WO2024190093A1 - Control valve - Google Patents

Control valve Download PDF

Info

Publication number
WO2024190093A1
WO2024190093A1 PCT/JP2024/002022 JP2024002022W WO2024190093A1 WO 2024190093 A1 WO2024190093 A1 WO 2024190093A1 JP 2024002022 W JP2024002022 W JP 2024002022W WO 2024190093 A1 WO2024190093 A1 WO 2024190093A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
outlet
inlet
valve body
axial direction
Prior art date
Application number
PCT/JP2024/002022
Other languages
French (fr)
Japanese (ja)
Inventor
哲史 大関
Original Assignee
株式会社山田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社山田製作所 filed Critical 株式会社山田製作所
Publication of WO2024190093A1 publication Critical patent/WO2024190093A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • F16K11/076Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with sealing faces shaped as surfaces of solids of revolution

Definitions

  • Vehicles are equipped with a cooling system.
  • the cooling system cools heat-generating parts (e.g., engines, motors, etc.) with a coolant that circulates between the heat-generating parts and heat-dissipating parts (e.g., radiators, heaters, etc.).
  • heat-generating parts e.g., engines, motors, etc.
  • heat-dissipating parts e.g., radiators, heaters, etc.
  • the flow of the coolant is controlled by providing a control valve in the flow path that connects the heat-generating parts and heat-dissipating parts.
  • Patent Document 1 discloses a configuration in which a first opening and a second opening are arranged in parallel in the axial direction of the valve body.
  • a third opening is arranged at a different circumferential position of the valve body from the first opening and the second opening, such that at least a portion of the first opening and the second opening overlap.
  • This disclosure provides a control valve that can switch circuits while reducing the number of parts and lowering costs.
  • a control valve includes a casing having a first inlet and a second inlet through which a fluid flows in from the outside and a first outlet and a second outlet through which the fluid flows out to the outside, a shaft portion located on a first axial side and rotatably supported by the casing, and a rotor having a valve body that forms an internal space whose outer diameter gradually increases from the shaft portion toward a second axial side, the outer peripheral surface of the valve body being slidably supported on a support surface formed on the casing, and the valve body has a first communication port and a second communication port that communicate between the inside and the outside of the internal space at different positions around a central axis of the rotor.
  • valve body is provided with a partition portion that separates the internal space into a first space that communicates with the first communication port and opens to a first side in the axial direction, and a second space that communicates with the second communication port and opens to a second side in the axial direction, and the rotor rotates between a first state in which the first inlet and the first outlet are communicated through the first space, and the second inlet and the second outlet are communicated through the second space, and a second state in which the first inlet and the second outlet are communicated through the first space, and the second inlet and the first outlet are communicated through the second space.
  • valve disc since the outer peripheral surface of the valve disc is directly supported by the support surface of the casing, there is no need to provide a separate seal member or bearing, which reduces the number of parts and assembly steps, and enables the control valve to be made smaller and less expensive. Because the valve disc is tapered, when the outer diameter of the rotor expands or contracts due to heat, the rotor displaces in the axial direction relative to the casing in response to the increase or decrease in the outer diameter. Therefore, the valve disc is stably supported by the casing regardless of the expansion or contraction of the rotor. This ensures the operational stability of the control valve.
  • the rotor is configured to rotate between a first state in which the first inlet and the first outlet are connected through the first space and the second inlet and the second outlet are connected through the second space, and a second state in which the first inlet and the second outlet are connected through the first space and the second inlet and the first outlet are connected through the second space.
  • the circuits can be switched between a mode in which the fluid flows independently through each of the two circuits and a mode in which the fluid flows collectively between the two circuits.
  • the first space opens to a first axial side
  • the second space opens to a second axial side, making it easy to keep the hydraulic pressure uniform in each space. Therefore, while ensuring the sealing between the valve body and the support surface, it is possible to suppress excessive sliding resistance and realize smooth rotation of the rotor.
  • the first outlet and the second inlet are arranged at positions facing each other in a first radial direction that intersects the axial direction, and the first outlet and the second inlet are arranged at positions facing each other in a second radial direction that intersects the first direction when viewed from the axial direction. According to this aspect, since the outlets and the inlets are arranged in different radial directions, the layout of the piping is facilitated.
  • the volume of the second space is larger than the volume of the first space. According to this aspect, it is easy to ensure the hydraulic pressure acting on the second space, which makes it easier to press the valve body against the support surface, thereby improving the sealing performance between the valve body and the support surface.
  • valve body in a cross-sectional view along the axial direction, extends linearly toward the radially outward direction intersecting the axial direction as it moves from a first side to a second side in the axial direction.
  • the cross-sectional shape of the valve body is formed in an arc shape, the direction of the tangential direction of the outer peripheral surface of the valve body differs depending on the axial position. In this case, when the valve body shrinks due to heat, the deformation behavior differs depending on the axial position of the valve body.
  • the amount of deformation toward the radially inward direction increases toward the second axial side of the valve body (as the inclination of the tangential line increases), making it difficult to ensure sealing between the support surface and the valve body.
  • the cross-sectional shape of the valve disc is formed to be linear, which makes it easier to keep the deformation behavior of the valve disc due to thermal contraction uniform throughout the entire axial direction. As a result, the valve disc is stably supported on the support surface regardless of the expansion and contraction changes of the rotor. This ensures the operational stability of the control valve.
  • the angle between opposing parts of the valve body in a radial direction intersecting the axial direction is greater than 90° and smaller than 180°. According to this aspect, by making the angle greater than 90°, when the outer diameter of the rotor expands or contracts due to heat, the rotor can be more smoothly displaced on the support surface in response to the increase or decrease in the outer diameter. Therefore, regardless of the expansion or contraction of the rotor, the valve body is stably supported on the support surface. This ensures the operational stability of the control valve.
  • the second inlet and the second outlet are connected to a non-driving circuit that supplies fluid to a non-driving device of a vehicle.
  • the hydraulic pressure in the second space is easily secured, which makes it easier to press the valve body against the support surface, thereby improving the sealing performance between the valve body and the support surface.
  • FIG. 2 is a block diagram of a cooling system (individual temperature adjustment mode) according to an embodiment.
  • FIG. 2 is a block diagram of a cooling system (integrated mode) according to an embodiment.
  • FIG. 2 is a perspective view of a control valve according to an embodiment.
  • FIG. 2 is an exploded perspective view of the control valve according to the embodiment.
  • 4 is a cross-sectional view corresponding to line VV in FIG. 3.
  • 6 is a cross-sectional view corresponding to line VI-VI in FIG.
  • FIG. 7 is an enlarged view of a portion VII in FIG. 5 .
  • FIG. 4 is a bottom view of the cover according to the embodiment.
  • FIG. 13 is a plan view of the control valve (individual temperature control mode) shown through the cover according to the embodiment.
  • FIG. 13 is a plan view of a control valve (integrated mode) shown through a cover according to an embodiment.
  • FIGS. 1 and 2 are block diagrams of a cooling system 1.
  • Fig. 1 and Fig. 2 shows an individual temperature control mode
  • Fig. 2 shows an integrated mode. 1 and 2
  • the cooling system 1 is mounted on, for example, an electric vehicle.
  • Electric vehicles include electric vehicles, hybrid vehicles, plug-in hybrid vehicles, fuel cell vehicles, and other vehicles that are equipped with a motor as a drive source.
  • the cooling system of this embodiment may be one that has only an engine (internal combustion engine) as a vehicle drive source.
  • the cooling system 1 includes a drive circuit 2, a non-drive circuit 3, and a control valve 5.
  • the drive circuit 2 is a circuit to which devices (drive devices) that drive the vehicle are connected, at least when the vehicle is powered on (READY ON). Devices whose operating temperature ranges tend to be relatively high are connected to the drive circuit 2.
  • a drive motor (drive source) 7 and a first water pump 8 are provided on the drive circuit 2.
  • the first water pump 8 and the drive motor 7 are connected on the drive circuit 2 in order from the upstream side to the downstream side.
  • An inverter, a radiator, etc. may be connected to the drive circuit 2 as a drive device.
  • the non-drive circuit 3 is a circuit to which devices (non-drive devices) are connected that are used not only when the vehicle is powered on, but also when the vehicle is powered off (READY OFF).
  • Devices with a lower operating temperature range than the drive devices are connected to the non-drive circuit 3.
  • a battery 10 and a second water pump 11 are provided on the non-drive circuit 3.
  • the second water pump 11 and the battery 10 are connected on the non-drive circuit 3 in order from the upstream side to the downstream side.
  • An air conditioning device for example, a chiller, heater core, compressor, etc. may be connected to the non-drive circuit 3 as a non-drive device.
  • the control valve 5 functions as a so-called four-way valve.
  • the control valve 5 is connected to the upstream end and downstream end of the drive circuit 2 and the upstream end and downstream end of the non-drive circuit 3.
  • the control valve 5 switches the flow of the coolant in the cooling system 1.
  • the control valve 5 makes the drive circuit 2 and the non-drive circuit 3 separate closed circuits (individual temperature control mode) as shown in FIG. 1, for example, during normal vehicle operation or when the vehicle is powered off.
  • the water pumps 8, 11 provided in each circuit 2, 3 are operated to allow coolant to circulate in each of the drive circuit 2 and non-drive circuit 3 via the control valve 5.
  • Normal vehicle operation refers to a state in which the drive device and non-drive device are each operating in their optimal temperature ranges when the vehicle is powered on.
  • the control valve 5 closes the drive circuit 2 and non-drive circuit 3 together as a single closed circuit (integrated mode) as shown in FIG. 2.
  • the water pumps 8 and 11 provided in each circuit 2 and 3 are operated to allow coolant to circulate between the drive circuit 2 and non-drive circuit 3 via the control valve 5.
  • Fig. 3 is a perspective view of the control valve 5.
  • Fig. 4 is an exploded perspective view of the control valve 5.
  • the control valve 5 includes a casing 21 , a drive unit 22 , a rotor 23 , and a biasing member 24 .
  • the casing 21 includes a casing body 31 and a cover 32.
  • the direction along the central axis O1 of the rotor 23 is simply referred to as the axial direction.
  • the drive unit 22 side is referred to as the lower side (first side)
  • the cover 32 side is referred to as the upper side (second side).
  • a direction intersecting the central axis O1 as viewed from the axial direction is referred to as the radial direction
  • a direction around the central axis O1 is referred to as the circumferential direction.
  • the casing body 31 includes a base portion 33, a first outlet port 34, a second outlet port 35, and a first inlet port 36.
  • the base portion 33, the first outlet port 34, the second outlet port 35, and the first inlet port 36 are integrally formed by, for example, injection molding a resin material.
  • the base portion 33 is formed in a cylindrical shape with a bottom that opens upward.
  • the base portion 33 includes a mounting seat 41 and a rotor accommodating portion 42.
  • Fig. 5 is a cross-sectional view corresponding to line VV in Fig. 3.
  • Fig. 6 is a cross-sectional view corresponding to line VI-VI in Fig. 3. 5 and 6, the mounting base 41 is a portion to which the drive unit 22 is attached.
  • the mounting base 41 includes a partition wall 41a and a standing wall 41b.
  • the partition wall 41a is formed to a size that protrudes radially outward from the rotor accommodating portion 42 in a plan view seen from the axial direction.
  • the standing wall 41b extends downward from the outer periphery of the partition wall 41a.
  • FIG. 7 is an enlarged view of a portion VII in FIG.
  • a through hole 45 is formed in the partition wall 41a at a portion located on the central axis O1, penetrating the partition wall 41a in the axial direction.
  • the through hole 45 is formed in a stepped shape.
  • the inner diameter of the through hole 45 located at the axial center is smaller than the inner diameters of the upper end and the lower end.
  • the through hole 45 includes a first large diameter portion 45a located at the bottom, a small diameter portion 45b continuing upward from the first large diameter portion 45a, and a second large diameter portion 45c continuing upward from the small diameter portion 45b.
  • the inner diameters of the first large diameter portion 45a and the second large diameter portion 45c are equal.
  • a seal ring 46 such as an X-ring is accommodated in the second large diameter portion 45c.
  • the seal ring 46 is fitted into the inner peripheral surface of the second large diameter portion 45c and is in close proximity to or in contact with the bottom surface of the second large diameter portion 45c.
  • the inner diameter of the seal ring 46 is equal to the inner diameter of the small diameter portion 45b.
  • the rotor accommodating section 42 is a portion that accommodates the rotor 23.
  • the rotor accommodating section 42 is formed in a cylindrical shape that extends upward from the partition wall 41a.
  • the lower end opening of the rotor accommodating section 42 is closed by the partition wall 41a.
  • the inner diameter of the rotor accommodating section 42 gradually increases from the bottom to the top.
  • the inner peripheral surface of the rotor accommodating section 42 includes a clearance surface 51, a transition surface 52, a support surface 53, and a positioning surface 54.
  • the clearance surface 51 extends radially outward from a position recessed downward with respect to an upper end opening edge of the through hole 45 (second large diameter portion 45c).
  • the clearance surface 51 is formed into a flat surface perpendicular to the axial direction.
  • the transition surface 52 extends upward from the outer circumferential edge of the clearance surface 51.
  • the transition surface 52 is a cylindrical surface coaxial with the central axis O1. The transition surface 52 surrounds the entire periphery of the clearance surface 51.
  • the support surface 53 is continuous around the entire circumference of the upper edge of the transition surface 52.
  • the support surface 53 is a tapered surface that extends radially outward from the bottom to the top.
  • the support surface 53 extends linearly.
  • the angle ⁇ 1 (taper angle shown in FIG. 6) between radially opposing portions of the support surface 53 is preferably 90° ⁇ 1 ⁇ 180°, and more preferably 110° ⁇ 1 ⁇ 160°.
  • the support surface 53 is formed symmetrically with respect to the central axis O1.
  • the positioning surface 54 extends upward from the upper edge of the support surface 53.
  • the positioning surface 54 is a cylindrical surface coaxial with the central axis O1.
  • the positioning surface 54 surrounds the entire periphery of the support surface 53.
  • the rotor accommodating section 42 has a first outlet 53a, a second outlet 53b, and a first inlet 53c that open on the support surface 53.
  • Each outlet 53a, 53b and first inlet 53c opens upward (towards the second axial direction) on the support surface 53. It is preferable that the opening edges (boundary with the support surface 53) of each outlet 53a, 53b and first inlet 53c are formed in a curved shape.
  • Each outlet 53a, 53b is formed on the same circumference (at the same axial height) at a position that is 180° different in the circumferential direction.
  • Each outlet 53a, 53b faces each other in a first radial direction (opposing direction).
  • the first inlet 53c is disposed at a position that is shifted in the circumferential direction from each outlet 53a, 53b.
  • the first inlet 53c is disposed at a position that is shifted in the circumferential direction from each outlet 53a, 53b.
  • the positions and sizes of each outlet 53a, 53b and the first inlet 53c can be changed as appropriate.
  • the inner diameters of each outlet 53a, 53b are the same.
  • the first outlet port 34 connects, for example, the upstream end of the drive circuit 2 and the control valve 5 (first outlet 53a).
  • the first outlet port 34 is integrally formed with the base portion 33.
  • the first outlet port 34 is formed in an L-shaped tube.
  • the first outlet port 34 has a pull-out portion 34a located on the upstream side and a joint portion 34b connected to the downstream side of the pull-out portion 34a.
  • the lead-out portion 34a extends downward from the opening edge of the first outlet 53a.
  • the first outlet port 34 communicates with the first outlet 53a through the lead-out portion 34a.
  • the lower end of the lead-out portion 34a is located between the lower surface of the partition wall 41a and the lower edge of the upright wall 41b.
  • the joint portion 34b extends outward in the first direction from the lower end of the drawn-out portion 34a.
  • the outer end of the joint portion 34b in the first direction protrudes outward beyond the base portion 33.
  • the drive circuit 2 is connected to the outer end of the joint portion 34b.
  • the second outlet port 35 connects, for example, the upstream end of the non-driving circuit 3 and the control valve 5 (second outlet 53b).
  • the second outlet port 35 is integrally formed with the base portion 33.
  • the second outlet port 35 is formed symmetrically with the first outlet port 34 in the first direction with the central axis O1 as the axis of symmetry.
  • the second outlet port 35 has a pull-out portion 35a located on the upstream side and a joint portion 35b connected to the downstream side of the pull-out portion 35a.
  • the lead-out portion 35a extends downward from the opening edge of the second outlet 53b.
  • the second outlet port 35 communicates with the second outlet 53b through the lead-out portion 35a.
  • the lower end of the lead-out portion 35a is located between the lower surface of the partition wall 41a and the lower edge of the upright wall 41b.
  • the joint portion 35b extends outward in the first direction from the lower end of the drawn-out portion 35a.
  • the outlet ports 34, 35 are aligned in a straight line in the first direction.
  • the outer end of the joint portion 35b in the first direction protrudes outward beyond the base portion 33.
  • the non-driving circuit 3 is connected to the outer end of the joint portion 35b.
  • the first inflow port 36 connects, for example, the downstream end of the drive circuit 2 and the control valve 5 (first inlet 53c).
  • the first inflow port 36 is integrally formed with the base portion 33.
  • the first inflow port 36 is formed in an L-shaped tube.
  • the first inflow port 36 has a pull-out portion 36a located on the downstream side and a joint portion 36b connected to the upstream side of the pull-out portion 36a.
  • the lead-out portion 36a extends downward from the opening edge of the first inlet 53c.
  • the first inlet port 36 communicates with the first inlet 53c through the lead-out portion 36a.
  • the lower end of the lead-out portion 36a is located between the lower surface of the partition wall 41a and the lower edge of the upright wall 41b.
  • the joint portion 36b extends from the lower end of the drawn-out portion 36a toward one side in a second direction that is radially intersecting (orthogonal to) the first direction. An outer end of the joint portion 36b in the second direction protrudes outward beyond the base portion 33.
  • the drive circuit 2 is connected to the outer end of the joint portion 36b.
  • the cover 32 closes the upper end opening of the base portion 33 (rotor accommodating portion 42).
  • the cover 32 includes an opposing wall 61, a positioning portion 62, a spring support portion 63, and a second inlet port 64.
  • the opposing wall 61, the positioning portion 62, the spring support portion 63, and the second inlet port 64 are integrally formed by, for example, injection molding a resin material.
  • the opposing wall 61 is formed in a plate shape with its thickness direction in the axial direction.
  • the outer shape of the opposing wall 61 in a plan view is formed to be the same as the outer shape of the rotor accommodating portion 42 in a plan view.
  • the opposing wall 61 is assembled to the rotor accommodating portion 42 in a state where it is superimposed on the upper surface of the rotor accommodating portion 42. As a result, the upper end opening of the base portion 33 is closed by the cover 32. A packing such as an O-ring is interposed between the opposing wall 61 and the base portion 33 (rotor accommodating portion 42).
  • Fig. 8 is a bottom view of the cover 32.
  • Fig. 9 is a plan view of the control valve 5 (individual temperature adjustment mode) shown through the cover 32.
  • a second inlet 65 is formed in the opposing wall 61.
  • the second inlet 65 penetrates the opposing wall 61 in the axial direction and extends in the circumferential direction.
  • the inlet 65 is formed in a C-shape in a plan view.
  • the second inlet 65 wraps around the other side (the opposite side to the first inlet port 36) with respect to the central axis O1 in the second direction.
  • One end of the inlet 65 in the circumferential direction overlaps with the first outlet 53a in a plan view, and the other end of the inlet 65 in the circumferential direction overlaps with the second outlet 53b in a plan view.
  • the positioning portion 62 protrudes downward from the outer periphery of the opposing wall 61.
  • the positioning portion 62 is formed in a cylindrical shape arranged coaxially with the central axis O1.
  • the positioning portion 62 is inserted inside the rotor accommodating portion 42 when the cover 32 is assembled to the base portion 33.
  • the positioning portion 62 abuts against the positioning surface 54 from the radial inside, thereby radially positioning the cover 32 relative to the base portion 33.
  • the spring support portion 63 protrudes downward from a portion of the opposing wall 61 that is located radially inward relative to the positioning portion 62.
  • the spring support portion 63 is formed in a cylindrical shape that is arranged coaxially with the central axis O1.
  • the spring support portions 63 are formed in a stepped shape with an outer diameter that is smaller the lower they are located.
  • the spring support portion 63 includes an axial support portion 63a and a radial support portion 63b.
  • the axial support portion 63a constitutes the upper end portion of the spring support portion 63.
  • the outer diameter of the axial support portion 63a is larger than the inner diameters of the large diameter portions 45a, 45c.
  • the lower end surface of the axial support portion 63a is formed into a flat surface perpendicular to the axial direction.
  • the radial support portion 63b protrudes downward from the spring support portion 63.
  • the outer diameter of the radial support portion 63b is smaller than the large diameter portions 45a and 45c and larger than the inner diameter of the small diameter portion 45b. Therefore, the radial support portion 63b faces the seal ring 46 in the axial direction.
  • the inner diameter of the spring support portion 63 is uniformly formed over the entire axial support portion 63a and the radial support portion 63b. In the illustrated example, the inner diameter of the spring support portion 63 is equal to the inner diameter of the small diameter portion 45b.
  • the second inlet port 64 connects the downstream end of the non-driving circuit 3 to the control valve 5 (second inlet 65).
  • the second inlet port 64 includes a branch flow path 71 and a common flow path 72.
  • the branch flow passage 71 covers the inlet 65 from above and is formed in a dome shape that bulges upward relative to the opposing wall 61.
  • the branch flow passage 71 (each of the branch portions 71a, 71b) is formed in a semicircular shape in a cross-sectional view perpendicular to the extension direction of the branch flow passage 71.
  • the branch flow passage 71 has the same external shape as the inlet 65 in a plan view and is formed in a C-shape extending in the circumferential direction. Specifically, the branch flow passage 71 has a first branch portion 71a extending to one side from the circumferential center of the branch flow passage 71, and a second branch portion 71b extending to the other side from the circumferential center of the branch flow passage 71.
  • the branch flow passage 71 is connected to the inlet 65 over the entire length of the branch flow passage 71 in the extension direction (circumferential direction).
  • the opening area of the lower end opening of the branch flow passage 71 is equal to the opening area of the inlet 65.
  • the common flow path 72 and the branch flow paths 71 are located on the same plane perpendicular to the central axis O1. Specifically, the common flow path 72 protrudes from the center of the branch flow paths 71 in the extension direction (circumferential direction) toward the other side in the second direction.
  • the second inlet port 64 (common flow path 72) is aligned in a straight line at a position facing the first inlet port 36 (joint portion 36b) in the second direction. In this case, the inlet ports 36, 64 and the outlet ports 34, 35 extend in directions perpendicular to each other.
  • the base end of the common flow path 72 is connected to the branch flow path 71.
  • the tip of the common flow path 72 is connected to the non-driving circuit 3.
  • the tip of the common flow path 72 protrudes outward in the second direction relative to the opposing wall 61.
  • the cooling liquid that flows into the common flow path 72 from the downstream end of the non-drive circuit 3 is distributed to the first branch 71a and the second branch 71b at the tip of the common flow path 72.
  • the extension direction of the common flow passage 72 is perpendicular to the extension direction of the outlet ports 34, 35 (joint portions 34b, 35b).
  • the common flow passage 72 is formed in a circular shape in a cross-sectional view perpendicular to the second direction.
  • the amount of upward expansion of the common flow passage 72 relative to the opposing wall 61 is greater than the amount of upward expansion of the branch flow passages 71 relative to the opposing wall 61. Therefore, the upper edge of the common flow passage 72 constitutes the uppermost edge of the control valve 5.
  • the flow path cross-sectional areas (areas perpendicular to the extension direction of each) of the first branch portion 71a and the second branch portion 71b are uniformly formed over the entire circumferential length. It is preferable that the sum of the flow path cross-sectional areas of the first branch portion 71a and the second branch portion 71b is equal to or greater than the flow path cross-sectional area (area perpendicular to the extension direction) of the common flow path 72. However, the sum of the flow path cross-sectional areas of the first branch portion 71a and the second branch portion 71b may be smaller than the flow path cross-sectional area of the common flow path 72.
  • the drive unit 22 is configured to house a motor, a reduction mechanism, a control board, etc. (not shown).
  • the drive unit 22 is disposed below the mounting base 41.
  • the drive unit 22 is assembled to the upright wall 41b in a state where it is overlapped with the mounting base 41 in the axial direction.
  • the drive unit 22 includes an output shaft 22a that protrudes upward.
  • the output shaft 22a is formed in a cylindrical shape that is disposed coaxially with the central axis O1.
  • the rotor 23 switches between communication and blocking between the inlets 53c, 65 and the outlets 53a, 53b by rotating inside the casing 21.
  • the rotor 23 includes a shaft portion 80 and a valve body 81.
  • the rotor 23 is integrally formed by, for example, injection molding a resin material.
  • the shaft portion 80 is disposed coaxially with the central axis O1.
  • the shaft portion 80 passes through the through hole 45 in the axial direction.
  • the shaft portion 80 includes a connecting portion 80a that constitutes the lower end of the shaft portion 80, and a transmission portion 80b that is connected to the upper portion of the connecting portion 80a.
  • the connecting portion 80a is formed in a solid shape.
  • the lower portion of the connecting portion 80a is fitted inside the output shaft 22a.
  • the connecting portion 80a is connected to the output shaft 22a with a male spline formed on the outer peripheral surface of the connecting portion 80a meshing with a female spline formed on the inner peripheral surface of the output shaft 22a in the circumferential direction. This allows the connecting portion 80a to rotate around the central axis O1 as the output shaft 22a rotates.
  • the upper portion of the connecting portion 80a is disposed inside the first large diameter portion 45a.
  • a hollow portion 80a1 recessed upward is formed on the lower end surface of the connecting portion 80a.
  • the connecting portion 80a may be formed in a hollow shape.
  • the transmission part 80b is formed in a bottomed cylindrical (hollow) shape coaxial with the central axis O1.
  • the inside of the transmission part 80b defines a recess 84 that opens upward.
  • the transmission part 80b includes a connection part 85 and a peripheral wall part 86.
  • the connecting portion 85 is formed in a disk shape larger than the outer shape of the coupling portion 80a in a plan view.
  • the connecting portion 85 is connected to the upper end surface of the coupling portion 80a while projecting radially outward from the outer circumferential surface of the coupling portion 80a.
  • the connecting portion 85 is disposed inside the small diameter portion 45b.
  • a lightening portion 85a recessed downward is formed on the upper end surface of the connecting portion 85.
  • the lightening portion 85a is connected to the recess 84 on the upper end surface of the connecting portion 85.
  • the lightening portion 85a reaches the coupling portion 80a.
  • the peripheral wall portion 86 extends upward from the outer periphery of the connecting portion 85.
  • the peripheral wall portion 86 is formed in a multi-stage cylindrical shape in which the outer diameter gradually increases in the upward direction.
  • the peripheral wall portion 86 includes a small cylindrical portion 86a, a protruding portion 86b, and a large cylindrical portion 86c.
  • the small cylinder portion 86a is formed in a cylindrical shape with an outer diameter equal to that of the connecting portion 85.
  • the small cylinder portion 86a is disposed inside the second large diameter portion 45c.
  • the inner peripheral surface of the seal ring 46 is in close contact with the outer peripheral surface of the small cylinder portion 86a. This blocks communication between the inside and outside of the casing 21 through the through hole 45.
  • the protruding portion 86b protrudes radially outward from the upper end opening edge of the small cylinder portion 86a.
  • the protruding portion 86b faces the second large diameter portion 45c in the axial direction with at least a portion of the protruding portion 86b protruding into the rotor accommodating portion 42. This prevents the seal ring 46 from coming off through the upper end opening of the second large diameter portion 45c.
  • the outer diameter of the protruding portion 86b is equal to or smaller than the inner diameter of the second large diameter portion 45c.
  • the large cylinder portion 86c is formed in a cylindrical shape extending upward from the outer circumferential edge of the protruding portion 86b.
  • the large cylinder portion 86c faces the radial support portion 63b in the axial direction.
  • the valve body 81 is formed in a truncated cone shape that opens upward.
  • the valve body 81 is provided in the rotor accommodating portion 42 so as to be rotatable about the central axis O1 as the shaft portion 80 rotates.
  • the valve body 81 includes a valve bottom wall 91, a sliding wall 92, and a partition portion 93.
  • the space of the valve body 81 that is surrounded by the valve bottom wall 91 and the sliding wall 92 constitutes the internal space K of the valve body 81.
  • the internal space K is open upward. Therefore, the inlet 65 is constantly connected to the internal space K. Meanwhile, the internal space K is connected to the recess 84 at the lower end.
  • valve bottom wall 91 protrudes radially outward from the lower end of the large cylinder portion 86c. Therefore, the large cylinder portion 86c protrudes upward from the valve bottom wall 91 toward the internal space K of the valve body 81.
  • the valve bottom wall 91 faces the relief surface 51 with a gap in the axial direction.
  • the lower surface of the valve bottom wall 91 is located below the upper end of the transition surface 52.
  • the upper surface of the valve bottom wall 91 is located above the upper end of the transition surface 52.
  • the sliding wall 92 is connected to the outer peripheral edge of the valve bottom wall 91.
  • the sliding wall 92 is formed in a tapered cylindrical shape that gradually expands in diameter as it goes upward.
  • the upper end opening of the sliding wall 92 faces the opposing wall 61.
  • the spring support portion 63 enters the internal space K through the upper end opening of the sliding wall 92.
  • the entire radial support portion 63b and the lower end of the axial support portion 63a of the spring support portion 63 enter the internal space K. At least a portion of the spring support portion 63 may enter the internal space K, or may be located above the internal space K.
  • the sliding wall 92 has a uniform thickness over the entire vertical range, and extends linearly radially outward as it goes upward.
  • the outer peripheral surface of the sliding wall 92 extends following the support surface 53. Therefore, in a cross-sectional view along the axial direction, the angle ⁇ 2 (taper angle shown in FIG. 6) between the radially opposing portions of the outer peripheral surface of the sliding wall 92 is equal to the taper angle ⁇ 1 of the support surface 53.
  • the angle ⁇ 2 is preferably 90° ⁇ 2 ⁇ 180°, and more preferably 110° ⁇ 2 ⁇ 160°.
  • the outer peripheral surface of the sliding wall 92 slides on the support surface 53 as the valve body 81 rotates.
  • the support surface 53 rotatably supports the valve body 81 via the sliding wall 92.
  • the upper edge of the sliding wall 92 is close to the positioning surface 54 from the radially inner side.
  • the sliding wall 92 is formed with a first communication port 92a and a second communication port 92b that penetrate the sliding wall 92 in the axial direction.
  • the first communication port 92a and the second communication port 92b are arranged at intervals in the circumferential direction.
  • Each communication port 92a, 92b is formed in an arc shape that extends circumferentially around the valve bottom wall 91.
  • the partition portion 93 blocks communication between the first communication port 92a and the second communication port 92b in the internal space K.
  • the partition portion 93 surrounds the first communication port 92a from the side and above on one radial side of the sliding wall 92 relative to the shaft portion 80.
  • the partition portion 93 is formed in an L-shape in cross section. Specifically, the partition portion 93 includes a side wall portion 93a and a top wall portion 93b.
  • the side wall portion 93a extends upward from the opening edge of the first communication port 92a.
  • the side wall portion 93a surrounds the entire periphery of the first communication port 92a.
  • the lower edge of the side wall portion 93a extends upward along the inner surface of the sliding wall 92 and radially outward.
  • the top wall portion 93b closes the upper end opening edge of the side wall portion 93a.
  • the top wall portion 93b and the opposing wall 61 face each other with a gap therebetween in the axial direction.
  • the side wall portion 93a may be formed only on a radially inner portion and on both circumferential sides of the opening edge of the first communication port 92a.
  • a space surrounded by the partition portion 93 (a space positioned radially outward from the partition portion 93) of the internal space K constitutes a first space K1.
  • the first space K1 is open downward through the first communication port 92a.
  • the space surrounded by the partition 93 and the sliding wall 92 (the space located radially inward from the partition 93) of the internal space K constitutes a second space K2.
  • the second space K2 is open downward through the second communication port 92b and upward through the upper end opening of the valve body 81.
  • the volume of the second space K2 is larger than the volume of the first space K1.
  • FIG. 9 is a plan view of the control valve 5 in the first state, with the cover 32 shown through. 9, the rotor 23 rotates between a first state and a second state in response to the driving force of the drive unit 22.
  • the first state is a state in which the first inlet 53c and the first outlet 53a at least partially communicate with each other through the first space K1, and the second inlet 65 and the second outlet 53b at least partially communicate with each other through the second space K2.
  • the first communication port 92a is disposed across the first inlet 53c and the first outlet 53a in the circumferential direction, so that the first inlet 53c and the first outlet 53a communicate with the first space K1 through the first communication port 92a.
  • the second communication port 92b overlaps with the second outlet port 53b in a plan view, thereby communicating the second outlet port 53b with the second space K2.
  • the second inlet port 65 is constantly in communication with the second space K2 through the upper end opening of the valve body 81.
  • FIG. 10 is a plan view of the control valve 5 in the second state, showing the cover 32 through the cover 32.
  • the second state is a state in which the first inlet 53c and the second outlet 53b communicate with each other through the first space K1, and the second inlet 65 and the first outlet 53a communicate with each other through the second space K2.
  • the first communication port 92a is arranged across the first inlet 53c and the second outlet 53b in the circumferential direction. As a result, the first inlet 53c and the second outlet 53b are connected to the first space K1 through the first communication port 92a.
  • the first communication port 92a may be provided in multiple numbers as long as it is configured to connect the first inlet 53c and the first outlet 53a to the first space K1 in the first state and to connect the first inlet 53c and the second outlet 53b to the first space K1 in the second state.
  • the multiple first communication ports 92a may be configured to individually connect to the first inlet 53c and the first outlet 53a in the first state and individually connect to the first inlet 53c and the second outlet 53b in the second state.
  • the second communication port 92b overlaps with the first outlet 53a in a plan view, thereby communicating the first outlet 53a with the second space K2.
  • the second inlet 65 is constantly in communication with the second space K2 through the upper end opening of the valve body 81.
  • the position and shape of the second communication port 92b can be changed as appropriate, so long as it is configured to communicate with the second outlet 53b in the first state and to communicate with the first outlet 53a in the second state.
  • the biasing member 24 is, for example, a flat coil spring.
  • the biasing member 24 is sandwiched between the valve bottom wall 91 and the axial support portion 63a in a state where it is disposed coaxially with the central axis O1.
  • the biasing member 24 is entirely located in the internal space K (second space K2).
  • the biasing member 24 is provided inside the rotor 23. It is sufficient that the biasing member 24 is provided at least inside the rotor 23.
  • the biasing member 24 biases the valve body 81 downward.
  • the sliding wall 92 is pressed against the support surface 53 by the biasing force of the biasing member 24.
  • the radial support portion 63b is inserted into the inside of the upper end portion of the biasing member 24.
  • the biasing member 24 abuts against the radial support portion 63b from the radial direction, thereby restricting radial movement of the biasing member 24 relative to the casing 21.
  • the large cylinder portion 86c is inserted into the inside of the lower end portion of the biasing member 24.
  • the biasing member 24 abuts against the large cylinder portion 86c from the radial direction, thereby restricting radial movement of the biasing member 24 relative to the casing 21.
  • a configuration in which the biasing member 24 is indirectly supported by the opposing wall 61 via the spring support portion 63 is described, but this configuration is not limited to this.
  • the biasing member 24 may be directly supported by the opposing wall
  • the cooling liquid pumped out by the second water pump 10 is heat exchanged in the battery 11, and then flows into the second space K2 through the second inlet 65 and the upper end opening of the valve body 81.
  • the cooling liquid that flows into the second space K2 is returned to the non-driving circuit 3 through the second communication port 92b and the second outlet 53b, and is then pumped out again downstream on the non-driving circuit 3 by the second water pump 10.
  • the cooling liquid that flows into the internal space K through the first inlet 53c and the second inlet 65 is deflected by the partition 93 so that it does not merge with each other and flows out from the corresponding outlets 53a, 53b.
  • only one of the driving circuit 2 and the non-driving circuit 3 may be operated.
  • the rotor 23 is switched from the first state to the second state shown in FIG. 10. Specifically, the drive unit 22 is driven to rotate the rotor 23 around the central axis O1. At this time, the rotor 23 rotates around the central axis O1 while the outer circumferential surface of the sliding wall 92 slides on the support surface 53. Then, when the first inlet 53c and the second outlet 53b are connected through the first space K1 and the second inlet 65 and the first outlet 53a are connected through the second space K2, the rotation of the rotor 23 stops.
  • the coolant flows between the drive circuit 2 and the non-drive circuit 3 in a lump via the control valve 5.
  • the coolant pumped out by the first water pump 8 is heat exchanged in the drive motor 7, and then flows into the first space K1 through the first inlet 53c and the first communication port 92a.
  • the coolant that flows into the first space K1 flows out to the non-drive circuit 3 through the first communication port 92a and the second outlet 53b.
  • the coolant that flows out to the non-drive circuit 3 is pumped downstream by the second water pump 10, and is heat exchanged with the battery 11.
  • the coolant then flows into the second space K2 through the second inlet 65 and the upper end opening of the valve body 81.
  • the coolant that flows into the second space K2 flows out to the drive circuit 2 through the second communication port 92b and the first outlet 53a.
  • the cooling liquid is then pumped downstream by the first water pump 8, where heat is exchanged between the cooling liquid and the drive motor 7.
  • the cooling liquid then flows back into the first space K1.
  • the rotor 23 has a valve body 81 whose outer diameter gradually increases upward from the shaft portion 80, and the outer peripheral surface of the valve body 81 is slidably supported by the casing 21. According to this configuration, there is no need to provide a separate seal member or bearing because the valve element 81 is directly supported by the casing 21. This reduces the number of parts and assembly steps, and allows the control valve 5 to be made smaller and less expensive. Since the valve body 81 is formed in a tapered shape, when the outer diameter of the rotor 23 expands or contracts due to heat, the rotor 23 displaces in the axial direction on the support surface 53 in response to the increase or decrease in the outer diameter. Therefore, the valve body 81 is stably supported on the support surface 53 regardless of the expansion or contraction of the rotor 23. This ensures the operational stability of the control valve 5.
  • the rotor 23 is configured to rotate between a first state and a second state.
  • the first state is a state in which the first inlet 53c and the first outlet 53a communicate with each other through the first space K1, and the second inlet 65 and the second outlet 53b communicate with each other through the second space K2.
  • the second state is a state in which the first inlet 53c and the second outlet 53b communicate with each other through the first space K1, and the second inlet 65 and the first outlet 53a communicate with each other through the second space K2.
  • the circuits can be switched between an individual temperature control mode in which the coolant flows through each of the two circuits independently, and an integrated mode in which the coolant flows through the two circuits together.
  • the first space K1 opens downward, while the second space K2 opens upward, making it easy to keep the liquid pressure in each space K1, K2 uniform. Therefore, while ensuring the sealing between the valve body 81 and the support surface 53, it is possible to suppress excessive sliding resistance and realize smooth rotation of the rotor 23.
  • the first outlet 53a and the second outlet 53b are arranged in positions facing each other in the first direction, and the first inlet 53c and the second inlet 65 are arranged in positions facing each other in the second direction.
  • the outlets 53a, 53b and the inlets 53c, 65 are arranged in different radial directions, which facilitates the layout of the piping.
  • the volume of the second space K2 is larger than the volume of the first space K1. According to this configuration, it is easy to ensure the hydraulic pressure acting on the second space K2. Therefore, it is easy to press the valve body 81 against the support surface 53, so that the sealing performance between the valve body 81 and the support surface 53 can be improved.
  • the valve body 81 is configured to extend linearly radially outward from the bottom to the top in a cross-sectional view along the axial direction.
  • the cross-sectional shape of the valve body 81 is formed in an arc shape, the direction of the tangential direction of the outer circumferential surface of the valve body 81 differs depending on the axial position.
  • the deformation behavior differs depending on the axial position of the valve body 81. Specifically, the amount of radially inward deformation increases toward the upper side of the valve body 81 (as the inclination of the tangent increases), making it difficult to ensure sealing between the support surface 53 and the valve body 81.
  • valve body 81 In contrast, by forming the valve body 81 to have a linear cross-sectional shape as in this embodiment, it is easy to keep the deformation behavior of the valve body 81 due to thermal contraction uniform throughout the entire axial direction. As a result, the valve body 81 is stably supported on the support surface 53 regardless of the expansion and contraction changes of the rotor 23. This ensures the operational stability of the control valve 5.
  • the valve body 81 is configured such that the angle ⁇ 2 between the radially opposing portions is set to 90° ⁇ 2 ⁇ 180°. According to this configuration, by making the angle ⁇ 2 larger than 90°, when the outer diameter of the rotor 23 expands or contracts due to heat, the rotor 23 can be more smoothly displaced on the support surface 53 in response to the increase or decrease in the outer diameter. Therefore, regardless of the expansion or contraction of the rotor 23, the valve body 81 is stably supported on the support surface 53. This ensures the operational stability of the control valve 5. Moreover, by setting the angle ⁇ 2 in the range of 110° ⁇ 2 ⁇ 160°, excess material during molding can be suppressed, enabling further size reduction in the axial direction.
  • the second inlet 65 and the second outlet 53b are configured to be connected to the non-driving circuit 3 that supplies fluid to a non-driving source of the vehicle.
  • the coolant when the coolant is circulated only through the non-drive circuit 3 while the vehicle is turned off, it is easy to ensure the hydraulic pressure in the second space K2. Therefore, it is easy to press the valve body 81 against the support surface 53, so that the sealing performance between the valve body 81 and the support surface 53 can be improved.
  • control valve 5 is mounted on the vehicle cooling system 1, but the present invention is not limited to this configuration and may be mounted on other systems.
  • the configuration including the two outlets 53a, 53b has been described, but the present invention is not limited to this configuration. Three or more outlets may be provided.
  • the outflow ports 34, 35 are integrally formed with the base portion 33, but the present invention is not limited to this configuration. The outflow ports 34, 35 may be formed separately from the base portion 33.
  • the second inlet 65 is constantly in communication with the internal space K.
  • the second inlet 65 may also be configured to be switched between communication with and cut off from the internal space K in response to the rotation of the rotor 23.
  • the valve body 81 extends linearly in cross section, but is not limited to this configuration.
  • the valve body 81 may extend in an arc shape in cross section, for example.
  • the biasing member 24 is provided in the internal space K, but the present invention is not limited to this configuration.
  • the position of the biasing member can be changed as appropriate as long as the biasing member is configured to press the valve body 81 against the support surface 53.
  • the biasing member is not an essential component.
  • the second inlet 65 is formed in the cover 32, but the present invention is not limited to this configuration.
  • the second inlet may be formed in the casing body 31.
  • volume of the second space K2 is larger than the volume of the first space K1 has been described, but this is not limited to this configuration.
  • the volume of the second space K2 may be equal to or smaller than the volume of the first space K1.
  • Non-driving circuit 5 Control valve 21: Casing 23: Rotor 53: Support surface 53a: First outlet 53b: Second outlet 53c: First inlet 65: Second inlet 80: Shaft 81: Valve body 92a: First communication port 92b: Second communication port 93: Partition K1: First space K2: Second space O1: Central axis ⁇ 2: Angle

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Multiple-Way Valves (AREA)

Abstract

A control valve according to an aspect of the present disclosure comprises a casing, and a rotor having a valve body. A first communication port and a second communication port for providing communication between the inside and outside of an inner space are formed in the valve body at different locations around a central axis of the rotor. The valve body comprises a partition part that partitions the inner space into a first space that communicates with the first communication port and is open on a first side in the axial direction, and a second space that communicates with the second communication port and is open on a second side in the axial direction. The rotor rotates between a first state in which a first inlet communicates with a first outlet through the first space and a second inlet communicates with a second outlet through the second space, and a second state in which the first inlet communicates with the second outlet through the first space and the second inlet communicates with the first outlet through the second space.

Description

制御バルブControl valve
 本開示は、制御バルブに関するものである。
 本願は、2023年3月14日に日本に出願された特願2023-039652号について優先権を主張し、その内容をここに援用する。
The present disclosure relates to control valves.
This application claims priority to Japanese Patent Application No. 2023-039652, filed in Japan on March 14, 2023, the contents of which are incorporated herein by reference.
 車両には、冷却システムが搭載されている。冷却システムは、発熱部(例えば、エンジンやモータ等)と、放熱部(例えば、ラジエータやヒータ等)と、の間で循環する冷却液によって発熱部を冷却する。冷却システムでは、発熱部と放熱部とを接続する流路上に制御バルブが設けられることで、冷却液の流通が制御されている。 Vehicles are equipped with a cooling system. The cooling system cools heat-generating parts (e.g., engines, motors, etc.) with a coolant that circulates between the heat-generating parts and heat-dissipating parts (e.g., radiators, heaters, etc.). In the cooling system, the flow of the coolant is controlled by providing a control valve in the flow path that connects the heat-generating parts and heat-dissipating parts.
 制御バルブとして、更なる小型化を図ることが検討されている。例えば下記特許文献1には、第1開口部及び第2開口部が弁体の軸方向に並列で配置された構成が開示されている。下記特許文献1において、弁体のうち第1開口部及び第2開口部に対して周方向で異なる位置には、第1開口部及び第2開口部の少なくとも一部が重なり合うように第3開口部を配置されている。  Considerations are being made to further reduce the size of control valves. For example, the following Patent Document 1 discloses a configuration in which a first opening and a second opening are arranged in parallel in the axial direction of the valve body. In the following Patent Document 1, a third opening is arranged at a different circumferential position of the valve body from the first opening and the second opening, such that at least a portion of the first opening and the second opening overlap.
日本国特開2015-59615号公報Japanese Patent Application Publication No. 2015-59615
 しかしながら、従来技術にあっては、例えばポートと開口部との間にシール機構を各開口部毎に設ける必要がある。そのため、従来技術では、部品点数の削減や低コスト化を図る点で未だ改善の余地があった。
 従来技術にあっては、流入口が一つのみしか設けられていないため、回路の切り替えを行うには、回路上に複数の制御バルブを配置する必要があった。
However, in the conventional technology, for example, a sealing mechanism must be provided between the port and each opening, so there is still room for improvement in the conventional technology in terms of reducing the number of parts and reducing costs.
In the prior art, since only one inlet is provided, multiple control valves must be placed on the circuit in order to switch the circuit.
 本開示は、部品点数の削減や低コスト化を図った上で、回路の切り替えを行うことができることができる制御バルブを提供する。 This disclosure provides a control valve that can switch circuits while reducing the number of parts and lowering costs.
 上記課題を解決するために、本開示は以下の態様を採用した。
 (1)本開示の一態様に係る制御バルブは、外部から流体が流入する第1流入口及び第2流入口、並びに流体が外部に流出する第1流出口及び第2流出口が形成されたケーシングと、軸方向の第1側に位置して前記ケーシングに回転可能に支持された軸部、及び前記軸部から軸方向の第2側に向かうに従い外径が漸次拡大する内部空間を形成する弁体を有し、前記弁体の外周面が前記ケーシングに形成された支持面上を摺動可能に支持されたるロータと、を備え、前記弁体のうち、前記ロータの中心軸線回りで異なる位置には、前記内部空間の内外を連通させる第1連通口及び第2連通口が形成され、前記弁体は、前記第1連通口に連通するとともに前記軸方向の第1側に開口する第1空間、及び前記第2連通口に連通するとともに前記軸方向の第2側に開口する第2空間に、前記内部空間を仕切る仕切部を備え、前記ロータは、前記第1空間を通じて前記第1流入口及び前記第1流出口が連通し、かつ前記第2空間を通じて前記第2流入口及び前記第2流出口が連通する第1状態、並びに前記第1空間を通じて前記第1流入口及び前記第2流出口が連通し、かつ前記第2空間を通じて前記第2流入口及び前記第1流出口が連通する第2状態間を回転する。
In order to solve the above problems, the present disclosure employs the following aspects.
(1) A control valve according to one aspect of the present disclosure includes a casing having a first inlet and a second inlet through which a fluid flows in from the outside and a first outlet and a second outlet through which the fluid flows out to the outside, a shaft portion located on a first axial side and rotatably supported by the casing, and a rotor having a valve body that forms an internal space whose outer diameter gradually increases from the shaft portion toward a second axial side, the outer peripheral surface of the valve body being slidably supported on a support surface formed on the casing, and the valve body has a first communication port and a second communication port that communicate between the inside and the outside of the internal space at different positions around a central axis of the rotor. Two communication ports are formed, and the valve body is provided with a partition portion that separates the internal space into a first space that communicates with the first communication port and opens to a first side in the axial direction, and a second space that communicates with the second communication port and opens to a second side in the axial direction, and the rotor rotates between a first state in which the first inlet and the first outlet are communicated through the first space, and the second inlet and the second outlet are communicated through the second space, and a second state in which the first inlet and the second outlet are communicated through the first space, and the second inlet and the first outlet are communicated through the second space.
 本態様によれば、弁体の外周面がケーシングの支持面に直接支持されるため、シール部材や軸受を別途設ける必要がない。そのため、部品点数や組立工数の削減、制御バルブの小型化、低コスト化を図ることができる。
 弁体がテーパ状に形成されていることで、ロータの外径が熱によって膨張収縮した場合に、外径の増減変化に応じてロータがケーシングに対して軸方向に変位する。そのため、ロータの膨張収縮変化に関わらず、弁体が安定してケーシングに支持される。よって、制御バルブの動作安定性を確保できる。
According to this aspect, since the outer peripheral surface of the valve disc is directly supported by the support surface of the casing, there is no need to provide a separate seal member or bearing, which reduces the number of parts and assembly steps, and enables the control valve to be made smaller and less expensive.
Because the valve disc is tapered, when the outer diameter of the rotor expands or contracts due to heat, the rotor displaces in the axial direction relative to the casing in response to the increase or decrease in the outer diameter. Therefore, the valve disc is stably supported by the casing regardless of the expansion or contraction of the rotor. This ensures the operational stability of the control valve.
 特に、本態様において、ロータは、第1空間を通じて第1流入口及び第1流出口が連通し、かつ第2空間を通じて第2流入口及び第2流出口が連通する第1状態、並びに第1空間を通じて第1流入口及び第2流出口が連通し、かつ第2空間を通じて第2流入口及び第1流出口が連通する第2状態間を回転する構成とした。
 この構成によれば、2つの回路間に制御バルブを設置することで、2つの回路それぞれに独立して流体が流通するモードと、2つの回路間に一括して流体が流通するモードと、で回路の切り替えを行うことができる。しかも、本態様では、第1空間が軸方向の第1側に開口する一方、第2空間が軸方向の第2側に開口することで、各空間内での液圧を均一に保ち易い。そのため、弁体及び支持面間でのシール性を確保した上で、摺動抵抗が過大になることを抑制して、ロータのスムーズな回転を実現できる。
In particular, in this aspect, the rotor is configured to rotate between a first state in which the first inlet and the first outlet are connected through the first space and the second inlet and the second outlet are connected through the second space, and a second state in which the first inlet and the second outlet are connected through the first space and the second inlet and the first outlet are connected through the second space.
According to this configuration, by installing a control valve between the two circuits, the circuits can be switched between a mode in which the fluid flows independently through each of the two circuits and a mode in which the fluid flows collectively between the two circuits. Moreover, in this aspect, the first space opens to a first axial side, while the second space opens to a second axial side, making it easy to keep the hydraulic pressure uniform in each space. Therefore, while ensuring the sealing between the valve body and the support surface, it is possible to suppress excessive sliding resistance and realize smooth rotation of the rotor.
 (2)上記(1)の態様に係る制御バルブにおいて、前記第1流出口及び前記第2流入口は、前記軸方向に交差する径方向のうち第1方向で向かい合う位置に配置され、前記第1流出口及び前記第2流入口は、前記軸方向から見て前記第1方向に交差する第2方向で向かい合う位置に配置されていることが好ましい。
 本態様によれば、各流出口及び各流入口が径方向で異なる向きに配置されるので、配管の取り回しが容易になる。
(2) In the control valve relating to the above aspect (1), it is preferable that the first outlet and the second inlet are arranged at positions facing each other in a first radial direction that intersects the axial direction, and the first outlet and the second inlet are arranged at positions facing each other in a second radial direction that intersects the first direction when viewed from the axial direction.
According to this aspect, since the outlets and the inlets are arranged in different radial directions, the layout of the piping is facilitated.
 (3)上記(1)又は(2)の何れかの態様に係る制御バルブにおいて、前記第2空間の容積は、前記第1空間の容積よりも大きいことが好ましい。
 本態様によれば、第2空間に作用する液圧を確保し易い。そのため、弁体を支持面に向けて押し付けやすくなるので、弁体及び支持面間のシール性を向上させることができる。
(3) In the control valve according to either aspect (1) or (2) above, it is preferable that the volume of the second space is larger than the volume of the first space.
According to this aspect, it is easy to ensure the hydraulic pressure acting on the second space, which makes it easier to press the valve body against the support surface, thereby improving the sealing performance between the valve body and the support surface.
 (4)上記(1)から(3)の何れかの態様に係る制御バルブにおいて、前記弁体は、前記軸方向に沿う断面視において、前記軸方向の第1側から第2側に向かうに従い前記軸方向に交差する径方向の外側に向けて直線状に延びていることが好ましい。
 ところで、例えば弁体の断面視形状が円弧状に形成されている場合には、弁体の外周面の接線方向の向きが軸方向の位置で異なる。この場合、弁体が熱によって収縮する際、弁体の軸方向の位置によって変形の挙動が異なる。具体的に、弁体のうち軸方向の第2側に向かうに従い(接線の傾きが大きくなるに従い)、径方向の内側への変形量が大きくなる結果、支持面と弁体との間のシール性を確保し難くなる。
 これに対し、本態様によれば、弁体の断面視形状を直線状に形成することで、熱収縮による弁体の変形挙動を軸方向の全体に亘って均一に保ち易い。その結果、ロータの膨張収縮変化に関わらず、弁体が安定して支持面上で支持される。よって、制御バルブの動作安定性を確保できる。
(4) In a control valve according to any one of aspects (1) to (3) above, it is preferable that the valve body, in a cross-sectional view along the axial direction, extends linearly toward the radially outward direction intersecting the axial direction as it moves from a first side to a second side in the axial direction.
However, for example, when the cross-sectional shape of the valve body is formed in an arc shape, the direction of the tangential direction of the outer peripheral surface of the valve body differs depending on the axial position. In this case, when the valve body shrinks due to heat, the deformation behavior differs depending on the axial position of the valve body. Specifically, the amount of deformation toward the radially inward direction increases toward the second axial side of the valve body (as the inclination of the tangential line increases), making it difficult to ensure sealing between the support surface and the valve body.
In contrast, according to the present embodiment, the cross-sectional shape of the valve disc is formed to be linear, which makes it easier to keep the deformation behavior of the valve disc due to thermal contraction uniform throughout the entire axial direction. As a result, the valve disc is stably supported on the support surface regardless of the expansion and contraction changes of the rotor. This ensures the operational stability of the control valve.
 (5)上記(1)から(4)の何れかの態様に係る制御バルブにおいて、前記弁体は、前記軸方向に沿う断面視において、前記軸方向に交差する径方向で向かい合う部分同士のなす角度は、90°よりも大きく、180°よりも小さいことが好ましい。
 本態様によれば、角度を90°よりも大きくすることで、ロータの外径が熱によって膨張収縮した場合において、外径の増減変化に応じてロータが支持面上をよりスムーズに変位し易くなる。そのため、ロータの膨張収縮変化に関わらず、弁体が安定して支持面上で支持される。よって、制御バルブの動作安定性を確保できる。
(5) In a control valve according to any one of aspects (1) to (4) above, it is preferable that, in a cross-sectional view along the axial direction, the angle between opposing parts of the valve body in a radial direction intersecting the axial direction is greater than 90° and smaller than 180°.
According to this aspect, by making the angle greater than 90°, when the outer diameter of the rotor expands or contracts due to heat, the rotor can be more smoothly displaced on the support surface in response to the increase or decrease in the outer diameter. Therefore, regardless of the expansion or contraction of the rotor, the valve body is stably supported on the support surface. This ensures the operational stability of the control valve.
 (6)上記(1)から(5)の何れかの態様に係る制御バルブにおいて、前記第2流入口及び前記第2流出口は、車両の非駆動デバイスに流体を供給する非駆動用回路に接続されることが好ましい。
 本態様によれば、車両の電源オフ時に非駆動用回路のみに冷却液を循環させた場合、第2空間の液圧を確保し易くなる。そのため、弁体を支持面に向けて押し付けやすくなるので、弁体を支持面間のシール性を向上させることができる。
(6) In the control valve according to any one of aspects (1) to (5) above, it is preferable that the second inlet and the second outlet are connected to a non-driving circuit that supplies fluid to a non-driving device of a vehicle.
According to this aspect, when the coolant is circulated only through the non-drive circuit while the vehicle is turned off, the hydraulic pressure in the second space is easily secured, which makes it easier to press the valve body against the support surface, thereby improving the sealing performance between the valve body and the support surface.
 本開示の一態様によれば、部品点数の削減や低コスト化を図った上で、回路の切り替えを行うことができることができる。 According to one aspect of the present disclosure, it is possible to perform circuit switching while reducing the number of components and lowering costs.
実施形態に係る冷却システム(個別温調モード)のブロック図である。FIG. 2 is a block diagram of a cooling system (individual temperature adjustment mode) according to an embodiment. 実施形態に係る冷却システム(統合モード)のブロック図である。FIG. 2 is a block diagram of a cooling system (integrated mode) according to an embodiment. 実施形態に係る制御バルブの斜視図である。FIG. 2 is a perspective view of a control valve according to an embodiment. 実施形態に係る制御バルブの分解斜視図である。FIG. 2 is an exploded perspective view of the control valve according to the embodiment. 図3のV-V線に対応する断面図である。4 is a cross-sectional view corresponding to line VV in FIG. 3. 図3のVI-VI線に対応する断面図である。6 is a cross-sectional view corresponding to line VI-VI in FIG. 図5のVII部拡大図である。FIG. 7 is an enlarged view of a portion VII in FIG. 5 . 実施形態に係るカバーの底面図である。FIG. 4 is a bottom view of the cover according to the embodiment. 実施形態に係るカバーを透過して示す制御バルブ(個別温調モード)の平面図である。FIG. 13 is a plan view of the control valve (individual temperature control mode) shown through the cover according to the embodiment. 実施形態に係るカバーを透過して示す制御バルブ(統合モード)の平面図である。FIG. 13 is a plan view of a control valve (integrated mode) shown through a cover according to an embodiment.
 次に、本開示の実施形態を図面に基づいて説明する。以下で説明する実施形態や変形例において、対応する構成については同一の符号を付して説明を省略する場合がある。以下の説明において、例えば「平行」や「直交」、「中心」、「同軸」等の相対的又は絶対的な配置を示す表現は、厳密にそのような配置を表すのみならず、公差や同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。本実施形態において、「向かい合う」とは、2つの面それぞれの直交方向(法線方向)が互いに一致している場合に限らず、直交方向同士が交差している場合も含んでいる。 Next, an embodiment of the present disclosure will be described with reference to the drawings. In the embodiments and modified examples described below, the same reference numerals may be used to designate corresponding configurations, and a description thereof may be omitted. In the following description, expressions indicating relative or absolute arrangements, such as "parallel," "orthogonal," "center," and "coaxial," do not only strictly indicate such arrangements, but also indicate a state in which there is a relative displacement with an angle or distance to the extent that a tolerance or the same function is obtained. In this embodiment, "facing" does not only mean a case in which the orthogonal directions (normal directions) of the two surfaces are aligned with each other, but also includes a case in which the orthogonal directions intersect with each other.
[冷却システム1]
 図1、図2は、冷却システム1のブロック図である。図1、図2において、図1は個別調温モードを示し、図2は統合モードを示している。
 図1、図2に示すように、冷却システム1は、例えば電動車両に搭載されている。電動車両には、電気自動車やハイブリッド自動車、プラグインハイブリッド自動車、燃料電池自動車等、駆動源としてモータを備えるものが含まれる。本実施形態の冷却システムは、車両駆動源としてエンジン(内燃機関)のみを有しているものであってもよい。
[Cooling system 1]
1 and 2 are block diagrams of a cooling system 1. In Fig. 1 and Fig. 2, Fig. 1 shows an individual temperature control mode, and Fig. 2 shows an integrated mode.
1 and 2, the cooling system 1 is mounted on, for example, an electric vehicle. Electric vehicles include electric vehicles, hybrid vehicles, plug-in hybrid vehicles, fuel cell vehicles, and other vehicles that are equipped with a motor as a drive source. The cooling system of this embodiment may be one that has only an engine (internal combustion engine) as a vehicle drive source.
 冷却システム1は、駆動用回路2と、非駆動用回路3と、制御バルブ5と、を備えている。 The cooling system 1 includes a drive circuit 2, a non-drive circuit 3, and a control valve 5.
 駆動用回路2は、少なくとも車両の電源オン時(READY ON時)において、車両の駆動に供されるデバイス(駆動用デバイス)が接続された回路である。駆動用回路2には、動作温度域が比較的高温となり易いデバイスが接続されている。図示の例において、駆動用回路2上には、例えば駆動用モータ(駆動源)7や第1ウォータポンプ8が設けられている。第1ウォータポンプ8及び駆動用モータ7は、駆動用回路2上に上流側から下流側にかけて順に接続されている。駆動用回路2には、駆動用デバイスとしてインバータやラジエータ等が接続されていてもよい。 The drive circuit 2 is a circuit to which devices (drive devices) that drive the vehicle are connected, at least when the vehicle is powered on (READY ON). Devices whose operating temperature ranges tend to be relatively high are connected to the drive circuit 2. In the illustrated example, for example, a drive motor (drive source) 7 and a first water pump 8 are provided on the drive circuit 2. The first water pump 8 and the drive motor 7 are connected on the drive circuit 2 in order from the upstream side to the downstream side. An inverter, a radiator, etc. may be connected to the drive circuit 2 as a drive device.
 非駆動用回路3は、車両の電源オン時に加え、車両の電源オフ時(READY OFF時)にも供されるデバイス(非駆動用デバイス)が接続された回路である。非駆動用回路3には、駆動用デバイスに比べて動作温度域が低いデバイスが接続されている。非駆動用回路3上には、例えばバッテリ10や第2ウォータポンプ11が設けられている。第2ウォータポンプ11及びバッテリ10は、非駆動用回路3上に上流側から下流側にかけて順に接続されている。非駆動用回路3には、非駆動用デバイスとして空調デバイス(例えば、チラーやヒータコア、コンプレッサ等)が接続されていてもよい。 The non-drive circuit 3 is a circuit to which devices (non-drive devices) are connected that are used not only when the vehicle is powered on, but also when the vehicle is powered off (READY OFF). Devices with a lower operating temperature range than the drive devices are connected to the non-drive circuit 3. For example, a battery 10 and a second water pump 11 are provided on the non-drive circuit 3. The second water pump 11 and the battery 10 are connected on the non-drive circuit 3 in order from the upstream side to the downstream side. An air conditioning device (for example, a chiller, heater core, compressor, etc.) may be connected to the non-drive circuit 3 as a non-drive device.
 制御バルブ5は、いわゆる四方弁として機能する。制御バルブ5は、駆動用回路2の上流端部及び下流端部、並びに非駆動用回路3の上流端部及び下流端部にそれぞれ接続されている。制御バルブ5は、冷却システム1中での冷却液の流れを切り替える。 The control valve 5 functions as a so-called four-way valve. The control valve 5 is connected to the upstream end and downstream end of the drive circuit 2 and the upstream end and downstream end of the non-drive circuit 3. The control valve 5 switches the flow of the coolant in the cooling system 1.
 制御バルブ5は、例えば車両の通常動作時や車両の電源オフ時等において、図1に示すように、駆動用回路2及び非駆動用回路3を別々の閉回路とする(個別温調モード)。個別温調モードでは、各回路2,3に設けられたウォータポンプ8,11を動作させることで、制御バルブ5を介して駆動用回路2及び非駆動用回路3それぞれで冷却液が循環可能である。車両の通常動作時とは、車両の電源オン時において、駆動用デバイス及び非駆動用デバイスがそれぞれ最適な温度域で動作している状態である。 The control valve 5 makes the drive circuit 2 and the non-drive circuit 3 separate closed circuits (individual temperature control mode) as shown in FIG. 1, for example, during normal vehicle operation or when the vehicle is powered off. In the individual temperature control mode, the water pumps 8, 11 provided in each circuit 2, 3 are operated to allow coolant to circulate in each of the drive circuit 2 and non-drive circuit 3 via the control valve 5. Normal vehicle operation refers to a state in which the drive device and non-drive device are each operating in their optimal temperature ranges when the vehicle is powered on.
 制御バルブ5は、例えば車両の始動時や急冷時等、駆動用デバイス及び非駆動用デバイスが最適な温度域外で動作している場合に、図2に示すように、駆動用回路2及び非駆動用回路3を一括の閉回路とする(統合モード)。統合モードでは、各回路2,3に設けられたウォータポンプ8,11を動作させることで、制御バルブ5を介して駆動用回路2及び非駆動用回路3間で冷却液が循環可能である。 When the drive device and non-drive device are operating outside the optimum temperature range, for example when starting or rapidly cooling the vehicle, the control valve 5 closes the drive circuit 2 and non-drive circuit 3 together as a single closed circuit (integrated mode) as shown in FIG. 2. In the integrated mode, the water pumps 8 and 11 provided in each circuit 2 and 3 are operated to allow coolant to circulate between the drive circuit 2 and non-drive circuit 3 via the control valve 5.
 <制御バルブ5>
 図3は、制御バルブ5の斜視図である。図4は、制御バルブ5の分解斜視図である。
 図3、図4に示すように、制御バルブ5は、ケーシング21と、駆動ユニット22と、ロータ23と、付勢部材24と、を備えている。
<Control valve 5>
Fig. 3 is a perspective view of the control valve 5. Fig. 4 is an exploded perspective view of the control valve 5.
As shown in FIGS. 3 and 4 , the control valve 5 includes a casing 21 , a drive unit 22 , a rotor 23 , and a biasing member 24 .
 <ケーシング21>
 ケーシング21は、ケーシング本体31と、カバー32と、を備えている。以下の説明において、ロータ23の中心軸線O1に沿う方向を単に軸方向という。軸方向において、駆動ユニット22側を下方(第1側)とし、カバー32側を上方(第2側)とする。軸方向から見て中心軸線O1に交差する方向を径方向といい、中心軸線O1回りの方向を周方向という。
<Casing 21>
The casing 21 includes a casing body 31 and a cover 32. In the following description, the direction along the central axis O1 of the rotor 23 is simply referred to as the axial direction. In the axial direction, the drive unit 22 side is referred to as the lower side (first side), and the cover 32 side is referred to as the upper side (second side). A direction intersecting the central axis O1 as viewed from the axial direction is referred to as the radial direction, and a direction around the central axis O1 is referred to as the circumferential direction.
 <ケーシング本体31>
 ケーシング本体31は、ベース部33と、第1流出ポート34と、第2流出ポート35と、第1流入ポート36と、を備えている。ベース部33、第1流出ポート34、第2流出ポート35及び第1流入ポート36は、例えば樹脂材料を射出成形することよって一体に形成されている。
 ベース部33は、上方に向けて開口する有底筒状に形成されている。具体的に、ベース部33は、取付台座41と、ロータ収容部42と、を備えている。
<Casing body 31>
The casing body 31 includes a base portion 33, a first outlet port 34, a second outlet port 35, and a first inlet port 36. The base portion 33, the first outlet port 34, the second outlet port 35, and the first inlet port 36 are integrally formed by, for example, injection molding a resin material.
The base portion 33 is formed in a cylindrical shape with a bottom that opens upward. Specifically, the base portion 33 includes a mounting seat 41 and a rotor accommodating portion 42.
 図5は、図3のV-V線に対応する断面図である。図6は、図3のVI-VI線に対応する断面図である。
 図5、図6に示すように、取付台座41は、駆動ユニット22が取り付けられる部分である。取付台座41は、区画壁41aと、起立壁41bと、を備えている。区画壁41aは、軸方向から見た平面視において、ロータ収容部42に対して径方向の外側に張り出す大きさに形成されている。起立壁41bは、区画壁41aの外周縁から下方に向けて延びている。
Fig. 5 is a cross-sectional view corresponding to line VV in Fig. 3. Fig. 6 is a cross-sectional view corresponding to line VI-VI in Fig. 3.
5 and 6, the mounting base 41 is a portion to which the drive unit 22 is attached. The mounting base 41 includes a partition wall 41a and a standing wall 41b. The partition wall 41a is formed to a size that protrudes radially outward from the rotor accommodating portion 42 in a plan view seen from the axial direction. The standing wall 41b extends downward from the outer periphery of the partition wall 41a.
 図7は、図5のVII部拡大図である。
 図7に示すように、区画壁41aのうち、中心軸線O1上に位置する部分には、区画壁41aを軸方向に貫通する貫通孔45が形成されている。貫通孔45は、段付き形状に形成されている。貫通孔45における軸方向の中央部分に位置する内径は、上端部及び下端部の内径に比べて小さい。具体的に、貫通孔45は、下方に位置する第1大径部45aと、第1大径部45aに対して上方に連なる小径部45bと、小径部45bに対して上方に連なる第2大径部45cと、を備えている。図示の例において、第1大径部45aと第2大径部45cとの内径は、同等になっている。第2大径部45c内には、Xリング等のシールリング46が収容されている。シールリング46は、第2大径部45cの内周面に嵌め込まれた状態で、第2大径部45cの底面に近接又は当接している。シールリング46の内径は、小径部45bの内径と同等になっている。
FIG. 7 is an enlarged view of a portion VII in FIG.
As shown in FIG. 7, a through hole 45 is formed in the partition wall 41a at a portion located on the central axis O1, penetrating the partition wall 41a in the axial direction. The through hole 45 is formed in a stepped shape. The inner diameter of the through hole 45 located at the axial center is smaller than the inner diameters of the upper end and the lower end. Specifically, the through hole 45 includes a first large diameter portion 45a located at the bottom, a small diameter portion 45b continuing upward from the first large diameter portion 45a, and a second large diameter portion 45c continuing upward from the small diameter portion 45b. In the illustrated example, the inner diameters of the first large diameter portion 45a and the second large diameter portion 45c are equal. A seal ring 46 such as an X-ring is accommodated in the second large diameter portion 45c. The seal ring 46 is fitted into the inner peripheral surface of the second large diameter portion 45c and is in close proximity to or in contact with the bottom surface of the second large diameter portion 45c. The inner diameter of the seal ring 46 is equal to the inner diameter of the small diameter portion 45b.
 図5、図6に示すように、ロータ収容部42は、ロータ23を収容する部分である。ロータ収容部42は、区画壁41aから上方に延びる筒状に形成されている。ロータ収容部42における下端開口部は、区画壁41aによって閉塞されている。ロータ収容部42は、下方から上方にかけて漸次内径が拡大している。具体的に、ロータ収容部42の内周面は、逃げ面51と、移行面52と、支持面53と、位置決め面54と、を備えている。 As shown in Figures 5 and 6, the rotor accommodating section 42 is a portion that accommodates the rotor 23. The rotor accommodating section 42 is formed in a cylindrical shape that extends upward from the partition wall 41a. The lower end opening of the rotor accommodating section 42 is closed by the partition wall 41a. The inner diameter of the rotor accommodating section 42 gradually increases from the bottom to the top. Specifically, the inner peripheral surface of the rotor accommodating section 42 includes a clearance surface 51, a transition surface 52, a support surface 53, and a positioning surface 54.
 逃げ面51は、貫通孔45(第2大径部45c)における上端開口縁に対して下方に窪んだ位置から径方向の外側に延びている。逃げ面51は、軸方向に直交する平坦面に形成されている。
 移行面52は、逃げ面51の外周縁から上方に向けて延びている。移行面52は、中心軸線O1と同軸の円筒面である。移行面52は、逃げ面51の周囲を全周に亘って取り囲んでいる。
The clearance surface 51 extends radially outward from a position recessed downward with respect to an upper end opening edge of the through hole 45 (second large diameter portion 45c). The clearance surface 51 is formed into a flat surface perpendicular to the axial direction.
The transition surface 52 extends upward from the outer circumferential edge of the clearance surface 51. The transition surface 52 is a cylindrical surface coaxial with the central axis O1. The transition surface 52 surrounds the entire periphery of the clearance surface 51.
 支持面53は、移行面52の上端縁の全周に亘って連なっている。支持面53は、下方から上方に向かうに従い径方向の外側に向けて延びるテーパ面である。軸方向に沿う断面視において、支持面53は、直線状に延びている。軸方向に沿う断面視において、支持面53のうち径方向で向かい合う部分同士がなす角度θ1(図6に示すテーパ角)は、90°<θ1<180°であることが好ましく、110°<θ1<160°であることがより好ましい。軸方向に沿う断面視において、支持面53は、中心軸線O1を基準として対称に形成されている。 The support surface 53 is continuous around the entire circumference of the upper edge of the transition surface 52. The support surface 53 is a tapered surface that extends radially outward from the bottom to the top. In a cross-sectional view along the axial direction, the support surface 53 extends linearly. In a cross-sectional view along the axial direction, the angle θ1 (taper angle shown in FIG. 6) between radially opposing portions of the support surface 53 is preferably 90°<θ1<180°, and more preferably 110°<θ1<160°. In a cross-sectional view along the axial direction, the support surface 53 is formed symmetrically with respect to the central axis O1.
 位置決め面54は、支持面53の上端縁から上方に向けて延びている。位置決め面54は、中心軸線O1と同軸の円筒面である。位置決め面54は、支持面53の周囲を全周に亘って取り囲んでいる。 The positioning surface 54 extends upward from the upper edge of the support surface 53. The positioning surface 54 is a cylindrical surface coaxial with the central axis O1. The positioning surface 54 surrounds the entire periphery of the support surface 53.
 図5、図6に示すように、ロータ収容部42のうち、支持面53上には、第1流出口53a、第2流出口53b及び第1流入口53cが開口している。各流出口53a,53b及び第1流入口53cは、支持面53上において、上方(軸方向の第2側)に向けて開口している。各流出口53a,53b及び第1流入口53cの開口縁(支持面53との境界部分)は、曲面形状に形成されていることが好ましい。 As shown in Figures 5 and 6, the rotor accommodating section 42 has a first outlet 53a, a second outlet 53b, and a first inlet 53c that open on the support surface 53. Each outlet 53a, 53b and first inlet 53c opens upward (towards the second axial direction) on the support surface 53. It is preferable that the opening edges (boundary with the support surface 53) of each outlet 53a, 53b and first inlet 53c are formed in a curved shape.
 各流出口53a,53bは、同一円周上(軸方向の同じ高さ)で、周方向で180°異なる位置に形成されている。各流出口53a,53bは、径方向のうち第1方向(対向方向)で向かい合っている。第1流入口53cは、各流出口53a,53bに対して周方向でずれた位置に配置されている。図示の例において、第1流入口53cは、各流出口53a,53bに対して周方向で90°ずれた位置に配置されている。但し、各流出口53a,53bや第1流入口53cの位置や大きさ等は、適宜変更が可能である。各流出口53a,53bの内径は、同等になっている。 Each outlet 53a, 53b is formed on the same circumference (at the same axial height) at a position that is 180° different in the circumferential direction. Each outlet 53a, 53b faces each other in a first radial direction (opposing direction). The first inlet 53c is disposed at a position that is shifted in the circumferential direction from each outlet 53a, 53b. In the illustrated example, the first inlet 53c is disposed at a position that is shifted in the circumferential direction from each outlet 53a, 53b. However, the positions and sizes of each outlet 53a, 53b and the first inlet 53c can be changed as appropriate. The inner diameters of each outlet 53a, 53b are the same.
 図5に示すように、第1流出ポート34は、例えば駆動用回路2の上流端部と制御バルブ5(第1流出口53a)とを接続するものである。第1流出ポート34は、ベース部33に一体形成されている。第1流出ポート34は、軸方向に沿う断面視において、L字の管状に形成されている。具体的に、第1流出ポート34は、上流側に位置する引出部34aと、引出部34aの下流側に連なるジョイント部34bと、を備えている。 As shown in FIG. 5, the first outlet port 34 connects, for example, the upstream end of the drive circuit 2 and the control valve 5 (first outlet 53a). The first outlet port 34 is integrally formed with the base portion 33. When viewed in cross section along the axial direction, the first outlet port 34 is formed in an L-shaped tube. Specifically, the first outlet port 34 has a pull-out portion 34a located on the upstream side and a joint portion 34b connected to the downstream side of the pull-out portion 34a.
 引出部34aは、第1流出口53aの開口縁から下方に延びている。第1流出ポート34は、引出部34aを通じて第1流出口53aに連通している。引出部34aの下端は、区画壁41aの下面と起立壁41bの下端縁との間に位置している。
 ジョイント部34bは、引出部34aの下端から第1方向の外側に向けて延びている。ジョイント部34bにおける第1方向の外側端部は、ベース部33よりも外側に突出している。ジョイント部34bの外側端部には、例えば駆動用回路2が接続される。
The lead-out portion 34a extends downward from the opening edge of the first outlet 53a. The first outlet port 34 communicates with the first outlet 53a through the lead-out portion 34a. The lower end of the lead-out portion 34a is located between the lower surface of the partition wall 41a and the lower edge of the upright wall 41b.
The joint portion 34b extends outward in the first direction from the lower end of the drawn-out portion 34a. The outer end of the joint portion 34b in the first direction protrudes outward beyond the base portion 33. For example, the drive circuit 2 is connected to the outer end of the joint portion 34b.
 第2流出ポート35は、例えば非駆動用回路3の上流端部と制御バルブ5(第2流出口53b)とを接続するものである。第2流出ポート35は、ベース部33に一体形成されている。第2流出ポート35は、中心軸線O1を対称軸として第1流出ポート34と第1方向で対称に形成されている。具体的に、第2流出ポート35は、上流側に位置する引出部35aと、引出部35aの下流側に連なるジョイント部35bと、を備えている。 The second outlet port 35 connects, for example, the upstream end of the non-driving circuit 3 and the control valve 5 (second outlet 53b). The second outlet port 35 is integrally formed with the base portion 33. The second outlet port 35 is formed symmetrically with the first outlet port 34 in the first direction with the central axis O1 as the axis of symmetry. Specifically, the second outlet port 35 has a pull-out portion 35a located on the upstream side and a joint portion 35b connected to the downstream side of the pull-out portion 35a.
 引出部35aは、第2流出口53bの開口縁から下方に延びている。第2流出ポート35は、引出部35aを通じて第2流出口53bに連通している。引出部35aの下端は、区画壁41aの下面と起立壁41bの下端縁との間に位置している。
 ジョイント部35bは、引出部35aの下端から第1方向の外側に向けて延びている。各流出ポート34,35は、第1方向に直線状に並んでいる。ジョイント部35bにおける第1方向の外側端部は、ベース部33よりも外側に突出している。ジョイント部35bの外側端部には、例えば非駆動用回路3が接続される。
The lead-out portion 35a extends downward from the opening edge of the second outlet 53b. The second outlet port 35 communicates with the second outlet 53b through the lead-out portion 35a. The lower end of the lead-out portion 35a is located between the lower surface of the partition wall 41a and the lower edge of the upright wall 41b.
The joint portion 35b extends outward in the first direction from the lower end of the drawn-out portion 35a. The outlet ports 34, 35 are aligned in a straight line in the first direction. The outer end of the joint portion 35b in the first direction protrudes outward beyond the base portion 33. For example, the non-driving circuit 3 is connected to the outer end of the joint portion 35b.
 図6に示すように、第1流入ポート36は、例えば駆動用回路2の下流端部と制御バルブ5(第1流入口53c)とを接続するものである。第1流入ポート36は、ベース部33に一体形成されている。第1流入ポート36は、軸方向に沿う断面視において、L字の管状に形成されている。具体的に、第1流入ポート36は、下流側に位置する引出部36aと、引出部36aの上流側に連なるジョイント部36bと、を備えている。 As shown in FIG. 6, the first inflow port 36 connects, for example, the downstream end of the drive circuit 2 and the control valve 5 (first inlet 53c). The first inflow port 36 is integrally formed with the base portion 33. When viewed in cross section along the axial direction, the first inflow port 36 is formed in an L-shaped tube. Specifically, the first inflow port 36 has a pull-out portion 36a located on the downstream side and a joint portion 36b connected to the upstream side of the pull-out portion 36a.
 引出部36aは、第1流入口53cの開口縁から下方に延びている。第1流入ポート36は、引出部36aを通じて第1流入口53cに連通している。引出部36aの下端は、区画壁41aの下面と起立壁41bの下端縁との間に位置している。
 ジョイント部36bは、引出部36aの下端から径方向のうち第1方向に交差(直交)する第2方向の一方側に向けて延びている。ジョイント部36bにおける第2方向の外側端部は、ベース部33よりも外側に突出している。ジョイント部36bの外側端部には、例えば駆動用回路2が接続される。
The lead-out portion 36a extends downward from the opening edge of the first inlet 53c. The first inlet port 36 communicates with the first inlet 53c through the lead-out portion 36a. The lower end of the lead-out portion 36a is located between the lower surface of the partition wall 41a and the lower edge of the upright wall 41b.
The joint portion 36b extends from the lower end of the drawn-out portion 36a toward one side in a second direction that is radially intersecting (orthogonal to) the first direction. An outer end of the joint portion 36b in the second direction protrudes outward beyond the base portion 33. For example, the drive circuit 2 is connected to the outer end of the joint portion 36b.
 <カバー32>
 図4~図6に示すように、カバー32は、ベース部33(ロータ収容部42)の上端開口部を閉塞する。具体的に、カバー32は、対向壁61と、位置決め部62と、ばね支持部63と、第2流入ポート64と、を備えている。対向壁61、位置決め部62、ばね支持部63及び第2流入ポート64は、例えば樹脂材料を射出成形することよって一体に形成されている。
 対向壁61は、軸方向を厚さ方向とする板状に形成されている。対向壁61の平面視外形は、ロータ収容部42の平面視外形と同等に形成されている。対向壁61は、ロータ収容部42の上面に重ね合わされた状態で、ロータ収容部42に組み付けられている。これにより、ベース部33の上端開口部がカバー32によって閉塞されている。対向壁61とベース部33(ロータ収容部42)との間には、Oリング等のパッキンが介在している。
<Cover 32>
4 to 6, the cover 32 closes the upper end opening of the base portion 33 (rotor accommodating portion 42). Specifically, the cover 32 includes an opposing wall 61, a positioning portion 62, a spring support portion 63, and a second inlet port 64. The opposing wall 61, the positioning portion 62, the spring support portion 63, and the second inlet port 64 are integrally formed by, for example, injection molding a resin material.
The opposing wall 61 is formed in a plate shape with its thickness direction in the axial direction. The outer shape of the opposing wall 61 in a plan view is formed to be the same as the outer shape of the rotor accommodating portion 42 in a plan view. The opposing wall 61 is assembled to the rotor accommodating portion 42 in a state where it is superimposed on the upper surface of the rotor accommodating portion 42. As a result, the upper end opening of the base portion 33 is closed by the cover 32. A packing such as an O-ring is interposed between the opposing wall 61 and the base portion 33 (rotor accommodating portion 42).
 図8は、カバー32の底面図である。図9は、カバー32を透過して示す制御バルブ5(個別温調モード)の平面図である。
 図8、図9に示すように、対向壁61には、第2流入口65が形成されている。第2流入口65は、対向壁61を軸方向に貫通するとともに、周方向に延びている。図示の例において、流入口65は、平面視でC字状に形成されている。具体的に、第2流入口65は、第2方向において中心軸線O1に対して他方側(第1流入ポート36とは反対側)を回り込んでいる。流入口65のうち、周方向の一方側端部が第1流出口53aと平面視で重なり合い、周方向の他方側端部が第2流出口53bと平面視で重なり合っている。
Fig. 8 is a bottom view of the cover 32. Fig. 9 is a plan view of the control valve 5 (individual temperature adjustment mode) shown through the cover 32.
As shown in Fig. 8 and Fig. 9, a second inlet 65 is formed in the opposing wall 61. The second inlet 65 penetrates the opposing wall 61 in the axial direction and extends in the circumferential direction. In the illustrated example, the inlet 65 is formed in a C-shape in a plan view. Specifically, the second inlet 65 wraps around the other side (the opposite side to the first inlet port 36) with respect to the central axis O1 in the second direction. One end of the inlet 65 in the circumferential direction overlaps with the first outlet 53a in a plan view, and the other end of the inlet 65 in the circumferential direction overlaps with the second outlet 53b in a plan view.
 図5、図6に示すように、位置決め部62は、対向壁61の外周部分から下方に向けて突出している。位置決め部62は、中心軸線O1と同軸に配置された筒状に形成されている。位置決め部62は、カバー32がベース部33に組み付けられた状態において、ロータ収容部42の内側に挿入されている。位置決め部62は、位置決め面54に径方向の内側から当接することで、ベース部33に対するカバー32の径方向の位置決めを行う。 As shown in Figures 5 and 6, the positioning portion 62 protrudes downward from the outer periphery of the opposing wall 61. The positioning portion 62 is formed in a cylindrical shape arranged coaxially with the central axis O1. The positioning portion 62 is inserted inside the rotor accommodating portion 42 when the cover 32 is assembled to the base portion 33. The positioning portion 62 abuts against the positioning surface 54 from the radial inside, thereby radially positioning the cover 32 relative to the base portion 33.
 ばね支持部63は、対向壁61のうち位置決め部62に対して径方向の内側に位置する部分から下方に突出している。ばね支持部63は、中心軸線O1と同軸に配置された筒状に形成されている。本実施形態のばね支持部63は、下方に位置するものほど外径が小さい段付き形状に形成されている。具体的に、ばね支持部63は、軸方向支持部63aと、径方向支持部63bと、を備えている。 The spring support portion 63 protrudes downward from a portion of the opposing wall 61 that is located radially inward relative to the positioning portion 62. The spring support portion 63 is formed in a cylindrical shape that is arranged coaxially with the central axis O1. In this embodiment, the spring support portions 63 are formed in a stepped shape with an outer diameter that is smaller the lower they are located. Specifically, the spring support portion 63 includes an axial support portion 63a and a radial support portion 63b.
 軸方向支持部63aは、ばね支持部63の上端部を構成している。軸方向支持部63aの外径は、大径部45a,45cの内径よりも大きい。軸方向支持部63aの下端面は、軸方向に直交する平坦面に形成されている。
 径方向支持部63bは、ばね支持部63から下方に突出している。径方向支持部63bの外径は、大径部45a,45cよりも小さく、小径部45bの内径よりも大きい。したがって、径方向支持部63bは、シールリング46と軸方向で向かい合っている。ばね支持部63の内径は、軸方向支持部63a及び径方向支持部63bの全体に亘って一様に形成されている、図示の例において、ばね支持部63の内径は、小径部45bの内径と同等になっている。
The axial support portion 63a constitutes the upper end portion of the spring support portion 63. The outer diameter of the axial support portion 63a is larger than the inner diameters of the large diameter portions 45a, 45c. The lower end surface of the axial support portion 63a is formed into a flat surface perpendicular to the axial direction.
The radial support portion 63b protrudes downward from the spring support portion 63. The outer diameter of the radial support portion 63b is smaller than the large diameter portions 45a and 45c and larger than the inner diameter of the small diameter portion 45b. Therefore, the radial support portion 63b faces the seal ring 46 in the axial direction. The inner diameter of the spring support portion 63 is uniformly formed over the entire axial support portion 63a and the radial support portion 63b. In the illustrated example, the inner diameter of the spring support portion 63 is equal to the inner diameter of the small diameter portion 45b.
 図5、図6、図8に示すように、第2流入ポート64は、非駆動用回路3の下流端部と制御バルブ5(第2流入口65)とを接続するものである。第2流入ポート64は、分岐流路71と、共通流路72と、を備えている。
 分岐流路71は、流入口65を上方から覆うとともに、対向壁61に対して上方に膨出するドーム状に形成されている。分岐流路71(各分岐部71a,71b)は、分岐流路71の延在方向に直交する断面視で半円形状に形成されている。
5, 6 and 8, the second inlet port 64 connects the downstream end of the non-driving circuit 3 to the control valve 5 (second inlet 65). The second inlet port 64 includes a branch flow path 71 and a common flow path 72.
The branch flow passage 71 covers the inlet 65 from above and is formed in a dome shape that bulges upward relative to the opposing wall 61. The branch flow passage 71 (each of the branch portions 71a, 71b) is formed in a semicircular shape in a cross-sectional view perpendicular to the extension direction of the branch flow passage 71.
 図示の例において、分岐流路71は、平面視において、流入口65と同等の外形を呈し、周方向に延びるC字状に形成されている。具体的に、分岐流路71は、分岐流路71における周方向の中央部から一方側に延びる第1分岐部71aと、分岐流路71における周方向の中央部から他方側に延びる第2分岐部71bと、を備えている。分岐流路71は、分岐流路71の延在方向(周方向)全長に亘って流入口65に連通している。分岐流路71の下端開口部の開口面積は、流入口65の開口面積と同等になっている。 In the illustrated example, the branch flow passage 71 has the same external shape as the inlet 65 in a plan view and is formed in a C-shape extending in the circumferential direction. Specifically, the branch flow passage 71 has a first branch portion 71a extending to one side from the circumferential center of the branch flow passage 71, and a second branch portion 71b extending to the other side from the circumferential center of the branch flow passage 71. The branch flow passage 71 is connected to the inlet 65 over the entire length of the branch flow passage 71 in the extension direction (circumferential direction). The opening area of the lower end opening of the branch flow passage 71 is equal to the opening area of the inlet 65.
 共通流路72及び分岐流路71は、中心軸線O1に直交する同一平面上に位置している。具体的に、共通流路72は、分岐流路71における延在方向(周方向)の中央部から第2方向の他方側に向けて突出している。平面視において、第2流入ポート64(共通流路72)は、第1流入ポート36(ジョイント部36b)に対して第2方向で向かい合う位置で、直線状に並んでいる。この場合、流入ポート36,64及び流出ポート34,35同士は、互いに直交する方向に延びている。共通流路72の基端部は、分岐流路71に連通している。共通流路72の先端部は、非駆動用回路3に接続される。共通流路72の先端部は、対向壁61に対して第2方向の外側に突出している。非駆動用回路3の下流端部から共通流路72に流入した冷却液は、共通流路72の先端部において第1分岐部71a及び第2分岐部71bに振り分けられる。 The common flow path 72 and the branch flow paths 71 are located on the same plane perpendicular to the central axis O1. Specifically, the common flow path 72 protrudes from the center of the branch flow paths 71 in the extension direction (circumferential direction) toward the other side in the second direction. In a plan view, the second inlet port 64 (common flow path 72) is aligned in a straight line at a position facing the first inlet port 36 (joint portion 36b) in the second direction. In this case, the inlet ports 36, 64 and the outlet ports 34, 35 extend in directions perpendicular to each other. The base end of the common flow path 72 is connected to the branch flow path 71. The tip of the common flow path 72 is connected to the non-driving circuit 3. The tip of the common flow path 72 protrudes outward in the second direction relative to the opposing wall 61. The cooling liquid that flows into the common flow path 72 from the downstream end of the non-drive circuit 3 is distributed to the first branch 71a and the second branch 71b at the tip of the common flow path 72.
 共通流路72の延在方向は、流出ポート34,35(ジョイント部34b,35b)の延在方向に対して直交している。共通流路72は、第2方向に直交する断面視で円形状に形成されている。対向壁61に対する共通流路72の上方への膨出量は、対向壁61に対する分岐流路71の上方への膨出量に比べて大きくなっている。したがって、共通流路72の上端縁が、制御バルブ5の最上端縁を構成する。 The extension direction of the common flow passage 72 is perpendicular to the extension direction of the outlet ports 34, 35 ( joint portions 34b, 35b). The common flow passage 72 is formed in a circular shape in a cross-sectional view perpendicular to the second direction. The amount of upward expansion of the common flow passage 72 relative to the opposing wall 61 is greater than the amount of upward expansion of the branch flow passages 71 relative to the opposing wall 61. Therefore, the upper edge of the common flow passage 72 constitutes the uppermost edge of the control valve 5.
 ここで、第1分岐部71a及び第2分岐部71bの流路断面積(それぞれの延在方向に直交する面積)は、周方向の全長に亘って一様に形成されている。第1分岐部71a及び第2分岐部71bの流路断面積の和は、共通流路72の流路断面積(延在方向に直交する面積)以上であることが好ましい。但し、第1分岐部71a及び第2分岐部71bの流路断面積の和が、共通流路72の流路断面積より小さくてもよい。 Here, the flow path cross-sectional areas (areas perpendicular to the extension direction of each) of the first branch portion 71a and the second branch portion 71b are uniformly formed over the entire circumferential length. It is preferable that the sum of the flow path cross-sectional areas of the first branch portion 71a and the second branch portion 71b is equal to or greater than the flow path cross-sectional area (area perpendicular to the extension direction) of the common flow path 72. However, the sum of the flow path cross-sectional areas of the first branch portion 71a and the second branch portion 71b may be smaller than the flow path cross-sectional area of the common flow path 72.
 <駆動ユニット22>
 図4に示すように、駆動ユニット22は、図示しないモータや減速機構、制御基板等が収納されて構成されている。駆動ユニット22は、取付台座41に対して下方に配置されている。駆動ユニット22は、取付台座41に軸方向で重ね合わされた状態で、起立壁41bに組み付けられている。図7に示すように、駆動ユニット22は、上方に向けて突出する出力軸22aを備えている。出力軸22aは、中心軸線O1と同軸に配置された筒状に形成されている。
<Drive unit 22>
As shown in Fig. 4, the drive unit 22 is configured to house a motor, a reduction mechanism, a control board, etc. (not shown). The drive unit 22 is disposed below the mounting base 41. The drive unit 22 is assembled to the upright wall 41b in a state where it is overlapped with the mounting base 41 in the axial direction. As shown in Fig. 7, the drive unit 22 includes an output shaft 22a that protrudes upward. The output shaft 22a is formed in a cylindrical shape that is disposed coaxially with the central axis O1.
 <ロータ23>
 図4、図5に示すように、ロータ23は、ケーシング21の内側で回転することで、流入口53c,65と流出口53a,53bとの連通及び遮断を切り替える。具体的に、ロータ23は、軸部80と、弁体81と、を備えている。ロータ23は、例えば樹脂材料を射出成形することによって一体に形成されている。
<Rotor 23>
4 and 5, the rotor 23 switches between communication and blocking between the inlets 53c, 65 and the outlets 53a, 53b by rotating inside the casing 21. Specifically, the rotor 23 includes a shaft portion 80 and a valve body 81. The rotor 23 is integrally formed by, for example, injection molding a resin material.
 図7に示すように、軸部80は、中心軸線O1と同軸上に配置されている。軸部80は、貫通孔45を軸方向に貫通している。具体的に、軸部80は、軸部80の下端部を構成する連結部80aと、連結部80aの上方に連なる伝達部80bと、を備えている。 As shown in FIG. 7, the shaft portion 80 is disposed coaxially with the central axis O1. The shaft portion 80 passes through the through hole 45 in the axial direction. Specifically, the shaft portion 80 includes a connecting portion 80a that constitutes the lower end of the shaft portion 80, and a transmission portion 80b that is connected to the upper portion of the connecting portion 80a.
 連結部80aは、中実状に形成されている。連結部80aの下部は、出力軸22aの内側に嵌め込まれている。本実施形態では、連結部80aの外周面に形成された雄スプラインと、出力軸22aの内周面に形成された雌スプラインと、が周方向に噛み合った状態で、連結部80aが出力軸22aに連結されている。これにより、連結部80aは、出力軸22aの回転に伴い中心軸線O1回りに回転可能に構成されている。連結部80aの上部は、第1大径部45aの内側に配置されている。連結部80aの下端面には、上方に窪む肉抜き部80a1が形成されている。連結部80aは、中空状に形成されていてもよい。 The connecting portion 80a is formed in a solid shape. The lower portion of the connecting portion 80a is fitted inside the output shaft 22a. In this embodiment, the connecting portion 80a is connected to the output shaft 22a with a male spline formed on the outer peripheral surface of the connecting portion 80a meshing with a female spline formed on the inner peripheral surface of the output shaft 22a in the circumferential direction. This allows the connecting portion 80a to rotate around the central axis O1 as the output shaft 22a rotates. The upper portion of the connecting portion 80a is disposed inside the first large diameter portion 45a. A hollow portion 80a1 recessed upward is formed on the lower end surface of the connecting portion 80a. The connecting portion 80a may be formed in a hollow shape.
 伝達部80bは、中心軸線O1と同軸の有底筒状(中空状)に形成されている。伝達部80bの内側は、上方に開口する凹部84を構成している。伝達部80bは、接続部85と、周壁部86と、を備えている。
 接続部85は、連結部80aの平面視外形よりも大きい円板状に形成されている。接続部85は、連結部80aの外周面に対して径方向の外側に張り出した状態で、連結部80aの上端面に連なっている。接続部85は、小径部45bの内側に配置されている。接続部85の上端面には、下方に窪む肉抜き部85aが形成されている。肉抜き部85aは、接続部85の上端面上で凹部84に連通している。肉抜き部85aは、連結部80aに達している。
The transmission part 80b is formed in a bottomed cylindrical (hollow) shape coaxial with the central axis O1. The inside of the transmission part 80b defines a recess 84 that opens upward. The transmission part 80b includes a connection part 85 and a peripheral wall part 86.
The connecting portion 85 is formed in a disk shape larger than the outer shape of the coupling portion 80a in a plan view. The connecting portion 85 is connected to the upper end surface of the coupling portion 80a while projecting radially outward from the outer circumferential surface of the coupling portion 80a. The connecting portion 85 is disposed inside the small diameter portion 45b. A lightening portion 85a recessed downward is formed on the upper end surface of the connecting portion 85. The lightening portion 85a is connected to the recess 84 on the upper end surface of the connecting portion 85. The lightening portion 85a reaches the coupling portion 80a.
 周壁部86は、接続部85の外周縁から上方に延びている。周壁部86は、上方に向かうに従い外径が段々と拡大する多段筒状に形成されている。具体的に、周壁部86は、小筒部86aと、張出部86bと、大筒部86cと、を備えている。
 小筒部86aは、接続部85の外径と同等の外径の円筒状に形成されている。小筒部86aは、第2大径部45cの内側に配置されている。小筒部86aの外周面には、シールリング46の内周面が密接している。これにより、貫通孔45を通じたケーシング21の内外の連通を遮断している。
The peripheral wall portion 86 extends upward from the outer periphery of the connecting portion 85. The peripheral wall portion 86 is formed in a multi-stage cylindrical shape in which the outer diameter gradually increases in the upward direction. Specifically, the peripheral wall portion 86 includes a small cylindrical portion 86a, a protruding portion 86b, and a large cylindrical portion 86c.
The small cylinder portion 86a is formed in a cylindrical shape with an outer diameter equal to that of the connecting portion 85. The small cylinder portion 86a is disposed inside the second large diameter portion 45c. The inner peripheral surface of the seal ring 46 is in close contact with the outer peripheral surface of the small cylinder portion 86a. This blocks communication between the inside and outside of the casing 21 through the through hole 45.
 張出部86bは、小筒部86aの上端開口縁から径方向の外側に張り出している。張出部86bは、少なくとも一部がロータ収容部42内に突出した状態で、第2大径部45cに対して軸方向で向かい合っている。これにより、第2大径部45cの上端開口部を通じたシールリング46の抜けが規制されている。張出部86bの外径は、第2大径部45cの内径以下に形成されている。
 大筒部86cは、張出部86bの外周縁から上方に向けて延びる円筒状に形成されている。大筒部86cは、径方向支持部63bと軸方向で向かい合っている。
The protruding portion 86b protrudes radially outward from the upper end opening edge of the small cylinder portion 86a. The protruding portion 86b faces the second large diameter portion 45c in the axial direction with at least a portion of the protruding portion 86b protruding into the rotor accommodating portion 42. This prevents the seal ring 46 from coming off through the upper end opening of the second large diameter portion 45c. The outer diameter of the protruding portion 86b is equal to or smaller than the inner diameter of the second large diameter portion 45c.
The large cylinder portion 86c is formed in a cylindrical shape extending upward from the outer circumferential edge of the protruding portion 86b. The large cylinder portion 86c faces the radial support portion 63b in the axial direction.
 図5、図6に示すように、弁体81は、上方に開口する円錐台形状に形成されている。弁体81は、軸部80の回転に伴い、中心軸線O1回りを回転可能にロータ収容部42内に設けられている。具体的に、弁体81は、弁底壁91と、摺動壁92と、仕切部93と、を備えている。弁体81のうち、弁底壁91及び摺動壁92で囲まれた空間は、弁体81の内部空間Kを構成している。内部空間Kは、上方に向けて開放されている。したがって、流入口65は、内部空間Kに常時連通している。一方、内部空間Kは、下端部において、凹部84に連通している。 As shown in Figures 5 and 6, the valve body 81 is formed in a truncated cone shape that opens upward. The valve body 81 is provided in the rotor accommodating portion 42 so as to be rotatable about the central axis O1 as the shaft portion 80 rotates. Specifically, the valve body 81 includes a valve bottom wall 91, a sliding wall 92, and a partition portion 93. The space of the valve body 81 that is surrounded by the valve bottom wall 91 and the sliding wall 92 constitutes the internal space K of the valve body 81. The internal space K is open upward. Therefore, the inlet 65 is constantly connected to the internal space K. Meanwhile, the internal space K is connected to the recess 84 at the lower end.
 弁底壁91は、大筒部86cの下端部から径方向の外側に張り出している。したがって、大筒部86cは、弁体81の内部空間K内に向けて弁底壁91から上方に突出している。弁底壁91は、逃げ面51に対して軸方向に間隔を空けた状態で向かい合っている。図示の例において、弁底壁91の下面は、移行面52の上端よりも下方に位置している。弁底壁91の上面は、移行面52の上端よりも上方に位置している。 The valve bottom wall 91 protrudes radially outward from the lower end of the large cylinder portion 86c. Therefore, the large cylinder portion 86c protrudes upward from the valve bottom wall 91 toward the internal space K of the valve body 81. The valve bottom wall 91 faces the relief surface 51 with a gap in the axial direction. In the illustrated example, the lower surface of the valve bottom wall 91 is located below the upper end of the transition surface 52. The upper surface of the valve bottom wall 91 is located above the upper end of the transition surface 52.
 摺動壁92は、弁底壁91の外周縁に連なっている。摺動壁92は、上方に向かうに従い漸次拡径されたテーパ筒状に形成されている。摺動壁92の上端開口部は、対向壁61に向かい合っている。ばね支持部63は、摺動壁92の上端開口部を通じて内部空間Kに進入している。図示の例において、ばね支持部63は、径方向支持部63bの全体、及び軸方向支持部63aの下端部が内部空間Kに進入している。ばね支持部63は、少なくとも一部が内部空間Kに進入していてもよく、内部空間Kよりも上方に位置していてもよい。 The sliding wall 92 is connected to the outer peripheral edge of the valve bottom wall 91. The sliding wall 92 is formed in a tapered cylindrical shape that gradually expands in diameter as it goes upward. The upper end opening of the sliding wall 92 faces the opposing wall 61. The spring support portion 63 enters the internal space K through the upper end opening of the sliding wall 92. In the illustrated example, the entire radial support portion 63b and the lower end of the axial support portion 63a of the spring support portion 63 enter the internal space K. At least a portion of the spring support portion 63 may enter the internal space K, or may be located above the internal space K.
 軸方向に沿う断面視において、摺動壁92は、上下方向の全域に亘って一様な厚さで、上方に向かうに従い径方向の外側に向けて直線状に延びている。摺動壁92の外周面は、支持面53に倣って延びている。したがって、軸方向に沿う断面視において、摺動壁92の外周面のうち径方向で向かい合う部分同士がなす角度θ2(図6に示すテーパ角)は、支持面53のテーパ角θ1と同等である。角度θ2は、90°<θ2<180°であることが好ましく、110°<θ2<160°であることがより好ましい。摺動壁92の外周面は、弁体81の回転に伴い、支持面53上を摺動する。支持面53は、摺動壁92を介して弁体81を回転可能に支持している。摺動壁92の上端縁は、位置決め面54に対して径方向の内側から近接している。 In a cross-sectional view along the axial direction, the sliding wall 92 has a uniform thickness over the entire vertical range, and extends linearly radially outward as it goes upward. The outer peripheral surface of the sliding wall 92 extends following the support surface 53. Therefore, in a cross-sectional view along the axial direction, the angle θ2 (taper angle shown in FIG. 6) between the radially opposing portions of the outer peripheral surface of the sliding wall 92 is equal to the taper angle θ1 of the support surface 53. The angle θ2 is preferably 90°<θ2<180°, and more preferably 110°<θ2<160°. The outer peripheral surface of the sliding wall 92 slides on the support surface 53 as the valve body 81 rotates. The support surface 53 rotatably supports the valve body 81 via the sliding wall 92. The upper edge of the sliding wall 92 is close to the positioning surface 54 from the radially inner side.
 摺動壁92には、摺動壁92を軸方向に貫通する第1連通口92a及び第2連通口92bが形成されている。第1連通口92a及び第2連通口92bは、周方向に間隔をあけて配置されている。各連通口92a,92bは、弁底壁91の周囲を周方向に延びる円弧状に形成されている。 The sliding wall 92 is formed with a first communication port 92a and a second communication port 92b that penetrate the sliding wall 92 in the axial direction. The first communication port 92a and the second communication port 92b are arranged at intervals in the circumferential direction. Each communication port 92a, 92b is formed in an arc shape that extends circumferentially around the valve bottom wall 91.
 仕切部93は、内部空間Kにおいて、第1連通口92a及び第2連通口92b間の連通を遮断している。仕切部93は、摺動壁92のうち、軸部80に対して径方向の一方側において、第1連通口92aを側方及び上方から取り囲んでいる。仕切部93は、断面視でL字状に形成されている。具体的に、仕切部93は、側壁部93aと、頂壁部93bと、を備えている。 The partition portion 93 blocks communication between the first communication port 92a and the second communication port 92b in the internal space K. The partition portion 93 surrounds the first communication port 92a from the side and above on one radial side of the sliding wall 92 relative to the shaft portion 80. The partition portion 93 is formed in an L-shape in cross section. Specifically, the partition portion 93 includes a side wall portion 93a and a top wall portion 93b.
 側壁部93aは、第1連通口92aの開口縁から上方に延びている。側壁部93aは、第1連通口92aを全周に亘って取り囲んでいる。側壁部93aの下端縁は、摺動壁92の内面に倣って径方向の外側に向かうに従い上方に延びている。
 頂壁部93bは、側壁部93aの上端開口縁を閉塞している。頂壁部93bと対向壁61とは、軸方向に間隔をあけて向かい合っている。側壁部93aは、第1連通口92aの開口縁のうち、径方向の内側に位置する部分、及び周方向の両側に位置する部分のみに形成されていてもよい。
The side wall portion 93a extends upward from the opening edge of the first communication port 92a. The side wall portion 93a surrounds the entire periphery of the first communication port 92a. The lower edge of the side wall portion 93a extends upward along the inner surface of the sliding wall 92 and radially outward.
The top wall portion 93b closes the upper end opening edge of the side wall portion 93a. The top wall portion 93b and the opposing wall 61 face each other with a gap therebetween in the axial direction. The side wall portion 93a may be formed only on a radially inner portion and on both circumferential sides of the opening edge of the first communication port 92a.
 内部空間Kのうち仕切部93で囲まれた空間(仕切部93に対して径方向の外側に位置する空間)は、第1空間K1を構成する。第1空間K1は、第1連通口92aを通じて下方に開放されている。
 内部空間Kのうち仕切部93と摺動壁92とで囲まれた空間(仕切部93に対して径方向の内側に位置する空間)は、第2空間K2を構成する。第2空間K2は、第2連通口92bを通じて下方に開放される一方、弁体81の上端開口部を通じて上方に開放されている。本実施形態において、第2空間K2の容積は、第1空間K1の容積よりも大きい。
A space surrounded by the partition portion 93 (a space positioned radially outward from the partition portion 93) of the internal space K constitutes a first space K1. The first space K1 is open downward through the first communication port 92a.
The space surrounded by the partition 93 and the sliding wall 92 (the space located radially inward from the partition 93) of the internal space K constitutes a second space K2. The second space K2 is open downward through the second communication port 92b and upward through the upper end opening of the valve body 81. In this embodiment, the volume of the second space K2 is larger than the volume of the first space K1.
 図9は、カバー32を透過して示す第1状態における制御バルブ5の平面図である。
 図9に示すように、ロータ23は、駆動ユニット22の駆動力に応じて第1状態及び第2状態間を回転する。第1状態とは、第1空間K1を通じて第1流入口53c及び第1流出口53aの少なくとも一部同士が連通し、かつ第2空間K2を通じて第2流入口65及び第2流出口53bの少なくとも一部同士が連通する状態である。
FIG. 9 is a plan view of the control valve 5 in the first state, with the cover 32 shown through.
9, the rotor 23 rotates between a first state and a second state in response to the driving force of the drive unit 22. The first state is a state in which the first inlet 53c and the first outlet 53a at least partially communicate with each other through the first space K1, and the second inlet 65 and the second outlet 53b at least partially communicate with each other through the second space K2.
 第1状態では、第1連通口92aが、第1流入口53c及び第1流出口53aを周方向に跨って配置される。これにより、第1流入口53c及び第1流出口53aが第1連通口92aを通じて第1空間K1に連通している。
 第1状態では、第2連通口92bが、第2流出口53bに平面視で重なり合うことで、第2流出口53bと第2空間K2とが連通している。第2流入口65は、弁体81の上端開口部を通じて第2空間K2に常時連通している。連通口92a,92bが、何れの流出口53a,53bとも重なり合わない場合は、弁体81(摺動壁92)によって内部空間Kと流出口53a,53bとの連通が遮断されている。
In the first state, the first communication port 92a is disposed across the first inlet 53c and the first outlet 53a in the circumferential direction, so that the first inlet 53c and the first outlet 53a communicate with the first space K1 through the first communication port 92a.
In the first state, the second communication port 92b overlaps with the second outlet port 53b in a plan view, thereby communicating the second outlet port 53b with the second space K2. The second inlet port 65 is constantly in communication with the second space K2 through the upper end opening of the valve body 81. When the communication ports 92a, 92b do not overlap with any of the outlet ports 53a, 53b, the communication between the internal space K and the outlet ports 53a, 53b is blocked by the valve body 81 (sliding wall 92).
 図10は、カバー32を透過して示す第2状態における制御バルブ5の平面図である。
 図10に示すように、第2状態とは、第1空間K1を通じて第1流入口53c及び第2流出口53bが連通し、かつ第2空間K2を通じて第2流入口65及び第1流出口53aが連通する状態である。
FIG. 10 is a plan view of the control valve 5 in the second state, showing the cover 32 through the cover 32. FIG.
As shown in FIG. 10, the second state is a state in which the first inlet 53c and the second outlet 53b communicate with each other through the first space K1, and the second inlet 65 and the first outlet 53a communicate with each other through the second space K2.
 第2状態では、第1連通口92aが、第1流入口53c及び第2流出口53bを周方向に跨って配置される。これにより、第1流入口53c及び第2流出口53bが第1連通口92aを通じて第1空間K1に連通している。第1連通口92aは、第1状態において第1流入口53c及び第1流出口53aを第1空間K1に連通させ、第2状態において第1流入口53c及び第2流出口53bを第1空間K1に連通させる構成であれば、複数設けられていてもよい。複数の第1連通口92aが、第1状態において第1流入口53c及び第1流出口53aに個別に連通し、第2状態において第1流入口53c及び第2流出口53bに個別に連通する構成であってもよい。 In the second state, the first communication port 92a is arranged across the first inlet 53c and the second outlet 53b in the circumferential direction. As a result, the first inlet 53c and the second outlet 53b are connected to the first space K1 through the first communication port 92a. The first communication port 92a may be provided in multiple numbers as long as it is configured to connect the first inlet 53c and the first outlet 53a to the first space K1 in the first state and to connect the first inlet 53c and the second outlet 53b to the first space K1 in the second state. The multiple first communication ports 92a may be configured to individually connect to the first inlet 53c and the first outlet 53a in the first state and individually connect to the first inlet 53c and the second outlet 53b in the second state.
 第2状態では、第2連通口92bが、第1流出口53aに平面視で重なり合うことで、第1流出口53aと第2空間K2とが連通している。第2流入口65は、弁体81の上端開口部を通じて第2空間K2に常時連通している。第2連通口92bの位置や形状は、第1状態において第2流出口53bに連通し、第2状態において第1流出口53aに連通する構成であれば、適宜変更が可能である。 In the second state, the second communication port 92b overlaps with the first outlet 53a in a plan view, thereby communicating the first outlet 53a with the second space K2. The second inlet 65 is constantly in communication with the second space K2 through the upper end opening of the valve body 81. The position and shape of the second communication port 92b can be changed as appropriate, so long as it is configured to communicate with the second outlet 53b in the first state and to communicate with the first outlet 53a in the second state.
 <付勢部材24>
 付勢部材24は、例えば平板状のコイルスプリングである。付勢部材24は、中心軸線O1と同軸に配置された状態で、弁底壁91と軸方向支持部63aとの間に挟まれている。付勢部材24は、全体が内部空間K(第2空間K2)に位置している。付勢部材24は、ロータ23の内部に設けられている。付勢部材24は、少なくともロータ23の内部に設けられていればよい。
<Using member 24>
The biasing member 24 is, for example, a flat coil spring. The biasing member 24 is sandwiched between the valve bottom wall 91 and the axial support portion 63a in a state where it is disposed coaxially with the central axis O1. The biasing member 24 is entirely located in the internal space K (second space K2). The biasing member 24 is provided inside the rotor 23. It is sufficient that the biasing member 24 is provided at least inside the rotor 23.
 付勢部材24は、弁体81を下方に向けて付勢している。摺動壁92は、付勢部材24の付勢力によって支持面53に押し付けられている。付勢部材24のうち、上端部の内側には径方向支持部63bが挿入されている。付勢部材24は、径方向支持部63bに径方向から当接することで、ケーシング21に対する径方向の移動が規制されている。付勢部材24のうち、下端部の内側には大筒部86cが挿入されている。付勢部材24は、大筒部86cに径方向から当接することで、ケーシング21に対する径方向の移動が規制されている。本実施形態では、付勢部材24が、ばね支持部63を介して対向壁61に間接的に支持されている構成について説明するが、この構成に限られない。付勢部材24は、対向壁61に直接支持されていてもよい。 The biasing member 24 biases the valve body 81 downward. The sliding wall 92 is pressed against the support surface 53 by the biasing force of the biasing member 24. The radial support portion 63b is inserted into the inside of the upper end portion of the biasing member 24. The biasing member 24 abuts against the radial support portion 63b from the radial direction, thereby restricting radial movement of the biasing member 24 relative to the casing 21. The large cylinder portion 86c is inserted into the inside of the lower end portion of the biasing member 24. The biasing member 24 abuts against the large cylinder portion 86c from the radial direction, thereby restricting radial movement of the biasing member 24 relative to the casing 21. In this embodiment, a configuration in which the biasing member 24 is indirectly supported by the opposing wall 61 via the spring support portion 63 is described, but this configuration is not limited to this. The biasing member 24 may be directly supported by the opposing wall 61.
[制御バルブ5の動作方法]
 次に、制御バルブ5の動作方法を説明する。以下の説明では、個別温調モード及び統合モードについて説明する。
 図1に示す個別温調モードのように、駆動用回路2及び非駆動用回路3それぞれで冷却液を循環させるには、ロータ23を図9に示す第1状態とする。第1状態では、駆動用回路2上において、第1ウォータポンプ8によって送り出される冷却液は、駆動用モータ7で熱交換された後、第1流入口53c及び第1連通口92aを通じて第1空間K1に流入する。第1空間K1に流入した冷却液は、第1連通口92a及び第1流出口53aを通じて駆動用回路2に戻された後、再び第1ウォータポンプ8によって駆動用回路2上を下流側に向けて送り出される。
[Operation method of control valve 5]
Next, a description will be given of a method for operating the control valve 5. In the following description, the individual temperature control mode and the integrated mode will be described.
In order to circulate the coolant in each of the drive circuit 2 and the non-drive circuit 3 as in the individual temperature control mode shown in Fig. 1, the rotor 23 is set to the first state shown in Fig. 9. In the first state, the coolant pumped out by the first water pump 8 on the drive circuit 2 is heat exchanged in the drive motor 7, and then flows into the first space K1 through the first inlet 53c and the first communication port 92a. The coolant that has flowed into the first space K1 is returned to the drive circuit 2 through the first communication port 92a and the first outlet 53a, and then is pumped out again downstream on the drive circuit 2 by the first water pump 8.
 非駆動用回路3上において、第2ウォータポンプ10によって送り出される冷却液は、バッテリ11で熱交換された後、第2流入口65及び弁体81の上端開口部を通じて第2空間K2に流入する。第2空間K2に流入した冷却液は、第2連通口92b及び第2流出口53bを通じて非駆動用回路3に戻された後、再び第2ウォータポンプ10によって非駆動用回路3上を下流側に向けて送り出される。個別温調モードでは、第1流入口53c及び第2流入口65を通じて内部空間K内に流入する冷却液が、仕切り部93によっていなされることで、互いに合流せずに対応する流出口53a,53bから流出するようになっている。個別温調モードは、駆動用回路2及び非駆動用回路3(第1ウォータポンプ8及び第2ウォータポンプ10)の何れかのみを動作させてもよい。  In the non-driving circuit 3, the cooling liquid pumped out by the second water pump 10 is heat exchanged in the battery 11, and then flows into the second space K2 through the second inlet 65 and the upper end opening of the valve body 81. The cooling liquid that flows into the second space K2 is returned to the non-driving circuit 3 through the second communication port 92b and the second outlet 53b, and is then pumped out again downstream on the non-driving circuit 3 by the second water pump 10. In the individual temperature control mode, the cooling liquid that flows into the internal space K through the first inlet 53c and the second inlet 65 is deflected by the partition 93 so that it does not merge with each other and flows out from the corresponding outlets 53a, 53b. In the individual temperature control mode, only one of the driving circuit 2 and the non-driving circuit 3 (the first water pump 8 and the second water pump 10) may be operated.
 個別温調モードから統合モードに切り替えるには、ロータ23を第1状態から図10に示す第2状態に切り替える。具体的には、駆動ユニット22を駆動させ、ロータ23を中心軸線O1回りに回転させる。この際、ロータ23は、支持面53上を摺動壁92の外周面が摺動しながら、中心軸線O1回りに回転する。そして、第1空間K1を通じて第1流入口53c及び第2流出口53bが連通し、かつ第2空間K2を通じて第2流入口65及び第1流出口53aが連通した時点でロータ23の回転が停止する。 To switch from the individual temperature control mode to the integrated mode, the rotor 23 is switched from the first state to the second state shown in FIG. 10. Specifically, the drive unit 22 is driven to rotate the rotor 23 around the central axis O1. At this time, the rotor 23 rotates around the central axis O1 while the outer circumferential surface of the sliding wall 92 slides on the support surface 53. Then, when the first inlet 53c and the second outlet 53b are connected through the first space K1 and the second inlet 65 and the first outlet 53a are connected through the second space K2, the rotation of the rotor 23 stops.
 統合モードでは、制御バルブ5を介して駆動用回路2及び非駆動用回路3間に一括して冷却液が流通する。具体的に、駆動用回路2上において、第1ウォータポンプ8によって送り出される冷却液は、駆動用モータ7で熱交換された後、第1流入口53c及び第1連通口92aを通じて第1空間K1に流入する。第1空間K1に流入した冷却液は、第1連通口92a及び第2流出口53bを通じて非駆動用回路3に流出する。非駆動用回路3に流出した冷却液は、第2ウォータポンプ10によって下流側に送り出されることで、バッテリ11との間で熱交換される。その後、冷却液は、第2流入口65及び弁体81の上端開口部を通じて第2空間K2に流入する。第2空間K2に流入した冷却液は、第2連通口92b及び第1流出口53aを通じて駆動用回路2に流出する。その後、冷却液は、第1ウォータポンプ8によって下流側に送り出されることで、駆動用モータ7との間で熱交換される。そして、冷却液は、再び第1空間K1に流入する。 In the integrated mode, the coolant flows between the drive circuit 2 and the non-drive circuit 3 in a lump via the control valve 5. Specifically, on the drive circuit 2, the coolant pumped out by the first water pump 8 is heat exchanged in the drive motor 7, and then flows into the first space K1 through the first inlet 53c and the first communication port 92a. The coolant that flows into the first space K1 flows out to the non-drive circuit 3 through the first communication port 92a and the second outlet 53b. The coolant that flows out to the non-drive circuit 3 is pumped downstream by the second water pump 10, and is heat exchanged with the battery 11. The coolant then flows into the second space K2 through the second inlet 65 and the upper end opening of the valve body 81. The coolant that flows into the second space K2 flows out to the drive circuit 2 through the second communication port 92b and the first outlet 53a. The cooling liquid is then pumped downstream by the first water pump 8, where heat is exchanged between the cooling liquid and the drive motor 7. The cooling liquid then flows back into the first space K1.
 このように、本実施形態の制御バルブ5において、ロータ23は、軸部80から上方に向かうに従い外径が漸次拡大する弁体81を有し、弁体81の外周面がケーシング21に摺動可能に支持される構成とした。
 この構成によれば、弁体81がケーシング21に直接支持されるため、シール部材や軸受を別途設ける必要がない。そのため、部品点数や組立工数の削減、制御バルブ5の小型化、低コスト化を図ることができる。
 弁体81がテーパ状に形成されていることで、ロータ23の外径が熱によって膨張収縮した場合に、外径の増減変化に応じてロータ23が支持面53上を軸方向に変位する。そのため、ロータ23の膨張収縮変化に関わらず、弁体81が安定して支持面53上で支持される。よって、制御バルブ5の動作安定性を確保できる。
As described above, in the control valve 5 of this embodiment, the rotor 23 has a valve body 81 whose outer diameter gradually increases upward from the shaft portion 80, and the outer peripheral surface of the valve body 81 is slidably supported by the casing 21.
According to this configuration, there is no need to provide a separate seal member or bearing because the valve element 81 is directly supported by the casing 21. This reduces the number of parts and assembly steps, and allows the control valve 5 to be made smaller and less expensive.
Since the valve body 81 is formed in a tapered shape, when the outer diameter of the rotor 23 expands or contracts due to heat, the rotor 23 displaces in the axial direction on the support surface 53 in response to the increase or decrease in the outer diameter. Therefore, the valve body 81 is stably supported on the support surface 53 regardless of the expansion or contraction of the rotor 23. This ensures the operational stability of the control valve 5.
 特に、本実施形態の制御バルブ5において、ロータ23は第1状態及び第2状態間を回転する構成とした。第1状態とは、第1空間K1を通じて第1流入口53c及び第1流出口53aが連通し、かつ第2空間K2を通じて第2流入口65及び第2流出口53bが連通する状態である。第2状態とは、第1空間K1を通じて第1流入口53c及び第2流出口53bが連通し、かつ第2空間K2を通じて第2流入口65及び第1流出口53aが連通する状態である。
 この構成によれば、2つの回路間に制御バルブ5を設置することで、2つの回路それぞれに独立して冷却液が流通する個別温調モードと、2つの回路間に一括して冷却液が流通する統合モードと、で回路の切り替えを行うことができる。しかも、本実施形態では、第1空間K1が下方に開口する一方、第2空間K2が上方に開口することで、各空間K1,K2内での液圧を均一に保ち易い。そのため、弁体81及び支持面53間でのシール性を確保した上で、摺動抵抗が過大になることを抑制して、ロータ23のスムーズな回転を実現できる。
In particular, in the control valve 5 of this embodiment, the rotor 23 is configured to rotate between a first state and a second state. The first state is a state in which the first inlet 53c and the first outlet 53a communicate with each other through the first space K1, and the second inlet 65 and the second outlet 53b communicate with each other through the second space K2. The second state is a state in which the first inlet 53c and the second outlet 53b communicate with each other through the first space K1, and the second inlet 65 and the first outlet 53a communicate with each other through the second space K2.
According to this configuration, by installing the control valve 5 between the two circuits, the circuits can be switched between an individual temperature control mode in which the coolant flows through each of the two circuits independently, and an integrated mode in which the coolant flows through the two circuits together. Moreover, in this embodiment, the first space K1 opens downward, while the second space K2 opens upward, making it easy to keep the liquid pressure in each space K1, K2 uniform. Therefore, while ensuring the sealing between the valve body 81 and the support surface 53, it is possible to suppress excessive sliding resistance and realize smooth rotation of the rotor 23.
 本実施形態の制御バルブ5において、第1流出口53a及び第2流出口53bは、第1方向で向かい合う位置に配置され、第1流入口53c及び第2流入口65は、第2方向で向かい合う位置に配置されている構成とした。
 この構成によれば、各流出口53a,53b及び各流入口53c,65が径方向で異なる向きに配置されるので、配管の取り回しが容易になる。
In the control valve 5 of this embodiment, the first outlet 53a and the second outlet 53b are arranged in positions facing each other in the first direction, and the first inlet 53c and the second inlet 65 are arranged in positions facing each other in the second direction.
According to this configuration, the outlets 53a, 53b and the inlets 53c, 65 are arranged in different radial directions, which facilitates the layout of the piping.
 本実施形態の制御バルブ5において、第2空間K2の容積は、第1空間K1の容積よりも大きい構成とした。
 この構成によれば、第2空間K2に作用する液圧を確保し易い。そのため、弁体81を支持面53に向けて押し付けやすくなるので、弁体81及び支持面53間のシール性を向上させることができる。
In the control valve 5 of this embodiment, the volume of the second space K2 is larger than the volume of the first space K1.
According to this configuration, it is easy to ensure the hydraulic pressure acting on the second space K2. Therefore, it is easy to press the valve body 81 against the support surface 53, so that the sealing performance between the valve body 81 and the support surface 53 can be improved.
 本実施形態の制御バルブ5において、弁体81は、軸方向に沿う断面視において、下方から上方に向かうに従い径方向の外側に向けて直線状に延びている構成とした。
 例えば弁体81の断面視形状が円弧状に形成されている場合には、弁体81の外周面の接線方向の向きが軸方向の位置で異なる。この場合、弁体81が熱によって収縮する際、弁体81の軸方向の位置によって変形の挙動が異なる。具体的に、弁体81のうち上方に向かうに従い(接線の傾きが大きくなるに従い)、径方向の内側への変形量が大きくなる結果、支持面53と弁体81との間のシール性を確保し難くなる。
 これに対して、本実施形態のように、弁体81の断面視形状を直線状に形成することで、熱収縮による弁体81の変形挙動を軸方向の全体に亘って均一に保ち易い。その結果、ロータ23の膨張収縮変化に関わらず、弁体81が安定して支持面53上で支持される。よって、制御バルブ5の動作安定性を確保できる。
In the control valve 5 of this embodiment, the valve body 81 is configured to extend linearly radially outward from the bottom to the top in a cross-sectional view along the axial direction.
For example, when the cross-sectional shape of the valve body 81 is formed in an arc shape, the direction of the tangential direction of the outer circumferential surface of the valve body 81 differs depending on the axial position. In this case, when the valve body 81 shrinks due to heat, the deformation behavior differs depending on the axial position of the valve body 81. Specifically, the amount of radially inward deformation increases toward the upper side of the valve body 81 (as the inclination of the tangent increases), making it difficult to ensure sealing between the support surface 53 and the valve body 81.
In contrast, by forming the valve body 81 to have a linear cross-sectional shape as in this embodiment, it is easy to keep the deformation behavior of the valve body 81 due to thermal contraction uniform throughout the entire axial direction. As a result, the valve body 81 is stably supported on the support surface 53 regardless of the expansion and contraction changes of the rotor 23. This ensures the operational stability of the control valve 5.
 本実施形態の制御バルブ5において、弁体81は、径方向で向かい合う部分同士のなす角度θ2を、90°<θ2<180°に設定する構成とした。
 この構成によれば、角度θ2を90°よりも大きくすることで、ロータ23の外径が熱によって膨張収縮した場合において、外径の増減変化に応じてロータ23が支持面53上をよりスムーズに変位し易くなる。そのため、ロータ23の膨張収縮変化に関わらず、弁体81が安定して支持面53上で支持される。よって、制御バルブ5の動作安定性を確保できる。
 しかも、角度θ2を110°<θ2<160°の範囲に設定することで、成形時の駄肉を抑制でき、軸方向でのさらなる小型化を図ることができる。
In the control valve 5 of this embodiment, the valve body 81 is configured such that the angle θ2 between the radially opposing portions is set to 90°<θ2<180°.
According to this configuration, by making the angle θ2 larger than 90°, when the outer diameter of the rotor 23 expands or contracts due to heat, the rotor 23 can be more smoothly displaced on the support surface 53 in response to the increase or decrease in the outer diameter. Therefore, regardless of the expansion or contraction of the rotor 23, the valve body 81 is stably supported on the support surface 53. This ensures the operational stability of the control valve 5.
Moreover, by setting the angle θ2 in the range of 110°<θ2<160°, excess material during molding can be suppressed, enabling further size reduction in the axial direction.
 本実施形態の制御バルブ5において、第2流入口65及び第2流出口53bは、車両の非駆動源に流体を供給する非駆動用回路3に接続される構成とした。
 この構成によれば、車両の電源オフ時に非駆動用回路3のみに冷却液を循環させた場合、第2空間K2の液圧を確保し易くなる。そのため、弁体81を支持面53に向けて押し付けやすくなるので、弁体81を支持面53間のシール性を向上させることができる。
In the control valve 5 of this embodiment, the second inlet 65 and the second outlet 53b are configured to be connected to the non-driving circuit 3 that supplies fluid to a non-driving source of the vehicle.
According to this configuration, when the coolant is circulated only through the non-drive circuit 3 while the vehicle is turned off, it is easy to ensure the hydraulic pressure in the second space K2. Therefore, it is easy to press the valve body 81 against the support surface 53, so that the sealing performance between the valve body 81 and the support surface 53 can be improved.
(その他の変形例)
 以上、本開示の好ましい実施形態を説明したが、本開示はこれら実施形態に限定されることはない。本開示の趣旨を逸脱しない範囲で、構成の付加、省略、置換、及びその他の変更が可能である。本開示は上述した説明によって限定されることはなく、添付の特許請求の範囲によってのみ限定される。
 例えば、上述した実施形態では、制御バルブ5が車両の冷却システム1に搭載された構成について説明したが、この構成のみに限らず、その他のシステムに搭載しても構わない。
 上述した実施形態では、2つの流出口53a,53bを備える構成について説明したが、この構成に限られない。流出口は、3つ以上設けられていてもよい。
 上述した実施形態では、ベース部33に対して流出ポート34,35が一体に形成された構成について説明したが、この構成に限られない。流出ポート34,35は、ベース部33と別体で形成されていてもよい。
(Other Modifications)
Although the preferred embodiments of the present disclosure have been described above, the present disclosure is not limited to these embodiments. Addition, omission, substitution, and other modifications of the configuration are possible without departing from the spirit of the present disclosure. The present disclosure is not limited by the above description, but is limited only by the scope of the attached claims.
For example, in the above embodiment, the control valve 5 is mounted on the vehicle cooling system 1, but the present invention is not limited to this configuration and may be mounted on other systems.
In the above embodiment, the configuration including the two outlets 53a, 53b has been described, but the present invention is not limited to this configuration. Three or more outlets may be provided.
In the above embodiment, the outflow ports 34, 35 are integrally formed with the base portion 33, but the present invention is not limited to this configuration. The outflow ports 34, 35 may be formed separately from the base portion 33.
上述した実施形態では、第2流入口65が内部空間Kに常時連通する構成について説明したが、この構成に限られない。第2流入口65についても、ロータ23の回転に応じて内部空間Kとの連通及び遮断が切り替えられる構成であってもよい。
 上述した実施形態では、弁体81が断面視で直線状に延びる構成について説明したが、この構成に限られない。弁体81は、断面視で円弧状に延びる構成等であってもよい。
In the above embodiment, the second inlet 65 is constantly in communication with the internal space K. However, the present invention is not limited to this configuration. The second inlet 65 may also be configured to be switched between communication with and cut off from the internal space K in response to the rotation of the rotor 23.
In the above embodiment, the valve body 81 extends linearly in cross section, but is not limited to this configuration. The valve body 81 may extend in an arc shape in cross section, for example.
 上述した実施形態では、付勢部材24が内部空間Kに設けられた構成について説明したが、この構成に限られない。付勢部材の位置は、弁体81を支持面53に向けて押さえ付ける構成であれば、適宜変更が可能である。付勢部材は、必須の構成ではない。
 上述した実施形態では、第2流入口65がカバー32に形成された構成について説明したが、この構成に限られない。第2流入口は、ケーシング本体31に形成されていてもよい。
In the above embodiment, the biasing member 24 is provided in the internal space K, but the present invention is not limited to this configuration. The position of the biasing member can be changed as appropriate as long as the biasing member is configured to press the valve body 81 against the support surface 53. The biasing member is not an essential component.
In the above embodiment, the second inlet 65 is formed in the cover 32, but the present invention is not limited to this configuration. The second inlet may be formed in the casing body 31.
 上述した実施形態では、第2空間K2の容積が第1空間K1の容積よりも大きい構成について説明したが、この構成に限られない。第2空間K2の容積は、第1空間K1の容積以下であってもよい。 In the above embodiment, a configuration in which the volume of the second space K2 is larger than the volume of the first space K1 has been described, but this is not limited to this configuration. The volume of the second space K2 may be equal to or smaller than the volume of the first space K1.
 その他、本開示の趣旨を逸脱しない範囲で、上述した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、上述した変形例を適宜組み合わせてもよい。 In addition, the components in the above-described embodiments may be replaced with well-known components as appropriate without departing from the spirit of this disclosure, and the above-described modified examples may be combined as appropriate.
3:非駆動用回路
5:制御バルブ
21:ケーシング
23:ロータ
53:支持面
53a:第1流出口
53b:第2流出口
53c:第1流入口
65:第2流入口
80:軸部
81:弁体
92a:第1連通口
92b:第2連通口
93:仕切部
K1:第1空間
K2:第2空間
O1:中心軸線
θ2:角度
3: Non-driving circuit 5: Control valve 21: Casing 23: Rotor 53: Support surface 53a: First outlet 53b: Second outlet 53c: First inlet 65: Second inlet 80: Shaft 81: Valve body 92a: First communication port 92b: Second communication port 93: Partition K1: First space K2: Second space O1: Central axis θ2: Angle

Claims (6)

  1.  外部から流体が流入する第1流入口及び第2流入口、並びに流体が外部に流出する第1流出口及び第2流出口が形成されたケーシングと、
     軸方向の第1側に位置して前記ケーシングに回転可能に支持された軸部、及び前記軸部から軸方向の第2側に向かうに従い外径が漸次拡大する内部空間を形成する弁体を有し、前記弁体の外周面が前記ケーシングに形成された支持面上を摺動可能に支持されたるロータと、を備え、
     前記弁体のうち、前記ロータの中心軸線回りで異なる位置には、前記内部空間の内外を連通させる第1連通口及び第2連通口が形成され、
     前記弁体は、前記第1連通口に連通するとともに前記軸方向の第1側に開口する第1空間、及び前記第2連通口に連通するとともに前記軸方向の第2側に開口する第2空間に、前記内部空間を仕切る仕切部を備え、
     前記ロータは、前記第1空間を通じて前記第1流入口及び前記第1流出口が連通し、かつ前記第2空間を通じて前記第2流入口及び前記第2流出口が連通する第1状態、並びに前記第1空間を通じて前記第1流入口及び前記第2流出口が連通し、かつ前記第2空間を通じて前記第2流入口及び前記第1流出口が連通する第2状態間を回転する制御バルブ。
    a casing having a first inlet and a second inlet through which a fluid flows in from the outside and a first outlet and a second outlet through which the fluid flows out to the outside;
    a rotor having a shaft portion located on a first axial side and rotatably supported by the casing, and a valve body that forms an internal space whose outer diameter gradually increases from the shaft portion toward a second axial side, the outer peripheral surface of the valve body being supported slidably on a support surface formed on the casing,
    a first communication port and a second communication port that communicate between the inside and the outside of the internal space are formed in the valve body at different positions around a central axis of the rotor,
    the valve body includes a partition portion that divides the internal space into a first space that communicates with the first communication port and opens to a first side in the axial direction and a second space that communicates with the second communication port and opens to a second side in the axial direction,
    The rotor is a control valve that rotates between a first state in which the first inlet and the first outlet are connected through the first space and the second inlet and the second outlet are connected through the second space, and a second state in which the first inlet and the second outlet are connected through the first space and the second inlet and the first outlet are connected through the second space.
  2.  前記第1流出口及び前記第2流出口は、前記軸方向に交差する径方向のうち第1方向で向かい合う位置に配置され、
     前記第1流入口及び前記第2流入口は、前記軸方向から見て前記第1方向に交差する第2方向で向かい合う位置に配置されている請求項1に記載の制御バルブ。
    The first outlet and the second outlet are disposed at positions facing each other in a first direction in a radial direction intersecting the axial direction,
    The control valve according to claim 1 , wherein the first inlet and the second inlet are disposed at positions facing each other in a second direction intersecting the first direction when viewed from the axial direction.
  3.  前記第2空間の容積は、前記第1空間の容積よりも大きい請求項1又は請求項2に記載の制御バルブ。 The control valve according to claim 1 or 2, wherein the volume of the second space is greater than the volume of the first space.
  4.  前記弁体は、前記軸方向に沿う断面視において、前記軸方向の第1側から第2側に向かうに従い前記軸方向に交差する径方向の外側に向けて直線状に延びている請求項1又は請求項2に記載の制御バルブ。 The control valve according to claim 1 or claim 2, wherein the valve body extends linearly from a first side to a second side in the axial direction toward the outside in a radial direction intersecting the axial direction in a cross-sectional view along the axial direction.
  5.  前記弁体は、前記軸方向に沿う断面視において、前記軸方向に交差する径方向で向かい合う部分同士のなす角度は、90°よりも大きく、180°よりも小さい請求項1又は請求項2に記載の制御バルブ。 The control valve according to claim 1 or 2, wherein the valve body has an angle between opposing radial portions intersecting the axial direction that is greater than 90° and less than 180° in a cross-sectional view along the axial direction.
  6.  前記第2流入口及び前記第2流出口は、車両の非駆動デバイスに流体を供給する非駆動用回路に接続される請求項1又は請求項2に記載の制御バルブ。 The control valve according to claim 1 or 2, wherein the second inlet and the second outlet are connected to a non-driving circuit that supplies fluid to a non-driving device of a vehicle.
PCT/JP2024/002022 2023-03-14 2024-01-24 Control valve WO2024190093A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-039652 2023-03-14
JP2023039652A JP2024130123A (en) 2023-03-14 2023-03-14 Control valve

Publications (1)

Publication Number Publication Date
WO2024190093A1 true WO2024190093A1 (en) 2024-09-19

Family

ID=92754777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/002022 WO2024190093A1 (en) 2023-03-14 2024-01-24 Control valve

Country Status (2)

Country Link
JP (1) JP2024130123A (en)
WO (1) WO2024190093A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659596U (en) * 1979-10-11 1981-05-21
JP2015148288A (en) * 2014-02-07 2015-08-20 カルソニックカンセイ株式会社 valve device
JP2017223299A (en) * 2016-06-16 2017-12-21 株式会社不二工機 Flow passage changeover valve
WO2023112738A1 (en) * 2021-12-13 2023-06-22 株式会社山田製作所 Control valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659596U (en) * 1979-10-11 1981-05-21
JP2015148288A (en) * 2014-02-07 2015-08-20 カルソニックカンセイ株式会社 valve device
JP2017223299A (en) * 2016-06-16 2017-12-21 株式会社不二工機 Flow passage changeover valve
WO2023112738A1 (en) * 2021-12-13 2023-06-22 株式会社山田製作所 Control valve

Also Published As

Publication number Publication date
JP2024130123A (en) 2024-09-30

Similar Documents

Publication Publication Date Title
JP4457958B2 (en) Air conditioner for vehicles
US11125345B2 (en) Flow control device
JP7146540B2 (en) control valve
JP7227050B2 (en) control valve
US11560952B2 (en) Variable cylinder wall for seals on plug valve
JP7344663B2 (en) control valve
EP4310372A1 (en) Multi-port valve, and thermal management system provided with same and application thereof
US20240003440A1 (en) Valve device
WO2023112738A1 (en) Control valve
WO2024190093A1 (en) Control valve
US20240003458A1 (en) Valve device
WO2024190095A1 (en) Control valve
JP7142150B2 (en) control valve
WO2024190094A1 (en) Control valve
WO2024190096A1 (en) Control valve
CN114616415B (en) Valve device
JP7060657B2 (en) Valve gears and automotive heat medium systems
CN117146012A (en) Control valve
JP2021148244A (en) Control valve
JP2020008173A (en) valve
WO2024063071A1 (en) Flow-path switching device
WO2023112600A1 (en) Control valve
CN220904617U (en) Valve device and thermal management system
US20230175600A1 (en) Rotary valve device
WO2023112602A1 (en) Control valve