon or the like, a light-shielding film that opens only the light receiving portion of the photodiode on the photodiode and the transfer electrode, a device protection film made of silicon nitride or the like formed on the light-shielding film so as to cover the entire light-shielding film and the light receiving portion of the photodiode, and a color filter on the device protection film. Furthermore, the device protection film may have a light-collecting means (e.g., a microlens, etc.; the same applies below) on the device protection film and below the color filter (the side closer to the substrate), or a light-collecting means on the color filter. The color filter may have a structure in which each colored pixel is embedded in a space partitioned by partitions, for example in a lattice shape. In this case, it is preferable that the partitions have a lower refractive index than each colored pixel. Examples of imaging devices having such a structure include those described in JP 2012-227478 A, JP 2014-179577 A, and WO 2018/043654 A. In addition, as shown in JP 2019-211559 A, an ultraviolet absorbing layer may be provided in the structure of the solid-state imaging element to improve light resistance. The imaging device equipped with the solid-state imaging element of the present invention can be used for digital cameras, electronic devices with imaging functions (such as mobile phones), as well as in-vehicle cameras and surveillance cameras.
<画像表示装置>
 本発明の画像表示装置は、上述した本発明の膜を有する。画像表示装置としては、液晶表示装置や有機エレクトロルミネッセンス表示装置などが挙げられる。画像表示装置の定義や各画像表示装置の詳細については、例えば「電子ディスプレイデバイス(佐々木昭夫著、(株)工業調査会、1990年発行)」、「ディスプレイデバイス(伊吹順章著、産業図書(株)平成元年発行)」などに記載されている。また、液晶表示装置については、例えば「次世代液晶ディスプレイ技術(内田龍男編集、(株)工業調査会、1994年発行)」に記載されている。本発明が適用できる液晶表示装置に特に制限はなく、例えば、上記の「次世代液晶ディスプレイ技術」に記載されている色々な方式の液晶表示装置に適用できる。
<Image display device>
The image display device of the present invention has the above-mentioned film of the present invention. Examples of the image display device include liquid crystal display devices and organic electroluminescence display devices. The definition of the image display device and details of each image display device are described, for example, in "Electronic Display Devices" (written by Akio Sasaki, published by Kogyo Chosakai Co., Ltd. in 1990) and "Display Devices" (written by Junsho Ibuki, published by Sangyo Tosho Co., Ltd. in 1989). The liquid crystal display device is described, for example, in "Next Generation Liquid Crystal Display Technology" (edited by Tatsuo Uchida, published by Kogyo Chosakai Co., Ltd. in 1994). There is no particular limitation on the liquid crystal display device to which the present invention can be applied, and the present invention can be applied to various types of liquid crystal display devices described in the above "Next Generation Liquid Crystal Display Technology".
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。なお、以下に示す構造式中のMeはメチル基であり、Etはエチル基であり、i-Prはイソプロピル基である。 The present invention will be explained in more detail below with reference to examples. The materials, amounts used, ratios, processing contents, processing procedures, etc. shown in the following examples can be modified as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below. Note that in the structural formulas shown below, Me is a methyl group, Et is an ethyl group, and i-Pr is an isopropyl group.
<化合物の合成例>
(アンモニウムモノマー1の合成例)
 ビーカーにN-(2-(メタクリロイルオキシ)エチル)-N,N-ジメチルブタン-1-アミニウム クロリドの14.3gと水15gを添加して混合した。3つ口フラスコに、カリウム ビス((パーフルオロエチル)スルホニル)アミドの20.0gと水200gを添加し、撹拌羽およびスリーワンモーターを用いて室温で30分間撹拌した。完溶したことを確認した後、別途調製したN-(2-(メタクリロイルオキシ)エチル)-N,N-ジメチルブタン-1-アミニウム クロリドを10分間かけて滴下した。1時間撹拌したのち、酢酸ブチルの100mLを添加し、30分間撹拌した。分液ロートに移液し、5分間静置した後、下層の有機層を抜き取り、上層の水層は廃棄した。再度分液ロートに有機層を戻し、水100mLを添加し振盪した。5分間静置した後、下層の有機層を500mLメスフラスコに移液した。(4-ヒドロキシ-2,2,6,6-テトラメチルピペラジン-1-イルオキシ)ラジカル(OH-TEMPO)を5mg添加し、ロータリーエバポレーターを用いて、10torr、40℃で1時間溶媒を留去した。得られたアンモニウムモノマー1を0.5g測り取り、130℃にて2時間真空乾燥した後の残存重量は99.9%であり、ガスクロマトグラフィーで測定した残存酢酸ブチルは0.1質量%であった。誘導結合プラズマ発光分光分析(ICP-OES)測定により検出されたカリウム量は600ppmであった。サンプル1gに対して、0.01N 硝酸銀水溶液を用いて滴定を実施したところ、残存Cl量は20ppmであった。カールフィッシャー水分系で測定した残存水分量は200ppmであった。
<Synthesis examples of compounds>
(Synthesis Example of Ammonium Monomer 1)
14.3 g of N-(2-(methacryloyloxy)ethyl)-N,N-dimethylbutan-1-aminium chloride and 15 g of water were added to a beaker and mixed. 20.0 g of potassium bis((perfluoroethyl)sulfonyl)amide and 200 g of water were added to a three-neck flask and stirred at room temperature for 30 minutes using a stirring blade and a three-one motor. After confirming that the mixture was completely dissolved, N-(2-(methacryloyloxy)ethyl)-N,N-dimethylbutan-1-aminium chloride prepared separately was added dropwise over 10 minutes. After stirring for 1 hour, 100 mL of butyl acetate was added and stirred for 30 minutes. The mixture was transferred to a separatory funnel and allowed to stand for 5 minutes, after which the lower organic layer was removed and the upper aqueous layer was discarded. The organic layer was returned to the separatory funnel again, 100 mL of water was added and the mixture was shaken. After allowing to stand for 5 minutes, the lower organic layer was transferred to a 500 mL measuring flask. 5 mg of (4-hydroxy-2,2,6,6-tetramethylpiperazin-1-yloxy) radical (OH-TEMPO) was added, and the solvent was distilled off using a rotary evaporator at 10 torr and 40° C. for 1 hour. 0.5 g of the obtained ammonium monomer 1 was weighed out, and after vacuum drying at 130° C. for 2 hours, the residual weight was 99.9%, and the residual butyl acetate measured by gas chromatography was 0.1 mass %. The amount of potassium detected by inductively coupled plasma optical emission spectroscopy (ICP-OES) measurement was 600 ppm. When 1 g of the sample was titrated with a 0.01 N silver nitrate aqueous solution, the amount of residual Cl was 20 ppm. The amount of residual moisture measured by Karl Fischer moisture system was 200 ppm.
(アンモニウムモノマー2の合成例)
 ビーカーにメタクロイルコリン クロリドの19.5gと水80gを添加して混合したものを2つ用意した。3つ口フラスコに、カリウム ビス((トリフルオロメチル)スルホニル)アミドの20.0gと水200gを添加し、撹拌羽およびスリーワンモーターを用いて室温で30分間撹拌した。完溶したことを確認した後、別途調製したメタクロイルコリン クロリド水溶液を10分間かけて滴下した。1時間撹拌したのち、酢酸エチルの100mLを添加し、30分間撹拌した。分液ロートに移液し、5分間静置した後、下層の有機層を抜き取り、上層の水層は廃棄した。有機層は先ほどの3つ口フラスコに戻し、撹拌しながら別途調製したメタクロイルコリン クロリド水溶液を10分間かけて滴下した。30分間撹拌した後、分液ロートに移液し、5分間静置した後、下層の有機層を抜き取り、上層の水層は廃棄した。再度分液ロートに有機層を戻し、水100mLを添加し振盪した。5分間静置した後、下層の有機層を500mLメスフラスコに移液した。OH-TEMPOを5mg添加し、ロータリーエバポレーターを用いて、20torr、40℃で1時間溶媒を留去した。得られたアンモニウムモノマー2を0.5g測り取り、130℃にて2時間真空乾燥した後の残存重量は99.8%であり、ガスクロマトグラフィーで測定した残存酢酸エチルは0.1質量%であった。ICP-OES測定により検出されたカリウム量は800ppmであった。サンプル1gに対して、0.01N 硝酸銀水溶液を用いて滴定を実施したところ、残存Cl量は35ppmであった。カールフィッシャー水分系で測定した残存水分量は800ppmであった。
(Synthesis Example of Ammonium Monomer 2)
Two beakers were prepared by adding 19.5 g of methacroylcholine chloride and 80 g of water. A three-neck flask was added with 20.0 g of potassium bis((trifluoromethyl)sulfonyl)amide and 200 g of water, and the mixture was stirred at room temperature for 30 minutes using a stirring blade and a three-one motor. After confirming that the mixture was completely dissolved, a separately prepared methacroylcholine chloride aqueous solution was added dropwise over 10 minutes. After stirring for 1 hour, 100 mL of ethyl acetate was added and stirred for 30 minutes. The mixture was transferred to a separatory funnel and allowed to stand for 5 minutes, after which the lower organic layer was removed and the upper aqueous layer was discarded. The organic layer was returned to the previous three-neck flask, and a separately prepared methacroylcholine chloride aqueous solution was added dropwise over 10 minutes while stirring. After stirring for 30 minutes, the mixture was transferred to a separatory funnel and allowed to stand for 5 minutes, after which the lower organic layer was removed and the upper aqueous layer was discarded. The organic layer was returned to the separatory funnel again, 100 mL of water was added, and the mixture was shaken. After standing for 5 minutes, the lower organic layer was transferred to a 500 mL measuring flask. 5 mg of OH-TEMPO was added, and the solvent was distilled off using a rotary evaporator at 20 torr and 40° C. for 1 hour. 0.5 g of the obtained ammonium monomer 2 was weighed out, and the residual weight after vacuum drying at 130° C. for 2 hours was 99.8%, and the residual ethyl acetate measured by gas chromatography was 0.1 mass %. The amount of potassium detected by ICP-OES measurement was 800 ppm. When titration was performed on 1 g of the sample using a 0.01 N silver nitrate aqueous solution, the amount of residual Cl was 35 ppm. The amount of residual moisture measured by Karl Fischer moisture system was 800 ppm.
(アンモニウムモノマー3の合成例)
 ビーカーにメタクロイルコリン クロリドの32.1gと水80gを添加して混合したものを2つ用意した。3つ口フラスコに、p-トルエンスルホン酸ナトリウムの20.0gと水200gを添加し、撹拌羽およびスリーワンモーターを用いて室温で30分間撹拌した。完溶したことを確認した後、別途調製したメタクロイルコリン クロリド水溶液を10分間かけて滴下した。1時間撹拌したのち、ジクロロメタンの100mLを添加し、30分間撹拌した。分液ロートに移液し、5分間静置した後、下層の有機層を抜き取り、上層の水層は廃棄した。有機層は先ほどの3つ口フラスコに戻し、撹拌しながら別途調製したメタクロイルコリン クロリド水溶液を10分間かけて滴下した。30分間撹拌した後、分液ロートに移液し、5分間静置した後、下層の有機層を抜き取り、上層の水層は廃棄した。再度分液ロートに有機層を戻し、水100mLを添加し振盪した。5分間静置した後、下層の有機層を500mLメスフラスコに移液した。OH-TEMPOを5mg添加し、ロータリーエバポレーターを用いて、10torr、40℃で1時間溶媒を留去した。得られたアンモニウムモノマー3を0.5g測り取り、130℃にて2時間真空乾燥した後の残存重量は99.9%であった。ICP-OES測定により検出されたナトリウム量は500ppmであった。サンプル1gに対して、0.01N 硝酸銀水溶液を用いて滴定を実施したところ、残存Cl量は30ppmであった。カールフィッシャー水分系で測定した残存水分量は100ppmであった。
(Synthesis Example of Ammonium Monomer 3)
Two beakers were prepared by adding 32.1 g of methacroylcholine chloride and 80 g of water and mixing them. 20.0 g of sodium p-toluenesulfonate and 200 g of water were added to a three-neck flask, and the mixture was stirred at room temperature for 30 minutes using a stirring blade and a three-one motor. After confirming that the mixture was completely dissolved, a separately prepared methacroylcholine chloride aqueous solution was added dropwise over 10 minutes. After stirring for 1 hour, 100 mL of dichloromethane was added and stirred for 30 minutes. The mixture was transferred to a separatory funnel and left to stand for 5 minutes, after which the lower organic layer was removed and the upper aqueous layer was discarded. The organic layer was returned to the previous three-neck flask, and a separately prepared methacroylcholine chloride aqueous solution was added dropwise over 10 minutes while stirring. After stirring for 30 minutes, the mixture was transferred to a separatory funnel and left to stand for 5 minutes, after which the lower organic layer was removed and the upper aqueous layer was discarded. The organic layer was returned to the separatory funnel again, and 100 mL of water was added and shaken. After standing for 5 minutes, the lower organic layer was transferred to a 500 mL measuring flask. 5 mg of OH-TEMPO was added, and the solvent was distilled off using a rotary evaporator at 10 torr and 40°C for 1 hour. 0.5 g of the obtained ammonium monomer 3 was weighed out, and the residual weight after vacuum drying at 130°C for 2 hours was 99.9%. The amount of sodium detected by ICP-OES measurement was 500 ppm. When titration was performed on 1 g of the sample using a 0.01 N silver nitrate aqueous solution, the amount of residual Cl was 30 ppm. The amount of residual moisture measured by Karl Fischer moisture system was 100 ppm.
(アンモニウムモノマー4の合成例)
 3つ口フラスコに、p-トルエンスルホン酸n-ブチルの29.1gと、1-メトキシ-2-プロパノールの60gと、OH-TEMPOを5mgを添加し、攪拌羽およびスリーワンモーターを用いて室温にて5分間攪拌した。続いて、メタクリル酸2-(ジメチルアミノ)エチルの20gを5分かけて滴下した。100℃に昇温し、5時間加熱攪拌することで反応を完結させた。反応終了は、NMRで、原料であるp-トルエンスルホン酸n-ブチルおよびメタクリル酸2-(ジメチルアミノ)エチルのピークが消失したことで確認した。得られたアンモニウムモノマー4溶液を0.5g測り取り、110℃にて2時間真空乾燥した後の残存重量は45.1%であった。
(Synthesis Example of Ammonium Monomer 4)
In a three-neck flask, 29.1 g of n-butyl p-toluenesulfonate, 60 g of 1-methoxy-2-propanol, and 5 mg of OH-TEMPO were added, and the mixture was stirred at room temperature for 5 minutes using a stirring blade and a three-one motor. Then, 20 g of 2-(dimethylamino)ethyl methacrylate was added dropwise over 5 minutes. The reaction was completed by raising the temperature to 100°C and heating and stirring for 5 hours. The end of the reaction was confirmed by the disappearance of the peaks of the raw materials n-butyl p-toluenesulfonate and 2-(dimethylamino)ethyl methacrylate in NMR. 0.5 g of the obtained ammonium monomer 4 solution was measured and vacuum dried at 110°C for 2 hours, after which the remaining weight was 45.1%.
(化合物AP-1の合成例)
 3つ口フラスコに、1-メトキシ-2-プロパノールの26.7gを添加し、撹拌羽、窒素導入管、冷却管、温度計をセットし、窒素を20mL/minで流し、内温が80度になるように200rpmで加熱撹拌した。ここに、アンモニウムモノマー1の10.6g、ライトエステルHO-MS(N)(共栄社化学(株)製)の9.6g、メタクリル酸メチルの2.7g、1-ドデカンチオールの0.67g、V-601(富士フイルム和光純薬(株)製)の0.38g、1-メトキシ-2-プロパノールの26.7gを溶解した液を2時間かけて滴下した。そのまま80℃で2時間加熱撹拌した後、90℃に昇温し、さらに2時間加熱撹拌した。室温まで冷却した後、大気下で5分間撹拌した。4-ヒドロキシブチルアクリレートグリシジルエーテル(4HBAGE)の3.7g、2,2,6,6-テトラメチルピペリジン-1-オキシルラジカル(TEMPO)の0.058g、ファーミンDM2098(花王ケミカル社製)の1.5g、1-メトキシ-2-プロパノールの11.5gを添加し、90℃にて40時間加熱撹拌し、化合物AP-1を含む溶液を得た。上記溶液の0.5gを1N KOH水溶液で滴定して算出した酸価は0.87mmol/gであり、上記溶液の0.5g測り取り、130℃にて2時間真空乾燥した後の残存重量は30.2%であった。1-メトキシ-2-プロパノールを用いて濃度0.030g/mLに調整して、粘度計定数0.005のウベローデ(柴田科学社製)で測定した動粘度は2.00cStであった。1-メトキシ-2-プロパノール溶媒で同様に測定したところ動粘度は1.63cStであった。GPC(溶離液ヘキサフルオロ-2-プロパノール、カラムは東ソーTSKgel SuperAW3000、分子量標準としてポリエチレングリコールを使用)を用いて測定した重量平均分子量は8000であった。
(Synthesis Example of Compound AP-1)
26.7 g of 1-methoxy-2-propanol was added to a three-neck flask, a stirring blade, a nitrogen inlet tube, a cooling tube, and a thermometer were set, nitrogen was flowed at 20 mL/min, and the mixture was heated and stirred at 200 rpm so that the internal temperature reached 80°C. A solution containing 10.6 g of ammonium monomer 1, 9.6 g of light ester HO-MS (N) (manufactured by Kyoeisha Chemical Co., Ltd.), 2.7 g of methyl methacrylate, 0.67 g of 1-dodecanethiol, 0.38 g of V-601 (manufactured by Fujifilm Wako Pure Chemical Co., Ltd.), and 26.7 g of 1-methoxy-2-propanol was added dropwise over 2 hours. After heating and stirring at 80°C for 2 hours, the mixture was heated to 90°C and further heated and stirred for 2 hours. After cooling to room temperature, the mixture was stirred in air for 5 minutes. 3.7 g of 4-hydroxybutyl acrylate glycidyl ether (4HBAGE), 0.058 g of 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO), 1.5 g of Farmin DM2098 (manufactured by Kao Chemical Co., Ltd.), and 11.5 g of 1-methoxy-2-propanol were added, and the mixture was heated and stirred at 90° C. for 40 hours to obtain a solution containing compound AP-1. The acid value calculated by titrating 0.5 g of the above solution with a 1N KOH aqueous solution was 0.87 mmol/g, and the residual weight after measuring 0.5 g of the above solution and vacuum drying at 130° C. for 2 hours was 30.2%. The concentration was adjusted to 0.030 g/mL using 1-methoxy-2-propanol, and the kinetic viscosity measured with an Ubbelohde viscometer with a viscometer constant of 0.005 (manufactured by Shibata Scientific Co., Ltd.) was 2.00 cSt. The dynamic viscosity was measured in the same manner using 1-methoxy-2-propanol as a solvent and found to be 1.63 cSt. The weight average molecular weight was measured using GPC (eluent: hexafluoro-2-propanol, column: Tosoh TSKgel Super AW3000, and molecular weight standard: polyethylene glycol) and found to be 8,000.
(化合物AP-2の合成例)
 3つ口フラスコに、1-メトキシ-2-プロパノールの22.0gを添加し、撹拌羽、窒素導入管、冷却管、温度計をセットし、窒素を20mL/minで流し、内温が80度になるように200rpmで加熱撹拌した。ここに、アンモニウムモノマー2の4.4g、メタクリル酸の3.8g、ベンジルメタクリレートの9.8g、1-ドデカンチオール(富士フイルム和光純薬(株)製)の1.11g、V-601(富士フイルム和光純薬(株)製)の0.63g、1-、メトキシ-2-プロパノールの22.0gを溶解した液を2時間かけて滴下した。そのまま80℃で2時間加熱撹拌した後、90℃に昇温し、さらに2時間加熱撹拌した。室温まで冷却した後、大気下で5分間撹拌した。4HBAGE(三菱ケミカル社製)の3.8g、TEMPOの0.05gのファーミンDM2098(花王ケミカル社製)の0.48g、1-メトキシ-2-プロパノールの11.5gを添加し、90℃にて40時間加熱撹拌し、化合物AP-2を含む溶液を得た。上記溶液の0.5gを1N KOH水溶液で滴定して算出した酸価は1.16mmol/gであり、上記溶液の0.5g測り取り、130℃にて2時間真空乾燥した後の残存重量は30.5%であった。1-メトキシ-2-プロパノールを用いて濃度0.030g/mLに調整して、粘度計定数0.005のウベローデ(柴田科学社製)で測定した動粘度は1.92cStであった。1-メトキシ-2-プロパノール溶媒で同様に測定したところ動粘度は1.63cStであった。GPC(溶離液ヘキサフルオロ-2-プロパノール、カラムは東ソーTSKgel SuperAW3000、分子量標準としてポリエチレングリコールを使用)を用いて測定した重量平均分子量は4000であった。
(Synthesis Example of Compound AP-2)
22.0 g of 1-methoxy-2-propanol was added to a three-neck flask, a stirring blade, a nitrogen inlet tube, a cooling tube, and a thermometer were set, nitrogen was flowed at 20 mL/min, and the mixture was heated and stirred at 200 rpm so that the internal temperature reached 80°C. A solution containing 4.4 g of ammonium monomer 2, 3.8 g of methacrylic acid, 9.8 g of benzyl methacrylate, 1.11 g of 1-dodecanethiol (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.), 0.63 g of V-601 (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.), and 22.0 g of 1-methoxy-2-propanol was added dropwise over 2 hours. After heating and stirring at 80°C for 2 hours, the mixture was heated to 90°C and further heated and stirred for 2 hours. After cooling to room temperature, the mixture was stirred in air for 5 minutes. 3.8 g of 4HBAGE (manufactured by Mitsubishi Chemical Corporation), 0.05 g of TEMPO, 0.48 g of Farmin DM2098 (manufactured by Kao Chemical Corporation), and 11.5 g of 1-methoxy-2-propanol were added, and the mixture was heated and stirred at 90° C. for 40 hours to obtain a solution containing compound AP-2. The acid value calculated by titrating 0.5 g of the above solution with a 1N KOH aqueous solution was 1.16 mmol/g, and the residual weight after weighing out 0.5 g of the above solution and vacuum drying at 130° C. for 2 hours was 30.5%. The concentration was adjusted to 0.030 g/mL using 1-methoxy-2-propanol, and the kinetic viscosity measured with an Ubbelohde viscometer (manufactured by Shibata Scientific Co., Ltd.) with a viscometer constant of 0.005 was 1.92 cSt. When similarly measured with 1-methoxy-2-propanol solvent, the kinetic viscosity was 1.63 cSt. The weight average molecular weight measured by GPC (eluent: hexafluoro-2-propanol, column: Tosoh TSKgel Super AW3000, and molecular weight standard: polyethylene glycol) was 4,000.
(化合物AP-3の合成例)
 化合物AP-2からモノマー量などを変更した以外は、同様に合成することで化合物AP-3を含む溶液を得た。上記溶液の0.5gを1N KOH水溶液で滴定して算出した酸価は1.14mmol/gであり、上記溶液の0.5gを測り取り、130℃にて2時間真空乾燥した後の残存重量は30.1%であった。1-メトキシ-2-プロパノールを用いて濃度0.030g/mLに調整して、粘度計定数0.005のウベローデ(柴田科学社製)で測定した動粘度は1.97cStであった。1-メトキシ-2-プロパノール溶媒で同様に測定したところ動粘度は1.63cStであった。GPC(溶離液ヘキサフルオロ-2-プロパノール、カラムは東ソーTSKgel SuperAW3000、分子量標準としてポリエチレングリコールを使用)を用いて測定した重量平均分子量は7000であった。
(Synthesis Example of Compound AP-3)
A solution containing compound AP-3 was obtained by synthesizing in the same manner as compound AP-2, except that the amount of monomers was changed. The acid value calculated by titrating 0.5 g of the above solution with a 1N KOH aqueous solution was 1.14 mmol/g, and the residual weight after weighing out 0.5 g of the above solution and vacuum drying at 130° C. for 2 hours was 30.1%. The concentration was adjusted to 0.030 g/mL using 1-methoxy-2-propanol, and the kinetic viscosity measured with an Ubbelohde viscometer (manufactured by Shibata Scientific Co., Ltd.) with a viscometer constant of 0.005 was 1.97 cSt. When similarly measured with 1-methoxy-2-propanol solvent, the kinetic viscosity was 1.63 cSt. The weight average molecular weight measured using GPC (eluent hexafluoro-2-propanol, column Tosoh TSKgel Super AW3000, and polyethylene glycol as molecular weight standard) was 7000.
(化合物AP-4の合成例)
 化合物AP-2からモノマー種および量などを変更したほかは、同様に合成することで化合物AP-4を含む溶液を得た。上記溶液の0.5gを1N KOH水溶液で滴定して算出した酸価は0.46mmol/gであり、上記溶液の0.5gを測り取り、130℃にて2時間真空乾燥した後の残存重量は30.8%であった。1-メトキシ-2-プロパノールを用いて濃度0.030g/mLに調整して、粘度計定数0.005のウベローデ(柴田科学社製)で測定した動粘度は2.18cStであった。1-メトキシ-2-プロパノール溶媒で同様に測定したところ動粘度は1.63cStであった。GPC(溶離液ヘキサフルオロ-2-プロパノール、カラムは東ソーTSKgel SuperAW3000、分子量標準としてポリエチレングリコールを使用)を用いて測定した重量平均分子量は20000であった。
(Synthesis Example of Compound AP-4)
A solution containing compound AP-4 was obtained by synthesizing in the same manner as compound AP-2, except that the monomer type and amount were changed. The acid value calculated by titrating 0.5 g of the above solution with a 1N KOH aqueous solution was 0.46 mmol/g, and the residual weight after weighing out 0.5 g of the above solution and vacuum drying at 130° C. for 2 hours was 30.8%. The concentration was adjusted to 0.030 g/mL using 1-methoxy-2-propanol, and the kinetic viscosity measured with an Ubbelohde viscometer (manufactured by Shibata Scientific Co., Ltd.) with a viscometer constant of 0.005 was 2.18 cSt. When similarly measured with 1-methoxy-2-propanol solvent, the kinetic viscosity was 1.63 cSt. The weight average molecular weight measured using GPC (eluent hexafluoro-2-propanol, column Tosoh TSKgel Super AW3000, and polyethylene glycol as molecular weight standard) was 20,000.
(化合物AP-5の合成例)
 化合物AP-2からモノマー種および量などを変更したほかは、同様に合成することで化合物AP-5を含む溶液を得た。なおアンモニウムモノマーとしては、アンモニウムモノマー3を使用した。上記溶液の0.5gを1N KOH水溶液で滴定して算出した酸価は1.12mmol/gであり、上記溶液の0.5gを測り取り、130℃にて2時間真空乾燥した後の残存重量は30.8%であった。1-メトキシ-2-プロパノールを用いて濃度0.030g/mLに調整して、粘度計定数0.005のウベローデ(柴田科学社製)で測定した動粘度は2.10cStであった。1-メトキシ-2-プロパノール溶媒で同様に測定したところ動粘度は1.63cStであった。GPC(溶離液ヘキサフルオロ-2-プロパノール、カラムは東ソーTSKgel SuperAW3000、分子量標準としてポリエチレングリコールを使用)を用いて測定した重量平均分子量は16000であった。
(Synthesis Example of Compound AP-5)
A solution containing compound AP-5 was obtained by synthesizing in the same manner as compound AP-2, except that the monomer type and amount were changed. As the ammonium monomer, ammonium monomer 3 was used. The acid value calculated by titrating 0.5 g of the above solution with a 1N KOH aqueous solution was 1.12 mmol/g, and the residual weight after weighing out 0.5 g of the above solution and vacuum drying at 130° C. for 2 hours was 30.8%. The concentration was adjusted to 0.030 g/mL using 1-methoxy-2-propanol, and the kinetic viscosity measured with an Ubbelohde viscometer (manufactured by Shibata Scientific Co., Ltd.) with a viscometer constant of 0.005 was 2.10 cSt. When similarly measured with 1-methoxy-2-propanol solvent, the kinetic viscosity was 1.63 cSt. The weight average molecular weight measured using GPC (eluent hexafluoro-2-propanol, column Tosoh TSKgel Super AW3000, and polyethylene glycol as molecular weight standard) was 16,000.
(化合物AP-6~AP-21、BP-1の合成例)
 上記と同様の方法により化合物AP-6~AP-20、BP-1を合成した。
(Synthesis Examples of Compounds AP-6 to AP-21 and BP-1)
Compounds AP-6 to AP-20 and BP-1 were synthesized in the same manner as above.
 化合物AP-1~AP-21、BP-1の構造は下記の通りである。なお、以下に示す構造式において、主鎖に付記した数値は質量比であり、側鎖に付記した数値は繰り返し単位の数である。 The structures of compounds AP-1 to AP-21 and BP-1 are as follows. In the structural formulas shown below, the numbers attached to the main chain are mass ratios, and the numbers attached to the side chains are the number of repeating units.
(化合物AP-22の合成例)
 化合物AP-2からモノマー量などを変更したほかは、同様に合成することで化合物AP-22を含む溶液を得た。なおアンモニウムモノマーとしては、アンモニウムモノマー3を使用した。上記溶液の0.5gを1N KOH水溶液で滴定して算出した酸価は0.53mmol/gであり、上記溶液の0.5gを測り取り、130℃にて2時間真空乾燥した後の残存重量は29.8%であった。1-メトキシ-2-プロパノールを用いて濃度0.030g/mlに調整して、粘度計定数0.005のウベローデ(柴田科学社製)で測定した動粘度は1.97cStであった。1-メトキシ-2-プロパノール溶媒を同様に測定したところ動粘度は1.63cStであった。GPC(溶離液ヘキサフルオロ-2-プロパノール、カラムは東ソーTSKgel SuperAW3000、分子量標準としてポリエチレングリコールを使用)を用いて測定した重量平均分子量は7000であった。
(Synthesis Example of Compound AP-22)
A solution containing compound AP-22 was obtained by synthesizing in the same manner as compound AP-2, except that the amount of monomers was changed. As the ammonium monomer, ammonium monomer 3 was used. The acid value calculated by titrating 0.5 g of the above solution with a 1N KOH aqueous solution was 0.53 mmol/g, and the residual weight after weighing out 0.5 g of the above solution and vacuum drying at 130° C. for 2 hours was 29.8%. The concentration was adjusted to 0.030 g/ml using 1-methoxy-2-propanol, and the kinetic viscosity measured with an Ubbelohde viscometer (manufactured by Shibata Scientific Co., Ltd.) with a viscometer constant of 0.005 was 1.97 cSt. The kinetic viscosity of the 1-methoxy-2-propanol solvent was measured in the same manner, and was 1.63 cSt. The weight average molecular weight measured using GPC (eluent hexafluoro-2-propanol, column Tosoh TSKgel Super AW3000, and polyethylene glycol as molecular weight standard) was 7000.
 各化合物の下記式(Aλ)で表される比吸光度はいずれも5以下であった。各化合物の比吸光度は、1-メトキシ-2-プロパノールを溶媒として用いて測定した。
 化合物AP-1~AP-22は、酸基及びカチオン性基を有する化合物d1と分子量が50以上の対アニオンd2との塩であって、下記式(Aλ)で表される比吸光度が5以下である重量平均分子量2000以上の化合物である。化合物BP-1は比較化合物である。
The specific absorbance of each compound, represented by the following formula (Aλ), was less than 5. The specific absorbance of each compound was measured using 1-methoxy-2-propanol as a solvent.
Compounds AP-1 to AP-22 are salts of a compound d1 having an acid group and a cationic group and a counter anion d2 having a molecular weight of 50 or more, and have a weight average molecular weight of 2000 or more and a specific absorbance represented by the following formula (Aλ) of 5 or less. Compound BP-1 is a comparative compound.
 E=A/(c×l)   ・・・(Aλ)
 E:波長400~700nmの範囲での最大吸収波長における化合物の比吸光度
 A:波長400~700nmの範囲での最大吸収波長における化合物の吸光度
 l:単位がcmで表されるセル長
 c:単位がmg/mlで表される、溶液中の化合物の濃度
E 1 = A 1 / (c 1 × l 1 ) ... (Aλ)
E 1 : Specific absorbance of the compound at the maximum absorption wavelength in the wavelength range of 400 to 700 nm A 1 : Absorbance of the compound at the maximum absorption wavelength in the wavelength range of 400 to 700 nm l 1 : Cell length in cm 1 : Concentration of a compound in solution, expressed in mg/ml
 各化合物の重量平均分子量、C=C価(エチレン性不飽和結合含有基価)、酸価、点線で囲った部位のClogP値をそれぞれ下記表に合わせて記す。なお、点線で囲った部位のClogP値は、重合前のモノマー構造をもとに計算して算出した。また、下記表に、化合物Dを構成する化合物d1に対応する部位におけるカチオン性基価も併せて記す。 
The weight average molecular weight, C=C value (ethylenically unsaturated bond-containing group value), acid value, and ClogP value of the portion surrounded by the dotted line of each compound are shown in the table below. The ClogP value of the portion surrounded by the dotted line was calculated based on the monomer structure before polymerization. The cationic group value of the portion corresponding to compound d1 constituting compound D is also shown in the table below.
<分散液の調製>
 下記表に記載の原料を混合した後、直径が0.3mmであるジルコニアビーズ230質量部を加えて、ペイントシェーカーを用いて5時間分散処理を行った。次に、ジルコニアビーズをろ過で分離することによって分散液を得た。また、表中、分散液の固形分濃度(質量%)および分散液の顔料濃度(質量%)を併せて記載した。
<Preparation of Dispersion>
After mixing the raw materials shown in the table below, 230 parts by mass of zirconia beads with a diameter of 0.3 mm were added and dispersed for 5 hours using a paint shaker. The zirconia beads were then separated by filtration to obtain a dispersion. The solid content concentration (mass%) of the dispersion and the pigment concentration (mass%) of the dispersion are also shown in the table.
 上記表中の略語で示す素材の詳細は下記の通りである。
(顔料)
 PG-1:C.I.ピグメントブルー15:6
 PG-2:C.I.ピグメントレッド254
 PG-3:C.I.ピグメントイエロー139
 PG-4:C.I.ピグメントイエロー150
 PG-5:C.I.ピグメントバイオレット23
 PG-6:C.I.ピグメントグリーン36
Details of the materials indicated by the abbreviations in the above table are as follows:
(Pigment)
PG-1: C.I. Pigment Blue 15:6
PG-2: C.I. Pigment Red 254
PG-3: C.I. Pigment Yellow 139
PG-4: C.I. Pigment Yellow 150
PG-5: C.I. Pigment Violet 23
PG-6: C.I. Pigment Green 36
(誘導体)
 PS-1:BYK-SYNERGIST 2100(BYK社)
 PS-2:BYK-SYNERGIST 2105(BYK社)
 PS-3~PS-9:以下構造の化合物
(Derivatives)
PS-1: BYK-SYNERGIST 2100 (BYK)
PS-2: BYK-SYNERGIST 2105 (BYK)
PS-3 to PS-9: Compounds having the following structures
(分散剤)
 D-1:DISPERBYK-161(ビックケミー社製)
 D-2:下記構造の樹脂の30質量%プロピレングリコールモノメチルエーテルアセテート溶液(主鎖に付記した数値はモル比である。樹脂の重量平均分子量は11000である)
 D-3:下記構造の樹脂の30質量%プロピレングリコールモノメチルエーテルアセテート溶液(主鎖に付記した数値はモル比であり、側鎖に付記した数値は繰り返し単位の数である。樹脂の重量平均分子量は7000である。)
 D-4:プライサーフA215C(第一工業製薬(株)製)の30質量%プロピレングリコールモノメチルエーテルアセテート溶液
(Dispersant)
D-1: DISPERBYK-161 (manufactured by BYK-Chemie)
D-2: 30% by mass propylene glycol monomethyl ether acetate solution of a resin having the following structure (the number added to the main chain is the molar ratio. The weight average molecular weight of the resin is 11,000)
D-3: 30% by mass propylene glycol monomethyl ether acetate solution of a resin having the following structure (the number attached to the main chain is the molar ratio, and the number attached to the side chain is the number of repeating units. The weight average molecular weight of the resin is 7000.)
D-4: 30% by weight solution of Plysurf A215C (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) in propylene glycol monomethyl ether acetate
(溶剤)
 S-1:プロピレングリコールモノメチルエーテルアセテート(PGMEA)
 S-3:1-メトキシー2-プロパノール(PGME)
(solvent)
S-1: Propylene glycol monomethyl ether acetate (PGMEA)
S-3: 1-methoxy-2-propanol (PGME)
<着色組成物の製造>
 下記表に記載の溶剤以外の原料と、重合禁止剤(p-メトキシフェノール)の0.0007質量部と、シリコーン系界面活性剤(信越化学工業、KF-6000)の0.05質量部とを混合した後、固形分濃度が12質量%になるように下記表に記載の溶剤を添加することで着色組成物を得た。なお、表中、溶剤以外の配合量は、固形分換算値での質量部であり、溶剤比は質量比である。
<Production of Colored Composition>
The raw materials other than the solvent shown in the table below were mixed with 0.0007 parts by mass of a polymerization inhibitor (p-methoxyphenol) and 0.05 parts by mass of a silicone surfactant (Shin-Etsu Chemical Co., Ltd., KF-6000), and then the solvent shown in the table below was added so that the solid content concentration became 12% by mass, thereby obtaining a colored composition. Note that in the table, the blending amounts of the materials other than the solvent are parts by mass in terms of solid content, and the solvent ratio is a mass ratio.
 上記表中の略語で示す素材の詳細は下記の通りである。 Details of the materials indicated by the abbreviations in the table above are as follows:
(分散液)
 分散液1~9:上述した分散液1~9
(Dispersion)
Dispersions 1 to 9: Dispersions 1 to 9 described above
(染料溶液)
 A-1:下記構造の染料(キサンテン染料、重量平均分子量:7000、m:3、n:3)のシクロヘキサノン溶液(固形分濃度:12.3質量%)
(Dye solution)
A-1: A cyclohexanone solution (solid content: 12.3% by mass) of a dye having the following structure (xanthene dye, weight average molecular weight: 7000, m: 3, n: 3)
 A-2:下記構造の染料(キサンテン染料、分子量:704.24)のシクロヘキサノン溶液(固形分濃度:12.3質量%)
A-2: A cyclohexanone solution (solids concentration: 12.3% by mass) of a dye having the following structure (xanthene dye, molecular weight: 704.24).
 A-3:下記構造の染料(キサンテン染料、重量平均分子量:10,000)のシクロヘキサノン溶液(固形分濃度:12.3質量%)
A-3: A cyclohexanone solution (solids concentration: 12.3% by mass) of a dye having the following structure (xanthene dye, weight average molecular weight: 10,000).
 A-4:下記構造の染料(キサンテン染料、分子量:1,115.28)のシクロヘキサノン溶液(固形分濃度:12.3質量%)
A-4: A cyclohexanone solution (solids concentration: 12.3% by mass) of a dye having the following structure (xanthene dye, molecular weight: 1,115.28).
 A-5:下記構造の染料(分子量:1,165.32)のシクロヘキサノン溶液(固形分濃度:12.3質量%)
A-5: A cyclohexanone solution (solid content: 12.3% by mass) of a dye having the following structure (molecular weight: 1,165.32)
 A-6:下記構造の染料(分子量:774.97)のシクロヘキサノン溶液(固形分濃度:12.3質量%)
A-6: A cyclohexanone solution (solid content: 12.3% by mass) of a dye having the following structure (molecular weight: 774.97)
 A-7:下記構造の染料(分子量:410.52)のシクロヘキサノン溶液(固形分濃度:12.3質量%)
A-7: A cyclohexanone solution (solid content: 12.3% by mass) of a dye having the following structure (molecular weight: 410.52)
 A-8:C.I.アシッドレッド289(キサンテン染料、分子量:676.73)のシクロヘキサノン溶液(固形分濃度:12.3質量%) A-8: C.I. Acid Red 289 (xanthene dye, molecular weight: 676.73) in cyclohexanone (solids concentration: 12.3% by weight)
 A-9:下記構造の着色ポリマー(キサンテン染料、重量平均分子量:9000)のシクロヘキサノン溶液(固形分濃度:12.3質量%)
A-9: A cyclohexanone solution (solids concentration: 12.3% by mass) of a colored polymer having the following structure (xanthene dye, weight average molecular weight: 9000)
 A-10:下記構造の染料(分子量:324.42)のシクロヘキサノン溶液(固形分濃度:12.3質量%)
A-10: A cyclohexanone solution (solid content: 12.3% by mass) of a dye having the following structure (molecular weight: 324.42)
 A-11:下記構造の染料(分子量:374.33)のシクロヘキサノン溶液(固形分濃度:12.3質量%)
A-11: A cyclohexanone solution (solid content: 12.3% by mass) of a dye having the following structure (molecular weight: 374.33).
 A-20:Acid Green27のシクロヘキサノン溶液(固形分濃度:12.3質量%)
 A-21:Acid yellow23のシクロヘキサノン溶液(固形分濃度:12.3質量%)
 A-22:Solvent Blue25のシクロヘキサノン溶液(固形分濃度:12.3質量%)
 A-23:Acid Red52のシクロヘキサノン溶液(固形分濃度:12.3質量%)
 A-24:下記構造の染料のシクロヘキサノン溶液(固形分濃度:12.3質量%)
 A-25:下記構造の染料のシクロヘキサノン溶液(固形分濃度:12.3質量%)
 A-26:下記構造の染料のシクロヘキサノン溶液(固形分濃度:12.3質量%)
 A-27:下記構造の染料のシクロヘキサノン溶液(固形分濃度:12.3質量%)
 A-28:下記構造の染料のシクロヘキサノン溶液(固形分濃度:12.3質量%)
 A-29:下記構造の染料のシクロヘキサノン溶液(固形分濃度:12.3質量%)
A-20: Cyclohexanone solution of Acid Green 27 (solid content: 12.3% by mass)
A-21: Cyclohexanone solution of Acid Yellow 23 (solid content: 12.3% by mass)
A-22: Cyclohexanone solution of Solvent Blue 25 (solid content: 12.3% by mass)
A-23: Cyclohexanone solution of Acid Red 52 (solid content: 12.3% by mass)
A-24: A cyclohexanone solution of a dye having the following structure (solid content: 12.3% by mass)
A-25: A cyclohexanone solution of a dye having the following structure (solid content: 12.3% by mass)
A-26: A cyclohexanone solution of a dye having the following structure (solid content: 12.3% by mass)
A-27: A cyclohexanone solution of a dye having the following structure (solid content: 12.3% by mass)
A-28: A cyclohexanone solution of a dye having the following structure (solid content: 12.3% by mass)
A-29: A cyclohexanone solution of a dye having the following structure (solid content: 12.3% by mass)
(特定化合物)
 AP-1~AP-22:上述した化合物AP-1~AP-22
 BP-1:上述した化合物BP-1
(Specific Compound)
AP-1 to AP-22: The above-mentioned compounds AP-1 to AP-22
BP-1: The above-mentioned compound BP-1
(樹脂)
 P-1:下記構造の樹脂の30質量%プロピレングリコールモノメチルエーテルアセテート溶液(主鎖に付記した数値は繰り返し単位のモル比である。樹脂の重量平均分子量は11000である。)
 P-2:下記構造の樹脂の40質量%プロピレングリコールモノメチルエーテルアセテート溶液(主鎖に付記した数値は繰り返し単位のモル比である。樹脂の重量平均分子量は11000である。)
 P-3:下記構造の樹脂の30質量%プロピレングリコールモノメチルエーテルアセテート溶液(主鎖に付記した数値は繰り返し単位のモル比であり、側鎖に付記した数値は繰り返し単位の数である。樹脂の重量平均分子量は11000である。)
 P-4:下記構造の樹脂の40質量%プロピレングリコールモノメチルエーテルアセテート溶液(主鎖に付記した数値は繰り返し単位のモル比である。樹脂の重量平均分子量は11000である。)
(resin)
P-1: 30% by mass propylene glycol monomethyl ether acetate solution of a resin having the following structure (the number added to the main chain is the molar ratio of the repeating unit. The weight average molecular weight of the resin is 11,000.)
P-2: 40% by mass propylene glycol monomethyl ether acetate solution of a resin having the following structure (the number added to the main chain is the molar ratio of the repeating unit. The weight average molecular weight of the resin is 11,000.)
P-3: 30% by mass propylene glycol monomethyl ether acetate solution of a resin having the following structure (the number attached to the main chain is the molar ratio of the repeating unit, and the number attached to the side chain is the number of repeating units. The weight average molecular weight of the resin is 11,000.)
P-4: 40% by mass propylene glycol monomethyl ether acetate solution of a resin having the following structure (the number added to the main chain is the molar ratio of the repeating unit. The weight average molecular weight of the resin is 11,000.)
(重合性化合物)
 M-1:KAYARAD DPHA(ジペンタエリスリトールヘキサアクリレートとジペンタエリスリトールペンタアクリレートとの混合物、日本化薬株式会社)
 M-2、M-3:下記構造の化合物
(Polymerizable compound)
M-1: KAYARAD DPHA (a mixture of dipentaerythritol hexaacrylate and dipentaerythritol pentaacrylate, Nippon Kayaku Co., Ltd.)
M-2 and M-3: Compounds having the following structures
(光重合開始剤)
 I-1~I-8:下記構造の化合物
(Photopolymerization initiator)
I-1 to I-8: Compounds having the following structures
(添加剤)
 E-1:下記構造の化合物(紫外線吸収剤)
 E-2:下記構造の化合物(重量平均分子量3500、環状エーテル基を有する化合物)
 E-3:下記構造の化合物(重量平均分子量2300、環状エーテル基を有する化合物)
 E-4:下記構造の化合物(シランカップリング剤)
 E-5:下記構造の化合物(シランカップリング剤)
 E-6:下記構造の化合物(シランカップリング剤)
 E-7:下記構造の化合物(酸化防止剤)
 E-8:リチウムビス(トリフルオロメタンスルホニル)イミド
 E-9:p-トルエンスルホン酸ナトリウム
 E-10:下記構造の化合物(多官能チオール化合物)
 E-11:下記構造の化合物カ(多官能チオール化合物)
(Additives)
E-1: Compound having the following structure (ultraviolet absorber)
E-2: Compound having the following structure (weight average molecular weight 3500, compound having a cyclic ether group)
E-3: Compound having the following structure (weight average molecular weight 2300, compound having a cyclic ether group)
E-4: Compound having the following structure (silane coupling agent)
E-5: Compound having the following structure (silane coupling agent)
E-6: Compound having the following structure (silane coupling agent)
E-7: Compound having the following structure (antioxidant)
E-8: Lithium bis(trifluoromethanesulfonyl)imide E-9: Sodium p-toluenesulfonate E-10: Compound having the following structure (multifunctional thiol compound)
E-11: Compound having the following structure (multifunctional thiol compound)
<性能評価>
<<実施例1~実施例69、比較例1~3の評価>>
(耐光性の評価)
 各着色組成物をガラス基板上にスピンコート法で塗布し、ホットプレートを使用して120℃120秒加熱処理(プリベーク)した。得られた塗膜を、i線ステッパー露光装置FPA-3000i5+(キヤノン株式会社)を用い、1.0μm四方のドットパターンのマスクを介して露光した。具体的には、塗膜に対して、365nmの波長の光を1000mJ/cmの露光量で照射した。露光された塗膜が形成されているガラス基板をスピン・シャワー現像機(DW-30型、株式会社ケミトロニクス)の水平回転テーブル上に載置し、次いで、CD-2000(富士フイルムエレクトロニクスマテリアルズ株式会社)の60%希釈液を用いて23℃で60秒間パドル現像を行い着色パターンを形成した。着色パターンが形成されたガラス基板を真空チャック方式で水平回転テーブルに固定し、次に、回転装置を用いてシリコンウエハを50rpmの回転数で回転させつつ、回転中心の上方より純水を噴出ノズルからシャワー状に供給してリンス処理を行った後、スプレー乾燥した。200℃のホットプレートを用いて300秒間加熱処理(ポストベーク)を行うことによって、厚さ0.6μm着色パターン(画素)を形成した。
 得られた画素について、大塚電子(株)製のMCPD-3000を用い、波長400~700nmの範囲の光透過率(透過率)を測定した。次に、上記で作製した画素に対し、耐光試験機(スーパーキセノンウェザーメーターSX75、スガ試験機株式会社製)を用いて100000Luxの光を2000時間かけて照射した(総照射量2億Luxhr)。光照射後の画素の透過率を測定し、以下の基準にて耐光性を評価した。
-評価基準-
 A:光照射後の画素の波長400~700nmの透過率の積算値が、光照射前の画素の波長400~700nmの透過率の積算値の98%以上である。
 B:光照射後の画素の波長400~700nmの透過率の積算値が、光照射前の画素の波長400~700nmの透過率の積算値の94%以上98%未満である。
 C:光照射後の画素の波長400~700nmの透過率の積算値が、光照射前の画素の波長400~700nmの透過率の積算値の90%以上94%未満である。
 D:光照射後の着色画素の波長400~700nmの透過率の積算値が、光照射前の画素の波長400~700nmの透過率の積算値の90%未満である。
<Performance evaluation>
<<Evaluation of Examples 1 to 69 and Comparative Examples 1 to 3>>
(Evaluation of Light Fastness)
Each colored composition was applied onto a glass substrate by spin coating, and heat-treated (pre-baked) at 120°C for 120 seconds using a hot plate. The obtained coating film was exposed to light through a mask with a 1.0 μm square dot pattern using an i-line stepper exposure device FPA-3000i5+ (Canon Inc.). Specifically, the coating film was irradiated with light having a wavelength of 365 nm at an exposure dose of 1000 mJ/ cm2 . The glass substrate on which the exposed coating film was formed was placed on the horizontal rotating table of a spin-shower developer (DW-30 type, Chemitronics Co., Ltd.), and then paddle development was performed at 23°C for 60 seconds using a 60% diluted solution of CD-2000 (FUJIFILM Electronic Materials Co., Ltd.) to form a colored pattern. The glass substrate on which the colored pattern was formed was fixed to a horizontal rotating table by a vacuum chuck method, and then the silicon wafer was rotated at a rotation speed of 50 rpm using a rotating device, while pure water was supplied from a spray nozzle in the form of a shower from above the center of rotation to perform a rinsing treatment, and then spray-dried. A heat treatment (post-bake) was performed for 300 seconds using a hot plate at 200°C to form a colored pattern (pixel) with a thickness of 0.6 μm.
The obtained pixels were measured for light transmittance (transmittance) in the wavelength range of 400 to 700 nm using MCPD-3000 manufactured by Otsuka Electronics Co., Ltd. Next, the pixels prepared above were irradiated with light of 100,000 Lux for 2000 hours using a light resistance tester (Super Xenon Weather Meter SX75, manufactured by Suga Test Instruments Co., Ltd.) (total irradiation amount: 200 million Luxhr). The transmittance of the pixels after light irradiation was measured, and the light resistance was evaluated according to the following criteria.
-Evaluation criteria-
A: The integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm after light irradiation is 98% or more of the integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm before light irradiation.
B: The integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm after light irradiation is 94% or more and less than 98% of the integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm before light irradiation.
C: The integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm after light irradiation is 90% or more and less than 94% of the integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm before light irradiation.
D: The integrated value of the transmittance of the colored pixel at wavelengths of 400 to 700 nm after light irradiation is less than 90% of the integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm before light irradiation.
(感度(露光感度)の評価)
 各着色組成物をシリコンウエハ上にスピンコート法で塗布し、ホットプレートを用いて100℃で120秒乾燥(プリベーク)し、厚さ0.60μmの組成物層を形成した。
 次いで、この組成物層に対して、一辺1.0μmの正方形状の非マスク部が4mm×3mmの領域に配列されたマスクパターンを介して、i線ステッパー露光装置FPA-3000i5+(Canon(株)製)を使用して波長365nmの光を特定の露光量で照射して露光した。
 次いで、露光後の組成物層が形成されているシリコンウエハを、スピン・シャワー現像機(DW-30型、(株)ケミトロニクス製)の水平回転テーブル上に載置し、現像液(CD-2000、富士フイルムエレクトロニクスマテリアルズ(株)製)を用い、23℃で60秒間パドル現像した。次いで、シリコンウエハを回転数50rpmで回転させつつ、その回転中心の上方より純水を噴出ノズルからシャワー状に供給してリンス処理を行ない、その後スプレー乾燥してパターン(画素)を形成した。
 上記特定の露光量を変化させながら、得られたパターンを観察し、一辺が1.0μmの正方形状のパターンを解像する最小の露光量を決定し、下記評価基準に従い評価した。上記最小の露光量が小さいほど、組成物は露光感度に優れるといえる。
-評価基準-
 A:上記最小の露光量が100mJ/cm未満であった。
 B:上記最小の露光量が100以上200mJ/cm未満であった。
 C:上記最小の露光量が200以上500mJ/cm未満であった。
 D:上記最小の露光量が500以上1000mJ/cm未満であった。
 E:上記最小の露光量が1000mJ/cm以上であった。
(Evaluation of Sensitivity (Exposure Sensitivity))
Each coloring composition was applied onto a silicon wafer by spin coating, and then dried (prebaked) using a hot plate at 100° C. for 120 seconds to form a composition layer having a thickness of 0.60 μm.
Next, this composition layer was exposed to light having a wavelength of 365 nm at a specific exposure amount using an i-line stepper exposure system FPA-3000i5+ (manufactured by Canon Corporation) through a mask pattern in which square unmasked portions with sides of 1.0 μm were arranged in an area of 4 mm × 3 mm.
Next, the silicon wafer on which the exposed composition layer had been formed was placed on the horizontal rotation table of a spin-shower developer (DW-30 model, manufactured by Chemitronics Corporation) and paddle-developed for 60 seconds at 23° C. using a developer (CD-2000, manufactured by FUJIFILM Electronic Materials Co., Ltd.). Next, while rotating the silicon wafer at a rotation speed of 50 rpm, pure water was supplied in the form of a shower from a spray nozzle from above the center of rotation to perform a rinsing treatment, and then the wafer was spray-dried to form a pattern (pixels).
The obtained pattern was observed while changing the specific exposure dose, and the minimum exposure dose at which a square pattern with a side length of 1.0 μm was resolved was determined and evaluated according to the following evaluation criteria. The smaller the minimum exposure dose, the better the exposure sensitivity of the composition.
-Evaluation criteria-
A: The minimum exposure amount was less than 100 mJ/cm 2 .
B: The minimum exposure amount was 100 or more and less than 200 mJ/cm 2 .
C: The minimum exposure amount was 200 or more and less than 500 mJ/cm 2 .
D: The minimum exposure amount was 500 or more and less than 1000 mJ/cm 2 .
E: The minimum exposure amount was 1000 mJ/cm 2 or more.
(現像性の評価)
 8インチ(20.32cm)シリコンウエハに、CT-4000L(富士フイルムエレクトロニクスマテリアルズ株式会社)をポストベーク後の厚さが0.1μmになるようにスピンコート法によって塗布し、ホットプレートを用いて220℃で300秒間加熱して下塗り層を形成することによって、下塗り層付シリコンウエハ(支持体)を得た。各着色組成物をポストベーク後の厚さが0.6μmになるようにスピンコート法によって塗布した後、ホットプレートを用いて100℃で2分間加熱した。得られた塗膜を、i線ステッパー露光装置FPA-3000i5+(キヤノン株式会社)を用い、1.0μm四方のドットパターンのマスクを介して露光した。具体的に、塗膜に対して、365nmの波長の光を1000mJ/cmの露光量で照射した。露光された塗膜が形成されているシリコンウエハをスピン・シャワー現像機(DW-30型、株式会社ケミトロニクス)の水平回転テーブル上に載置し、次いで、CD-2000(富士フイルムエレクトロニクスマテリアルズ株式会社)の60%希釈液を用いて23℃で60秒間パドル現像を行うことで、シリコンウエハ上に着色パターンを形成した。着色パターンが形成されたシリコンウエハを真空チャック方式で水平回転テーブルに固定し、次に、回転装置を用いてシリコンウエハを50rpmの回転数で回転させつつ、回転中心の上方より純水を噴出ノズルからシャワー状に供給してリンス処理を行った後、スプレー乾燥した。200℃のホットプレートを用いて300秒間加熱処理(ポストベーク)を行うことによって、着色パターン(画素)を形成した。画素が形成されたシリコンウエハを走査型電子顕微鏡(SEM)(倍率:10000倍)を用いて観察し、以下の評価基準に従って現像性を評価した。
-評価基準-
 A:着色パターンの形成領域外(未露光部)に残渣がまったく確認されなかった。
 B:着色パターンの形成領域外(未露光部)に残渣がごくわずかに確認されたが、実
用上問題のない程度であった。
 C:着色パターンの形成領域外(未露光部)に残渣がわずかに確認されたが、実用上
問題のない程度であった。
 D:着色パターンの形成領域外(未露光部)に残渣が著しく確認された。
(Evaluation of developability)
CT-4000L (FUJIFILM Electronic Materials Co., Ltd.) was applied to an 8-inch (20.32 cm) silicon wafer by spin coating so that the thickness after post-baking was 0.1 μm, and heated at 220 ° C. for 300 seconds using a hot plate to form an undercoat layer, thereby obtaining a silicon wafer (support) with an undercoat layer. Each coloring composition was applied by spin coating so that the thickness after post-baking was 0.6 μm, and then heated at 100 ° C. for 2 minutes using a hot plate. The obtained coating film was exposed through a mask with a dot pattern of 1.0 μm square using an i-line stepper exposure device FPA-3000i5 + (Canon Inc.). Specifically, the coating film was irradiated with light having a wavelength of 365 nm at an exposure dose of 1000 mJ / cm 2 . The silicon wafer on which the exposed coating film was formed was placed on the horizontal rotating table of a spin-shower developer (DW-30 type, Chemitronics Co., Ltd.), and then paddle development was performed for 60 seconds at 23 ° C. using a 60% diluted solution of CD-2000 (FUJIFILM Electronic Materials Co., Ltd.) to form a colored pattern on the silicon wafer. The silicon wafer on which the colored pattern was formed was fixed to the horizontal rotating table by a vacuum chuck method, and then, while rotating the silicon wafer at a rotation speed of 50 rpm using a rotating device, pure water was supplied from a spray nozzle in the form of a shower from above the center of rotation to perform a rinse treatment, and then spray-dried. A colored pattern (pixel) was formed by performing a heat treatment (post-bake) for 300 seconds using a hot plate at 200 ° C. The silicon wafer on which the pixels were formed was observed using a scanning electron microscope (SEM) (magnification: 10,000 times), and the developability was evaluated according to the following evaluation criteria.
-Evaluation criteria-
A: No residue was observed outside the color pattern formation area (unexposed area).
B: A very small amount of residue was observed outside the color pattern formation area (unexposed area), but it was not of any practical problem.
C: A small amount of residue was observed outside the color pattern formation area (unexposed area), but it was not of a practical problem.
D: Significant residue was observed outside the color pattern forming area (unexposed area).
(保存安定性の評価)
 各着色組成物の初期粘度(V0)を東機産業株式会社製「RE-85L」を用いて測定した。次に、45℃、7日間の条件で各着色組成物を静置した後、粘度(V1)を測定した。下記式に基づいて、静置後の着色組成物の粘度上昇率(%)を算出し、保存安定性を評価した。粘度上昇率(%)の数値が小さいほど、保存安定性が良好であるといえる。着色組成物の粘度は、25℃に温度を調整した状態で測定した。
 粘度上昇率(%)=[(静置後の粘度(V1)-初期粘度(V0))/初期粘度(V0
)]×100」
(Evaluation of storage stability)
The initial viscosity (V0) of each coloring composition was measured using "RE-85L" manufactured by Toki Sangyo Co., Ltd. Next, each coloring composition was left to stand at 45°C for 7 days, and then the viscosity (V1) was measured. The viscosity increase rate (%) of the coloring composition after standing was calculated based on the following formula, and the storage stability was evaluated. The smaller the viscosity increase rate (%), the better the storage stability. The viscosity of the coloring composition was measured at a temperature adjusted to 25°C.
Viscosity increase rate (%) = [(viscosity after standing (V1) - initial viscosity (V0)) / initial viscosity (V0
) × 100.”
(欠けの評価)
 現像性の評価で作製した画素(着色パターン)を、透過型電子顕微鏡を用いて、画素の断面を4万倍の倍率で観察し、画素の空隙(ボイド)の発生率(画素内部に空隙が発生した画素の数/観察した画素の数)を求め、以下の基準に従って欠けを評価した。なお、空隙の発生率は、ランダムに20箇所の断面を選択し、1断面ごとに、10個の画素において、空隙の有無を観察することで、計200箇所の境界を観察して算出した。
 発生率=画素内部に空隙が発生した画素の数/観察した画素の数
-評価基準-
 5:空隙の発生率が0であった。
 4:空隙の発生率が0より大きく、0.1以下であった
 3:空隙の発生率が0.1より大きく、0.2以下であった
 2:空隙の発生率が0.2より大きく、0.5以下であった
 1:空隙の発生率が0.5より大きく、1.0以下であった
(Evaluation of chipping)
The cross-sections of the pixels (colored patterns) prepared for the evaluation of developability were observed at a magnification of 40,000 times using a transmission electron microscope, the incidence of pixel voids (number of pixels with voids inside/number of observed pixels) was determined, and chipping was evaluated according to the following criteria. The incidence of voids was calculated by randomly selecting 20 cross-sections and observing the presence or absence of voids in 10 pixels for each cross-section, thereby observing the boundaries at a total of 200 locations.
Occurrence rate = number of pixels with voids inside / number of pixels observed - Evaluation criteria -
5: The occurrence rate of voids was 0.
4: The rate of occurrence of voids was greater than 0 and equal to or less than 0.1. 3: The rate of occurrence of voids was greater than 0.1 and equal to or less than 0.2. 2: The rate of occurrence of voids was greater than 0.2 and equal to or less than 0.5. 1: The rate of occurrence of voids was greater than 0.5 and equal to or less than 1.0.
<<実施例301~実施例310、比較例301~303の評価>>
(感度の評価)
 8インチ(20.32cm)シリコンウエハに、CT-4000L(富士フイルムエレクトロニクスマテリアルズ株式会社)をポストベーク後の厚さが0.1μmになるようにスピンコート法によって塗布し、ホットプレートを用いて220℃で300秒間加熱して下塗り層を形成することによって、下塗り層付シリコンウエハ(支持体)を得た。各着色組成物をスピンコータを用いて塗布し、次いで、ホットプレートを用いて、100℃、120秒間の加熱(プリベーク)を行い、膜厚が0.45μmの塗膜を得た。次いで、塗膜に対して、KrFスキャナ露光機を用い、パターンを有するマスク(0.5μm×0.5μm)を介して波長248nmの光(KrF線)を、照度35000W/m、露光量20mJ/cmの条件で照射して露光を行った。次いで、露光後の塗膜に対し、現像液として水酸化テトラメチルアンモニウム(TMAH)0.3質量%水溶液を用いて、23℃で60秒間シャワー現像を行った。その後、純水を用いてスピン・シャワーにてリンスを行い、ポストベーク230℃で2分間加熱して着色パターン(画素)を形成した。
 露光量を200mJ/cmまで10mJ/cmずつ変化させ、線幅が0.7μmの画素を形成可能な露光量を調べ、下記評価基準に基づいて、感度を評価した。
-評価基準-
 A:上記露光量が60mJ/cm以下であった。
 B:上記露光量が60mJ/cm超、100mJ/cm以下であった。
 C:上記露光量が100mJ/cm超、150mJ/cm以下であった。
 D:上記露光量が150mJ/cm超、200mJ/cm以下であった。
 E:上記露光量が200mJ/cm以上であった。
<<Evaluation of Examples 301 to 310 and Comparative Examples 301 to 303>>
(Sensitivity Evaluation)
CT-4000L (FUJIFILM Electronic Materials Co., Ltd.) was applied to an 8-inch (20.32 cm) silicon wafer by spin coating so that the thickness after post-baking was 0.1 μm, and the wafer was heated at 220° C. for 300 seconds using a hot plate to form an undercoat layer, thereby obtaining a silicon wafer (support) with an undercoat layer. Each coloring composition was applied using a spin coater, and then heated (pre-baked) at 100° C. for 120 seconds using a hot plate to obtain a coating film with a film thickness of 0.45 μm. Next, the coating film was exposed to light (KrF line) with a wavelength of 248 nm through a patterned mask (0.5 μm×0.5 μm) using a KrF scanner exposure machine under conditions of an illuminance of 35,000 W/m 2 and an exposure dose of 20 mJ/cm 2 . Next, the exposed coating film was subjected to shower development using a 0.3 mass % aqueous solution of tetramethylammonium hydroxide (TMAH) as a developer at 23° C. for 60 seconds, followed by rinsing with pure water by spin shower and post-baking at 230° C. for 2 minutes to form a colored pattern (pixels).
The exposure amount was changed in increments of 10 mJ/cm 2 up to 200 mJ/cm 2 , and the exposure amount capable of forming a pixel having a line width of 0.7 μm was examined, and the sensitivity was evaluated based on the following evaluation criteria.
-Evaluation criteria-
A: The exposure amount was 60 mJ/ cm2 or less.
B: The exposure amount was more than 60 mJ/cm 2 and 100 mJ/cm 2 or less.
C: The exposure amount was more than 100 mJ/cm 2 and 150 mJ/cm 2 or less.
D: The exposure amount was more than 150 mJ/ cm2 and 200 mJ/cm2 or less.
E: The exposure amount was 200 mJ/cm 2 or more.
(密着性及び現像性の評価)
 露光量を100mJ/cmに設定した以外は、感度の評価と同様にして、画素(パターン)を形成した。得られた画素について、走査型電子顕微鏡(S-4800H、(株)日立ハイテク製)を用いて、倍率20000倍で観察した。観察された画像の一部領域において形成される画素の総数(1071個×1071個)のうち剥離した画素数を測定し、下記評価基準に基づいて、密着性を評価した。
-評価基準-
 A:剥離した画素数が10個以下であった。
 B:剥離した画素数が10個超、20個以下であった。
 C:剥離した画素数が20個超、50個以下であった。
 D:剥離した画素数が50個超、200個以下であった。
 E:剥離した画素数が200個超であった。
(Evaluation of Adhesion and Developability)
Pixels (patterns) were formed in the same manner as in the evaluation of sensitivity, except that the exposure dose was set to 100 mJ/ cm2 . The obtained pixels were observed at a magnification of 20,000 times using a scanning electron microscope (S-4800H, manufactured by Hitachi High-Technologies Corporation). The number of peeled pixels out of the total number of pixels (1071 × 1071) formed in a partial region of the observed image was counted, and the adhesion was evaluated based on the following evaluation criteria.
-Evaluation criteria-
A: The number of peeled pixels was 10 or less.
B: The number of peeled pixels was more than 10 and 20 or less.
C: The number of peeled pixels was more than 20 and 50 or less.
D: The number of peeled pixels was more than 50 and 200 or less.
E: The number of peeled pixels was more than 200.
 また、走査型電子顕微鏡により得られた画像に対して、下記評価基準に基づいて、現像性を評価した。
-評価基準-
 A:画素の直線性が非常に優れ、画素間の残渣が極めて少なかった。
 B:画素の直線性が優れ、画素間の残渣が少なかった。
 C:画素の直線性が僅かに悪いが、画素間の残渣は少なかった。
 D:画素の直線性が悪く、画素間の残渣は多かった。
 E:残渣が多すぎたため画素が形成されず、画素間が確認できなかった。
Further, the developability of the images obtained by the scanning electron microscope was evaluated based on the following evaluation criteria.
-Evaluation criteria-
A: The linearity of the pixels was excellent, and there was very little residue between the pixels.
B: The linearity of the pixels was excellent, and there was little residue between the pixels.
C: The linearity of the pixels was slightly poor, but there was little residue between the pixels.
D: The linearity of the pixels was poor, and there was a lot of residue between the pixels.
E: There was too much residue, so pixels were not formed and the gap between the pixels could not be confirmed.
(耐光性の評価)
 各着色組成物をガラス基板上にスピンコート法で塗布し、次いで、ホットプレートを使用して120℃120秒加熱処理(プリベーク)した。得られた塗膜を、KrFスキャナ露光機を用い、パターンを有するマスク(0.5μm×0.5μm)を介して波長248nmの光(KrF線)を、照度35000W/m、露光量100mJ/cmの条件で照射して露光を行った。露光された塗膜が形成されているガラス基板をスピン・シャワー現像機(DW-30型、株式会社ケミトロニクス)の水平回転テーブル上に載置し、次いで、CD-2000(富士フイルムエレクトロニクスマテリアルズ株式会社)の60%希釈液を用いて23℃で60秒間パドル現像を行うことで、ガラス基板上に着色パターンを形成した。着色パターンが形成されたガラス基板を真空チャック方式で水平回転テーブルに固定し、次に、回転装置を用いてシリコンウエハを50rpmの回転数で回転させつつ、回転中心の上方より純水を噴出ノズルからシャワー状に供給してリンス処理を行った後、スプレー乾燥した。200℃のホットプレートを用いて300秒間加熱処理(ポストベーク)を行うことによって、厚さ0.45μ着色パターン(画素)を形成した。
 得られた画素について、大塚電子(株)製のMCPD-3000を用い、波長400~700nmの範囲の光透過率(透過率)を測定した。次に、上記で作製した画素に対し、耐光試験機(スーパーキセノンウェザーメーターSX75、スガ試験機株式会社製)を用いて100000Luxの光を2000時間かけて照射した(総照射量2億Luxhr)。光照射後の画素の透過率を測定し、以下の基準にて耐光性を評価した。
-評価基準-
 A:光照射後の画素の波長400~700nmの透過率の積算値が、光照射前の画素の波長400~700nmの透過率の積算値の98%以上である。
 B:光照射後の画素の波長400~700nmの透過率の積算値が、光照射前の画素の波長400~700nmの透過率の積算値の94%以上98%未満である。
 C:光照射後の画素の波長400~700nmの透過率の積算値が、光照射前の画素の波長400~700nmの透過率の積算値の90%以上94%未満である。
 D:光照射後の画素の波長400~700nmの透過率の積算値が、光照射前の画素の波長400~700nmの透過率の積算値の90%未満である。
(Evaluation of Light Fastness)
Each colored composition was applied onto a glass substrate by spin coating, and then heat-treated (pre-baked) at 120° C. for 120 seconds using a hot plate. The obtained coating film was exposed by irradiating light (KrF line) having a wavelength of 248 nm through a mask (0.5 μm×0.5 μm) having a pattern, using a KrF scanner exposure machine, under conditions of an illuminance of 35,000 W/m 2 and an exposure dose of 100 mJ/cm 2. The glass substrate on which the exposed coating film was formed was placed on the horizontal rotating table of a spin-shower developer (DW-30 type, Chemitronics Corporation), and then paddle development was performed for 60 seconds at 23° C. using a 60% diluted solution of CD-2000 (FUJIFILM Electronic Materials Co., Ltd.), to form a colored pattern on the glass substrate. The glass substrate on which the colored pattern was formed was fixed to a horizontal rotating table by a vacuum chuck method, and then the silicon wafer was rotated at a rotation speed of 50 rpm using a rotating device, while pure water was showered from a spray nozzle from above the center of rotation to perform a rinsing treatment, and then spray-dried. A heat treatment (post-bake) was performed for 300 seconds using a hot plate at 200°C to form a colored pattern (pixel) with a thickness of 0.45 μm.
The obtained pixels were measured for light transmittance (transmittance) in the wavelength range of 400 to 700 nm using MCPD-3000 manufactured by Otsuka Electronics Co., Ltd. Next, the pixels prepared above were irradiated with light of 100,000 Lux for 2000 hours using a light resistance tester (Super Xenon Weather Meter SX75, manufactured by Suga Test Instruments Co., Ltd.) (total irradiation amount: 200 million Luxhr). The transmittance of the pixels after light irradiation was measured, and the light resistance was evaluated according to the following criteria.
-Evaluation criteria-
A: The integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm after light irradiation is 98% or more of the integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm before light irradiation.
B: The integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm after light irradiation is 94% or more and less than 98% of the integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm before light irradiation.
C: The integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm after light irradiation is 90% or more and less than 94% of the integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm before light irradiation.
D: The integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm after light irradiation is less than 90% of the integrated value of the transmittance of the pixel at wavelengths of 400 to 700 nm before light irradiation.
 上記表に示すように、実施例は比較例よりも耐光性の評価が良好であった。 As shown in the table above, the examples had better light resistance ratings than the comparative examples.
<実施例501~実施例510>
 シリコンウエハ上に、Green組成物を製膜後の膜厚が1.0μmになるようにスピンコート法で塗布した。次いで、ホットプレートを用いて、100℃で2分間加熱した。次いで、i線ステッパー露光装置FPA-3000i5+(キヤノン株式会社製)を用い、1,000mJ/cmで2μm四方のドットパターンのマスクを介して露光した。次いで、水酸化テトラメチルアンモニウム(TMAH)0.3質量%水溶液を用い、23℃で60秒間パドル現像を行った。その後、スピン・シャワーにてリンスを行い、更に純水にて水洗した。次いで、ホットプレートを用いて、200℃で5分間加熱することで、シリコンウエハ上に、Green組成物をパターニングした。同様にRed組成物、Blue組成物を順次パターニングし、赤、緑、及び青の着色パターン(Bayerパターン)を形成した。実施例501~実施例510では、Blue組成物として、実施例1~実施例10においてそれぞれ調製した着色組成物を使用した。Blue組成物として、実施例1~実施例10においてそれぞれ調製した着色組成物を用いた例が、実施例501~実施例510にそれぞれ該当する。実施例501~実施例510において使用した、Green組成物、及びRed組成物については後述する。なお、Bayerパターンとは、米国特許第3,971,065号明細書に開示されているような、一個の赤色(Red)素子と、二個の緑色(Green)素子と、一個の青色(Blue)素子とを有する色フィルタ素子の2×2アレイを繰り返したパターンである。得られたカラーフィルタを公知の方法に従い固体撮像素子に組み込んだ。実施例1~実施例10においてそれぞれ調製した着色組成物を用いることで、好適な画像認識機能、及び耐光性を有する固体撮像素子が得られた。
<Examples 501 to 510>
The Green composition was applied onto a silicon wafer by spin coating so that the film thickness after film formation was 1.0 μm. Then, a hot plate was used to heat the composition at 100° C. for 2 minutes. Then, an i-line stepper exposure device FPA-3000i5+ (manufactured by Canon Inc.) was used to expose the composition through a mask with a 2 μm square dot pattern at 1,000 mJ/cm 2. Then, a 0.3% by mass aqueous solution of tetramethylammonium hydroxide (TMAH) was used to perform paddle development at 23° C. for 60 seconds. Then, the composition was rinsed with a spin shower and further washed with pure water. Then, a hot plate was used to heat the composition at 200° C. for 5 minutes on the silicon wafer to form a pattern of the Green composition. Similarly, the Red composition and the Blue composition were sequentially patterned to form red, green, and blue colored patterns (Bayer patterns). In Examples 501 to 510, the colored compositions prepared in Examples 1 to 10 were used as the Blue composition. Examples 501 to 510 correspond to examples in which the coloring compositions prepared in Examples 1 to 10 were used as the Blue composition. The Green and Red compositions used in Examples 501 to 510 will be described later. The Bayer pattern is a repeated pattern of a 2×2 array of color filter elements having one red element, two green elements, and one blue element, as disclosed in U.S. Pat. No. 3,971,065. The obtained color filter was incorporated into a solid-state imaging device according to a known method. By using the coloring compositions prepared in Examples 1 to 10, a solid-state imaging device having suitable image recognition function and light resistance was obtained.
 実施例501~実施例510で使用したGreen組成物、及びRed組成物は、以下のとおりである。 The Green and Red compositions used in Examples 501 to 510 are as follows:
[Green組成物]
 下記成分を混合し、撹拌した後、孔径0.45μmのナイロン製フィルタ(日本ポール
株式会社製)でろ過して、Green組成物を調製した。
 Green顔料分散液:73.7質量部
 樹脂4(40質量%PGMEA溶液):0.3質量部
 重合性化合物1:1.2質量部
 光重合開始剤1:0.6質量部
 界面活性剤1:4.2質量部
 紫外線吸収剤1:0.5質量部
 PGMEA:19.5質量部
[Green composition]
The following components were mixed and stirred, and then filtered through a nylon filter having a pore size of 0.45 μm (manufactured by Nippon Pall Co., Ltd.) to prepare a Green composition.
Green pigment dispersion: 73.7 parts by mass Resin 4 (40 mass% PGMEA solution): 0.3 parts by mass Polymerizable compound 1: 1.2 parts by mass Photopolymerization initiator 1: 0.6 parts by mass Surfactant 1 : 4.2 parts by mass Ultraviolet absorber 1: 0.5 parts by mass PGMEA: 19.5 parts by mass
[Red組成物]
 下記成分を混合し、撹拌した後、孔径0.45μmのナイロン製フィルタ(日本ポール
株式会社製)でろ過して、Red組成物を調製した。
 Red顔料分散液:51.7質量部
 樹脂4(40質量%PGMEA溶液):0.6質量部
 重合性化合物4:0.6質量部
 光重合開始剤1:0.3質量部
 界面活性剤1:4.2質量部
 PGMEA:42.6質量部
[Red composition]
The following components were mixed and stirred, and then filtered through a nylon filter having a pore size of 0.45 μm (manufactured by Nippon Pall Corporation) to prepare a Red composition.
Red pigment dispersion: 51.7 parts by weight Resin 4 (40% by weight PGMEA solution): 0.6 parts by weight Polymerizable compound 4: 0.6 parts by weight Photopolymerization initiator 1: 0.3 parts by weight Surfactant 1: 4.2 parts by weight PGMEA: 42.6 parts by weight
 Green組成物、及びRed組成物に使用した原料は、以下のとおりである。
・Green顔料分散液
 C.I.Pigment Green 36を6.4質量部、C.I.Pigment Yellow 150を5.3質量部、分散剤(DISPERBYK-161、BYK-Chemie社)を5.2質量部、PGMEAを83.1質量部からなる混合液を、ビーズミル(ジルコニアビーズ0.3mm径)により3時間混合及び分散して、顔料分散液を調製した。その後更に、減圧機構付き高圧分散機NANO-3000-10(日本ビーイーイー株式会社)を用いて、2000kg/cmの圧力下で流量500g/minとして分散処理を行った。この分散処理を10回繰り返し、Green顔料分散液を得た。
・Red顔料分散液
 C.I.Pigment Red 254を9.6質量部、C.I.Pigment Yellow 139を4.3質量部、分散剤(DISPERBYK-161、BYKChemie社)を6.8質量部、PGMEAを79.3質量部とからなる混合液を、ビーズミル(ジルコニアビーズ0.3mm径)により3時間混合及び分散して、顔料分散液を調製した。その後更に、減圧機構付き高圧分散機NANO-3000-10(日本ビーイーイー株式会社)を用いて、2,000kg/cm3の圧力下で流量500g/minとして分散処理を行った。この分散処理を10回繰り返し、Red顔料分散液を得た。
The raw materials used for the Green composition and the Red composition are as follows.
Green pigment dispersion A mixture of 6.4 parts by mass of C.I. Pigment Green 36, 5.3 parts by mass of C.I. Pigment Yellow 150, 5.2 parts by mass of dispersant (DISPERBYK-161, BYK-Chemie), and 83.1 parts by mass of PGMEA was mixed and dispersed for 3 hours using a bead mill (zirconia beads 0.3 mm diameter) to prepare a pigment dispersion. Thereafter, a dispersion treatment was performed using a high-pressure disperser NANO-3000-10 (Japan BEE Co., Ltd.) with a pressure reducing mechanism at a flow rate of 500 g/min under a pressure of 2000 kg/cm 2. This dispersion treatment was repeated 10 times to obtain a Green pigment dispersion.
Red pigment dispersion A mixture of 9.6 parts by mass of C.I. Pigment Red 254, 4.3 parts by mass of C.I. Pigment Yellow 139, 6.8 parts by mass of dispersant (DISPERBYK-161, BYK Chemie), and 79.3 parts by mass of PGMEA was mixed and dispersed for 3 hours using a bead mill (zirconia beads 0.3 mm diameter) to prepare a pigment dispersion. Thereafter, a dispersion treatment was performed using a high-pressure disperser NANO-3000-10 (Japan BEE Co., Ltd.) with a pressure reducing mechanism at a flow rate of 500 g/min under a pressure of 2,000 kg/cm3. This dispersion treatment was repeated 10 times to obtain a red pigment dispersion.
・重合性化合物1:KAYARAD DPHA(ジペンタエリスリトールヘキサアクリレートとジペンタエリスリトールペンタアクリレートとの混合物、日本化薬株式会社)
・重合性化合物4:下記構造の化合物
・樹脂4:下記構造の樹脂(主鎖に付記した数値は繰り返し単位のモル比である。樹脂の重量平均分子量は11000であり、酸価は70mgKOH/gである。)
・光重合開始剤1:Irgacure OXE01(BASF社)
・界面活性剤1:下記混合物(重量平均分子量14000)の1質量%PGMEA溶液。下記の式中、繰り返し単位の割合を示す%(62%及び38%)の単位は、質量%である。
・紫外線吸収剤1(UV-503、大東化学株式会社製)
Polymerizable compound 1: KAYARAD DPHA (a mixture of dipentaerythritol hexaacrylate and dipentaerythritol pentaacrylate, Nippon Kayaku Co., Ltd.)
Polymerizable compound 4: a compound having the following structure
Resin 4: Resin having the following structure (the numbers added to the main chain are the molar ratios of the repeating units. The weight average molecular weight of the resin is 11,000, and the acid value is 70 mgKOH/g.)
Photopolymerization initiator 1: Irgacure OXE01 (BASF)
Surfactant 1: 1% by mass PGMEA solution of the following mixture (weight average molecular weight 14,000): In the following formula, the units of % (62% and 38%) indicating the proportion of repeating units are % by mass.
Ultraviolet absorber 1 (UV-503, manufactured by Daito Chemical Co., Ltd.)
 実施例の着色組成物において使用した樹脂、重合性化合物、光重合開始剤及び溶剤の一部又はすべてを本明細書に記載した素材に置き換えても同様の効果が得られる。 The same effect can be obtained by replacing some or all of the resins, polymerizable compounds, photopolymerization initiators, and solvents used in the coloring compositions of the examples with the materials described in this specification.

Claims (18)

  1.  染料を含む着色剤Aと、
     重合開始剤Bと、
     重合性化合物Cと、
     酸基及びカチオン性基を有する化合物d1と、分子量が50以上の対アニオンd2との塩であって、式(Aλ)で表される比吸光度が5以下である重量平均分子量2000以上の化合物Dと、
     を含む着色組成物;
     E=A/(c×l)   ・・・(Aλ)
     式(Aλ)中、Eは、波長400~700nmの範囲での最大吸収波長における化合物Dの比吸光度を表し、
     Aは、波長400~700nmの範囲での最大吸収波長における化合物Dの吸光度を表し、
     lは、単位がcmで表されるセル長を表し、
     cは、単位がmg/mlで表される、溶液中の化合物Dの濃度を表す。
    A colorant A containing a dye;
    A polymerization initiator B;
    A polymerizable compound C,
    A compound D which is a salt of a compound d1 having an acid group and a cationic group and a counter anion d2 having a molecular weight of 50 or more, the compound D having a weight average molecular weight of 2000 or more and a specific absorbance of 5 or less and represented by the formula (Aλ),
    A coloring composition comprising:
    E 1 = A 1 / (c 1 × l 1 ) ... (Aλ)
    In formula (Aλ), E 1 represents the specific absorbance of compound D at the maximum absorption wavelength in the wavelength range of 400 to 700 nm;
    A 1 represents the absorbance of compound D at the maximum absorption wavelength in the wavelength range of 400 to 700 nm;
    l1 represents the cell length in cm;
    c1 represents the concentration of compound D in the solution, expressed in mg/ml.
  2.  前記化合物d1が有する前記カチオン性基は、4級アンモニウムカチオン基である、請求項1に記載の着色組成物。 The coloring composition according to claim 1, wherein the cationic group possessed by the compound d1 is a quaternary ammonium cationic group.
  3.  前記対アニオンd2は、式(BZ-1)~(BZ-8)のいずれかで表されるアニオンである、請求項1または2に記載の着色組成物;
     式(BZ-1)中、R111は、-SO-R201または-CO-R201を表し、R112は、アルキル基、アリール基、-SO-R202または-CO-R202を表し、R201およびR202はそれぞれ独立して、ハロゲン原子、アルキル基またはアリール基を表し、R111とR112は、結合して環を形成していてもよい;
     式(BZ-2)中、R113は、-SO-R203または-CO-R203を表し、R114およびR115は、それぞれ独立して-SO-R204、-CO-R204またはシアノ基を表し、R203およびR204はそれぞれ独立して、ハロゲン原子、アルキル基またはアリール基を表し、R113と、R114またはR115は結合して環を形成していてもよい;
     式(BZ-3)中、R116~R119は、それぞれ独立して、ハロゲン原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基またはシアノ基を表す;
     式(BZ-4)中、R120は、アルキル基またはアリール基を表す;
     式(BZ-5)中、R121は、アルキル基またはアリール基を表す;
     式(BZ-6)中、R122は、アルキル基またはアリール基を表し、R123は、水素原子、アルキル基またはアリール基を表す;
     式(BZ-7)中、R124~R129は、それぞれ独立してハロゲン原子またはハロゲン化炭化水素基を表す;
     式(BZ-8)中、R130~R135は、それぞれ独立してハロゲン原子またはハロゲン化炭化水素基を表す。
    The colored composition according to claim 1 or 2, wherein the counter anion d2 is an anion represented by any one of formulas (BZ-1) to (BZ-8):
    In formula (BZ-1), R 111 represents -SO 2 -R 201 or -CO-R 201 , R 112 represents an alkyl group, an aryl group, -SO 2 -R 202 or -CO-R 202 , R 201 and R 202 each independently represent a halogen atom, an alkyl group or an aryl group, and R 111 and R 112 may be bonded to form a ring;
    In formula (BZ-2), R 113 represents -SO 2 -R 203 or -CO-R 203 , R 114 and R 115 each independently represent -SO 2 -R 204 , -CO-R 204 or a cyano group, R 203 and R 204 each independently represent a halogen atom, an alkyl group or an aryl group, and R 113 and R 114 or R 115 may be bonded to form a ring;
    In formula (BZ-3), R 116 to R 119 each independently represent a halogen atom, an alkyl group, an aryl group, an alkoxy group, an aryloxy group, or a cyano group;
    In formula (BZ-4), R 120 represents an alkyl group or an aryl group;
    In formula (BZ-5), R 121 represents an alkyl group or an aryl group;
    In formula (BZ-6), R 122 represents an alkyl group or an aryl group, and R 123 represents a hydrogen atom, an alkyl group, or an aryl group;
    In formula (BZ-7), R 124 to R 129 each independently represent a halogen atom or a halogenated hydrocarbon group;
    In formula (BZ-8), R 130 to R 135 each independently represent a halogen atom or a halogenated hydrocarbon group.
  4.  前記対アニオンd2はビス(フルオロアルキルスルホニル)イミドアニオンである、請求項1または2に記載の着色組成物。 The coloring composition according to claim 1 or 2, wherein the counter anion d2 is a bis(fluoroalkylsulfonyl)imide anion.
  5.  前記化合物Dは重合性基を有する、請求項1または2に記載の着色組成物。 The coloring composition according to claim 1 or 2, wherein compound D has a polymerizable group.
  6.  前記重合性基はエチレン不飽和結合含有基であり、
     前記化合物Dのエチレン性不飽和結合価が0.7mmol/g以上である、請求項5に記載の着色組成物。
    the polymerizable group is an ethylenically unsaturated bond-containing group,
    The colored composition according to claim 5 , wherein the compound D has an ethylenically unsaturated bond valence of 0.7 mmol/g or more.
  7.  前記化合物d1が有する酸基はカルボキシ基である、請求項1または2に記載の着色組成物。 The coloring composition according to claim 1 or 2, wherein the acid group possessed by compound d1 is a carboxy group.
  8.  前記化合物Dの酸価が0.20~1.20mmol/gである、請求項1または2に記載の着色組成物。 The coloring composition according to claim 1 or 2, wherein the acid value of compound D is 0.20 to 1.20 mmol/g.
  9.  前記化合物d1は、酸基を有する繰り返し単位d1-1と、カチオン性基を有する繰り返し単位d1-2とを有するポリマーであり、
     前記化合物Dは、前記繰り返し単位d1-2のカチオン性基に、前記対アニオンd2が配位して塩を形成しており、
     前記繰り返し単位d1-2と前記対アニオンd2とで形成される塩構造のClogP値が-10.0~0.3である、請求項1または2に記載の着色組成物。
    The compound d1 is a polymer having a repeating unit d1-1 having an acid group and a repeating unit d1-2 having a cationic group,
    In the compound D, the counter anion d2 is coordinated to the cationic group of the repeating unit d1-2 to form a salt,
    The colored composition according to claim 1 or 2, wherein the salt structure formed by the repeating unit d1-2 and the counter anion d2 has a ClogP value of −10.0 to 0.3.
  10.  前記染料はカチオン及びアニオンを含む化学構造を有する染料を含む、請求項1または2に記載の着色組成物。 The coloring composition according to claim 1 or 2, wherein the dye includes a dye having a chemical structure including a cation and an anion.
  11.  前記染料はキサンテン染料を含む、請求項1または2に記載の着色組成物。 The coloring composition according to claim 1 or 2, wherein the dye comprises a xanthene dye.
  12.  前記染料は染料多量体を含む、請求項1または2に記載の着色組成物。 The coloring composition according to claim 1 or 2, wherein the dye comprises a dye multimer.
  13.  前記着色組成物の全固形分中における前記重合性化合物Cの含有量が5~30質量%である、請求項1または2に記載の着色組成物。 The coloring composition according to claim 1 or 2, wherein the content of the polymerizable compound C in the total solid content of the coloring composition is 5 to 30 mass %.
  14.  前記着色組成物中における塩化物イオン濃度が100質量ppm以下である、請求項1または2に記載の着色組成物。 The coloring composition according to claim 1 or 2, wherein the chloride ion concentration in the coloring composition is 100 ppm by mass or less.
  15.  請求項1または2に記載の着色組成物を用いて得られる膜。 A film obtained using the coloring composition according to claim 1 or 2.
  16.  請求項15に記載の膜を有するカラーフィルタ。 A color filter having the film according to claim 15.
  17.  請求項15に記載の膜を有する固体撮像素子。 A solid-state imaging device having the film according to claim 15.
  18.  請求項15に記載の膜を有する画像表示装置。 An image display device having the film according to claim 15.
PCT/JP2024/007661 2023-03-15 2024-03-01 Coloring composition, film, color filter, solid-state imaging element, and image display device WO2024190447A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2023-041207 2023-03-15
JP2023041207 2023-03-15
JP2023083904 2023-05-22
JP2023-083904 2023-05-22

Publications (1)

Publication Number Publication Date
WO2024190447A1 true WO2024190447A1 (en) 2024-09-19

Family

ID=92755094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/007661 WO2024190447A1 (en) 2023-03-15 2024-03-01 Coloring composition, film, color filter, solid-state imaging element, and image display device

Country Status (1)

Country Link
WO (1) WO2024190447A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006088594A (en) * 2004-09-24 2006-04-06 Fuji Photo Film Co Ltd Original lithographic printing plate and lithographic printing method using the original plate
JP2012192728A (en) * 2011-02-28 2012-10-11 Fujifilm Corp Lithographic printing plate precursor and plate making method thereof
WO2013175978A1 (en) * 2012-05-23 2013-11-28 東レ株式会社 Coloring material dispersed liquid and photosensitive coloring resin composition
WO2014156449A1 (en) * 2013-03-26 2014-10-02 富士フイルム株式会社 Lithographic printing original plate and plate making method of same
KR20140118068A (en) * 2013-03-28 2014-10-08 동우 화인켐 주식회사 A colored photosensitive resin composition and color filter using the same
JP2016133604A (en) * 2015-01-19 2016-07-25 東洋インキScホールディングス株式会社 Colored composition for color filter and color filter
JP2016180834A (en) * 2015-03-24 2016-10-13 東洋インキScホールディングス株式会社 Photosensitive colored composition for solid-state image sensor, color filter for solid-state image sensor, and solid-state image sensor
JP2018024749A (en) * 2016-08-09 2018-02-15 Jsr株式会社 Colorant, coloring composition, colored cured film, display element, solid state image sensor, compound and polymer
JP2021148934A (en) * 2020-03-18 2021-09-27 富士フイルム株式会社 Photosensitive composition, cured material, color filter, solid-state imaging device, image display device, and compound
WO2022196450A1 (en) * 2021-03-19 2022-09-22 富士フイルム株式会社 Colored composition, method for producing film, method for producing color filter, method for producing solid imaging element, and method for producing image display device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006088594A (en) * 2004-09-24 2006-04-06 Fuji Photo Film Co Ltd Original lithographic printing plate and lithographic printing method using the original plate
JP2012192728A (en) * 2011-02-28 2012-10-11 Fujifilm Corp Lithographic printing plate precursor and plate making method thereof
WO2013175978A1 (en) * 2012-05-23 2013-11-28 東レ株式会社 Coloring material dispersed liquid and photosensitive coloring resin composition
WO2014156449A1 (en) * 2013-03-26 2014-10-02 富士フイルム株式会社 Lithographic printing original plate and plate making method of same
KR20140118068A (en) * 2013-03-28 2014-10-08 동우 화인켐 주식회사 A colored photosensitive resin composition and color filter using the same
JP2016133604A (en) * 2015-01-19 2016-07-25 東洋インキScホールディングス株式会社 Colored composition for color filter and color filter
JP2016180834A (en) * 2015-03-24 2016-10-13 東洋インキScホールディングス株式会社 Photosensitive colored composition for solid-state image sensor, color filter for solid-state image sensor, and solid-state image sensor
JP2018024749A (en) * 2016-08-09 2018-02-15 Jsr株式会社 Colorant, coloring composition, colored cured film, display element, solid state image sensor, compound and polymer
JP2021148934A (en) * 2020-03-18 2021-09-27 富士フイルム株式会社 Photosensitive composition, cured material, color filter, solid-state imaging device, image display device, and compound
WO2022196450A1 (en) * 2021-03-19 2022-09-22 富士フイルム株式会社 Colored composition, method for producing film, method for producing color filter, method for producing solid imaging element, and method for producing image display device

Similar Documents

Publication Publication Date Title
WO2023243414A1 (en) Resin composition, film, optical filter, solid-state imaging element, and image display device
WO2024004619A1 (en) Curable composition, method for producing cured product, film, optical element, image sensor, solid-state imaging element, image display device, and radical polymerization initiator
JP2021148934A (en) Photosensitive composition, cured material, color filter, solid-state imaging device, image display device, and compound
WO2023085072A1 (en) Colored curable composition, method for producing cured product, film, optical element, image sensor, solid-state imaging element, image display device, and radical polymerization initiator
WO2022168742A1 (en) Coloring composition, film, optical filter, solid-state imaging element, image display device, and compound
WO2024190447A1 (en) Coloring composition, film, color filter, solid-state imaging element, and image display device
WO2024024508A1 (en) Composition, film, optical filter, solid state imaging device, image display device, infrared radiation sensor, and method for producing camera module
WO2023182018A1 (en) Composition, film, optical filter, solid-state imaging element, image display device, infrared sensor, camera module, and compound
WO2024181118A1 (en) Resin composition, film, optical filter, solid-state imaging element, and image display device
WO2023162574A1 (en) Composition, film, optical filter, solid-state imaging element, image display device, infrared sensor, camera module, and compound
WO2024070694A1 (en) Composition, film, optical filter, solid-state imaging element, image display device, infrared sensor, camera module, and compound
WO2024166734A1 (en) Colored composition, film, optical filter, solid-state imaging element, image display device, and compound
WO2024171839A1 (en) Coloring composition, film, optical filter, solid-state imaging element and image display device
WO2024135427A1 (en) Method for producing optical filter and method for producing solid-state imaging element
WO2024171840A1 (en) Coloring composition, film, optical filter, solid-state imaging element, image display device, and compound
WO2024128044A1 (en) Color filter manufacturing method and solid-state imaging element manufacturing method
WO2024128043A1 (en) Color filter manufacturing method and solid-state imaging element manufacturing method
WO2023228791A1 (en) Coloring composition, film, optical filter, solid-state imaging element and image display device
WO2024014300A1 (en) Resin composition, method for producing resin composition, pigment derivative, film, optical filter, solid-state imaging element, and image display device
WO2024018910A1 (en) Coloring composition, film, optical filter, solid-state imaging element, image display device and coloring agent
WO2024018941A1 (en) Resin composition, membrane, optical filter, solid-state imaging device, image display device, optical sensor, and camera module
WO2024058001A1 (en) Coloring composition, film, optical filter, solid-state imaging element, image display device, and compound
WO2024190446A1 (en) Resin composition, film, optical filter, solid-state imaging element, and image display device
WO2024111393A1 (en) Curable composition, method for producing cured article, film, optical element, image sensor, solid-state imaging element, image display device, and radical polymerization initiator
WO2024048337A1 (en) Coloring composition, film, optical filter, solid-state imaging element, and image display device