WO2024185878A1 - Composition, laminate, and display device - Google Patents

Composition, laminate, and display device Download PDF

Info

Publication number
WO2024185878A1
WO2024185878A1 PCT/JP2024/008980 JP2024008980W WO2024185878A1 WO 2024185878 A1 WO2024185878 A1 WO 2024185878A1 JP 2024008980 W JP2024008980 W JP 2024008980W WO 2024185878 A1 WO2024185878 A1 WO 2024185878A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mass
composition
resin
meth
Prior art date
Application number
PCT/JP2024/008980
Other languages
French (fr)
Japanese (ja)
Inventor
真芳 ▲徳▼田
崇夫 土谷
崇弘 石原
直優 北川
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2024033139A external-priority patent/JP2024127827A/en
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2024185878A1 publication Critical patent/WO2024185878A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • C08L101/08Carboxyl groups

Definitions

  • the present invention relates to a composition, a laminate, and a display device including the laminate.
  • Patent Document 1 describes a curable resin composition containing quantum dots, and a wavelength conversion film formed using the curable resin composition.
  • a protective layer is formed in a pattern on a wavelength conversion layer that contains luminescent inorganic semiconductor particles such as quantum dots, but the remaining film rate of the protective layer during the development process is sometimes insufficient.
  • One object of the present invention is to provide a composition capable of forming a protective layer for a wavelength conversion layer, which reduces film loss during development and has an excellent film remaining rate.
  • Another object of the present invention is to provide a laminate including a wavelength conversion layer, a protective layer for the wavelength conversion layer having an excellent film remaining rate, and further a light absorbing layer, and a display device including the laminate.
  • the present invention which achieves the above object is as follows. [1] A composition containing neither semiconductor particles (A) nor a colorant (I), The composition contains a resin (C) and a light stabilizer (F), The resin (C) is a composition containing a resin (C-1) having a weight average molecular weight Mw of 10,000 or less. [2] The composition according to [1], wherein the acid value of the resin (C-1) is 110 mg KOH / g or less.
  • the composition further comprises a polymerizable compound (D), The composition according to [1] or [2], wherein a mass ratio of the resin (C-1) to the polymerizable compound (D) (resin (C-1)/polymerizable compound (D)) is 1.8 or less.
  • the protective layer is a laminate which is a layer formed from a composition which does not contain any of semiconductor particles (A) and colorant (I), and which contains a resin (C) and further contains a light stabilizer (F), the resin (C) containing a resin (C-1) having a weight average molecular weight Mw of 10,000 or less.
  • a display device comprising the laminate according to [5] or [6].
  • the composition of the present invention contains a resin (C-1) with a weight-average molecular weight Mw of 10,000 or less, and therefore can form a protective layer with excellent film remaining rate during development.
  • the laminate of the present invention also has the above-mentioned effect of the protective layer, that is, excellent film remaining rate during development.
  • the composition and laminate of the present invention contain a light stabilizer, and therefore can suppress the decrease in luminescence intensity of the wavelength conversion layer due to heat.
  • FIG. 1 is a schematic cross-sectional view showing an example of a laminate according to the present invention.
  • FIG. 2 is a schematic cross-sectional view showing another example of the laminate according to the present invention.
  • FIG. 4 is a schematic cross-sectional view showing still another example of the laminate according to the present invention.
  • FIG. 4 is a schematic cross-sectional view showing still another example of the laminate according to the present invention.
  • 1 is a schematic cross-sectional view showing an example of a display device according to the present invention.
  • the wavelength conversion layer in a display device is a layer that absorbs primary light from a primary light source and emits wavelength-converted (color-converted) light.
  • the composition of the present invention can be used to form a protective layer to be placed on the wavelength conversion layer, and has an excellent film remaining rate during development.
  • the composition of the present invention can also suppress deterioration of the wavelength conversion layer due to heat.
  • a display device including a wavelength conversion layer in order to solve the problem that a portion of the primary light irradiated to the wavelength conversion layer passes through the wavelength conversion layer and leaks to the viewing side, preventing the display device from having a wide color gamut, it is preferable to place a light absorbing layer on the wavelength conversion layer that absorbs the primary light that has passed through the wavelength conversion layer.
  • composition I the composition used to form the wavelength conversion layer
  • composition II the composition of the present invention that is preferably used to form a protective layer to be placed on the wavelength conversion layer
  • composition III the composition capable of forming a light absorbing layer
  • Composition II of the present invention is a composition containing neither semiconductor particles (A) nor colorant (I) and is preferably used for a protective layer to be placed on a wavelength converting layer.
  • the protective layer can be formed by applying composition II onto the wavelength converting layer and curing it.
  • Composition II contains a resin (C), and further contains a resin (C-1) having a weight average molecular weight Mw of not more than 10,000. By containing such a resin (C-1), the residual film rate of a layer formed from composition II during development can be improved.
  • the composition II contains a light stabilizer (F).
  • the present inventors have found that by incorporating the light stabilizer (F) in the composition II capable of forming a protective layer, rather than in the composition I that forms the wavelength conversion layer itself, the deterioration of the luminescence characteristics of the wavelength conversion layer due to heat can be suppressed.
  • Composition II does not contain semiconductor particles (A) and colorant (I)
  • the content of semiconductor particles (A) or colorant (I) is preferably 1 mass % or less, more preferably 0.5 mass % or less, even more preferably 0.1 mass % or less, and particularly preferably 0 mass %, respectively, relative to the total amount of solids in Composition II.
  • the content or percentage of each component means the total content or percentage of the components when two or more types of the component are included. Furthermore, the total amount of solids in the composition means the total of the components contained in the composition excluding the solvent (J).
  • the content in the solids of the composition can be measured by known analytical means such as liquid chromatography or gas chromatography. The content of each component in the solids of the composition may be calculated from the blending when the composition is prepared.
  • the composition II contains a light stabilizer (F), which can suppress deterioration of the wavelength conversion layer due to heat.
  • the composition II preferably contains at least one light stabilizer (F), and more preferably contains at least one of the antioxidant (Fb) and ultraviolet absorber (Fc) described below among the light stabilizers (F).
  • the composition II contains at least one of the antioxidant (Fb) and ultraviolet absorber (Fc)
  • only one of them may be contained, or both the antioxidant (Fb) and the ultraviolet absorber (Fc) may be contained. From the viewpoint of suppressing deterioration of the luminescence intensity of the wavelength conversion layer, it is preferable to contain both the antioxidant (Fb) and the ultraviolet absorber (Fc).
  • the total content of the antioxidant (Fb) and the ultraviolet absorber (Fc) is preferably 0.5% by mass or more, more preferably 0.9% by mass or more, even more preferably 2% by mass or more, particularly preferably 4% by mass or more, and may be 10% by mass or less, or may be 8% by mass or less, based on the total amount of solids in the composition II.
  • the content of the antioxidant (Fb) is preferably 0.5% by mass or more, more preferably 0.9% by mass or more, even more preferably 2% by mass or more, particularly preferably 4% by mass or more, and may be 8% by mass or less or 6.5% by mass or less, based on the total amount of solids in the composition II.
  • the content of the ultraviolet absorber (Fc) is preferably 0.5% by mass or more, more preferably 0.9% by mass or more, and may be 3% by mass or less or 2% by mass or less, based on the total amount of solids in the composition II.
  • the antioxidant (Fb) is preferably a phosphorus/phenol complex type antioxidant and/or a phenol-based antioxidant, more preferably a phosphorus/phenol complex type antioxidant, and the ultraviolet absorber (Fc) is preferably a benzotriazole-based compound.
  • Composition II preferably does not contain an organic ligand (G).
  • composition II "does not contain an organic ligand (G),” this means that the content of organic ligand (G) relative to the total amount of solids in composition II is preferably 1 mass% or less, more preferably 0.5 mass% or less, even more preferably 0.1 mass% or less, and particularly preferably 0 mass%.
  • the resin (C) in composition II contains a resin (C-1) having a weight average molecular weight Mw of 10,000 or less.
  • the content of the resin (C-1) in the resin (C) in composition II is preferably 80 mass% or more, more preferably 90 mass% or more, and most preferably 100 mass%.
  • the weight average molecular weight Mw of the resin (C-1) is more preferably 9,500 or less, even more preferably 9,000 or less, and the lower limit is not particularly limited, but may be, for example, 4,000 or 6,500.
  • the acid value of resin (C-1) is preferably 110 mgKOH/g or less, which can improve the residual film rate during development for the cured film of composition II, and preferably can further improve both the residual film rate and the development speed.
  • the acid value of resin (C-1) is preferably 30 mgKOH/g or more, more preferably 40 mgKOH/g or more, and even more preferably 50 mgKOH/g or more.
  • the double bond equivalent of resin (C-1) is preferably 300 g/eq or more and 1500 g/eq or less, and more preferably 330 g/eq or more and 1000 g/eq or less.
  • the double bond equivalent can be calculated by dividing the total mass of the resin by the number of moles of radically polymerizable double bonds introduced into the resin.
  • composition II may contain a polymerizable compound (D).
  • Composition II may contain a polymerization initiator (E).
  • Composition II may contain a polymerization initiation aid (E ⁇ ).
  • Composition II may contain a solvent (J).
  • Composition II may contain a leveling agent (H).
  • Composition II preferably does not contain an organic ligand (G).
  • the mass ratio of resin (C-1) to polymerizable compound (D) is preferably 1.8 or less, more preferably 1.7 or less, and also preferably 0.5 or more, more preferably more than 1.0.
  • the polymerizable compound (D) preferably has a functional group number of 2 or more, more preferably 3 or more, and the upper limit may be 6.
  • the functional group is preferably an ethylenically unsaturated bond.
  • resin (C) contains resin (C-1), and by adjusting the acid value of resin (C-1) and the mass ratio of resin (C-1) to polymerizable compound (D) within the above range, the residual film rate at the time of development of the cured film of composition II can be further improved, and preferably both the residual film rate and the development speed can be further improved.
  • the mass ratio of the polymerizable compound (D) to the polymerization initiator (E) is preferably 40 or more, more preferably 60 or more, and even more preferably 80 or more.
  • the mass ratio of the polymerizable compound (D) to the polymerization initiator (E) (polymerizable compound (D)/polymerization initiator (E)) is preferably 140 or less, more preferably 120 or less, and even more preferably 100 or less.
  • the development speed of the cured film of Composition II can be 0.04 ⁇ m/sec or more, preferably 0.05 ⁇ m/sec or more, and more preferably 0.06 ⁇ m/sec or more, with no particular upper limit, but which may be 0.15 ⁇ m/sec.
  • the remaining film rate when the cured film of Composition II is developed can be 70% or more, preferably 80% or more, with no particular upper limit, with 100% being ideal, but 99% or less being acceptable.
  • the development speed and remaining film rate can be measured according to the measurement methods described in the Examples section below.
  • Composition I is a composition containing semiconductor particles (A) and is suitably used for forming a wavelength conversion layer.
  • Composition I may contain an organic ligand (G).
  • Composition I may also contain a white colorant (Iw).
  • the composition I may contain a resin (C).
  • the composition I may contain a polymerizable compound (D).
  • the composition I may contain a polymerization initiator (E).
  • Composition I may contain a polymerization initiation aid (E ⁇ ).
  • Composition I may contain a light stabilizer (F).
  • Composition I may contain a solvent (J).
  • Composition I may contain a leveling agent (H).
  • Composition III is a composition containing a colorant (I) (particularly a chromatic colorant (Ic)), and is suitably used for forming a light absorbing layer.
  • Composition III may contain a resin (C).
  • Composition III may contain a polymerizable compound (D).
  • Composition III may contain a polymerization initiator (E).
  • Composition III may contain a polymerization initiator coagent (E ⁇ ).
  • Composition III may also contain a light stabilizer (F).
  • Composition III may contain a solvent (J).
  • Composition III may contain a leveling agent (H).
  • the semiconductor particles (A) are preferably luminescent inorganic semiconductor particles that absorb primary light and emit light of a wavelength different from the primary light, and it is more preferable that the luminescent inorganic semiconductor particles absorb the primary light and emit green or red light, and it is even more preferable that the wavelength of the blue light, which is the primary light, is converted to the wavelength of red light or the wavelength of green light.
  • blue refers to all light that is perceived as blue (all light having intensity in the blue wavelength range, e.g., 380 nm to 495 nm), and is not limited to light of a single wavelength.
  • Green refers to all light that is perceived as green (all light having intensity in the green wavelength range, e.g., 495 nm to 585 nm), and is not limited to light of a single wavelength.
  • Red refers to all light that is perceived as red (all light having intensity in the red wavelength range, e.g., 585 nm to 780 nm), and is not limited to light of a single wavelength.
  • yellow refers to all light that is perceived as yellow (all light having intensity in the yellow wavelength range, e.g., 560 nm to 610 nm), and is not limited to light of a single wavelength.
  • the emission spectrum of the green-emitting semiconductor particles (A) preferably includes a peak having a maximum value in the wavelength range of 500 nm to 560 nm, more preferably includes a peak having a maximum value in the wavelength range of 520 nm to 545 nm, and even more preferably includes a peak having a maximum value in the wavelength range of 525 nm to 535 nm. This can further improve the emission intensity of green light from the display device.
  • the peak preferably has a full width at half maximum of 15 nm to 80 nm, more preferably 15 nm to 60 nm, even more preferably 15 nm to 50 nm, and particularly preferably 15 nm to 45 nm. This can further improve the emission intensity of green light from the display device.
  • the emission spectrum of the semiconductor particles (A) emitting red light preferably includes a peak having a maximum value in a wavelength range of 610 nm to 750 nm, more preferably includes a peak having a maximum value in a wavelength range of 620 nm to 650 nm, and even more preferably includes a peak having a maximum value in a wavelength range of 625 nm to 645 nm. This can further improve the emission intensity of red light from the display device.
  • the peak preferably has a full width at half maximum of 15 nm to 80 nm, more preferably 15 nm to 60 nm, even more preferably 15 nm to 50 nm, and particularly preferably 15 nm to 45 nm. This can further improve the emission intensity of red light from the display device.
  • the emission spectrum of the semiconductor particles (A) is measured according to the method described in the Examples section below.
  • the semiconductor particles (A) include quantum dots and particles composed of a compound having a perovskite crystal structure (hereinafter also referred to as a "perovskite compound”), with quantum dots being preferred.
  • Quantum dots are luminescent semiconductor particles with a particle diameter of 1 nm to 100 nm, which utilize the band gap of the semiconductor to absorb ultraviolet light or visible light (e.g., blue light) and emit light.
  • Quantum dots include, for example, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, CdHgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZ Compounds of Group 12 elements and Group 16 elements such as nSeTe and HgZn
  • quantum dots When the quantum dots contain S or Se, quantum dots whose surface is modified with a metal oxide or an organic substance may be used. By using surface-modified quantum dots, it is possible to prevent S or Se from being extracted by reactive components that are or may be contained in composition I.
  • the quantum dots may also be formed into a core-shell structure by combining the above compounds.
  • Examples of such combinations include particles with a CdSe core and a ZnS shell, and particles with an InP core and a ZnSeS shell.
  • quantum dots Since the energy state of quantum dots depends on their size, it is possible to freely select the emission wavelength by changing the particle diameter.
  • the light emitted from quantum dots has a narrow spectral width, which is advantageous for widening the color gamut of display devices.
  • quantum dots have high responsiveness, which is also advantageous in terms of the efficiency of using primary light.
  • the perovskite compound is a compound that has a perovskite crystal structure and is composed of A, B, and X.
  • A is a monovalent cation that is located at each vertex of a hexahedron with B at the center in the perovskite crystal structure.
  • X represents a component located at each vertex of an octahedron with B at the center in the perovskite crystal structure, and is at least one type of ion selected from the group consisting of halide ions and thiocyanate ions.
  • B is a component located at the center of a hexahedron with A at its vertex and an octahedron with X at its vertex in the perovskite crystal structure, and is a metal ion.
  • the perovskite compound having components A, B, and X is not particularly limited, and may be a compound having any of a three-dimensional structure, a two-dimensional structure, and a pseudo-two-dimensional structure.
  • the perovskite compound is represented as ABX (3+ ⁇ ) .
  • the perovskite compound is represented by A 2 BX (4+ ⁇ ) .
  • is a number that can be changed as appropriate depending on the charge balance of B, and is between -0.7 and 0.7.
  • the perovskite compound having a two-dimensional perovskite-type crystal structure represented by A 2 BX (4+ ⁇ ) include: ( C4H9NH3 )2PbBr4, (C4H9NH3) 2PbCl4, (C4H9NH3)2PbI4, (C7H15NH3)2PbBr4, (C7H15NH3)2 PbCl 4 , (C 7 H 15 NH 3 ) 2 PbI 4 , ( C 4 H 9 NH 3 ) 2 Pb ( 1 - a ) Li a Br ( 4+ ⁇ ) (0 ⁇ a ⁇ 0.7, -0.7 ⁇ ⁇ 0 ), (C 4 H 9 NH 3 ) 2 Pb (1- a ) a Br (4+ ⁇ ) (0 ⁇ a ⁇ 0.7, -0.7 ⁇ 0), (C 4 H 9 NH 3 ) 2 Pb (1-a) Rb a Br (4+ ⁇ ) (0 ⁇ a ⁇ 0.7, -0.7 ⁇ 0), (C 4 H 9 NH 3
  • the semiconductor particles (A) that absorb primary light and emit green light can be used alone or in combination of two or more kinds.
  • the semiconductor particles (A) that absorb primary light and emit red light can be used alone or in combination of two or more kinds.
  • composition II does not contain semiconductor particles (A).
  • Composition III also does not substantially contain semiconductor particles (A), and the content of semiconductor particles (A) relative to the total amount of solids in composition III is preferably 1 mass% or less, more preferably 0.5 mass% or less, even more preferably 0.1 mass% or less, and particularly preferably 0 mass%.
  • the content of semiconductor particles (A) in composition I is, for example, 1% by mass or more and 60% by mass or less, preferably 10% by mass or more and 50% by mass or less, more preferably 15% by mass or more and 50% by mass or less, even more preferably 20% by mass or more and 50% by mass or less, and even more preferably 25% by mass or more and 45% by mass or less, based on the total amount of solids in composition I.
  • the semiconductor particles (A) may be present in the composition in a state where the organic ligand (G) is coordinated to the semiconductor particles (A).
  • the organic ligand (G) can be coordinated to the surface of the semiconductor particle (A), for example.
  • the composition contains one or more organic ligands. It may contain a ligand (G).
  • organic ligand (G) are coordinated to the semiconductor particles (A), and all or almost all of the molecules may be coordinated to the semiconductor particles (A).
  • organic ligand (G) coordinated to the semiconductor particles (A) can be advantageous from the viewpoint of improving the stability and dispersibility of the semiconductor particles (A) and the luminescence intensity of the wavelength conversion layer.
  • the polar group of the organic ligand (G) is, for example, at least one group selected from the group consisting of a thiol group (-SH), a carboxy group (-COOH), and an amino group (-NH 2 ).
  • a polar group selected from this group can be advantageous in increasing the coordination ability to the semiconductor particles (A). High coordination ability can contribute to improving the stability and dispersibility of the semiconductor particles (A) in the composition, as well as improving the luminescence intensity of the wavelength conversion layer.
  • the polar group is at least one group selected from the group consisting of a thiol group and a carboxy group.
  • the organic ligand (G) can have one or more polar groups.
  • the organic ligand (G) is, for example, a compound represented by the following formula (x): XA- RX ( x)
  • X 1 A is the polar group described above
  • R 1 X is a monovalent hydrocarbon group which may contain a heteroatom (N, O, S, a halogen atom, etc.).
  • the hydrocarbon group may have one or more unsaturated bonds such as a carbon-carbon double bond.
  • the hydrocarbon group may have a linear, branched, or cyclic structure.
  • the number of carbon atoms in the hydrocarbon group is, for example, 1 to 40, and may be 1 to 30.
  • the methylene group contained in the hydrocarbon group may be substituted with -O-, -S-, -C( ⁇ O)-, -C( ⁇ O)-O-, -O-C( ⁇ O)-, -C( ⁇ O)-NH-, -NH-, etc.
  • the group R 1 X may contain a polar group, specific examples of which are given in the above description of the polar group X 1 A.
  • organic ligands having a carboxyl group as the polar group XA include formic acid, acetic acid, and propionic acid, as well as saturated or unsaturated fatty acids.
  • saturated or unsaturated fatty acids include saturated fatty acids such as butyric acid, pentanoic acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, arachidic acid, behenic acid, and lignoceric acid; monounsaturated fatty acids such as myristoleic acid, palmitoleic acid, oleic acid, icosenoic acid, erucic acid, and nervonic acid; and polyunsaturated fatty acids such as linoleic acid, ⁇ -linolenic acid, ⁇ -linolenic acid, stearic acid, dihomo- ⁇ -linolenic acid
  • organic ligand having a thiol group or an amino group as the polar group XA include organic ligands in which the carboxy group of the organic ligand having a carboxy group as the polar group XA exemplified above is replaced with a thiol group or an amino group.
  • organic ligands represented by the above formula (x) include compound (G-1) and compound (G-2).
  • the compound (G-1) is a compound having a first functional group and a second functional group.
  • the first functional group is a carboxy group (-COOH)
  • the second functional group is a carboxy group or a thiol group (-SH)
  • the compound (G-1) has a carboxy group and/or a thiol group, and therefore can serve as a ligand that coordinates with the semiconductor particles (A). ) may be contained alone or in combination with one or more of them.
  • compound (G-1) is a compound represented by the following formula (G-1a).
  • Compound (G-1) may be an acid anhydride of the compound represented by formula (G-1a).
  • R 3 B represents a divalent hydrocarbon group. When a plurality of R 3 B are present, they may be the same or different.
  • the hydrocarbon group may have one or more substituents. When a plurality of substituents are present, they may be the same or different and may be bonded to each other to form a ring together with the atom to which they are bonded.
  • -CH 2 - contained in the hydrocarbon group may be replaced by at least one of -O-, -S-, -SO 2 -, -CO- and -NH-.
  • p represents an integer of 1 to 10.
  • Examples of the divalent hydrocarbon group represented by R 3 B include chain hydrocarbon groups, alicyclic hydrocarbon groups, aromatic hydrocarbon groups, and groups formed by combining these groups.
  • chain hydrocarbon groups examples include linear or branched alkanediyl groups, which usually have 1 to 50 carbon atoms, preferably 1 to 20, and more preferably 1 to 10.
  • alicyclic hydrocarbon groups examples include monocyclic or polycyclic cycloalkanediyl groups, which usually have 3 to 50 carbon atoms, preferably 3 to 20, and more preferably 3 to 10.
  • aromatic hydrocarbon groups include monocyclic or polycyclic arenediyl groups, which usually have 6 to 20 carbon atoms.
  • Examples of the substituents that the above-mentioned hydrocarbon group may have include an alkyl group having 1 to 50 carbon atoms, a cycloalkyl group having 3 to 50 carbon atoms, an aryl group having 6 to 20 carbon atoms, a carboxy group, an amino group, a halogen atom, etc.
  • the substituents that the above-mentioned hydrocarbon group may have are preferably a carboxy group, an amino group, or a halogen atom.
  • —CH 2 — contained in the above hydrocarbon group is replaced by at least one of —O—, —CO— and —NH—
  • —CH 2 — is replaced by at least one of —CO— and —NH—, more preferably by —NH—.
  • Examples of the compound represented by formula (G-1a) include compounds represented by the following formulas (1-1) to (1-9).
  • Specific examples of compounds represented by formula (G-1a) by chemical name include mercaptoacetic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, 3-mercaptobutanoic acid, 4-mercaptobutanoic acid, mercaptosuccinic acid, mercaptostearic acid, mercaptooctanoic acid, 4-mercaptobenzoic acid, 2,3,5,6-tetrafluoro-4-mercaptobenzoic acid, L-cysteine, N-acetyl-L-cysteine, 3-methoxybutyl 3-mercaptopropionate, and 3-mercapto-2-methylpropionic acid. Of these, 3-mercaptopropionic acid and mercaptosuccinic acid are preferred.
  • compound (G-1) is a polyvalent carboxylic acid compound, preferably a compound (G-1b) represented by the above formula (G-1a) in which -SH in formula (G-1a) is replaced with a carboxy group (-COOH).
  • Examples of compound (G-1b) include the following compounds:
  • Succinic acid glutaric acid, adipic acid, octafluoroadipic acid, azelaic acid, dodecanedioic acid, tetradecanedioic acid, hexadecanedioic acid, heptadecanedioic acid, octadecanedioic acid, nonadecanedioic acid, dodecafluorosuberic acid, 3-ethyl-3-methylglutaric acid, hexafluoroglutaric acid, trans-3-hexenedioic acid, sebacic acid, hexadecafluorosebacic acid, acetylenedicarboxylic acid, trans-aconitic acid, 1,3-adamantanedicarboxylic acid, bicyclo[2.2.2]octane-1,4-dicarboxylic acid, cis-4-cyclohexene-1,2-dicarboxylic acid, 1,1-cyclo
  • the molecular weight of the compound (G-1) is preferably 3000 or less, more preferably 2500 or less, even more preferably 2000 or less, still more preferably 1000 or less, particularly preferably 800 or less, and most preferably 500 or less.
  • the molecular weight of the compound (G-1) is usually 100 or more.
  • the above molecular weight may be a number average molecular weight or a weight average molecular weight.
  • the number average molecular weight and the weight average molecular weight are the number average molecular weight and the weight average molecular weight, respectively, calculated in terms of standard polystyrene as measured by gel permeation chromatography (GPC).
  • composition I contains compound (G-1)
  • the content ratio of compound (G-1) to semiconductor particles (A) in composition I is preferably 0.001 to 1, more preferably 0.01 to 0.5, and even more preferably 0.02 to 0.45, in mass ratio. Having the content ratio within this range can be advantageous from the viewpoint of improving the stability and dispersibility of semiconductor particles (A) and the luminescence intensity of the wavelength conversion layer.
  • composition I contains compound (G-1), the content of compound (G-1) in composition I is, from the viewpoint of improving the stability and dispersibility of semiconductor particles (A) and the luminescence intensity of the wavelength conversion layer, preferably from 0.1 mass% to 20 mass%, more preferably from 0.2 mass% to 20 mass%, even more preferably from 0.2 mass% to 10 mass%, still more preferably from 0.5 mass% to 10 mass%, and particularly preferably from 0.5 mass% to 8 mass%, based on the total amount of solids in composition I.
  • Compound (G-2) is a compound different from compound (G-1), and is a compound that contains a polyalkylene glycol structure and has a polar group at the molecular end. 2) It is preferable that the carbon atom is the end of the longest carbon chain (the carbon atom in the carbon chain may be replaced by another atom such as an oxygen atom).
  • the composition may contain only one type of compound (G-2), or may contain two or more types.
  • the composition may contain compound (G-1) or compound (G-2), or may contain compound (G-1) and compound (G-2).
  • the polyalkylene glycol structure is the following formula:
  • R 3 C is an alkylene group, for example, an ethylene group, a propylene group, etc.
  • X is a polar group
  • Y is a monovalent group
  • Z 1 C is a divalent or trivalent group
  • n is an integer of 2 or more
  • m is 1 or 2
  • R 1 C is an alkylene group.
  • the polar group X is preferably at least one group selected from the group consisting of a thiol group (-SH), a carboxy group (-COOH), and an amino group (-NH 2 ).
  • a polar group selected from this group can be advantageous in terms of enhancing coordination to the semiconductor particles (A).
  • the polar group X is at least one group selected from the group consisting of a thiol group and a carboxy group.
  • the group Y is a monovalent group.
  • the group Y is not particularly limited, and examples thereof include monovalent hydrocarbon groups which may have a substituent (N, O, S, a halogen atom, etc.).
  • the number of carbon atoms in the hydrocarbon group is, for example, 1 or more and 12 or less.
  • the hydrocarbon group may have an unsaturated bond.
  • Examples of the group Y include an alkyl group having a linear, branched or cyclic structure and a carbon number of 1 to 12; and an alkoxy group having a linear, branched or cyclic structure and a carbon number of 1 to 12.
  • the number of carbon atoms in the alkyl group and alkoxy group is preferably 1 to 8, more preferably 1 to 6, and even more preferably 1 to 4.
  • the -CH 2 - contained in the alkyl group and alkoxy group may be substituted with -O-, -S-, -C( ⁇ O)-, -C( ⁇ O)-O-, -O-C( ⁇ O)-, -C( ⁇ O)-NH-, -NH-, or the like.
  • the group Y is preferably a linear or branched alkoxy group having a carbon number of 1 to 4, and more preferably a linear alkoxy group having a carbon number of 1 to 4.
  • the group Y may contain a polar group.
  • the polar group may be at least one group selected from the group consisting of a thiol group (-SH), a carboxy group (-COOH), and an amino group (-NH 2 ).
  • a compound containing a polyalkylene glycol structure and having the first functional group and the second functional group is considered to belong to the compound (G-1).
  • the polar group is preferably located at the terminal of the group Y.
  • the group Z 1 C is a divalent or trivalent group.
  • the group Z 1 C is not particularly limited, and may be a divalent or trivalent hydrocarbon group which may contain a heteroatom (N, O, S, halogen atom, etc.).
  • the number of carbon atoms in the hydrocarbon group is, for example, 1 to 24.
  • the hydrocarbon group may have an unsaturated bond.
  • Examples of the divalent group Z 3 C include an alkylene group having 1 to 24 carbon atoms and a linear, branched or cyclic structure; an alkenylene group having 1 to 24 carbon atoms and a linear, branched or cyclic structure.
  • the number of carbon atoms in the alkyl group and the alkenylene group is preferably 1 to 12, more preferably 1 to 8, and even more preferably 1 to 4.
  • the -CH 2 - contained in the alkyl group and the alkenylene group may be substituted with -O-, -S-, -C( ⁇ O)-, -C( ⁇ O)-O-, -O-C( ⁇ O)-, -C( ⁇ O)-NH-, -NH-, or the like.
  • Examples of the trivalent group Z 3 C include a group obtained by removing one hydrogen atom from the divalent group Z 3 C.
  • the group Z 1 C may have a branched structure.
  • the group Z 1 C having a branched structure may have a polyalkylene glycol structure other than the polyalkylene glycol structure shown in the above formula (G-2a) in a branched chain other than the branched chain containing the polyalkylene glycol structure shown in the above formula (G-2a).
  • the group Z 1 C is preferably a linear or branched alkylene group having 1 to 6 carbon atoms, and more preferably a linear alkylene group having 1 to 4 carbon atoms.
  • R 3 C is an alkylene group, preferably a linear or branched alkylene group having 1 to 6 carbon atoms, and more preferably a linear alkylene group having 1 to 4 carbon atoms.
  • n is an integer of 2 or more, preferably 2 or more and 540 or less, more preferably 2 or more and 120 or less, and even more preferably 2 or more and 60 or less.
  • the molecular weight of compound (G-2) may be, for example, about 150 or more and 10,000 or less, but from the viewpoint of improving the stability and dispersibility of semiconductor particles (A) and the luminescence intensity of the wavelength conversion layer, it is preferably 150 or more and 5,000 or less, and more preferably 150 or more and 4,000 or less.
  • the molecular weight may be a number average molecular weight or a weight average molecular weight. In this case, the number average molecular weight and the weight average molecular weight are the number average molecular weight and the weight average molecular weight, respectively, in terms of standard polystyrene measured by GPC.
  • composition I contains compound (G-2), the content ratio of compound (G-2) to semiconductor particles (A) in composition I is, in mass ratio, preferably 0.001 to 2, more preferably 0.01 to 1.5, and even more preferably 0.1 to 1.
  • a content ratio within this range can be advantageous from the viewpoint of improving the stability and dispersibility of semiconductor particles (A) and the luminescence intensity of the wavelength conversion layer.
  • composition I contains compound (G-2), the content of compound (G-2) in composition I is preferably 0.1% by mass or more and 40% by mass or less, more preferably 0.1% by mass or more and 20% by mass or less, even more preferably 1% by mass or more and 15% by mass or less, and even more preferably 2% by mass or more and 12% by mass or less, based on the total amount of solids in composition I, from the viewpoint of improving the stability and dispersibility of semiconductor particles (A) and the luminescence intensity of the wavelength conversion layer.
  • composition I contains an organic ligand (G)
  • the ratio of the content of the organic ligand (G) to the semiconductor particles (A) in composition I is, in mass ratio, preferably 0.001 to 1, more preferably 0.01 to 0.8, and even more preferably 0.02 to 0.5. Having the content ratio within this range can be advantageous from the viewpoint of improving the stability and dispersibility of the semiconductor particles (A) and the luminescence intensity of the wavelength conversion layer.
  • the content of the organic ligand (G) here refers to the total content of all organic ligands contained in composition I.
  • the total content of the semiconductor particles (A) and the organic ligands (G) in composition I is preferably 10% by mass or more and 75% by mass or less, more preferably 12% by mass or more and 70% by mass or less, based on the total amount of solids in composition I, from the viewpoint of improving the stability and dispersibility of the semiconductor particles (A) and the luminescence intensity of the wavelength conversion layer.
  • Composition II and Composition III are substantially free of organic ligand (G).
  • “Substantially free of organic ligand (G)” means that the content of organic ligand (G) relative to the total amount of solids in Composition II or Composition III is preferably 1 mass% or less, more preferably 0.5 mass% or less, even more preferably 0.1 mass% or less, and particularly preferably 0 mass%.
  • Resin [K1] a copolymer having a structural unit derived from at least one type (a) (hereinafter also referred to as "(a)”) selected from the group consisting of unsaturated carboxylic acids and unsaturated carboxylic anhydrides, and a structural unit derived from a monomer (c) (however different from (a)) (hereinafter also referred to as "(c)”) copolymerizable with (a);
  • Resin [K2] a copolymer having a structural unit derived from the (a), a structural unit derived from the (c), and a structural unit derived from a monomer (b) (hereinafter also referred to as "(b)”) having a cyclic ether structure having 2 to 4 carbon atoms and an ethylenically unsaturated bond;
  • Resin [K3] a copolymer having a structural unit derived from the (a) and a structural unit derived from the (b) by addition, and
  • Resin [K5] a copolymer having a structural unit derived from the (b) to which the (a) has been added, and a structural unit derived from the (c);
  • Resin [K6] A copolymer having a structural unit obtained by adding the (a) to a structural unit derived from the (b) and further ester-bonding a carboxylic acid anhydride, and a structural unit derived from the (c).
  • Examples of (a) include unsaturated monocarboxylic acids such as (meth)acrylic acid, crotonic acid, o-, m-, and p-vinylbenzoic acid; Unsaturated dicarboxylic acids such as maleic acid, fumaric acid, citraconic acid, mesaconic acid, itaconic acid, 3-vinylphthalic acid, 4-vinylphthalic acid, 3,4,5,6-tetrahydrophthalic acid, 1,2,3,6-tetrahydrophthalic acid, dimethyltetrahydrophthalic acid, and 1,4-cyclohexenedicarboxylic acid; Bicyclounsaturated compounds containing a carboxy group, such as methyl-5-norbornene-2,3-dicarboxylic acid, 5-carboxybicyclo[2.2.1]hept-2-ene, 5,6-dicarboxybicyclo[2.2.1]hept-2-ene, 5-carboxy-5-methylbicyclo[2.2.1]hept
  • (meth)acrylic acid mono[2-(meth)acryloyloxyethyl] succinate, maleic anhydride, etc. are preferred from the standpoint of copolymerization reactivity, etc.
  • (meth)acrylic acid means acrylic acid and/or methacrylic acid.
  • (meth)acryloyl and “(meth)acrylate”, etc.
  • (b) is, for example, a monomer having a cyclic ether structure having 2 to 4 carbon atoms (for example, at least one selected from the group consisting of an oxirane ring, an oxetane ring, and a tetrahydrofuran ring) and an ethylenically unsaturated bond.
  • (b) is preferably a monomer having a cyclic ether structure having 2 to 4 carbon atoms and a (meth)acryloyloxy group.
  • Examples of (b) include a monomer (b1) having an oxiranyl group and an ethylenically unsaturated bond (hereinafter sometimes referred to as "(b1)”), a monomer (b2) having an oxetanyl group and an ethylenically unsaturated bond (hereinafter sometimes referred to as "(b2)”), and a monomer (b3) having a tetrahydrofuryl group and an ethylenically unsaturated bond (hereinafter sometimes referred to as "(b3)”), etc.
  • a monomer (b1) having an oxiranyl group and an ethylenically unsaturated bond hereinafter sometimes referred to as "(b1)
  • a monomer (b2) having an oxetanyl group and an ethylenically unsaturated bond hereinafter sometimes referred to as "(b2)
  • Examples of (b1) include monomer (b1-1) (hereinafter sometimes referred to as "(b1-1)”) having a structure in which a linear or branched aliphatic unsaturated hydrocarbon is epoxidized, and monomer (b1-2) (hereinafter sometimes referred to as "(b1-2)”) having a structure in which an alicyclic unsaturated hydrocarbon is epoxidized.
  • (b1-1) may, for example, be glycidyl (meth)acrylate, ⁇ -methyl glycidyl (meth)acrylate, ⁇ -ethyl glycidyl (meth)acrylate, glycidyl vinyl ether, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, p-vinylbenzyl glycidyl ether, ⁇ -methyl-o-vinylbenzyl glycidyl ether, ⁇ -methyl-m-vinylbenzyl glycidyl ether, ⁇ -methyl-p-vinylbenzyl glycidyl ether, 2,3-bis(glycidyl Examples include 2,4-bis(glycidyloxymethyl)styrene, 2,5-bis(glycidyloxymethyl)styrene, 2,6-bis(glycidyloxymethyl)
  • (b1-2) includes vinylcyclohexene monoxide, 1,2-epoxy-4-vinylcyclohexane (e.g., Celloxide 2000; manufactured by Daicel Corporation), 3,4-epoxycyclohexylmethyl (meth)acrylate (e.g., Cyclomer A400; manufactured by Daicel Corporation), 3,4-epoxycyclohexylmethyl (meth)acrylate (e.g., Cyclomer M100; manufactured by Daicel Corporation), compounds represented by formula (BI) and compounds represented by formula (BII).
  • 1,2-epoxy-4-vinylcyclohexane e.g., Celloxide 2000; manufactured by Daicel Corporation
  • 3,4-epoxycyclohexylmethyl (meth)acrylate e.g., Cyclomer A400; manufactured by Daicel Corporation
  • 3,4-epoxycyclohexylmethyl (meth)acrylate e.g., Cyclomer M100; manufactured by Daicel
  • R e and R f represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and the hydrogen atom contained in the alkyl group may be substituted with a hydroxy group.
  • X e and X f each represent a single bond, *-R g -, *-R g -O-, *-R g -S- or *-R g -NH-.
  • R g represents an alkanediyl group having 1 to 6 carbon atoms. * represents a bond to O.
  • alkyl group having 1 to 4 carbon atoms examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group.
  • Examples of the alkyl group in which a hydrogen atom is substituted with a hydroxy group include a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 1-hydroxypropyl group, a 2-hydroxypropyl group, a 3-hydroxypropyl group, a 1-hydroxy-1-methylethyl group, a 2-hydroxy-1-methylethyl group, a 1-hydroxybutyl group, a 2-hydroxybutyl group, a 3-hydroxybutyl group, and a 4-hydroxybutyl group.
  • R e and R f are preferably a hydrogen atom, a methyl group, a hydroxymethyl group, a 1-hydroxyethyl group, or a 2-hydroxyethyl group, and more preferably a hydrogen atom or a methyl group.
  • alkanediyl group examples include a methylene group, an ethylene group, a propane-1,2-diyl group, a propane-1,3-diyl group, a butane-1,4-diyl group, a pentane-1,5-diyl group, and a hexane-1,6-diyl group.
  • X e and X f are preferably a single bond, a methylene group, an ethylene group, *-CH 2 -O-, and *-CH 2 CH 2 -O-, and more preferably a single bond or *-CH 2 CH 2 -O- (* represents a bond to O).
  • the compound represented by formula (BI) includes compounds represented by any of formulas (BI-1) to (BI-15). Among them, compounds represented by formulas (BI-1), (BI-3), (BII-5), (BI-7), (BI-9) or (BI-11) to (BI-15) are preferred, and compounds represented by formulas (BI-1), (BI-7), (BI-9) or (BI-15) are more preferred.
  • the compound represented by formula (BII) includes compounds represented by any of formulas (BII-1) to (BII-15). Among them, compounds represented by formulas (BII-1), (BII-3), (BII-5), (BII-7), (BII-9) or (BII-11) to (BII-15) are preferred, and compounds represented by formulas (BII-1), (BII-7), (BII-9) or (BII-15) are more preferred.
  • the compound represented by formula (BI) and the compound represented by formula (BII) may be used alone or in combination of two or more kinds.
  • the content ratio thereof [compound represented by formula (BI): compound represented by formula (BII)] is preferably 5:95 to 95:5, more preferably 20:80 to 80:20 on a molar basis.
  • (b2) is a monomer having an oxetanyl group and a (meth)acryloyloxy group.
  • Examples of (b2) include 3-methyl-3-methacryloyloxymethyloxetane, 3-methyl-3-acryloyloxymethyloxetane, 3-ethyl-3-methacryloyloxymethyloxetane, 3-ethyl-3-acryloyloxymethyloxetane, 3-methyl-3-methacryloyloxyethyloxetane, 3-methyl-3-acryloyloxyethyloxetane, 3-ethyl-3-methacryloyloxyethyloxetane, 3-ethyl-3-acryloyloxyethyloxetane, and the like.
  • (b3) a monomer having a tetrahydrofuryl group and a (meth)acryloyloxy group is more preferable.
  • Specific examples of (b3) include tetrahydrofurfuryl acrylate (e.g., Viscoat V#150, manufactured by Osaka Organic Chemical Industry Co., Ltd.), tetrahydrofurfuryl methacrylate, etc.
  • (b1) is preferable since it can improve reliability in terms of heat resistance, chemical resistance, etc.
  • Examples of (c) include methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, sec-butyl (meth)acrylate, tert-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, dodecyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, cyclopentyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-methylcyclohexyl (meth)acrylate, tricyclo[5.2.1.0 2,6 ] decan-8-yl (meth)acrylate (commonly known in the art as "dicyclopentanyl (meth)acrylate” and sometimes referred to as “tricyclodecyl (meth)acrylate”).
  • (meth)acrylic acid esters such as decene-8-yl (meth)acrylate (commonly known in the art as "dicyclopentenyl (meth)acrylate"), dicyclopentanyloxyethyl (meth)acrylate, isobornyl (meth)acrylate, adamantyl (meth)acrylate, allyl (meth)acrylate, propargyl (meth)acrylate, phenyl (meth)acrylate, naphthyl (meth)acrylate, and benzyl (meth)acrylate; Hydroxy group-containing (meth)acrylic acid esters such as 2-hydroxyethyl (meth)acrylate and 2-hydroxypropyl (meth)acrylate; dicarboxylic acid diesters such as diethyl maleate, diethyl fumarate, and diethyl itaconate; Bicyclo[2.2.1]hept-2-ene, 5-methylbicyclo[2.2.1]hept-2-
  • the structural units derived from (a) are preferably from 2 mol % to 60 mol %.
  • the structural units derived from (c) are preferably from 40 mol % to 98 mol %. More preferably, the structural units derived from (a) are from 10 mol % to 50 mol % and the structural units derived from (c) are from 50 mol % to 90 mol %.
  • Resin [K1] can be produced, for example, by referring to the method described in the literature "Experimental Methods for Polymer Synthesis” (written by Otsu Takayuki, published by Kagaku Dojin Co., Ltd., 1st edition, 1st printing, published March 1, 1972) and the references cited in said literature.
  • Specific examples include a method in which predetermined amounts of (a) and (c), a polymerization initiator, a solvent, and the like are placed in a reaction vessel, and the atmosphere is deoxygenated, for example by replacing oxygen with nitrogen, and the mixture is heated and kept warm while being stirred.
  • polymerization initiator and solvent used are not particularly limited, and those commonly used in the relevant field can be used.
  • polymerization initiators include azo compounds (2,2'-azobisisobutyronitrile, 2,2'-azobis(2,4-dimethylvaleronitrile), etc.) and organic peroxides (benzoyl peroxide, etc.), and the solvent may be any that dissolves each monomer, such as the solvent (J) described below.
  • the resulting copolymer may be used as is in the solution after the reaction, or after being concentrated or diluted, or after being extracted as a solid (powder) by a method such as reprecipitation. If a solvent (J) described below is used as the solvent during polymerization, the solution after the reaction can be used as is in the preparation of the composition, simplifying the process of producing the composition.
  • a solvent (J) described below is used as the solvent during polymerization
  • the ratio of the structural units derived from each of them to all the structural units constituting the resin [K2] is as follows: Structural units derived from (a): 2 to 45 mol% Structural units derived from (b): 2 to 95 mol% Structural units derived from (c): 1 to 65 mol% It is preferred that Structural units derived from (a): 5 to 40 mol% Structural units derived from (b): 5 to 80 mol% Structural units derived from (c): 5 to 60 mol% It is more preferable that:
  • compositions I to III tend to have excellent storage stability and developability when forming colored patterns.
  • Resin [K2] can be produced, for example, in the same manner as described above for producing resin [K1].
  • Resin [K3] can be produced by adding the cyclic ether having 2 to 4 carbon atoms contained in (b) to the carboxylic acid and/or carboxylic anhydride contained in (a) to a copolymer of (a) and (c).
  • a copolymer of (a) and (c) is produced in the same manner as described for the production method of resin [K1].
  • the ratio of the structural units derived from each is the same as that described for resin [K1].
  • the atmosphere in the flask is replaced with air instead of nitrogen, and (b) the carboxylic acid or carboxylic anhydride is reacted with the cyclic ether in the presence of a reaction catalyst (e.g., an organic phosphorus compound, a metal complex, an amine compound, etc.) and a polymerization inhibitor (e.g., hydroquinone, etc.) at a temperature of 60°C or higher and 130°C or lower for 1 hour to 10 hours, to produce resin [K3].
  • a reaction catalyst e.g., an organic phosphorus compound, a metal complex, an amine compound, etc.
  • a polymerization inhibitor e.g., hydroquinone, etc.
  • the amount of (b) used is preferably 5 to 80 moles, more preferably 10 to 75 moles, per 100 moles of (a). By keeping it within this range, the storage stability of the composition and the balance of the solvent resistance, heat resistance, and mechanical strength of each layer tend to be good.
  • An example of an organic phosphorus compound that can be used as a reaction catalyst is triphenylphosphine.
  • An example of an amine compound that can be used as a reaction catalyst is an aliphatic tertiary amine compound or an aliphatic quaternary ammonium salt compound, and specific examples of such compounds include tris(dimethylaminomethyl)phenol, triethylamine, tetrabutylammonium bromide, and tetrabutylammonium chloride.
  • the reaction catalyst is preferably an organic phosphorus compound.
  • the amount of the reaction catalyst used is preferably 0.001 parts by mass or more and 5 parts by mass or less per 100 parts by mass of the total amount of (a), (b), and (c).
  • the amount of the polymerization inhibitor used is preferably 0.001 parts by mass or more and 5 parts by mass or less per 100 parts by mass of the total amount of (a), (b), and (c).
  • the reaction conditions such as the charging method, reaction temperature and time can be adjusted as appropriate, taking into consideration the production equipment, the amount of heat generated by polymerization, etc.
  • the charging method and reaction temperature can be adjusted as appropriate, taking into consideration the production equipment, the amount of heat generated by polymerization, etc.
  • Resin [K4] is a resin obtained by further reacting resin [K3] with a carboxylic acid anhydride.
  • the hydroxyl group generated by the reaction of a carboxylic acid or a carboxylic acid anhydride with a cyclic ether is reacted with the carboxylic acid anhydride.
  • carboxylic acid anhydrides include succinic anhydride, maleic anhydride, citraconic anhydride, itaconic anhydride, 3-vinylphthalic anhydride, 4-vinylphthalic anhydride, 3,4,5,6-tetrahydrophthalic anhydride, 1,2,3,6-tetrahydrophthalic anhydride, dimethyltetrahydrophthalic anhydride, and 5,6-dicarboxybicyclo[2.2.1]hept-2-ene anhydride.
  • the amount of the carboxylic acid anhydride used is preferably 0.5 moles or more and 1 mole or less per mole of the amount of (b) used.
  • resin [K5] is produced by obtaining a copolymer of (b) and (c) in the same manner as in the production method of resin [K1] described above.
  • the resulting copolymer may be used as it is in the form of a solution after the reaction, or a concentrated or diluted solution, or it may be extracted as a solid (powder) by a method such as reprecipitation.
  • the ratios of the structural units derived from (b) and (c) to the total number of moles of all structural units constituting the copolymer are, respectively,
  • the structural units derived from (b) are preferably from 5 mol % to 95 mol %.
  • the structural units derived from (c) are preferably from 5 mol % to 95 mol %.
  • the structural units derived from (b) are more preferably from 10 mol % to 90 mol %.
  • the structural units derived from (c) are more preferably from 10 mol % to 90 mol %.
  • the amount of (a) used to react with the copolymer is preferably 5 to 80 moles per 100 moles of (b).
  • Resin [K6] is a resin obtained by further reacting resin [K5] with a carboxylic acid anhydride.
  • the hydroxyl group generated by the reaction of a cyclic ether with a carboxylic acid or a carboxylic acid anhydride is reacted with the carboxylic acid anhydride.
  • carboxylic acid anhydrides include succinic anhydride, maleic anhydride, citraconic anhydride, itaconic anhydride, 3-vinylphthalic anhydride, 4-vinylphthalic anhydride, 3,4,5,6-tetrahydrophthalic anhydride, 1,2,3,6-tetrahydrophthalic anhydride, dimethyltetrahydrophthalic anhydride, and 5,6-dicarboxybicyclo[2.2.1]hept-2-ene anhydride.
  • the amount of carboxylic acid anhydride used is preferably 0.5 to 1 mole per mole of (a).
  • resin [K1], resin [K2], resin [K3], resin [K4], resin [K5] and resin [K6] include resin [K1] such as benzyl (meth)acrylate/(meth)acrylic acid copolymer, styrene/(meth)acrylic acid copolymer, (meth)acrylic acid/mono[2-(meth)acryloyloxyethyl] succinate/dicyclopentanyl (meth)acrylate/methyl (meth)acrylate copolymer; Resins [K2] such as glycidyl (meth)acrylate/benzyl (meth)acrylate/(meth)acrylic acid copolymer, glycidyl (meth)acrylate/styrene/(meth)acrylic acid copolymer, 3,4-epoxytricyclo[5.2.1.0 2,6 ]decyl acrylate/(meth)acrylic acid/methyl (meth)acrylate copoly
  • the resin (C) contained in the composition I preferably contains at least one selected from the group consisting of resin [K1], resin [K2], resin [K3], resin [K4], resin [K5] and resin [K6], more preferably contains at least one selected from the group consisting of resin [K1] and resin [K2], and even more preferably contains resin [K1].
  • the resin (C) contained in composition II preferably contains at least one selected from the group consisting of resin [K1], resin [K2], resin [K3], resin [K4], resin [K5] and resin [K6], more preferably contains at least one selected from the group consisting of resin [K4] and resin [K6], and even more preferably contains resin [K6].
  • a resin in which glycidyl (meth)acrylate is added to a dicyclopentanyl (meth)acrylate/methyl (meth)acrylate/(meth)acrylic acid copolymer and tetrahydrophthalic anhydride is further ester-bonded to the resin or a resin in which (meth)acrylic acid is added to a dicyclopentanyl (meth)acrylate/2-ethylhexyl (meth)acrylate/glycidyl (meth)acrylate copolymer and succinic anhydride is further ester-bonded to the resin, is preferred, and a resin in which succinic anhydride is further ester-bonded to the resin in which (meth)acrylic acid is added to a dicyclopentanyl (meth)acrylate/2-ethylhexyl (meth)acrylate/glycidyl (meth)acrylate copolymer and succinic anhydride is further ester-bonded to the resin, is
  • the resin (C) contained in composition III preferably contains at least one selected from the group consisting of resin [K1], resin [K2], resin [K3], resin [K4], resin [K5] and resin [K6], more preferably contains at least one selected from the group consisting of resin [K1] and resin [K2], and even more preferably contains resin [K1] and resin [K2].
  • resin (C) is the resin described in JP 2018-123274 A.
  • a resin is a polymer (hereinafter also referred to as "resin (Ca)") that has a double bond in the side chain, contains a structural unit ( ⁇ ) represented by the following formula (I) in the main chain, and contains a structural unit ( ⁇ ) represented by the following formula (II), and further contains an acid group.
  • the acid group can be introduced into the resin (Ca) by, for example, including a structural unit ( ⁇ ) derived from an acid group-containing monomer (e.g., (meth)acrylic acid, etc.).
  • the resin (Ca) preferably includes structural units ( ⁇ ), ( ⁇ ), and ( ⁇ ) in the main chain skeleton.
  • R A and R B are the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 25 carbon atoms.
  • n represents the average number of repeating units of the structural unit represented by formula (I) and is a number of 1 or more.
  • R C may be the same or different and represent a hydrogen atom or a methyl group.
  • R D may be the same or different and represent a linear or branched hydrocarbon group having 4 to 20 carbon atoms.
  • m represents the average number of repeating units of the structural unit represented by formula (II) and is a number of 1 or more.
  • the content of the structural unit ( ⁇ ) is, for example, 0.5% by mass or more and 50% by mass or less, preferably 1% by mass or more and 40% by mass or less, and more preferably 5% by mass or more and 30% by mass or less, based on 100% by mass of the total amount of all monomer units that provide the main chain skeleton of the resin (Ca), from the viewpoint of the heat resistance and storage stability of the resin (Ca).
  • n in the formula (I) represents the average number of repeating units of the structural unit ( ⁇ ) in the resin (Ca), and n can be set so that the content of the structural unit ( ⁇ ) falls within the above range.
  • the content of the structural unit ( ⁇ ) is, from the viewpoint of the solvent resistance of each layer, for example, 10% by mass or more and 90% by mass or less, preferably 20% by mass or more and 80% by mass or less, and more preferably 30% by mass or more and 75% by mass or less, relative to 100% by mass of the total amount of all monomer units that provide the main chain skeleton of the resin (Ca).
  • m in formula (II) represents the average number of repeating units of the structural unit ( ⁇ ) in the resin (Ca), and m can be set so that the content of the structural unit ( ⁇ ) falls within the above-mentioned range.
  • the content of the structural unit ( ⁇ ) is, for example, from 0.5% by mass to 50% by mass, preferably from 2% by mass to 50% by mass, and more preferably from 5% by mass to 45% by mass, relative to 100% by mass of the total amount of all monomer units that provide the main chain structure of the resin (Ca), from the viewpoint of the solubility of the resin (Ca) in the solvent (J).
  • the weight average molecular weight Mw of resin (C) (other than resin (C-1)) measured by GPC in terms of standard polystyrene is, for example, 1000 or more and 100,000 or less, and from the viewpoint of the developability and luminescence intensity of the composition, is preferably 2000 or more and 50,000 or less, and more preferably 3000 or more and 20,000 or less.
  • the Mw of resin (C) can be adjusted by appropriately combining reaction conditions such as the selection of raw materials used, the charging method, and the reaction temperature and time.
  • the Mw of resin (C) can be measured according to the measurement method described in the Examples section below. Alternatively, the Mw of resin (C) contained in the composition may be measured using GPC.
  • the molecular weight distribution [weight average molecular weight (Mw)/number average molecular weight (Mn)] of the resin (C) measured by GPC is, for example, 1.0 or more and 6.0 or less, and from the viewpoint of improving the emission intensity, is preferably 1.2 or more and 4.0 or less.
  • the acid value of resin (C) is, from the viewpoint of the developability of the composition and the solvent resistance of each layer, for example, 30 mgKOH/g or more, preferably 90 mgKOH/g to 150 mgKOH/g, more preferably 95 mgKOH/g to 140 mgKOH/g, and even more preferably 100 mgKOH/g to 130 mgKOH/g.
  • the acid value of resin (C) can be adjusted by the content of a monomer component having an acid group (e.g., (a) above) and the content of a carboxylic acid anhydride to be reacted with a hydroxy group generated by the reaction of a carboxylic acid or a carboxylic acid anhydride with a cyclic ether.
  • the acid value of resin (C) is a value measured as the amount (mg) of potassium hydroxide required to neutralize 1 g of resin (C), and can be determined, for example, by titration with an aqueous potassium hydroxide solution. Specifically, it can be measured according to the measurement method described in the Examples section below. Alternatively, the acid value can be determined, for example, by performing a structural analysis of resin (C) contained in the composition.
  • the resin (C) preferably contains a resin having a double bond equivalent of 300 g/eq or more and 2000 g/eq or less, and more preferably contains a resin having a double bond equivalent of 500 g/eq or more and 1500 g/eq or less.
  • An example of a resin having a double bond equivalent of 300 g/eq or more and 2000 g/eq or less is a (meth)acrylic resin.
  • the resin (C) is preferably made of a (meth)acrylic resin.
  • the content of resin (C) in composition I is, for example, 5% by mass or more and 80% by mass or less, preferably 10% by mass or more and 70% by mass or less, more preferably 13% by mass or more and 60% by mass or less, and even more preferably 17% by mass or more and 55% by mass or less, relative to the total amount of solids in composition I.
  • the content of resin (C) is within the above range, the semiconductor particles (A) tend to be easily dispersed, and the luminescence intensity of the wavelength conversion layer tends to be high.
  • the content of resin (C) in composition II is, for example, 0.00001% by mass or more and 99.99999% by mass or less, preferably 1% by mass or more and 99% by mass or less, more preferably 1% by mass or more and 97% by mass or less, even more preferably 1% by mass or more and 95% by mass or less, still more preferably 3% by mass or more and 90% by mass or less, particularly preferably 5% by mass or more and 80% by mass or less, particularly preferably 10% by mass or more and 70% by mass or less, and most preferably 35% by mass or more and 65% by mass or less, based on the total amount of solids in composition II.
  • the content of resin (C) in composition III is, for example, 0.00001% by mass or more and 99.99999% by mass or less, preferably 1% by mass or more and 99% by mass or less, more preferably 1% by mass or more and 97% by mass or less, even more preferably 1% by mass or more and 95% by mass or less, still more preferably 3% by mass or more and 90% by mass or less, particularly preferably 5% by mass or more and 80% by mass or less, and most preferably 10% by mass or more and 70% by mass or less, based on the total amount of solids in composition III.
  • the mass ratio (solid content ratio) of the resin (C) to the polymerizable compound (D) is, for example, 1 or more, and from the viewpoints of the developability of composition I and the luminous intensity of the wavelength conversion layer, is preferably 1.5 or more, more preferably 2 or more, and is preferably 5 or less, more preferably 4 or less.
  • the mass ratio (solid content ratio) of the resin (C) to the polymerizable compound (D) is, for example, 1 or more, and from the viewpoint of the developability of composition II, is preferably 1 or more, more preferably 1.5 or more, and is preferably 5 or less, more preferably 4 or less.
  • the mass ratio (solid content ratio) of the resin (C) to the polymerizable compound (D) is, for example, 0.5 or more, and from the viewpoint of the developability of composition III, is preferably 0.8 or more, more preferably 1.2 or more, and is preferably 5 or less, more preferably 4 or less.
  • the polymerizable compound (D) is a compound that can be polymerized by an active radical, an acid, or the like generated from a polymerization initiator (E) described later.
  • Examples of the polymerizable compound (D) include a compound having an ethylenically unsaturated bond, etc.
  • Examples of the polymerizable compound (D) include photopolymerizable compounds such as (meth)acrylic acid ester compounds.
  • Another example of the polymerizable compound (D) is a thermally polymerizable compound. Two or more types may be included.
  • the polymerizable compound (D) is preferably a photopolymerizable compound having two or more ethylenically unsaturated bonds in the molecule, more preferably a photopolymerizable compound having three or more ethylenically unsaturated bonds in the molecule, and the number of ethylenically unsaturated bonds in the molecule is preferably six or less.
  • the ethylenically unsaturated bonds are preferably (meth)acryloyloxy groups.
  • the weight average molecular weight of the polymerizable compound (D) is preferably 150 or more and 2900 or less, more preferably 250 or more and 1500 or less.
  • composition II from the viewpoint of suppressing a decrease in the luminescence intensity of the wavelength conversion layer due to heat and from the viewpoint of patterning properties when forming a patterned protective layer, it is preferable that the polymerizable compound (D) has three or more ethylenically unsaturated bonds in the molecule, and more preferably has three or more (meth)acryloyloxy groups.
  • the polymerizable compound (D) does not contain a silicon atom in the molecule.
  • Photopolymerizable compounds having two ethylenically unsaturated bonds in the molecule include bifunctional (meth)acrylic compounds, such as alkylene glycol di(meth)acrylates, polyoxyalkylene glycol di(meth)acrylates, halogen-substituted alkylene glycol di(meth)acrylates, di(meth)acrylates of aliphatic polyols, di(meth)acrylates of hydrogenated dicyclopentadiene or tricyclodecane dialkanol, di(meth)acrylates of dioxane glycol or dioxane dialkanol, di(meth)acrylates of alkylene oxide adducts of bisphenol A or bisphenol F, and epoxy di(meth)acrylates of bisphenol A or bisphenol F.
  • bifunctional (meth)acrylic compounds such as alkylene glycol di(meth)acrylates, polyoxyalkylene glycol di(meth)acrylates, halogen-substituted al
  • bifunctional (meth)acrylic compounds include ethylene glycol di(meth)acrylate, 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, trimethylolpropane di(meth)acrylate, pentaerythritol di(meth)acrylate, ditrimethylolpropane di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, polytetramethylene glycol di(meth)acrylate
  • acrylate 2,2-bis[4-(meth)acryloyloxyethoxyethoxyphenyl]propane, 2,2-bis[4-(meth)acryloyloxyethoxyethoxycyclohexyl]propane, hydrogenated dicyclopentadienyl di(meth)acrylate, tricyclodecane dimethanol di(meth)acrylate, 1,3-dioxane-2,5-diyl di(meth)acrylate [also known as dioxane glycol di(meth)acrylate], acrylate of hydroxypivalaldehyde and trimethylolpropane
  • di(meth)acrylate of cetal compound chemical name: 2-(2-hydroxy-1,1-dimethylethyl)-5-ethyl-5-hydroxymethyl-1,3-dioxane
  • tris(hydroxyethyl)isocyanurate di(meth)acrylate di(meth)acrylate of ethoxylated
  • the polymerizable compound (D) may be a compound (Da) having three or more (meth)acryloyloxy groups in the molecule and having an acidic functional group, or a compound (Db) having three or more (meth)acryloyloxy groups in the molecule and having no acidic functional group.
  • the photopolymerizable compound preferably contains at least one of the compounds (Da) and (Db), and may contain two or more compounds (Da), two or more compounds (Db), or at least one compound (Da) and at least one compound (Db).
  • the acidic functional group include a carboxy group, a sulfonic acid group, and a phosphate group. Of these, the acidic functional group is preferably a carboxy group.
  • the polymerizable compound (D) in composition I contains the compound (Da)
  • the dispersibility of the semiconductor particles (A) can be improved, and the luminescence intensity of the wavelength conversion layer can be improved.
  • the curability and heat resistance of the composition can be improved.
  • the number of (meth)acryloyloxy groups in one molecule of compound (Da) is, for example, 3 or more and 6 or less, preferably 3 or more and 5 or less, and more preferably 3.
  • the number of acidic functional groups in one molecule of compound (Da) is 1 or more, and preferably 1.
  • the acidic functional groups may be different or the same, but it is preferable that compound (Da) has at least one carboxy group.
  • Examples of the compound (Da) include compounds obtained by esterifying a compound having three or more (meth)acryloyloxy groups and hydroxyl groups, such as pentaerythritol tri(meth)acrylate or dipentaerythritol penta(meth)acrylate, with a dicarboxylic acid.
  • Examples of the compound include a compound obtained by monoesterifying pentaerythritol tri(meth)acrylate with succinic acid, a compound obtained by monoesterifying dipentaerythritol penta(meth)acrylate with succinic acid, a compound obtained by monoesterifying pentaerythritol tri(meth)acrylate with maleic acid, and a compound obtained by monoesterifying dipentaerythritol penta(meth)acrylate with maleic acid.
  • a compound obtained by monoesterifying pentaerythritol tri(meth)acrylate with succinic acid is preferred.
  • compound (Da) Commercially available products of compound (Da) include, for example, "Aronix M-510” manufactured by Toagosei Co., Ltd., which contains a dibasic acid anhydride adduct of pentaerythritol tri(meth)acrylate as the main component, and "Aronix M-520D” manufactured by Toagosei Co., Ltd., which contains a dibasic acid anhydride adduct of dipentaerythritol penta(meth)acrylate as the main component.
  • These commercially available products have a carboxy group as the acidic functional group.
  • the ethylenically unsaturated bond in compound (Db) is preferably a (meth)acryloyloxy group.
  • the number of ethylenically unsaturated bonds in one molecule of compound (Db) is preferably 3 to 6.
  • Examples of the compound (Db) include glycerin tri(meth)acrylate, alkoxylated glycerin tri(meth)acrylate, trimethylolpropane tri(meth)acrylate, ditrimethylolpropane tri(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, tripentaerythritol octa(meth)acrylate, and tripentaerythritol hepta(meth)acrylate.
  • acrylate tetrapentaerythritol deca(meth)acrylate, tetrapentaerythritol nona(meth)acrylate, tris(2-(meth)acryloyloxyethyl)isocyanurate, ethylene glycol modified pentaerythritol tetra(meth)acrylate, ethylene glycol modified dipentaerythritol hexa(meth)acrylate, propylene glycol modified pentaerythritol tetra(meth)acrylate, propylene glycol modified dipentaerythritol hexa(meth)acrylate, caprolactone modified pentaerythritol tetra(meth)acrylate, caprolactone modified dipentaerythritol hexa(meth)acrylate, etc.
  • dipentaerythritol penta(meth)acrylate dipentaerythritol pent
  • the polymerizable compound (D) in composition II is preferably a compound (Da) since it can more effectively suppress the decrease in the luminescence intensity of the wavelength conversion layer due to heat, and is preferably a compound (Db) since it can improve the residual rate of the film after development.
  • the polymerizable compound (D) in composition II may contain only one of the compounds (Da) and (Db), or may contain both. From the viewpoint of improving the residual rate of the film, the content of the compound (Db) relative to the total amount of the compounds (Da) and (Db) is preferably 50% by mass or more, more preferably 80% by mass or more, even more preferably 90% by mass or more, and is also preferably 100% by mass (i.e., not including the compound (Da)).
  • composition I contains compound (Da).
  • Compound (Da) is contained in an amount of preferably 50 mass% or more, more preferably 70 mass% or more, based on 100 mass% of polymerizable compound (D) contained in composition I.
  • composition III contains compound (Db).
  • Compound (Db) is contained in an amount of preferably 50 mass% or more, more preferably 70 mass% or more, based on 100 mass% of polymerizable compound (D) contained in composition III.
  • the content of the polymerizable compound (D) in composition I is preferably 7% by mass or more and 60% by mass or less, more preferably 10% by mass or more and 45% by mass or less, and even more preferably 13% by mass or more and 30% by mass or less, based on the total amount of solids in composition I.
  • the content of the polymerizable compound (D) is within the above range, the developability of composition I and the solvent resistance of the wavelength converting layer tend to be improved.
  • the content of the polymerizable compound (D) in composition II is from 7% by mass to 60% by mass, more preferably from 10% by mass to 55% by mass, and even more preferably from 15% by mass to 50% by mass, based on the total amount of solids in composition II. If the content is within the above range, it is advantageous in suppressing the decrease in the luminescence intensity of the wavelength conversion layer due to heat.
  • the content of the polymerizable compound (D) in composition III is, for example, 0.00001% by mass or more and 99.99999% by mass or less, preferably 1% by mass or more and 99% by mass or less, more preferably 1% by mass or more and 97% by mass or less, even more preferably 1% by mass or more and 95% by mass or less, still more preferably 1% by mass or more and 90% by mass or less, particularly preferably 2% by mass or more and 80% by mass or less, and most preferably 3% by mass or more and 70% by mass or less, based on the total amount of solids in composition III.
  • the polymerization initiator (E) is a compound that generates an active radical, an acid, or the like by the action of light or heat and can initiate polymerization of the polymerizable compound (D).
  • the composition can contain one or more polymerization initiators (E).
  • polymerization initiator (E) examples include photopolymerization initiators such as oxime compounds, biimidazole compounds, triazine compounds, and acylphosphine compounds, and thermal polymerization initiators such as azo compounds and organic peroxides.
  • an oxime compound is an oxime compound having a first molecular structure represented by the following formula (1).
  • this oxime compound is also referred to as "oxime compound (1).”
  • Including oxime compound (1) as polymerization initiator (E) can be advantageous in terms of improving the luminescence intensity.
  • One of the reasons for this effect is presumably that the unique molecular structure of oxime compound (1) causes a large change in the absorption wavelength of oxime compound (1) before and after cleavage (decomposition) of oxime compound (1), which is necessary for oxime compound (1) to initiate photopolymerization, and therefore oxime compound (1) has a high photoradical polymerization initiation ability.
  • R 1 represents R 11 , OR 11 , COR 11 , SR 11 , CONR 12 R 13 or CN.
  • R 11 , R 12 and R 13 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms or a heterocyclic group having 2 to 20 carbon atoms.
  • the hydrogen atoms of the groups represented by R 11 , R 12 or R 13 may be substituted by OR 21 , COR 21 , SR 21 , NR 22 R 23 , CONR 22 R 23 , -NR 22 -OR 23 , -N(COR 22 )-OCOR 23 , -C( ⁇ N-OR 21 )-R 22 , -C( ⁇ N-OCOR 21 )-R 22 , CN, a halogen atom or COOR 21 .
  • R 21 , R 22 and R 23 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms or a heterocyclic group having 2 to 20 carbon atoms.
  • the hydrogen atom of the group represented by R 21 , R 22 or R 23 may be substituted by CN, a halogen atom, a hydroxy group or a carboxy group.
  • the alkylene portion may be interrupted 1 to 5 times by -O-, -S-, -COO-, -OCO-, -NR 24 -, -NR 24 CO-, -NR 24 COO-, -OCONR 24 -, -SCO-, -COS-, -OCS- or -CSO-.
  • R 24 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 2 to 20 carbon atoms.
  • R 11 , R 12 , R 13 , R 21 , R 22 or R 23 has an alkyl portion
  • the alkyl portion may be branched or cyclic, and R 12 and R 13 , and R 22 and R 23 may be joined together to form a ring.
  • * represents a bond to the second molecular structure, which is a molecular structure other than the first molecular structure that the oxime compound (1) has.
  • Examples of the alkyl group having 1 to 20 carbon atoms represented by R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in formula (1) include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isopentyl group, a tert-pentyl group, a hexyl group, a heptyl group, an octyl group, an isooctyl group, a 2-ethylhexyl group, a tert-octyl group, a nonyl group, an isononyl group, a decyl group, an isodecyl group, an undecyl group, a dodecyl group, a te
  • Examples of the aryl group having 6 to 30 carbon atoms represented by R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in formula (1) include a phenyl group, a tolyl group, a xylyl group, an ethylphenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a phenyl group substituted with one or more of the above-mentioned alkyl groups, a biphenylyl group, a naphthyl group and an anthryl group.
  • Examples of the aralkyl group having 7 to 30 carbon atoms represented by R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in formula (1) include a benzyl group, an ⁇ -methylbenzyl group, an ⁇ , ⁇ -dimethylbenzyl group, and a phenylethyl group.
  • Examples of the heterocyclic group having 2 to 20 carbon atoms represented by R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in formula (1) include a pyridyl group, a pyrimidyl group, a furyl group, a thienyl group, a tetrahydrofuryl group, a dioxolanyl group, a benzoxazol-2-yl group, a tetrahydropyranyl group, a pyrrolidyl group, an imidazolidyl group, a pyrazolidyl group, a thiazolidyl group, an isothiazolidyl group, an oxazolidyl group, an isoxazolidyl group, a piperidyl group, a piperazyl group and a morpholinyl group, and preferably a 5- to 7-membered heterocyclic ring.
  • R 12 and R 13 , and R 22 and R 23 may each be joined together to form a ring, which means that R 12 and R 13 , and R 22 and R 23 may each be joined together to form a ring together with the nitrogen atom, carbon atom or oxygen atom to which they are connected.
  • Examples of the ring that can be formed by combining R 12 and R 13 , and R 22 and R 23 in formula (1) include a cyclopentane ring, a cyclohexane ring, a cyclopentene ring, a benzene ring, a piperidine ring, a morpholine ring, a lactone ring, and a lactam ring, and are preferably 5- to 7-membered rings.
  • halogen atom which may be contained as a substituent in R 11 , R 12 , R 13 , R 21 , R 22 and R 23 in the formula (1) include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • R 1 in formula (1) is preferably R 11 , more preferably an alkyl group having 1 to 20 carbon atoms, even more preferably an alkyl group having 1 to 10 carbon atoms, and even more preferably an alkyl group having 1 to 6 carbon atoms.
  • the second molecular structure linked to the first molecular structure represented by formula (1) is the structure represented by the following formula (2).
  • the second molecular structure means a molecular structure portion other than the first molecular structure that the oxime compound (1) has.
  • R2 and R3 each independently represent R11 , OR11 , SR11 , COR11 , CONR12R13 , NR12COR11 , OCOR11 , COOR11 , SCOR11 , OCSR11 , COSR11 , CSOR11 , CN or a halogen atom.
  • R2s When multiple R2s are present, they may be the same or different.
  • R3 's When multiple R3 's are present, they may be the same or different.
  • R 11 , R 12 and R 13 have the same meanings as above.
  • s and t each independently represent an integer from 0 to 4.
  • L represents a sulfur atom, CR 31 R 32 , CO or NR 33 .
  • R 31 , R 32 and R 33 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms or an aralkyl group having 7 to 30 carbon atoms.
  • R 31 , R 32 or R 33 When the group represented by R 31 , R 32 or R 33 has an alkyl portion, the alkyl portion may be branched or cyclic, and R 31 , R 32 and R 33 may each independently form a ring together with either of the adjacent benzene rings.
  • R 4 is a hydroxy group, a carboxy group, or a group represented by the following formula (2-1):
  • L 1 represents —O—, —S—, —NR 22 —, —NR 22 CO—, —SO 2 —, —CS—, —OCO— or —COO—.
  • R22 has the same meaning as above.
  • L2 represents a group obtained by removing v hydrogen atoms from an alkyl group having 1 to 20 carbon atoms, a group obtained by removing v hydrogen atoms from an aryl group having 6 to 30 carbon atoms, a group obtained by removing v hydrogen atoms from an aralkyl group having 7 to 30 carbon atoms, or a group obtained by removing v hydrogen atoms from a heterocyclic group having 2 to 20 carbon atoms.
  • the alkylene portion may be interrupted 1 to 5 times by -O-, -S-, -COO-, -OCO-, -NR 22 -, -NR 22 COO-, -OCONR 22 -, -SCO-, -COS-, -OCS- or -CSO-, and the alkylene portion may be branched or cyclic.
  • R 4a represents OR 41 , SR 41 , CONR 42 R 43 , NR 42 COR 43 , OCOR 41 , COOR 41 , SCOR 41 , OCSR 41 , COSR 41 , CSOR 41 , CN or a halogen atom.
  • R 4a When a plurality of R 4a are present, they may be the same or different.
  • R 41 , R 42 and R 43 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an aralkyl group having 7 to 30 carbon atoms.
  • the groups represented by R 41 , R 42 and R 43 have an alkyl portion, the alkyl portion may be branched or cyclic, and R 42 and R 43 may together form a ring.
  • v represents an integer of 1 to 3. It represents a group represented by the following formula:
  • Examples of the alkyl group having 1 to 20 carbon atoms, the aryl group having 6 to 30 carbon atoms, and the aralkyl group having 7 to 30 carbon atoms represented by R 11 , R 12 , R 13 , R 21 , R 22 , R 23 , R 24 , R 31 , R 32 and R 33 in formula ( 2), and R 22 , R 41 , R 42 and R 43 in formula (2-1) above, are the same as the examples for R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in formula (1).
  • Examples of the heterocyclic group having 2 to 20 carbon atoms represented by R 11 , R 12 , R 13 , R 21 , R 22 , R 23 , and R 24 in formula (2), and R 22 in formula (2-1) above, are the same as the examples of R 11 , R 12 , R 13 , R 21 , R 22 , R 23 , and R 24 in formula (1).
  • R 31 , R 32 and R 33 may each independently form a ring together with either of the adjacent benzene rings, which means that R 31 , R 32 and R 33 may each independently form a ring together with either of the adjacent benzene rings and the nitrogen atom to which they are connected.
  • Examples of the ring that R 31 , R 32 and R 33 in formula (2) may form together with either adjacent benzene ring are the same as the examples of the ring that R 12 and R 13 , and R 2 and R 23 in formula (1) may form together.
  • L2 in the above formula (2-1) represents a group in which v hydrogen atoms have been removed from an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 2 to 20 carbon atoms.
  • Examples of groups obtained by removing v hydrogen atoms from an alkyl group having 1 to 20 carbon atoms, when v is 1, include alkylene groups such as methylene, ethylene, propylene, methylethylene, butylene, 1-methylpropylene, 2-methylpropylene, 1,2-dimethylpropylene, 1,3-dimethylpropylene, 1-methylbutylene, 2-methylbutylene, 3-methylbutylene, 4-methylbutylene, 2,4-dimethylbutylene, 1,3-dimethylbutylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, dodecylene, tridecylene, tetradecylene, pentadecylene, ethane-1,1-diyl, and propane-2,2-diyl.
  • alkylene groups such as methylene, ethylene, propylene, methylethylene, butylene, 1-methylpropylene, 2-methylprop
  • L3 and L5 represent an alkylene group having 1 to 10 carbon atoms
  • L4 and L6 represent a single bond or an alkylene group having 1 to 10 carbon atoms.
  • alkylene groups having 1 to 10 carbon atoms include methylene, ethylene, propylene, methylethylene, butylene, 1-methylpropylene, 2-methylpropylene, 1,2-dimethylpropylene, 1,3-dimethylpropylene, 1-methylbutylene, 2-methylbutylene, 3-methylbutylene, 4-methylbutylene, 2,4-dimethylbutylene, 1,3-dimethylbutylene, pentylene, hexylene, heptylene, octylene, nonylene, and decylene.
  • Examples of groups in which v hydrogen atoms have been removed from a heterocyclic group having 2 to 20 carbon atoms, when v is 1, include divalent heterocyclic groups such as 2,5-pyridinediyl group, 2,6-pyridinediyl group, 2,5-pyrimidinediyl group, 2,5-thiophenediyl group, 3,4-tetrahydrofurandiyl group, 2,5-tetrahydrofurandiyl group, 2,5-furandiyl group, 3,4-thiazolediyl group, 2,5-benzofurandiyl group, 2,5-benzothiophenediyl group, N-methylindole-2,5-diyl group, 2,5-benzothiazolediyl group, and 2,5-benzoxazolediyl group.
  • divalent heterocyclic groups such as 2,5-pyridinediyl group, 2,6-pyridinediyl group, 2,5-pyrimidinediyl group, 2,
  • Examples of the halogen atom represented by R 2 and R 3 in formula (2) and R 4a in formula (2-1) above include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • a preferred example of the structure represented by formula (2) is the structure represented by the following formula (2a):
  • R 44 represents a hydroxy group, a carboxy group, or a group represented by the following formula (2-2):
  • L 11 represents *-O- or *-OCO-
  • * represents a bond to L 12
  • L 12 represents an alkylene group having 1 to 20 carbon atoms which may be interrupted by 1 to 3 -O-
  • R 44a represents OR 55 or COOR 55
  • R 55 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 44 is preferably a group represented by formula (2-2), which is advantageous in terms of the solubility of the oxime compound (1) in the solvent (J) and the developability of the composition.
  • the method for producing the oxime compound (1) having the second molecular structure represented by formula (2) is not particularly limited, but it can be produced, for example, by the method described in JP 2011-132215 A.
  • Another example of a second molecular structure linked to the first molecular structure represented by formula (1) is the structure represented by formula (3) below.
  • R 5 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 2 to 20 carbon atoms.
  • R 21 , R 22 and R 23 have the same meanings as above.
  • the hydrogen atom of the group represented by R 21 , R 22 or R 23 may be substituted by CN, a halogen atom, a hydroxy group or a carboxy group.
  • the alkylene portion may be interrupted 1 to 5 times by -O-, -S-, -COO-, -OCO-, -NR 24 -, -NR 24 CO-, -NR 24 COO- , -OCONR 24 -, -SCO-, -COS-, -OCS- or -CSO-.
  • R 24 has the same meaning as above.
  • R 21 , R 22 and R 23 have an alkyl portion
  • the alkyl portion may be branched or cyclic, and R 22 and R 23 may be joined together to form a ring.
  • R 6 , R 7 , R 8 and R 9 each independently represent R 61 , OR 61 , SR 61 , COR 62 , CONR 63 R 64 , NR 65 COR 61 , OCOR 61 , COOR 62 , SCOR 61 , OCSR 61 , COSR 62 , CSOR 61 , a hydroxyl group, a nitro group, CN or a halogen atom.
  • R 61 , R 62 , R 63 , R 64 and R 65 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms or a heterocyclic group having 2 to 20 carbon atoms.
  • the hydrogen atoms of the groups represented by R 61 , R 62 , R 63 , R 64 or R 65 may be substituted by OR 21 , COR 21 , SR 21 , NR 22 R 23 , CONR 22 R 23 , -NR 22 -OR 23 , -N(COR 22 )-OCOR 23 , -C( ⁇ N-OR 21 )-R 22 , -C( ⁇ N-OCOR 21 )-R 22 , CN, a halogen atom, or COOR 21 .
  • R 6 and R 7 , R 7 and R 8 , and R 8 and R 9 may each be joined together to form a ring.
  • Examples of the alkyl group having 1 to 20 carbon atoms , the aryl group having 6 to 30 carbon atoms, the aralkyl group having 7 to 30 carbon atoms, and the heterocyclic group having 2 to 20 carbon atoms represented by R 5 , R 21 , R 22 , R 23 , R 24 , R 61 , R 62 , R 63 , R 64 and R 65 in formula (3) are the same as the examples for R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in formula (1).
  • R 22 and R 23 may be taken together to form a ring, which means that R 22 and R 23 may be taken together to form a ring together with the nitrogen atom, carbon atom or oxygen atom to which they are connected.
  • R 5 is a group represented by the following formula (3-1).
  • Z represents a group in which one hydrogen atom has been removed from an alkyl group having 1 to 20 carbon atoms, a group in which one hydrogen atom has been removed from an aryl group having 6 to 30 carbon atoms, a group in which one hydrogen atom has been removed from an aralkyl group having 7 to 30 carbon atoms, or a group in which one hydrogen atom has been removed from a heterocyclic group having 2 to 20 carbon atoms
  • the alkylene portion may be interrupted 1 to 5 times by -O-, -S-, -COO-, -OCO-, -NR 24 -, -NR 24 COO-, -OCONR 24 -, -SCO-, -COS-, -OCS- or -CSO-, and the alkylene portion may be branched or cyclic.
  • R 21 , R 22 and R 24 have the same meanings as defined above. From the same viewpoint as above
  • R 21 and R 22 in formula (3-1) are preferably an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 30 carbon atoms, and more preferably a methyl group, an ethyl group, or a phenyl group.
  • R 7 is a nitro group.
  • the method for producing the oxime compound (1) having the second molecular structure represented by formula (3) is not particularly limited, but it can be produced, for example, by the methods described in JP-A-2000-80068 and JP-A-2011-178776.
  • Another example of a second molecular structure linked to the first molecular structure represented by formula (1) is the structure represented by formula (4) below.
  • R 71 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 2 to 20 carbon atoms.
  • the alkyl moiety may be branched or cyclic.
  • the hydrogen atom of the group represented by R 71 may be substituted by R 21 , OR 21 , COR 21 , SR 21 , NR 22 R 23 , CONR 22 R 23 , -NR 22 -OR 23 , -N(COR 22 )-OCOR 23 , NR 22 COR 21 , OCOR 21 , COOR 21 , -C( ⁇ N-OR 21 )-R 22 , -C( ⁇ N-OCOR 21 )-R 22 , SCOR 21 , OCSR 21 , COSR 21 , CSOR 21 , a hydroxyl group, a nitro group, CN, a halogen atom, or COOR 21 .
  • R 21 , R 22 and R 23 have the same meanings as defined above.
  • the hydrogen atom of the group represented by R 21 , R 22 or R 23 may be substituted by CN, a halogen atom, a hydroxy group or a carboxy group.
  • the alkylene portion may be interrupted 1 to 5 times by -O-, -S-, -COO-, -OCO-, -NR 24 -, -NR 24 CO-, -NR 24 COO- , -OCONR 24 -, -SCO-, -COS-, -OCS- or -CSO-.
  • R 24 has the same meaning as above.
  • R 21 , R 22 and R 23 have an alkyl portion
  • the alkyl portion may be branched or cyclic, and R 22 and R 23 may be joined together to form a ring.
  • R 72 , R 73 and the three R 74s each independently represent R 61 , OR 61 , SR 61 , COR 62 , CONR 63 R 64 , NR 65 COR 61 , OCOR 61 , COOR 62 , SCOR 61 , OCSR 61 , COSR 62 , CSOR 61 , a hydroxyl group, a nitro group, CN or a halogen atom.
  • R 61 , R 62 , R 63 , R 64 and R 65 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms or a heterocyclic group having 2 to 20 carbon atoms.
  • the hydrogen atoms of the groups represented by R 61 , R 62 , R 63 , R 64 or R 65 may be substituted by OR 21 , COR 21 , SR 21 , NR 22 R 23 , CONR 22 R 23 , -NR 22 -OR 23 , -N(COR 22 )-OCOR 23 , -C( ⁇ N-OR 21 )-R 22 , -C( ⁇ N-OCOR 21 )-R 22 , CN, a halogen atom, or COOR 21 .
  • R 72 and R 73 , and two R 74s may be joined together to form a ring.
  • Examples of the alkyl group having 1 to 20 carbon atoms , the aryl group having 6 to 30 carbon atoms, the aralkyl group having 7 to 30 carbon atoms, and the heterocyclic group having 2 to 20 carbon atoms represented by R 71 , R 21 , R 22 , R 23 , R 24 , R 61 , R 62 , R 63 , R 64 and R 65 in formula (4) are the same as the examples for R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in formula (1).
  • R 22 and R 23 may be taken together to form a ring, which means that R 22 and R 23 may be taken together to form a ring together with the nitrogen atom, carbon atom or oxygen atom to which they are connected.
  • Examples of the ring that can be formed by R 22 and R 23 together in formula (4) are the same as the examples of the ring that can be formed by R 12 and R 13 , and R 22 and R 23 together in formula (1).
  • Examples of the halogen atoms which may replace the hydrogen atoms of the halogen atoms represented by R 72 , R 73 and R 74 , and R 71 , R 21 , R 22 , R 23 , R 61 , R 62 , R 63 , R 64 and R 65 in formula (4) include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the method for producing the oxime compound (1) having the second molecular structure represented by formula (4) is not particularly limited, but it can be produced, for example, by the methods described in WO 2017/051680 and WO 2020/004601.
  • Another example of a second molecular structure linked to the first molecular structure represented by formula (1) is the structure represented by formula (5) below.
  • R 81 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 2 to 20 carbon atoms.
  • the alkyl moiety may be branched or cyclic.
  • the hydrogen atoms in the group represented by R 81 may be substituted by R 21 , OR 21 , COR 21 , SR 21 , NR 22 R 23 , CONR 22 R 23 , -NR 22 -OR 23 , -N(COR 22 )-OCOR 23 , NR 22 COR 21 , OCOR 21 , COOR 21 , -C( ⁇ N-OR 21 )-R 22 , -C( ⁇ N-OCOR 21 )-R 22 , SCOR 21 , OCSR 21 , COSR 21 , CSOR 21 , a hydroxyl group, a nitro group, CN, a halogen atom, or COOR 21 .
  • R 21 , R 22 and R 23 have the same meanings as above.
  • the hydrogen atom of the group represented by R 21 , R 22 or R 23 may be substituted by CN, a halogen atom, a hydroxy group or a carboxy group.
  • the alkylene portion may be interrupted 1 to 5 times by -O-, -S-, -COO-, -OCO-, -NR 24 -, -NR 24 CO-, -NR 24 COO- , -OCONR 24 -, -SCO-, -COS-, -OCS- or -CSO-.
  • R 24 has the same meaning as above.
  • R 21 , R 22 and R 23 have an alkyl portion
  • the alkyl portion may be branched or cyclic, and R 22 and R 23 may be joined together to form a ring.
  • R82 , R83 , R84 , R85 and R86 each independently represent R61 , OR61 , SR61, COR62 , CONR63R64 , NR65COR61 , OCOR61 , COOR62 , SCOR61 , OCSR61 , COSR62 , CSOR61 , a hydroxyl group , a nitro group, CN or a halogen atom.
  • R 61 , R 62 , R 63 , R 64 and R 65 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms or a heterocyclic group having 2 to 20 carbon atoms.
  • the hydrogen atoms of the groups represented by R 61 , R 62 , R 63 , R 64 or R 65 may be substituted by OR 21 , COR 21 , SR 21 , NR 22 R 23 , CONR 22 R 23 , -NR 22 -OR 23 , -N(COR 22 )-OCOR 23 , -C( ⁇ N-OR 21 )-R 22 , -C( ⁇ N-OCOR 21 )-R 22 , CN, a halogen atom, or COOR 21 .
  • R 83 and R 84 , R 84 and R 85 , and R 85 and R 86 may be joined together to form a ring.
  • Examples of the alkyl group having 1 to 20 carbon atoms , the aryl group having 6 to 30 carbon atoms, the aralkyl group having 7 to 30 carbon atoms, and the heterocyclic group having 2 to 20 carbon atoms represented by R 81 , R 21 , R 22 , R 23 , R 24 , R 61 , R 62 , R 63 , R 64 and R 65 in formula (5) are the same as the examples for R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in formula (1).
  • R 22 and R 23 may be taken together to form a ring, which means that R 22 and R 23 may be taken together to form a ring together with the nitrogen atom, carbon atom or oxygen atom to which they are connected.
  • Examples of the ring that can be formed by R 22 and R 23 together in formula (5) are the same as the examples of the ring that can be formed by R 12 and R 13 , and R 22 and R 23 together in formula (1).
  • Examples of the halogen atoms which may replace the hydrogen atoms of the halogen atoms represented by R82 , R83 , R84 , R85 and R86 , and R81 , R21 , R22 , R23 , R61 , R62 , R63 , R64 and R65 in formula (5) include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the method for producing the oxime compound (1) having the second molecular structure represented by formula (5) is not particularly limited, but it can be produced, for example, by the methods described in WO 2017/051680 and WO 2020/004601.
  • Another example of a second molecular structure linked to the first molecular structure represented by formula (1) is the structure represented by formula (6) below.
  • the four R 91 , R 92 , R 93 , R 94 , R 95 , R 96 and R 97 each independently represent R 61 , OR 61 , SR 61 , COR 62 , CONR 63 R 64 , NR 65 COR 61 , OCOR 61 , COOR 62 , SCOR 61 , OCSR 61 , COSR 62 , CSOR 61 , a hydroxyl group, a nitro group, CN or a halogen atom.
  • R 61 , R 62 , R 63 , R 64 and R 65 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms or a heterocyclic group having 2 to 20 carbon atoms.
  • the hydrogen atoms of the groups represented by R 61 , R 62 , R 63 , R 64 or R 65 may be substituted by OR 21 , COR 21 , SR 21 , NR 22 R 23 , CONR 22 R 23 , -NR 22 -OR 23 , -N(COR 22 )-OCOR 23 , -C( ⁇ N-OR 21 )-R 22 , -C( ⁇ N-OCOR 21 )-R 22 , CN, a halogen atom, or COOR 21 .
  • R 21 , R 22 and R 23 have the same meanings as above.
  • R 92 and R 93 , R 94 and R 95 , R 95 and R 96 , and R 96 and R 97 may each be joined together to form a ring.
  • Examples of the alkyl group having 1 to 20 carbon atoms, the aryl group having 6 to 30 carbon atoms, the aralkyl group having 7 to 30 carbon atoms, and the heterocyclic group having 2 to 20 carbon atoms represented by R 21 , R 22 , R 23 , R 61 , R 62 , R 63 , R 64 and R 65 in formula (6) are the same as the examples for R 11 , R 12 , R 13 , R 21 , R 22 and R 23 in formula (1).
  • R 22 and R 23 may be taken together to form a ring, which means that R 22 and R 23 may be taken together to form a ring together with the nitrogen atom, carbon atom or oxygen atom to which they are connected.
  • Examples of the ring which R 22 and R 23 in formula (6) may form together are the same as the examples of the ring which R 12 and R 13 , and R 22 and R 23 in formula (1) may form together.
  • halogen atoms which may replace the hydrogen atoms of the halogen atoms represented by R 91 , R 92 , R 93 , R 94 , R 95 , R 96 and R 97, and R 21 , R 22 , R 23 , R 61 , R 62 , R 63 , R 64 and R 65 in formula (6) include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the method for producing the oxime compound (1) having the second molecular structure represented by formula (6) is not particularly limited, but it can be produced, for example, by the methods described in WO 2017/051680 and WO 2020/004601.
  • oxime compound excluding oxime compound (1)
  • EA oxime compound
  • R ea1 represents a branched hydrocarbon group having 3 to 20 carbon atoms which may have a substituent.
  • R ea2 to R ea5 each independently represent a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent.
  • n represents an integer of 0 to 4.
  • the —CH 2 — contained in the hydrocarbon group may be replaced by —O—, —S—, —CO— or —OCO—.
  • Examples of the branched hydrocarbon group having 3 to 20 carbon atoms represented by R ea1 include branched saturated hydrocarbon groups having 3 to 20 carbon atoms and branched unsaturated hydrocarbon groups having 3 to 20 carbon atoms.
  • Examples of the branched saturated hydrocarbon group having 3 to 20 carbon atoms represented by R ea1 include a 1-methylethyl group (isopropyl group), a 1-methylpropyl group (sec-butyl group), a 2-methylpropyl group (isobutyl group), a 1,1-dimethylethyl group (tert-butyl group), a 1,1-dimethylpropyl group, a 2,2-dimethylpropyl group, a 1,2-dimethylpropyl group, a 1-ethylpropyl group, a 1-methylbutyl group, a 2-methylbutyl group, a 3-methylbutyl group, a 1,1-dimethylbutyl group, a 2,2-dimethylbutyl group, a 3,3-dimethylbutyl group, a 1,2-dimethylbutyl group, a 1,3-dimethylbutyl group, a 2,3-dimethylbutyl group, a Dimethylbut
  • Examples of the branched unsaturated hydrocarbon group represented by R ea1 include groups in which at least one or more carbon-carbon single bonds contained in the branched saturated hydrocarbon group represented by R ea1 are replaced with a carbon-carbon double bond or a carbon-carbon triple bond.
  • Examples of the branched unsaturated hydrocarbon group represented by R ea1 include alkenyl groups such as an isopropenyl group, an isobutenyl group, an isopentenyl group, an isohexenyl group, an isoheptenyl group, an isooctenyl group, an isononyl group, and an isodecenyl group; and alkynyl groups such as an isopropynyl group, an isobutynyl group, an isopentynyl group, an isohexynyl group, an isoheptynyl group, an isooctynyl group, an isononynyl group, and an isodecynyl group.
  • the branched unsaturated hydrocarbon group represented by R ea1 preferably has 4 or more, more preferably 5 or more, and preferably 16 or less, more preferably 12 or less, and further preferably 10 or less.
  • Examples of the hydrocarbon group having 1 to 20 carbon atoms represented by R ea2 , R ea3 , R ea4 and R ea5 include a saturated hydrocarbon group having 1 to 20 carbon atoms, an unsaturated hydrocarbon group having 2 to 20 carbon atoms, and an aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • the hydrocarbon groups represented by R ea2 , R ea3 , R ea4 and R ea5 may be the same or different.
  • the saturated hydrocarbon group having 1 to 20 carbon atoms includes, for example, linear alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, hexadecyl, and icosyl; branched alkyl groups such as isopropyl, isobutyl, isopentyl, neopentyl, and 2-ethylhexyl; and alicyclic saturated hydrocarbon groups having 3 to 20 carbon atoms such as cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and tricyclodecyl.
  • the number of carbon atoms in the saturated hydrocarbon group is preferably 1 to 18, more preferably 1 to 15, even more preferably 1 to 10, and even more preferably 1 to 8.
  • the unsaturated hydrocarbon group having 2 to 20 carbon atoms includes alkenyl groups such as vinyl, allyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, hexadecenyl, octadecenyl, and icosenyl; alkynyl groups such as ethynyl, propynyl, hexynyl, decynyl, and icosenyl; cycloalkenyl groups such as cyclopentenyl, cyclohexenyl, and cycloheptenyl; and the like.
  • the number of carbon atoms in the unsaturated hydrocarbon group is preferably 2 to 18, more preferably 2 to 15, and even more preferably 2 to 10.
  • the aromatic hydrocarbon group having 6 to 20 carbon atoms includes a phenyl group, a xylyl group, a trimethylphenyl group, a dipropylphenyl group, a di(2,2-dimethylpropyl)phenyl group, a naphthyl group, a benzyl group, a phenylethyl group, a phenylbutyl group, etc.
  • the number of carbon atoms in the aromatic hydrocarbon group is preferably 6 to 18, more preferably 6 to 15, and even more preferably 6 to 12.
  • Examples of the substituent that the hydrocarbon group represented by R ea1 , R ea2 , R ea3 , R ea4 and R ea5 may have include a halogen atom, a cyano group and a nitro group.
  • the halogen atom is preferably a fluorine atom, a bromine atom, a chlorine atom or an iodine atom.
  • the --CH 2 -- contained in the hydrocarbon group may be replaced by --O--, --S--, --CO-- or --OCO--, provided that adjacent --CH 2 -- are not simultaneously replaced by the same type of group, and the terminal --CH 2 -- is not replaced.
  • n represents an integer from 0 to 4, preferably an integer from 0 to 3, more preferably an integer from 0 to 2, even more preferably an integer of 0 or 1, and even more preferably 0.
  • the bonding position of the *-OCO-R ea4 group (* represents a bond to the phenyl group) may be any of the 2-position, 3-position or 4-position of the phenyl group to which the *-OCO-R ea4 group is bonded, but is preferably the 3-position or 4-position, and more preferably the 4-position.
  • the branched hydrocarbon group having 3 to 20 carbon atoms represented by R ea1 is A branched saturated hydrocarbon group having 3 to 20 carbon atoms is preferred, A branched alkyl group having 3 to 20 carbon atoms is more preferred. More preferably, the branched alkyl group has 3 to 10 carbon atoms.
  • the alkyl group is one or more selected from the group consisting of a 1-methylpentyl group, a 2-methylpentyl group, a 3-methylpentyl group, a 1-ethylpentyl group, a 2-ethylpentyl group, a 3-ethylpentyl group, a 1-methylhexyl group, a 2-methylhexyl group, a 3-methylhexyl group, a 1-ethylhexyl group, a 2-ethylhexyl group, a 3-ethylhexyl group, a 1-methylheptyl group, a 2-methylheptyl group, a 3-methylheptyl group, a 1-ethylheptyl group, a 2-ethylheptyl group, and a 3-ethylheptyl group.
  • the hydrocarbon group having 1 to 20 carbon atoms represented by R ea2 , R ea3 , R ea4 and R ea5 is A saturated hydrocarbon group having 1 to 20 carbon atoms and an unsaturated hydrocarbon group having 2 to 20 carbon atoms are preferred.
  • a saturated hydrocarbon group having 1 to 20 carbon atoms is more preferable.
  • a linear saturated hydrocarbon group having 1 to 10 carbon atoms is more preferable.
  • a chain alkyl group having 1 to 8 carbon atoms is even more preferred.
  • R ea2 is preferably a chain alkyl group having 1 to 8 carbon atoms, and more preferably a chain alkyl group having 1 to 6 carbon atoms.
  • R ea3 is preferably a chain alkyl group having 1 to 8 carbon atoms, and more preferably a chain alkyl group having 1 to 3 carbon atoms.
  • R ea4 is preferably a chain alkyl group having 1 to 8 carbon atoms, and more preferably a chain alkyl group having 1 to 3 carbon atoms.
  • R ea5 is preferably a linear or branched alkyl group having 1 to 8 carbon atoms, and more preferably a linear or branched alkyl group having 1 to 6 carbon atoms.
  • photopolymerization initiators include photopolymerization initiators other than the oxime compound (1) and the compound represented by formula (EA).
  • Other photopolymerization initiators include oxime compounds other than the oxime compound (1) and the compound represented by formula (EA), biimidazole compounds, triazine compounds, and acylphosphine compounds.
  • Oxime compounds other than oxime compound (1) and the compound represented by formula (EA) include oxime compounds having a partial structure represented by the following formula (d1). * represents a bond.
  • Examples of oxime compounds having a partial structure represented by formula (d1) include N-benzoyloxy-1-(4-phenylsulfanylphenyl)butan-1-one-2-imine, N-benzoyloxy-1-(4-phenylsulfanylphenyl)octan-1-one-2-imine, N-benzoyloxy-1-(4-phenylsulfanylphenyl)-3-cyclopentylpropan-1-one-2-imine, N-acetoxy-1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]ethane-1-imine, N-acetoxy-1-[9-ethyl-6- ⁇ 2-methyl-4-(3,3-dimethyl N-acetoxy-1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-3-cyclopentylpropan-1-imine, N-benzoy
  • OXE01 N-benzoyloxy-1-(4-phenylsulfanylphenyl)octan-1-one-2-imine
  • OXE02 N-acetoxy-1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]ethane-1-imine) (all manufactured by BASF)
  • N-1919 manufactured by ADEKA
  • the oxime compound having the partial structure represented by formula (d1) is preferably at least one selected from the group consisting of N-benzoyloxy-1-(4-phenylsulfanylphenyl)butan-1-one-2-imine, N-benzoyloxy-1-(4-phenylsulfanylphenyl)octan-1-one-2-imine, N-acetoxy-1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]ethan-1-imine and N-benzoyloxy-1-(4-phenylsulfanylphenyl)-3-cyclopentylpropan-1-one-2-imine, and more preferably N-benzoyloxy-1-(4-phenylsulfanylphenyl)octan-1-one-2-imine or N-acetoxy-1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol
  • biimidazole compound is a compound represented by formula (d5).
  • R E to R J each represent an aryl group having 6 to 10 carbon atoms which may have a substituent.
  • the aryl group having 6 to 10 carbon atoms include a phenyl group, a toluyl group, a xylyl group, an ethylphenyl group, and a naphthyl group, and the like, with a phenyl group being preferred.
  • Examples of the substituent include halogen atoms and alkoxy groups having 1 to 4 carbon atoms.
  • the halogen atom include fluorine, chlorine, bromine, and iodine atoms, with chlorine atoms being preferred.
  • the alkoxy group having 1 to 4 carbon atoms include methoxy, ethoxy, propoxy, and butoxy groups, with methoxy being preferred.
  • biimidazole compounds include 2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetraphenylbiimidazole, 2,2'-bis(2,3-dichlorophenyl)-4,4',5,5'-tetraphenylbiimidazole (see, for example, JP-A-06-75372 and JP-A-06-75373, etc.), 2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetraphenylbiimidazole, 2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetra(alkoxyphenyl)
  • suitable biimidazole compounds include 2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetra(dialkoxyphenyl)biimidazole, 2,2'-bis(2-chlorophenyl)-4,4',5,5'
  • triazine compounds examples include 2,4-bis(trichloromethyl)-6-(4-methoxyphenyl)-1,3,5-triazine, 2,4-bis(trichloromethyl)-6-(4-methoxynaphthyl)-1,3,5-triazine, 2,4-bis(trichloromethyl)-6-piperonyl-1,3,5-triazine, 2,4-bis(trichloromethyl)-6-(4-methoxystyryl)-1,3,5-triazine, and 2,4-bis(trichloromethyl)-6- Examples of such compounds include [2-(5-methylfuran-2-yl)ethenyl]-1,3,5-triazine, 2,4-bis(trichloromethyl)-6-[2-(furan-2-yl)ethenyl]-1,3,5-triazine, 2,4-bis(trichloromethyl)-6-[2-(4-diethylamino-2-methylphen
  • acylphosphine compounds include bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide and (2,4,6-trimethylbenzoyl)diphenylphosphine oxide.
  • photopolymerization initiators other than the oxime compound (1) and the compound represented by formula (EA) include, for example, benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin isobutyl ether; benzophenone compounds such as benzophenone, o-benzoyl methyl benzoate, 4-phenylbenzophenone, 4-benzoyl-4'-methyldiphenyl sulfide, 3,3',4,4'-tetra(tert-butylperoxycarbonyl)benzophenone, 2,4,6-trimethylbenzophenone, and 4,4'-bis(diethylamino)benzophenone; quinone compounds such as 9,10-phenanthrenequinone, 2-ethylanthraquinone, and camphorquinone; 10-butyl-2-chloroacridone, benzyl, methyl ether,
  • the content of the polymerization initiator (E) in the composition I is preferably 0.1 parts by mass or more and 300 parts by mass or less, more preferably 0.1 parts by mass or more and 200 parts by mass or less, relative to 100 parts by mass of the polymerizable compound (D).
  • the content of the polymerization initiator (E) in the composition I is preferably 0.1 parts by mass or more and 30 parts by mass or less, more preferably 0.5 parts by mass or more and 20 parts by mass or less, relative to 100 parts by mass of the total amount of the resin (C) and the polymerizable compound (D).
  • the content of the polymerization initiator (E) in the composition II is preferably 0.001% by mass or more and 60% by mass or less, more preferably 0.01% by mass or more and 50% by mass or less, even more preferably 0.05% by mass or more and 30% by mass or less, and even more preferably 0.1% by mass or more and 10% by mass or less, based on the total amount of the resin (C) and the polymerizable compound (D).
  • the polymerization initiator (E) is an oxime compound in which a first molecular structure represented by the formula (1) is bonded to a second molecular structure represented by the formula (2), and in particular, an oxime compound in which the structure represented by the formula (2) is a structure represented by the formula (2b) and/or a compound represented by the formula (EA) is preferred, and an oxime compound in which a first molecular structure represented by the formula (1) is bonded to a second molecular structure represented by the formula (2), and in particular, an oxime compound in which the structure represented by the formula (2) is a structure represented by the formula (2b) is more preferred.
  • the content of the polymerization initiator (E) in the composition III is preferably 0.001% by mass or more and 60% by mass or less, more preferably 0.01% by mass or more and 50% by mass or less, based on the total amount of the resin (C) and the polymerizable compound (D).
  • the content of the oxime compound (1) in the polymerization initiator (E) is preferably 30% by mass or more and 100% by mass or less, more preferably 50% by mass or more and 100% by mass or less, even more preferably 80% by mass or more and 100% by mass or less, still more preferably 90% by mass or more and 100% by mass or less, particularly preferably 95% by mass or more and 100% by mass or less, and most preferably 100% by mass, based on the total amount of the polymerization initiator (E).
  • the composition may further contain a polymerization initiation aid (E ⁇ ) together with the polymerization initiator (E).
  • the polymerization initiation aid (E ⁇ ) is a compound used to promote the polymerization of the polymerizable compound (D) initiated by the polymerization initiator (E), or a sensitizer.
  • Examples of the polymerization initiation aid (E ⁇ ) include photopolymerization initiation aids such as amine compounds, alkoxyanthracene compounds, thioxanthone compounds, and carboxylic acid compounds, as well as thermal polymerization initiation aids.
  • the composition may contain two or more polymerization initiation aids (E ⁇ ).
  • amine compounds include triethanolamine, methyldiethanolamine, triisopropanolamine, methyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 2-dimethylaminoethyl benzoate, 2-ethylhexyl 4-dimethylaminobenzoate, N,N-dimethyl-p-toluidine, 4,4'-bis(dimethylamino)benzophenone (commonly known as Michler's ketone), 4,4'-bis(diethylamino)benzophenone, and 4,4'-bis(ethylmethylamino)benzophenone.
  • alkoxyanthracene compounds include 9,10-dimethoxyanthracene, 2-ethyl-9,10-dimethoxyanthracene, 9,10-diethoxyanthracene, 2-ethyl-9,10-diethoxyanthracene, 9,10-dibutoxyanthracene, and 2-ethyl-9,10-dibutoxyanthracene.
  • thioxanthone compounds include 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, and 1-chloro-4-propoxythioxanthone.
  • carboxylic acid compounds include phenylsulfanylacetic acid, methylphenylsulfanylacetic acid, ethylphenylsulfanylacetic acid, methylethylphenylsulfanylacetic acid, dimethylphenylsulfanylacetic acid, methoxyphenylsulfanylacetic acid, dimethoxyphenylsulfanylacetic acid, chlorophenylsulfanylacetic acid, dichlorophenylsulfanylacetic acid, N-phenylglycine, phenoxyacetic acid, naphthylthioacetic acid, N-naphthylglycine, naphthoxyacetic acid, etc.
  • composition I contains a polymerization initiation aid (E ⁇ )
  • the content of the polymerization initiation aid (E ⁇ ) in composition I is preferably 0.1 parts by mass or more and 300 parts by mass or less, more preferably 0.1 parts by mass or more and 200 parts by mass or less, per 100 parts by mass of the polymerizable compound (D).
  • the content of the polymerization initiation aid (E ⁇ ) in composition I is preferably 0.1 parts by mass or more and 30 parts by mass or less, more preferably 1 part by mass or more and 20 parts by mass or less, per 100 parts by mass of the total amount of the resin (C) and the polymerizable compound (D).
  • the content of the polymerization initiation aid (E ⁇ ) in composition II is preferably 0.001 parts by mass or more and 60 parts by mass or less, more preferably 0.01 parts by mass or more and 50 parts by mass or less, per 100 parts by mass of the total amount of the resin (C) and the polymerizable compound (D).
  • the content of the polymerization initiation aid (E ⁇ ) in composition III is preferably 0.00001 parts by mass or more and 60 parts by mass or less, more preferably 0.0001 parts by mass or more and 50 parts by mass or less, per 100 parts by mass of the total amount of the resin (C) and the polymerizable compound (D).
  • the light stabilizer (F) includes known light stabilizers (Fa) and may be any additive having the effect of stabilizing components against light.
  • the light stabilizer (F) of the present invention also includes an antioxidant (Fb) and an ultraviolet absorber (Fc) that absorbs light and renders it harmless.
  • the antioxidant (Fb) is not particularly limited as long as it is an antioxidant generally used industrially, and examples of the antioxidant that can be used include phenol-based antioxidants, phosphorus-based antioxidants, phosphorus/phenol complex antioxidants, sulfur-based antioxidants, etc.
  • the composition may contain two or more types of antioxidants (Fb).
  • the phosphorus/phenol complex type antioxidant is, for example, a compound having one or more phosphorus atoms and one or more phenol structures in the molecule.
  • the antioxidant (Fb) contains a phosphorus/phenol complex type antioxidant.
  • phenol-based antioxidants examples include Irganox (registered trademark) 1010 (Irganox 1010: pentaerythritol tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], manufactured by BASF Corporation), Irganox 1076 (Irganox 1076: octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, manufactured by BASF Corporation), Irganox 1330 (Irganox 1330: 3,3',3'',5,5',5''-hexa-tert-butyl-a,a',a''-(mesitylene-2,4,6-triyl ) tri-p-cresol, manufactured by BASF Co., Ltd.), Irganox 3114 (Irganox 3114: 1,3,5-tris(3,5-di-tert-butyl-4
  • phosphorus-based antioxidants examples include Irgafos (registered trademark) 168 (Irgafos 168: tris(2,4-di-tert-butylphenyl)phosphite, manufactured by BASF Corporation), Irgafos 12 (Irgafos 12: tris[2-[[2,4,8,10-tetra-tert-butyldibenzo[d,f][1,3,2]dioxaphosphine-6-yl]oxy]ethyl]amine, manufactured by BASF Corporation), and Irgafos 38 (I rgafos 38: bis(2,4-bis(1,1-dimethylethyl)-6-methylphenyl)ethyl ester phosphorous acid, manufactured by BASF Corporation; Adekastab (registered trademark) 329K, Adekastab PEP36, Adekastab PEP-8 (all manufactured by ADEKA Corporation); Sandstab P-EPQ
  • phosphorus/phenol complex antioxidants examples include Sumilizer (registered trademark) GP (6-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propoxy]-2,4,8,10-tetra-tert-butyldibenz[d,f][1.3.2]dioxaphosphepine) (manufactured by Sumitomo Chemical Co., Ltd.).
  • Sulfur-based antioxidants include, for example, dialkyl thiodipropionate compounds such as dilauryl, dimyristyl, or distearyl thiodipropionate, and ⁇ -alkyl mercaptopropionate compounds of polyols such as tetrakis[methylene(3-dodecylthio)propionate]methane.
  • the content of the antioxidant (Fb) in composition I is, for example, 1 part by mass or more and 50 parts by mass or less relative to 100 parts by mass of resin (C), and from the viewpoint of luminescence intensity and heat resistance, is preferably 5 parts by mass or more and 40 parts by mass or less, and more preferably 7 parts by mass or more and 30 parts by mass or less.
  • the content of the antioxidant (F) in composition III is, for example, 1 part by mass or more and 50 parts by mass or less relative to 100 parts by mass of the resin (C), and from the viewpoint of luminescence intensity and heat resistance, is preferably 5 parts by mass or more and 40 parts by mass or less, and more preferably 7 parts by mass or more and 30 parts by mass or less.
  • UV absorber (Fc) examples include benzotriazole-based compounds such as 2-(2-hydroxy-3-tert-butyl-5-methylphenyl)-5-chlorobenzotriazole and (2-(2,4-dihydroxyphenyl)-2H-benzotriazole; benzophenone-based compounds such as 2-hydroxy-4-octyloxybenzophenone; benzoate-based compounds such as 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate; and triazine-based compounds such as 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-hexyloxyphenol.
  • benzotriazole-based compounds such as 2-(2-hydroxy-3-tert-butyl-5-methylphenyl)-5-chlorobenzotriazole and (2-(2,4-dihydroxyphenyl)-2H-benzotriazole
  • benzophenone-based compounds such as 2-
  • Composition I preferably contains a light stabilizer (F), particularly an antioxidant (Fb).
  • F light stabilizer
  • Fb antioxidant
  • the solvent (J) is preferably one that dissolves the resin (C), the polymerizable compound (D), and the polymerization initiator (E).
  • the solvent (J) include ester solvents (solvents containing -COO- and not containing -O- in the molecule), ether solvents (solvents containing -O- and not containing -COO- in the molecule), ether ester solvents (solvents containing -COO- and -O- in the molecule), ketone solvents (solvents containing -CO- and not containing -COO- in the molecule), alcohol solvents (solvents containing OH in the molecule and not containing -O-, -CO-, and COO-), aromatic hydrocarbon solvents, amide solvents, and dimethyl sulfoxide.
  • Ester solvents include methyl lactate, ethyl lactate, n-butyl lactate, methyl 2-hydroxyisobutanoate, ethyl acetate, n-butyl acetate, isobutyl acetate, n-pentyl formate, isopentyl acetate, n-butyl propionate, isopropyl butyrate, ethyl butyrate, n-butyl butyrate, methyl pyruvate, ethyl pyruvate, propyl pyruvate, methyl acetoacetate, ethyl acetoacetate, cyclohexyl acetate, and gamma-butyrolactone.
  • Ether solvents include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, 3-methoxy-1-butanol, 3-methoxy-3-methylbutanol, tetrahydrofuran, tetrahydropyran, 1,4-dioxane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, anisole, phenetole, and methylanisole.
  • Ether ester solvents include methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, methyl 2-methoxypropionate, ethyl 2-methoxypropionate, propyl 2-methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate, methyl 2-methoxy-2-methyl ...ethyl 2-ethoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate, methyl 2-methoxy-2-methylpropionate, ethyl 2-ethoxypropionate, methyl 2-ethoxypropionate, methyl 2-methoxy-2-methylpropionate,
  • Ketone solvents include 4-hydroxy-4-methyl-2-pentanone, acetone, 2-butanone, 2-heptanone, 3-heptanone, 4-heptanone, 4-methyl-2-pentanone, cyclopentanone, cyclohexanone, and isophorone.
  • Alcohol solvents include methanol, ethanol, propanol, butanol, hexanol, cyclohexanol, ethylene glycol, propylene glycol, and glycerin.
  • Aromatic hydrocarbon solvents include benzene, toluene, xylene, and mesitylene.
  • Amide solvents include N,N-dimethylformamide, N,N-dimethylacetamide, and N-methylpyrrolidone.
  • the solvent (J) preferably contains one or more solvents selected from the group consisting of propylene glycol monomethyl ether acetate, ethyl lactate, propylene glycol monomethyl ether, cyclohexyl acetate, ethyl 3-ethoxypropionate, ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, 4-hydroxy-4-methyl-2-pentanone, and aromatic hydrocarbon solvents.
  • solvents selected from the group consisting of propylene glycol monomethyl ether acetate, ethyl lactate, propylene glycol monomethyl ether, cyclohexyl acetate, ethyl 3-ethoxypropionate, ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, 4-hydroxy-4-methyl-2-pentanone, and aromatic hydrocarbon solvents.
  • the solvent (J) is preferably propylene glycol monomethyl ether acetate, ethyl lactate, propylene glycol monomethyl ether, cyclohexyl acetate, ethyl 3-ethoxypropionate, ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, 4-hydroxy-4-methyl-2-pentanone, toluene, or a mixture of two or more of these.
  • the solvent (J) is a component other than the solid content, and includes, for example, the solvent contained in the dispersion of semiconductor particles (A) or the solution of resin (C).
  • the content of solvent (J) in composition I is the ratio of the total mass of all solvents contained in the composition to the total amount of composition I, and is, for example, from 40% by mass to 95% by mass, and preferably from 55% by mass to 90% by mass, relative to the total amount of composition I.
  • the solid content of composition I is, for example, from 5% by mass to 60% by mass, and preferably from 10% by mass to 45% by mass.
  • the solid content of Composition II is preferably 0.01% by mass or more and 100% by mass or less, more preferably 0.1% by mass or more and 99.9% by mass or less, even more preferably 0.1% by mass or more and 99% by mass or less, still more preferably 1% by mass or more and 90% by mass or less, even more preferably 1% by mass or more and 80% by mass or less, particularly preferably 1% by mass or more and 70% by mass or less, extremely preferably 1% by mass or more and 60% by mass or less, and most preferably 1% by mass or more and 50% by mass or less, based on the total amount of Composition II.
  • the solid content of Composition III is preferably 0.01% by mass or more and 100% by mass or less, more preferably 0.1% by mass or more and 99.9% by mass or less, even more preferably 0.1% by mass or more and 99% by mass or less, still more preferably 1% by mass or more and 90% by mass or less, even more preferably 1% by mass or more and 80% by mass or less, particularly preferably 1% by mass or more and 70% by mass or less, extremely preferably 1% by mass or more and 60% by mass or less, and most preferably 1% by mass or more and 50% by mass or less, based on the total amount of Composition III.
  • the solvent (J) contains an ether ester solvent.
  • the leveling agent (H) may be a silicone surfactant, a fluorine surfactant, or a silicone surfactant having a fluorine atom. These may have a polymerizable group in the side chain. From the viewpoint of the developability and luminescence intensity of the composition, the leveling agent (H) is preferably a fluorine surfactant.
  • the composition may contain two or more kinds of leveling agents (H).
  • silicone surfactants include surfactants having a siloxane bond in the molecule.
  • Specific examples include Toray Silicone DC3PA, SH7PA, DC11PA, SH21PA, SH28PA, SH29PA, SH30PA, and SH8400 (product names: manufactured by Dow Corning Toray Co., Ltd.), KP321, KP322, KP323, KP324, KP326, KP340, and KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), TSF400, TSF401, TSF410, TSF4300, TSF4440, TSF4445, TSF4446, TSF4452, and TSF4460 (manufactured by Momentive Performance Materials Japan, LLC).
  • Fluorosurfactants include surfactants having a fluorocarbon chain in the molecule. Specific examples include Fluorad (registered trademark) FC430 and FC431 (manufactured by Sumitomo 3M Limited), Megafac (registered trademark) F142D, F171, F172, F173, F177, F183, F554, F575, R30, and RS-718-K (manufactured by DIC Corporation), F-top (registered trademark) EF301, EF303, EF351, and EF352 (manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd.), Surflon (registered trademark) S381, S382, SC101, and SC105 (manufactured by Asahi Glass Co., Ltd.), and E5844 (manufactured by Daikin Fine Chemicals Research Institute, Ltd.).
  • Fluorad registered trademark
  • FC430 and FC431 manufactured by Sumitomo 3M Limited
  • Megafac registered trademark
  • silicone surfactants containing fluorine atoms include surfactants that have siloxane bonds and fluorocarbon chains in the molecule. Specific examples include Megafac (registered trademark) R08, BL20, F475, F477, and F443 (manufactured by DIC Corporation).
  • composition I contains a leveling agent (H)
  • the content of the leveling agent (H) in composition I is, for example, 0.001 mass% or more and 1.0 mass% or less, preferably 0.005 mass% or more and 0.75 mass% or less, and more preferably 0.01 mass% or more and 0.5 mass% or less, relative to the total amount of composition I.
  • the content of the leveling agent (H) is within the above range, the flatness of the wavelength conversion layer can be improved.
  • composition II contains a leveling agent (H)
  • the content of the leveling agent (H) in composition II is, for example, 0.001 mass% or more and 1.0 mass% or less, preferably 0.005 mass% or more and 0.75 mass% or less, and more preferably 0.01 mass% or more and 0.5 mass% or less, relative to the total amount of composition II.
  • composition III contains a leveling agent (H)
  • the content of the leveling agent (H) in composition III is, for example, 0.001 mass% or more and 1.0 mass% or less, preferably 0.005 mass% or more and 0.75 mass% or less, and more preferably 0.01 mass% or more and 0.5 mass% or less, relative to the total amount of composition III.
  • the colorant (I) includes a white colorant (Iw) and a chromatic colorant (Ic).
  • the white colorant (Iw) examples include inorganic particles such as metal or metal oxide particles and glass particles.
  • metal oxides include TiO 2 , SiO 2 , BaTiO 3 , and ZnO, and TiO 2 particles are preferred because they efficiently scatter light.
  • the particle diameter of the white colorant (Iw) is, for example, about 0.03 ⁇ m or more and 20 ⁇ m or less, preferably 0.05 ⁇ m or more and 1 ⁇ m or less, and more preferably 0.05 ⁇ m or more and 0.5 ⁇ m or less.
  • the white colorant (Iw) may be a colorant in which a light scattering agent is dispersed in advance in a part or the whole of the solvent (J) using a dispersant.
  • Commercially available dispersants can be used. Examples of commercially available dispersants include: DISPERBYK-101, 102, 103, 106, 107, 108, 109, 110, 111, 116, 118, 130, 140, 154, 161, 162, 163, 164, 165, 166, 170, 171, 174, 180, 181, 182, 183, 184, 185, 190, 192, 20 manufactured by BYK Japan Co., Ltd.
  • SOLSPERSE-3000 9000, 13000, 13240, 13650, 13940, 16000, 17000, 18000, 20000, 21000, 24000, 26000, 27000, 28000, 31845, 32000, 32500, 32550, 33500, 32600, 34750, 35100, 36600, 38500, 41000, 41090, 53095, 55000, 76500, etc.
  • the content of the white colorant (Iw) in composition I is, for example, 0.001% by mass or more and 50% by mass or less, based on the total amount of solids in composition I, and from the viewpoint of improving the light scattering ability and luminous intensity of the wavelength conversion layer, is preferably 1% by mass or more and 30% by mass or less, more preferably 2% by mass or more and 20% by mass or less, even more preferably 2% by mass or more and 15% by mass or less, and even more preferably 3% by mass or more and 10% by mass or less.
  • composition III is substantially free of a white colorant (Iw).
  • “Substantially free of a white colorant (Iw)” means that the content of the white colorant (Iw) relative to the total amount of solids in composition III is preferably 1 mass% or less, more preferably 0.5 mass% or less, even more preferably 0.1 mass% or less, and particularly preferably 0 mass%.
  • the chromatic colorant (Ic) may be a pigment or a dye.
  • a known pigment may be used, for example, a pigment classified as a pigment in the Color Index (published by The Society of Dyers and Colourists). The pigment may be used alone or in combination of two or more kinds.
  • a known dye may be used, for example, a dye described in the Color Index (published by The Society of Dyers and Colourists) and Dyeing Notes (Shikisensha). The dye may be used alone or in combination of two or more kinds.
  • the chromatic colorant (Ic) is preferably a pigment, and preferably contains at least one selected from the group consisting of a yellow colorant, a green colorant, and a red colorant.
  • yellow colorants examples include yellow pigments such as C.I. Pigment Yellow 1, 3, 12, 13, 14, 15, 16, 17, 20, 24, 31, 53, 83, 86, 93, 94, 109, 110, 117, 125, 128, 129, 137, 138, 139, 147, 148, 150, 153, 154, 166, 173, 185, 194, 214, and 231.
  • Other examples of yellow colorants are the following dyes.
  • C.I. Solvent dyes such as C.I. Solvent Yellow 4, 14, 15, 23, 24, 25, 38, 62, 63, 68, 79, 81, 82, 83, 89, 94, 98, 99, 117, 162, 163, 167, 189; C.I.
  • Acid Yellow 1 3, 7, 9, 11, 17, 23, 25, 29, 34, 36, 38, 40, 42, 54, 65, 72, 73, 76, 79, 98, 99, 111, 112, 113, 114, 116, 119, 123, 128, 134, 135, 138, 139, 140, 144, 150, 155, 15 C.I.
  • Acid dyes such as 7, 160, 161, 163, 168, 169, 172, 177, 178, 179, 184, 190, 193, 196, 197, 199, 202, 203, 204, 205, 207, 212, 214, 220, 221, 228, 230, 232, 235, 238, 240, 242, 243, 251; C.I.
  • Direct dyes such as C.I. Direct Yellow 2, 4, 28, 33, 34, 35, 38, 39, 43, 44, 47, 50, 54, 58, 68, 69, 70, 71, 86, 93, 94, 95, 98, 102, 108, 109, 129, 132, 136, 138, 141; C.I. Disperse dyes such as C.I. Disperse Yellow 51, 54, 76; C.I. Reactive dyes such as C.I. Reactive Yellow 2, 76, 116; C. I. Mordant dyes such as C. I. Mordant Yellow 5, 8, 10, 16, 20, 26, 30, 31, 33, 42, 43, 45, 56, 61, 62, 65;
  • green colorants examples include green pigments such as C.I. Pigment Green 7, 36, 58, 59, 62, and 63.
  • Other examples of green colorants are the following dyes.
  • C.I. Solvent dyes such as C.I. Solvent Green 1, 3, 4, 5, 7, 28, 29, 32, 33, 34, 35;
  • C.I. Acid dyes such as C.I. Acid Green 1, 3, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 22, 25, 27, 28, 41, 50, 50:1, 58, 63, 65, 80, 104, 105, 106, 109;
  • C.I. Direct dyes such as C.I. Direct Green 25, 27, 31, 32, 34, 37, 63, 65, 66, 67, 68, 69, 72, 79, 82; C.I.
  • Basic dyes such as C.I. Basic Green 1; C.I. Mordant dyes such as C.I. Mordant Green 1, 3, 4, 5, 10, 13, 15, 19, 21, 23, 26, 29, 31, 33, 34, 35, 41, 43, 53; C.I. Vat dyes such as C.I. Vat Green 1, etc.
  • red colorants examples include red pigments such as C.I. Pigment Red 9, 97, 105, 122, 123, 144, 149, 166, 168, 176, 177, 178, 179, 180, 190, 192, 209, 215, 216, 224, 242, 254, 255, 264, 265, 266, 268, 269, and 273.
  • red colorants are the following dyes.
  • C.I. Solvent dyes such as C.I.
  • Acid dyes such as 183, 195, 198, 206, 211, 215, 216, 217, 227, 228, 249, 252, 257, 258, 260, 261, 266, 268, 270, 274, 277, 280, 281, 289, 308, 312, 315, 316, 339, 341, 345, 346, 349, 382, 383, 388, 394, 401, 412, 417, 418, 422, 426; C.I. Direct dyes such as C.I.
  • C.I. Basic dyes such as C.I. Basic Red 1, 9, 10
  • C.I. Mordant dyes such as C.I.
  • the chromatic colorant (Ic) preferably contains a yellow colorant, more preferably contains a yellow pigment, and even more preferably contains at least one selected from the group consisting of C.I. Pigment Yellow 138, 150, and 231.
  • the chromatic colorant (Ic) may be subjected to, as necessary, a rosin treatment, a surface treatment using a colorant derivative having an acidic or basic group introduced therein, a grafting treatment to the colorant surface using a polymer compound, a micronization treatment using a sulfuric acid micronization method, a washing treatment using an organic solvent or water to remove impurities, a removal treatment using an ion exchange method for ionic impurities, etc. It is preferable that the particle size of the colorant (I) is approximately uniform.
  • composition III contains a green colorant and/or a red colorant
  • the chromatic colorant (Ic) contained in composition III is preferably a green colorant when the wavelength conversion layer is a layer that emits green light, and is preferably a red colorant when the wavelength conversion layer is a layer that emits red light.
  • the green colorant and the red colorant may each be used alone or in combination of two or more kinds.
  • the content of the chromatic colorant (Ic) in composition III is, for example, 0.01% by mass or more and 99.99% by mass or less, preferably 0.1% by mass or more and 99.9% by mass or less, more preferably 1% by mass or more and 99% by mass or less, even more preferably 10% by mass or more and 90% by mass or less, and even more preferably 15% by mass or more and 70% by mass or less, based on the total amount of solids in composition III.
  • composition I is substantially free of a chromatic colorant (Ic).
  • “Substantially free of a chromatic colorant (Ic)” means that the content of the chromatic colorant (Ic) relative to the total amount of solids in composition I is preferably 1 mass% or less, more preferably 0.5 mass% or less, even more preferably 0.1 mass% or less, and particularly preferably 0 mass%.
  • compositions I, II and III may optionally further contain additives known in the art, such as polymerization inhibitors, fillers, other polymeric compounds, adhesion promoters, chain transfer agents and the like.
  • compositions I, II, and III can be produced by a method including a step of mixing the prescribed components and other components used as necessary.
  • the method for producing compositions I, II, and III can further include a step of preparing resin (C).
  • the chromatic colorant (Ic) When using a chromatic colorant (Ic), it is preferable to use the chromatic colorant (Ic) in the form of a colorant dispersion liquid in which the chromatic colorant (Ic) is mixed in advance with part or all of the solvent (J) and dispersed using a bead mill or the like until the average particle size of the chromatic colorant (Ic) is approximately 0.2 ⁇ m or less. At this time, a dispersant and part or all of the resin (C) may be added as necessary. As for the dispersant, the description of the dispersant mentioned in the section on the white colorant (Iw) is cited.
  • the laminate according to the present invention (hereinafter, simply referred to as "laminate”) is a laminate including a wavelength conversion layer having semiconductor particles (A) and a protective layer formed from the above-mentioned composition II, and a laminate including a wavelength conversion layer having semiconductor particles (A), a protective layer formed from composition II, and a light absorbing layer.
  • Fig. 1 is a schematic cross-sectional view showing an example of the laminate according to the present invention
  • Fig. 2 is a schematic cross-sectional view showing another example of the laminate according to the present invention
  • Fig. 3 is a schematic cross-sectional view showing yet another example of the laminate according to the present invention.
  • the laminate shown in Figs. 1 to 3 includes a wavelength conversion layer 10 and a protective layer 20 disposed thereon.
  • the protective layer 20 may be directly laminated on the wavelength conversion layer 10, and the protective layer 20 and the wavelength conversion layer 10 may be in contact with each other.
  • another layer may be interposed between the wavelength conversion layer 10 and the protective layer 20.
  • An example of the other layer is a light absorbing layer 30. If another layer is interposed, heat may be applied to the wavelength conversion layer in the process of forming the other layer, which may reduce the luminescence intensity of the wavelength conversion layer.
  • a protective layer is provided between the wavelength conversion layer and the light absorbing layer, and as in the laminate shown in Figs. 1 and 2, it is preferable that the protective layer 20 is directly laminated on the wavelength conversion layer 10 (i.e., the protective layer 20 and the wavelength conversion layer 10 are laminated without any other layer therebetween).
  • FIG. 4 is a schematic cross-sectional view showing yet another example of a laminate according to the present invention.
  • the laminate includes a first wavelength conversion layer 11 that emits red light, a first protective layer 21 disposed thereon, a second wavelength conversion layer 12 that emits green light, and a second protective layer 22 disposed thereon.
  • the first protective layer 21 and the second protective layer 22 are both protective layers formed from the composition II according to the present invention.
  • one (integral) protective layer may be provided on the first wavelength conversion layer 11 and the second wavelength conversion layer 12.
  • the laminate shown in FIG. 4 may be provided with a light absorbing layer 30, as in the laminates of FIG. 2 and FIG. 3.
  • the first light absorbing layer can be provided on the first wavelength conversion layer 11 or the first protective layer 21, and the second light absorbing layer can be provided on the second wavelength conversion layer 12 or the second protective layer 22.
  • one (integral) light absorbing layer can be provided on the first wavelength conversion layer 11 and the second wavelength conversion layer 12, or on the first protective layer 21 and the second protective layer 22.
  • the laminate can be suitably used as a color conversion member disposed on the primary light source (blue light source) of a display device.
  • the laminate according to the present invention can suppress the decrease in luminescence intensity caused by heat of the wavelength conversion layer.
  • the luminescence intensity maintenance rate of the laminate according to the present invention is preferably 80% or more, more preferably 85% or more, and even more preferably 90% or more. There is no particular upper limit, and 100% is ideal, but 99% or less is also acceptable.
  • the luminescence intensity maintenance rate of the laminate can be achieved by providing a protective layer on the wavelength conversion layer. The luminescence intensity maintenance rate can be measured according to the measurement method described in the Examples section below.
  • Wavelength conversion layer (composition I) and its manufacturing method The thickness of the wavelength conversion layer is, for example, 1 ⁇ m to 20 ⁇ m, preferably 1.5 ⁇ m to 18 ⁇ m, more preferably 1.8 ⁇ m to 14 ⁇ m, even more preferably 2 ⁇ m to 12 ⁇ m, and even more preferably 2 ⁇ m to 10 ⁇ m. If the thickness of the wavelength conversion layer is excessively small, when the wavelength conversion layer is irradiated with primary light, a proportion of the primary light that is not sufficiently absorbed or scattered by the wavelength conversion layer and transmits through the wavelength conversion layer tends to be large.
  • the shape and dimensions of the patterned wavelength-converting layer are not particularly limited. For example, the patterned wavelength-converting layer has a rectangular shape in plan view.
  • the wavelength conversion layer may be, for example, Method a comprising a step of applying composition I to a substrate and then drying the applied composition I; or Method b comprising producing a wavelength-converting layer by a step of applying composition I to a support and then drying the support, peeling the wavelength-converting layer from the support, and attaching the layer to a substrate via an adhesive layer.
  • the conductive layer can be provided on the substrate by the above-mentioned methods.
  • the composition I is a resin composition R1 further containing a resin (C).
  • the wavelength conversion layer (resin film) formed from the resin composition R1 can be formed by applying the composition I to a substrate or support and then drying it.
  • the composition I is a curable composition R2 further comprising a polymerizable compound (D) and a polymerization initiator (E).
  • the curable composition R2 may further comprise a resin (C).
  • the wavelength conversion layer formed from the curable composition R2 is a cured film.
  • the cured film can be obtained by applying the curable composition R2 to a substrate or support, drying the composition, and curing the composition by the action of light and/or heat.
  • One embodiment of the curable composition R2 is a photocurable composition R3 containing a photopolymerizable compound and a photopolymerization initiator.
  • the photocurable composition R3 may further contain a resin (C).
  • the protective layer is formed on the wavelength conversion layer.
  • the protective layer is disposed on the wavelength conversion layer, meaning that the protective layer is disposed on at least a part of the surface of the wavelength conversion layer directly or via another layer.
  • the surface may be the main surface or side surface of the wavelength conversion layer.
  • the main surface is preferably the main surface of the wavelength conversion layer in the light extraction direction.
  • the protective layer may be disposed so as to cover the entire main surface of the wavelength conversion layer, or may be disposed so as to cover a part of the main surface.
  • the protective layer is preferably disposed so as to cover the entire main surface of the wavelength conversion layer in the light extraction direction.
  • the protective layer may be disposed so as to cover the entire surface of the wavelength conversion layer.
  • the thickness of the protective layer is, for example, 0.1 ⁇ m or more and 20 ⁇ m or less, and from the viewpoint of suppressing warping or wrinkles that may occur during curing and suppressing a decrease in the luminescence intensity of the wavelength conversion layer due to heat, is preferably 0.1 ⁇ m or more and 15 ⁇ m or less, more preferably 0.5 ⁇ m or more and 10 ⁇ m or less, even more preferably 0.5 ⁇ m or more and 6 ⁇ m or less, and even more preferably 0.5 ⁇ m or more and 4.5 ⁇ m or less.
  • Composition II is resin composition R4 containing resin (C).
  • the protective layer (resin film) formed from resin composition R4 can be formed by applying composition II to a substrate and then drying it.
  • the composition II is a curable composition R5 that further includes a resin (C), a polymerizable compound (D), and a polymerization initiator (E).
  • the overcoat layer formed from the curable composition R5 is a cured film.
  • the cured film can be obtained by applying the curable composition R5 to a substrate, drying the composition, and curing the composition by the action of light and/or heat.
  • One embodiment of the curable composition R5 is a photocurable composition R6 that contains the resin (C) and further a photopolymerizable compound and a photopolymerization initiator.
  • Light absorbing layer (composition III) and its manufacturing method By providing a light absorbing layer formed from composition III on the wavelength conversion layer, it is possible to suppress leakage of primary light (e.g., blue light) to the viewing side of the light absorbing layer, and to suppress the decrease in luminous intensity when the light absorbing layer is arranged on the wavelength conversion layer, as compared with the case where the light absorbing layer is not arranged.
  • primary light e.g., blue light
  • the wavelength conversion layer may have a light transmittance at a wavelength of 450 nm of 10% or more, further 15% or more, and even 20% or more.
  • the wavelength range of light transmitted through the light absorbing layer is preferably a green or red wavelength range.
  • the green wavelength range is, for example, a wavelength range from 495 nm to 585 nm.
  • the red wavelength range is, for example, a wavelength range from 585 nm to 780 nm.
  • the wavelength range of light absorbed by the light absorbing layer is preferably a blue wavelength range, more preferably a wavelength range including 450 nm, for example, a wavelength range from 380 nm to less than 495 nm.
  • the composition III and the light absorbing layer have an average light transmittance of 98% or more in the wavelength range of 520 nm to 780 nm.
  • the average light transmittance of 98% or more can further increase the emission intensity.
  • the average light transmittance can be determined based on an absorption spectrum measured using an ultraviolet-visible-near infrared spectrophotometer equipped with an integrating sphere.
  • the thickness of the light absorbing layer is, for example, 0.1 ⁇ m or more and 30 ⁇ m or less, and from the viewpoint of effectively suppressing leakage of primary light (blue light) to the viewing side of the light absorbing layer, is preferably 0.1 ⁇ m or more and 20 ⁇ m or less, more preferably 0.5 ⁇ m or more and 10 ⁇ m or less, and even more preferably 0.5 ⁇ m or more and 6 ⁇ m or less.
  • the composition III is a resin composition R7 further containing a resin (C).
  • the light absorbing layer (resin film) formed from the resin composition R7 can be formed by applying the composition II to a substrate and then drying it.
  • the composition III is a curable composition R8 further comprising a polymerizable compound (D) and a polymerization initiator (E).
  • the curable composition R8 may further comprise a resin (C).
  • the light absorbing layer formed from the curable composition R8 is a cured film.
  • the cured film can be obtained by applying the curable composition R8 to a substrate, drying the composition, and curing the composition by the action of light and/or heat.
  • One embodiment of the curable composition R8 is a photocurable composition R9 containing a photopolymerizable compound and a photopolymerization initiator.
  • the photocurable composition R9 may further contain a resin (C).
  • Substrate examples of the substrate on which the wavelength conversion layer is formed include glass plates such as quartz glass, borosilicate glass, alumina silicate glass, and soda lime glass with a silica-coated surface; resin plates such as polycarbonate, polymethyl methacrylate, and polyethylene terephthalate; silicon; aluminum, silver, and silver/copper/palladium alloy thin films formed on these substrates; and components that are or may be included in the display device.
  • a primary light source e.g., a blue light source
  • a light guide plate e.g., a light guide plate
  • a diffusion film e.g., a diffusion layer
  • a light reflecting member such as a reflection film
  • a brightness enhancing member e.g., a prism sheet
  • a barrier layer e.g., a barrier layer.
  • the substrate on which the protective layer is formed is the wavelength conversion layer or another layer formed on the wavelength conversion layer (however, a layer different from the wavelength conversion layer, the protective layer, and the light absorbing layer).
  • the substrate on which the light absorbing layer is formed is the protective layer or another layer formed on the protective layer (however, a layer different from the wavelength conversion layer, the protective layer, and the light absorbing layer).
  • the wavelength conversion layer, protective layer, and light absorbing layer may be provided on the entire surface of each substrate, or may be provided in a pattern on a part of the substrate.
  • Methods for forming each layer (wavelength conversion layer, protective layer, or light absorbing layer) in a pattern on the substrate include photolithography, inkjet, and printing. Printing methods include stencil printing, screen printing, and printing and coating using an applicator.
  • the patterned resin film (wavelength conversion layer) formed from the resin composition R1, the patterned resin film (protective layer) formed from the resin composition R4, and the patterned resin film (light absorbing layer) formed from the resin composition R7 can be formed on the substrate corresponding to each of the above-mentioned layers, for example, as follows. First, the resin composition R1, R4, or R7 is applied to the substrate corresponding to each of the above-mentioned layers through a mask to form a patterned composition layer. Examples of the method for applying the resin composition include spin coating, slit coating, and slit and spin coating.
  • the composition layer is dried (volatile components such as the solvent are removed) to obtain a resin film (wavelength conversion layer, protective layer, or light absorption layer). Drying methods include heat drying, reduced pressure drying, and a combination of these.
  • the temperature when heat drying is performed is preferably 30°C or higher and 250°C or lower, more preferably 50°C or higher and 235°C or lower.
  • the heating time is preferably 10 seconds or higher and 180 minutes or lower, more preferably 30 seconds or higher and 90 minutes or lower.
  • reduced pressure drying it is preferably performed under a pressure of 50 Pa or higher and 150 Pa or lower. Drying of the composition layer may be performed in multiple stages, for example by performing multiple drying steps with different drying temperatures.
  • the patterned cured film (wavelength conversion layer) formed from photocurable composition R3, the patterned cured film (protective layer) formed from photocurable composition R6, and the patterned cured film (light absorption layer) formed from photocurable composition R9 can each be formed on a substrate corresponding to each of the layers described above, for example, by a method using photolithography as follows. First, photocurable composition R3, R6, or R9 is applied onto a substrate corresponding to each of the layers described above, and volatile components such as the solvent are removed by heating and drying (pre-baking) and/or drying under reduced pressure to obtain a composition layer. Examples of application methods include the same methods as those described above.
  • the temperature is preferably 30°C or higher and 120°C or lower, and more preferably 50°C or higher and 110°C or lower.
  • the heating time is preferably 10 seconds or higher and 60 minutes or lower, and more preferably 30 seconds or higher and 30 minutes or lower.
  • it is preferably performed under a pressure of 50 Pa or higher and 150 Pa or lower, and at a temperature range of 20°C or higher and 25°C or lower.
  • the composition layer is then exposed through a photomask to form the desired pattern shape.
  • the light source used for exposure is preferably a light source that generates light with a wavelength of 250 nm or more and 450 nm or less. For example, from the light with this wavelength, light with a wavelength of around 436 nm, around 408 nm, or around 365 nm may be selectively extracted using a bandpass filter depending on the absorption wavelength of the photopolymerization initiator.
  • Specific examples of light sources include mercury lamps, light-emitting diodes, metal halide lamps, halogen lamps, etc.
  • an exposure device such as a mask aligner or stepper, since this allows for uniform irradiation of the entire exposure surface with parallel light and allows for accurate alignment of the photomask with the substrate on which the composition layer is formed.
  • the exposed composition layer hardens as the photopolymerizable compound contained in the composition layer polymerizes.
  • the unexposed portions of the composition layer are dissolved and removed in the developer, resulting in a patterned cured film (wavelength conversion layer, protective layer, or light absorbing layer).
  • the developer include aqueous solutions of alkaline compounds such as potassium hydroxide, sodium bicarbonate, sodium carbonate, and tetramethylammonium hydroxide, and organic solvents.
  • the concentration of the alkaline compound in the aqueous solution is preferably 0.01% by mass or more and 10% by mass or less, and more preferably 0.03% by mass or more and 5% by mass or less.
  • the organic solvent include the same as the solvent (J) described above.
  • the developer may contain a surfactant.
  • the development method may be any of the puddle method, dipping method, spray method, etc. Furthermore, the substrate may be tilted at any angle during development.
  • the heating temperature is preferably 150°C or higher and 250°C or lower, and more preferably 160°C or higher and 235°C or lower.
  • the heating time is preferably 1 minute or higher and 120 minutes or lower, and more preferably 10 minutes or higher and 60 minutes or lower.
  • a method for forming a cured film (wavelength conversion layer, protective layer, or light absorbing layer) on the entire surface of a substrate includes a method in which a curable composition is applied to a substrate corresponding to each of the above-mentioned layers, dried as necessary to form a composition layer, and the composition layer is heated and/or the entire surface of the composition layer is exposed to light.
  • the cured films formed from the curable compositions R2, R5, and R7 contain a cured reaction product of the polymerizable compound and polymerization initiator contained in the curable compositions R2, R5, and R7.
  • the cured reaction product is a substance containing a structure resulting from the structure of the polymerizable compound and polymerization initiator.
  • the structure resulting from the structure of the polymerizable compound and polymerization initiator is, for example, a skeletal structure or a part thereof other than the curing reaction site of the polymerizable compound and polymerization initiator.
  • the shapes and dimensions of the patterned wavelength conversion layer, protective layer, and light absorbing layer are not particularly limited.
  • the patterned wavelength conversion layer, protective layer, and light absorbing layer have a rectangular shape in plan view.
  • the wavelength conversion layer is a layer that absorbs primary light from a primary light source and emits green light, and is preferably a layer that converts the wavelength of the primary light, that is, blue light, into the wavelength of green light.
  • the green light emitted by the wavelength conversion layer preferably includes a peak having a maximum value in a wavelength range of 500 nm to 560 nm inclusive, more preferably includes a peak having a maximum value in a wavelength range of 520 nm to 555 nm inclusive, and even more preferably includes a peak having a maximum value in a wavelength range of 525 nm to 550 nm inclusive.
  • the peak preferably has a full width at half maximum of 15 nm to 80 nm inclusive, more preferably 15 nm to 60 nm inclusive, even more preferably 15 nm to 50 nm inclusive, and particularly preferably 15 nm to 45 nm inclusive.
  • the wavelength conversion layer is a layer that absorbs primary light from a primary light source and emits red light, and is preferably a layer that converts the wavelength of the primary light, that is, blue light, into the wavelength of red light.
  • the red light emitted by the wavelength conversion layer preferably includes a peak having a maximum value in the wavelength range of 610 nm to 750 nm inclusive, more preferably includes a peak having a maximum value in the wavelength range of 620 nm to 650 nm inclusive, and even more preferably includes a peak having a maximum value in the wavelength range of 625 nm to 645 nm inclusive.
  • the peak preferably has a full width at half maximum of 15 nm to 80 nm inclusive, more preferably 15 nm to 60 nm inclusive, even more preferably 15 nm to 50 nm inclusive, and particularly preferably 15 nm to 45 nm inclusive.
  • the laminate and display device described below can include both a wavelength conversion layer that emits green light and a wavelength conversion layer that emits red light.
  • the wavelength conversion layer may be a layer that absorbs a part of the primary light and transmits the remaining part of the primary light. From the viewpoint of widening the color gamut and energy efficiency of the display device, the wavelength conversion layer preferably has a light transmittance of 90% or less at a wavelength of 450 nm, more preferably 85% or less, even more preferably 75% or less, even more preferably 60% or less, particularly preferably 40% or less, even more particularly preferably 30% or less, and most preferably 20% or less.
  • the wavelength conversion layer may have a light transmittance of 10% or more, even 15% or more, and even 20% or more at a wavelength of 450 nm.
  • a display device includes a primary light source and the laminate according to the present invention.
  • the display device is a device that irradiates a wavelength conversion layer with primary light from the primary light source to cause the wavelength conversion layer to emit light, and extracts the emitted light via a light absorbing layer.
  • the display device shown in FIG. 5 includes the laminate shown in FIG. 4, and includes a blue light source 40 as a primary light source having a first region, a second region, and a third region that are different from each other, a first wavelength conversion layer 11 arranged on the first region of the blue light source 40 and emitting, for example, red light, a first protective layer 21 arranged thereon, a second wavelength conversion layer 12 arranged on the second region of the blue light source 40 and emitting, for example, green light, and a second protective layer 22 arranged thereon.
  • a blue light source 40 as a primary light source having a first region, a second region, and a third region that are different from each other
  • a first wavelength conversion layer 11 arranged on the first region of the blue light source 40 and emitting, for example, red light
  • a first protective layer 21 arranged thereon
  • a second wavelength conversion layer 12 arranged on the second region of the blue light source 40 and emitting, for example, green light
  • a second protective layer 22 arranged thereon
  • the display device has a red light emission region (i.e., the first region), a green light emission region (i.e., the second region), and a blue light emission region (i.e., the third region).
  • the display device has a blue light source, a wavelength conversion layer, and a protective layer in this order in the optical path of light from the blue light source 40.
  • the first wavelength conversion layer 11 and the second wavelength conversion layer 12 may be disposed directly on the blue light source 40, or may be disposed on a light guide plate disposed between the blue light source 40 and the first wavelength conversion layer 11 and the second wavelength conversion layer 12 in the optical path of the light from the blue light source 40.
  • the display device may further include a transparent layer that transmits blue light or a layer that contains a light diffusing agent, which is disposed on the third region of the blue light source 40.
  • the laminate included in the display device may also include a light absorbing layer 30, similar to the laminates in Figures 2 and 3.
  • a third light absorbing layer that transmits blue light and absorbs light other than blue light may be provided on the transparent layer that transmits blue light or the layer that contains a light diffusing agent.
  • the blue light source 40 may be, for example, a known light source such as a light emitting diode (LED) such as a blue light emitting diode, a laser, or an EL. From the standpoint of color gamut and energy efficiency, the blue light source 40 is preferably a light source that emits light having a peak at 495 nm or less, and more preferably a light source that emits light having a peak at 425 nm or more and 495 nm or less.
  • LED light emitting diode
  • the display device may further include, for example, a light guide plate, a diffusion film (diffusion layer), a light reflecting member (such as a reflective film), a brightness enhancing member, a prism sheet, a barrier layer, etc.
  • a light guide plate for example, a light guide plate, a diffusion film (diffusion layer), a light reflecting member (such as a reflective film), a brightness enhancing member, a prism sheet, a barrier layer, etc.
  • any suitable light guide plate can be used as the light guide plate.
  • a light guide plate having a lens pattern formed on the back side, or a light guide plate having a prism shape or the like formed on the back side and/or the viewing side can be used so that light from the lateral direction can be deflected in the thickness direction.
  • the diffusion film is a film for diffusing the primary light or the light emitted from the wavelength conversion layer, and may be an amplifying diffusion film, etc.
  • the light reflecting member is a member for reflecting the primary light toward the wavelength conversion layer, and may be, for example, a reflecting mirror, a film of reflective particles, a reflective metal film, or a reflector, etc.
  • the brightness enhancing member is a member for reflecting a portion of the light back in the direction from which the light was transmitted.
  • a prism sheet typically has a base portion and a prism portion.
  • the base portion may be omitted depending on the adjacent member.
  • the prism sheet can be attached to the adjacent member via any appropriate adhesive layer (e.g., an adhesive layer, a pressure-sensitive adhesive layer).
  • the prism sheet is composed of a number of unit prisms arranged in parallel, each of which is convex on the side opposite the viewing side (the rear side). By arranging the convex portions of the prism sheet facing the rear side, the light passing through the prism sheet is easily concentrated. Furthermore, by arranging the convex portions of the prism sheet facing the rear side, less light is reflected without entering the prism sheet compared to when the convex portions are arranged facing the viewing side, and a display device with high luminous intensity can be obtained.
  • the barrier layer is a layer for protecting the wavelength conversion layer from water vapor in the outside air and oxygen in the atmosphere.
  • a display device includes both a protective layer and a barrier layer for protecting the wavelength conversion layer from water vapor in the outside air and oxygen in the atmosphere.
  • the display device may include a layer of one or more media materials in the optical path between adjacent elements (layers).
  • the one or more media materials may include any suitable material, including, but not limited to, vacuum, air, gas, optical material, adhesive, optical adhesive, glass, polymer, solid, liquid, gel, curable material, optical bonding material, index matching or index mismatching material, index gradient material, cladding or anti-cladding material, spacer, silica gel, brightness enhancing material, scattering or diffusing material, reflective or anti-reflective material, wavelength selective material, wavelength selective anti-reflective material, or other suitable media known in the art.
  • the display device include those equipped with a wavelength conversion material for an EL display or a liquid crystal display.
  • the display device is not limited to the example shown in FIG. 5, and may be, for example, A display device in which a wavelength conversion layer is disposed between a blue light source and a light guide plate along an end face (side face) of the light guide plate to form a backlight that emits white light (on-edge type backlight), and a light absorbing layer is disposed on the light guide plate side;
  • a display device in which a wavelength conversion layer is disposed near a light emitting portion of a blue light source, and a backlight (on-chip type
  • ⁇ Measurement> (1) Measurement of Thickness of Wavelength Conversion Layer and Protective Layer The thickness was measured using a film thickness measuring device (DEKTAKXT; manufactured by Bruker Corporation).
  • a light diffusion plate was placed on a backlight using a blue LED lamp with an emission peak wavelength of 450 nm as a point light source to form a backlight unit.
  • the backlight unit was placed with the light diffusion plate facing upward, and a spectroradiometer ("SR-UL1R" manufactured by Topcon Corporation) was installed at a height of 60 cm from the surface of the light diffusion plate.
  • SR-UL1R spectroradiometer
  • the backlight was turned on, and the spectral radiance spectrum of the light emitted from the laminate was measured using the spectroradiometer, and the emission intensity EI ( ⁇ W) at the maximum peak wavelength of the green emission peak was calculated from this spectrum.
  • the maximum peak wavelength of the green emission peak described above was 530 nm, which is the maximum peak wavelength of the green emission peak in the emission spectrum of the semiconductor particles (A) contained in the wavelength conversion layer.
  • the full width at half maximum of the green emission peak was 42 nm.
  • the emission spectrum of the semiconductor particles (A) was measured using an absolute PL quantum yield measurement device ("C9920-02" manufactured by Hamamatsu Photonics, excitation light of 450 nm, room temperature, under atmospheric air) using a dispersion of semiconductor particles (A) diluted so as to have an absorbance of 0.4 at a wavelength of 450 nm as a measurement sample.
  • the luminous intensity EI a of the laminate of the wavelength conversion layer and the protective layer formed on the glass substrate was measured, and the luminous intensity of the wavelength conversion layer formed on the glass substrate was designated as EI b .
  • the laminate obtained by applying the compositions II-1 to II-11 onto the wavelength conversion layer and pre-baking was immersed in a developer (a 0.02 wt % aqueous TMAH solution) for development. The time (seconds) until the protective layer was completely removed was measured to evaluate the development rate ( ⁇ m/second).
  • compositions II-1 to II-11 were applied onto the wavelength conversion layer, prebaked and exposed, and developed by immersing in a 0.02 wt % aqueous TMAH solution at 25° C. for 30 seconds, followed by post-baking at 180° C. for 60 minutes.
  • the film thickness in the exposed area after pre-baking and exposure, and the film thickness of the laminate sample further developed and post-baked after exposure were measured by measuring the step of the scratches made on the surface of the film using a stylus-type step gauge (DektakXT, manufactured by Bluker).
  • the film remaining rate calculated by the following formula was evaluated as ⁇ when it was 80% or more, ⁇ when it was less than 80% or 70% or more, and ⁇ when it was less than 70%.
  • Residual film ratio (%) 100 ⁇ (film thickness after post-baking)/(film thickness after exposure)
  • Resin (C2) had a weight average molecular weight Mw of 8,400 in terms of standard polystyrene, a molecular weight distribution of 2.2, and an acid value of 100 mgKOH/g, and the solid content in the resin (C2) solution was 40 mass %.
  • the resin (C3) solution had a solid content of 37%, an acid value of 120 mgKOH/g, and a weight average molecular weight Mw of 10,600.
  • Resin (C4) was prepared as follows by adjusting the amount of raw material monomer. Propylene glycol monomethyl ether acetate was placed in a flask equipped with a stirrer, dropping funnel, condenser, thermometer, and gas inlet tube, and the mixture was stirred and heated to 120°C while replacing with nitrogen.
  • a monomer mixture consisting of 2-ethylhexyl acrylate, glycidyl methacrylate, and dicyclopentanyl methacrylate to which t-butylperoxy-2-ethylhexanoate (polymerization initiator) had been added was dropped into the flask from the dropping funnel over a period of 2 hours. After the dropwise addition was completed, the mixture was stirred for an additional 30 minutes at 120°C to carry out a copolymerization reaction, and an addition copolymer was produced.
  • Succinic anhydride was then added to the reaction system, and the reaction was continued at 110°C for 1 hour, introducing carboxyl groups into the side chains by reacting the hydroxyl groups generated by the cleavage of the epoxy groups with succinic anhydride, yielding a polymer (resin (C4)).
  • the weight average molecular weight Mw of the resulting copolymer was 4,960, the acid value calculated as solids was 37 mg-KOH/g, and the double bond equivalent was 344 g/eq.
  • ⁇ Preparation Example 1 Preparation of semiconductor particle (A1) dispersion> A toluene dispersion a of semiconductor particles (A1) [green-emitting InP/ZnSeS quantum dots] containing oleic acid as an organic ligand (G1) was prepared. As described above, the maximum peak wavelength of the green emission peak of the quantum dots was 530 nm, and the full width at half maximum of the green emission peak was 42 nm.
  • composition ratio of the semiconductor particles (A1) and the organic ligand (G1) was determined by measuring the amount of the mixture remaining after removing the toluene and heating it to 550°C at a heating rate of 5°C/min using TG-DTA measurement, and calculating the weight of the organic ligand (G1).
  • ⁇ Preparation Example 2 Preparation of wavelength conversion layer forming composition I>
  • the semiconductor particle (A1) dispersion b and each component were mixed to prepare a wavelength conversion layer forming composition I having the composition shown in Table 2.
  • Table 2 the parts of the components other than the solvent (J) are shown as solid content equivalents.
  • Organic ligand (G1) Oleic acid White colorant (Iw1): 60 parts of titanium oxide particles, 10 parts of resin C1 (solid content equivalent), and 30 parts of PGMEA were mixed, and the titanium oxide particles were thoroughly dispersed using a bead mill.
  • the number of parts of light scattering agent (B1) shown in Table 2 is the number of parts of titanium oxide particles.
  • Polymerizable compound (D1) Carboxy group-containing polyfunctional (meth)acrylate (product name "Aronix (registered trademark) M-510" manufactured by Toagosei Co., Ltd.)
  • H1 Polyether modified silicone oil (product name "Toray Silicone SH8400” manufactured by Toray Dow Corning Co., Ltd.)
  • Solvent (J1) Propylene glycol monomethyl ether acetate
  • Solvent (J3) Cyclohexyl acetate
  • composition II Preparation of Composition II> Compositions II-1 to II-11 were obtained by mixing the components shown in Table 3. In Table 3, the parts of the resin are calculated as solid content.
  • Polymerization initiator (E3) a compound represented by the following formula (EA-1).
  • Antioxidant (Fb1) Trade name "Sumilizer (registered trademark) GP” manufactured by Sumitomo Chemical Co., Ltd.
  • Antioxidant (Fb2) Trade name “Sumilizer (registered trademark) GA80” manufactured by Sumitomo Chemical Co., Ltd.
  • the substrate on which this composition layer was formed was irradiated with light at an exposure dose of 80 mJ/cm 2 (based on 365 nm) in an air atmosphere using an exposure machine ("TME-150RSK” manufactured by Topcon Corporation), and after development, post-baked at 180° C. for 30 minutes to form a wavelength conversion layer.
  • TAE-150RSK an exposure machine
  • the composition II-1 prepared in Example 1-1 was applied onto the wavelength conversion layer by spin coating so that the thickness of the layer after post-baking was 1 ⁇ m, and then pre-baked at 100 ° C. for 3 minutes to form a composition layer.
  • the substrate on which the composition layer was formed on the wavelength conversion layer was irradiated with light at an exposure dose of 100 mJ / cm 2 (based on 365 nm) in an air atmosphere using an exposure machine (Topcon Corporation's "TME-150RSK”), and post-baked at 180 ° C. for 30 minutes to form a laminate of the wavelength conversion layer and the protective layer.
  • the luminescence intensity (luminescence intensity after lamination of the protective layer) EI a of the obtained laminate was measured, and the luminescence intensity maintenance rate was measured according to the measurement method described above.
  • the development rate and the residual film rate were measured according to the above "(5) Measurement of development rate” and "(6) Evaluation of residual film rate”.
  • Examples 2-2 to 2-10 and Comparative Example 2 Laminates of wavelength conversion layers and protective layers of Examples 2-2 to 2-10 and Comparative Example 2 were formed in the same manner as in Example 2-1, except that compositions II-2 to II-11 were used instead of composition II-1, and the maintenance rates of luminous intensity EI before and after lamination of the protective layer were determined. In addition, the development rate and the film remaining rate were measured according to the above "(5) Measurement of development rate” and "(6) Evaluation of film remaining rate”.
  • Table 4 shows the results of the luminescence intensity maintenance rate, development speed, and film remaining rate for Examples 2-1 to 2-10 and Comparative Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

Provided is a composition capable of forming a protective layer for a wavelength conversion layer , the protective layer reducing film loss during development and providing an excellent remaining film percentage. The present invention is a composition containing neither semiconductor particles (A) nor colorant (I), wherein the composition contains a photostabilizer (F) as well as a resin (C), and the resin (C) contains a resin (C-1) having a weight average molecular weight Mw of 10,000 or less. The resin (C-1) preferably has an acid value of 110 mg KOH/g or less.

Description

組成物、積層体及び表示装置Composition, laminate and display device
 本発明は、組成物、積層体及び該積層体を含む表示装置に関する。 The present invention relates to a composition, a laminate, and a display device including the laminate.
 特許文献1には、量子ドットを含む硬化性樹脂組成物、及び該硬化性樹脂組成物を用いて形成される波長変換膜が記載されている。 Patent Document 1 describes a curable resin composition containing quantum dots, and a wavelength conversion film formed using the curable resin composition.
特開2016-065178号公報JP 2016-065178 A
 量子ドット等の発光性無機半導体粒子を含有する波長変換層上に保護層をパターン状に形成する場合があるが、現像工程における保護層の残膜率が十分でない場合があった。 In some cases, a protective layer is formed in a pattern on a wavelength conversion layer that contains luminescent inorganic semiconductor particles such as quantum dots, but the remaining film rate of the protective layer during the development process is sometimes insufficient.
 本発明の1つの目的は、波長変換層のための保護層であって、現像時の膜減りを低減し、残膜率に優れた保護層を形成可能な組成物を提供することにある。本発明の他の目的は、波長変換層と、該波長変換層のための残膜率に優れた保護層と、更に光吸収層を含む積層体、及び、該積層体を含む表示装置を提供することにある。 One object of the present invention is to provide a composition capable of forming a protective layer for a wavelength conversion layer, which reduces film loss during development and has an excellent film remaining rate. Another object of the present invention is to provide a laminate including a wavelength conversion layer, a protective layer for the wavelength conversion layer having an excellent film remaining rate, and further a light absorbing layer, and a display device including the laminate.
 上記課題を達成した本発明は以下の通りである。
[1]半導体粒子(A)及び着色剤(I)のいずれも含まない組成物であって、
 前記組成物は、樹脂(C)を含むとともに、光安定剤(F)を含み、
 前記樹脂(C)は、重量平均分子量Mwが10000以下である樹脂(C-1)を含む組成物。
[2]前記樹脂(C-1)の酸価が110mgKOH/g以下である[1]に記載の組成物。
[3]前記組成物が、更に重合性化合物(D)を含み、
 前記樹脂(C-1)と前記重合性化合物(D)の質量比(樹脂(C-1)/重合性化合物(D))が1.8以下である[1]または[2]に記載の組成物。
[4]半導体粒子(A)を含有する波長変換層上に配置される保護層を形成するために用いられる[1]~[3]のいずれかに記載の組成物。
[5]半導体粒子(A)を有する波長変換層と、
 [1]~[4]のいずれかに記載の組成物から形成され、前記波長変換層上に配置される保護層とを含む積層体。
[6]半導体粒子(A)を有する波長変換層と、保護層と、光吸収層を含む積層体であって、
 前記保護層は、半導体粒子(A)及び着色剤(I)のいずれも含まない組成物であって、樹脂(C)を含むとともに、更に光安定剤(F)を含み、樹脂(C)は、重量平均分子量Mwが10000以下である樹脂(C-1)を含む組成物から形成される層である積層体。
[7][5]または[6]に記載の積層体を含む表示装置。
The present invention which achieves the above object is as follows.
[1] A composition containing neither semiconductor particles (A) nor a colorant (I),
The composition contains a resin (C) and a light stabilizer (F),
The resin (C) is a composition containing a resin (C-1) having a weight average molecular weight Mw of 10,000 or less.
[2] The composition according to [1], wherein the acid value of the resin (C-1) is 110 mg KOH / g or less.
[3] The composition further comprises a polymerizable compound (D),
The composition according to [1] or [2], wherein a mass ratio of the resin (C-1) to the polymerizable compound (D) (resin (C-1)/polymerizable compound (D)) is 1.8 or less.
[4] The composition according to any one of [1] to [3], which is used for forming a protective layer to be placed on a wavelength conversion layer containing semiconductor particles (A).
[5] A wavelength conversion layer having semiconductor particles (A);
and a protective layer formed from the composition according to any one of [1] to [4] and disposed on the wavelength conversion layer.
[6] A laminate including a wavelength conversion layer having semiconductor particles (A), a protective layer, and a light absorbing layer,
The protective layer is a laminate which is a layer formed from a composition which does not contain any of semiconductor particles (A) and colorant (I), and which contains a resin (C) and further contains a light stabilizer (F), the resin (C) containing a resin (C-1) having a weight average molecular weight Mw of 10,000 or less.
[7] A display device comprising the laminate according to [5] or [6].
 本発明の組成物は、重量平均分子量Mwが10000以下である樹脂(C-1)を含むため現像時の残膜率に優れる保護層を形成できる。また、本発明の積層体においても、現像時の残膜率に優れるという保護層の上記効果を享受できる。また、本発明の組成物及び積層体は、該組成物が光安定剤を含むため、波長変換層の熱による発光強度の低下を抑制し得る。 The composition of the present invention contains a resin (C-1) with a weight-average molecular weight Mw of 10,000 or less, and therefore can form a protective layer with excellent film remaining rate during development. The laminate of the present invention also has the above-mentioned effect of the protective layer, that is, excellent film remaining rate during development. Furthermore, the composition and laminate of the present invention contain a light stabilizer, and therefore can suppress the decrease in luminescence intensity of the wavelength conversion layer due to heat.
本発明に係る積層体の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a laminate according to the present invention. 本発明に係る積層体の他の一例を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing another example of the laminate according to the present invention. 本発明に係る積層体のさらに他の一例を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing still another example of the laminate according to the present invention. 本発明に係る積層体のさらに他の一例を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing still another example of the laminate according to the present invention. 本発明に係る表示装置の一例を示す概略断面図である。1 is a schematic cross-sectional view showing an example of a display device according to the present invention.
 表示装置における波長変換層は、一次光源からの一次光を吸収して波長変換(色変換)された光を放出する層である。本発明の組成物は、波長変換層上に配置する保護層を形成するために用いることができ、現像時の残膜率に優れている。また、本発明の組成物は、波長変換層の熱による劣化を抑制し得る。波長変換層を含む表示装置において、波長変換層に照射される一次光の一部の光が波長変換層を透過して視認側に漏れ、表示装置の広色域化を妨げることを解決するため、波長変換層を透過した一次光を吸収する光吸収層を波長変換層上に配置することが好ましい。 The wavelength conversion layer in a display device is a layer that absorbs primary light from a primary light source and emits wavelength-converted (color-converted) light. The composition of the present invention can be used to form a protective layer to be placed on the wavelength conversion layer, and has an excellent film remaining rate during development. The composition of the present invention can also suppress deterioration of the wavelength conversion layer due to heat. In a display device including a wavelength conversion layer, in order to solve the problem that a portion of the primary light irradiated to the wavelength conversion layer passes through the wavelength conversion layer and leaks to the viewing side, preventing the display device from having a wide color gamut, it is preferable to place a light absorbing layer on the wavelength conversion layer that absorbs the primary light that has passed through the wavelength conversion layer.
 本書では、波長変換層を形成するために用いられる組成物を「組成物I」、波長変換層上に配置する保護層を形成するために好適に用いられる本発明の組成物を「組成物II」、光吸収層を形成可能な組成物を「組成物III」と呼ぶ。 In this document, the composition used to form the wavelength conversion layer is referred to as "composition I," the composition of the present invention that is preferably used to form a protective layer to be placed on the wavelength conversion layer is referred to as "composition II," and the composition capable of forming a light absorbing layer is referred to as "composition III."
 本発明の組成物IIは、半導体粒子(A)及び着色剤(I)のいずれも含まない組成物であって、波長変換層上に配置する保護層への使用が好ましく、波長変換層上に組成物IIを塗布して硬化させる方法により保護層を形成できる。
 組成物IIは、樹脂(C)を含み、重量平均分子量Mwが10000以下である樹脂(C-1)を含む。このような樹脂(C-1)を含むことで、組成物IIから形成される層の現像時の残膜率を向上できる。
 組成物IIは、光安定剤(F)を含む。本発明者らは、波長変換層そのものを形成する組成物Iではなく、保護層を形成可能な組成物IIに光安定剤(F)を含ませることで、波長変換層の熱による発光特性の劣化を抑制できることを見出した。
Composition II of the present invention is a composition containing neither semiconductor particles (A) nor colorant (I) and is preferably used for a protective layer to be placed on a wavelength converting layer. The protective layer can be formed by applying composition II onto the wavelength converting layer and curing it.
Composition II contains a resin (C), and further contains a resin (C-1) having a weight average molecular weight Mw of not more than 10,000. By containing such a resin (C-1), the residual film rate of a layer formed from composition II during development can be improved.
The composition II contains a light stabilizer (F). The present inventors have found that by incorporating the light stabilizer (F) in the composition II capable of forming a protective layer, rather than in the composition I that forms the wavelength conversion layer itself, the deterioration of the luminescence characteristics of the wavelength conversion layer due to heat can be suppressed.
 組成物IIが、半導体粒子(A)及び着色剤(I)を含まないとは、半導体粒子(A)または着色剤(I)の含有量が、それぞれ、組成物IIの固形分の総量に対して好ましくは1質量%以下、より好ましくは0.5質量%以下、さらに好ましくは0.1質量%以下、特に好ましくは0質量%であることをいう。 The phrase "Composition II does not contain semiconductor particles (A) and colorant (I)" means that the content of semiconductor particles (A) or colorant (I) is preferably 1 mass % or less, more preferably 0.5 mass % or less, even more preferably 0.1 mass % or less, and particularly preferably 0 mass %, respectively, relative to the total amount of solids in Composition II.
 なお、本明細書において各成分の含有量又は含有率は、該成分が2種以上含まれる場合には、それらの合計含有量又は合計含有率を意味する。また、組成物中の固形分の総量とは、組成物に含まれる成分のうち、溶剤(J)を除いた成分の合計を意味する。組成物の固形分中の含有率は、液体クロマトグラフィ又はガスクロマトグラフィ等の公知の分析手段で測定することができる。組成物の固形分中における各成分の含有率は、組成物調製時の配合から算出されてもよい。 In this specification, the content or percentage of each component means the total content or percentage of the components when two or more types of the component are included. Furthermore, the total amount of solids in the composition means the total of the components contained in the composition excluding the solvent (J). The content in the solids of the composition can be measured by known analytical means such as liquid chromatography or gas chromatography. The content of each component in the solids of the composition may be calculated from the blending when the composition is prepared.
 組成物IIが、光安定剤(F)を含むことで、波長変換層の熱による劣化を抑制できる。組成物IIは、光安定剤(F)を、少なくとも1種含むことが好ましく、光安定剤(F)の中でも、後述する酸化防止剤(Fb)及び紫外線吸収剤(Fc)の少なくとも1種を含むことがより好ましい。酸化防止剤(Fb)及び紫外線吸収剤(Fc)の少なくとも1種を含む場合、いずれか一方のみを含んでもよいし、酸化防止剤(Fb)及び紫外線吸収剤(Fc)の両方を含んでもよい。波長変換層の発光強度の劣化を抑制する観点からは、酸化防止剤(Fb)及び紫外線吸収剤(Fc)の両方を含むことが好ましい。好ましい態様において、酸化防止剤(Fb)及び紫外線吸収剤(Fc)の合計含有量は、組成物IIの固形分の総量に対して、好ましくは0.5質量%以上であり、より好ましくは0.9質量%以上であり、更に好ましくは2質量%以上であり、特に好ましくは4質量%以上であり、また10質量%以下であってもよいし、8質量%以下であってもよい。酸化防止剤(Fb)の含有量は、組成物IIの固形分の総量に対して、好ましくは0.5質量%以上であり、より好ましくは0.9質量%以上であり、更に好ましくは2質量%以上であり、特に好ましくは4質量%以上であり、また8質量%以下であってもよいし、6.5質量%以下であってもよい。紫外線吸収剤(Fc)の含有量は、組成物IIの固形分の総量に対して、好ましくは0.5質量%以上であり、より好ましくは0.9質量%以上であり、また3質量%以下であってもよいし、2質量%以下であってもよい。 The composition II contains a light stabilizer (F), which can suppress deterioration of the wavelength conversion layer due to heat. The composition II preferably contains at least one light stabilizer (F), and more preferably contains at least one of the antioxidant (Fb) and ultraviolet absorber (Fc) described below among the light stabilizers (F). When the composition II contains at least one of the antioxidant (Fb) and ultraviolet absorber (Fc), only one of them may be contained, or both the antioxidant (Fb) and the ultraviolet absorber (Fc) may be contained. From the viewpoint of suppressing deterioration of the luminescence intensity of the wavelength conversion layer, it is preferable to contain both the antioxidant (Fb) and the ultraviolet absorber (Fc). In a preferred embodiment, the total content of the antioxidant (Fb) and the ultraviolet absorber (Fc) is preferably 0.5% by mass or more, more preferably 0.9% by mass or more, even more preferably 2% by mass or more, particularly preferably 4% by mass or more, and may be 10% by mass or less, or may be 8% by mass or less, based on the total amount of solids in the composition II. The content of the antioxidant (Fb) is preferably 0.5% by mass or more, more preferably 0.9% by mass or more, even more preferably 2% by mass or more, particularly preferably 4% by mass or more, and may be 8% by mass or less or 6.5% by mass or less, based on the total amount of solids in the composition II. The content of the ultraviolet absorber (Fc) is preferably 0.5% by mass or more, more preferably 0.9% by mass or more, and may be 3% by mass or less or 2% by mass or less, based on the total amount of solids in the composition II.
 組成物IIにおいて、酸化防止剤(Fb)はリン/フェノール複合型酸化防止剤および/またはフェノール系酸化防止剤であることが好ましく、リン/フェノール複合型酸化防止剤であることがより好ましく、紫外線吸収剤(Fc)は、ベンゾトリアゾール系化合物であることが好ましい。 In composition II, the antioxidant (Fb) is preferably a phosphorus/phenol complex type antioxidant and/or a phenol-based antioxidant, more preferably a phosphorus/phenol complex type antioxidant, and the ultraviolet absorber (Fc) is preferably a benzotriazole-based compound.
 組成物IIは、有機配位子(G)を含まないことが好ましい。組成物IIが「有機配位子(G)を含まない」とは、組成物IIの固形分の総量に対して、有機配位子(G)の含有率が、好ましくは1質量%以下、より好ましくは0.5質量%以下、さらに好ましくは0.1質量%以下、特に好ましくは0質量%であることをいう。 Composition II preferably does not contain an organic ligand (G). When composition II "does not contain an organic ligand (G)," this means that the content of organic ligand (G) relative to the total amount of solids in composition II is preferably 1 mass% or less, more preferably 0.5 mass% or less, even more preferably 0.1 mass% or less, and particularly preferably 0 mass%.
 組成物IIにおける樹脂(C)は、重量平均分子量Mwが10000以下である樹脂(C-1)を含む。組成物IIにおける樹脂(C)中の樹脂(C-1)の含有量は、80質量%以上が好ましく、90質量%以上がより好ましく、100質量%であることが最も好ましい。樹脂(C-1)の重量平均分子量Mwは、9500以下がより好ましく、9000以下が更に好ましく、下限は特に限定されないが、例えば4000であってもよいし、6500であってもよい。 The resin (C) in composition II contains a resin (C-1) having a weight average molecular weight Mw of 10,000 or less. The content of the resin (C-1) in the resin (C) in composition II is preferably 80 mass% or more, more preferably 90 mass% or more, and most preferably 100 mass%. The weight average molecular weight Mw of the resin (C-1) is more preferably 9,500 or less, even more preferably 9,000 or less, and the lower limit is not particularly limited, but may be, for example, 4,000 or 6,500.
 樹脂(C-1)の酸価は、110mgKOH/g以下であることが好ましく、このようにすることで組成物IIの硬化膜について、現像時の残膜率を向上でき、好ましくは残膜率と現像速度の両方をより向上できる。また、樹脂(C-1)の酸価は30mgKOH/g以上であることが好ましく、40mgKOH/g以上であることがより好ましく、さらに好ましくは50mgKOH/g以上である。 The acid value of resin (C-1) is preferably 110 mgKOH/g or less, which can improve the residual film rate during development for the cured film of composition II, and preferably can further improve both the residual film rate and the development speed. In addition, the acid value of resin (C-1) is preferably 30 mgKOH/g or more, more preferably 40 mgKOH/g or more, and even more preferably 50 mgKOH/g or more.
 樹脂(C-1)の二重結合当量は、300g/eq以上1500g/eq以下が好ましく、330g/eq以上1000g/eq以下がより好ましい。二重結合当量は、樹脂の総質量を、樹脂に導入されたラジカル重合性二重結合のモル数で除することにより求めることができる。 The double bond equivalent of resin (C-1) is preferably 300 g/eq or more and 1500 g/eq or less, and more preferably 330 g/eq or more and 1000 g/eq or less. The double bond equivalent can be calculated by dividing the total mass of the resin by the number of moles of radically polymerizable double bonds introduced into the resin.
 更に、
 組成物IIは、重合性化合物(D)を含んでいてもよい。
 組成物IIは、重合開始剤(E)を含んでいてもよい。
 組成物IIは、重合開始助剤(Eα)を含んでいてもよい。
 組成物IIは、溶剤(J)を含んでいてもよい。
 組成物IIは、レベリング剤(H)を含んでいてもよい。
 組成物IIは、有機配位子(G)を含まないことが好ましい。
Furthermore,
The composition II may contain a polymerizable compound (D).
Composition II may contain a polymerization initiator (E).
Composition II may contain a polymerization initiation aid (Eα).
Composition II may contain a solvent (J).
Composition II may contain a leveling agent (H).
Composition II preferably does not contain an organic ligand (G).
 樹脂(C-1)と重合性化合物(D)との質量比(樹脂(C-1)/重合性化合物(D))は1.8以下であることが好ましく、より好ましくは1.7以下であり、また0.5以上が好ましく、1.0超がより好ましい。このような質量比の調整を行うことで、組成物IIの硬化膜について、現像時の残膜率をより向上でき、好ましくは残膜率と現像速度の両方をより向上できる。 The mass ratio of resin (C-1) to polymerizable compound (D) (resin (C-1)/polymerizable compound (D)) is preferably 1.8 or less, more preferably 1.7 or less, and also preferably 0.5 or more, more preferably more than 1.0. By adjusting the mass ratio in this way, the residual film rate at the time of development of the cured film of composition II can be further improved, and preferably both the residual film rate and the development speed can be further improved.
 重合性化合物(D)は、官能基数が2以上であることが好ましく、より好ましくは3以上であり、上限は6であってもよい。官能基は、エチレン性不飽和結合であることが好ましい。 The polymerizable compound (D) preferably has a functional group number of 2 or more, more preferably 3 or more, and the upper limit may be 6. The functional group is preferably an ethylenically unsaturated bond.
 組成物IIにおいて、樹脂(C)が樹脂(C-1)を含み、樹脂(C-1)の酸価及び樹脂(C-1)と重合性化合物(D)との質量比を上記範囲に調整することで、組成物IIの硬化膜について、現像時の残膜率をより向上でき、好ましくは残膜率と現像速度の両方がより向上できるため好ましい。 In composition II, resin (C) contains resin (C-1), and by adjusting the acid value of resin (C-1) and the mass ratio of resin (C-1) to polymerizable compound (D) within the above range, the residual film rate at the time of development of the cured film of composition II can be further improved, and preferably both the residual film rate and the development speed can be further improved.
 組成物IIにおいて、重合性化合物(D)と重合開始剤(E)との質量比(重合性化合物(D)/重合開始剤(E))は、好ましくは40以上であり、より好ましくは60以上であり、更に好ましくは80以上である。また重合性化合物(D)と重合開始剤(E)との質量比(重合性化合物(D)/重合開始剤(E))は、好ましくは140以下であり、より好ましくは120以下であり、更に好ましくは100以下である。 In composition II, the mass ratio of the polymerizable compound (D) to the polymerization initiator (E) (polymerizable compound (D)/polymerization initiator (E)) is preferably 40 or more, more preferably 60 or more, and even more preferably 80 or more. The mass ratio of the polymerizable compound (D) to the polymerization initiator (E) (polymerizable compound (D)/polymerization initiator (E)) is preferably 140 or less, more preferably 120 or less, and even more preferably 100 or less.
 組成物IIの硬化膜の現像速度は、0.04μm/秒以上とすることができ、好ましくは0.05μm/秒以上であり、より好ましくは0.06μm/秒以上であり、上限は特に限定されないが、0.15μm/秒であってもよい。また、組成物IIの硬化膜を現像した際の残膜率は、70%以上とすることができ、好ましくは80%以上であり、上限は特に限定されず100%が理想であるが、99%以下であっても許容される。現像速度及び残膜率は後述の実施例の欄に記載の測定方法に従って測定することができる。 The development speed of the cured film of Composition II can be 0.04 μm/sec or more, preferably 0.05 μm/sec or more, and more preferably 0.06 μm/sec or more, with no particular upper limit, but which may be 0.15 μm/sec. Furthermore, the remaining film rate when the cured film of Composition II is developed can be 70% or more, preferably 80% or more, with no particular upper limit, with 100% being ideal, but 99% or less being acceptable. The development speed and remaining film rate can be measured according to the measurement methods described in the Examples section below.
 組成物Iは、半導体粒子(A)を含有する組成物であって、波長変換層を形成するのに好適に用いられる。
 組成物Iは、有機配位子(G)を含んでいてもよい。
 組成物Iは、白の着色剤(Iw)を含んでいてもよい。
 組成物Iは、樹脂(C)を含んでいてもよい。
 組成物Iは、重合性化合物(D)を含んでいてもよい。
 組成物Iは、重合開始剤(E)を含んでいてもよい。
 組成物Iは、重合開始助剤(Eα)を含んでいてもよい。
 組成物Iは、光安定剤(F)を含んでいてもよい。
 組成物Iは、溶剤(J)を含んでいてもよい。
 組成物Iは、レベリング剤(H)を含んでいてもよい。
Composition I is a composition containing semiconductor particles (A) and is suitably used for forming a wavelength conversion layer.
Composition I may contain an organic ligand (G).
Composition I may also contain a white colorant (Iw).
The composition I may contain a resin (C).
The composition I may contain a polymerizable compound (D).
The composition I may contain a polymerization initiator (E).
Composition I may contain a polymerization initiation aid (Eα).
Composition I may contain a light stabilizer (F).
Composition I may contain a solvent (J).
Composition I may contain a leveling agent (H).
 組成物IIIは、着色剤(I)(特に有彩色の着色剤(Ic))を含有する組成物であって、光吸収層を形成するのに好適に用いられる。
 組成物IIIは、樹脂(C)を含んでいてもよい。
 組成物IIIは、重合性化合物(D)を含んでいてもよい。
 組成物IIIは、重合開始剤(E)を含んでいてもよい。
 組成物IIIは、重合開始助剤(Eα)を含んでいてもよい。
 組成物IIIは、光安定剤(F)を含んでいてもよい。
 組成物IIIは、溶剤(J)を含んでいてもよい。
 組成物IIIは、レベリング剤(H)を含んでいてもよい。
Composition III is a composition containing a colorant (I) (particularly a chromatic colorant (Ic)), and is suitably used for forming a light absorbing layer.
Composition III may contain a resin (C).
Composition III may contain a polymerizable compound (D).
Composition III may contain a polymerization initiator (E).
Composition III may contain a polymerization initiator coagent (Eα).
Composition III may also contain a light stabilizer (F).
Composition III may contain a solvent (J).
Composition III may contain a leveling agent (H).
 以下に述べる各成分についての説明は、特定の組成物に限定して説明したもの以外は、組成物I、組成物II及び組成物IIIのいずれについても適用できる。 The following explanation of each component can be applied to any of Composition I, Composition II, and Composition III, except where the explanation is limited to a specific composition.
 <半導体粒子(A)>
 半導体粒子(A)は、好ましくは一次光を吸収して一次光とは異なる波長の光を発する発光性無機半導体粒子であり、前記発光性無機半導体粒子は一次光を吸収して緑色又は赤色を発光することがより好ましく、一次光である青色の光の波長を赤色の光の波長又は緑色の光の波長に変換することが更に好ましい。
<Semiconductor particles (A)>
The semiconductor particles (A) are preferably luminescent inorganic semiconductor particles that absorb primary light and emit light of a wavelength different from the primary light, and it is more preferable that the luminescent inorganic semiconductor particles absorb the primary light and emit green or red light, and it is even more preferable that the wavelength of the blue light, which is the primary light, is converted to the wavelength of red light or the wavelength of green light.
 本明細書において「青色」とは、青色として視認される光全般(青色の波長域、例えば380nm~495nmに強度を有する光全般)を指し、単一波長の光に限定されない。「緑色」とは、緑色として視認される光全般(緑色の波長域、例えば495nm~585nmに強度を有する光全般)を指し、単一波長の光に限定されない。「赤色」とは、赤色として視認される光全般(赤色の波長域、例えば585nm~780nmに強度を有する光全般)を指し、単一波長の光に限定されない。「黄色」とは、黄色として視認される光全般(黄色の波長域、例えば560nm~610nmに強度を有する光全般)を指し、単一波長の光に限定されない。 In this specification, "blue" refers to all light that is perceived as blue (all light having intensity in the blue wavelength range, e.g., 380 nm to 495 nm), and is not limited to light of a single wavelength. "Green" refers to all light that is perceived as green (all light having intensity in the green wavelength range, e.g., 495 nm to 585 nm), and is not limited to light of a single wavelength. "Red" refers to all light that is perceived as red (all light having intensity in the red wavelength range, e.g., 585 nm to 780 nm), and is not limited to light of a single wavelength. "Yellow" refers to all light that is perceived as yellow (all light having intensity in the yellow wavelength range, e.g., 560 nm to 610 nm), and is not limited to light of a single wavelength.
 緑色を発光する半導体粒子(A)の発光スペクトルは、好ましくは、500nm以上560nm以下の波長域に極大値を有するピークを含み、より好ましくは、520nm以上545nm以下の波長域に極大値を有するピークを含み、さらに好ましくは、525nm以上535nm以下の波長域に極大値を有するピークを含む。これにより、表示装置の緑色光の発光強度をより向上させることができる。該ピークは、好ましくは、半値全幅が15nm以上80nm以下、より好ましくは15nm以上60nm以下、さらに好ましくは15nm以上50nm以下、特に好ましくは15nm以上45nm以下である。これにより、表示装置の緑色光の発光強度をより向上させることができる。 The emission spectrum of the green-emitting semiconductor particles (A) preferably includes a peak having a maximum value in the wavelength range of 500 nm to 560 nm, more preferably includes a peak having a maximum value in the wavelength range of 520 nm to 545 nm, and even more preferably includes a peak having a maximum value in the wavelength range of 525 nm to 535 nm. This can further improve the emission intensity of green light from the display device. The peak preferably has a full width at half maximum of 15 nm to 80 nm, more preferably 15 nm to 60 nm, even more preferably 15 nm to 50 nm, and particularly preferably 15 nm to 45 nm. This can further improve the emission intensity of green light from the display device.
 赤色を発光する半導体粒子(A)の発光スペクトルは、好ましくは、610nm以上750nm以下の波長域に極大値を有するピークを含み、より好ましくは、620nm以上650nm以下の波長域に極大値を有するピークを含み、さらに好ましくは、625nm以上645nm以下の波長域に極大値を有するピークを含む。これにより、表示装置の赤色光の発光強度をより向上させることができる。該ピークは、好ましくは、半値全幅が15nm以上80nm以下、より好ましくは15nm以上60nm以下、さらに好ましくは15nm以上50nm以下、特に好ましくは15nm以上45nm以下である。これにより、表示装置の赤色光の発光強度をより向上させることができる。
 半導体粒子(A)の発光スペクトルは、後述する実施例の欄において説明する方法に従って測定される。
The emission spectrum of the semiconductor particles (A) emitting red light preferably includes a peak having a maximum value in a wavelength range of 610 nm to 750 nm, more preferably includes a peak having a maximum value in a wavelength range of 620 nm to 650 nm, and even more preferably includes a peak having a maximum value in a wavelength range of 625 nm to 645 nm. This can further improve the emission intensity of red light from the display device. The peak preferably has a full width at half maximum of 15 nm to 80 nm, more preferably 15 nm to 60 nm, even more preferably 15 nm to 50 nm, and particularly preferably 15 nm to 45 nm. This can further improve the emission intensity of red light from the display device.
The emission spectrum of the semiconductor particles (A) is measured according to the method described in the Examples section below.
 半導体粒子(A)としては、量子ドット、及びペロブスカイト型結晶構造を有する化合物(以下、「ペロブスカイト化合物」ともいう。)から構成される粒子が挙げられ、好ましくは量子ドットである。量子ドットは、粒子径1nm以上100nm以下の発光性半導体微粒子であり、半導体のバンドギャップを利用し、紫外光又は可視光(例えば青色光)を吸収して発光する微粒子である。 The semiconductor particles (A) include quantum dots and particles composed of a compound having a perovskite crystal structure (hereinafter also referred to as a "perovskite compound"), with quantum dots being preferred. Quantum dots are luminescent semiconductor particles with a particle diameter of 1 nm to 100 nm, which utilize the band gap of the semiconductor to absorb ultraviolet light or visible light (e.g., blue light) and emit light.
 量子ドットとしては、例えば、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、HgS、HgSe、HgTe、CdHgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe等の12族元素と16族元素との化合物;GaN、GaP、GaAs、AlN、AlP、AlAs、InN、InP、InAs、GaNP、GaNAs、GaPAs、AlNP、AlNAs、AlPAs、InNP、InNAs、InPAs、GaAlNP、GaAlNAs、GaAlPAs、GaInNP、GaInNAs、GaInPAs、InAlNP、InAlNAs、InAlPAs等の13族元素と15族元素との化合物;PdS、PbSe等の14族元素と16族元素との化合物等が挙げられる。 Quantum dots include, for example, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, CdHgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZ Compounds of Group 12 elements and Group 16 elements such as nSeTe and HgZnSTe; compounds of Group 13 elements and Group 15 elements such as GaN, GaP, GaAs, AlN, AlP, AlAs, InN, InP, InAs, GaNP, GaNAs, GaPAs, AlNP, AlNAs, AlPAs, InNP, InNAs, InPAs, GaAlNP, GaAlNAs, GaAlPAs, GaInNP, GaInNAs, GaInPAs, InAlNP, InAlNAs, InAlPAs; compounds of Group 14 elements and Group 16 elements such as PdS and PbSe.
 量子ドットがSやSeを含む場合、金属酸化物や有機物で表面修飾した量子ドットを使用してもよい。表面修飾した量子ドットを使用することで、組成物Iに含まれる又は含まれ得る反応成分によってSやSeが引き抜かれることを防止することができる。 When the quantum dots contain S or Se, quantum dots whose surface is modified with a metal oxide or an organic substance may be used. By using surface-modified quantum dots, it is possible to prevent S or Se from being extracted by reactive components that are or may be contained in composition I.
 また量子ドットは、上記の化合物を組み合わせてコアシェル構造を形成していてもよい。このような組み合わせとしては、コアがCdSeであり、シェルがZnSである微粒子、コアがInPであり、シェルがZnSeSである微粒子等が挙げられる。 The quantum dots may also be formed into a core-shell structure by combining the above compounds. Examples of such combinations include particles with a CdSe core and a ZnS shell, and particles with an InP core and a ZnSeS shell.
 量子ドットのエネルギー状態はその大きさに依存するため、粒子径を変えることにより自由に発光波長を選択することが可能である。また、量子ドットからの発光光はスペクトル幅が狭いため、表示装置の広色域化に有利である。さらに、量子ドットは応答性が高いため、一次光の利用効率の面でも有利である。 Since the energy state of quantum dots depends on their size, it is possible to freely select the emission wavelength by changing the particle diameter. In addition, the light emitted from quantum dots has a narrow spectral width, which is advantageous for widening the color gamut of display devices. Furthermore, quantum dots have high responsiveness, which is also advantageous in terms of the efficiency of using primary light.
 ペロブスカイト化合物は、A、B及びXを成分とする、ペロブスカイト型結晶構造を有する化合物である。 The perovskite compound is a compound that has a perovskite crystal structure and is composed of A, B, and X.
 Aは、ペロブスカイト型結晶構造において、Bを中心とする6面体の各頂点に位置する成分であって、1価の陽イオンである。 A is a monovalent cation that is located at each vertex of a hexahedron with B at the center in the perovskite crystal structure.
 Xは、ペロブスカイト型結晶構造において、Bを中心とする8面体の各頂点に位置する成分を表し、ハロゲン化物イオン及びチオシアン酸イオンからなる群より選ばれる少なくとも一種のイオンである。 X represents a component located at each vertex of an octahedron with B at the center in the perovskite crystal structure, and is at least one type of ion selected from the group consisting of halide ions and thiocyanate ions.
 Bは、ペロブスカイト型結晶構造において、Aを頂点に配置する6面体及びXを頂点に配置する8面体の中心に位置する成分であって、金属イオンである。 B is a component located at the center of a hexahedron with A at its vertex and an octahedron with X at its vertex in the perovskite crystal structure, and is a metal ion.
 A、B及びXを成分とするペロブスカイト化合物としては、特に限定されず、3次元構造、2次元構造、疑似2次元構造のいずれの構造を有する化合物であってもよい。 The perovskite compound having components A, B, and X is not particularly limited, and may be a compound having any of a three-dimensional structure, a two-dimensional structure, and a pseudo-two-dimensional structure.
 3次元構造の場合には、ペロブスカイト化合物は、ABX(3+δ)で表される。 In the case of a three-dimensional structure, the perovskite compound is represented as ABX (3+δ) .
 2次元構造の場合には、ペロブスカイト化合物は、ABX(4+δ)で表される。 In the case of a two-dimensional structure, the perovskite compound is represented by A 2 BX (4+δ) .
 ここで、δは、Bの電荷バランスに応じて適宜変更が可能な数であり、-0.7以上0.7以下である。 Here, δ is a number that can be changed as appropriate depending on the charge balance of B, and is between -0.7 and 0.7.
 ペロブスカイト化合物であって、ABX(3+δ)で表される、3次元構造のペロブスカイト型の結晶構造を有する化合物の好ましい具体例としては、
 CHNHPbBr、CHNHPbCl、CHNHPbI、CHNHPbBr(3-y)(0<y<3)、CHNHPbBr(3-y)Cl(0<y<3)、(HN=CH-NH)PbBr、(HN=CH-NH)PbCl、(HN=CH-NH)PbI
 CHNHPb(1-a)CaBr(0<a≦0.7)、CHNHPb(1-a)SrBr(0<a≦0.7)、CHNHPb(1-a)LaBr(3+δ)(0<a≦0.7,0<δ≦0.7)、CHNHPb(1-a)BaBr(0<a≦0.7)、CHNHPb(1-a)DyBr(3+δ)(0<a≦0.7,0<δ≦0.7)、
 CHNHPb(1-a)NaBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、CHNHPb(1-a)LiBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、
 CsPb(1-a)NaBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、CsPb(1-a)LiBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、
 CHNHPb(1-a)NaBr(3+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<3)、CHNHPb(1-a)LiBr(3+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<3)、CHNHPb(1-a)NaBr(3+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<3)、CHNHPb(1-a)LiBr(3+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<3)、
 (HN=CH-NH)Pb(1-a)NaBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、(HN=CH-NH)Pb(1-a)LiBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、(HN=CH-NH)Pb(1-a)NaBr(3+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<3)、(HN=CH-NH)Pb(1-a)NaBr(3+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<3)、
 CsPbBr、CsPbCl、CsPbI、CsPbBr(3-y)(0<y<3)、CsPbBr(3-y)Cl(0<y<3)、CHNHPbBr(3-y)Cl(0<y<3)、
 CHNHPb(1-a)ZnBr(0<a≦0.7)、CHNHPb(1-a)AlBr(3+δ)(0<a≦0.7,0≦δ≦0.7)、CHNHPb(1-a)CoBr(0<a≦0.7)、CHNHPb(1-a)MnBr(0<a≦0.7)、CHNHPb(1-a)MgBr(0<a≦0.7)、
 CsPb(1-a)ZnBr(0<a≦0.7)、CsPb(1-a)AlBr(3+δ)(0<a≦0.7,0<δ≦0.7)、CsPb(1-a)CoBr(0<a≦0.7)、CsPb(1-a)MnBr(0<a≦0.7)、CsPb(1-a)MgBr(0<a≦0.7)、
 CHNHPb(1-a)ZnBr(3-y)(0<a≦0.7,0<y<3)、CHNHPb(1-a)AlBr(3+δ-y)(0<a≦0.7,0<δ≦0.7,0<y<3)、CHNHPb(1-a)CoBr(3-y)(0<a≦0.7,0<y<3)、CHNHPb(1-a)MnBr(3-y)(0<a≦0.7,0<y<3)、CHNHPb(1-a)MgBr(3-y)(0<a≦0.7,0<y<3)、CHNHPb(1-a)ZnBr(3-y)Cl(0<a≦0.7,0<y<3)、CHNHPb(1-a)AlBr(3+δ-y)Cl(0<a≦0.7,0<δ≦0.7,0<y<3)、CHNHPb(1-a)CoBr(3+δ-y)Cl(0<a≦0.7,0<y<3)、CHNHPb(1-a)MnBr(3-y)Cl(0<a≦0.7,0<y<3)、CHNHPb(1-a)MgBr(3-y)Cl(0<a≦0.7,0<y<3)、
 (HN=CH-NH)ZnBr(0<a≦0.7)、(HN=CH-NH)MgBr(0<a≦0.7)、(HN=CH-NH)Pb(1-a)ZnBr(3-y)(0<a≦0.7,0<y<3)、(HN=CH-NH)Pb(1-a)ZnBr(3-y)Cl(0<a≦0.7,0<y<3)等が挙げられる。
Preferable specific examples of perovskite compounds having a three-dimensional perovskite-type crystal structure represented by ABX (3+δ) include:
CH 3 NH 3 PbBr 3 , CH 3 NH 3 PbCl 3 , CH 3 NH 3 PbI 3 , CH 3 NH 3 PbBr (3-y) I y (0<y<3), CH 3 NH 3 PbBr (3-y) Cl y (0<y<3), (H 2 N =CH-NH 2 )PbBr 3 , (H 2 N=CH-NH 2 )PbCl 3 , (H 2 N=CH-NH 2 )PbI 3 ,
CH 3 NH 3 Pb (1-a) Ca a Br 3 (0<a≦0.7), CH 3 NH 3 Pb (1-a) Sr a Br 3 (0<a≦0.7), CH 3 NH 3 Pb (1-a) La a Br (3+δ) (0<a≦0.7, 0<δ ≦0.7), CH 3 NH 3 Pb (1-a) Ba a Br 3 (0<a≦0.7), CH 3 NH 3 Pb (1-a) Dy a Br (3+δ) (0<a≦0.7, 0<δ≦0.7),
CH 3 NH 3 Pb (1-a) Na a Br (3+δ) (0<a≦0.7, -0.7≦δ<0), CH 3 NH 3 Pb (1-a) Li a Br (3+δ) (0<a≦0.7, -0.7≦δ<0),
CsPb (1-a) Na a Br (3+δ) (0<a≦0.7, -0.7≦δ<0), CsPb (1-a) Li a Br (3+δ) (0<a≦0.7, -0.7≦δ<0),
CH 3 NH 3 Pb (1-a) Na a Br (3+δ-y) I y (0<a≦0.7, -0.7≦δ<0, 0<y<3), CH 3 NH 3 Pb (1-a) Li a Br (3+δ-y) I y (0<a≦0.7, -0.7≦δ<0 ,0<y<3), CH 3 NH 3 Pb (1-a) Na a Br (3+δ-y) Cl y (0<a≦0.7, -0.7≦δ<0, 0<y<3), CH 3 NH 3 Pb (1-a) Li a Br (3+δ-y) Cl y (0<a≦0.7, -0.7≦δ<0, 0<y<3),
(H 2 N=CH-NH 2 )Pb (1-a) Na a Br (3+δ) (0<a≦0.7, -0.7≦δ<0), (H 2 N=CH-NH 2 )Pb (1-a) Li a Br (3+δ) (0<a≦0.7, -0.7≦δ<0), (H 2 N=CH-NH 2 )Pb (1-a) Na a Br (3+δ-y) I y (0<a≦0.7, -0.7≦δ<0, 0<y<3), (H 2 N=CH-NH 2 )Pb (1-a) Na a Br (3+δ-y) Cl y (0<a≦0.7, -0.7 ≦δ<0, 0<y<3),
CsPbBr 3 , CsPbCl 3 , CsPbI 3 , CsPbBr (3-y) I y (0<y<3), CsPbBr (3-y) Cl y (0<y<3), CH 3 NH 3 PbBr (3-y) Cl y (0<y<3),
CH 3 NH 3 Pb (1-a) Zn a Br 3 (0<a≦0.7), CH 3 NH 3 Pb (1-a) Al a Br (3+δ) (0<a≦0.7, 0≦δ≦0.7), CH 3 NH 3 Pb (1-a) Co a Br 3 (0<a≦0.7), CH 3 NH 3 Pb (1-a) Mna Br 3 (0<a≦0.7), CH 3 NH 3 Pb (1-a) Mga Br 3 (0<a≦0.7),
CsPb (1-a) Zn a Br 3 (0<a≦0.7), CsPb (1-a) Al a Br (3+δ) (0<a≦0.7, 0<δ≦0.7), CsPb (1-a) Co a Br 3 (0<a≦0.7), CsPb (1-a) Mn a Br 3 (0<a≦0.7), CsPb (1-a) Mg a Br 3 (0<a≦0.7),
CH 3 NH 3 Pb (1-a) Zna Br (3-y) I y (0<a≦0.7, 0<y<3), CH 3 NH 3 Pb (1-a) Al a Br (3+δ-y) I y (0<a≦0.7, 0<δ≦0.7, 0<y<3), CH 3 NH 3 Pb (1-a) Co a Br (3-y) I y (0<a≦0.7, 0<y<3), CH 3 NH 3 Pb (1-a) Mn a Br (3-y) I y (0<a≦0.7, 0<y<3), CH 3 NH 3 Pb (1-a) Mg a B r (3-y) I y (0<a≦0.7, 0<y<3), CH 3 NH 3 Pb (1-a) Zna Br (3-y) Cl y (0<a≦0.7, 0<y<3), CH 3 NH 3 Pb (1-a) Al a Br (3+δ-y) Cl y (0<a≦0. 7,0<δ≦0.7,0<y<3), CH 3 NH 3 Pb (1-a) Co a Br (3+δ-y) Cl y (0<a≦0.7, 0<y<3), CH 3 NH 3 Pb (1-a) Mn a Br (3-y) Cl y (0<a≦0.7 , 0<y< 3), CH3NH3Pb (1-a) Mg a Br (3-y) Cl y (0<a≦0.7, 0<y<3),
(H 2 N=CH-NH 2 )Zna Br 3 (0<a≦0.7), (H 2 N=CH-NH 2 ) Mga Br 3 (0<a≦0.7), (H 2 N=CH-NH 2 )Pb (1-a) Zna Br (3-y) I y (0<a ≦0.7, 0<y<3), (H 2 N=CH—NH 2 )Pb (1-a) Zna Br (3-y) Cl y (0<a≦0.7, 0<y<3), and the like.
 ペロブスカイト化合物であって、ABX(4+δ)で表される、2次元構造のペロブスカイト型の結晶構造を有する化合物の好ましい具体例としては、
 (CNHPbBr、(CNHPbCl、(CNHPbI、(C15NHPbBr、(C15NHPbCl、(C15NHPbI、(CNHPb(1-a)LiBr(4+δ)(0<a≦0.7,-0.7≦δ<0)、(CNHPb(1-a)NaBr(4+δ)(0<a≦0.7,-0.7≦δ<0)、(CNHPb(1-a)RbBr(4+δ)(0<a≦0.7,-0.7≦δ<0)、 (C15NHPb(1-a)NaBr(4+δ)(0<a≦0.7,-0.7≦δ<0)、(C15NHPb(1-a)LiBr(4+δ)(0<a≦0.7,-0.7≦δ<0)、(C15NHPb(1-a)RbaBr(4+δ)(0<a≦0.7,-0.7≦δ<0)、
 (CNHPb(1-a)NaBr(4+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<4)、(CNHPb(1-a)LiBr(4+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<4)、(CNHPb(1-a)RbBr(4+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<4)、
 (CNHPb(1-a)NaBr(4+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<4)、(CNHPb(1-a)LiBr(4+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<4)、(CNHPb(1-a)RbBr(4+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<4)、
 (CNHPbBr、(C15NHPbBr
 (CNHPbBr(4-y)Cl(0<y<4)、(CNHPbBr(4-y)(0<y<4)、
 (CNHPb(1-a)ZnBr(0<a≦0.7)、(CNHPb(1-a)MgBr(0<a≦0.7)、(CNHPb(1-a)CoBr(0<a≦0.7)、(CNHPb(1-a)MnBr(0<a≦0.7)、
 (C15NHPb(1-a)ZnBr(0<a≦0.7)、(C15NHPb(1-a)MgBr(0<a≦0.7)、(C15NHPb(1-a)CoBr(0<a≦0.7)、(C15NHPb(1-a)MnBr(0<a≦0.7)、
 (CNHPb(1-a)ZnBr(4-y)(0<a≦0.7,0<y<4)、(CNHPb(1-a)MgBr(4-y)(0<a≦0.7,0<y<4)、(CNHPb(1-a)CoBr(4-y)(0<a≦0.7,0<y<4)、(CNHPb(1-a)MnBr(4-y)(0<a≦0.7,0<y<4)、
 (CNHPb(1-a)ZnBr(4-y)Cl(0<a≦0.7,0<y<4)、(CNHPb(1-a)MgBr(4-y)Cl(0<a≦0.7,0<y<4)、(CNHPb(1-a)CoBr(4-y)Cl(0<a≦0.7,0<y<4)、(CNHPb(1-a)MnBr(4-y)Cl(0<a≦0.7,0<y<4)等が挙げられる。
Preferable specific examples of the perovskite compound having a two-dimensional perovskite-type crystal structure represented by A 2 BX (4+δ) include:
( C4H9NH3 )2PbBr4, (C4H9NH3) 2PbCl4, (C4H9NH3)2PbI4, (C7H15NH3)2PbBr4, (C7H15NH3)2 PbCl 4 , (C 7 H 15 NH 3 ) 2 PbI 4 , ( C 4 H 9 NH 3 ) 2 Pb ( 1 - a ) Li a Br ( 4+δ) (0 < a ≦0.7, -0.7 δ < 0 ), (C 4 H 9 NH 3 ) 2 Pb (1- a ) a Br (4+δ) (0<a≦0.7, -0.7≦δ<0), (C 4 H 9 NH 3 ) 2 Pb (1-a) Rb a Br (4+δ) (0<a≦0.7, -0.7≦δ<0), (C 7 H 15 NH 3 ) 2 Pb (1-a) Na a Br (4+δ) (0<a≦0.7, -0.7≦δ<0), (C 7 H 15 NH 3 ) 2 Pb (1-a) Li a Br (4+δ) (0<a≦0.7, -0.7≦δ<0), (C 7 H 15 NH 3 ) 2 Pb (1-a) r (4+δ) (0<a≦0.7, -0.7≦δ<0),
(C 4 H 9 NH 3 ) 2 Pb (1-a) Na a Br (4+δ-y) I y (0<a≦0.7, -0.7≦δ<0, 0<y<4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Li a Br (4+δ-y) I y (0<a ≦0.7, -0.7≦δ<0, 0<y<4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Rb a Br (4+δ-y) I y (0<a≦0.7, -0.7≦δ<0, 0<y<4),
(C 4 H 9 NH 3 ) 2 Pb (1-a) Na a Br (4+δ-y) Cl y (0<a≦0.7, -0.7≦δ<0, 0<y<4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Li a Br (4+δ-y) Cl y (0<a ≦0.7, -0.7≦δ<0, 0<y<4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Rb a Br (4+δ-y) Cl y (0<a≦0.7, -0.7≦δ<0, 0<y<4),
(C 4 H 9 NH 3 ) 2 PbBr 4 , (C 7 H 15 NH 3 ) 2 PbBr 4 ,
(C 4 H 9 NH 3 ) 2 PbBr (4-y) Cl y (0<y<4), (C 4 H 9 NH 3 ) 2 PbBr (4-y) I y (0<y<4),
(C 4 H 9 NH 3 ) 2 Pb (1-a) Zna Br 4 (0<a≦0.7), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mg a Br 4 (0<a≦0.7), (C 4 H 9 NH 3 ) 2 Pb (1-a) C o a Br 4 (0<a≦0.7), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mna Br 4 (0<a≦0.7),
(C 7 H 15 NH 3 ) 2 Pb (1-a) Zna Br 4 (0<a≦0.7), (C 7 H 15 NH 3 ) 2 Pb (1-a) Mg a Br 4 (0<a≦0.7), (C 7 H 15 NH 3 ) 2 Pb (1-a ) Co a Br 4 (0<a≦0.7), (C 7 H 15 NH 3 ) 2 Pb (1-a) Mna Br 4 (0<a≦0.7),
(C 4 H 9 NH 3 ) 2 Pb (1-a) Zna Br (4-y) I y (0<a≦0.7, 0<y<4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mg a Br (4-y) I y (0<a≦0.7, 0<y<4), ( C 4 H 9 NH 3 ) 2 Pb (1-a) Co a Br (4-y) I y (0<a≦0.7, 0<y<4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mn a Br (4-y) I y (0<a≦0.7, 0<y<4),
(C 4 H 9 NH 3 ) 2 Pb (1-a) Zna Br (4-y) Cl y (0<a≦0.7, 0<y<4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mg a Br (4-y) Cl y (0<a≦0.7, 0<y<4) , (C 4 H 9 NH 3 ) 2 Pb (1-a) Co a Br (4-y) Cl y (0<a≦0.7, 0<y<4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mn a Br (4-y) Cl y (0<a≦0.7, 0<y<4), etc. Can be mentioned.
 一次光を吸収して緑色を発光する半導体粒子(A)は、1種のみでまたは2種以上を組み合わせて使用することができる。また一次光を吸収して赤色を発光する半導体粒子(A)は、1種のみでまたは2種以上を組み合わせて使用することができる。 The semiconductor particles (A) that absorb primary light and emit green light can be used alone or in combination of two or more kinds. The semiconductor particles (A) that absorb primary light and emit red light can be used alone or in combination of two or more kinds.
 組成物IIは上述した通り、半導体粒子(A)を含まない。組成物IIIも実質的に半導体粒子(A)を含まず、組成物IIIの固形分の総量に対して、半導体粒子(A)の含有率は、好ましくは1質量%以下、より好ましくは0.5質量%以下、さらに好ましくは0.1質量%以下、特に好ましくは0質量%である。 As described above, composition II does not contain semiconductor particles (A). Composition III also does not substantially contain semiconductor particles (A), and the content of semiconductor particles (A) relative to the total amount of solids in composition III is preferably 1 mass% or less, more preferably 0.5 mass% or less, even more preferably 0.1 mass% or less, and particularly preferably 0 mass%.
 組成物Iにおける半導体粒子(A)の含有率は、組成物Iの固形分の総量に対して、例えば1質量%以上60質量%以下であり、好ましくは10質量%以上50質量%以下、より好ましくは15質量%以上50質量%以下、さらに好ましくは20質量%以上50質量%以下、なおさらに好ましくは25質量%以上45質量%以下である。 The content of semiconductor particles (A) in composition I is, for example, 1% by mass or more and 60% by mass or less, preferably 10% by mass or more and 50% by mass or less, more preferably 15% by mass or more and 50% by mass or less, even more preferably 20% by mass or more and 50% by mass or less, and even more preferably 25% by mass or more and 45% by mass or less, based on the total amount of solids in composition I.
 <有機配位子(G)>
 半導体粒子(A)は、有機配位子(G)が配位した状態で組成物中に存在していてもよい。有機配位子(G)は、例えば、半導体粒子(A)に対する配位能を示す極性基を有する有機化合物である。有機配位子(G)は、例えば半導体粒子(A)の表面に配位することができる。組成物は、1種又は2種以上の有機配位子(G)を含むことができる。
<Organic ligand (G)>
The semiconductor particles (A) may be present in the composition in a state where the organic ligand (G) is coordinated to the semiconductor particles (A). The organic ligand (G) can be coordinated to the surface of the semiconductor particle (A), for example. The composition contains one or more organic ligands. It may contain a ligand (G).
 有機配位子(G)は、その少なくとも一部の分子が半導体粒子(A)に配位していることが好ましく、そのすべて又はほぼすべての分子が半導体粒子(A)に配位していてもよい。半導体粒子(A)に配位している有機配位子(G)を含むことは、半導体粒子(A)の安定性及び分散性、並びに、波長変換層の発光強度を向上させる観点から有利となり得る。 It is preferable that at least some of the molecules of the organic ligand (G) are coordinated to the semiconductor particles (A), and all or almost all of the molecules may be coordinated to the semiconductor particles (A). The inclusion of organic ligand (G) coordinated to the semiconductor particles (A) can be advantageous from the viewpoint of improving the stability and dispersibility of the semiconductor particles (A) and the luminescence intensity of the wavelength conversion layer.
 有機配位子(G)の上記極性基は、例えば、チオール基(-SH)、カルボキシ基(-COOH)及びアミノ基(-NH)からなる群より選択される少なくとも1種の基である。該群より選択される極性基は、半導体粒子(A)への配位性を高めるうえで有利となり得る。高い配位性は、組成物における半導体粒子(A)の安定性及び分散性向上、並びに、波長変換層の発光強度向上等に寄与し得る。中でも、極性基は、チオール基及びカルボキシ基からなる群より選択される少なくとも1種の基であることがより好ましい。有機配位子(G)は、1個又は2個以上の極性基を有し得る。 The polar group of the organic ligand (G) is, for example, at least one group selected from the group consisting of a thiol group (-SH), a carboxy group (-COOH), and an amino group (-NH 2 ). A polar group selected from this group can be advantageous in increasing the coordination ability to the semiconductor particles (A). High coordination ability can contribute to improving the stability and dispersibility of the semiconductor particles (A) in the composition, as well as improving the luminescence intensity of the wavelength conversion layer. Among them, it is more preferable that the polar group is at least one group selected from the group consisting of a thiol group and a carboxy group. The organic ligand (G) can have one or more polar groups.
 有機配位子(G)は、例えば、下記式(x):
 X-R   (x)
で表される有機化合物であることができる。式中、Xは上記の極性基であり、Rはヘテロ原子(N、O、S、ハロゲン原子等)を含んでいてもよい1価の炭化水素基である。該炭化水素基は、炭素-炭素二重結合等の不飽和結合を1個又は2個以上有していてもよい。該炭化水素基は、直鎖状、分岐鎖状又は環状構造を有していてもよい。該炭化水素基の炭素数は、例えば1以上40以下であり、1以上30以下であってもよい。該炭化水素基に含まれるメチレン基は、-O-、-S-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、-NH-等で置換されていてもよい。
The organic ligand (G) is, for example, a compound represented by the following formula (x):
XA- RX ( x)
In the formula, X 1 A is the polar group described above, and R 1 X is a monovalent hydrocarbon group which may contain a heteroatom (N, O, S, a halogen atom, etc.). The hydrocarbon group may have one or more unsaturated bonds such as a carbon-carbon double bond. The hydrocarbon group may have a linear, branched, or cyclic structure. The number of carbon atoms in the hydrocarbon group is, for example, 1 to 40, and may be 1 to 30. The methylene group contained in the hydrocarbon group may be substituted with -O-, -S-, -C(═O)-, -C(═O)-O-, -O-C(═O)-, -C(═O)-NH-, -NH-, etc.
 基Rは、極性基を含んでいてもよい。該極性基の具体例については極性基Xに係る上記記述が引用される。 The group R 1 X may contain a polar group, specific examples of which are given in the above description of the polar group X 1 A.
 極性基Xとしてカルボキシ基を有する有機配位子の具体例として、ギ酸、酢酸、プロピオン酸のほか、飽和又は不飽和脂肪酸を挙げることができる。飽和又は不飽和脂肪酸の具体例は、ブチル酸、ペンタン酸、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、アラキジン酸、ベヘン酸、リグノセリン酸等の飽和脂肪酸;ミリストレイン酸、パルミトレイン酸、オレイン酸、イコセン酸、エルカ酸、ネルボン酸等の一価不飽和脂肪酸;リノール酸、α-リノレン酸、γ-リノレン酸、ステアドリン酸、ジホモ-γ-リノレン酸、アラキドン酸、エイコサテトラエン酸、ドコサジエン酸、アドレン酸(ドコサテトラエン酸)等の多価不飽和脂肪酸を含む。 Specific examples of organic ligands having a carboxyl group as the polar group XA include formic acid, acetic acid, and propionic acid, as well as saturated or unsaturated fatty acids. Specific examples of saturated or unsaturated fatty acids include saturated fatty acids such as butyric acid, pentanoic acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, arachidic acid, behenic acid, and lignoceric acid; monounsaturated fatty acids such as myristoleic acid, palmitoleic acid, oleic acid, icosenoic acid, erucic acid, and nervonic acid; and polyunsaturated fatty acids such as linoleic acid, α-linolenic acid, γ-linolenic acid, stearic acid, dihomo-γ-linolenic acid, arachidonic acid, eicosatetraenoic acid, docosadienoic acid, and adrenic acid (docosatetraenoic acid).
 極性基Xとしてチオール基又はアミノ基を有する有機配位子の具体例は、上で例示した極性基Xとしてカルボキシ基を有する有機配位子のカルボキシ基がチオール基又はアミノ基に置き換わった有機配位子を含む。 Specific examples of the organic ligand having a thiol group or an amino group as the polar group XA include organic ligands in which the carboxy group of the organic ligand having a carboxy group as the polar group XA exemplified above is replaced with a thiol group or an amino group.
 上記のほか、上記式(x)で表される有機配位子としては、化合物(G-1)及び化合物(G-2)が挙げられる。 In addition to the above, examples of organic ligands represented by the above formula (x) include compound (G-1) and compound (G-2).
 〔化合物(G-1)〕
 化合物(G-1)は、第1官能基及び第2官能基を有する化合物である。第1官能基はカルボキシ基(-COOH)であり、第2官能基はカルボキシ基又はチオール基(-SH)である。化合物(G-1)は、カルボキシ基及び/又はチオール基を有しているため、半導体粒子(A)に配位する配位子となり得る。組成物は、化合物(G-1)を1種のみ含んでいてもよいし2種以上含んでいてもよい。
[Compound (G-1)]
The compound (G-1) is a compound having a first functional group and a second functional group. The first functional group is a carboxy group (-COOH), and the second functional group is a carboxy group or a thiol group (-SH The compound (G-1) has a carboxy group and/or a thiol group, and therefore can serve as a ligand that coordinates with the semiconductor particles (A). ) may be contained alone or in combination with one or more of them.
 化合物(G-1)の一例は、下記式(G-1a)で表される化合物である。化合物(G-1)は、式(G-1a)で表される化合物の酸無水物であってもよい。 An example of compound (G-1) is a compound represented by the following formula (G-1a). Compound (G-1) may be an acid anhydride of the compound represented by formula (G-1a).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
[式中、Rは、2価の炭化水素基を表す。複数のRが存在する場合、それらは同一でも異なっていてもよい。上記炭化水素基は1以上の置換基を有していてもよい。置換基が複数存在する場合、それらは同一でも異なっていてもよく、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。上記炭化水素基に含まれる-CH-は-O-、-S-、-SO-、-CO-及び-NH-の少なくとも1つに置き換わっていてもよい。 [In the formula, R 3 B represents a divalent hydrocarbon group. When a plurality of R 3 B are present, they may be the same or different. The hydrocarbon group may have one or more substituents. When a plurality of substituents are present, they may be the same or different and may be bonded to each other to form a ring together with the atom to which they are bonded. -CH 2 - contained in the hydrocarbon group may be replaced by at least one of -O-, -S-, -SO 2 -, -CO- and -NH-.
 pは、1~10の整数を表す。]
 Rで表される2価の炭化水素基としては、例えば、鎖状炭化水素基、脂環式炭化水素基、芳香族炭化水素基等、及びこれらを組み合わせた基が挙げられる。
p represents an integer of 1 to 10.
Examples of the divalent hydrocarbon group represented by R 3 B include chain hydrocarbon groups, alicyclic hydrocarbon groups, aromatic hydrocarbon groups, and groups formed by combining these groups.
 鎖状炭化水素基としては、例えば、直鎖状又は分岐状のアルカンジイル基が挙げられ、その炭素数は通常1~50であり、好ましくは1~20、より好ましくは1~10である。脂環式炭化水素基としては、例えば、単環式又多環式のシクロアルカンジイル基が挙げられ、その炭素数は通常3~50であり、好ましくは3~20、より好ましくは3~10である。芳香族炭化水素基としては、例えば、単環式又多環式のアレーンジイル基が挙げられ、その炭素数は通常6~20である。 Examples of chain hydrocarbon groups include linear or branched alkanediyl groups, which usually have 1 to 50 carbon atoms, preferably 1 to 20, and more preferably 1 to 10. Examples of alicyclic hydrocarbon groups include monocyclic or polycyclic cycloalkanediyl groups, which usually have 3 to 50 carbon atoms, preferably 3 to 20, and more preferably 3 to 10. Examples of aromatic hydrocarbon groups include monocyclic or polycyclic arenediyl groups, which usually have 6 to 20 carbon atoms.
 上記炭化水素基が有していてもよい置換基としては、例えば、炭素数1~50のアルキル基、炭素数3~50のシクロアルキル基、炭素数6~20のアリール基、カルボキシ基、アミノ基、ハロゲン原子等が挙げられる。上記炭化水素基が有していてもよい置換基は、好ましくは、カルボキシ基、アミノ基又はハロゲン原子である。 Examples of the substituents that the above-mentioned hydrocarbon group may have include an alkyl group having 1 to 50 carbon atoms, a cycloalkyl group having 3 to 50 carbon atoms, an aryl group having 6 to 20 carbon atoms, a carboxy group, an amino group, a halogen atom, etc. The substituents that the above-mentioned hydrocarbon group may have are preferably a carboxy group, an amino group, or a halogen atom.
 上記炭化水素基に含まれる-CH-が-O-、-CO-及び-NH-の少なくとも1つに置き換わる場合、-CH-が置き換わるのは、好ましくは-CO-及び-NH-の少なくとも1つであり、より好ましくは-NH-である。pは、好ましくは1又は2である。 When —CH 2 — contained in the above hydrocarbon group is replaced by at least one of —O—, —CO— and —NH—, it is preferable that —CH 2 — is replaced by at least one of —CO— and —NH—, more preferably by —NH—.
 式(G-1a)で表される化合物としては、例えば、下記式(1-1)~(1-9)で表される化合物が挙げられる。 Examples of the compound represented by formula (G-1a) include compounds represented by the following formulas (1-1) to (1-9).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(G-1a)で表される化合物の具体例を化学名で示せば、例えば、メルカプト酢酸、2-メルカプトプロピオン酸、3-メルカプトプロピオン酸、3-メルカプトブタン酸、4-メルカプトブタン酸、メルカプトコハク酸、メルカプトステアリン酸、メルカプトオクタン酸、4-メルカプト安息香酸、2,3,5,6-テトラフルオロ-4-メルカプト安息香酸、L-システイン、N-アセチル-L-システイン、3-メルカプトプロピオン酸3-メトキシブチル、3-メルカプト-2-メチルプロピオン酸等が挙げられる。中でも3-メルカプトプロピオン酸、メルカプトコハク酸が好ましい。 Specific examples of compounds represented by formula (G-1a) by chemical name include mercaptoacetic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, 3-mercaptobutanoic acid, 4-mercaptobutanoic acid, mercaptosuccinic acid, mercaptostearic acid, mercaptooctanoic acid, 4-mercaptobenzoic acid, 2,3,5,6-tetrafluoro-4-mercaptobenzoic acid, L-cysteine, N-acetyl-L-cysteine, 3-methoxybutyl 3-mercaptopropionate, and 3-mercapto-2-methylpropionic acid. Of these, 3-mercaptopropionic acid and mercaptosuccinic acid are preferred.
 化合物(G-1)の他の一例は、多価カルボン酸化合物であり、好ましくは上記式(G-1a)で表される化合物において、式(G-1a)中の-SHがカルボキシ基(-COOH)に置き換わった化合物(G-1b)が挙げられる。 Another example of compound (G-1) is a polyvalent carboxylic acid compound, preferably a compound (G-1b) represented by the above formula (G-1a) in which -SH in formula (G-1a) is replaced with a carboxy group (-COOH).
 化合物(G-1b)としては、例えば、以下の化合物が挙げられる。 Examples of compound (G-1b) include the following compounds:
 コハク酸、グルタル酸、アジピン酸、オクタフルオロアジピン酸、アゼライン酸、ドデカン二酸、テトラデカン二酸、ヘキサデカン二酸、ヘプタデカン二酸、オクタデカン二酸、ノナデカン二酸、ドデカフルオロスベリン酸、3-エチル-3-メチルグルタル酸、ヘキサフルオログルタル酸、trans-3-ヘキセン二酸、セバシン酸、ヘキサデカフルオロセバシン酸、アセチレンジカルボン酸、trans-アコニット酸、1,3-アダマンタンジカルボン酸、ビシクロ[2.2.2]オクタン-1,4-ジカルボン酸、cis-4-シクロヘキセン-1,2-ジカルボン酸、1,1-シクロプロパンジカルボン酸、1,1-シクロブタンジカルボン酸、cis-又はtrans-1,3-シクロヘキサンジカルボン酸、cis-又はtrans-1,4-シクロヘキサンジカルボン酸、1,1-シクロペンタン二酢酸、1,2,3,4-シクロペンタンテトラカルボン酸、デカヒドロ-1,4-ナフタレンジカルボン酸、2,3-ノルボルナンジカルボン酸、5-ノルボルネン-2,3-ジカルボン酸、フタル酸、3-フルオロフタル酸、イソフタル酸、テトラフルオロイソフタル酸、テレフタル酸、テトラフルオロテレフタル酸、2,5-ジメチルテレフタル酸、2,6-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,1’-フェロセンジカルボン酸、2,2’-ビフェニルジカルボン酸、4,4’-ビフェニルジカルボン酸、2,5-フランジカルボン酸、ベンゾフェノン-2,4’-ジカルボン酸一水和物、ベンゾフェノン-4,4’-ジカルボン酸、2,3-ピラジンジカルボン酸、2,3-ピリジンジカルボン酸、2,4-ピリジンジカルボン酸、3,5-ピリジンジカルボン酸、2,5-ピリジンジカルボン酸、2,6-ピリジンジカルボン酸、3,4-ピリジンジカルボン酸、ピラゾール-3,5-ジカルボン酸一水和物、4,4’-スチルベンジカルボン酸、アントラキノン-2,3-ジカルボン酸、4-(カルボキシメチル)安息香酸、ケリドン酸一水和物、アゾベンゼン-4,4’-ジカルボン酸、アゾベンゼン-3,3’-ジカルボン酸、クロレンド酸、1H-イミダゾール-4,5-ジカルボン酸、2,2-ビス(4-カルボキシフェニル)ヘキサフルオロプロパン、1,10-ビス(4-カルボキシフェノキシ)デカン、ジプロピルマロン酸、ジチオジグリコール酸、3,3’-ジチオジプロピオン酸、4,4’-ジチオジブタン酸、4,4’-ジカルボキシジフェニルエーテル、4,4’-ジカルボキシジフェニルスルホン、エチレングリコール ビス(4-カルボキシフェニル)エーテル、3,4-エチレンジオキシチオフェン-2,5-ジカルボン酸、4,4’-イソプロピリデンジフェノキシ酢酸、1,3-アセトンジカルボン酸、メチレンジサリチル酸、5,5’-チオジサリチル酸、トリス(2-カルボキシエチル)イソシアヌレート、テトラフルオロコハク酸、α,α,α’,α’-テトラメチル-1,3-ベンゼンジプロピオン酸、1,3,5-ベンゼントリカルボン酸等。 Succinic acid, glutaric acid, adipic acid, octafluoroadipic acid, azelaic acid, dodecanedioic acid, tetradecanedioic acid, hexadecanedioic acid, heptadecanedioic acid, octadecanedioic acid, nonadecanedioic acid, dodecafluorosuberic acid, 3-ethyl-3-methylglutaric acid, hexafluoroglutaric acid, trans-3-hexenedioic acid, sebacic acid, hexadecafluorosebacic acid, acetylenedicarboxylic acid, trans-aconitic acid, 1,3-adamantanedicarboxylic acid, bicyclo[2.2.2]octane-1,4-dicarboxylic acid, cis-4-cyclohexene-1,2-dicarboxylic acid, 1,1-cyclopropanedicarboxylic acid, 1,1-cyclobutanedicarboxylic acid, cis- or trans-1,3-cyclohexanedicarbo acid, cis- or trans-1,4-cyclohexanedicarboxylic acid, 1,1-cyclopentanediacetic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, decahydro-1,4-naphthalenedicarboxylic acid, 2,3-norbornanedicarboxylic acid, 5-norbornene-2,3-dicarboxylic acid, phthalic acid, 3-fluorophthalic acid, isophthalic acid, tetrafluoroisophthalic acid, terephthalic acid, tetrafluoroterephthalic acid, 2,5-dimethylterephthalic acid, 2,6-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,1'-ferrocenedicarboxylic acid, 2,2'-biphenyldicarboxylic acid, 4,4'-biphenyldicarboxylic acid, 2,5-furandicarboxylic acid, benzophenone- 2,4'-dicarboxylic acid monohydrate, benzophenone-4,4'-dicarboxylic acid, 2,3-pyrazinedicarboxylic acid, 2,3-pyridinedicarboxylic acid, 2,4-pyridinedicarboxylic acid, 3,5-pyridinedicarboxylic acid, 2,5-pyridinedicarboxylic acid, 2,6-pyridinedicarboxylic acid, 3,4-pyridinedicarboxylic acid, pyrazole-3,5-dicarboxylic acid monohydrate, 4,4'-stilbene dicarboxylic acid, anthraquinone-2,3-dicarboxylic acid, 4-(carboxymethyl)benzoic acid, chelidonic acid monohydrate, azobenzene-4,4'-dicarboxylic acid, azobenzene-3,3'-dicarboxylic acid, chlorendic acid, 1H-imidazole-4,5-dicarboxylic acid, 2,2-bis(4-carboxyphenyl)hexafluoropropane, 1,1 0-bis(4-carboxyphenoxy)decane, dipropylmalonic acid, dithiodiglycolic acid, 3,3'-dithiodipropionic acid, 4,4'-dithiodibutanoic acid, 4,4'-dicarboxydiphenyl ether, 4,4'-dicarboxydiphenyl sulfone, ethylene glycol bis(4-carboxyphenyl)ether, 3,4-ethylenedioxythiophene-2,5-dicarboxylic acid, 4,4'-isopropylidenediphenoxyacetic acid, 1,3-acetonedicarboxylic acid, methylenedisalicylic acid, 5,5'-thiodisalicylic acid, tris(2-carboxyethyl)isocyanurate, tetrafluorosuccinic acid, α,α,α',α'-tetramethyl-1,3-benzenedipropionic acid, 1,3,5-benzenetricarboxylic acid, etc.
 半導体粒子(A)の安定性及び分散性、並びに、波長変換層の発光強度を向上させる観点から、化合物(G-1)の分子量は、好ましくは3000以下、より好ましくは2500以下、さらに好ましくは2000以下、なおさらに好ましくは1000以下、特に好ましくは800以下、最も好ましくは500以下である。化合物(G-1)の分子量は、通常100以上である。 From the viewpoint of improving the stability and dispersibility of the semiconductor particles (A) and the luminescence intensity of the wavelength conversion layer, the molecular weight of the compound (G-1) is preferably 3000 or less, more preferably 2500 or less, even more preferably 2000 or less, still more preferably 1000 or less, particularly preferably 800 or less, and most preferably 500 or less. The molecular weight of the compound (G-1) is usually 100 or more.
 上記分子量は、数平均分子量であってもよいし重量平均分子量であってもよい。この場合、数平均分子量及び重量平均分子量はそれぞれ、ゲルパーミエーションクロマトグラフィ(GPC)により測定される標準ポリスチレン換算の数平均分子量及び重量平均分子量である。 The above molecular weight may be a number average molecular weight or a weight average molecular weight. In this case, the number average molecular weight and the weight average molecular weight are the number average molecular weight and the weight average molecular weight, respectively, calculated in terms of standard polystyrene as measured by gel permeation chromatography (GPC).
 組成物Iが化合物(G-1)を含む場合、組成物I中の半導体粒子(A)に対する化合物(G-1)の含有量比は、質量比で、好ましくは0.001以上1以下、より好ましくは0.01以上0.5以下、さらに好ましくは0.02以上0.45以下である。該含有量比がこの範囲にあると、半導体粒子(A)の安定性及び分散性、並びに、波長変換層の発光強度を向上させる観点から有利となり得る。 When composition I contains compound (G-1), the content ratio of compound (G-1) to semiconductor particles (A) in composition I is preferably 0.001 to 1, more preferably 0.01 to 0.5, and even more preferably 0.02 to 0.45, in mass ratio. Having the content ratio within this range can be advantageous from the viewpoint of improving the stability and dispersibility of semiconductor particles (A) and the luminescence intensity of the wavelength conversion layer.
 組成物Iが化合物(G-1)を含む場合、組成物Iにおける化合物(G-1)の含有率は、半導体粒子(A)の安定性及び分散性、並びに、波長変換層の発光強度を向上させる観点から、組成物Iの固形分の総量に対して、好ましくは0.1質量%以上20質量%以下、より好ましくは0.2質量%以上20質量%以下、さらに好ましくは0.2質量%以上10質量%以下、なおさらに好ましくは0.5質量%以上10質量%以下、特に好ましくは0.5質量%以上8質量%以下である。 When composition I contains compound (G-1), the content of compound (G-1) in composition I is, from the viewpoint of improving the stability and dispersibility of semiconductor particles (A) and the luminescence intensity of the wavelength conversion layer, preferably from 0.1 mass% to 20 mass%, more preferably from 0.2 mass% to 20 mass%, even more preferably from 0.2 mass% to 10 mass%, still more preferably from 0.5 mass% to 10 mass%, and particularly preferably from 0.5 mass% to 8 mass%, based on the total amount of solids in composition I.
 〔化合物(G-2)〕
 化合物(G-2)は、化合物(G-1)とは異なる化合物であって、ポリアルキレングリコール構造を含み、かつ極性基を分子末端に有する化合物である。分子末端とは、化合物(G-2)中、最も長い炭素鎖(炭素鎖中の炭素原子は、酸素原子等の他の原子に置き換わっていてもよい。)の末端であることが好ましい。
[Compound (G-2)]
Compound (G-2) is a compound different from compound (G-1), and is a compound that contains a polyalkylene glycol structure and has a polar group at the molecular end. 2) It is preferable that the carbon atom is the end of the longest carbon chain (the carbon atom in the carbon chain may be replaced by another atom such as an oxygen atom).
 組成物は、化合物(G-2)を1種のみ含んでいてもよいし2種以上含んでいてもよい。組成物は、化合物(G-1)又は化合物(G-2)を含んでいてもよいし、化合物(G-1)及び化合物(G-2)を含んでいてもよい。 The composition may contain only one type of compound (G-2), or may contain two or more types. The composition may contain compound (G-1) or compound (G-2), or may contain compound (G-1) and compound (G-2).
 なお、ポリアルキレングリコール構造を含み、上記第1官能基及び第2官能基を有する化合物は、化合物(G-1)に属するものとする。 Compounds that contain a polyalkylene glycol structure and have the first and second functional groups are considered to belong to compound (G-1).
 ポリアルキレングリコール構造とは、下記式: The polyalkylene glycol structure is the following formula:
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
で表される構造をいう(nは2以上の整数)。式中、Rはアルキレン基であり、例えば、エチレン基、プロピレン基等が挙げられる。 (n is an integer of 2 or more) In the formula, R 3 C is an alkylene group, for example, an ethylene group, a propylene group, etc.
 化合物(G-2)の具体例として、下記式(G-2a)で表されるポリアルキレングリコール系化合物を挙げることができる。 A specific example of compound (G-2) is a polyalkylene glycol compound represented by the following formula (G-2a):
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(G-2a)中、Xは極性基であり、Yは1価の基であり、Zは2価又は3価の基である。nは2以上の整数である。mは1又は2である。Rはアルキレン基である。 In formula (G-2a), X is a polar group, Y is a monovalent group, Z 1 C is a divalent or trivalent group, n is an integer of 2 or more, m is 1 or 2, and R 1 C is an alkylene group.
 極性基Xは、チオール基(-SH)、カルボキシ基(-COOH)及びアミノ基(-NH)からなる群より選択される少なくとも1種の基であることが好ましい。該群より選択される極性基は、半導体粒子(A)への配位性を高めるうえで有利となり得る。中でも、半導体粒子(A)の安定性及び分散性、並びに、波長変換層の発光強度を向上させる観点から、極性基Xは、チオール基及びカルボキシ基からなる群より選択される少なくとも1種の基であることがより好ましい。 The polar group X is preferably at least one group selected from the group consisting of a thiol group (-SH), a carboxy group (-COOH), and an amino group (-NH 2 ). A polar group selected from this group can be advantageous in terms of enhancing coordination to the semiconductor particles (A). Among these, from the viewpoint of improving the stability and dispersibility of the semiconductor particles (A) and the luminescence intensity of the wavelength conversion layer, it is more preferable that the polar group X is at least one group selected from the group consisting of a thiol group and a carboxy group.
 基Yは1価の基である。基Yとしては特に制限されず、置換基(N、O、S、ハロゲン原子等)を有していてもよい1価の炭化水素基が挙げられる。該炭化水素基に含まれる-CH-は、-O-、-S-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、-NH-等で置換されていてもよい。上記炭化水素基の炭素数は、例えば1以上12以下である。該炭化水素基は、不飽和結合を有していてもよい。 The group Y is a monovalent group. The group Y is not particularly limited, and examples thereof include monovalent hydrocarbon groups which may have a substituent (N, O, S, a halogen atom, etc.). The -CH 2 - contained in the hydrocarbon group may be substituted with -O-, -S-, -C(=O)-, -C(=O)-O-, -O-C(=O)-, -C(=O)-NH-, -NH-, etc. The number of carbon atoms in the hydrocarbon group is, for example, 1 or more and 12 or less. The hydrocarbon group may have an unsaturated bond.
 基Yとしては、直鎖状、分岐鎖状又は環状構造を有する炭素数1以上12以下のアルキル基;直鎖状、分岐鎖状又は環状構造を有する炭素数1以上12以下のアルコキシ基等が挙げられる。該アルキル基及びアルコキシ基の炭素数は、好ましくは1以上8以下であり、より好ましくは1以上6以下であり、さらに好ましくは1以上4以下である。該アルキル基及びアルコキシ基に含まれる-CH-は、-O-、-S-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、-NH-等で置換されていてもよい。中でも、基Yは、炭素数が1以上4以下である直鎖状又は分岐鎖状のアルコキシ基であることが好ましく、炭素数が1以上4以下である直鎖状のアルコキシ基であることがより好ましい。 Examples of the group Y include an alkyl group having a linear, branched or cyclic structure and a carbon number of 1 to 12; and an alkoxy group having a linear, branched or cyclic structure and a carbon number of 1 to 12. The number of carbon atoms in the alkyl group and alkoxy group is preferably 1 to 8, more preferably 1 to 6, and even more preferably 1 to 4. The -CH 2 - contained in the alkyl group and alkoxy group may be substituted with -O-, -S-, -C(═O)-, -C(═O)-O-, -O-C(═O)-, -C(═O)-NH-, -NH-, or the like. Among these, the group Y is preferably a linear or branched alkoxy group having a carbon number of 1 to 4, and more preferably a linear alkoxy group having a carbon number of 1 to 4.
 基Yは、極性基を含んでいてもよい。該極性基としては、チオール基(-SH)、カルボキシ基(-COOH)及びアミノ基(-NH)からなる群より選択される少なくとも1種の基が挙げられる。ただし、上述のとおり、ポリアルキレングリコール構造を含み、上記第1官能基及び第2官能基を有する化合物は、化合物(G-1)に属するものとする。該極性基は、好ましくは基Yの末端に配置される。 The group Y may contain a polar group. The polar group may be at least one group selected from the group consisting of a thiol group (-SH), a carboxy group (-COOH), and an amino group (-NH 2 ). However, as described above, a compound containing a polyalkylene glycol structure and having the first functional group and the second functional group is considered to belong to the compound (G-1). The polar group is preferably located at the terminal of the group Y.
 基Zは2価又は3価の基である。基Zとしては特に制限されず、ヘテロ原子(N、O、S、ハロゲン原子等)を含んでいてもよい2価又は3価の炭化水素基が挙げられる。該炭化水素基の炭素数は、例えば1以上24以下である。該炭化水素基は、不飽和結合を有していてもよい。 The group Z 1 C is a divalent or trivalent group. The group Z 1 C is not particularly limited, and may be a divalent or trivalent hydrocarbon group which may contain a heteroatom (N, O, S, halogen atom, etc.). The number of carbon atoms in the hydrocarbon group is, for example, 1 to 24. The hydrocarbon group may have an unsaturated bond.
 2価の基である基Zとしては、直鎖状、分岐鎖状又は環状構造を有する炭素数1以上24以下のアルキレン基;直鎖状、分岐鎖状又は環状構造を有する炭素数1以上24以下のアルケニレン基等が挙げられる。該アルキル基及びアルケニレン基の炭素数は、好ましくは1以上12以下であり、より好ましくは1以上8以下であり、さらに好ましくは1以上4以下である。該アルキル基及びアルケニレン基に含まれる-CH-は、-O-、-S-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、-NH-等で置換されていてもよい。3価の基である基Zの例としては、上記2価の基である基Zから水素原子を1つ取り除いた基を挙げることができる。 Examples of the divalent group Z 3 C include an alkylene group having 1 to 24 carbon atoms and a linear, branched or cyclic structure; an alkenylene group having 1 to 24 carbon atoms and a linear, branched or cyclic structure. The number of carbon atoms in the alkyl group and the alkenylene group is preferably 1 to 12, more preferably 1 to 8, and even more preferably 1 to 4. The -CH 2 - contained in the alkyl group and the alkenylene group may be substituted with -O-, -S-, -C(═O)-, -C(═O)-O-, -O-C(═O)-, -C(═O)-NH-, -NH-, or the like. Examples of the trivalent group Z 3 C include a group obtained by removing one hydrogen atom from the divalent group Z 3 C.
 基Zは、分岐構造を有していてもよい。分岐構造を有する基Zは、上記式(G-2a)に示されるポリアルキレングリコール構造を含む分岐鎖とは別の分岐鎖において、上記式(G-2a)に示されるポリアルキレングリコール構造とは別のポリアルキレングリコール構造を有していてもよい。 The group Z 1 C may have a branched structure. The group Z 1 C having a branched structure may have a polyalkylene glycol structure other than the polyalkylene glycol structure shown in the above formula (G-2a) in a branched chain other than the branched chain containing the polyalkylene glycol structure shown in the above formula (G-2a).
 中でも、基Zは、炭素数が1以上6以下である直鎖状又は分岐鎖状のアルキレン基であることが好ましく、炭素数が1以上4以下である直鎖状のアルキレン基であることがより好ましい。 Among these, the group Z 1 C is preferably a linear or branched alkylene group having 1 to 6 carbon atoms, and more preferably a linear alkylene group having 1 to 4 carbon atoms.
 Rはアルキレン基であり、炭素数が1以上6以下である直鎖状又は分岐鎖状のアルキレン基であることが好ましく、炭素数が1以上4以下である直鎖状のアルキレン基であることがより好ましい。 R 3 C is an alkylene group, preferably a linear or branched alkylene group having 1 to 6 carbon atoms, and more preferably a linear alkylene group having 1 to 4 carbon atoms.
 式(G-2a)中のnは2以上の整数であり、好ましくは2以上540以下であり、より好ましくは2以上120以下であり、さらに好ましくは2以上60以下である。 In formula (G-2a), n is an integer of 2 or more, preferably 2 or more and 540 or less, more preferably 2 or more and 120 or less, and even more preferably 2 or more and 60 or less.
 化合物(G-2)の分子量は、例えば150以上10000以下程度であり得るが、半導体粒子(A)の安定性及び分散性、並びに、波長変換層の発光強度を向上させる観点から、150以上5000以下であることが好ましく、150以上4000以下であることがより好ましい。該分子量は、数平均分子量であってもよいし重量平均分子量であってもよい。この場合、数平均分子量及び重量平均分子量はそれぞれ、GPCにより測定される標準ポリスチレン換算の数平均分子量及び重量平均分子量である。 The molecular weight of compound (G-2) may be, for example, about 150 or more and 10,000 or less, but from the viewpoint of improving the stability and dispersibility of semiconductor particles (A) and the luminescence intensity of the wavelength conversion layer, it is preferably 150 or more and 5,000 or less, and more preferably 150 or more and 4,000 or less. The molecular weight may be a number average molecular weight or a weight average molecular weight. In this case, the number average molecular weight and the weight average molecular weight are the number average molecular weight and the weight average molecular weight, respectively, in terms of standard polystyrene measured by GPC.
 組成物Iが化合物(G-2)を含む場合、組成物I中の半導体粒子(A)に対する化合物(G-2)の含有量比は、質量比で、好ましくは0.001以上2以下、より好ましくは0.01以上1.5以下、さらに好ましくは0.1以上1以下である。該含有量比がこの範囲にあると、半導体粒子(A)の安定性及び分散性、並びに、波長変換層の発光強度を向上させる観点から有利となり得る。 When composition I contains compound (G-2), the content ratio of compound (G-2) to semiconductor particles (A) in composition I is, in mass ratio, preferably 0.001 to 2, more preferably 0.01 to 1.5, and even more preferably 0.1 to 1. A content ratio within this range can be advantageous from the viewpoint of improving the stability and dispersibility of semiconductor particles (A) and the luminescence intensity of the wavelength conversion layer.
 組成物Iが化合物(G-2)を含む場合、組成物Iにおける化合物(G-2)の含有率は、半導体粒子(A)の安定性及び分散性、並びに、波長変換層の発光強度を向上させる観点から、組成物Iの固形分の総量に対して、好ましくは0.1質量%以上40質量%以下、より好ましくは0.1質量%以上20質量%以下、さらに好ましくは1質量%以上15質量%以下、なおさらに好ましくは2質量%以上12質量%以下である。 When composition I contains compound (G-2), the content of compound (G-2) in composition I is preferably 0.1% by mass or more and 40% by mass or less, more preferably 0.1% by mass or more and 20% by mass or less, even more preferably 1% by mass or more and 15% by mass or less, and even more preferably 2% by mass or more and 12% by mass or less, based on the total amount of solids in composition I, from the viewpoint of improving the stability and dispersibility of semiconductor particles (A) and the luminescence intensity of the wavelength conversion layer.
 組成物Iが有機配位子(G)を含む場合、組成物I中の半導体粒子(A)に対する有機配位子(G)の含有量の比は、質量比で、好ましくは0.001以上1以下、より好ましくは0.01以上0.8以下、さらに好ましくは0.02以上0.5以下である。該含有量比がこの範囲にあると、半導体粒子(A)の安定性及び分散性、並びに、波長変換層の発光強度を向上させる観点から有利となり得る。ここでいう有機配位子(G)の含有量とは、組成物Iに含まれるすべての有機配位子の合計含有量である。 When composition I contains an organic ligand (G), the ratio of the content of the organic ligand (G) to the semiconductor particles (A) in composition I is, in mass ratio, preferably 0.001 to 1, more preferably 0.01 to 0.8, and even more preferably 0.02 to 0.5. Having the content ratio within this range can be advantageous from the viewpoint of improving the stability and dispersibility of the semiconductor particles (A) and the luminescence intensity of the wavelength conversion layer. The content of the organic ligand (G) here refers to the total content of all organic ligands contained in composition I.
 組成物Iにおける半導体粒子(A)及び有機配位子(G)の合計含有率は、半導体粒子(A)の安定性及び分散性、並びに、波長変換層の発光強度を向上させる観点から、組成物Iの固形分の総量に対して、好ましくは10質量%以上75質量%以下、より好ましくは12質量%以上70質量%以下である。 The total content of the semiconductor particles (A) and the organic ligands (G) in composition I is preferably 10% by mass or more and 75% by mass or less, more preferably 12% by mass or more and 70% by mass or less, based on the total amount of solids in composition I, from the viewpoint of improving the stability and dispersibility of the semiconductor particles (A) and the luminescence intensity of the wavelength conversion layer.
 組成物II及び組成物IIIは、実質的に有機配位子(G)を含まないことが好ましい。「実質的に有機配位子(G)を含まない」とは、組成物II又は組成物IIIの固形分の総量に対して、有機配位子(G)の含有率が、好ましくは1質量%以下、より好ましくは0.5質量%以下、さらに好ましくは0.1質量%以下、特に好ましくは0質量%であることをいう。 It is preferable that Composition II and Composition III are substantially free of organic ligand (G). "Substantially free of organic ligand (G)" means that the content of organic ligand (G) relative to the total amount of solids in Composition II or Composition III is preferably 1 mass% or less, more preferably 0.5 mass% or less, even more preferably 0.1 mass% or less, and particularly preferably 0 mass%.
 <樹脂(C)>
 樹脂(C)としては、以下の樹脂[K1]~[K6]等が挙げられる。
<Resin (C)>
Examples of the resin (C) include the following resins [K1] to [K6].
 樹脂[K1];不飽和カルボン酸及び不飽和カルボン酸無水物からなる群より選ばれる少なくとも1種(a)(以下、「(a)」ともいう。)に由来する構造単位と、(a)と共重合可能な単量体(c)(ただし、(a)とは異なる。)(以下、「(c)」ともいう。)に由来する構造単位とを有する共重合体;
 樹脂[K2];前記(a)に由来する構造単位と、前記(c)に由来する構造単位とと、炭素数2~4の環状エーテル構造とエチレン性不飽和結合とを有する単量体(b)(以下、「(b)」ともいう。)に由来する構造単位とを有する共重合体;
 樹脂[K3];前記(a)に由来する構造単位に前記(b)を付加させた構造単位と前記(c)に由来する構造単位とを有する共重合体;
 樹脂[K4]:前記(a)に由来する構造単位に前記(b)を付加させ、更にカルボン酸無水物をエステル結合させた構造単位と、前記(c)に由来する構造単位とを有する共重合体。
 樹脂[K5];前記(b)に由来する構造単位に前記(a)を付加させた構造単位と前記(c)に由来する構造単位とを有する共重合体;
 樹脂[K6];前記(b)に由来する構造単位に前記(a)を付加させ、更にカルボン酸無水物をエステル結合させた構造単位と前記(c)に由来する構造単位とを有する共重合体。
Resin [K1]: a copolymer having a structural unit derived from at least one type (a) (hereinafter also referred to as "(a)") selected from the group consisting of unsaturated carboxylic acids and unsaturated carboxylic anhydrides, and a structural unit derived from a monomer (c) (however different from (a)) (hereinafter also referred to as "(c)") copolymerizable with (a);
Resin [K2]: a copolymer having a structural unit derived from the (a), a structural unit derived from the (c), and a structural unit derived from a monomer (b) (hereinafter also referred to as "(b)") having a cyclic ether structure having 2 to 4 carbon atoms and an ethylenically unsaturated bond;
Resin [K3]: a copolymer having a structural unit derived from the (a) and a structural unit derived from the (b) by addition, and a structural unit derived from the (c);
Resin [K4]: A copolymer having a structural unit obtained by adding the (b) to a structural unit derived from the (a) and further ester-bonding a carboxylic acid anhydride, and a structural unit derived from the (c).
Resin [K5]: a copolymer having a structural unit derived from the (b) to which the (a) has been added, and a structural unit derived from the (c);
Resin [K6]: A copolymer having a structural unit obtained by adding the (a) to a structural unit derived from the (b) and further ester-bonding a carboxylic acid anhydride, and a structural unit derived from the (c).
 (a)としては、例えば、(メタ)アクリル酸、クロトン酸、o-、m-、p-ビニル安息香酸等の不飽和モノカルボン酸;
 マレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸、3-ビニルフタル酸、4-ビニルフタル酸、3,4,5,6-テトラヒドロフタル酸、1,2,3,6-テトラヒドロフタル酸、ジメチルテトラヒドロフタル酸、1,4-シクロヘキセンジカルボン酸等の不飽和ジカルボン酸;
 メチル-5-ノルボルネン-2,3-ジカルボン酸、5-カルボキシビシクロ[2.2.1]ヘプト-2-エン、5,6-ジカルボキシビシクロ[2.2.1]ヘプト-2-エン、5-カルボキシ-5-メチルビシクロ[2.2.1]ヘプト-2-エン、5-カルボキシ-5-エチルビシクロ[2.2.1]ヘプト-2-エン、5-カルボキシ-6-メチルビシクロ[2.2.1]ヘプト-2-エン、5-カルボキシ-6-エチルビシクロ[2.2.1]ヘプト-2-エン等のカルボキシ基を含有するビシクロ不飽和化合物;
 無水マレイン酸、シトラコン酸無水物、イタコン酸無水物、3-ビニルフタル酸無水物、4-ビニルフタル酸無水物、3,4,5,6-テトラヒドロフタル酸無水物、1,2,3,6-テトラヒドロフタル酸無水物、ジメチルテトラヒドロフタル酸無水物、5,6-ジカルボキシビシクロ[2.2.1]ヘプト-2-エン無水物等の不飽和ジカルボン酸無水物;
 コハク酸モノ〔2-(メタ)アクリロイルオキシエチル〕、フタル酸モノ〔2-(メタ)アクリロイルオキシエチル〕等の2価以上の多価カルボン酸の不飽和モノ〔(メタ)アクリロイルオキシアルキル〕エステル;
 α-(ヒドロキシメチル)(メタ)アクリル酸のような、同一分子中にヒドロキシ基及びカルボキシ基を含有する不飽和(メタ)アクリレート
等が挙げられる。
Examples of (a) include unsaturated monocarboxylic acids such as (meth)acrylic acid, crotonic acid, o-, m-, and p-vinylbenzoic acid;
Unsaturated dicarboxylic acids such as maleic acid, fumaric acid, citraconic acid, mesaconic acid, itaconic acid, 3-vinylphthalic acid, 4-vinylphthalic acid, 3,4,5,6-tetrahydrophthalic acid, 1,2,3,6-tetrahydrophthalic acid, dimethyltetrahydrophthalic acid, and 1,4-cyclohexenedicarboxylic acid;
Bicyclounsaturated compounds containing a carboxy group, such as methyl-5-norbornene-2,3-dicarboxylic acid, 5-carboxybicyclo[2.2.1]hept-2-ene, 5,6-dicarboxybicyclo[2.2.1]hept-2-ene, 5-carboxy-5-methylbicyclo[2.2.1]hept-2-ene, 5-carboxy-5-ethylbicyclo[2.2.1]hept-2-ene, 5-carboxy-6-methylbicyclo[2.2.1]hept-2-ene, and 5-carboxy-6-ethylbicyclo[2.2.1]hept-2-ene;
Unsaturated dicarboxylic acid anhydrides such as maleic anhydride, citraconic anhydride, itaconic anhydride, 3-vinylphthalic anhydride, 4-vinylphthalic anhydride, 3,4,5,6-tetrahydrophthalic anhydride, 1,2,3,6-tetrahydrophthalic anhydride, dimethyltetrahydrophthalic anhydride, and 5,6-dicarboxybicyclo[2.2.1]hept-2-ene anhydride;
Unsaturated mono[(meth)acryloyloxyalkyl] esters of divalent or higher polyvalent carboxylic acids, such as mono[2-(meth)acryloyloxyethyl] succinate and mono[2-(meth)acryloyloxyethyl] phthalate;
Examples of such an unsaturated (meth)acrylate include those containing a hydroxy group and a carboxy group in the same molecule, such as α-(hydroxymethyl)(meth)acrylic acid.
 これらのうち、共重合反応性等の観点から、(メタ)アクリル酸、コハク酸モノ〔2-(メタ)アクリロイルオキシエチル〕、無水マレイン酸等が好ましい。 Of these, (meth)acrylic acid, mono[2-(meth)acryloyloxyethyl] succinate, maleic anhydride, etc. are preferred from the standpoint of copolymerization reactivity, etc.
 本明細書において(メタ)アクリル酸とは、アクリル酸及び/又はメタクリル酸を意味する。「(メタ)アクリロイル」、「(メタ)アクリレート」等においても同様である。 In this specification, (meth)acrylic acid means acrylic acid and/or methacrylic acid. The same applies to "(meth)acryloyl" and "(meth)acrylate", etc.
 (b)は、例えば、炭素数2~4の環状エーテル構造(例えば、オキシラン環、オキセタン環及びテトラヒドロフラン環からなる群より選ばれる少なくとも1種)とエチレン性不飽和結合とを有する単量体である。(b)は、炭素数2~4の環状エーテル構造と(メタ)アクリロイルオキシ基とを有する単量体であることが好ましい。 (b) is, for example, a monomer having a cyclic ether structure having 2 to 4 carbon atoms (for example, at least one selected from the group consisting of an oxirane ring, an oxetane ring, and a tetrahydrofuran ring) and an ethylenically unsaturated bond. (b) is preferably a monomer having a cyclic ether structure having 2 to 4 carbon atoms and a (meth)acryloyloxy group.
 (b)としては、例えば、オキシラニル基とエチレン性不飽和結合とを有する単量体(b1)(以下「(b1)」という場合がある)、オキセタニル基とエチレン性不飽和結合とを有する単量体(b2)(以下「(b2)」という場合がある)、テトラヒドロフリル基とエチレン性不飽和結合とを有する単量体(b3)(以下「(b3)」という場合がある)等が挙げられる。 Examples of (b) include a monomer (b1) having an oxiranyl group and an ethylenically unsaturated bond (hereinafter sometimes referred to as "(b1)"), a monomer (b2) having an oxetanyl group and an ethylenically unsaturated bond (hereinafter sometimes referred to as "(b2)"), and a monomer (b3) having a tetrahydrofuryl group and an ethylenically unsaturated bond (hereinafter sometimes referred to as "(b3)"), etc.
 (b1)としては、例えば、直鎖状又は分枝鎖状の脂肪族不飽和炭化水素がエポキシ化された構造を有する単量体(b1-1)(以下「(b1-1)」という場合がある)、脂環式不飽和炭化水素がエポキシ化された構造を有する単量体(b1-2)(以下「(b1-2)」という場合がある)が挙げられる。 Examples of (b1) include monomer (b1-1) (hereinafter sometimes referred to as "(b1-1)") having a structure in which a linear or branched aliphatic unsaturated hydrocarbon is epoxidized, and monomer (b1-2) (hereinafter sometimes referred to as "(b1-2)") having a structure in which an alicyclic unsaturated hydrocarbon is epoxidized.
 (b1-1)としては、例えば、グリシジル(メタ)アクリレート、β-メチルグリシジル(メタ)アクリレート、β-エチルグリシジル(メタ)アクリレート、グリシジルビニルエーテル、o-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル、α-メチル-o-ビニルベンジルグリシジルエーテル、α-メチル-m-ビニルベンジルグリシジルエーテル、α-メチル-p-ビニルベンジルグリシジルエーテル、2,3-ビス(グリシジルオキシメチル)スチレン、2,4-ビス(グリシジルオキシメチル)スチレン、2,5-ビス(グリシジルオキシメチル)スチレン、2,6-ビス(グリシジルオキシメチル)スチレン、2,3,4-トリス(グリシジルオキシメチル)スチレン、2,3,5-トリス(グリシジルオキシメチル)スチレン、2,3,6-トリス(グリシジルオキシメチル)スチレン、3,4,5-トリス(グリシジルオキシメチル)スチレン、2,4,6-トリス(グリシジルオキシメチル)スチレン等が挙げられる。 (b1-1) may, for example, be glycidyl (meth)acrylate, β-methyl glycidyl (meth)acrylate, β-ethyl glycidyl (meth)acrylate, glycidyl vinyl ether, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, p-vinylbenzyl glycidyl ether, α-methyl-o-vinylbenzyl glycidyl ether, α-methyl-m-vinylbenzyl glycidyl ether, α-methyl-p-vinylbenzyl glycidyl ether, 2,3-bis(glycidyl Examples include 2,4-bis(glycidyloxymethyl)styrene, 2,5-bis(glycidyloxymethyl)styrene, 2,6-bis(glycidyloxymethyl)styrene, 2,3,4-tris(glycidyloxymethyl)styrene, 2,3,5-tris(glycidyloxymethyl)styrene, 2,3,6-tris(glycidyloxymethyl)styrene, 3,4,5-tris(glycidyloxymethyl)styrene, and 2,4,6-tris(glycidyloxymethyl)styrene.
 (b1-2)としては、ビニルシクロヘキセンモノオキサイド、1,2-エポキシ-4-ビニルシクロヘキサン(例えば、セロキサイド2000;(株)ダイセル製)、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート(例えば、サイクロマーA400;(株)ダイセル製)、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート(例えば、サイクロマーM100;(株)ダイセル製)、式(BI)で表される化合物及び式(BII)で表される化合物等が挙げられる。 (b1-2) includes vinylcyclohexene monoxide, 1,2-epoxy-4-vinylcyclohexane (e.g., Celloxide 2000; manufactured by Daicel Corporation), 3,4-epoxycyclohexylmethyl (meth)acrylate (e.g., Cyclomer A400; manufactured by Daicel Corporation), 3,4-epoxycyclohexylmethyl (meth)acrylate (e.g., Cyclomer M100; manufactured by Daicel Corporation), compounds represented by formula (BI) and compounds represented by formula (BII).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
[式(BI)及び式(BII)中、Re及びRfは、水素原子、又は炭素数1~4のアルキル基を表し、該アルキル基に含まれる水素原子は、ヒドロキシ基で置換されていてもよい。
 Xe及びXfは、単結合、*-Rg-、*-Rg-O-、*-Rg-S-又は*-Rg-NH-を表す。
 Rgは、炭素数1~6のアルカンジイル基を表す。
 *は、Oとの結合手を表す。]
In formula (BI) and formula (BII), R e and R f represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and the hydrogen atom contained in the alkyl group may be substituted with a hydroxy group.
X e and X f each represent a single bond, *-R g -, *-R g -O-, *-R g -S- or *-R g -NH-.
R g represents an alkanediyl group having 1 to 6 carbon atoms.
* represents a bond to O.
 炭素数1~4のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基等が挙げられる。
 水素原子がヒドロキシで置換されたアルキル基としては、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1-ヒドロキシプロピル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基、1-ヒドロキシ-1-メチルエチル基、2-ヒドロキシ-1-メチルエチル基、1-ヒドロキシブチル基、2-ヒドロキシブチル基、3-ヒドロキシブチル基、4-ヒドロキシブチル基等が挙げられる。
 Re及びRfとしては、好ましくは水素原子、メチル基、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基が挙げられ、より好ましくは水素原子、メチル基が挙げられる。
Examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group.
Examples of the alkyl group in which a hydrogen atom is substituted with a hydroxy group include a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 1-hydroxypropyl group, a 2-hydroxypropyl group, a 3-hydroxypropyl group, a 1-hydroxy-1-methylethyl group, a 2-hydroxy-1-methylethyl group, a 1-hydroxybutyl group, a 2-hydroxybutyl group, a 3-hydroxybutyl group, and a 4-hydroxybutyl group.
R e and R f are preferably a hydrogen atom, a methyl group, a hydroxymethyl group, a 1-hydroxyethyl group, or a 2-hydroxyethyl group, and more preferably a hydrogen atom or a methyl group.
 アルカンジイル基としては、メチレン基、エチレン基、プロパン-1,2-ジイル基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基等が挙げられる。
 Xe及びXfとしては、好ましくは単結合、メチレン基、エチレン基、*-CH2-O-及び*-CH2CH2-O-が挙げられ、より好ましくは単結合、*-CH2CH2-O-が挙げられる(*はOとの結合手を表す)。
Examples of the alkanediyl group include a methylene group, an ethylene group, a propane-1,2-diyl group, a propane-1,3-diyl group, a butane-1,4-diyl group, a pentane-1,5-diyl group, and a hexane-1,6-diyl group.
X e and X f are preferably a single bond, a methylene group, an ethylene group, *-CH 2 -O-, and *-CH 2 CH 2 -O-, and more preferably a single bond or *-CH 2 CH 2 -O- (* represents a bond to O).
 式(BI)で表される化合物としては、式(BI-1)~式(BI-15)のいずれかで表される化合物等が挙げられる。中でも、式(BI-1)、式(BI-3)、式(BII-5)、式(BI-7)、式(BI-9)又は式(BI-11)~式(BI-15)で表される化合物が好ましく、式(BI-1)、式(BI-7)、式(BI-9)又は式(BI-15)で表される化合物がより好ましい。 The compound represented by formula (BI) includes compounds represented by any of formulas (BI-1) to (BI-15). Among them, compounds represented by formulas (BI-1), (BI-3), (BII-5), (BI-7), (BI-9) or (BI-11) to (BI-15) are preferred, and compounds represented by formulas (BI-1), (BI-7), (BI-9) or (BI-15) are more preferred.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(BII)で表される化合物としては、式(BII-1)~式(BII-15)のいずれかで表される化合物等が挙げられる。中でも、式(BII-1)、式(BII-3)、式(BII-5)、式(BII-7)、式(BII-9)又は式(BII-11)~式(BII-15)で表される化合物が好ましく、式(BII-1)、式(BII-7)、式(BII-9)又は式(BII-15)で表される化合物がより好ましい。 The compound represented by formula (BII) includes compounds represented by any of formulas (BII-1) to (BII-15). Among them, compounds represented by formulas (BII-1), (BII-3), (BII-5), (BII-7), (BII-9) or (BII-11) to (BII-15) are preferred, and compounds represented by formulas (BII-1), (BII-7), (BII-9) or (BII-15) are more preferred.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(BI)で表される化合物及び式(BII)で表される化合物は、それぞれ単独で用いても、2種以上を併用してもよい。式(BI)で表される化合物及び式(BII)で表される化合物を併用する場合、これらの含有比率〔式(BI)で表される化合物:式(BII)で表される化合物〕はモル基準で、好ましくは5:95~95:5、より好ましくは20:80~80:20である。 The compound represented by formula (BI) and the compound represented by formula (BII) may be used alone or in combination of two or more kinds. When the compound represented by formula (BI) and the compound represented by formula (BII) are used in combination, the content ratio thereof [compound represented by formula (BI): compound represented by formula (BII)] is preferably 5:95 to 95:5, more preferably 20:80 to 80:20 on a molar basis.
 (b2)としては、オキセタニル基と(メタ)アクリロイルオキシ基とを有する単量体がより好ましい。(b2)としては、3-メチル-3-メタクリルロイルオキシメチルオキセタン、3-メチル-3-アクリロイルオキシメチルオキセタン、3-エチル-3-メタクリロイルオキシメチルオキセタン、3-エチル-3-アクリロイルオキシメチルオキセタン、3-メチル-3-メタクリロイルオキシエチルオキセタン、3-メチル-3-アクリロイルオキシエチルオキセタン、3-エチル-3-メタクリロイルオキシエチルオキセタン、3-エチル-3-アクリロイルオキシエチルオキセタン等が挙げられる。 More preferably, (b2) is a monomer having an oxetanyl group and a (meth)acryloyloxy group. Examples of (b2) include 3-methyl-3-methacryloyloxymethyloxetane, 3-methyl-3-acryloyloxymethyloxetane, 3-ethyl-3-methacryloyloxymethyloxetane, 3-ethyl-3-acryloyloxymethyloxetane, 3-methyl-3-methacryloyloxyethyloxetane, 3-methyl-3-acryloyloxyethyloxetane, 3-ethyl-3-methacryloyloxyethyloxetane, 3-ethyl-3-acryloyloxyethyloxetane, and the like.
 (b3)としては、テトラヒドロフリル基と(メタ)アクリロイルオキシ基とを有する単量体がより好ましい。(b3)としては、具体的には、テトラヒドロフルフリルアクリレート(例えば、ビスコートV#150、大阪有機化学工業(株)製)、テトラヒドロフルフリルメタクリレート等が挙げられる。 As (b3), a monomer having a tetrahydrofuryl group and a (meth)acryloyloxy group is more preferable. Specific examples of (b3) include tetrahydrofurfuryl acrylate (e.g., Viscoat V#150, manufactured by Osaka Organic Chemical Industry Co., Ltd.), tetrahydrofurfuryl methacrylate, etc.
 (b)としては、耐熱性、耐薬品性等の信頼性をより高くすることができる点で、(b1)であることが好ましい。 As for (b), (b1) is preferable since it can improve reliability in terms of heat resistance, chemical resistance, etc.
 樹脂[K3]~[K6]の製造時の反応性が高く、未反応の(b)が残存しにくいことから、(b)としては、オキシラン環とエチレン性不飽和結合とを有する単量体が好ましい。 Since the reactivity of resins [K3] to [K6] during production is high and unreacted (b) is unlikely to remain, a monomer having an oxirane ring and an ethylenically unsaturated bond is preferred as (b).
 (c)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-メチルシクロヘキシル(メタ)アクリレート、トリシクロ[5.2.1.02,6]デカン-8-イル(メタ)アクリレート(当該技術分野では、慣用名として「ジシクロペンタニル(メタ)アクリレート」といわれている。また、「トリシクロデシル(メタ)アクリレート」という場合がある。)、トリシクロ[5.2.1.02,6]デセン-8-イル(メタ)アクリレート(当該技術分野では、慣用名として「ジシクロペンテニル(メタ)アクリレート」といわれている。)、ジシクロペンタニルオキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、アリル(メタ)アクリレート、プロパルギル(メタ)アクリレート、フェニル(メタ)アクリレート、ナフチル(メタ)アクリレート、ベンジル(メタ)アクリレート等の(メタ)アクリル酸エステル;
 2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等のヒドロキシ基含有(メタ)アクリル酸エステル;
 マレイン酸ジエチル、フマル酸ジエチル、イタコン酸ジエチル等のジカルボン酸ジエステル;
 ビシクロ[2.2.1]ヘプト-2-エン、5-メチルビシクロ[2.2.1]ヘプト-2-エン、5-エチルビシクロ[2.2.1]ヘプト-2-エン、5-ヒドロキシビシクロ[2.2.1]ヘプト-2-エン、5-ヒドロキシメチルビシクロ[2.2.1]ヘプト-2-エン、5-(2’-ヒドロキシエチル)ビシクロ[2.2.1]ヘプト-2-エン、5-メトキシビシクロ[2.2.1]ヘプト-2-エン、5-エトキシビシクロ[2.2.1]ヘプト-2-エン、5,6-ジヒドロキシビシクロ[2.2.1]ヘプト-2-エン、5,6-ジ(ヒドロキシメチル)ビシクロ[2.2.1]ヘプト-2-エン、5,6-ジ(2’-ヒドロキシエチル)ビシクロ[2.2.1]ヘプト-2-エン、5,6-ジメトキシビシクロ[2.2.1]ヘプト-2-エン、5,6-ジエトキシビシクロ[2.2.1]ヘプト-2-エン、5-ヒドロキシ-5-メチルビシクロ[2.2.1]ヘプト-2-エン、5-ヒドロキシ-5-エチルビシクロ[2.2.1]ヘプト-2-エン、5-ヒドロキシメチル-5-メチルビシクロ[2.2.1]ヘプト-2-エン、5-tert-ブトキシカルボニルビシクロ[2.2.1]ヘプト-2-エン、5-シクロヘキシルオキシカルボニルビシクロ[2.2.1]ヘプト-2-エン、5-フェノキシカルボニルビシクロ[2.2.1]ヘプト-2-エン、5,6-ビス(tert-ブトキシカルボニル)ビシクロ[2.2.1]ヘプト-2-エン、5,6-ビス(シクロヘキシルオキシカルボニル)ビシクロ[2.2.1]ヘプト-2-エン等のビシクロ不飽和化合物;
 N-フェニルマレイミド、N-シクロヘキシルマレイミド、N-ベンジルマレイミド、N-スクシンイミジル-3-マレイミドベンゾエート、N-スクシンイミジル-4-マレイミドブチレート、N-スクシンイミジル-6-マレイミドカプロエート、N-スクシンイミジル-3-マレイミドプロピオネート、N-(9-アクリジニル)マレイミド等のジカルボニルイミド誘導体;
 スチレン、α-メチルスチレン、m-メチルスチレン、p-メチルスチレン、ビニルトルエン、p-メトキシスチレン、アクリロニトリル、メタクリロニトリル、塩化ビニル、塩化ビニリデン、アクリルアミド、メタクリルアミド、酢酸ビニル、1,3-ブタジエンイソプレン、2,3-ジメチル-1,3-ブタジエン等が挙げられる。
Examples of (c) include methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, sec-butyl (meth)acrylate, tert-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, dodecyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, cyclopentyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-methylcyclohexyl (meth)acrylate, tricyclo[5.2.1.0 2,6 ] decan-8-yl (meth)acrylate (commonly known in the art as "dicyclopentanyl (meth)acrylate" and sometimes referred to as "tricyclodecyl (meth)acrylate"). ](meth)acrylic acid esters such as decene-8-yl (meth)acrylate (commonly known in the art as "dicyclopentenyl (meth)acrylate"), dicyclopentanyloxyethyl (meth)acrylate, isobornyl (meth)acrylate, adamantyl (meth)acrylate, allyl (meth)acrylate, propargyl (meth)acrylate, phenyl (meth)acrylate, naphthyl (meth)acrylate, and benzyl (meth)acrylate;
Hydroxy group-containing (meth)acrylic acid esters such as 2-hydroxyethyl (meth)acrylate and 2-hydroxypropyl (meth)acrylate;
dicarboxylic acid diesters such as diethyl maleate, diethyl fumarate, and diethyl itaconate;
Bicyclo[2.2.1]hept-2-ene, 5-methylbicyclo[2.2.1]hept-2-ene, 5-ethylbicyclo[2.2.1]hept-2-ene, 5-hydroxybicyclo[2.2.1]hept-2-ene, 5-hydroxymethylbicyclo[2.2.1]hept-2-ene, 5-(2'-hydroxyethyl)bicyclo[2.2.1]hept-2-ene, 5-methoxybicyclo[2.2.1]hept-2-ene, Cyclo[2.2.1]hept-2-ene, 5-ethoxybicyclo[2.2.1]hept-2-ene, 5,6-dihydroxybicyclo[2.2.1]hept-2-ene, 5,6-di(hydroxymethyl)bicyclo[2.2.1]hept-2-ene, 5,6-di(2'-hydroxyethyl)bicyclo[2.2.1]hept-2-ene, 5,6-dimethoxybicyclo[2.2.1]hept 5-hydroxy-5-methylbicyclo[2.2.1]hept-2-ene, 5-hydroxy-5-ethylbicyclo[2.2.1]hept-2-ene, 5-hydroxymethyl-5-methylbicyclo[2.2.1]hept-2-ene, 5-tert-butoxycarbonylbicyclo[2.2.1]hept-2-ene, 5,6-diethoxybicyclo[2.2.1]hept-2-ene, 5-hydroxy-5-methylbicyclo[2.2.1]hept-2-ene, 5-hydroxy-5-ethylbicyclo[2.2.1]hept-2-ene, 5-hydroxymethyl-5-methylbicyclo[2.2.1]hept-2-ene, 5-tert-butoxycarbonylbicyclo[2.2.1]hept-2-ene bicyclo unsaturated compounds such as 5-cyclohexyloxycarbonylbicyclo[2.2.1]hept-2-ene, 5-phenoxycarbonylbicyclo[2.2.1]hept-2-ene, 5,6-bis(tert-butoxycarbonyl)bicyclo[2.2.1]hept-2-ene, and 5,6-bis(cyclohexyloxycarbonyl)bicyclo[2.2.1]hept-2-ene;
Dicarbonyl imide derivatives such as N-phenylmaleimide, N-cyclohexylmaleimide, N-benzylmaleimide, N-succinimidyl-3-maleimidobenzoate, N-succinimidyl-4-maleimidobutyrate, N-succinimidyl-6-maleimidocaproate, N-succinimidyl-3-maleimidopropionate, and N-(9-acridinyl)maleimide;
Examples of the copolymer include styrene, α-methylstyrene, m-methylstyrene, p-methylstyrene, vinyltoluene, p-methoxystyrene, acrylonitrile, methacrylonitrile, vinyl chloride, vinylidene chloride, acrylamide, methacrylamide, vinyl acetate, 1,3-butadiene isoprene, and 2,3-dimethyl-1,3-butadiene.
 上記のうち、共重合反応性及び樹脂(C)の耐熱性の点から、メチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、スチレン、ビニルトルエン、N-フェニルマレイミド、N-シクロヘキシルマレイミド、N-ベンジルマレイミド、ビシクロ[2.2.1]ヘプト-2-エン等が好ましい。 Of the above, from the viewpoints of copolymerization reactivity and heat resistance of resin (C), methyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, dicyclopentanyl (meth)acrylate, styrene, vinyltoluene, N-phenylmaleimide, N-cyclohexylmaleimide, N-benzylmaleimide, bicyclo[2.2.1]hept-2-ene, etc. are preferred.
 樹脂[K1]において、それぞれに由来する構造単位の比率は、樹脂[K1]を構成する全構造単位中、
(a)に由来する構造単位;2モル%以上60モル%以下
(c)に由来する構造単位;40モル%以上98モル%以下
であることが好ましく、
(a)に由来する構造単位;10モル%以上50モル%以下
(c)に由来する構造単位;50モル%以上90モル%以下
であることがより好ましい。
In the resin [K1], the ratio of the structural units derived from each of them to all the structural units constituting the resin [K1] is as follows:
The structural units derived from (a) are preferably from 2 mol % to 60 mol %. The structural units derived from (c) are preferably from 40 mol % to 98 mol %.
More preferably, the structural units derived from (a) are from 10 mol % to 50 mol % and the structural units derived from (c) are from 50 mol % to 90 mol %.
 樹脂[K1]の構造単位の比率が上記の範囲にあると、保存安定性及び耐溶剤性に優れる傾向がある。 When the ratio of structural units in resin [K1] is within the above range, it tends to have excellent storage stability and solvent resistance.
 樹脂[K1]は、例えば、文献「高分子合成の実験法」(大津隆行著 発行所(株)化学同人 第1版第1刷 1972年3月1日発行)に記載された方法及び当該文献に記載された引用文献を参考にして製造することができる。 Resin [K1] can be produced, for example, by referring to the method described in the literature "Experimental Methods for Polymer Synthesis" (written by Otsu Takayuki, published by Kagaku Dojin Co., Ltd., 1st edition, 1st printing, published March 1, 1972) and the references cited in said literature.
 具体的には、(a)及び(c)の所定量、重合開始剤並びに溶剤等を反応容器中に入れて、例えば、窒素により酸素を置換することにより、脱酸素雰囲気にし、攪拌しながら、加熱及び保温する方法が挙げられる。 Specific examples include a method in which predetermined amounts of (a) and (c), a polymerization initiator, a solvent, and the like are placed in a reaction vessel, and the atmosphere is deoxygenated, for example by replacing oxygen with nitrogen, and the mixture is heated and kept warm while being stirred.
 用いられる重合開始剤及び溶剤等は、特に限定されず、当該分野で通常使用されているものを使用することができる。例えば、重合開始剤としては、アゾ化合物(2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等)や有機過酸化物(ベンゾイルペルオキシド等)が挙げられ、溶剤としては、各モノマーを溶解するものであればよく、溶剤(J)として後述する溶剤等が挙げられる。 The polymerization initiator and solvent used are not particularly limited, and those commonly used in the relevant field can be used. For example, polymerization initiators include azo compounds (2,2'-azobisisobutyronitrile, 2,2'-azobis(2,4-dimethylvaleronitrile), etc.) and organic peroxides (benzoyl peroxide, etc.), and the solvent may be any that dissolves each monomer, such as the solvent (J) described below.
 得られた共重合体は、反応後の溶液をそのまま使用してもよいし、濃縮あるいは希釈した溶液を使用してもよいし、再沈殿等の方法で固体(粉体)として取り出したものを使用してもよい。重合の際の溶剤として後述の溶剤(J)を使用すれば、反応後の溶液をそのまま組成物の調製に使用することができるため、組成物の製造工程を簡略化することができる。 The resulting copolymer may be used as is in the solution after the reaction, or after being concentrated or diluted, or after being extracted as a solid (powder) by a method such as reprecipitation. If a solvent (J) described below is used as the solvent during polymerization, the solution after the reaction can be used as is in the preparation of the composition, simplifying the process of producing the composition.
 樹脂[K2]において、それぞれに由来する構造単位の比率は、樹脂[K2]を構成する全構造単位中、
(a)に由来する構造単位;2~45モル%
(b)に由来する構造単位;2~95モル%
(c)に由来する構造単位;1~65モル%
であることが好ましく、
(a)に由来する構造単位;5~40モル%
(b)に由来する構造単位;5~80モル%
(c)に由来する構造単位;5~60モル%
であることがより好ましい。
In the resin [K2], the ratio of the structural units derived from each of them to all the structural units constituting the resin [K2] is as follows:
Structural units derived from (a): 2 to 45 mol%
Structural units derived from (b): 2 to 95 mol%
Structural units derived from (c): 1 to 65 mol%
It is preferred that
Structural units derived from (a): 5 to 40 mol%
Structural units derived from (b): 5 to 80 mol%
Structural units derived from (c): 5 to 60 mol%
It is more preferable that:
 樹脂[K2]の構造単位の比率が上記の範囲にあると、組成物I~IIIの保存安定性及び着色パターンを形成する際の現像性等に優れる傾向がある。 When the ratio of structural units in resin [K2] is within the above range, compositions I to III tend to have excellent storage stability and developability when forming colored patterns.
 樹脂[K2]は、例えば、樹脂[K1]の製造方法として記載した方法と同様に製造することができる。 Resin [K2] can be produced, for example, in the same manner as described above for producing resin [K1].
 樹脂[K3]は、(a)と(c)との共重合体に、(b)が有する炭素数2~4の環状エーテルを(a)が有するカルボン酸及び/又はカルボン酸無水物に付加させることにより製造することができる。 Resin [K3] can be produced by adding the cyclic ether having 2 to 4 carbon atoms contained in (b) to the carboxylic acid and/or carboxylic anhydride contained in (a) to a copolymer of (a) and (c).
 まず(a)と(c)との共重合体を、樹脂[K1]の製造方法として記載した方法と同様にして製造する。この場合、それぞれに由来する構造単位の比率は、樹脂[K1]について述べた比率と同じであることが好ましい。 First, a copolymer of (a) and (c) is produced in the same manner as described for the production method of resin [K1]. In this case, it is preferable that the ratio of the structural units derived from each is the same as that described for resin [K1].
 次に、上記共重合体中の(a)に由来するカルボン酸及び/又はカルボン酸無水物の一部に、(b)が有する炭素数2~4の環状エーテルを反応させる。 Next, a portion of the carboxylic acid and/or carboxylic acid anhydride derived from (a) in the copolymer is reacted with a cyclic ether having 2 to 4 carbon atoms contained in (b).
 (a)と(c)との共重合体の製造に引き続き、フラスコ内雰囲気を窒素から空気に置換し、(b)、カルボン酸又はカルボン酸無水物と環状エーテルとの反応触媒(例えば有機リン化合物、金属錯体、アミン化合物等)及び重合禁止剤(例えばハイドロキノン等)等の存在下、例えば60℃以上130℃以下で、1時間以上10時間以下反応することにより、樹脂[K3]を製造することができる。 Following the production of the copolymer of (a) and (c), the atmosphere in the flask is replaced with air instead of nitrogen, and (b) the carboxylic acid or carboxylic anhydride is reacted with the cyclic ether in the presence of a reaction catalyst (e.g., an organic phosphorus compound, a metal complex, an amine compound, etc.) and a polymerization inhibitor (e.g., hydroquinone, etc.) at a temperature of 60°C or higher and 130°C or lower for 1 hour to 10 hours, to produce resin [K3].
 (b)の使用量は、(a)100モルに対して、好ましくは5モル以上80モル以下、より好ましくは10モル以上75モル以下である。この範囲にすることにより、組成物の保存安定性、並びに、各層の耐溶剤性、耐熱性及び機械強度のバランスが良好になる傾向がある。 The amount of (b) used is preferably 5 to 80 moles, more preferably 10 to 75 moles, per 100 moles of (a). By keeping it within this range, the storage stability of the composition and the balance of the solvent resistance, heat resistance, and mechanical strength of each layer tend to be good.
 反応触媒としての有機リン化合物としては、例えばトリフェニルホスフィン等が挙げられる。反応触媒としてのアミン化合物としては、例えば脂肪族第三級アミン化合物又は脂肪族第四級アンモニウム塩化合物等が使用可能であり、その具体例としては、例えばトリス(ジメチルアミノメチル)フェノール、トリエチルアミン、テトラブチルアンモニウムブロミド、テトラブチルアンモニウムクロリド等が挙げられる。反応触媒は、好ましくは有機リン化合物である。 An example of an organic phosphorus compound that can be used as a reaction catalyst is triphenylphosphine. An example of an amine compound that can be used as a reaction catalyst is an aliphatic tertiary amine compound or an aliphatic quaternary ammonium salt compound, and specific examples of such compounds include tris(dimethylaminomethyl)phenol, triethylamine, tetrabutylammonium bromide, and tetrabutylammonium chloride. The reaction catalyst is preferably an organic phosphorus compound.
 反応触媒の使用量は、(a)、(b)及び(c)の合計量100質量部に対して、好ましくは0.001質量部以上5質量部以下である。 The amount of the reaction catalyst used is preferably 0.001 parts by mass or more and 5 parts by mass or less per 100 parts by mass of the total amount of (a), (b), and (c).
 重合禁止剤の使用量は、(a)、(b)及び(c)の合計量100質量部に対して、好ましくは0.001質量部以上5質量部以下である。 The amount of the polymerization inhibitor used is preferably 0.001 parts by mass or more and 5 parts by mass or less per 100 parts by mass of the total amount of (a), (b), and (c).
 仕込方法、反応温度及び時間等の反応条件は、製造設備や重合による発熱量等を考慮して適宜調整することができる。なお、重合条件と同様に、製造設備や重合による発熱量等を考慮し、仕込方法や反応温度を適宜調整することができる。 The reaction conditions such as the charging method, reaction temperature and time can be adjusted as appropriate, taking into consideration the production equipment, the amount of heat generated by polymerization, etc. As with the polymerization conditions, the charging method and reaction temperature can be adjusted as appropriate, taking into consideration the production equipment, the amount of heat generated by polymerization, etc.
 樹脂[K4]は、樹脂[K3]に、さらにカルボン酸無水物を反応させた樹脂である。カルボン酸又はカルボン酸無水物と環状エーテルとの反応により発生するヒドロキシ基に、カルボン酸無水物を反応させる。
 カルボン酸無水物としては、例えば、無水コハク酸、無水マレイン酸、シトラコン酸無水物、イタコン酸無水物、3-ビニルフタル酸無水物、4-ビニルフタル酸無水物、3,4,5,6-テトラヒドロフタル酸無水物、1,2,3,6-テトラヒドロフタル酸無水物、ジメチルテトラヒドロフタル酸無水物、5,6-ジカルボキシビシクロ[2.2.1]ヘプト-2-エン無水物等が挙げられる。
 カルボン酸無水物の使用量は、(b)の使用量1モルに対して、0.5モル以上1モル以下が好ましい。
Resin [K4] is a resin obtained by further reacting resin [K3] with a carboxylic acid anhydride. The hydroxyl group generated by the reaction of a carboxylic acid or a carboxylic acid anhydride with a cyclic ether is reacted with the carboxylic acid anhydride.
Examples of carboxylic acid anhydrides include succinic anhydride, maleic anhydride, citraconic anhydride, itaconic anhydride, 3-vinylphthalic anhydride, 4-vinylphthalic anhydride, 3,4,5,6-tetrahydrophthalic anhydride, 1,2,3,6-tetrahydrophthalic anhydride, dimethyltetrahydrophthalic anhydride, and 5,6-dicarboxybicyclo[2.2.1]hept-2-ene anhydride.
The amount of the carboxylic acid anhydride used is preferably 0.5 moles or more and 1 mole or less per mole of the amount of (b) used.
 樹脂[K5]は、第一段階として、上述した樹脂[K1]の製造方法と同様にして、(b)と(c)との共重合体を得る。上記と同様に、得られた共重合体は、反応後の溶液をそのまま使用してもよいし、濃縮あるいは希釈した溶液を使用してもよいし、再沈殿等の方法で固体(粉体)として取り出したものを使用してもよい。 In the first step, resin [K5] is produced by obtaining a copolymer of (b) and (c) in the same manner as in the production method of resin [K1] described above. As in the above, the resulting copolymer may be used as it is in the form of a solution after the reaction, or a concentrated or diluted solution, or it may be extracted as a solid (powder) by a method such as reprecipitation.
 (b)及び(c)に由来する構造単位の比率は、上記共重合体を構成する全構造単位の合計モル数に対して、それぞれ、
(b)に由来する構造単位;5モル%以上95モル%以下
(c)に由来する構造単位;5モル%以上95モル%以下
であることが好ましく、
(b)に由来する構造単位;10モル%以上90モル%以下
(c)に由来する構造単位;10モル%以上90モル%以下
であることがより好ましい。
The ratios of the structural units derived from (b) and (c) to the total number of moles of all structural units constituting the copolymer are, respectively,
The structural units derived from (b) are preferably from 5 mol % to 95 mol %. The structural units derived from (c) are preferably from 5 mol % to 95 mol %.
The structural units derived from (b) are more preferably from 10 mol % to 90 mol %. The structural units derived from (c) are more preferably from 10 mol % to 90 mol %.
 樹脂[K5]は、樹脂[K3]の製造方法と同様の条件で(b)と(c)との共重合体が有する(b)に由来する環状エーテルに、(a)が有するカルボン酸又はカルボン酸無水物を反応させることにより得ることができる。 Resin [K5] can be obtained by reacting a cyclic ether derived from (b) contained in a copolymer of (b) and (c) with a carboxylic acid or carboxylic anhydride contained in (a) under the same conditions as in the manufacturing method of resin [K3].
 上記共重合体に反応させる(a)の使用量は、(b)100モルに対して、5モル以上80モル以下が好ましい。 The amount of (a) used to react with the copolymer is preferably 5 to 80 moles per 100 moles of (b).
 樹脂[K6]は、樹脂[K5]に、さらにカルボン酸無水物を反応させた樹脂である。環状エーテルとカルボン酸又はカルボン酸無水物との反応により発生するヒドロキシ基に、カルボン酸無水物を反応させる。 Resin [K6] is a resin obtained by further reacting resin [K5] with a carboxylic acid anhydride. The hydroxyl group generated by the reaction of a cyclic ether with a carboxylic acid or a carboxylic acid anhydride is reacted with the carboxylic acid anhydride.
 カルボン酸無水物としては、例えば、無水コハク酸、無水マレイン酸、シトラコン酸無水物、イタコン酸無水物、3-ビニルフタル酸無水物、4-ビニルフタル酸無水物、3,4,5,6-テトラヒドロフタル酸無水物、1,2,3,6-テトラヒドロフタル酸無水物、ジメチルテトラヒドロフタル酸無水物、5,6-ジカルボキシビシクロ[2.2.1]ヘプト-2-エン無水物等が挙げられる。 Examples of carboxylic acid anhydrides include succinic anhydride, maleic anhydride, citraconic anhydride, itaconic anhydride, 3-vinylphthalic anhydride, 4-vinylphthalic anhydride, 3,4,5,6-tetrahydrophthalic anhydride, 1,2,3,6-tetrahydrophthalic anhydride, dimethyltetrahydrophthalic anhydride, and 5,6-dicarboxybicyclo[2.2.1]hept-2-ene anhydride.
 カルボン酸無水物の使用量は、(a)の使用量1モルに対して、0.5~1モルが好ましい。 The amount of carboxylic acid anhydride used is preferably 0.5 to 1 mole per mole of (a).
 樹脂[K1]、樹脂[K2]、樹脂[K3]、樹脂[K4]、樹脂[K5]及び[K6]としては、例えば、ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体、スチレン/(メタ)アクリル酸共重合体、(メタ)アクリル酸/コハク酸モノ〔2-(メタ)アクリロイルオキシエチル〕/ジシクロペンタニル(メタ)アクリレート/メチル(メタ)アクリレート共重合体等の樹脂[K1];
 グリシジル(メタ)アクリレート/ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体、グリシジル(メタ)アクリレート/スチレン/(メタ)アクリル酸共重合体、3,4-エポキシトリシクロ[5.2.1.02,6]デシルアクリレート/(メタ)アクリル酸/メチル(メタ)アクリレート共重合体、3,4-エポキシトリシクロ[5.2.1.02,6]デシルアクリレート/(メタ)アクリル酸/N-シクロヘキシルマレイミド共重合体、3,4-エポキシトリシクロ[5.2.1.02,6]デシルアクリレート/(メタ)アクリル酸/ベンジル(メタ)アクリレート共重合体等の樹脂[K2];
 ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体にグリシジル(メタ)アクリレートを付加させた樹脂、トリシクロデシル(メタ)アクリレート/スチレン/(メタ)アクリル酸共重合体にグリシジル(メタ)アクリレートを付加させた樹脂、トリシクロデシル(メタ)アクリレート/ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体にグリシジル(メタ)アクリレートを付加させた樹脂、ジシクロペンタニル(メタ)アクリレート/メチル(メタ)アクリレート/(メタ)アクリル酸共重合体にグリシジル(メタ)アクリレートを付加させた樹脂等の樹脂[K3];
 ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体にグリシジル(メタ)アクリレートを付加させた樹脂に、さらにテトラヒドロフタル酸無水物又は無水コハク酸をエステル結合させた樹脂、トリシクロデシル(メタ)アクリレート/ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体にグリシジル(メタ)アクリレートを付加させた樹脂に、さらにテトラヒドロフタル酸無水物又は無水コハク酸をエステル結合させた樹脂、ジシクロペンタニル(メタ)アクリレート/メチル(メタ)アクリレート/(メタ)アクリル酸共重合体にグリシジル(メタ)アクリレートを付加させた樹脂に、さらにテトラヒドロフタル酸無水物または無水コハク酸をエステル結合させた樹脂、ジシクロペンタニル(メタ)アクリレート/2-エチルヘキシル(メタ)アクリレート/(メタ)アクリル酸共重合体にグリシジル(メタ)アクリレートを付加させた樹脂に、さらにテトラヒドロフタル酸無水物又は無水コハク酸をエステル結合させた樹脂等の樹脂[K4];
 トリシクロデシル(メタ)アクリレート/グリシジル(メタ)アクリレートの共重合体に(メタ)アクリル酸を付加させた樹脂、トリシクロデシル(メタ)アクリレート/スチレン/グリシジル(メタ)アクリレートの共重合体に(メタ)アクリル酸を付加させた樹脂等の樹脂[K5];
 トリシクロデシル(メタ)アクリレート/グリシジル(メタ)アクリレートの共重合体に(メタ)アクリル酸を付加させた樹脂に、さらにテトラヒドロフタル酸無水物又は無水コハク酸をエステル結合させた樹脂等の樹脂、ジシクロペンタニル(メタ)アクリレート/2-エチルヘキシル(メタ)アクリレート/グリシジル(メタ)アクリレート共重合体に(メタ)アクリル酸を付加させた樹脂に、さらにテトラヒドロフタル酸無水物又は無水コハク酸をエステル結合させた樹脂等の[K6]等が挙げられる。
Examples of the resin [K1], resin [K2], resin [K3], resin [K4], resin [K5] and resin [K6] include resin [K1] such as benzyl (meth)acrylate/(meth)acrylic acid copolymer, styrene/(meth)acrylic acid copolymer, (meth)acrylic acid/mono[2-(meth)acryloyloxyethyl] succinate/dicyclopentanyl (meth)acrylate/methyl (meth)acrylate copolymer;
Resins [K2] such as glycidyl (meth)acrylate/benzyl (meth)acrylate/(meth)acrylic acid copolymer, glycidyl (meth)acrylate/styrene/(meth)acrylic acid copolymer, 3,4-epoxytricyclo[5.2.1.0 2,6 ]decyl acrylate/(meth)acrylic acid/methyl (meth)acrylate copolymer, 3,4-epoxytricyclo[5.2.1.0 2,6 ]decyl acrylate/(meth)acrylic acid/N-cyclohexylmaleimide copolymer, 3,4-epoxytricyclo[5.2.1.0 2,6 ]decyl acrylate/(meth)acrylic acid/benzyl (meth)acrylate copolymer;
Resins [K3] such as a resin obtained by adding glycidyl (meth)acrylate to a benzyl (meth)acrylate/(meth)acrylic acid copolymer, a resin obtained by adding glycidyl (meth)acrylate to a tricyclodecyl (meth)acrylate/styrene/(meth)acrylic acid copolymer, a resin obtained by adding glycidyl (meth)acrylate to a tricyclodecyl (meth)acrylate/benzyl (meth)acrylate/(meth)acrylic acid copolymer, and a resin obtained by adding glycidyl (meth)acrylate to a dicyclopentanyl (meth)acrylate/methyl (meth)acrylate/(meth)acrylic acid copolymer;
Resins obtained by adding glycidyl (meth)acrylate to a benzyl (meth)acrylate/(meth)acrylic acid copolymer and further bonding with tetrahydrophthalic anhydride or succinic anhydride via ester bonds; resins obtained by adding glycidyl (meth)acrylate to a tricyclodecyl (meth)acrylate/benzyl (meth)acrylate/(meth)acrylic acid copolymer and further bonding with tetrahydrophthalic anhydride or succinic anhydride via ester bonds; resins obtained by adding glycidyl (meth)acrylate to a dicyclopentanyl (meth)acrylate/methyl (meth)acrylate/(meth)acrylic acid copolymer and further ester-bonding tetrahydrophthalic anhydride or succinic anhydride to the resin; and resins obtained by adding glycidyl (meth)acrylate to a dicyclopentanyl (meth)acrylate/2-ethylhexyl (meth)acrylate/(meth)acrylic acid copolymer and further ester-bonding tetrahydrophthalic anhydride or succinic anhydride to the resin [K4];
Resins [K5] such as a resin obtained by adding (meth)acrylic acid to a copolymer of tricyclodecyl (meth)acrylate/glycidyl (meth)acrylate, and a resin obtained by adding (meth)acrylic acid to a copolymer of tricyclodecyl (meth)acrylate/styrene/glycidyl (meth)acrylate;
Examples of the resin include a resin obtained by adding (meth)acrylic acid to a copolymer of tricyclodecyl (meth)acrylate/glycidyl (meth)acrylate, and further bonding with tetrahydrophthalic anhydride or succinic anhydride via an ester bond; and a resin obtained by adding (meth)acrylic acid to a copolymer of dicyclopentanyl (meth)acrylate/2-ethylhexyl (meth)acrylate/glycidyl (meth)acrylate, and further bonding with tetrahydrophthalic anhydride or succinic anhydride via an ester bond [K6].
 組成物Iに含まれる樹脂(C)は、樹脂[K1]、樹脂[K2]、樹脂[K3]、樹脂[K4]、樹脂[K5]及び樹脂[K6]からなる群より選ばれる少なくとも1種を含むことが好ましく、樹脂[K1]及び樹脂[K2]からなる群より選ばれる少なくとも1種を含むことがより好ましく、樹脂[K1]がよりさらに好ましい。
 組成物IIに含まれる樹脂(C)は、樹脂[K1]、樹脂[K2]、樹脂[K3]、樹脂[K4]、樹脂[K5]及び樹脂[K6]からなる群より選ばれる少なくとも1種を含むことが好ましく、樹脂[K4]及び樹脂[K6]からなる群より選ばれる少なくとも1種を含むことがより好ましく、樹脂[K6]を含むことが更に好ましい。特にジシクロペンタニル(メタ)アクリレート/メチル(メタ)アクリレート/(メタ)アクリル酸共重合体にグリシジル(メタ)アクリレートを付加させた樹脂に、さらにテトラヒドロフタル酸無水物をエステル結合させた樹脂、またはジシクロペンタニル(メタ)アクリレート/2-エチルヘキシル(メタ)アクリレート/グリシジル(メタ)アクリレート共重合体に(メタ)アクリル酸を付加させた樹脂に、さらに無水コハク酸をエステル結合させた樹脂であることが好ましく、ジシクロペンタニル(メタ)アクリレート/2-エチルヘキシル(メタ)アクリレート/グリシジル(メタ)アクリレート共重合体に(メタ)アクリル酸を付加させた樹脂に、さらに無水コハク酸をエステル結合させた樹脂がより好ましい。
 組成物IIIに含まれる樹脂(C)は、樹脂[K1]、樹脂[K2]、樹脂[K3]、樹脂[K4]、樹脂[K5]及び樹脂[K6]からなる群より選ばれる少なくとも1種を含むことが好ましく、樹脂[K1]及び樹脂[K2]からなる群より選ばれる少なくとも1種を含むことがより好ましく、樹脂[K1]及び樹脂[K2]を含むことがよりさらに好ましい。
The resin (C) contained in the composition I preferably contains at least one selected from the group consisting of resin [K1], resin [K2], resin [K3], resin [K4], resin [K5] and resin [K6], more preferably contains at least one selected from the group consisting of resin [K1] and resin [K2], and even more preferably contains resin [K1].
The resin (C) contained in composition II preferably contains at least one selected from the group consisting of resin [K1], resin [K2], resin [K3], resin [K4], resin [K5] and resin [K6], more preferably contains at least one selected from the group consisting of resin [K4] and resin [K6], and even more preferably contains resin [K6]. In particular, a resin in which glycidyl (meth)acrylate is added to a dicyclopentanyl (meth)acrylate/methyl (meth)acrylate/(meth)acrylic acid copolymer and tetrahydrophthalic anhydride is further ester-bonded to the resin, or a resin in which (meth)acrylic acid is added to a dicyclopentanyl (meth)acrylate/2-ethylhexyl (meth)acrylate/glycidyl (meth)acrylate copolymer and succinic anhydride is further ester-bonded to the resin, is preferred, and a resin in which succinic anhydride is further ester-bonded to the resin in which (meth)acrylic acid is added to a dicyclopentanyl (meth)acrylate/2-ethylhexyl (meth)acrylate/glycidyl (meth)acrylate copolymer and succinic anhydride is further ester-bonded to the resin is more preferred.
The resin (C) contained in composition III preferably contains at least one selected from the group consisting of resin [K1], resin [K2], resin [K3], resin [K4], resin [K5] and resin [K6], more preferably contains at least one selected from the group consisting of resin [K1] and resin [K2], and even more preferably contains resin [K1] and resin [K2].
 樹脂(C)のさらなる例として、特開2018-123274号公報に記載の樹脂が挙げられる。該樹脂としては、側鎖に二重結合を有するとともに、主鎖に、下記式(I)で表される構成単位(α)と、下記式(II)で表される構成単位(β)とを含み、さらに酸基を含む重合体(以下、「樹脂(Ca)」ともいう。)が挙げられる。 Another example of resin (C) is the resin described in JP 2018-123274 A. Such a resin is a polymer (hereinafter also referred to as "resin (Ca)") that has a double bond in the side chain, contains a structural unit (α) represented by the following formula (I) in the main chain, and contains a structural unit (β) represented by the following formula (II), and further contains an acid group.
 酸基は、例えば樹脂(Ca)が、酸基含有単量体(例えば(メタ)アクリル酸等)に由来する構成単位(γ)を含むことで、樹脂中に導入されたものであることができる。樹脂(Ca)は、好ましくは、主鎖骨格に構成単位(α)、(β)及び(γ)を含む。 The acid group can be introduced into the resin (Ca) by, for example, including a structural unit (γ) derived from an acid group-containing monomer (e.g., (meth)acrylic acid, etc.). The resin (Ca) preferably includes structural units (α), (β), and (γ) in the main chain skeleton.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
[式中、R及びRは、同一又は異なって、水素原子又は炭素数1~25の炭化水素基を表す。nは、式(I)で表される構成単位の平均繰り返し単位数を表し、1以上の数である。] [In the formula, R A and R B are the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 25 carbon atoms. n represents the average number of repeating units of the structural unit represented by formula (I) and is a number of 1 or more.]
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
[式中、Rは、同一又は異なって、水素原子又はメチル基を表す。Rは、同一又は異なって、炭素数4~20の直鎖状又は分岐鎖状炭化水素基を表す。mは、式(II)で表される構成単位の平均繰り返し単位数を表し、1以上の数である。]
 樹脂(Ca)において、構成単位(α)の含有割合は、樹脂(Ca)の耐熱性や保存安定性の観点から、樹脂(Ca)の主鎖骨格を与える全単量体単位の総量100質量%に対し、例えば0.5質量%以上50質量%以下であり、好ましくは1質量%以上40質量%以下、より好ましくは5質量%以上30質量%以下である。式(I)中のnは、樹脂(Ca)中の構成単位(α)の平均繰り返し単位数を表し、構成単位(α)の含有割合が上記範囲内になるようにnを設定することができる。
[In the formula, R C may be the same or different and represent a hydrogen atom or a methyl group. R D may be the same or different and represent a linear or branched hydrocarbon group having 4 to 20 carbon atoms. m represents the average number of repeating units of the structural unit represented by formula (II) and is a number of 1 or more.]
In the resin (Ca), the content of the structural unit (α) is, for example, 0.5% by mass or more and 50% by mass or less, preferably 1% by mass or more and 40% by mass or less, and more preferably 5% by mass or more and 30% by mass or less, based on 100% by mass of the total amount of all monomer units that provide the main chain skeleton of the resin (Ca), from the viewpoint of the heat resistance and storage stability of the resin (Ca). n in the formula (I) represents the average number of repeating units of the structural unit (α) in the resin (Ca), and n can be set so that the content of the structural unit (α) falls within the above range.
 構成単位(β)の含有割合は、各層の耐溶剤性の観点から、樹脂(Ca)の主鎖骨格を与える全単量体単位の総量100質量%に対し、例えば10質量%以上90質量%以下であり、好ましくは20質量%以上80質量%以下、より好ましくは30質量%以上75質量%以下である。式(II)中のmは、樹脂(Ca)中の構成単位(β)の平均繰り返し単位数を表し、構成単位(β)の含有割合が上述した範囲内になるようにmを設定することができる。 The content of the structural unit (β) is, from the viewpoint of the solvent resistance of each layer, for example, 10% by mass or more and 90% by mass or less, preferably 20% by mass or more and 80% by mass or less, and more preferably 30% by mass or more and 75% by mass or less, relative to 100% by mass of the total amount of all monomer units that provide the main chain skeleton of the resin (Ca). m in formula (II) represents the average number of repeating units of the structural unit (β) in the resin (Ca), and m can be set so that the content of the structural unit (β) falls within the above-mentioned range.
 構成単位(γ)の含有割合は、溶剤(J)に対する樹脂(Ca)の溶解性等の観点から、樹脂(Ca)の主鎖骨格を与える全単量体単位の総量100質量%に対し、例えば0.5質量%以上50質量%以下であり、好ましくは2質量%以上50質量%以下、より好ましくは5質量%以上45質量%以下である。 The content of the structural unit (γ) is, for example, from 0.5% by mass to 50% by mass, preferably from 2% by mass to 50% by mass, and more preferably from 5% by mass to 45% by mass, relative to 100% by mass of the total amount of all monomer units that provide the main chain structure of the resin (Ca), from the viewpoint of the solubility of the resin (Ca) in the solvent (J).
 樹脂(C)(但し、樹脂(C-1)以外)は、GPCによって測定される標準ポリスチレン換算の重量平均分子量Mwが、例えば1000以上100000以下であり、組成物の現像性及び発光強度の観点から、好ましくは2000以上50000以下であり、より好ましくは3000以上20000以下である。樹脂(C)のMwは、用いる原料の選択、仕込方法、反応温度及び時間等の反応条件を適宜組み合わせて調整することができる。樹脂(C)のMwは、後述の実施例の欄に記載の測定方法に従って測定することができる。あるいは、組成物に含まれる樹脂(C)について、GPCを用いてMwを測定してもよい。 The weight average molecular weight Mw of resin (C) (other than resin (C-1)) measured by GPC in terms of standard polystyrene is, for example, 1000 or more and 100,000 or less, and from the viewpoint of the developability and luminescence intensity of the composition, is preferably 2000 or more and 50,000 or less, and more preferably 3000 or more and 20,000 or less. The Mw of resin (C) can be adjusted by appropriately combining reaction conditions such as the selection of raw materials used, the charging method, and the reaction temperature and time. The Mw of resin (C) can be measured according to the measurement method described in the Examples section below. Alternatively, the Mw of resin (C) contained in the composition may be measured using GPC.
 GPCによって測定される樹脂(C)の分子量分布[重量平均分子量(Mw)/数平均分子量(Mn)]は、例えば1.0以上6.0以下であり、発光強度を向上させる観点から、好ましくは1.2以上4.0以下である。 The molecular weight distribution [weight average molecular weight (Mw)/number average molecular weight (Mn)] of the resin (C) measured by GPC is, for example, 1.0 or more and 6.0 or less, and from the viewpoint of improving the emission intensity, is preferably 1.2 or more and 4.0 or less.
 樹脂(C)(但し、樹脂(C-1)以外)の酸価は、組成物の現像性及び各層の耐溶剤性の観点から、例えば30mgKOH/g以上、好ましくは90mgKOH/g以上150mgKOH/g以下、より好ましくは95mgKOH/g以上140mgKOH/g以下、さらに好ましくは100mgKOH/g以上130mgKOH/g以下である。樹脂(C)の酸価は、酸基を有するモノマー成分(例えば上記(a))の含有率や、カルボン酸又はカルボン酸無水物と環状エーテルとの反応により発生するヒドロキシ基に反応させるカルボン酸無水物の含有率などによって調整することができる。 The acid value of resin (C) (other than resin (C-1)) is, from the viewpoint of the developability of the composition and the solvent resistance of each layer, for example, 30 mgKOH/g or more, preferably 90 mgKOH/g to 150 mgKOH/g, more preferably 95 mgKOH/g to 140 mgKOH/g, and even more preferably 100 mgKOH/g to 130 mgKOH/g. The acid value of resin (C) can be adjusted by the content of a monomer component having an acid group (e.g., (a) above) and the content of a carboxylic acid anhydride to be reacted with a hydroxy group generated by the reaction of a carboxylic acid or a carboxylic acid anhydride with a cyclic ether.
 樹脂(C)の酸価は、樹脂(C)1gを中和するに必要な水酸化カリウムの量(mg)として測定される値であり、例えば水酸化カリウム水溶液を用いて滴定することにより求めることができる。具体的には、後述の実施例の欄に記載の測定方法に従って測定することができる。あるいは、組成物に含まれる樹脂(C)について、例えばその構造解析を行うことにより、酸価を求めてもよい。 The acid value of resin (C) is a value measured as the amount (mg) of potassium hydroxide required to neutralize 1 g of resin (C), and can be determined, for example, by titration with an aqueous potassium hydroxide solution. Specifically, it can be measured according to the measurement method described in the Examples section below. Alternatively, the acid value can be determined, for example, by performing a structural analysis of resin (C) contained in the composition.
 樹脂(C)は、発光強度を向上させる観点から、二重結合当量が、300g/eq以上2000g/eq以下の樹脂を含むことが好ましく、500g/eq以上1500g/eq以下である樹脂を含むことがより好ましい。300g/eq以上2000g/eq以下の二重結合当量を有する樹脂としては、(メタ)アクリル系樹脂が挙げられる。樹脂(C)は、好ましくは(メタ)アクリル系樹脂からなる。 From the viewpoint of improving the luminescence intensity, the resin (C) preferably contains a resin having a double bond equivalent of 300 g/eq or more and 2000 g/eq or less, and more preferably contains a resin having a double bond equivalent of 500 g/eq or more and 1500 g/eq or less. An example of a resin having a double bond equivalent of 300 g/eq or more and 2000 g/eq or less is a (meth)acrylic resin. The resin (C) is preferably made of a (meth)acrylic resin.
 組成物Iにおける樹脂(C)の含有率は、組成物Iの固形分の総量に対して、例えば5質量%以上80質量%以下であり、好ましくは10質量%以上70質量%以下であり、より好ましくは13質量%以上60質量%以下であり、さらに好ましくは17質量%以上55質量%以下である。樹脂(C)の含有率が上記範囲であると、半導体粒子(A)が分散し易くなり、波長変換層の発光強度が高くなりやすい傾向にある。 The content of resin (C) in composition I is, for example, 5% by mass or more and 80% by mass or less, preferably 10% by mass or more and 70% by mass or less, more preferably 13% by mass or more and 60% by mass or less, and even more preferably 17% by mass or more and 55% by mass or less, relative to the total amount of solids in composition I. When the content of resin (C) is within the above range, the semiconductor particles (A) tend to be easily dispersed, and the luminescence intensity of the wavelength conversion layer tends to be high.
 組成物IIにおける樹脂(C)の含有率は、組成物IIの固形分の総量に対して、例えば0.00001質量%以上99.99999質量%以下であり、好ましくは1質量%以上99質量%以下、より好ましくは1質量%以上97質量%以下、さらに好ましくは1質量%以上95質量%以下、なおさらに好ましくは3質量%以上90質量%以下、特に好ましくは5質量%以上80質量%以下、特に好ましくは10質量%以上70質量%以下、最も好ましくは35質量%以上65質量%以下である。 The content of resin (C) in composition II is, for example, 0.00001% by mass or more and 99.99999% by mass or less, preferably 1% by mass or more and 99% by mass or less, more preferably 1% by mass or more and 97% by mass or less, even more preferably 1% by mass or more and 95% by mass or less, still more preferably 3% by mass or more and 90% by mass or less, particularly preferably 5% by mass or more and 80% by mass or less, particularly preferably 10% by mass or more and 70% by mass or less, and most preferably 35% by mass or more and 65% by mass or less, based on the total amount of solids in composition II.
 組成物IIIにおける樹脂(C)の含有率は、組成物IIIの固形分の総量に対して、例えば0.00001質量%以上99.99999質量%以下であり、好ましくは1質量%以上99質量%以下、より好ましくは1質量%以上97質量%以下、さらに好ましくは1質量%以上95質量%以下、なおさらに好ましくは3質量%以上90質量%以下、特に好ましくは5質量%以上80質量%以下、最も好ましくは10質量%以上70質量%以下である。 The content of resin (C) in composition III is, for example, 0.00001% by mass or more and 99.99999% by mass or less, preferably 1% by mass or more and 99% by mass or less, more preferably 1% by mass or more and 97% by mass or less, even more preferably 1% by mass or more and 95% by mass or less, still more preferably 3% by mass or more and 90% by mass or less, particularly preferably 5% by mass or more and 80% by mass or less, and most preferably 10% by mass or more and 70% by mass or less, based on the total amount of solids in composition III.
 組成物Iにおいて、重合性化合物(D)に対する樹脂(C)の質量比(固形分比)は、例えば1以上であり、組成物Iの現像性及び波長変換層の発光強度の観点から、好ましくは1.5以上、より好ましくは2以上であり、好ましくは5以下、より好ましくは4以下である。 In composition I, the mass ratio (solid content ratio) of the resin (C) to the polymerizable compound (D) is, for example, 1 or more, and from the viewpoints of the developability of composition I and the luminous intensity of the wavelength conversion layer, is preferably 1.5 or more, more preferably 2 or more, and is preferably 5 or less, more preferably 4 or less.
 組成物IIにおいて、重合性化合物(D)に対する樹脂(C)の質量比(固形分比)は、例えば1以上であり、組成物IIの現像性の観点から、好ましくは1以上、より好ましくは1.5以上であり、好ましくは5以下、より好ましくは4以下である。 In composition II, the mass ratio (solid content ratio) of the resin (C) to the polymerizable compound (D) is, for example, 1 or more, and from the viewpoint of the developability of composition II, is preferably 1 or more, more preferably 1.5 or more, and is preferably 5 or less, more preferably 4 or less.
 組成物IIIにおいて、重合性化合物(D)に対する樹脂(C)の質量比(固形分比)は、例えば0.5以上であり、組成物IIIの現像性の観点から、好ましくは0.8以上、より好ましくは1.2以上であり、好ましくは5以下、より好ましくは4以下である。 In composition III, the mass ratio (solid content ratio) of the resin (C) to the polymerizable compound (D) is, for example, 0.5 or more, and from the viewpoint of the developability of composition III, is preferably 0.8 or more, more preferably 1.2 or more, and is preferably 5 or less, more preferably 4 or less.
 <重合性化合物(D)>
 重合性化合物(D)は、後述する重合開始剤(E)から発生した活性ラジカル、酸等によって重合し得る化合物である。重合性化合物(D)としては、エチレン性不飽和結合を有する化合物等の光重合性化合物が挙げられ、例えば(メタ)アクリル酸エステル化合物である。重合性化合物(D)の他の例は、熱重合性化合物である。組成物は、重合性化合物(D)を2種以上含んでいてもよい。
<Polymerizable compound (D)>
The polymerizable compound (D) is a compound that can be polymerized by an active radical, an acid, or the like generated from a polymerization initiator (E) described later. Examples of the polymerizable compound (D) include a compound having an ethylenically unsaturated bond, etc. Examples of the polymerizable compound (D) include photopolymerizable compounds such as (meth)acrylic acid ester compounds. Another example of the polymerizable compound (D) is a thermally polymerizable compound. Two or more types may be included.
 重合性化合物(D)は、好ましくは、分子内にエチレン性不飽和結合を2個以上有する光重合性化合物であり、より好ましくは分子内にエチレン性不飽和結合を3個以上有する光重合性化合物であり、分子内のエチレン性不飽和結合は好ましくは6個以下である。エチレン性不飽和結合は、好ましくは(メタ)アクリロイルオキシ基である。重合性化合物(D)の重量平均分子量は、好ましくは150以上2900以下、より好ましくは250以上1500以下である。 The polymerizable compound (D) is preferably a photopolymerizable compound having two or more ethylenically unsaturated bonds in the molecule, more preferably a photopolymerizable compound having three or more ethylenically unsaturated bonds in the molecule, and the number of ethylenically unsaturated bonds in the molecule is preferably six or less. The ethylenically unsaturated bonds are preferably (meth)acryloyloxy groups. The weight average molecular weight of the polymerizable compound (D) is preferably 150 or more and 2900 or less, more preferably 250 or more and 1500 or less.
 組成物IIにおいて、波長変換層の熱による発光強度の低下を抑制する観点及びパターン状の保護層を形成する際のパターニング性の観点から、重合性化合物(D)は、分子内にエチレン性不飽和結合を3個以上有することが好ましく、(メタ)アクリロイルオキシ基を3個以上有することがより好ましい。また、組成物IIにおいて、波長変換層の熱による発光強度の低下を抑制する観点から、重合性化合物(D)は、分子内にシリコン原子を含まないことが好ましい。 In composition II, from the viewpoint of suppressing a decrease in the luminescence intensity of the wavelength conversion layer due to heat and from the viewpoint of patterning properties when forming a patterned protective layer, it is preferable that the polymerizable compound (D) has three or more ethylenically unsaturated bonds in the molecule, and more preferably has three or more (meth)acryloyloxy groups. In addition, in composition II, from the viewpoint of suppressing a decrease in the luminescence intensity of the wavelength conversion layer due to heat, it is preferable that the polymerizable compound (D) does not contain a silicon atom in the molecule.
 分子内にエチレン性不飽和結合を2個有する光重合性化合物としては、2官能(メタ)アクリル系化合物が挙げられ、例えば、アルキレングリコールジ(メタ)アクリレート、ポリオキシアルキレングリコールジ(メタ)アクリレート、ハロゲン置換アルキレングリコールジ(メタ)アクリレート、脂肪族ポリオールのジ(メタ)アクリレート、水添ジシクロペンタジエン又はトリシクロデカンジアルカノールのジ(メタ)アクリレート、ジオキサングリコール又はジオキサンジアルカノールのジ(メタ)アクリレート、ビスフェノールA又はビスフェノールFのアルキレンオキシド付加物のジ(メタ)アクリレート、ビスフェノールA又はビスフェノールFのエポキシジ(メタ)アクリレート等が挙げられる。 Photopolymerizable compounds having two ethylenically unsaturated bonds in the molecule include bifunctional (meth)acrylic compounds, such as alkylene glycol di(meth)acrylates, polyoxyalkylene glycol di(meth)acrylates, halogen-substituted alkylene glycol di(meth)acrylates, di(meth)acrylates of aliphatic polyols, di(meth)acrylates of hydrogenated dicyclopentadiene or tricyclodecane dialkanol, di(meth)acrylates of dioxane glycol or dioxane dialkanol, di(meth)acrylates of alkylene oxide adducts of bisphenol A or bisphenol F, and epoxy di(meth)acrylates of bisphenol A or bisphenol F.
 上記2官能(メタ)アクリル系化合物のより具体的な例を挙げれば、エチレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ジトリメチロールプロパンジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールエステルのジ(メタ)アクリレート、2,2-ビス[4-(メタ)アクリロイルオキシエトキシエトキシフェニル]プロパン、2,2-ビス[4-(メタ)アクリロイルオキシエトキシエトキシシクロヘキシル]プロパン、水添ジシクロペンタジエニルジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、1,3-ジオキサン-2,5-ジイルジ(メタ)アクリレート〔別名:ジオキサングリコールジ(メタ)アクリレート〕、ヒドロキシピバルアルデヒドとトリメチロールプロパンとのアセタール化合物〔化学名:2-(2-ヒドロキシ-1,1-ジメチルエチル)-5-エチル-5-ヒドロキシメチル-1,3-ジオキサン〕のジ(メタ)アクリレート、トリス(ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート、エトキシ化ビスフェノールAのジ(メタ)アクリレート、プロポキシ化ビスフェノールAのジ(メタ)アクリレート、エトキシ化ビスフェノールFのジ(メタ)アクリレート、プロポキシ化ビスフェノールFのジ(メタ)アクリレート等である。 Specific examples of the bifunctional (meth)acrylic compounds include ethylene glycol di(meth)acrylate, 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, trimethylolpropane di(meth)acrylate, pentaerythritol di(meth)acrylate, ditrimethylolpropane di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, polytetramethylene glycol di(meth)acrylate, and di(meth)acrylate of neopentyl glycol ester of hydroxypivalic acid. acrylate, 2,2-bis[4-(meth)acryloyloxyethoxyethoxyphenyl]propane, 2,2-bis[4-(meth)acryloyloxyethoxyethoxycyclohexyl]propane, hydrogenated dicyclopentadienyl di(meth)acrylate, tricyclodecane dimethanol di(meth)acrylate, 1,3-dioxane-2,5-diyl di(meth)acrylate [also known as dioxane glycol di(meth)acrylate], acrylate of hydroxypivalaldehyde and trimethylolpropane These include di(meth)acrylate of cetal compound (chemical name: 2-(2-hydroxy-1,1-dimethylethyl)-5-ethyl-5-hydroxymethyl-1,3-dioxane), tris(hydroxyethyl)isocyanurate di(meth)acrylate, di(meth)acrylate of ethoxylated bisphenol A, di(meth)acrylate of propoxylated bisphenol A, di(meth)acrylate of ethoxylated bisphenol F, and di(meth)acrylate of propoxylated bisphenol F.
 重合性化合物(D)としては、分子内に3個以上の(メタ)アクリロイルオキシ基を有し、かつ、酸性官能基を有する化合物(Da)、分子内に3個以上の(メタ)アクリロイルオキシ基を有し、かつ、酸性官能基を有しない化合物(Db)が挙げられる。光重合性化合物は、化合物(Da)及び化合物(Db)の少なくとも1種を含むことが好ましく、化合物(Da)を2種以上、化合物(Db)を2種以上、又は化合物(Da)の少なくとも1種と化合物(Db)の少なくとも1種とを含んでいてもよい。上記酸性官能基としては、例えば、カルボキシ基、スルホン酸基、リン酸基等が挙げられる。中でも、酸性官能基は、カルボキシ基であることが好ましい。 The polymerizable compound (D) may be a compound (Da) having three or more (meth)acryloyloxy groups in the molecule and having an acidic functional group, or a compound (Db) having three or more (meth)acryloyloxy groups in the molecule and having no acidic functional group. The photopolymerizable compound preferably contains at least one of the compounds (Da) and (Db), and may contain two or more compounds (Da), two or more compounds (Db), or at least one compound (Da) and at least one compound (Db). Examples of the acidic functional group include a carboxy group, a sulfonic acid group, and a phosphate group. Of these, the acidic functional group is preferably a carboxy group.
 組成物Iにおける重合性化合物(D)が化合物(Da)を含むことにより、半導体粒子(A)の分散性を向上させることができ、波長変換層の発光強度を向上させ得る。また、重合性化合物(D)が化合物(Da)を含むことにより、組成物の硬化性及び耐熱性を向上させ得る。 When the polymerizable compound (D) in composition I contains the compound (Da), the dispersibility of the semiconductor particles (A) can be improved, and the luminescence intensity of the wavelength conversion layer can be improved. Furthermore, when the polymerizable compound (D) contains the compound (Da), the curability and heat resistance of the composition can be improved.
 化合物(Da)1分子が有する(メタ)アクリロイルオキシ基の数は、例えば3以上6以下、好ましくは3以上5以下、より好ましくは3である。化合物(Da)1分子が有する酸性官能基の数は、1以上であり、好ましくは1である。2以上の酸性官能基を有する場合は、それぞれの酸性官能基は異なってもいてもよく同一であってもよいが、少なくとも1つのカルボキシ基を有することが好ましい。 The number of (meth)acryloyloxy groups in one molecule of compound (Da) is, for example, 3 or more and 6 or less, preferably 3 or more and 5 or less, and more preferably 3. The number of acidic functional groups in one molecule of compound (Da) is 1 or more, and preferably 1. When compound (Da) has two or more acidic functional groups, the acidic functional groups may be different or the same, but it is preferable that compound (Da) has at least one carboxy group.
 化合物(Da)としては、ペンタエリスリトールトリ(メタ)アクリレート又はジペンタエリスリトールペンタ(メタ)アクリレート等の3つ以上の(メタ)アクリロイルオキシ基及びヒドロキシ基を有する化合物と、ジカルボン酸とをエステル化して得られた化合物が挙げられる。該化合物としては、例えば、ペンタエリスリトールトリ(メタ)アクリレートとコハク酸とをモノエステル化した化合物、ジペンタエリスリトールペンタ(メタ)アクリレートとコハク酸とをモノエステル化した化合物、ペンタエリスリトールトリ(メタ)アクリレートとマレイン酸とをモノエステル化した化合物、ジペンタエリスリトールペンタ(メタ)アクリレートとマレイン酸とをモノエステル化した化合物等が挙げられる。中でも、ペンタエリスリトールトリ(メタ)アクリレートとコハク酸とをモノエステル化した化合物が好ましい。 Examples of the compound (Da) include compounds obtained by esterifying a compound having three or more (meth)acryloyloxy groups and hydroxyl groups, such as pentaerythritol tri(meth)acrylate or dipentaerythritol penta(meth)acrylate, with a dicarboxylic acid. Examples of the compound include a compound obtained by monoesterifying pentaerythritol tri(meth)acrylate with succinic acid, a compound obtained by monoesterifying dipentaerythritol penta(meth)acrylate with succinic acid, a compound obtained by monoesterifying pentaerythritol tri(meth)acrylate with maleic acid, and a compound obtained by monoesterifying dipentaerythritol penta(meth)acrylate with maleic acid. Among these, a compound obtained by monoesterifying pentaerythritol tri(meth)acrylate with succinic acid is preferred.
 化合物(Da)の市販品としては、例えば、ペンタエリスリトールトリ(メタ)アクリレートの二塩基酸無水物付加物を主成分とする東亞合成(株)製「アロニックス M-510」、ジペンタエリスリトールペンタ(メタ)アクリレートの二塩基酸無水物付加物を主成分とする、東亞合成(株)製「アロニックス M-520D」等を挙げることができる。これらの市販品は、酸性官能基としてカルボキシ基を有する。 Commercially available products of compound (Da) include, for example, "Aronix M-510" manufactured by Toagosei Co., Ltd., which contains a dibasic acid anhydride adduct of pentaerythritol tri(meth)acrylate as the main component, and "Aronix M-520D" manufactured by Toagosei Co., Ltd., which contains a dibasic acid anhydride adduct of dipentaerythritol penta(meth)acrylate as the main component. These commercially available products have a carboxy group as the acidic functional group.
 化合物(Db)が有するエチレン性不飽和結合は、好ましくは(メタ)アクリロイルオキシ基である。化合物(Db)1分子が有するエチレン性不飽和結合の数は、好ましくは3~6である。 The ethylenically unsaturated bond in compound (Db) is preferably a (meth)acryloyloxy group. The number of ethylenically unsaturated bonds in one molecule of compound (Db) is preferably 3 to 6.
 化合物(Db)としては、例えば、グリセリントリ(メタ)アクリレート、アルコキシ化グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート、テトラペンタエリスリトールデカ(メタ)アクリレート、テトラペンタエリスリトールノナ(メタ)アクリレート、トリス(2-(メタ)アクリロイルオキシエチル)イソシアヌレート、エチレングリコール変性ペンタエリスリトールテトラ(メタ)アクリレート、エチレングリコール変性ジペンタエリスリトールヘキサ(メタ)アクリレート、プロピレングリコール変性ペンタエリスリトールテトラ(メタ)アクリレート、プロピレングリコール変性ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールテトラ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。中でも、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が好ましい。 Examples of the compound (Db) include glycerin tri(meth)acrylate, alkoxylated glycerin tri(meth)acrylate, trimethylolpropane tri(meth)acrylate, ditrimethylolpropane tri(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, tripentaerythritol octa(meth)acrylate, and tripentaerythritol hepta(meth)acrylate. acrylate, tetrapentaerythritol deca(meth)acrylate, tetrapentaerythritol nona(meth)acrylate, tris(2-(meth)acryloyloxyethyl)isocyanurate, ethylene glycol modified pentaerythritol tetra(meth)acrylate, ethylene glycol modified dipentaerythritol hexa(meth)acrylate, propylene glycol modified pentaerythritol tetra(meth)acrylate, propylene glycol modified dipentaerythritol hexa(meth)acrylate, caprolactone modified pentaerythritol tetra(meth)acrylate, caprolactone modified dipentaerythritol hexa(meth)acrylate, etc. Among these, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, etc. are preferred.
 化合物(Db)の市販品としては、ジペンタエリスリトールポリアクリレートである新中村化学工業社製、「A-9550」を挙げることができる。 An example of a commercially available product of compound (Db) is dipentaerythritol polyacrylate, "A-9550" manufactured by Shin-Nakamura Chemical Co., Ltd.
 組成物IIにおける重合性化合物(D)は、化合物(Da)を含むことで、波長変換層の熱による発光強度の低下をより効果的に抑制できるため好ましく、化合物(Db)を含むことで現像後の膜の残存率を向上できるため好ましい。組成物IIにおける重合性化合物(D)は、化合物(Da)及び(Db)のいずれか一方のみを含んでいてもよいし、両方含んでいてもよいが、膜の残存率を向上させる観点からは、化合物(Da)及び化合物(Db)の合計量に対する化合物(Db)の含有率は、50質量%以上が好ましく、より好ましくは80質量%以上であり、更に好ましくは90質量%以上であり、100質量%(すなわち化合物(Da)を含まない)であることも好ましい。 The polymerizable compound (D) in composition II is preferably a compound (Da) since it can more effectively suppress the decrease in the luminescence intensity of the wavelength conversion layer due to heat, and is preferably a compound (Db) since it can improve the residual rate of the film after development. The polymerizable compound (D) in composition II may contain only one of the compounds (Da) and (Db), or may contain both. From the viewpoint of improving the residual rate of the film, the content of the compound (Db) relative to the total amount of the compounds (Da) and (Db) is preferably 50% by mass or more, more preferably 80% by mass or more, even more preferably 90% by mass or more, and is also preferably 100% by mass (i.e., not including the compound (Da)).
 組成物の現像性を向上させる観点から、組成物Iは化合物(Da)を含むことが好ましい。化合物(Da)は、組成物Iに含まれる重合性化合物(D)100質量%中、好ましくは50質量%以上、より好ましくは70質量%以上含まれる。一方、硬化性向上の観点から、組成物IIIは化合物(Db)を含むことが好ましい。化合物(Db)は、組成物IIIに含まれる重合性化合物(D)100質量%中、好ましくは50質量%以上、より好ましくは70質量%以上含まれる。 From the viewpoint of improving the developability of the composition, it is preferable that composition I contains compound (Da). Compound (Da) is contained in an amount of preferably 50 mass% or more, more preferably 70 mass% or more, based on 100 mass% of polymerizable compound (D) contained in composition I. On the other hand, from the viewpoint of improving the curability, it is preferable that composition III contains compound (Db). Compound (Db) is contained in an amount of preferably 50 mass% or more, more preferably 70 mass% or more, based on 100 mass% of polymerizable compound (D) contained in composition III.
 組成物Iにおける重合性化合物(D)の含有率は、組成物Iの固形分の総量に対して、好ましくは7質量%以上60質量%以下、より好ましくは10質量%以上45質量%以下、さらに好ましくは13質量%以上30質量%以下である。重合性化合物(D)の含有率が上記範囲内にあると、組成物Iの現像性及び波長変換層の耐溶剤性が向上する傾向にある。 The content of the polymerizable compound (D) in composition I is preferably 7% by mass or more and 60% by mass or less, more preferably 10% by mass or more and 45% by mass or less, and even more preferably 13% by mass or more and 30% by mass or less, based on the total amount of solids in composition I. When the content of the polymerizable compound (D) is within the above range, the developability of composition I and the solvent resistance of the wavelength converting layer tend to be improved.
 組成物IIにおける重合性化合物(D)の含有率は、組成物IIの固形分の総量に対して、7質量%以上60質量%以下、より好ましくは10質量%以上55質量%以下、さらに好ましくは15質量%以上50質量%以下である。該含有率が上記範囲内にあると、波長変換層の熱による発光強度の低下を抑制するうえで有利である。 The content of the polymerizable compound (D) in composition II is from 7% by mass to 60% by mass, more preferably from 10% by mass to 55% by mass, and even more preferably from 15% by mass to 50% by mass, based on the total amount of solids in composition II. If the content is within the above range, it is advantageous in suppressing the decrease in the luminescence intensity of the wavelength conversion layer due to heat.
 組成物IIIにおける重合性化合物(D)の含有率は、組成物IIIの固形分の総量に対して、例えば0.00001質量%以上99.99999質量%以下、好ましくは1質量%以上99質量%以下、より好ましくは1質量%以上97質量%以下、さらに好ましくは1質量%以上95質量%以下、なおさらに好ましくは1質量%以上90質量%以下、特に好ましくは2質量%以上80質量%以下、最も好ましくは3質量%以上70質量%以下である。 The content of the polymerizable compound (D) in composition III is, for example, 0.00001% by mass or more and 99.99999% by mass or less, preferably 1% by mass or more and 99% by mass or less, more preferably 1% by mass or more and 97% by mass or less, even more preferably 1% by mass or more and 95% by mass or less, still more preferably 1% by mass or more and 90% by mass or less, particularly preferably 2% by mass or more and 80% by mass or less, and most preferably 3% by mass or more and 70% by mass or less, based on the total amount of solids in composition III.
 <重合開始剤(E)>
 重合開始剤(E)は、光又は熱の作用により活性ラジカル、酸等を発生し、重合性化合物(D)の重合を開始し得る化合物である。組成物は、1種又は2種以上の重合開始剤(E)を含むことができる。
<Polymerization initiator (E)>
The polymerization initiator (E) is a compound that generates an active radical, an acid, or the like by the action of light or heat and can initiate polymerization of the polymerizable compound (D). The composition can contain one or more polymerization initiators (E).
 重合開始剤(E)としては、オキシム化合物、ビイミダゾール化合物、トリアジン化合物及びアシルホスフィン化合物等の光重合開始剤、アゾ系化合物や有機過酸化物等の熱重合開始剤が挙げられる。 Examples of the polymerization initiator (E) include photopolymerization initiators such as oxime compounds, biimidazole compounds, triazine compounds, and acylphosphine compounds, and thermal polymerization initiators such as azo compounds and organic peroxides.
 オキシム化合物の一例は、下記式(1)で表される第1分子構造を有するオキシム化合物である。以下、該オキシム化合物を「オキシム化合物(1)」ともいう。 An example of an oxime compound is an oxime compound having a first molecular structure represented by the following formula (1). Hereinafter, this oxime compound is also referred to as "oxime compound (1)."
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 重合開始剤(E)としてオキシム化合物(1)を含むことは、発光強度を向上させる観点から有利となり得る。このような効果を奏することができる一因は、オキシム化合物(1)が有する特有の分子構造に起因して、オキシム化合物(1)が光重合を開始させる際に必要となるオキシム化合物(1)の開裂(分解)前後でのオキシム化合物(1)の吸収波長が大きく変化することから、オキシム化合物(1)は光ラジカル重合開始能力が高いことにあると推定される。 Including oxime compound (1) as polymerization initiator (E) can be advantageous in terms of improving the luminescence intensity. One of the reasons for this effect is presumably that the unique molecular structure of oxime compound (1) causes a large change in the absorption wavelength of oxime compound (1) before and after cleavage (decomposition) of oxime compound (1), which is necessary for oxime compound (1) to initiate photopolymerization, and therefore oxime compound (1) has a high photoradical polymerization initiation ability.
 式(1)中、Rは、R11、OR11、COR11、SR11、CONR1213又はCNを表す。 In formula (1), R 1 represents R 11 , OR 11 , COR 11 , SR 11 , CONR 12 R 13 or CN.
 R11、R12及びR13は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基又は炭素数2~20の複素環基を表す。 R 11 , R 12 and R 13 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms or a heterocyclic group having 2 to 20 carbon atoms.
 R11、R12又はR13で表わされる基の水素原子は、OR21、COR21、SR21、NR2223、CONR2223、-NR22-OR23、-N(COR22)-OCOR23、-C(=N-OR21)-R22、-C(=N-OCOR21)-R22、CN、ハロゲン原子、又はCOOR21で置換されていてもよい。 The hydrogen atoms of the groups represented by R 11 , R 12 or R 13 may be substituted by OR 21 , COR 21 , SR 21 , NR 22 R 23 , CONR 22 R 23 , -NR 22 -OR 23 , -N(COR 22 )-OCOR 23 , -C(═N-OR 21 )-R 22 , -C(═N-OCOR 21 )-R 22 , CN, a halogen atom or COOR 21 .
 R21、R22及びR23は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基又は炭素数2~20の複素環基を表す。 R 21 , R 22 and R 23 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms or a heterocyclic group having 2 to 20 carbon atoms.
 R21、R22又はR23で表される基の水素原子は、CN、ハロゲン原子、ヒドロキシ基又はカルボキシ基で置換されていてもよい。 The hydrogen atom of the group represented by R 21 , R 22 or R 23 may be substituted by CN, a halogen atom, a hydroxy group or a carboxy group.
 R11、R12、R13、R21、R22又はR23で表される基がアルキレン部分を有する場合、該アルキレン部分は、-O-、-S-、-COO-、-OCO-、-NR24-、-NR24CO-、-NR24COO-、-OCONR24-、-SCO-、-COS-、-OCS-又は-CSO-により1~5回中断されていてもよい。 When the group represented by R 11 , R 12 , R 13 , R 21 , R 22 or R 23 has an alkylene portion, the alkylene portion may be interrupted 1 to 5 times by -O-, -S-, -COO-, -OCO-, -NR 24 -, -NR 24 CO-, -NR 24 COO-, -OCONR 24 -, -SCO-, -COS-, -OCS- or -CSO-.
 R24は、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基又は炭素数2~20の複素環基を表す。 R 24 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 2 to 20 carbon atoms.
 R11、R12、R13、R21、R22又はR23で表される基がアルキル部分を有する場合、該アルキル部分は、分枝鎖状であってもよく、環状であってもよく、また、R12とR13及びR22とR23はそれぞれ一緒になって環を形成していてもよい。 When the group represented by R 11 , R 12 , R 13 , R 21 , R 22 or R 23 has an alkyl portion, the alkyl portion may be branched or cyclic, and R 12 and R 13 , and R 22 and R 23 may be joined together to form a ring.
 *は、オキシム化合物(1)が有する第1分子構造以外の他の分子構造である第2分子構造との結合手を表す。 * represents a bond to the second molecular structure, which is a molecular structure other than the first molecular structure that the oxime compound (1) has.
 式(1)中のR11、R12、R13、R21、R22、R23及びR24で表される炭素数1~20のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、tert-ペンチル基、ヘキシル基、ヘプチル基、オクチル基、イソオクチル基、2-エチルヘキシル基、tert-オクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、イコシル基、シクロペンチル基、シクロヘキシル基、シクロヘキシルメチル基、シクロヘキシルエチル基等が挙げられる。 Examples of the alkyl group having 1 to 20 carbon atoms represented by R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in formula (1) include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isopentyl group, a tert-pentyl group, a hexyl group, a heptyl group, an octyl group, an isooctyl group, a 2-ethylhexyl group, a tert-octyl group, a nonyl group, an isononyl group, a decyl group, an isodecyl group, an undecyl group, a dodecyl group, a tetradecyl group, a hexadecyl group, an octadecyl group, an icosyl group, a cyclopentyl group, a cyclohexyl group, a cyclohexylmethyl group and a cyclohexylethyl group.
 式(1)中のR11、R12、R13、R21、R22、R23及びR24で表される炭素数6~30のアリール基としては、例えば、フェニル基、トリル基、キシリル基、エチルフェニル基、ナフチル基、アントリル基、フェナントリル基、上記アルキル基で1つ以上置換されたフェニル基、ビフェニリル基、ナフチル基、アントリル基等が挙げられる。 Examples of the aryl group having 6 to 30 carbon atoms represented by R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in formula (1) include a phenyl group, a tolyl group, a xylyl group, an ethylphenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a phenyl group substituted with one or more of the above-mentioned alkyl groups, a biphenylyl group, a naphthyl group and an anthryl group.
 式(1)中のR11、R12、R13、R21、R22、R23及びR24で表される炭素数7~30のアラルキル基としては、例えば、ベンジル基、α-メチルベンジル基、α、α-ジメチルベンジル基、フェニルエチル基等が挙げられる。 Examples of the aralkyl group having 7 to 30 carbon atoms represented by R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in formula (1) include a benzyl group, an α-methylbenzyl group, an α,α-dimethylbenzyl group, and a phenylethyl group.
 式(1)中のR11、R12、R13、R21、R22、R23及びR24で表される炭素数2~20の複素環基としては、例えば、ピリジル基、ピリミジル基、フリル基、チエニル基、テトラヒドロフリル基、ジオキソラニル基、ベンゾオキサゾール-2-イル基、テトラヒドロピラニル基、ピロリジル基、イミダゾリジル基、ピラゾリジル基、チアゾリジル基、イソチアゾリジル基、オキサゾリジル基、イソオキサゾリジル基、ピペリジル基、ピペラジル基、モルホリニル基等が挙げられ、好ましくは5~7員複素環である。 Examples of the heterocyclic group having 2 to 20 carbon atoms represented by R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in formula (1) include a pyridyl group, a pyrimidyl group, a furyl group, a thienyl group, a tetrahydrofuryl group, a dioxolanyl group, a benzoxazol-2-yl group, a tetrahydropyranyl group, a pyrrolidyl group, an imidazolidyl group, a pyrazolidyl group, a thiazolidyl group, an isothiazolidyl group, an oxazolidyl group, an isoxazolidyl group, a piperidyl group, a piperazyl group and a morpholinyl group, and preferably a 5- to 7-membered heterocyclic ring.
 式(1)中のR12とR13及びR22とR23はそれぞれ一緒になって環を形成していてもよいとは、R12とR13及びR22とR23はそれぞれ一緒になって接続する窒素原子、炭素原子又は酸素原子とともに環を形成していてもよいことを意味する。 In formula (1), R 12 and R 13 , and R 22 and R 23 may each be joined together to form a ring, which means that R 12 and R 13 , and R 22 and R 23 may each be joined together to form a ring together with the nitrogen atom, carbon atom or oxygen atom to which they are connected.
 式(1)中のR12とR13及びR22とR23が一緒になって形成し得る環としては、例えば、シクロペンタン環、シクロヘキサン環、シクロペンテン環、ベンゼン環、ピペリジン環、モルホリン環、ラクトン環、ラクタム環等が挙げられ、好ましくは5~7員環である。 Examples of the ring that can be formed by combining R 12 and R 13 , and R 22 and R 23 in formula (1) include a cyclopentane ring, a cyclohexane ring, a cyclopentene ring, a benzene ring, a piperidine ring, a morpholine ring, a lactone ring, and a lactam ring, and are preferably 5- to 7-membered rings.
 式(1)中のR11、R12、R13、R21、R22及びR23が置換基として有してもよいハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。 Examples of the halogen atom which may be contained as a substituent in R 11 , R 12 , R 13 , R 21 , R 22 and R 23 in the formula (1) include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
 式(1)中のRは、好ましくはR11であり、より好ましくは炭素数1~20のアルキル基であり、さらに好ましくは炭素数1~10のアルキル基であり、なおさらに好ましくは炭素数1~6のアルキル基である。 R 1 in formula (1) is preferably R 11 , more preferably an alkyl group having 1 to 20 carbon atoms, even more preferably an alkyl group having 1 to 10 carbon atoms, and even more preferably an alkyl group having 1 to 6 carbon atoms.
 式(1)で表される第1分子構造に連結される第2分子構造の一例は、下記式(2)で表される構造である。第2分子構造とは、オキシム化合物(1)が有する上記第1分子構造以外の他の分子構造部分を意味する。 An example of the second molecular structure linked to the first molecular structure represented by formula (1) is the structure represented by the following formula (2). The second molecular structure means a molecular structure portion other than the first molecular structure that the oxime compound (1) has.
 式(2)において「*」で表される結合手は、式(1)において「*」で表される結合手と直接結合している。すなわち、第2分子構造が式(2)で表される構造である場合、式(2)中の「-*」を有するベンゼン環と式(1)中の「-*」を有するカルボニル基とは直接結合している。 The bond represented by "*" in formula (2) is directly bonded to the bond represented by "*" in formula (1). In other words, when the second molecular structure is the structure represented by formula (2), the benzene ring having "-*" in formula (2) and the carbonyl group having "-*" in formula (1) are directly bonded.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(2)中、R及びRは、それぞれ独立に、R11、OR11、SR11、COR11、CONR1213、NR12COR11、OCOR11、COOR11、SCOR11、OCSR11、COSR11、CSOR11、CN又はハロゲン原子を表す。 In formula (2), R2 and R3 each independently represent R11 , OR11 , SR11 , COR11 , CONR12R13 , NR12COR11 , OCOR11 , COOR11 , SCOR11 , OCSR11 , COSR11 , CSOR11 , CN or a halogen atom.
 Rが複数存在するとき、それらは同じであっても異なっていてもよい。 When multiple R2s are present, they may be the same or different.
 Rが複数存在するとき、それらは同じであっても異なっていてもよい。 When multiple R3 's are present, they may be the same or different.
 R11、R12及びR13は、上記と同じ意味を表す。 R 11 , R 12 and R 13 have the same meanings as above.
 s及びtは、それぞれ独立に、0~4の整数を表す。 s and t each independently represent an integer from 0 to 4.
 Lは、硫黄原子、CR3132、CO又はNR33を表す。 L represents a sulfur atom, CR 31 R 32 , CO or NR 33 .
 R31、R32及びR33は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基又は炭素数7~30のアラルキル基を表す。 R 31 , R 32 and R 33 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms or an aralkyl group having 7 to 30 carbon atoms.
 R31、R32又はR33で表される基がアルキル部分を有する場合、該アルキル部分は、分枝鎖状であってもよく、環状であってもよく、R31、R32及びR33は、それぞれ独立に、隣接するどちらかのベンゼン環と一緒になって環を形成していてもよい。 When the group represented by R 31 , R 32 or R 33 has an alkyl portion, the alkyl portion may be branched or cyclic, and R 31 , R 32 and R 33 may each independently form a ring together with either of the adjacent benzene rings.
 Rは、ヒドロキシ基、カルボキシ基又は下記式(2-1) R 4 is a hydroxy group, a carboxy group, or a group represented by the following formula (2-1):
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式(2-1)中、Lは、-O-、-S-、-NR22-、-NR22CO-、-SO-、-CS-、-OCO-又は-COO-を表す。 In formula (2-1), L 1 represents —O—, —S—, —NR 22 —, —NR 22 CO—, —SO 2 —, —CS—, —OCO— or —COO—.
 R22は、上記と同じ意味を表す。 R22 has the same meaning as above.
 Lは、炭素数1~20のアルキル基からv個の水素原子を除いた基、炭素数6~30のアリール基からv個の水素原子を除いた基、炭素数7~30のアラルキル基からv個の水素原子を除いた基又は炭素数2~20の複素環基からv個の水素原子を除いた基を表す。 L2 represents a group obtained by removing v hydrogen atoms from an alkyl group having 1 to 20 carbon atoms, a group obtained by removing v hydrogen atoms from an aryl group having 6 to 30 carbon atoms, a group obtained by removing v hydrogen atoms from an aralkyl group having 7 to 30 carbon atoms, or a group obtained by removing v hydrogen atoms from a heterocyclic group having 2 to 20 carbon atoms.
 Lで表される基がアルキレン部分を有する場合、該アルキレン部分は、-O-、-S-、-COO-、-OCO-、-NR22-、-NR22COO-、-OCONR22-、-SCO-、-COS-、-OCS-又は-CSO-により1~5回中断されていてもよく、該アルキレン部分は分枝鎖状であってもよく、環状であってもよい。 When the group represented by L2 has an alkylene portion, the alkylene portion may be interrupted 1 to 5 times by -O-, -S-, -COO-, -OCO-, -NR 22 -, -NR 22 COO-, -OCONR 22 -, -SCO-, -COS-, -OCS- or -CSO-, and the alkylene portion may be branched or cyclic.
 R4aは、OR41、SR41、CONR4243、NR42COR43、OCOR41、COOR41、SCOR41、OCSR41、COSR41、CSOR41、CN又はハロゲン原子を表す。 R 4a represents OR 41 , SR 41 , CONR 42 R 43 , NR 42 COR 43 , OCOR 41 , COOR 41 , SCOR 41 , OCSR 41 , COSR 41 , CSOR 41 , CN or a halogen atom.
 R4aが複数存在するとき、それらは同じであっても異なっていてもよい。 When a plurality of R 4a are present, they may be the same or different.
 R41、R42及びR43は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基又は炭素数7~30のアラルキル基を表し、R41、R42及びR43で表される基がアルキル部分を有する場合、該アルキル部分は分枝鎖状であってもよく、環状であってもよく、R42とR43は、一緒になって環を形成していてもよい。 R 41 , R 42 and R 43 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an aralkyl group having 7 to 30 carbon atoms. When the groups represented by R 41 , R 42 and R 43 have an alkyl portion, the alkyl portion may be branched or cyclic, and R 42 and R 43 may together form a ring.
 vは1~3の整数を表す。)
で表される基を表す。
v represents an integer of 1 to 3.
It represents a group represented by the following formula:
 *は、オキシム化合物(1)が有する第1分子構造との結合手を表す。 * represents the bond to the first molecular structure of the oxime compound (1).
 式(2)中のR11、R12、R13、R21、R22、R23、R24、R31、R32及びR33、並びに上記式(2-1)中のR22、R41、R42及びR43で表される炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基の例は、式(1)中のR11、R12、R13、R21、R22、R23及びR24についての例と同様である。 Examples of the alkyl group having 1 to 20 carbon atoms, the aryl group having 6 to 30 carbon atoms, and the aralkyl group having 7 to 30 carbon atoms represented by R 11 , R 12 , R 13 , R 21 , R 22 , R 23 , R 24 , R 31 , R 32 and R 33 in formula ( 2), and R 22 , R 41 , R 42 and R 43 in formula (2-1) above, are the same as the examples for R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in formula (1).
 式(2)中のR11、R12、R13、R21、R22、R23、R24、並びに上記式(2-1)中のR22で表される炭素数2~20の複素環基の例は、式(1)中のR11、R12、R13、R21、R22、R23及びR24についての例と同様である。 Examples of the heterocyclic group having 2 to 20 carbon atoms represented by R 11 , R 12 , R 13 , R 21 , R 22 , R 23 , and R 24 in formula (2), and R 22 in formula (2-1) above, are the same as the examples of R 11 , R 12 , R 13 , R 21 , R 22 , R 23 , and R 24 in formula (1).
 式(2)中のR31、R32及びR33は、それぞれ独立に、隣接するどちらかのベンゼン環と一緒になって環を形成していてもよいとは、R31、R32及びR33は、それぞれ独立に、隣接するどちらかのベンゼン環と一緒になって接続する窒素原子とともに環を形成していてもよいことを意味する。 In formula (2), R 31 , R 32 and R 33 may each independently form a ring together with either of the adjacent benzene rings, which means that R 31 , R 32 and R 33 may each independently form a ring together with either of the adjacent benzene rings and the nitrogen atom to which they are connected.
 式(2)中のR31、R32及びR33が隣接するどちらかのベンゼン環と一緒になって形成し得る環の例は、式(1)中のR12とR13及びRとR23が一緒になって形成し得る環についての例と同様である。 Examples of the ring that R 31 , R 32 and R 33 in formula (2) may form together with either adjacent benzene ring are the same as the examples of the ring that R 12 and R 13 , and R 2 and R 23 in formula (1) may form together.
 上記式(2-1)中のLは、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基又は炭素数2~20の複素環基からv個の水素原子を除いた基を表す。 L2 in the above formula (2-1) represents a group in which v hydrogen atoms have been removed from an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 2 to 20 carbon atoms.
 炭素数1~20のアルキル基からv個の水素原子を除いた基としては、例えば、vが1の場合、メチレン基、エチレン基、プロピレン基、メチルエチレン基、ブチレン基、1-メチルプロピレン基、2-メチルプロピレン基、1,2-ジメチルプロピレン基、1,3-ジメチルプロピレン基、1-メチルブチレン基、2-メチルブチレン基、3-メチルブチレン基、4-メチルブチレン基、2,4-ジメチルブチレン基、1,3-ジメチルブチレン基、ペンチレン基、へキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、エタン-1,1-ジイル基、プロパン-2,2-ジイル基等のアルキレン基が挙げられる。  Examples of groups obtained by removing v hydrogen atoms from an alkyl group having 1 to 20 carbon atoms, when v is 1, include alkylene groups such as methylene, ethylene, propylene, methylethylene, butylene, 1-methylpropylene, 2-methylpropylene, 1,2-dimethylpropylene, 1,3-dimethylpropylene, 1-methylbutylene, 2-methylbutylene, 3-methylbutylene, 4-methylbutylene, 2,4-dimethylbutylene, 1,3-dimethylbutylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, dodecylene, tridecylene, tetradecylene, pentadecylene, ethane-1,1-diyl, and propane-2,2-diyl.
 炭素数6~30のアリール基からv個の水素原子を除いた基としては、例えば、vが1の場合、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、2,6-ナフチレン基、1,4-ナフチレン基、2,5-ジメチル-1,4-フェニレン基、ジフェニルメタン-4,4’-ジイル基、2,2-ジフェニルプロパン-4,4’-ジイル基、ジフェニルスルフィド-4,4’-ジイル基、ジフェニルスルホン-4,4’-ジイル基等のアリーレン基が挙げられる。  Examples of groups in which v hydrogen atoms have been removed from an aryl group having 6 to 30 carbon atoms, when v is 1, include arylene groups such as 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, 2,6-naphthylene group, 1,4-naphthylene group, 2,5-dimethyl-1,4-phenylene group, diphenylmethane-4,4'-diyl group, 2,2-diphenylpropane-4,4'-diyl group, diphenylsulfide-4,4'-diyl group, and diphenylsulfone-4,4'-diyl group.
 炭素数7~30のアラルキル基からv個の水素原子を除いた基としては、例えば、vが1の場合、下記式(a)で表される基及び下記式(b)で表される基等が挙げられる。  Examples of groups in which v hydrogen atoms have been removed from an aralkyl group having 7 to 30 carbon atoms, when v is 1, include groups represented by the following formula (a) and groups represented by the following formula (b).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
[式(a)及び(b)中、L及びLは、炭素数1~10のアルキレン基を表し、L及びLは、単結合又は炭素数1~10のアルキレン基を表す。]
 炭素数1~10のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、メチルエチレン基、ブチレン基、1-メチルプロピレン基、2-メチルプロピレン基、1,2-ジメチルプロピレン基、1,3-ジメチルプロピレン基、1-メチルブチレン基、2-メチルブチレン基、3-メチルブチレン基、4-メチルブチレン基、2,4-ジメチルブチレン基、1,3-ジメチルブチレン基、ペンチレン基、へキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基等が挙げられる。
[In formulas (a) and (b), L3 and L5 represent an alkylene group having 1 to 10 carbon atoms, and L4 and L6 represent a single bond or an alkylene group having 1 to 10 carbon atoms.]
Examples of alkylene groups having 1 to 10 carbon atoms include methylene, ethylene, propylene, methylethylene, butylene, 1-methylpropylene, 2-methylpropylene, 1,2-dimethylpropylene, 1,3-dimethylpropylene, 1-methylbutylene, 2-methylbutylene, 3-methylbutylene, 4-methylbutylene, 2,4-dimethylbutylene, 1,3-dimethylbutylene, pentylene, hexylene, heptylene, octylene, nonylene, and decylene.
 炭素数2~20の複素環基からv個の水素原子を除いた基としては、例えば、vが1の場合、2,5-ピリジンジイル基、2,6-ピリジンジイル基、2,5-ピリミジンジイル基、2,5-チオフェンジイル基、3,4-テトラヒドロフランジイル基、2,5-テトラヒドロフランジイル基、2,5-フランジイル基、3,4-チアゾールジイル基、2,5-ベンゾフランジイル基、2,5-ベンゾチオフェンジイル基、N-メチルインドール-2,5-ジイル基、2,5-ベンゾチアゾールジイル基、2,5-ベンゾオキサゾールジイル基等の2価の複素環基が挙げられる。  Examples of groups in which v hydrogen atoms have been removed from a heterocyclic group having 2 to 20 carbon atoms, when v is 1, include divalent heterocyclic groups such as 2,5-pyridinediyl group, 2,6-pyridinediyl group, 2,5-pyrimidinediyl group, 2,5-thiophenediyl group, 3,4-tetrahydrofurandiyl group, 2,5-tetrahydrofurandiyl group, 2,5-furandiyl group, 3,4-thiazolediyl group, 2,5-benzofurandiyl group, 2,5-benzothiophenediyl group, N-methylindole-2,5-diyl group, 2,5-benzothiazolediyl group, and 2,5-benzoxazolediyl group.
 式(2)中のR及びR、並びに上記式(2-1)中のR4aで表されるハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。 Examples of the halogen atom represented by R 2 and R 3 in formula (2) and R 4a in formula (2-1) above include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
 溶剤(J)への溶解性、及び/又は、組成物の現像性の観点から、式(2)で表される構造の好ましい例は、下記式(2a)で表される構造である。 From the viewpoint of solubility in the solvent (J) and/or developability of the composition, a preferred example of the structure represented by formula (2) is the structure represented by the following formula (2a):
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[式(2a)中、L’は、硫黄原子又はNR50を表し、R50は、直鎖状、分枝鎖状又は環状の炭素数1~20のアルキル基を表し、R、R、R、s及びtは、前記と同じ意味を表す。]
 上記と同様の観点から、式(2)で表される構造の他の好ましい例は、下記式(2b)で表される構造である。
[In formula (2a), L′ represents a sulfur atom or NR 50 , R 50 represents a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, and R 2 , R 3 , R 4 , s and t are the same as defined above.]
From the same viewpoint as above, another preferred example of the structure represented by formula (2) is a structure represented by the following formula (2b).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
[式(2b)中、R44は、ヒドロキシ基、カルボキシ基又は下記式(2-2) [In formula (2b), R 44 represents a hydroxy group, a carboxy group, or a group represented by the following formula (2-2):
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(式(2-2)中、L11は、*-O-又は*-OCO-を表し、*はL12との結合手を表し、L12は、炭素数1~20のアルキレン基を表し、該アルキレン基は、1~3個の-O-により中断されていてもよく、R44aは、OR55又はCOOR55を表し、R55は、水素原子又は炭素数1~6のアルキル基を表す。)
で表される基を表す。]
 R44は、好ましくは、式(2-2)で表される基である。この場合、オキシム化合物(1)の溶剤(J)への溶解性及び組成物の現像性の点で有利となる。
(In formula (2-2), L 11 represents *-O- or *-OCO-, * represents a bond to L 12 , L 12 represents an alkylene group having 1 to 20 carbon atoms which may be interrupted by 1 to 3 -O-, R 44a represents OR 55 or COOR 55 , and R 55 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)
It represents a group represented by the following formula:
R 44 is preferably a group represented by formula (2-2), which is advantageous in terms of the solubility of the oxime compound (1) in the solvent (J) and the developability of the composition.
 L12で表されるアルキレン基の炭素数は、好ましくは1~10であり、より好ましくは1~4である。 The alkylene group represented by L 12 preferably has 1 to 10 carbon atoms, and more preferably 1 to 4 carbon atoms.
 R44aは、好ましくはヒドロキシ基又はカルボキシ基であり、より好ましくはヒドロキシ基である。 R 44a is preferably a hydroxy group or a carboxy group, and more preferably a hydroxy group.
 式(2)で表される第2分子構造を有するオキシム化合物(1)の製造方法は、特に限定されないが、例えば、特開2011-132215号公報に記載の方法で製造することができる。 The method for producing the oxime compound (1) having the second molecular structure represented by formula (2) is not particularly limited, but it can be produced, for example, by the method described in JP 2011-132215 A.
 式(1)で表される第1分子構造に連結される第2分子構造の他の一例は、下記式(3)で表される構造である。 Another example of a second molecular structure linked to the first molecular structure represented by formula (1) is the structure represented by formula (3) below.
 式(3)において「*」で表される結合手は、式(1)において「*」で表される結合手と直接結合している。すなわち、第2分子構造が式(3)で表される構造である場合、式(3)中の「-*」を有するベンゼン環と式(1)中の「-*」を有するカルボニル基とは直接結合している。 The bond represented by "*" in formula (3) is directly bonded to the bond represented by "*" in formula (1). In other words, when the second molecular structure is the structure represented by formula (3), the benzene ring having "-*" in formula (3) and the carbonyl group having "-*" in formula (1) are directly bonded.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(3)中、Rは、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表す。 In formula (3), R 5 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 2 to 20 carbon atoms.
 Rで表される基がアルキル部分を有する場合、該アルキル部分は、分枝鎖状であってもよく、環状であってもよい。 When the group represented by R5 has an alkyl moiety, the alkyl moiety may be branched or cyclic.
 Rで表される基の水素原子は、R21、OR21、COR21、SR21、NR2223、CONR2223、-NR22-OR23、-N(COR22)-OCOR23、NR22COR21、OCOR21、COOR21、-C(=N-OR21)-R22、-C(=N-OCOR21)-R22、SCOR21、OCSR21、COSR21、CSOR21、水酸基、ニトロ基、CN、ハロゲン原子、又はCOOR21で置換されていてもよい。 The hydrogen atoms in the group represented by R5 may be substituted by R21 , OR21 , COR21, SR21 , NR22R23 , CONR22R23 , -NR22 - OR23 , -N( COR22 )-OCOR23 , NR22COR21, OCOR21 , COOR21 , -C(= N - OR21 ) -R22 , -C ( =N- OCOR21 ) -R22 , SCOR21 , OCSR21 , COSR21 , CSOR21 , a hydroxyl group , a nitro group, CN, a halogen atom, or COOR21 .
 R21、R22及びR23は、上記と同じ意味を表す。 R 21 , R 22 and R 23 have the same meanings as above.
 R21、R22又はR23で表される基の水素原子は、CN、ハロゲン原子、ヒドロキシ基又はカルボキシ基で置換されていてもよい。 The hydrogen atom of the group represented by R 21 , R 22 or R 23 may be substituted by CN, a halogen atom, a hydroxy group or a carboxy group.
 R21、R22及びR23で表される基がアルキレン部分を有する場合、該アルキレン部分は、-O-、-S-、-COO-、-OCO-、-NR24-、-NR24CO-、-NR24COO-、-OCONR24-、-SCO-、-COS-、-OCS-又は-CSO-により1~5回中断されていてもよい。 When the groups represented by R 21 , R 22 and R 23 have an alkylene portion, the alkylene portion may be interrupted 1 to 5 times by -O-, -S-, -COO-, -OCO-, -NR 24 -, -NR 24 CO-, -NR 24 COO- , -OCONR 24 -, -SCO-, -COS-, -OCS- or -CSO-.
 R24は、上記と同じ意味を表す。 R 24 has the same meaning as above.
 R21、R22及びR23で表される基がアルキル部分を有する場合、該アルキル部分は、分枝鎖状であってもよく、環状であってもよく、また、R22とR23は一緒になって環を形成していてもよい。 When the groups represented by R 21 , R 22 and R 23 have an alkyl portion, the alkyl portion may be branched or cyclic, and R 22 and R 23 may be joined together to form a ring.
 R、R、R及びRは、それぞれ独立に、R61、OR61、SR61、COR62、CONR6364、NR65COR61、OCOR61、COOR62、SCOR61、OCSR61、COSR62、CSOR61、水酸基、ニトロ基、CN又はハロゲン原子を表す。 R 6 , R 7 , R 8 and R 9 each independently represent R 61 , OR 61 , SR 61 , COR 62 , CONR 63 R 64 , NR 65 COR 61 , OCOR 61 , COOR 62 , SCOR 61 , OCSR 61 , COSR 62 , CSOR 61 , a hydroxyl group, a nitro group, CN or a halogen atom.
 R61、R62、R63、R64及びR65は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表す。 R 61 , R 62 , R 63 , R 64 and R 65 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms or a heterocyclic group having 2 to 20 carbon atoms.
 R61、R62、R63、R64又はR65で表わされる基の水素原子は、OR21、COR21、SR21、NR2223、CONR2223、-NR22-OR23、-N(COR22)-OCOR23、-C(=N-OR21)-R22、-C(=N-OCOR21)-R22、CN、ハロゲン原子、又はCOOR21で置換されていてもよい。 The hydrogen atoms of the groups represented by R 61 , R 62 , R 63 , R 64 or R 65 may be substituted by OR 21 , COR 21 , SR 21 , NR 22 R 23 , CONR 22 R 23 , -NR 22 -OR 23 , -N(COR 22 )-OCOR 23 , -C(═N-OR 21 )-R 22 , -C(═N-OCOR 21 )-R 22 , CN, a halogen atom, or COOR 21 .
 RとR、RとR及びRとRはそれぞれ一緒になって環を形成していてもよい。 R 6 and R 7 , R 7 and R 8 , and R 8 and R 9 may each be joined together to form a ring.
 *は、オキシム化合物(1)が有する第1分子構造との結合手を表す。 * represents the bond to the first molecular structure of the oxime compound (1).
 式(3)中のR、R21、R22、R23、R24、R61、R62、R63、R64及びR65で表される炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基、炭素数2~20の複素環基の例は、式(1)中のR11、R12、R13、R21、R22、R23及びR24についての例と同様である。 Examples of the alkyl group having 1 to 20 carbon atoms , the aryl group having 6 to 30 carbon atoms, the aralkyl group having 7 to 30 carbon atoms, and the heterocyclic group having 2 to 20 carbon atoms represented by R 5 , R 21 , R 22 , R 23 , R 24 , R 61 , R 62 , R 63 , R 64 and R 65 in formula (3) are the same as the examples for R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in formula (1).
 式(3)中のR22とR23は一緒になって環を形成していてもよいとは、R22とR23は一緒になって接続する窒素原子、炭素原子又は酸素原子とともに環を形成していてもよいことを意味する。 In formula (3), R 22 and R 23 may be taken together to form a ring, which means that R 22 and R 23 may be taken together to form a ring together with the nitrogen atom, carbon atom or oxygen atom to which they are connected.
 式(3)中のR22とR23が一緒になって形成し得る環の例は、式(1)中のR12とR13及びR22とR23が一緒になって形成し得る環についての例と同様である。 Examples of the ring which may be formed by R 22 and R 23 together in formula (3) are the same as the examples of the ring which may be formed by R 12 and R 13 , and R 22 and R 23 together in formula (1).
 式(3)中のR、R、R及びRで表されるハロゲン原子、R、R21、R22、R23、R61、R62、R63、R64及びR65の水素原子を置換してもよいハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。 Examples of the halogen atoms which may replace the hydrogen atoms of the halogen atoms represented by R 6 , R 7 , R 8 and R 9 , and R 5 , R 21 , R 22 , R 23 , R 61 , R 62 , R 63 , R 64 and R 65 in formula (3) include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
 溶剤(J)への溶解性、及び/又は、組成物の現像性の観点から、1つの好ましい形態において、Rは、下記式(3-1)で表される基である。 In terms of solubility in the solvent (J) and/or developability of the composition, in one preferred embodiment, R 5 is a group represented by the following formula (3-1).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
[式(3-1)中、Zは、炭素数1~20のアルキル基から1個の水素原子を除いた基、炭素数6~30のアリール基から1個の水素原子を除いた基、炭素数7~30のアラルキル基から1個の水素原子を除いた基又は炭素数2~20の複素環基から1個の水素原子を除いた基を表し、
 Zで表される基がアルキレン部分を有する場合、該アルキレン部分は、-O-、-S-、-COO-、-OCO-、-NR24-、-NR24COO-、-OCONR24-、-SCO-、-COS-、-OCS-又は-CSO-により1~5回中断されていてもよく、該アルキレン部分は分枝鎖状であってもよく、環状であってもよく、
 R21、R22及びR24は、前記と同じ意味を表す。]
 式(3-1)中のZは、上記と同様の観点から、好ましくは、メチレン基、エチレン基又はフェニレン基である。
[In formula (3-1), Z represents a group in which one hydrogen atom has been removed from an alkyl group having 1 to 20 carbon atoms, a group in which one hydrogen atom has been removed from an aryl group having 6 to 30 carbon atoms, a group in which one hydrogen atom has been removed from an aralkyl group having 7 to 30 carbon atoms, or a group in which one hydrogen atom has been removed from a heterocyclic group having 2 to 20 carbon atoms,
When the group represented by Z has an alkylene portion, the alkylene portion may be interrupted 1 to 5 times by -O-, -S-, -COO-, -OCO-, -NR 24 -, -NR 24 COO-, -OCONR 24 -, -SCO-, -COS-, -OCS- or -CSO-, and the alkylene portion may be branched or cyclic.
R 21 , R 22 and R 24 have the same meanings as defined above.
From the same viewpoint as above, Z in formula (3-1) is preferably a methylene group, an ethylene group or a phenylene group.
 式(3-1)中のR21及びR22は、上記と同様の観点から、好ましくは、炭素数1~20のアルキル基又は炭素数6~30のアリール基であり、より好ましくは、メチル基、エチル基又はフェニル基である。 From the same viewpoint as above, R 21 and R 22 in formula (3-1) are preferably an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 30 carbon atoms, and more preferably a methyl group, an ethyl group, or a phenyl group.
 上記と同様の観点から、他の1つの好ましい形態において、Rは、ニトロ基である。 From the same viewpoint as above, in another preferred embodiment, R 7 is a nitro group.
 式(3)で表される第2分子構造を有するオキシム化合物(1)の製造方法は、特に限定されないが、例えば、特開2000-80068号公報及び特開2011-178776号公報に記載の方法で製造することができる。 The method for producing the oxime compound (1) having the second molecular structure represented by formula (3) is not particularly limited, but it can be produced, for example, by the methods described in JP-A-2000-80068 and JP-A-2011-178776.
 式(1)で表される第1分子構造に連結される第2分子構造のさらに他の一例は、下記式(4)で表される構造である。 Another example of a second molecular structure linked to the first molecular structure represented by formula (1) is the structure represented by formula (4) below.
 式(4)において「*」で表される結合手は、式(1)において「*」で表される結合手と直接結合している。すなわち、第2分子構造が式(4)で表される構造である場合、式(4)中の「-*」を有するベンゼン環と式(1)中の「-*」を有するカルボニル基とは直接結合している。 The bond represented by "*" in formula (4) is directly bonded to the bond represented by "*" in formula (1). In other words, when the second molecular structure is the structure represented by formula (4), the benzene ring having "-*" in formula (4) and the carbonyl group having "-*" in formula (1) are directly bonded.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 式(4)中、R71は、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基又は炭素数2~20の複素環基を表す。 In formula (4), R 71 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 2 to 20 carbon atoms.
 R71で表される基がアルキル部分を有する場合、該アルキル部分は、分枝鎖状であってもよく、環状であってもよい。 When the group represented by R 71 has an alkyl moiety, the alkyl moiety may be branched or cyclic.
 R71で表される基の水素原子は、R21、OR21、COR21、SR21、NR2223、CONR2223、-NR22-OR23、-N(COR22)-OCOR23、NR22COR21、OCOR21、COOR21、-C(=N-OR21)-R22、-C(=N-OCOR21)-R22、SCOR21、OCSR21、COSR21、CSOR21、水酸基、ニトロ基、CN、ハロゲン原子、又はCOOR21で置換されていてもよい。 The hydrogen atom of the group represented by R 71 may be substituted by R 21 , OR 21 , COR 21 , SR 21 , NR 22 R 23 , CONR 22 R 23 , -NR 22 -OR 23 , -N(COR 22 )-OCOR 23 , NR 22 COR 21 , OCOR 21 , COOR 21 , -C(═N-OR 21 )-R 22 , -C(═N-OCOR 21 )-R 22 , SCOR 21 , OCSR 21 , COSR 21 , CSOR 21 , a hydroxyl group, a nitro group, CN, a halogen atom, or COOR 21 .
 R21、R22及びR23は、前記と同じ意味を表す。 R 21 , R 22 and R 23 have the same meanings as defined above.
 R21、R22又はR23で表される基の水素原子は、CN、ハロゲン原子、ヒドロキシ基又はカルボキシ基で置換されていてもよい。 The hydrogen atom of the group represented by R 21 , R 22 or R 23 may be substituted by CN, a halogen atom, a hydroxy group or a carboxy group.
 R21、R22及びR23で表される基がアルキレン部分を有する場合、該アルキレン部分は、-O-、-S-、-COO-、-OCO-、-NR24-、-NR24CO-、-NR24COO-、-OCONR24-、-SCO-、-COS-、-OCS-又は-CSO-により1~5回中断されていてもよい。 When the groups represented by R 21 , R 22 and R 23 have an alkylene portion, the alkylene portion may be interrupted 1 to 5 times by -O-, -S-, -COO-, -OCO-, -NR 24 -, -NR 24 CO-, -NR 24 COO- , -OCONR 24 -, -SCO-, -COS-, -OCS- or -CSO-.
 R24は、上記と同じ意味を表す。 R 24 has the same meaning as above.
 R21、R22及びR23で表される基がアルキル部分を有する場合、該アルキル部分は、分枝鎖状であってもよく、環状であってもよく、また、R22とR23は一緒になって環を形成していてもよい。 When the groups represented by R 21 , R 22 and R 23 have an alkyl portion, the alkyl portion may be branched or cyclic, and R 22 and R 23 may be joined together to form a ring.
 R72、R73及び3個のR74は、それぞれ独立に、R61、OR61、SR61、COR62、CONR6364、NR65COR61、OCOR61、COOR62、SCOR61、OCSR61、COSR62、CSOR61、水酸基、ニトロ基、CN又はハロゲン原子を表す。 R 72 , R 73 and the three R 74s each independently represent R 61 , OR 61 , SR 61 , COR 62 , CONR 63 R 64 , NR 65 COR 61 , OCOR 61 , COOR 62 , SCOR 61 , OCSR 61 , COSR 62 , CSOR 61 , a hydroxyl group, a nitro group, CN or a halogen atom.
 R61、R62、R63、R64及びR65は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表す。 R 61 , R 62 , R 63 , R 64 and R 65 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms or a heterocyclic group having 2 to 20 carbon atoms.
 R61、R62、R63、R64又はR65で表わされる基の水素原子は、OR21、COR21、SR21、NR2223、CONR2223、-NR22-OR23、-N(COR22)-OCOR23、-C(=N-OR21)-R22、-C(=N-OCOR21)-R22、CN、ハロゲン原子、又はCOOR21で置換されていてもよい。 The hydrogen atoms of the groups represented by R 61 , R 62 , R 63 , R 64 or R 65 may be substituted by OR 21 , COR 21 , SR 21 , NR 22 R 23 , CONR 22 R 23 , -NR 22 -OR 23 , -N(COR 22 )-OCOR 23 , -C(═N-OR 21 )-R 22 , -C(═N-OCOR 21 )-R 22 , CN, a halogen atom, or COOR 21 .
 R72とR73及び2個のR74はそれぞれ一緒になって環を形成していてもよい。 R 72 and R 73 , and two R 74s may be joined together to form a ring.
 *は、オキシム化合物(1)が有する第1分子構造との結合手を表す。 * represents the bond to the first molecular structure of the oxime compound (1).
 式(4)中のR71、R21、R22、R23、R24、R61、R62、R63、R64及びR65で表される炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基、炭素数2~20の複素環基の例は、式(1)中のR11、R12、R13、R21、R22、R23及びR24についての例と同様である。 Examples of the alkyl group having 1 to 20 carbon atoms , the aryl group having 6 to 30 carbon atoms, the aralkyl group having 7 to 30 carbon atoms, and the heterocyclic group having 2 to 20 carbon atoms represented by R 71 , R 21 , R 22 , R 23 , R 24 , R 61 , R 62 , R 63 , R 64 and R 65 in formula (4) are the same as the examples for R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in formula (1).
 式(4)中のR22とR23は一緒になって環を形成していてもよいとは、R22とR23は一緒になって接続する窒素原子、炭素原子又は酸素原子とともに環を形成していてもよいことを意味する。 In formula (4), R 22 and R 23 may be taken together to form a ring, which means that R 22 and R 23 may be taken together to form a ring together with the nitrogen atom, carbon atom or oxygen atom to which they are connected.
 式(4)中のR22とR23が一緒になって形成し得る環の例は、式(1)中のR12とR13及びR22とR23が一緒になって形成し得る環についての例と同様である。 Examples of the ring that can be formed by R 22 and R 23 together in formula (4) are the same as the examples of the ring that can be formed by R 12 and R 13 , and R 22 and R 23 together in formula (1).
 式(4)中のR72、R73及びR74で表されるハロゲン原子、R71、R21、R22、R23、R61、R62、R63、R64及びR65の水素原子を置換してもよいハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。 Examples of the halogen atoms which may replace the hydrogen atoms of the halogen atoms represented by R 72 , R 73 and R 74 , and R 71 , R 21 , R 22 , R 23 , R 61 , R 62 , R 63 , R 64 and R 65 in formula (4) include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
 式(4)で表される第2分子構造を有するオキシム化合物(1)の製造方法は、特に限定されないが、例えば、国際公開第2017/051680号及び国際公開第2020/004601号に記載の方法で製造することができる。 The method for producing the oxime compound (1) having the second molecular structure represented by formula (4) is not particularly limited, but it can be produced, for example, by the methods described in WO 2017/051680 and WO 2020/004601.
 式(1)で表される第1分子構造に連結される第2分子構造のさらに他の一例は、下記式(5)で表される構造である。 Another example of a second molecular structure linked to the first molecular structure represented by formula (1) is the structure represented by formula (5) below.
 式(5)において「*」で表される結合手は、式(1)において「*」で表される結合手と直接結合している。すなわち、第2分子構造が式(5)で表される構造である場合、式(5)中の「-*」を有するピロール環と式(1)中の「-*」を有するカルボニル基とは直接結合している。 The bond represented by "*" in formula (5) is directly bonded to the bond represented by "*" in formula (1). In other words, when the second molecular structure is a structure represented by formula (5), the pyrrole ring having "-*" in formula (5) and the carbonyl group having "-*" in formula (1) are directly bonded.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 式(5)中、R81は、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基又は炭素数2~20の複素環基を表す。 In formula (5), R 81 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 2 to 20 carbon atoms.
 R81で表される基がアルキル部分を有する場合、該アルキル部分は、分枝鎖状であってもよく、環状であってもよい。 When the group represented by R 81 has an alkyl moiety, the alkyl moiety may be branched or cyclic.
 R81で表される基の水素原子は、R21、OR21、COR21、SR21、NR2223、CONR2223、-NR22-OR23、-N(COR22)-OCOR23、NR22COR21、OCOR21、COOR21、-C(=N-OR21)-R22、-C(=N-OCOR21)-R22、SCOR21、OCSR21、COSR21、CSOR21、水酸基、ニトロ基、CN、ハロゲン原子、又はCOOR21で置換されていてもよい。 The hydrogen atoms in the group represented by R 81 may be substituted by R 21 , OR 21 , COR 21 , SR 21 , NR 22 R 23 , CONR 22 R 23 , -NR 22 -OR 23 , -N(COR 22 )-OCOR 23 , NR 22 COR 21 , OCOR 21 , COOR 21 , -C(═N-OR 21 )-R 22 , -C(═N-OCOR 21 )-R 22 , SCOR 21 , OCSR 21 , COSR 21 , CSOR 21 , a hydroxyl group, a nitro group, CN, a halogen atom, or COOR 21 .
 R21、R22及びR23は、上記と同じ意味を表す。 R 21 , R 22 and R 23 have the same meanings as above.
 R21、R22又はR23で表される基の水素原子は、CN、ハロゲン原子、ヒドロキシ基又はカルボキシ基で置換されていてもよい。 The hydrogen atom of the group represented by R 21 , R 22 or R 23 may be substituted by CN, a halogen atom, a hydroxy group or a carboxy group.
 R21、R22及びR23で表される基がアルキレン部分を有する場合、該アルキレン部分は、-O-、-S-、-COO-、-OCO-、-NR24-、-NR24CO-、-NR24COO-、-OCONR24-、-SCO-、-COS-、-OCS-又は-CSO-により1~5回中断されていてもよい。 When the groups represented by R 21 , R 22 and R 23 have an alkylene portion, the alkylene portion may be interrupted 1 to 5 times by -O-, -S-, -COO-, -OCO-, -NR 24 -, -NR 24 CO-, -NR 24 COO- , -OCONR 24 -, -SCO-, -COS-, -OCS- or -CSO-.
 R24は、上記と同じ意味を表す。 R 24 has the same meaning as above.
 R21、R22及びR23で表される基がアルキル部分を有する場合、該アルキル部分は、分枝鎖状であってもよく、環状であってもよく、また、R22とR23は一緒になって環を形成していてもよい。 When the groups represented by R 21 , R 22 and R 23 have an alkyl portion, the alkyl portion may be branched or cyclic, and R 22 and R 23 may be joined together to form a ring.
 R82、R83、R84、R85及びR86は、それぞれ独立に、R61、OR61、SR61、COR62、CONR6364、NR65COR61、OCOR61、COOR62、SCOR61、OCSR61、COSR62、CSOR61、水酸基、ニトロ基、CN又はハロゲン原子を表す。 R82 , R83 , R84 , R85 and R86 each independently represent R61 , OR61 , SR61, COR62 , CONR63R64 , NR65COR61 , OCOR61 , COOR62 , SCOR61 , OCSR61 , COSR62 , CSOR61 , a hydroxyl group , a nitro group, CN or a halogen atom.
 R61、R62、R63、R64及びR65は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表す。 R 61 , R 62 , R 63 , R 64 and R 65 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms or a heterocyclic group having 2 to 20 carbon atoms.
 R61、R62、R63、R64又はR65で表わされる基の水素原子は、OR21、COR21、SR21、NR2223、CONR2223、-NR22-OR23、-N(COR22)-OCOR23、-C(=N-OR21)-R22、-C(=N-OCOR21)-R22、CN、ハロゲン原子、又はCOOR21で置換されていてもよい。 The hydrogen atoms of the groups represented by R 61 , R 62 , R 63 , R 64 or R 65 may be substituted by OR 21 , COR 21 , SR 21 , NR 22 R 23 , CONR 22 R 23 , -NR 22 -OR 23 , -N(COR 22 )-OCOR 23 , -C(═N-OR 21 )-R 22 , -C(═N-OCOR 21 )-R 22 , CN, a halogen atom, or COOR 21 .
 R83とR84、R84とR85及びR85とR86はそれぞれ一緒になって環を形成していてもよい。 R 83 and R 84 , R 84 and R 85 , and R 85 and R 86 may be joined together to form a ring.
 *は、オキシム化合物(1)が有する第1分子構造との結合手を表す。 * represents the bond to the first molecular structure of the oxime compound (1).
 式(5)中のR81、R21、R22、R23、R24、R61、R62、R63、R64及びR65で表される炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基、炭素数2~20の複素環基の例は、式(1)中のR11、R12、R13、R21、R22、R23及びR24についての例と同様である。 Examples of the alkyl group having 1 to 20 carbon atoms , the aryl group having 6 to 30 carbon atoms, the aralkyl group having 7 to 30 carbon atoms, and the heterocyclic group having 2 to 20 carbon atoms represented by R 81 , R 21 , R 22 , R 23 , R 24 , R 61 , R 62 , R 63 , R 64 and R 65 in formula (5) are the same as the examples for R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in formula (1).
 式(5)中のR22とR23は一緒になって環を形成していてもよいとは、R22とR23は一緒になって接続する窒素原子、炭素原子又は酸素原子とともに環を形成していてもよいことを意味する。 In formula (5), R 22 and R 23 may be taken together to form a ring, which means that R 22 and R 23 may be taken together to form a ring together with the nitrogen atom, carbon atom or oxygen atom to which they are connected.
 式(5)中のR22とR23が一緒になって形成し得る環の例は、式(1)中のR12とR13及びR22とR23が一緒になって形成し得る環についての例と同様である。 Examples of the ring that can be formed by R 22 and R 23 together in formula (5) are the same as the examples of the ring that can be formed by R 12 and R 13 , and R 22 and R 23 together in formula (1).
 式(5)中のR82、R83、R84、R85及びR86で表されるハロゲン原子、R81、R21、R22、R23、R61、R62、R63、R64及びR65の水素原子を置換してもよいハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。 Examples of the halogen atoms which may replace the hydrogen atoms of the halogen atoms represented by R82 , R83 , R84 , R85 and R86 , and R81 , R21 , R22 , R23 , R61 , R62 , R63 , R64 and R65 in formula (5) include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
 式(5)で表される第2分子構造を有するオキシム化合物(1)の製造方法は、特に限定されないが、例えば、国際公開第2017/051680号及び国際公開第2020/004601号に記載の方法で製造することができる。 The method for producing the oxime compound (1) having the second molecular structure represented by formula (5) is not particularly limited, but it can be produced, for example, by the methods described in WO 2017/051680 and WO 2020/004601.
 式(1)で表される第1分子構造に連結される第2分子構造のさらに他の一例は、下記式(6)で表される構造である。 Another example of a second molecular structure linked to the first molecular structure represented by formula (1) is the structure represented by formula (6) below.
 式(6)において「*」で表される結合手は、式(1)において「*」で表される結合手と直接結合している。すなわち、第2分子構造が式(6)で表される構造である場合、式(6)中の「-*」を有するベンゼン環と式(1)中の「-*」を有するカルボニル基とは直接結合している。 The bond represented by "*" in formula (6) is directly bonded to the bond represented by "*" in formula (1). In other words, when the second molecular structure is a structure represented by formula (6), the benzene ring having "-*" in formula (6) and the carbonyl group having "-*" in formula (1) are directly bonded.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式(6)中、4個のR91、R92、R93、R94、R95、R96及びR97は、それぞれ独立に、R61、OR61、SR61、COR62、CONR6364、NR65COR61、OCOR61、COOR62、SCOR61、OCSR61、COSR62、CSOR61、水酸基、ニトロ基、CN又はハロゲン原子を表す。 In formula (6), the four R 91 , R 92 , R 93 , R 94 , R 95 , R 96 and R 97 each independently represent R 61 , OR 61 , SR 61 , COR 62 , CONR 63 R 64 , NR 65 COR 61 , OCOR 61 , COOR 62 , SCOR 61 , OCSR 61 , COSR 62 , CSOR 61 , a hydroxyl group, a nitro group, CN or a halogen atom.
 R61、R62、R63、R64及びR65は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表す。 R 61 , R 62 , R 63 , R 64 and R 65 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms or a heterocyclic group having 2 to 20 carbon atoms.
 R61、R62、R63、R64又はR65で表わされる基の水素原子は、OR21、COR21、SR21、NR2223、CONR2223、-NR22-OR23、-N(COR22)-OCOR23、-C(=N-OR21)-R22、-C(=N-OCOR21)-R22、CN、ハロゲン原子、又はCOOR21で置換されていてもよい。 The hydrogen atoms of the groups represented by R 61 , R 62 , R 63 , R 64 or R 65 may be substituted by OR 21 , COR 21 , SR 21 , NR 22 R 23 , CONR 22 R 23 , -NR 22 -OR 23 , -N(COR 22 )-OCOR 23 , -C(═N-OR 21 )-R 22 , -C(═N-OCOR 21 )-R 22 , CN, a halogen atom, or COOR 21 .
 R21、R22及びR23は、上記と同じ意味を表す。 R 21 , R 22 and R 23 have the same meanings as above.
 R92とR93、R94とR95、R95とR96及びR96とR97はそれぞれ一緒になって環を形成していてもよい。 R 92 and R 93 , R 94 and R 95 , R 95 and R 96 , and R 96 and R 97 may each be joined together to form a ring.
 *は、オキシム化合物(1)が有する第1分子構造との結合手を表す。 * represents the bond to the first molecular structure of the oxime compound (1).
 式(6)中のR21、R22、R23、R61、R62、R63、R64及びR65で表される炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基、炭素数2~20の複素環基の例は、式(1)中のR11、R12、R13、R21、R22及びR23についての例と同様である。 Examples of the alkyl group having 1 to 20 carbon atoms, the aryl group having 6 to 30 carbon atoms, the aralkyl group having 7 to 30 carbon atoms, and the heterocyclic group having 2 to 20 carbon atoms represented by R 21 , R 22 , R 23 , R 61 , R 62 , R 63 , R 64 and R 65 in formula (6) are the same as the examples for R 11 , R 12 , R 13 , R 21 , R 22 and R 23 in formula (1).
 式(6)中のR22とR23は一緒になって環を形成していてもよいとは、R22とR23は一緒になって接続する窒素原子、炭素原子又は酸素原子とともに環を形成していてもよいことを意味する。 In formula (6), R 22 and R 23 may be taken together to form a ring, which means that R 22 and R 23 may be taken together to form a ring together with the nitrogen atom, carbon atom or oxygen atom to which they are connected.
 式(6)中のR22とR23が一緒になって形成し得る環の例は、式(1)中のR12とR13及びR22とR23が一緒になって形成し得る環についての例と同様である。 Examples of the ring which R 22 and R 23 in formula (6) may form together are the same as the examples of the ring which R 12 and R 13 , and R 22 and R 23 in formula (1) may form together.
 式(6)中のR91、R92、R93、R94、R95、R96及びR97で表されるハロゲン原子、R21、R22、R23、R61、R62、R63、R64及びR65の水素原子を置換してもよいハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。 Examples of the halogen atoms which may replace the hydrogen atoms of the halogen atoms represented by R 91 , R 92 , R 93 , R 94 , R 95 , R 96 and R 97, and R 21 , R 22 , R 23 , R 61 , R 62 , R 63 , R 64 and R 65 in formula (6) include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
 式(6)で表される第2分子構造を有するオキシム化合物(1)の製造方法は、特に限定されないが、例えば、国際公開第2017/051680号及び国際公開第2020/004601号に記載の方法で製造することができる。 The method for producing the oxime compound (1) having the second molecular structure represented by formula (6) is not particularly limited, but it can be produced, for example, by the methods described in WO 2017/051680 and WO 2020/004601.
 オキシム化合物(但し、オキシム化合物(1)を除く)の他の例としては、式(EA)で表される化合物が挙げられる。 Another example of an oxime compound (excluding oxime compound (1)) is a compound represented by formula (EA).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
[式中、
 Rea1は、置換基を有していてもよい炭素数3~20の分岐状の炭化水素基を表す。
 Rea2~Rea5は、それぞれ独立して、置換基を有してもよい炭素数1~20の炭化水素基を表す。
 nは0~4のいずれかの整数を表す。
 前記炭化水素基に含まれる-CH-は、-O-、-S-、-CO-または-OCO-に置き換わっていてもよい。]
[Wherein,
R ea1 represents a branched hydrocarbon group having 3 to 20 carbon atoms which may have a substituent.
R ea2 to R ea5 each independently represent a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent.
n represents an integer of 0 to 4.
The —CH 2 — contained in the hydrocarbon group may be replaced by —O—, —S—, —CO— or —OCO—.]
 Rea1で表される炭素数3~20の分岐状の炭化水素基としては、炭素数3~20の分岐状の飽和炭化水素基、炭素数3~20の分岐状の不飽和炭化水素基等が挙げられる。 Examples of the branched hydrocarbon group having 3 to 20 carbon atoms represented by R ea1 include branched saturated hydrocarbon groups having 3 to 20 carbon atoms and branched unsaturated hydrocarbon groups having 3 to 20 carbon atoms.
 Rea1で表される炭素数3~20の分岐状の飽和炭化水素基としては、例えば、1-メチルエチル基(イソプロピル基)、1-メチルプロピル基(sec-ブチル基)、2-メチルプロピル基(イソブチル基)、1,1-ジメチルエチル基(tert-ブチル基)、1,1-ジメチルプロピル基、2,2-ジメチルプロピル基、1,2-ジメチルプロピル基、1-エチルプロピル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1,1-ジメチルブチル基、2,2-ジメチルブチル基、3,3-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、2-エチルブチル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1,1-ジメチルペンチル基、2,2-ジメチルペンチル基、3,3-ジメチルペンチル基、1,2-ジメチルペンチル基、1,3-ジメチルペンチル基、2,3-ジメチルペンチル基、1-エチルペンチル基、2-エチルペンチル基、3-エチルペンチル基、1-メチルヘキシル基、2-メチルヘキシル基、3-メチルヘキシル基、4-メチルヘキシル基、1,1-ジメチルヘキシル基、2,2-ジメチルヘキシル基、3,3-ジメチルヘキシル基、1,2-ジメチルヘキシル基、1,3-ジメチルヘキシル基、2,3-ジメチルヘキシル基、1-エチルヘキシル基、2-エチルヘキシル基、3-エチルヘキシル基、1-メチルヘプチル基、2-メチルヘプチル基、3-メチルヘプチル基、4-メチルヘプチル基、1,1-ジメチルヘプチル基、2,2-ジメチルヘプチル基、3,3-ジメチルヘプチル基、1,2-ジメチルヘプチル基、1,3-ジメチルヘプチル基、2,3-ジメチルヘプチル基、1-エチルヘプチル基、2-エチルヘプチル基、3-エチルヘプチル基、1-メチルオクチル基、2-メチルオクチル基、3-メチルオクチル基、4-メチルオクチル基、1,1-ジメチルオクチル基、2,2-ジメチルオクチル基、3,3-ジメチルオクチル基、1,2-ジメチルオクチル基、1,3-ジメチルオクチル基、2,3-ジメチルオクチル基、1-エチルオクチル基、2-エチルオクチル基、3-エチルオクチル基、1-メチルノニル基、2-メチルノニル基、3-メチルノニル基、4-メチルノニル基、ジメチルノニル基、エチルノニル基、メチルデシル基、ジメチルデシル基、エチルデシル基、メチルウンデシル基、ジメチルウンデシル基、エチルウンデシル基、メチルドデシル基等の分岐鎖状アルキル基;が挙げられる。
 Rea1で表される分岐鎖状アルキル基は、第1級分岐鎖状アルキル基、第2級分岐鎖状アルキル基、または第3級分岐鎖状アルキル基のいずれであってもよい。
 Rea1で表される分岐状の飽和炭化水素基の炭素数は、好ましくは4以上、より好ましくは5以上であり、好ましくは16以下、より好ましくは12以下、さらに好ましくは10以下である。
Examples of the branched saturated hydrocarbon group having 3 to 20 carbon atoms represented by R ea1 include a 1-methylethyl group (isopropyl group), a 1-methylpropyl group (sec-butyl group), a 2-methylpropyl group (isobutyl group), a 1,1-dimethylethyl group (tert-butyl group), a 1,1-dimethylpropyl group, a 2,2-dimethylpropyl group, a 1,2-dimethylpropyl group, a 1-ethylpropyl group, a 1-methylbutyl group, a 2-methylbutyl group, a 3-methylbutyl group, a 1,1-dimethylbutyl group, a 2,2-dimethylbutyl group, a 3,3-dimethylbutyl group, a 1,2-dimethylbutyl group, a 1,3-dimethylbutyl group, a 2,3-dimethylbutyl group, a Dimethylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1,1-dimethylpentyl group, 2,2-dimethylpentyl group, 3,3-dimethylpentyl group, 1,2-dimethylpentyl group, 1,3-dimethylpentyl group, 2,3-dimethylpentyl group, 1-ethylpentyl group, 2-ethylpentyl group, 3-ethylpentyl group, 1-methylhexyl group, 2-methylhexyl group, 3-methylhexyl group, 4-methylhexyl group, 1,1-dimethylhexyl group, 2,2-dimethylhexyl group, 3,3-dimethylhexyl group xyl group, 1,2-dimethylhexyl group, 1,3-dimethylhexyl group, 2,3-dimethylhexyl group, 1-ethylhexyl group, 2-ethylhexyl group, 3-ethylhexyl group, 1-methylheptyl group, 2-methylheptyl group, 3-methylheptyl group, 4-methylheptyl group, 1,1-dimethylheptyl group, 2,2-dimethylheptyl group, 3,3-dimethylheptyl group, 1,2-dimethylheptyl group, 1,3-dimethylheptyl group, 2,3-dimethylheptyl group, 1-ethylheptyl group, 2-ethylheptyl group, 3-ethylheptyl group, 1-methyloctyl group, 2-methyloctyl group, 3-methyloctyl group branched-chain alkyl groups such as 1-methylnonyl group, 2-methylnonyl group, 3-methylnonyl group, 4-methylnonyl group, dimethylnonyl group, ethylnonyl group, methyldecyl group, dimethyldecyl group, ethyldecyl group, methylundecyl group, dimethylundecyl group, ethylundecyl group, methyldodecyl group, and the like;
The branched alkyl group represented by R ea1 may be any of a primary branched alkyl group, a secondary branched alkyl group, or a tertiary branched alkyl group.
The branched saturated hydrocarbon group represented by R ea1 preferably has 4 or more, more preferably 5 or more, and preferably 16 or less, more preferably 12 or less, and further preferably 10 or less.
 Rea1で表される分岐状の不飽和炭化水素基としては、前述したRea1で表される分岐状の飽和炭化水素基に含まれる少なくとも1以上の炭素-炭素単結合が、炭素-炭素二重結合または炭素-炭素三重結合に置き換わった基等が例示される。
 Rea1で表される分岐状の不飽和炭化水素基としては、例えば、イソプロペニル基、イソブテニル基、イソペンテニル基、イソヘキセニル基、イソヘプテニル基、イソオクテニル基、イソノニル基、イソデセニル基等のアルケニル基;イソプロピニル基、イソブチニル基、イソペンチニル基、イソヘキシニル基、イソヘプチニル基、イソオクチニル基、イソノニニル基、イソデシニル基;等のアルキニル基;等が挙げられる。
 Rea1で表される分岐状の不飽和炭化水素基の炭素数は、好ましくは4以上、より好ましくは5以上であり、好ましくは16以下、より好ましくは12以下、さらに好ましくは10以下である。
Examples of the branched unsaturated hydrocarbon group represented by R ea1 include groups in which at least one or more carbon-carbon single bonds contained in the branched saturated hydrocarbon group represented by R ea1 are replaced with a carbon-carbon double bond or a carbon-carbon triple bond.
Examples of the branched unsaturated hydrocarbon group represented by R ea1 include alkenyl groups such as an isopropenyl group, an isobutenyl group, an isopentenyl group, an isohexenyl group, an isoheptenyl group, an isooctenyl group, an isononyl group, and an isodecenyl group; and alkynyl groups such as an isopropynyl group, an isobutynyl group, an isopentynyl group, an isohexynyl group, an isoheptynyl group, an isooctynyl group, an isononynyl group, and an isodecynyl group.
The branched unsaturated hydrocarbon group represented by R ea1 preferably has 4 or more, more preferably 5 or more, and preferably 16 or less, more preferably 12 or less, and further preferably 10 or less.
 Rea2、Rea3、Rea4及びRea5で表される炭素数1~20の炭化水素基としては、炭素数1~20の飽和炭化水素基、炭素数2~20の不飽和炭化水素基、炭素数6~20の芳香族炭化水素基等が挙げられる。Rea2、Rea3、Rea4及びRea5で表される炭化水素基は、それぞれ、同一であっても異なってもよい。 Examples of the hydrocarbon group having 1 to 20 carbon atoms represented by R ea2 , R ea3 , R ea4 and R ea5 include a saturated hydrocarbon group having 1 to 20 carbon atoms, an unsaturated hydrocarbon group having 2 to 20 carbon atoms, and an aromatic hydrocarbon group having 6 to 20 carbon atoms. The hydrocarbon groups represented by R ea2 , R ea3 , R ea4 and R ea5 may be the same or different.
 前記炭素数1~20の飽和炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、ヘキサデシル基、イコシル基等の直鎖状アルキル基;イソプロピル基、イソブチル基、イソペンチル基、ネオペンチル基、2-エチルヘキシル基等の分岐鎖状アルキル基;シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、トリシクロデシル基等の炭素数3~20の脂環式飽和炭化水素基が挙げられる。飽和炭化水素基の炭素数は、好ましくは1~18、より好ましくは1~15、さらに好ましくは1~10、さらにより好ましくは1~8である。 The saturated hydrocarbon group having 1 to 20 carbon atoms includes, for example, linear alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, hexadecyl, and icosyl; branched alkyl groups such as isopropyl, isobutyl, isopentyl, neopentyl, and 2-ethylhexyl; and alicyclic saturated hydrocarbon groups having 3 to 20 carbon atoms such as cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and tricyclodecyl. The number of carbon atoms in the saturated hydrocarbon group is preferably 1 to 18, more preferably 1 to 15, even more preferably 1 to 10, and even more preferably 1 to 8.
 前記炭素数2~20の不飽和炭化水素基としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基、ヘキサデセニル基、オクタデセニル基、イコセニル基等のアルケニル基;エチニル基、プロピニル基、ヘキシニル基、デシニル基、イコシニル基等のアルキニル基;シクロペンテニル基、シクロヘキセニル基、シクロヘプテニル基等のシクロアルケニル基;等が挙げられる。不飽和炭化水素基の炭素数は、好ましくは2~18、より好ましくは2~15、さらに好ましくは2~10である。 The unsaturated hydrocarbon group having 2 to 20 carbon atoms includes alkenyl groups such as vinyl, allyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, hexadecenyl, octadecenyl, and icosenyl; alkynyl groups such as ethynyl, propynyl, hexynyl, decynyl, and icosenyl; cycloalkenyl groups such as cyclopentenyl, cyclohexenyl, and cycloheptenyl; and the like. The number of carbon atoms in the unsaturated hydrocarbon group is preferably 2 to 18, more preferably 2 to 15, and even more preferably 2 to 10.
 前記炭素数6~20の芳香族炭化水素基としては、フェニル基、キシリル基、トリメチルフェニル基、ジプロピルフェニル基、ジ(2,2-ジメチルプロピル)フェニル基、ナフチル基、ベンジル基、フェニルエチル基、フェニルブチル基等が挙げられる。芳香族炭化水素基の炭素数は、好ましくは6~18、より好ましくは6~15、さらに好ましくは6~12である。 The aromatic hydrocarbon group having 6 to 20 carbon atoms includes a phenyl group, a xylyl group, a trimethylphenyl group, a dipropylphenyl group, a di(2,2-dimethylpropyl)phenyl group, a naphthyl group, a benzyl group, a phenylethyl group, a phenylbutyl group, etc. The number of carbon atoms in the aromatic hydrocarbon group is preferably 6 to 18, more preferably 6 to 15, and even more preferably 6 to 12.
 Rea1、Rea2、Rea3、Rea4及びRea5で表される炭化水素基が有していてもよい置換基としては、ハロゲン原子、シアノ基、ニトロ基が挙げられる。ハロゲン原子は、フッ素原子、臭素原子、塩素原子、ヨウ素原子であることが好ましい。 Examples of the substituent that the hydrocarbon group represented by R ea1 , R ea2 , R ea3 , R ea4 and R ea5 may have include a halogen atom, a cyano group and a nitro group. The halogen atom is preferably a fluorine atom, a bromine atom, a chlorine atom or an iodine atom.
 前記炭化水素基に含まれる-CH-は、-O-、-S-、-CO-または-OCO-に置き換わっていてもよく、隣接する-CH-が同時に同種の基に置換されることはなく、末端の-CH-が置換されることはない。 The --CH 2 -- contained in the hydrocarbon group may be replaced by --O--, --S--, --CO-- or --OCO--, provided that adjacent --CH 2 -- are not simultaneously replaced by the same type of group, and the terminal --CH 2 -- is not replaced.
 nは0~4のいずれかの整数を表し、好ましくは0~3の整数、より好ましくは0~2の整数、さらに好ましくは0又は1の整数、さらにより好ましくは0である。 n represents an integer from 0 to 4, preferably an integer from 0 to 3, more preferably an integer from 0 to 2, even more preferably an integer of 0 or 1, and even more preferably 0.
 *-OCO-Rea4基(*は、フェニル基との結合手を表す。)の結合位置は、該*-OCO-Rea4基が結合するフェニル基の2位、3位または4位のいずれであってもよいが、好ましくは3位または4位、より好ましくは4位である。 The bonding position of the *-OCO-R ea4 group (* represents a bond to the phenyl group) may be any of the 2-position, 3-position or 4-position of the phenyl group to which the *-OCO-R ea4 group is bonded, but is preferably the 3-position or 4-position, and more preferably the 4-position.
 Rea1で表される炭素数3~20の分岐状の炭化水素基は、
 炭素数3~20の分岐状の飽和炭化水素基が好ましく、
 炭素数3~20の分岐鎖状アルキル基がより好ましく、
 炭素数3~10の分岐鎖状アルキル基がさらに好ましく、
 1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、1-エチルペンチル基、2-エチルペンチル基、3-エチルペンチル基、1-メチルヘキシル基、2-メチルヘキシル基、3-メチルヘキシル基、1-エチルヘキシル基、2-エチルヘキシル基、3-エチルヘキシル基、1-メチルヘプチル基、2-メチルヘプチル基、3-メチルヘプチル基、1-エチルヘプチル基、2-エチルヘプチル基及び3-エチルヘプチル基からなる群より選択される1以上が好ましい。
The branched hydrocarbon group having 3 to 20 carbon atoms represented by R ea1 is
A branched saturated hydrocarbon group having 3 to 20 carbon atoms is preferred,
A branched alkyl group having 3 to 20 carbon atoms is more preferred.
More preferably, the branched alkyl group has 3 to 10 carbon atoms.
It is preferable that the alkyl group is one or more selected from the group consisting of a 1-methylpentyl group, a 2-methylpentyl group, a 3-methylpentyl group, a 1-ethylpentyl group, a 2-ethylpentyl group, a 3-ethylpentyl group, a 1-methylhexyl group, a 2-methylhexyl group, a 3-methylhexyl group, a 1-ethylhexyl group, a 2-ethylhexyl group, a 3-ethylhexyl group, a 1-methylheptyl group, a 2-methylheptyl group, a 3-methylheptyl group, a 1-ethylheptyl group, a 2-ethylheptyl group, and a 3-ethylheptyl group.
 Rea2、Rea3、Rea4及びRea5で表される炭素数1~20の炭化水素基は、
 炭素数1~20の飽和炭化水素基、炭素数2~20の不飽和炭化水素基が好ましく、
 炭素数1~20の飽和炭化水素基がより好ましく、
 炭素数1~10の鎖状の飽和炭化水素基がさらに好ましく、
 炭素数1~8の鎖状のアルキル基がさらにより好ましい。
 Rea2は、炭素数1~8の鎖状アルキル基が好ましく、炭素数1~6の鎖状アルキル基がより好ましい。
 Rea3は、炭素数1~8の鎖状アルキル基が好ましく、炭素数1~3の鎖状アルキル基がより好ましい。
 Rea4は、炭素数1~8の鎖状アルキル基が好ましく、炭素数1~3の鎖状アルキル基がより好ましい。
 Rea5は、炭素数1~8の鎖状又は分岐状のアルキル基が好ましく、炭素数1~6の鎖状又は分岐状のアルキル基がより好ましい。
The hydrocarbon group having 1 to 20 carbon atoms represented by R ea2 , R ea3 , R ea4 and R ea5 is
A saturated hydrocarbon group having 1 to 20 carbon atoms and an unsaturated hydrocarbon group having 2 to 20 carbon atoms are preferred.
A saturated hydrocarbon group having 1 to 20 carbon atoms is more preferable.
A linear saturated hydrocarbon group having 1 to 10 carbon atoms is more preferable.
A chain alkyl group having 1 to 8 carbon atoms is even more preferred.
R ea2 is preferably a chain alkyl group having 1 to 8 carbon atoms, and more preferably a chain alkyl group having 1 to 6 carbon atoms.
R ea3 is preferably a chain alkyl group having 1 to 8 carbon atoms, and more preferably a chain alkyl group having 1 to 3 carbon atoms.
R ea4 is preferably a chain alkyl group having 1 to 8 carbon atoms, and more preferably a chain alkyl group having 1 to 3 carbon atoms.
R ea5 is preferably a linear or branched alkyl group having 1 to 8 carbon atoms, and more preferably a linear or branched alkyl group having 1 to 6 carbon atoms.
 光重合開始剤の他の例は、オキシム化合物(1)及び式(EA)で表される化合物以外の他の光重合開始剤である。他の光重合開始剤としては、オキシム化合物(1)及び式(EA)で表される化合物以外のオキシム化合物、ビイミダゾール化合物、トリアジン化合物及びアシルホスフィン化合物が挙げられる。 Other examples of photopolymerization initiators include photopolymerization initiators other than the oxime compound (1) and the compound represented by formula (EA). Other photopolymerization initiators include oxime compounds other than the oxime compound (1) and the compound represented by formula (EA), biimidazole compounds, triazine compounds, and acylphosphine compounds.
 オキシム化合物(1)及び式(EA)で表される化合物以外のオキシム化合物としては、下記式(d1)で表される部分構造を有するオキシム化合物が挙げられる。*は結合手を表す。 Oxime compounds other than oxime compound (1) and the compound represented by formula (EA) include oxime compounds having a partial structure represented by the following formula (d1). * represents a bond.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 式(d1)で表される部分構造を有するオキシム化合物としては、例えば、N-ベンゾイルオキシ-1-(4-フェニルスルファニルフェニル)ブタン-1-オン-2-イミン、N-ベンゾイルオキシ-1-(4-フェニルスルファニルフェニル)オクタン-1-オン-2-イミン、N-ベンゾイルオキシ-1-(4-フェニルスルファニルフェニル)-3-シクロペンチルプロパン-1-オン-2-イミン、N-アセトキシ-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタン-1-イミン、N-アセトキシ-1-[9-エチル-6-{2-メチル-4-(3,3-ジメチル-2,4-ジオキサシクロペンタニルメチルオキシ)ベンゾイル}-9H-カルバゾール-3-イル]エタン-1-イミン、N-アセトキシ-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-3-シクロペンチルプロパン-1-イミン、N-ベンゾイルオキシ-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-3-シクロペンチルプロパン-1-オン-2-イミン;特開2011-132215号公報、国際公開2008/78678号、国際公開2008/78686号、国際公開2012/132558号記載の化合物等が挙げられる。イルガキュアOXE01(N-ベンゾイルオキシ-1-(4-フェニルスルファニルフェニル)オクタン-1-オン-2-イミン)、OXE02(N-アセトキシ-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタン-1-イミン)(以上、BASF社製)、N-1919(ADEKA社製)等の市販品を用いてもよい。 Examples of oxime compounds having a partial structure represented by formula (d1) include N-benzoyloxy-1-(4-phenylsulfanylphenyl)butan-1-one-2-imine, N-benzoyloxy-1-(4-phenylsulfanylphenyl)octan-1-one-2-imine, N-benzoyloxy-1-(4-phenylsulfanylphenyl)-3-cyclopentylpropan-1-one-2-imine, N-acetoxy-1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]ethane-1-imine, N-acetoxy-1-[9-ethyl-6-{2-methyl-4-(3,3-dimethyl N-acetoxy-1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-3-cyclopentylpropan-1-imine, N-benzoyloxy-1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-3-cyclopentylpropan-1-one-2-imine; and compounds described in JP2011-132215A, WO2008/78678, WO2008/78686, and WO2012/132558. Commercially available products such as Irgacure OXE01 (N-benzoyloxy-1-(4-phenylsulfanylphenyl)octan-1-one-2-imine), OXE02 (N-acetoxy-1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]ethane-1-imine) (all manufactured by BASF), and N-1919 (manufactured by ADEKA) may also be used.
 中でも、式(d1)で表される部分構造を有するオキシム化合物は、N-ベンゾイルオキシ-1-(4-フェニルスルファニルフェニル)ブタン-1-オン-2-イミン、N-ベンゾイルオキシ-1-(4-フェニルスルファニルフェニル)オクタン-1-オン-2-イミン、N-アセトキシ-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタン-1-イミン及びN-ベンゾイルオキシ-1-(4-フェニルスルファニルフェニル)-3-シクロペンチルプロパン-1-オン-2-イミンからなる群より選ばれる少なくとも1種が好ましく、N-ベンゾイルオキシ-1-(4-フェニルスルファニルフェニル)オクタン-1-オン-2-イミンまたはN-アセトキシ-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタン-1-イミンがより好ましい。 Among them, the oxime compound having the partial structure represented by formula (d1) is preferably at least one selected from the group consisting of N-benzoyloxy-1-(4-phenylsulfanylphenyl)butan-1-one-2-imine, N-benzoyloxy-1-(4-phenylsulfanylphenyl)octan-1-one-2-imine, N-acetoxy-1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]ethan-1-imine and N-benzoyloxy-1-(4-phenylsulfanylphenyl)-3-cyclopentylpropan-1-one-2-imine, and more preferably N-benzoyloxy-1-(4-phenylsulfanylphenyl)octan-1-one-2-imine or N-acetoxy-1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]ethan-1-imine.
 ビイミダゾール化合物としては、例えば、式(d5)で表される化合物が挙げられる。 An example of a biimidazole compound is a compound represented by formula (d5).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
[式(d5)中、R~Rは、置換基を有していてもよい炭素数6~10のアリール基を表す。]
 炭素数6~10のアリール基としては、例えば、フェニル基、トルイル基、キシリル基、エチルフェニル基及びナフチル基等が挙げられ、好ましくはフェニル基である。
[In formula (d5), R E to R J each represent an aryl group having 6 to 10 carbon atoms which may have a substituent.]
Examples of the aryl group having 6 to 10 carbon atoms include a phenyl group, a toluyl group, a xylyl group, an ethylphenyl group, and a naphthyl group, and the like, with a phenyl group being preferred.
 置換基としては、例えば、ハロゲン原子、炭素数1~4のアルコキシ基等が挙げられる。ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、好ましくは塩素原子である。炭素数1~4のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等挙げられ、好ましくはメトキシ基である。 Examples of the substituent include halogen atoms and alkoxy groups having 1 to 4 carbon atoms. Examples of the halogen atom include fluorine, chlorine, bromine, and iodine atoms, with chlorine atoms being preferred. Examples of the alkoxy group having 1 to 4 carbon atoms include methoxy, ethoxy, propoxy, and butoxy groups, with methoxy being preferred.
 ビイミダゾール化合物としては、例えば、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール、2,2’-ビス(2,3-ジクロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール(例えば、特開平06-75372号公報、特開平06-75373号公報等参照。)、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラ(アルコキシフェニル)ビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラ(ジアルコキシフェニル)ビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラ(トリアルコキシフェニル)ビイミダゾール(例えば、特公昭48-38403号公報、特開昭62-174204号公報等参照。)、4,4’5,5’-位のフェニル基がカルボアルコキシ基により置換されているビイミダゾール化合物(例えば、特開平7-10913号公報等参照。)等が挙げられる。中でも、下記式で表される化合物又はこれらの混合物が好ましい。 Examples of biimidazole compounds include 2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetraphenylbiimidazole, 2,2'-bis(2,3-dichlorophenyl)-4,4',5,5'-tetraphenylbiimidazole (see, for example, JP-A-06-75372 and JP-A-06-75373, etc.), 2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetraphenylbiimidazole, 2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetra(alkoxyphenyl) Examples of suitable biimidazole compounds include 2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetra(dialkoxyphenyl)biimidazole, 2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetra(trialkoxyphenyl)biimidazole (see, for example, JP-B-48-38403 and JP-A-62-174204), and biimidazole compounds in which the phenyl groups at the 4,4',5,5'-positions are substituted with carboalkoxy groups (see, for example, JP-A-7-10913). Among these, compounds represented by the following formula or mixtures thereof are preferred.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 トリアジン化合物としては、例えば、2,4-ビス(トリクロロメチル)-6-(4-メトキシフェニル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-(4-メトキシナフチル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-ピペロニル-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-(4-メトキシスチリル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(5-メチルフラン-2-イル)エテニル〕-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(フラン-2-イル)エテニル〕-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(4-ジエルアミノ-2-メチルフェニル)エテニル〕-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(3,4-ジメトキシフェニル)エテニル〕-1,3,5-トリアジン等が挙げられる。中でも、2,4-ビス(トリクロロメチル)-6-ピペロニル-1,3,5-トリアジンが好ましい。 Examples of triazine compounds include 2,4-bis(trichloromethyl)-6-(4-methoxyphenyl)-1,3,5-triazine, 2,4-bis(trichloromethyl)-6-(4-methoxynaphthyl)-1,3,5-triazine, 2,4-bis(trichloromethyl)-6-piperonyl-1,3,5-triazine, 2,4-bis(trichloromethyl)-6-(4-methoxystyryl)-1,3,5-triazine, and 2,4-bis(trichloromethyl)-6- Examples of such compounds include [2-(5-methylfuran-2-yl)ethenyl]-1,3,5-triazine, 2,4-bis(trichloromethyl)-6-[2-(furan-2-yl)ethenyl]-1,3,5-triazine, 2,4-bis(trichloromethyl)-6-[2-(4-diethylamino-2-methylphenyl)ethenyl]-1,3,5-triazine, and 2,4-bis(trichloromethyl)-6-[2-(3,4-dimethoxyphenyl)ethenyl]-1,3,5-triazine. Among these, 2,4-bis(trichloromethyl)-6-piperonyl-1,3,5-triazine is preferred.
 アシルホスフィン化合物としては、例えば、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、(2,4,6-トリメチルベンゾイル)ジフェニルホスフィンオキサイド等が挙げられる。 Examples of acylphosphine compounds include bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide and (2,4,6-trimethylbenzoyl)diphenylphosphine oxide.
 オキシム化合物(1)及び式(EA)で表される化合物以外の他の光重合開始剤の別の例としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン化合物;ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、3,3’,4,4’-テトラ(tert-ブチルパーオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン等のベンゾフェノン化合物;9,10-フェナンスレンキノン、2-エチルアントラキノン、カンファーキノン等のキノン化合物;10-ブチル-2-クロロアクリドン、ベンジル、フェニルグリオキシル酸メチル、チタノセン化合物等が挙げられる。 Other examples of photopolymerization initiators other than the oxime compound (1) and the compound represented by formula (EA) include, for example, benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin isobutyl ether; benzophenone compounds such as benzophenone, o-benzoyl methyl benzoate, 4-phenylbenzophenone, 4-benzoyl-4'-methyldiphenyl sulfide, 3,3',4,4'-tetra(tert-butylperoxycarbonyl)benzophenone, 2,4,6-trimethylbenzophenone, and 4,4'-bis(diethylamino)benzophenone; quinone compounds such as 9,10-phenanthrenequinone, 2-ethylanthraquinone, and camphorquinone; 10-butyl-2-chloroacridone, benzyl, methyl phenylglyoxylate, and titanocene compounds.
 組成物Iにおける重合開始剤(E)の含有量は、重合性化合物(D)100質量部に対して、好ましくは0.1質量部以上300質量部以下、より好ましくは0.1質量部以上200質量部以下である。また、組成物Iにおける重合開始剤(E)の含有量は、樹脂(C)及び重合性化合物(D)の合計量100質量部に対して、好ましくは0.1質量部以上30質量部以下、より好ましくは0.5質量部以上20質量部以下である。重合開始剤(E)の含有量が上記範囲内にあると、組成物Iが高感度化して露光時間が短縮される傾向があるため、波長変換層の生産性が向上する傾向にある。 The content of the polymerization initiator (E) in the composition I is preferably 0.1 parts by mass or more and 300 parts by mass or less, more preferably 0.1 parts by mass or more and 200 parts by mass or less, relative to 100 parts by mass of the polymerizable compound (D). The content of the polymerization initiator (E) in the composition I is preferably 0.1 parts by mass or more and 30 parts by mass or less, more preferably 0.5 parts by mass or more and 20 parts by mass or less, relative to 100 parts by mass of the total amount of the resin (C) and the polymerizable compound (D). When the content of the polymerization initiator (E) is within the above range, the sensitivity of the composition I tends to be increased and the exposure time tends to be shortened, so that the productivity of the wavelength conversion layer tends to be improved.
 組成物IIにおける重合開始剤(E)の含有率は、樹脂(C)及び重合性化合物(D)の合計量に対して、好ましくは0.001質量%以上60質量%以下、より好ましくは0.01質量%以上50質量%以下であり、更に好ましくは0.05質量%以上30質量%以下であり、一層好ましくは0.1質量%以上10質量%以下である。 The content of the polymerization initiator (E) in the composition II is preferably 0.001% by mass or more and 60% by mass or less, more preferably 0.01% by mass or more and 50% by mass or less, even more preferably 0.05% by mass or more and 30% by mass or less, and even more preferably 0.1% by mass or more and 10% by mass or less, based on the total amount of the resin (C) and the polymerizable compound (D).
 組成物IIにおいて、重合開始剤(E)は、上記式(1)で表される第1分子構造に、上記式(2)で表される第2分子構造が結合したオキシム化合物であり、特に上記式(2)で表される構造が上記式(2b)で表される構造であるオキシム化合物および/または上記式(EA)で表される化合物が好ましく、上記式(1)で表される第1分子構造に、上記式(2)で表される第2分子構造が結合したオキシム化合物であり、特に上記式(2)で表される構造が上記式(2b)で表される構造であるオキシム化合物がより好ましい。 In composition II, the polymerization initiator (E) is an oxime compound in which a first molecular structure represented by the formula (1) is bonded to a second molecular structure represented by the formula (2), and in particular, an oxime compound in which the structure represented by the formula (2) is a structure represented by the formula (2b) and/or a compound represented by the formula (EA) is preferred, and an oxime compound in which a first molecular structure represented by the formula (1) is bonded to a second molecular structure represented by the formula (2), and in particular, an oxime compound in which the structure represented by the formula (2) is a structure represented by the formula (2b) is more preferred.
 組成物IIIにおける重合開始剤(E)の含有率は、樹脂(C)及び重合性化合物(D)の合計量に対して、好ましくは0.001質量%以上60質量%以下、より好ましくは0.01質量%以上50質量%以下である。 The content of the polymerization initiator (E) in the composition III is preferably 0.001% by mass or more and 60% by mass or less, more preferably 0.01% by mass or more and 50% by mass or less, based on the total amount of the resin (C) and the polymerizable compound (D).
 重合開始剤(E)におけるオキシム化合物(1)の含有率は、発光強度を向上させる観点から、重合開始剤(E)の総量に対して、好ましくは30質量%以上100質量%以下、より好ましくは50質量%以上100質量%以下、さらに好ましくは80質量%以上100質量%以下、なおさらに好ましくは90質量%以上100質量%以下、特に好ましくは95質量%以上100質量%以下、最も好ましくは100質量%である。 From the viewpoint of improving the emission intensity, the content of the oxime compound (1) in the polymerization initiator (E) is preferably 30% by mass or more and 100% by mass or less, more preferably 50% by mass or more and 100% by mass or less, even more preferably 80% by mass or more and 100% by mass or less, still more preferably 90% by mass or more and 100% by mass or less, particularly preferably 95% by mass or more and 100% by mass or less, and most preferably 100% by mass, based on the total amount of the polymerization initiator (E).
 <重合開始助剤(Eα)>
 組成物は、重合開始剤(E)とともに重合開始助剤(Eα)をさらに含むことができる。重合開始助剤(Eα)は、重合開始剤(E)によって開始された重合性化合物(D)の重合を促進するために用いられる化合物、もしくは増感剤である。重合開始助剤(Eα)としては、アミン化合物、アルコキシアントラセン化合物、チオキサントン化合物及びカルボン酸化合物等の光重合開始助剤、並びに熱重合開始助剤が挙げられる。組成物は、重合開始助剤(Eα)を2種以上含んでいてもよい。
<Polymerization initiator aid (Eα)>
The composition may further contain a polymerization initiation aid (Eα) together with the polymerization initiator (E). The polymerization initiation aid (Eα) is a compound used to promote the polymerization of the polymerizable compound (D) initiated by the polymerization initiator (E), or a sensitizer. Examples of the polymerization initiation aid (Eα) include photopolymerization initiation aids such as amine compounds, alkoxyanthracene compounds, thioxanthone compounds, and carboxylic acid compounds, as well as thermal polymerization initiation aids. The composition may contain two or more polymerization initiation aids (Eα).
 アミン化合物としては、例えば、トリエタノールアミン、メチルジエタノールアミン、トリイソプロパノールアミン、4-ジメチルアミノ安息香酸メチル、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、安息香酸2-ジメチルアミノエチル、4-ジメチルアミノ安息香酸2-エチルヘキシル、N,N-ジメチルパラトルイジン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン(通称ミヒラーズケトン)、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’-ビス(エチルメチルアミノ)ベンゾフェノン等が挙げられる。 Examples of amine compounds include triethanolamine, methyldiethanolamine, triisopropanolamine, methyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 2-dimethylaminoethyl benzoate, 2-ethylhexyl 4-dimethylaminobenzoate, N,N-dimethyl-p-toluidine, 4,4'-bis(dimethylamino)benzophenone (commonly known as Michler's ketone), 4,4'-bis(diethylamino)benzophenone, and 4,4'-bis(ethylmethylamino)benzophenone.
 アルコキシアントラセン化合物としては、例えば、9,10-ジメトキシアントラセン、2-エチル-9,10-ジメトキシアントラセン、9,10-ジエトキシアントラセン、2-エチル-9,10-ジエトキシアントラセン、9,10-ジブトキシアントラセン、2-エチル-9,10-ジブトキシアントラセン等が挙げられる。 Examples of alkoxyanthracene compounds include 9,10-dimethoxyanthracene, 2-ethyl-9,10-dimethoxyanthracene, 9,10-diethoxyanthracene, 2-ethyl-9,10-diethoxyanthracene, 9,10-dibutoxyanthracene, and 2-ethyl-9,10-dibutoxyanthracene.
 チオキサントン化合物としては、例えば、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン等が挙げられる。 Examples of thioxanthone compounds include 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, and 1-chloro-4-propoxythioxanthone.
 カルボン酸化合物としては、例えば、フェニルスルファニル酢酸、メチルフェニルスルファニル酢酸、エチルフェニルスルファニル酢酸、メチルエチルフェニルスルファニル酢酸、ジメチルフェニルスルファニル酢酸、メトキシフェニルスルファニル酢酸、ジメトキシフェニルスルファニル酢酸、クロロフェニルスルファニル酢酸、ジクロロフェニルスルファニル酢酸、N-フェニルグリシン、フェノキシ酢酸、ナフチルチオ酢酸、N-ナフチルグリシン、ナフトキシ酢酸等が挙げられる。 Examples of carboxylic acid compounds include phenylsulfanylacetic acid, methylphenylsulfanylacetic acid, ethylphenylsulfanylacetic acid, methylethylphenylsulfanylacetic acid, dimethylphenylsulfanylacetic acid, methoxyphenylsulfanylacetic acid, dimethoxyphenylsulfanylacetic acid, chlorophenylsulfanylacetic acid, dichlorophenylsulfanylacetic acid, N-phenylglycine, phenoxyacetic acid, naphthylthioacetic acid, N-naphthylglycine, naphthoxyacetic acid, etc.
 組成物Iが重合開始助剤(Eα)を含む場合、組成物Iにおける重合開始助剤(Eα)の含有量は、重合性化合物(D)100質量部に対して、好ましくは0.1質量部以上300質量部以下、より好ましくは0.1質量部以上200質量部以下である。また、組成物Iにおける重合開始助剤(Eα)の含有量は、樹脂(C)及び重合性化合物(D)の合計量100質量部に対して、好ましくは0.1質量部以上30質量部以下、より好ましくは1質量部以上20質量部以下である。重合開始助剤(Eα)の含有量が上記範囲内にあると、組成物Iのさらなる高感度化を図ることができる。 When composition I contains a polymerization initiation aid (Eα), the content of the polymerization initiation aid (Eα) in composition I is preferably 0.1 parts by mass or more and 300 parts by mass or less, more preferably 0.1 parts by mass or more and 200 parts by mass or less, per 100 parts by mass of the polymerizable compound (D). In addition, the content of the polymerization initiation aid (Eα) in composition I is preferably 0.1 parts by mass or more and 30 parts by mass or less, more preferably 1 part by mass or more and 20 parts by mass or less, per 100 parts by mass of the total amount of the resin (C) and the polymerizable compound (D). When the content of the polymerization initiation aid (Eα) is within the above range, the sensitivity of composition I can be further increased.
 重合開始助剤(Eα)を用いる場合、組成物IIにおける重合開始助剤(Eα)の含有量は、樹脂(C)及び重合性化合物(D)の合計量100質量部に対して、好ましくは0.001質量部以上60質量部以下、より好ましくは0.01質量部以上50質量部以下である。 When a polymerization initiation aid (Eα) is used, the content of the polymerization initiation aid (Eα) in composition II is preferably 0.001 parts by mass or more and 60 parts by mass or less, more preferably 0.01 parts by mass or more and 50 parts by mass or less, per 100 parts by mass of the total amount of the resin (C) and the polymerizable compound (D).
 重合開始助剤(Eα)を用いる場合、組成物IIIにおける重合開始助剤(Eα)の含有量は、樹脂(C)及び重合性化合物(D)の合計量100質量部に対して、好ましくは0.00001質量部以上60質量部以下、より好ましくは0.0001質量部以上50質量部以下である。 When a polymerization initiation aid (Eα) is used, the content of the polymerization initiation aid (Eα) in composition III is preferably 0.00001 parts by mass or more and 60 parts by mass or less, more preferably 0.0001 parts by mass or more and 50 parts by mass or less, per 100 parts by mass of the total amount of the resin (C) and the polymerizable compound (D).
 <光安定剤(F)>
 光安定剤(F)としては、公知の光安定剤(Fa)を含む他、光に対して成分を安定化させる作用を有する添加剤であればいずれであってもよく、本発明の光安定剤(F)は、酸化防止剤(Fb)や光を吸収して無害化する紫外線吸収剤(Fc)も含む。
<Light stabilizer (F)>
The light stabilizer (F) includes known light stabilizers (Fa) and may be any additive having the effect of stabilizing components against light. The light stabilizer (F) of the present invention also includes an antioxidant (Fb) and an ultraviolet absorber (Fc) that absorbs light and renders it harmless.
 <光安定剤(Fa)>
 光安定剤(Fa)としては、ヒンダードアミン系光安定剤、アクリレート系光安定剤、ニッケル系光安定剤、オキサミド系光安定剤などが挙げられる。
<Light stabilizer (Fa)>
Examples of the light stabilizer (Fa) include hindered amine-based light stabilizers, acrylate-based light stabilizers, nickel-based light stabilizers, and oxamide-based light stabilizers.
 <酸化防止剤(Fb)>
 酸化防止剤(Fb)としては、工業的に一般に使用される酸化防止剤であれば特に限定はなく、フェノール系酸化防止剤、リン系酸化防止剤、リン/フェノール複合型酸化防止剤及び硫黄系酸化防止剤等を用いることができる。組成物は、酸化防止剤(Fb)を2種以上含んでいてもよい。
<Antioxidant (Fb)>
The antioxidant (Fb) is not particularly limited as long as it is an antioxidant generally used industrially, and examples of the antioxidant that can be used include phenol-based antioxidants, phosphorus-based antioxidants, phosphorus/phenol complex antioxidants, sulfur-based antioxidants, etc. The composition may contain two or more types of antioxidants (Fb).
 リン/フェノール複合型酸化防止剤は、例えば、分子中にリン原子とフェノール構造とをそれぞれ1以上有する化合物である。中でも、組成物の現像性及び発光強度の観点から、酸化防止剤(Fb)は、リン/フェノール複合型酸化防止剤を含むことが好ましい。 The phosphorus/phenol complex type antioxidant is, for example, a compound having one or more phosphorus atoms and one or more phenol structures in the molecule. Among these, from the viewpoint of the developability and luminescence intensity of the composition, it is preferable that the antioxidant (Fb) contains a phosphorus/phenol complex type antioxidant.
 フェノール系酸化防止剤としては、例えば、イルガノックス(登録商標)1010(Irganox 1010:ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、BASF(株)製)、同1076(Irganox 1076:オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、BASF(株)製)、同1330(Irganox 1330:3,3’,3’’,5,5’,5’’-ヘキサ-tert-ブチル-a,a’,a’’-(メシチレン-2,4,6-トリイル)トリ-p-クレゾール、BASF(株)製)、同3114(Irganox 3114:1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、BASF(株)製)、同3790(Irganox 3790:1,3,5-トリス((4-tert-ブチル-3-ヒドロキシ-2,6-キシリル)メチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、BASF(株)製)、同1035(Irganox 1035:チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、BASF(株)製)、同1135(Irganox 1135:ベンゼンプロパン酸の3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシ-C7-C9側鎖アルキルエステル、BASF(株)製)、同1520L(Irganox 1520L:4,6-ビス(オクチルチオメチル)-o-クレゾール、BASF(株)製)、同3125(Irganox 3125、BASF(株)製)、同565(Irganox 565:2,4-ビス(n-オクチルチオ)-6-(4-ヒドロキシ-3’、5’-ジ-tert-ブチルアニリノ)-1,3,5-トリアジン、BASF(株)製)、アデカスタブ(登録商標)AO-80(アデカスタブ AO-80:3,9-ビス(2-(3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ)-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ(5,5)ウンデカン、(株)ADEKA製)、スミライザー(登録商標)BHT、同GA-80、同GS(以上、住友化学(株)製)、サイアノックス(登録商標)1790(Cyanox 1790、(株)サイテック製)、ビタミンE(エーザイ(株)製)等が挙げられる。 Examples of phenol-based antioxidants include Irganox (registered trademark) 1010 (Irganox 1010: pentaerythritol tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], manufactured by BASF Corporation), Irganox 1076 (Irganox 1076: octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, manufactured by BASF Corporation), Irganox 1330 (Irganox 1330: 3,3',3'',5,5',5''-hexa-tert-butyl-a,a',a''-(mesitylene-2,4,6-triyl ) tri-p-cresol, manufactured by BASF Co., Ltd.), Irganox 3114 (Irganox 3114: 1,3,5-tris(3,5-di-tert-butyl-4-hydroxybenzyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione, manufactured by BASF Co., Ltd.), Irganox 3790 (Irganox 3790: 1,3,5-tris((4-tert-butyl-3-hydroxy-2,6-xylyl)methyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione, manufactured by BASF Co., Ltd.), Irganox 1035 (Irganox 1035: thiodiethylenebis[3-(3,5-di-tert t-butyl-4-hydroxyphenyl)propionate, manufactured by BASF Corporation), Irganox 1135 (Irganox 1135: 3,5-bis(1,1-dimethylethyl)-4-hydroxy-C7-C9 side chain alkyl ester of benzenepropanoic acid, manufactured by BASF Corporation), Irganox 1520L (Irganox 1520L: 4,6-bis(octylthiomethyl)-o-cresol, manufactured by BASF Corporation), Irganox 3125 (Irganox 3125, manufactured by BASF Corporation), Irganox 565 (Irganox 565: 2,4-bis(n-octylthio)-6-(4-hydroxy-3',5'-di-tert-butyl a Nilino)-1,3,5-triazine, manufactured by BASF Co., Ltd.), Adekastab (registered trademark) AO-80 (Adekastab AO-80: 3,9-bis(2-(3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy)-1,1-dimethylethyl)-2,4,8,10-tetraoxaspiro(5,5)undecane, manufactured by ADEKA Co., Ltd.), Sumilizer (registered trademark) BHT, Sumilizer GA-80, Sumilizer GS (all manufactured by Sumitomo Chemical Co., Ltd.), Cyanox (registered trademark) 1790 (Cyanox 1790, manufactured by Cytec Co., Ltd.), Vitamin E (manufactured by Eisai Co., Ltd.), etc.
 リン系酸化防止剤としては、例えば、イルガフォス(登録商標)168(Irgafos 168:トリス(2,4-ジ-tert-ブチルフェニル)フォスファイト、BASF(株)製)、同12(Irgafos 12:トリス[2-[[2,4,8,10-テトラ-tert-ブチルジベンゾ[d、f][1,3,2]ジオキサフォスフィン-6-イル]オキシ]エチル]アミン、BASF(株)製)、同38(Irgafos 38:ビス(2,4-ビス(1,1-ジメチルエチル)-6-メチルフェニル)エチルエステル亜りん酸、BASF(株)製)、アデカスタブ(登録商標)329K、同PEP36、同PEP-8(以上、(株)ADEKA製)、Sandstab P-EPQ(クラリアント社製)、Weston(登録商標)618、同619G(以上、GE社製)、Ultranox626(GE社製)等が挙げられる。 Examples of phosphorus-based antioxidants include Irgafos (registered trademark) 168 (Irgafos 168: tris(2,4-di-tert-butylphenyl)phosphite, manufactured by BASF Corporation), Irgafos 12 (Irgafos 12: tris[2-[[2,4,8,10-tetra-tert-butyldibenzo[d,f][1,3,2]dioxaphosphine-6-yl]oxy]ethyl]amine, manufactured by BASF Corporation), and Irgafos 38 (I rgafos 38: bis(2,4-bis(1,1-dimethylethyl)-6-methylphenyl)ethyl ester phosphorous acid, manufactured by BASF Corporation; Adekastab (registered trademark) 329K, Adekastab PEP36, Adekastab PEP-8 (all manufactured by ADEKA Corporation); Sandstab P-EPQ (manufactured by Clariant); Weston (registered trademark) 618, Adekastab 619G (all manufactured by GE); Ultranox 626 (manufactured by GE); etc.
 リン/フェノール複合型酸化防止剤としては、例えば、スミライザー(登録商標)GP(6-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-tert-ブチルジベンズ[d,f][1.3.2]ジオキサホスフェピン)(住友化学(株)製)等が挙げられる。 Examples of phosphorus/phenol complex antioxidants include Sumilizer (registered trademark) GP (6-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propoxy]-2,4,8,10-tetra-tert-butyldibenz[d,f][1.3.2]dioxaphosphepine) (manufactured by Sumitomo Chemical Co., Ltd.).
 硫黄系酸化防止剤としては、例えば、チオジプロピオン酸ジラウリル、ジミリスチル又はジステアリール等のジアルキルチオジプロピオネート化合物及びテトラキス[メチレン(3-ドデシルチオ)プロピオネート]メタン等のポリオールのβ-アルキルメルカプトプロピオン酸エステル化合物等が挙げられる。 Sulfur-based antioxidants include, for example, dialkyl thiodipropionate compounds such as dilauryl, dimyristyl, or distearyl thiodipropionate, and β-alkyl mercaptopropionate compounds of polyols such as tetrakis[methylene(3-dodecylthio)propionate]methane.
 組成物Iにおける酸化防止剤(Fb)の含有量は、樹脂(C)100質量部に対して、例えば1質量部以上50質量部以下であり、発光強度及び耐熱性の観点から、好ましくは5質量部以上40質量部以下、より好ましくは7質量部以上30質量部以下である。 The content of the antioxidant (Fb) in composition I is, for example, 1 part by mass or more and 50 parts by mass or less relative to 100 parts by mass of resin (C), and from the viewpoint of luminescence intensity and heat resistance, is preferably 5 parts by mass or more and 40 parts by mass or less, and more preferably 7 parts by mass or more and 30 parts by mass or less.
 組成物IIIにおける酸化防止剤(F)の含有量は、樹脂(C)100質量部に対して、例えば1質量部以上50質量部以下であり、発光強度及び耐熱性の観点から、好ましくは5質量部以上40質量部以下、より好ましくは7質量部以上30質量部以下である。 The content of the antioxidant (F) in composition III is, for example, 1 part by mass or more and 50 parts by mass or less relative to 100 parts by mass of the resin (C), and from the viewpoint of luminescence intensity and heat resistance, is preferably 5 parts by mass or more and 40 parts by mass or less, and more preferably 7 parts by mass or more and 30 parts by mass or less.
 <紫外線吸収剤(Fc)>
 紫外線吸収剤(Fc)としては、2-(2-ヒドロキシ-3-tert-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール、(2-(2,4-ジヒドロキシフェニル)-2H-ベンゾトリアゾール等のベンゾトリアゾール系化合物;2-ヒドロキシ-4-オクチルオキシベンゾフェノン等のベンゾフェノン系化合物;2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート等のベンゾエート系化合物;2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-ヘキシルオキシフェノール等のトリアジン系化合物;等が挙げられる。
<Ultraviolet absorber (Fc)>
Examples of the ultraviolet absorber (Fc) include benzotriazole-based compounds such as 2-(2-hydroxy-3-tert-butyl-5-methylphenyl)-5-chlorobenzotriazole and (2-(2,4-dihydroxyphenyl)-2H-benzotriazole; benzophenone-based compounds such as 2-hydroxy-4-octyloxybenzophenone; benzoate-based compounds such as 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate; and triazine-based compounds such as 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-hexyloxyphenol.
 組成物Iは、光安定剤(F)の中でも、特に酸化防止剤(Fb)を含むことが好ましい。 Composition I preferably contains a light stabilizer (F), particularly an antioxidant (Fb).
 <溶剤(J)>
 溶剤(J)は、好ましくは、樹脂(C)、重合性化合物(D)及び重合開始剤(E)を溶解するものである。溶剤(J)としては、例えば、エステル溶剤(分子内に-COO-を含み、-O-を含まない溶剤)、エーテル溶剤(分子内に-O-を含み、-COO-を含まない溶剤)、エーテルエステル溶剤(分子内に-COO-と-O-とを含む溶剤)、ケトン溶剤(分子内に-CO-を含み、-COO-を含まない溶剤)、アルコール溶剤(分子内にOHを含み、-O-、-CO-及びCOO-を含まない溶剤)、芳香族炭化水素溶剤、アミド溶剤、ジメチルスルホキシド等が挙げられる。
<Solvent (J)>
The solvent (J) is preferably one that dissolves the resin (C), the polymerizable compound (D), and the polymerization initiator (E). Examples of the solvent (J) include ester solvents (solvents containing -COO- and not containing -O- in the molecule), ether solvents (solvents containing -O- and not containing -COO- in the molecule), ether ester solvents (solvents containing -COO- and -O- in the molecule), ketone solvents (solvents containing -CO- and not containing -COO- in the molecule), alcohol solvents (solvents containing OH in the molecule and not containing -O-, -CO-, and COO-), aromatic hydrocarbon solvents, amide solvents, and dimethyl sulfoxide.
 エステル溶剤としては、乳酸メチル、乳酸エチル、乳酸n-ブチル、2-ヒドロキシイソブタン酸メチル、酢酸エチル、酢酸n-ブチル、酢酸イソブチル、ギ酸n-ペンチル、酢酸イソペンチル、プロピオン酸n-ブチル、酪酸イソプロピル、酪酸エチル、酪酸n-ブチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、シクロヘキシルアセテート及びγ-ブチロラクトン等が挙げられる。 Ester solvents include methyl lactate, ethyl lactate, n-butyl lactate, methyl 2-hydroxyisobutanoate, ethyl acetate, n-butyl acetate, isobutyl acetate, n-pentyl formate, isopentyl acetate, n-butyl propionate, isopropyl butyrate, ethyl butyrate, n-butyl butyrate, methyl pyruvate, ethyl pyruvate, propyl pyruvate, methyl acetoacetate, ethyl acetoacetate, cyclohexyl acetate, and gamma-butyrolactone.
 エーテル溶剤としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、3-メトキシ-1-ブタノール、3-メトキシ-3-メチルブタノール、テトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル、アニソール、フェネトール及びメチルアニソール等が挙げられる。 Ether solvents include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, 3-methoxy-1-butanol, 3-methoxy-3-methylbutanol, tetrahydrofuran, tetrahydropyran, 1,4-dioxane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, anisole, phenetole, and methylanisole.
 エーテルエステル溶剤としては、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル、2-メトキシ-2-メチルプロピオン酸メチル、2-エトキシ-2-メチルプロピオン酸エチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート及びジエチレングリコールモノブチルエーテルアセテート等が挙げられる。 Ether ester solvents include methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, methyl 2-methoxypropionate, ethyl 2-methoxypropionate, propyl 2-methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate, methyl 2-methoxy-2-methyl ...ethyl 2-ethoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate, methyl 2-methoxy-2-methylpropionate, ethyl 2-ethoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate, methyl 2-methoxy-2-methylpropionate, ethyl 2-ethoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate, methyl 2-methoxy-2-methylpropionate, ethyl 2-ethoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxy Examples include ethyl 2-methoxypropionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate, and diethylene glycol monobutyl ether acetate.
 ケトン溶剤としては、4-ヒドロキシ-4-メチル-2-ペンタノン、アセトン、2-ブタノン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、4-メチル-2-ペンタノン、シクロペンタノン、シクロヘキサノン及びイソホロン等が挙げられる。 Ketone solvents include 4-hydroxy-4-methyl-2-pentanone, acetone, 2-butanone, 2-heptanone, 3-heptanone, 4-heptanone, 4-methyl-2-pentanone, cyclopentanone, cyclohexanone, and isophorone.
 アルコール溶剤としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、エチレングリコール、プロピレングリコール及びグリセリン等が挙げられる。 Alcohol solvents include methanol, ethanol, propanol, butanol, hexanol, cyclohexanol, ethylene glycol, propylene glycol, and glycerin.
 芳香族炭化水素溶剤としては、ベンゼン、トルエン、キシレン及びメシチレン等が挙げられる。 Aromatic hydrocarbon solvents include benzene, toluene, xylene, and mesitylene.
 アミド溶剤としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド及びN-メチルピロリドン等が挙げられる。 Amide solvents include N,N-dimethylformamide, N,N-dimethylacetamide, and N-methylpyrrolidone.
 溶剤(J)は、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、プロピレングリコールモノメチルエーテル、シクロヘキシルアセテート、3-エトキシプロピオン酸エチル、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングコールモノエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、及び芳香族炭化水素溶剤からなる群より選択される1種又は2種以上を含むことが好ましい。 The solvent (J) preferably contains one or more solvents selected from the group consisting of propylene glycol monomethyl ether acetate, ethyl lactate, propylene glycol monomethyl ether, cyclohexyl acetate, ethyl 3-ethoxypropionate, ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, 4-hydroxy-4-methyl-2-pentanone, and aromatic hydrocarbon solvents.
 溶剤(J)としては、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、プロピレングリコールモノメチルエーテル、シクロヘキシルアセテート、3-エトキシプロピオン酸エチル、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングコールモノエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン若しくはトルエン、又はこれらのうちの2種以上の混合物が好ましい。 The solvent (J) is preferably propylene glycol monomethyl ether acetate, ethyl lactate, propylene glycol monomethyl ether, cyclohexyl acetate, ethyl 3-ethoxypropionate, ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, 4-hydroxy-4-methyl-2-pentanone, toluene, or a mixture of two or more of these.
 溶剤(J)は、固形分以外の成分であり、例えば半導体粒子(A)の分散液や樹脂(C)の溶液等に含まれる溶剤も溶剤(J)に包含される。 The solvent (J) is a component other than the solid content, and includes, for example, the solvent contained in the dispersion of semiconductor particles (A) or the solution of resin (C).
 組成物Iにおける溶剤(J)の含有率は、組成物Iの総量に対する該組成物に含まれる全溶剤の合計質量の割合であり、組成物Iの総量に対して、例えば40質量%以上95質量%以下であり、好ましくは55質量%以上90質量%以下である。言い換えると、組成物Iの固形分は、例えば5質量%以上60質量%以下であり、好ましくは10質量%以上45質量%以下である。溶剤(J)の含有率が上記範囲内にあると、塗布時の組成物層の平坦性がより良好になり、また適切な厚みの波長変換層を形成しやすい傾向にある。 The content of solvent (J) in composition I is the ratio of the total mass of all solvents contained in the composition to the total amount of composition I, and is, for example, from 40% by mass to 95% by mass, and preferably from 55% by mass to 90% by mass, relative to the total amount of composition I. In other words, the solid content of composition I is, for example, from 5% by mass to 60% by mass, and preferably from 10% by mass to 45% by mass. When the content of solvent (J) is within the above range, the flatness of the composition layer during application is improved, and a wavelength conversion layer of appropriate thickness tends to be formed more easily.
 組成物IIの固形分は、組成物IIの総量に対して、好ましくは0.01質量%以上100質量%以下、より好ましくは0.1質量%以上99.9質量%以下、さらに好ましくは0.1質量%以上99質量%以下、なおさらに好ましくは1質量%以上90質量%以下、一層好ましくは1質量%以上80質量%以下、特に好ましくは1質量%以上70質量%以下であり、極めて好ましくは1質量%以上60質量%以下、最も好ましくは1質量%以上50質量%以下である。 The solid content of Composition II is preferably 0.01% by mass or more and 100% by mass or less, more preferably 0.1% by mass or more and 99.9% by mass or less, even more preferably 0.1% by mass or more and 99% by mass or less, still more preferably 1% by mass or more and 90% by mass or less, even more preferably 1% by mass or more and 80% by mass or less, particularly preferably 1% by mass or more and 70% by mass or less, extremely preferably 1% by mass or more and 60% by mass or less, and most preferably 1% by mass or more and 50% by mass or less, based on the total amount of Composition II.
 組成物IIIの固形分は、組成物IIIの総量に対して、好ましくは0.01質量%以上100質量%以下、より好ましくは0.1質量%以上99.9質量%以下、さらに好ましくは0.1質量%以上99質量%以下、なおさらに好ましくは1質量%以上90質量%以下、一層好ましくは1質量%以上80質量%以下、特に好ましくは1質量%以上70質量%以下であり、極めて好ましくは1質量%以上60質量%以下、最も好ましくは1質量%以上50質量%以下である。 The solid content of Composition III is preferably 0.01% by mass or more and 100% by mass or less, more preferably 0.1% by mass or more and 99.9% by mass or less, even more preferably 0.1% by mass or more and 99% by mass or less, still more preferably 1% by mass or more and 90% by mass or less, even more preferably 1% by mass or more and 80% by mass or less, particularly preferably 1% by mass or more and 70% by mass or less, extremely preferably 1% by mass or more and 60% by mass or less, and most preferably 1% by mass or more and 50% by mass or less, based on the total amount of Composition III.
 組成物IIにおいて、溶剤(J)はエーテルエステル系溶剤を含むことが特に好ましい。 In composition II, it is particularly preferred that the solvent (J) contains an ether ester solvent.
 <レベリング剤(H)>
 レベリング剤(H)としては、シリコーン系界面活性剤、フッ素系界面活性剤及びフッ素原子を有するシリコーン系界面活性剤等が挙げられる。これらは、側鎖に重合性基を有していてもよい。レベリング剤(H)は、組成物の現像性及び発光強度の観点から、好ましくはフッ素系界面活性剤である。組成物は、レベリング剤(H)を2種以上含んでいてもよい。
<Leveling Agent (H)>
The leveling agent (H) may be a silicone surfactant, a fluorine surfactant, or a silicone surfactant having a fluorine atom. These may have a polymerizable group in the side chain. From the viewpoint of the developability and luminescence intensity of the composition, the leveling agent (H) is preferably a fluorine surfactant. The composition may contain two or more kinds of leveling agents (H).
 シリコーン系界面活性剤としては、分子内にシロキサン結合を有する界面活性剤等が挙げられる。具体的には、トーレシリコーンDC3PA、同SH7PA、同DC11PA、同SH21PA、同SH28PA、同SH29PA、同SH30PA、同SH8400(商品名:東レ・ダウコーニング(株)製)、KP321、KP322、KP323、KP324、KP326、KP340、KP341(信越化学工業(株)製)、TSF400、TSF401、TSF410、TSF4300、TSF4440、TSF4445、TSF4446、TSF4452及びTSF4460(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)等が挙げられる。 Examples of silicone surfactants include surfactants having a siloxane bond in the molecule. Specific examples include Toray Silicone DC3PA, SH7PA, DC11PA, SH21PA, SH28PA, SH29PA, SH30PA, and SH8400 (product names: manufactured by Dow Corning Toray Co., Ltd.), KP321, KP322, KP323, KP324, KP326, KP340, and KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), TSF400, TSF401, TSF410, TSF4300, TSF4440, TSF4445, TSF4446, TSF4452, and TSF4460 (manufactured by Momentive Performance Materials Japan, LLC).
 フッ素系界面活性剤としては、分子内にフルオロカーボン鎖を有する界面活性剤等が挙げられる。具体的には、フロラード(登録商標)FC430、同FC431(住友スリーエム(株)製)、メガファック(登録商標)F142D、同F171、同F172、同F173、同F177、同F183、同F554、同F575、同R30、同RS-718-K(DIC(株)製)、エフトップ(登録商標)EF301、同EF303、同EF351、同EF352(三菱マテリアル電子化成(株)製)、サーフロン(登録商標)S381、同S382、同SC101、同SC105(旭硝子(株)製)及びE5844((株)ダイキンファインケミカル研究所製)等が挙げられる。 Fluorosurfactants include surfactants having a fluorocarbon chain in the molecule. Specific examples include Fluorad (registered trademark) FC430 and FC431 (manufactured by Sumitomo 3M Limited), Megafac (registered trademark) F142D, F171, F172, F173, F177, F183, F554, F575, R30, and RS-718-K (manufactured by DIC Corporation), F-top (registered trademark) EF301, EF303, EF351, and EF352 (manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd.), Surflon (registered trademark) S381, S382, SC101, and SC105 (manufactured by Asahi Glass Co., Ltd.), and E5844 (manufactured by Daikin Fine Chemicals Research Institute, Ltd.).
 フッ素原子を有するシリコーン系界面活性剤としては、分子内にシロキサン結合及びフルオロカーボン鎖を有する界面活性剤等が挙げられる。具体的には、メガファック(登録商標)R08、同BL20、同F475、同F477及び同F443(DIC(株)製)等が挙げられる。 Examples of silicone surfactants containing fluorine atoms include surfactants that have siloxane bonds and fluorocarbon chains in the molecule. Specific examples include Megafac (registered trademark) R08, BL20, F475, F477, and F443 (manufactured by DIC Corporation).
 組成物Iがレベリング剤(H)を含む場合、組成物Iにおけるレベリング剤(H)の含有率は、組成物Iの総量に対して、例えば0.001質量%以上1.0質量%以下、好ましくは0.005質量%以上0.75質量%以下、より好ましくは0.01質量%以上0.5質量%以下である。レベリング剤(H)の含有率が上記範囲内にあると、波長変換層の平坦性をより良好にすることができる。 When composition I contains a leveling agent (H), the content of the leveling agent (H) in composition I is, for example, 0.001 mass% or more and 1.0 mass% or less, preferably 0.005 mass% or more and 0.75 mass% or less, and more preferably 0.01 mass% or more and 0.5 mass% or less, relative to the total amount of composition I. When the content of the leveling agent (H) is within the above range, the flatness of the wavelength conversion layer can be improved.
 組成物IIがレベリング剤(H)を含む場合、組成物IIにおけるレベリング剤(H)の含有率は、組成物IIの総量に対して、例えば0.001質量%以上1.0質量%以下、好ましくは0.005質量%以上0.75質量%以下、より好ましくは0.01質量%以上0.5質量%以下である。 When composition II contains a leveling agent (H), the content of the leveling agent (H) in composition II is, for example, 0.001 mass% or more and 1.0 mass% or less, preferably 0.005 mass% or more and 0.75 mass% or less, and more preferably 0.01 mass% or more and 0.5 mass% or less, relative to the total amount of composition II.
 組成物IIIがレベリング剤(H)を含む場合、組成物IIIにおけるレベリング剤(H)の含有率は、組成物IIIの総量に対して、例えば0.001質量%以上1.0質量%以下、好ましくは0.005質量%以上0.75質量%以下、より好ましくは0.01質量%以上0.5質量%以下である。 When composition III contains a leveling agent (H), the content of the leveling agent (H) in composition III is, for example, 0.001 mass% or more and 1.0 mass% or less, preferably 0.005 mass% or more and 0.75 mass% or less, and more preferably 0.01 mass% or more and 0.5 mass% or less, relative to the total amount of composition III.
 <着色剤(I)>
 着色剤(I)には、白の着色剤(Iw)と、有彩色の着色剤(Ic)が含まれる。
<Colorant (I)>
The colorant (I) includes a white colorant (Iw) and a chromatic colorant (Ic).
 <白の着色剤(Iw)>
 白の着色剤(Iw)としては、金属又は金属酸化物の粒子、ガラス粒子等の無機粒子が挙げられる。金属酸化物としては、TiO、SiO、BaTiO、ZnO等が挙げられ、効率的に光を散乱することから、好ましくはTiOの粒子である。白の着色剤(Iw)の粒子径は、例えば0.03μm以上20μm以下程度であり、好ましくは0.05μm以上1μm以下であり、より好ましくは0.05μm以上0.5μm以下である。
<White Colorant (Iw)>
Examples of the white colorant (Iw) include inorganic particles such as metal or metal oxide particles and glass particles. Examples of metal oxides include TiO 2 , SiO 2 , BaTiO 3 , and ZnO, and TiO 2 particles are preferred because they efficiently scatter light. The particle diameter of the white colorant (Iw) is, for example, about 0.03 μm or more and 20 μm or less, preferably 0.05 μm or more and 1 μm or less, and more preferably 0.05 μm or more and 0.5 μm or less.
 白の着色剤(Iw)としては、分散剤を用いて溶剤(J)の一部又は全部に予め光散乱剤を分散させたものを用いてもよい。分散剤としては市販品を用いることができる。市販品の例としては、
 ビックケミー・ジャパン社製のDISPERBYK-101、102、103、106、107、108、109、110、111、116、118、130、140、154、161、162、163、164、165、166、170、171、174、180、181、182、183、184、185、190、192、2000、2001、2020、2025、2050、2070、2095、2150、2155;ANTI-TERRA-U、U100、203、204、250;BYK-P104、P104S、P105、220S、6919;BYK-LPN6919、21116;LACTIMON、LACTIMON-WS;Bykumen等;
 日本ルーブリゾール社製のSOLSPERSE-3000、9000、13000、13240、13650、13940、16000、17000、18000、20000、21000、24000、26000、27000、28000、31845、32000、32500、32550、33500、32600、34750、35100、36600、38500、41000、41090、53095、55000、76500等;
 BASF社製のEFKA-46、47、48、452、4008、4009、4010、4015、4020、4047、4050、4055、4060、4080、4400、4401、4402、4403、4406、4408、4300、4310、4320、4330、4340、450、451、453、4540、4550、4560、4800、5010、5065、5066、5070、7500、7554、1101、120、150、1501、1502、1503等;
 味の素ファインテクノ社製のアジスパーPA111、PB711、PB821、PB822、PB824等が挙げられる。
The white colorant (Iw) may be a colorant in which a light scattering agent is dispersed in advance in a part or the whole of the solvent (J) using a dispersant. Commercially available dispersants can be used. Examples of commercially available dispersants include:
DISPERBYK-101, 102, 103, 106, 107, 108, 109, 110, 111, 116, 118, 130, 140, 154, 161, 162, 163, 164, 165, 166, 170, 171, 174, 180, 181, 182, 183, 184, 185, 190, 192, 20 manufactured by BYK Japan Co., Ltd. 00, 2001, 2020, 2025, 2050, 2070, 2095, 2150, 2155; ANTI-TERRA-U, U100, 203, 204, 250; BYK-P104, P104S, P105, 220S, 6919; BYK-LPN6919, 21116; LACTIMON, LACTIMON-WS; Bykumen et al.
SOLSPERSE-3000, 9000, 13000, 13240, 13650, 13940, 16000, 17000, 18000, 20000, 21000, 24000, 26000, 27000, 28000, 31845, 32000, 32500, 32550, 33500, 32600, 34750, 35100, 36600, 38500, 41000, 41090, 53095, 55000, 76500, etc. manufactured by Lubrizol Japan;
EFKA-46, 47, 48, 452, 4008, 4009, 4010, 4015, 4020, 4047, 4050, 4055, 4060, 4080, 4400, 4401, 4402, 4403, 4406, 4408, 4300, 4310, 4320, 4330, 4340, 450, 451, 453, 4540, 4550, 4560, 4800, 5010, 5065, 5066, 5070, 7500, 7554, 1101, 120, 150, 1501, 1502, 1503 and the like manufactured by BASF Corporation;
Examples of such polyimide resins include Ajisper PA111, PB711, PB821, PB822, and PB824 manufactured by Ajinomoto Fine-Techno Co., Ltd.
 組成物Iにおける白の着色剤(Iw)の含有率は、組成物Iの固形分の総量に対し、例えば0.001質量%以上50質量%以下であり、波長変換層の光散乱能及び発光強度を向上させる観点から、好ましくは1質量%以上30質量%以下、より好ましくは2質量%以上20質量%以下、さらに好ましくは2質量%以上15質量%以下、なおさらに好ましくは3質量%以上10質量%以下である。 The content of the white colorant (Iw) in composition I is, for example, 0.001% by mass or more and 50% by mass or less, based on the total amount of solids in composition I, and from the viewpoint of improving the light scattering ability and luminous intensity of the wavelength conversion layer, is preferably 1% by mass or more and 30% by mass or less, more preferably 2% by mass or more and 20% by mass or less, even more preferably 2% by mass or more and 15% by mass or less, and even more preferably 3% by mass or more and 10% by mass or less.
 組成物IIIは、実質的に白の着色剤(Iw)を含まないことが好ましい。「実質的に白の着色剤(Iw)を含まない」とは、組成物IIIの固形分の総量に対して、白の着色剤(Iw)の含有率が、好ましくは1質量%以下、より好ましくは0.5質量%以下、さらに好ましくは0.1質量%以下、特に好ましくは0質量%であることをいう。 It is preferable that composition III is substantially free of a white colorant (Iw). "Substantially free of a white colorant (Iw)" means that the content of the white colorant (Iw) relative to the total amount of solids in composition III is preferably 1 mass% or less, more preferably 0.5 mass% or less, even more preferably 0.1 mass% or less, and particularly preferably 0 mass%.
 <有彩色の着色剤(Ic)>
 有彩色の着色剤(Ic)は、顔料であってもよいし染料であってもよい。顔料としては、公知の顔料を使用することができ、例えば、カラーインデックス(The Society of Dyers and Colourists出版)でピグメントに分類されている顔料が挙げられる。顔料は、1種のみを用いてもよく、2種以上を併用してもよい。染料としては、公知の染料を使用することができ、例えば、カラーインデックス(The Society of Dyers and Colourists 出版)及び染色ノート(色染社)に記載されている染料が挙げられる。染料は、1種のみを用いてもよく、2種以上を併用してもよい。
<Chromatic Colorant (Ic)>
The chromatic colorant (Ic) may be a pigment or a dye. As the pigment, a known pigment may be used, for example, a pigment classified as a pigment in the Color Index (published by The Society of Dyers and Colourists). The pigment may be used alone or in combination of two or more kinds. As the dye, a known dye may be used, for example, a dye described in the Color Index (published by The Society of Dyers and Colourists) and Dyeing Notes (Shikisensha). The dye may be used alone or in combination of two or more kinds.
 有彩色の着色剤(Ic)は、顔料が好ましく、黄色着色剤、緑色着色剤、及び赤色着色剤からなる群より選ばれる少なくとも一種を含むことが好ましい。 The chromatic colorant (Ic) is preferably a pigment, and preferably contains at least one selected from the group consisting of a yellow colorant, a green colorant, and a red colorant.
 黄色着色剤としては、C.I.ピグメントイエロー1、3、12、13、14、15、16、17、20、24、31、53、83、86、93、94、109、110、117、125、128、129、137、138、139、147、148、150、153、154、166、173、185、194、214、231等の黄色顔料が挙げられる。黄色着色剤の他の例は、下記染料である。
 C.I.ソルベントイエロー4、14、15、23、24、25、38、62、63、68、79、81、82、83、89、94、98、99、117、162、163、167、189等のC.I.ソルベント染料;
 C.I.アシッドイエロー1、3、7、9、11、17、23、25、29、34、36、38、40、42、54、65、72、73、76、79、98、99、111、112、113、114、116、119、123、128、134、135、138、139、140、144、150、155、157、160、161、163、168、169、172、177、178、179、184、190、193、196、197、199、202、203、204、205、207、212、214、220、221、228、230、232、235、238、240、242、243、251等のC.I.アシッド染料;
 C.I.ダイレクトイエロー2、4、28、33、34、35、38、39、43、44、47、50、54、58、68、69、70、71、86、93、94、95、98、102、108、109、129、132、136、138、141等のC.I.ダイレクト染料;
 C.I.ディスパースイエロー51、54、76等のC.I.ディスパース染料;
 C.I.リアクティブイエロー2、76、116等のC.I.リアクティブ染料;
 C.I.モーダントイエロー5、8、10、16、20、26、30、31、33、42、43、45、56、61、62、65等のC.I.モーダント染料;等。
Examples of yellow colorants include yellow pigments such as C.I. Pigment Yellow 1, 3, 12, 13, 14, 15, 16, 17, 20, 24, 31, 53, 83, 86, 93, 94, 109, 110, 117, 125, 128, 129, 137, 138, 139, 147, 148, 150, 153, 154, 166, 173, 185, 194, 214, and 231. Other examples of yellow colorants are the following dyes.
C.I. Solvent dyes such as C.I. Solvent Yellow 4, 14, 15, 23, 24, 25, 38, 62, 63, 68, 79, 81, 82, 83, 89, 94, 98, 99, 117, 162, 163, 167, 189;
C.I. Acid Yellow 1, 3, 7, 9, 11, 17, 23, 25, 29, 34, 36, 38, 40, 42, 54, 65, 72, 73, 76, 79, 98, 99, 111, 112, 113, 114, 116, 119, 123, 128, 134, 135, 138, 139, 140, 144, 150, 155, 15 C.I. Acid dyes such as 7, 160, 161, 163, 168, 169, 172, 177, 178, 179, 184, 190, 193, 196, 197, 199, 202, 203, 204, 205, 207, 212, 214, 220, 221, 228, 230, 232, 235, 238, 240, 242, 243, 251;
C.I. Direct dyes such as C.I. Direct Yellow 2, 4, 28, 33, 34, 35, 38, 39, 43, 44, 47, 50, 54, 58, 68, 69, 70, 71, 86, 93, 94, 95, 98, 102, 108, 109, 129, 132, 136, 138, 141;
C.I. Disperse dyes such as C.I. Disperse Yellow 51, 54, 76;
C.I. Reactive dyes such as C.I. Reactive Yellow 2, 76, 116;
C. I. Mordant dyes such as C. I. Mordant Yellow 5, 8, 10, 16, 20, 26, 30, 31, 33, 42, 43, 45, 56, 61, 62, 65;
 緑色着色剤としては、C.I.ピグメントグリーン7、36、58、59、62、63等の緑色顔料;が挙げられる。緑色着色剤の他の例は、下記染料である。
 C.I.ソルベントグリーン1、3、4、5、7、28、29、32、33、34、35等のC.I.ソルベント染料;
 C.I.アシッドグリーン1、3、5、6、7、8、9、11、13、14、15、16、22、25、27、28、41、50、50:1、58、63、65、80、104、105、106、109等のC.I.アシッド染料;
 C.I.ダイレクトグリーン25、27、31、32、34、37、63、65、66、67、68、69、72、79、82等のC.I.ダイレクト染料;
 C.I.ベーシックグリーン1等のC.I.ベーシック染料;
 C.I.モーダントグリーン1、3、4、5、10、13、15、19、21、23、26、29、31、33、34、35、41、43、53等のC.I.モーダント染料;
 C.I.バットグリーン1等のC.I.バット染料等。
Examples of green colorants include green pigments such as C.I. Pigment Green 7, 36, 58, 59, 62, and 63. Other examples of green colorants are the following dyes.
C.I. Solvent dyes such as C.I. Solvent Green 1, 3, 4, 5, 7, 28, 29, 32, 33, 34, 35;
C.I. Acid dyes such as C.I. Acid Green 1, 3, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 22, 25, 27, 28, 41, 50, 50:1, 58, 63, 65, 80, 104, 105, 106, 109;
C.I. Direct dyes such as C.I. Direct Green 25, 27, 31, 32, 34, 37, 63, 65, 66, 67, 68, 69, 72, 79, 82;
C.I. Basic dyes such as C.I. Basic Green 1;
C.I. Mordant dyes such as C.I. Mordant Green 1, 3, 4, 5, 10, 13, 15, 19, 21, 23, 26, 29, 31, 33, 34, 35, 41, 43, 53;
C.I. Vat dyes such as C.I. Vat Green 1, etc.
 赤色着色剤としては、C.I.ピグメントレッド9、97、105、122、123、144、149、166、168、176、177、178、179、180、190、192、209、215、216、224、242、254、255、264、265、266、268、269、273等の赤色顔料が挙げられる。赤色着色剤の他の例は、下記染料である。
 C.I.ソルベントレッド24、45、49、90,91111、118、119、122、124、125、127、130、132、143、145、146、150、151、155、160、168、169、172、175、181、207、218、222、227、230、245、247等のC.I.ソルベント染料;
 C.I.アシッドレッド1、4、8、14、17、18、26、27、29、31、33、34、35、37、40、42、44、50、51、52、57、66、73、76、80、87、88、91、92、94、95、97、98、103、106、111、114、129、133、134、138、143、145、150、151、155、158、160、172、176、182、183、195、198、206、211、215、216、217、227、228、249、252、257、258、260、261、266、268、270、274、277、280、281、289、308、312、315、316、339、341、345、346、349、382、383、388、394、401、412、417、418、422、426等のC.I.アシッド染料;
 C.I.ダイレクトレッド79、82、83、84、91、92、96、97、98、99、105、106、107、172、173、176、177、179、181、182、184、204、207、211、213、218、220、221、222、232、233、234、241、243、246、250等のC.I.ダイレクト染料;
 C.I.ベーシックレッド1、9、10等のC.I.ベーシック染料;
 C.I.モーダントレッド1、2、3、4、9、11、12、14、17、18、19、22、23、24、25、26、27、29、30、32、33、36、37、38、39、41、42、43、45、46、48、52、53、56、62、63、71、74、76、78、85、86、88、90、94、95等のC.I.モーダント染料等。
Examples of red colorants include red pigments such as C.I. Pigment Red 9, 97, 105, 122, 123, 144, 149, 166, 168, 176, 177, 178, 179, 180, 190, 192, 209, 215, 216, 224, 242, 254, 255, 264, 265, 266, 268, 269, and 273. Other examples of red colorants are the following dyes.
C.I. Solvent dyes such as C.I. Solvent Red 24, 45, 49, 90, 91, 111, 118, 119, 122, 124, 125, 127, 130, 132, 143, 145, 146, 150, 151, 155, 160, 168, 169, 172, 175, 181, 207, 218, 222, 227, 230, 245, 247;
C.I. Acid Red 1, 4, 8, 14, 17, 18, 26, 27, 29, 31, 33, 34, 35, 37, 40, 42, 44, 50, 51, 52, 57, 66, 73, 76, 80, 87, 88, 91, 92, 94, 95, 97, 98, 103, 106, 111, 114, 129, 133, 134, 138, 143, 145, 150, 151, 155, 158, 160, 172, 176, 182, C.I. Acid dyes such as 183, 195, 198, 206, 211, 215, 216, 217, 227, 228, 249, 252, 257, 258, 260, 261, 266, 268, 270, 274, 277, 280, 281, 289, 308, 312, 315, 316, 339, 341, 345, 346, 349, 382, 383, 388, 394, 401, 412, 417, 418, 422, 426;
C.I. Direct dyes such as C.I. Direct Red 79, 82, 83, 84, 91, 92, 96, 97, 98, 99, 105, 106, 107, 172, 173, 176, 177, 179, 181, 182, 184, 204, 207, 211, 213, 218, 220, 221, 222, 232, 233, 234, 241, 243, 246, 250;
C.I. Basic dyes such as C.I. Basic Red 1, 9, 10;
C.I. Mordant dyes such as C.I. Mordant Red 1, 2, 3, 4, 9, 11, 12, 14, 17, 18, 19, 22, 23, 24, 25, 26, 27, 29, 30, 32, 33, 36, 37, 38, 39, 41, 42, 43, 45, 46, 48, 52, 53, 56, 62, 63, 71, 74, 76, 78, 85, 86, 88, 90, 94, 95, etc.
 有彩色の着色剤(Ic)は、黄色着色剤を含むことがより好ましく、黄色顔料を含むことがさらに好ましく、C.I.ピグメントイエロー138、150及び231からなる群より選ばれる少なくとも一種を含むことがよりさらに好ましい。 The chromatic colorant (Ic) preferably contains a yellow colorant, more preferably contains a yellow pigment, and even more preferably contains at least one selected from the group consisting of C.I. Pigment Yellow 138, 150, and 231.
 有彩色の着色剤(Ic)は、必要に応じて、ロジン処理、酸性基又は塩基性基が導入された着色剤誘導体等を用いた表面処理、高分子化合物等による着色剤表面へのグラフト処理、硫酸微粒化法等による微粒化処理、不純物を除去するための有機溶剤や水等による洗浄処理、イオン性不純物のイオン交換法等による除去処理等が施されていてもよい。着色剤(I)の粒径は、略均一であることが好ましい。 The chromatic colorant (Ic) may be subjected to, as necessary, a rosin treatment, a surface treatment using a colorant derivative having an acidic or basic group introduced therein, a grafting treatment to the colorant surface using a polymer compound, a micronization treatment using a sulfuric acid micronization method, a washing treatment using an organic solvent or water to remove impurities, a removal treatment using an ion exchange method for ionic impurities, etc. It is preferable that the particle size of the colorant (I) is approximately uniform.
 組成物IIIが緑色着色剤及び/または赤色着色剤を含む場合は、組成物IIIに含まれる有彩色の着色剤(Ic)は、波長変換層が緑色を発光する層であるときには緑色着色剤であることが好ましく、波長変換層が赤色を発光する層であるときには赤色着色剤であることが好ましい。緑色着色剤及び赤色着色剤は、それぞれ、1種のみを用いてもよく、2種以上を併用してもよい。 When composition III contains a green colorant and/or a red colorant, the chromatic colorant (Ic) contained in composition III is preferably a green colorant when the wavelength conversion layer is a layer that emits green light, and is preferably a red colorant when the wavelength conversion layer is a layer that emits red light. The green colorant and the red colorant may each be used alone or in combination of two or more kinds.
 組成物IIIにおける有彩色の着色剤(Ic)の含有率は、組成物IIIの固形分の総量に対して、例えば0.01質量%以上99.99質量%以下であり、好ましくは0.1質量%以上99.9質量%以下、より好ましくは1質量%以上99質量%以下、さらに好ましくは10質量%以上90質量%以下、なおさらに好ましくは15質量%以上70質量%以下である。 The content of the chromatic colorant (Ic) in composition III is, for example, 0.01% by mass or more and 99.99% by mass or less, preferably 0.1% by mass or more and 99.9% by mass or less, more preferably 1% by mass or more and 99% by mass or less, even more preferably 10% by mass or more and 90% by mass or less, and even more preferably 15% by mass or more and 70% by mass or less, based on the total amount of solids in composition III.
 組成物Iは、実質的に有彩色の着色剤(Ic)を含まないことが好ましい。「実質的に有彩色の着色剤(Ic)を含まない」とは、組成物Iの固形分の総量に対して、有彩色の着色剤(Ic)の含有率が、好ましくは1質量%以下、より好ましくは0.5質量%以下、さらに好ましくは0.1質量%以下、特に好ましくは0質量%であることをいう。 It is preferable that composition I is substantially free of a chromatic colorant (Ic). "Substantially free of a chromatic colorant (Ic)" means that the content of the chromatic colorant (Ic) relative to the total amount of solids in composition I is preferably 1 mass% or less, more preferably 0.5 mass% or less, even more preferably 0.1 mass% or less, and particularly preferably 0 mass%.
 <その他の成分>
 組成物I、II及びIIIは必要に応じて、重合禁止剤、充填剤、他の高分子化合物、密着促進剤、連鎖移動剤等、当該技術分野で公知の添加剤をさらに含んでいてもよい。
<Other ingredients>
Compositions I, II and III may optionally further contain additives known in the art, such as polymerization inhibitors, fillers, other polymeric compounds, adhesion promoters, chain transfer agents and the like.
 <組成物の製造方法>
 組成物I、II及びIIIは、所定の成分、並びに必要に応じて使用される他の成分を混合する工程を含む方法によって製造することができる。組成物I、II及びIIIの製造方法は、樹脂(C)を調製する工程をさらに含むことができる。
<Production method of composition>
Compositions I, II, and III can be produced by a method including a step of mixing the prescribed components and other components used as necessary. The method for producing compositions I, II, and III can further include a step of preparing resin (C).
 有彩色の着色剤(Ic)を用いる場合、有彩色の着色剤(Ic)は、予め溶剤(J)の一部又は全部と混合し、有彩色の着色剤(Ic)の平均粒子径が0.2μm以下程度となるまで、ビーズミルなどを用いて分散させた着色剤分散液の状態で用いることが好ましい。この際、必要に応じて分散剤、樹脂(C)の一部又は全部を配合してもよい。分散剤としては、白の着色剤(Iw)の欄で述べた分散剤についての記述が引用される。 When using a chromatic colorant (Ic), it is preferable to use the chromatic colorant (Ic) in the form of a colorant dispersion liquid in which the chromatic colorant (Ic) is mixed in advance with part or all of the solvent (J) and dispersed using a bead mill or the like until the average particle size of the chromatic colorant (Ic) is approximately 0.2 μm or less. At this time, a dispersant and part or all of the resin (C) may be added as necessary. As for the dispersant, the description of the dispersant mentioned in the section on the white colorant (Iw) is cited.
 <積層体の構成及び製造方法>
 本発明に係る積層体(以下、単に「積層体」ともいう。)は、半導体粒子(A)を有する波長変換層と、上記した組成物IIから形成される保護層とを含む積層体、及び半導体粒子(A)を有する波長変換層と、組成物IIから形成される保護層と、光吸収層が備えられる積層体である。図1は本発明に係る積層体の一例を示す概略断面図であり、図2は本発明に係る積層体の他の一例を示す概略断面図であり、図3は本発明に係る積層体さらにの他の一例を示す概略断面図である。
<Structure of laminate and manufacturing method>
The laminate according to the present invention (hereinafter, simply referred to as "laminate") is a laminate including a wavelength conversion layer having semiconductor particles (A) and a protective layer formed from the above-mentioned composition II, and a laminate including a wavelength conversion layer having semiconductor particles (A), a protective layer formed from composition II, and a light absorbing layer. Fig. 1 is a schematic cross-sectional view showing an example of the laminate according to the present invention, Fig. 2 is a schematic cross-sectional view showing another example of the laminate according to the present invention, and Fig. 3 is a schematic cross-sectional view showing yet another example of the laminate according to the present invention.
 図1~図3に示される積層体は、波長変換層10と、その上に配置される保護層20とを含む。図1及び図2に示される積層体のように、保護層20は、波長変換層10に直接積層され、保護層20と波長変換層10とが接していてもよい。あるいは、図3に示される積層体のように、波長変換層10と保護層20との間に他の層が介在していてもよい。他の層としては、光吸収層30が挙げられる。他の層が介在する場合、該他の層を形成する工程において波長変換層に熱が加わり、これによって波長変換層の発光強度が低下する可能性がある。この点を考慮すると、図2に示される積層体のように、波長変換層と光吸収層の間に、保護層が備えられていることが好ましく、図1及び図2に示される積層体のように、保護層20は、波長変換層10に直接積層(すなわち、保護層20と波長変換層10が他の層を介することなく積層)されることが好ましい。 The laminate shown in Figs. 1 to 3 includes a wavelength conversion layer 10 and a protective layer 20 disposed thereon. As in the laminate shown in Figs. 1 and 2, the protective layer 20 may be directly laminated on the wavelength conversion layer 10, and the protective layer 20 and the wavelength conversion layer 10 may be in contact with each other. Alternatively, as in the laminate shown in Fig. 3, another layer may be interposed between the wavelength conversion layer 10 and the protective layer 20. An example of the other layer is a light absorbing layer 30. If another layer is interposed, heat may be applied to the wavelength conversion layer in the process of forming the other layer, which may reduce the luminescence intensity of the wavelength conversion layer. In consideration of this point, as in the laminate shown in Fig. 2, it is preferable that a protective layer is provided between the wavelength conversion layer and the light absorbing layer, and as in the laminate shown in Figs. 1 and 2, it is preferable that the protective layer 20 is directly laminated on the wavelength conversion layer 10 (i.e., the protective layer 20 and the wavelength conversion layer 10 are laminated without any other layer therebetween).
 図4は、本発明に係る積層体のさらに他の一例を示す概略断面図である。図4に示されるように、積層体は、赤色を発光する第1波長変換層11と、その上に配置される第1保護層21と、緑色を発光する第2波長変換層12と、その上に配置される第2保護層22とを含む。第1保護層21及び第2保護層22は、いずれも本発明に係る組成物IIから形成される保護層である。第1保護層21及び第2保護層22をそれぞれ設ける代わりに、第1波長変換層11及び第2波長変換層12上に1つ(一体)の保護層を設けてもよい。また、図4に示される積層体において、図2や図3の積層体と同様に光吸収層30が設けられてもよい。 FIG. 4 is a schematic cross-sectional view showing yet another example of a laminate according to the present invention. As shown in FIG. 4, the laminate includes a first wavelength conversion layer 11 that emits red light, a first protective layer 21 disposed thereon, a second wavelength conversion layer 12 that emits green light, and a second protective layer 22 disposed thereon. The first protective layer 21 and the second protective layer 22 are both protective layers formed from the composition II according to the present invention. Instead of providing the first protective layer 21 and the second protective layer 22, respectively, one (integral) protective layer may be provided on the first wavelength conversion layer 11 and the second wavelength conversion layer 12. In addition, the laminate shown in FIG. 4 may be provided with a light absorbing layer 30, as in the laminates of FIG. 2 and FIG. 3.
 図4に示される積層体において光吸収層30を設ける場合、第1波長変換層11又は第1保護層21上に第1光吸収層を設け、第2波長変換層12又は第2保護層22上に第2光吸収層を設けることができる。あるいは、第1波長変換層11及び第2波長変換層12上、又は、第1保護層21及び第2保護層22上に1つ(一体)の光吸収層を設けてもよい。 When providing the light absorbing layer 30 in the laminate shown in FIG. 4, the first light absorbing layer can be provided on the first wavelength conversion layer 11 or the first protective layer 21, and the second light absorbing layer can be provided on the second wavelength conversion layer 12 or the second protective layer 22. Alternatively, one (integral) light absorbing layer can be provided on the first wavelength conversion layer 11 and the second wavelength conversion layer 12, or on the first protective layer 21 and the second protective layer 22.
 積層体は、表示装置の一次光源(青色光源)上に配置される色変換部材として好適に用いることができる。本発明に係る積層体によれば、波長変換層の熱による発光強度の低下を抑制することができる。 The laminate can be suitably used as a color conversion member disposed on the primary light source (blue light source) of a display device. The laminate according to the present invention can suppress the decrease in luminescence intensity caused by heat of the wavelength conversion layer.
 本発明に係る積層体の発光強度維持率は、好ましくは80%以上、より好ましくは85%以上、さらに好ましくは90%以上であり、上限は特に限定されず100%が理想であるが、99%以下であっても許容される。積層体の発光強度維持率は、波長変換層の上に保護層を備える構成としたことにより達成できる。発光強度維持率は、後述の実施例の欄に記載の測定方法に従って測定することができる。 The luminescence intensity maintenance rate of the laminate according to the present invention is preferably 80% or more, more preferably 85% or more, and even more preferably 90% or more. There is no particular upper limit, and 100% is ideal, but 99% or less is also acceptable. The luminescence intensity maintenance rate of the laminate can be achieved by providing a protective layer on the wavelength conversion layer. The luminescence intensity maintenance rate can be measured according to the measurement method described in the Examples section below.
 1.波長変換層(組成物I)とその製造方法
 波長変換層の厚みは、例えば1μm以上20μm以下、好ましくは1.5μm以上18μm以下、より好ましくは1.8μm以上14μm以下、さらに好ましくは2μm以上12μm以下、一層好ましくは2μm以上10μm以下である。波長変換層の厚みが過度に小さいと、波長変換層に一次光を照射したときに、一次光が波長変換層によって十分に吸収又は散乱されずに波長変換層を透過する割合が大きくなる傾向がある。
 パターン状の波長変換層の形状及び寸法は特に制限されない。パターン状の波長変換層は、例えばその平面視形状が方形形状である。
1. Wavelength conversion layer (composition I) and its manufacturing method The thickness of the wavelength conversion layer is, for example, 1 μm to 20 μm, preferably 1.5 μm to 18 μm, more preferably 1.8 μm to 14 μm, even more preferably 2 μm to 12 μm, and even more preferably 2 μm to 10 μm. If the thickness of the wavelength conversion layer is excessively small, when the wavelength conversion layer is irradiated with primary light, a proportion of the primary light that is not sufficiently absorbed or scattered by the wavelength conversion layer and transmits through the wavelength conversion layer tends to be large.
The shape and dimensions of the patterned wavelength-converting layer are not particularly limited. For example, the patterned wavelength-converting layer has a rectangular shape in plan view.
 波長変換層は、例えば、
 組成物Iを基材に塗布した後に乾燥させる工程を含む方法a、又は
 組成物Iを支持体に塗布した後に乾燥させる工程を含む方法によって波長変換層を製造した後、この波長変換層を支持体から剥離し、接着剤層を介して基材に貼合する方法b
等によって、基材上に設けることができる。
The wavelength conversion layer may be, for example,
Method a comprising a step of applying composition I to a substrate and then drying the applied composition I; or Method b comprising producing a wavelength-converting layer by a step of applying composition I to a support and then drying the support, peeling the wavelength-converting layer from the support, and attaching the layer to a substrate via an adhesive layer.
The conductive layer can be provided on the substrate by the above-mentioned methods.
 一実施形態において、組成物Iは、樹脂(C)をさらに含む樹脂組成物R1である。樹脂組成物R1から形成される波長変換層(樹脂膜)は、組成物Iを基材又は支持体に塗布した後に乾燥させることにより形成することができる。
 他の実施形態において、組成物Iは、重合性化合物(D)と重合開始剤(E)とをさらに含む硬化性組成物R2である。硬化性組成物R2は、樹脂(C)をさらに含んでいてもよい。硬化性組成物R2から形成される波長変換層は、硬化膜である。該硬化膜は、硬化性組成物R2を基材又は支持体に塗布した後に乾燥させ、光の作用及び/又は熱の作用で硬化させることにより得ることができる。
 硬化性組成物R2の一態様は、光重合性化合物及び光重合開始剤を含む光硬化性組成物R3である。光硬化性組成物R3は、樹脂(C)をさらに含んでいてもよい。
In one embodiment, the composition I is a resin composition R1 further containing a resin (C). The wavelength conversion layer (resin film) formed from the resin composition R1 can be formed by applying the composition I to a substrate or support and then drying it.
In another embodiment, the composition I is a curable composition R2 further comprising a polymerizable compound (D) and a polymerization initiator (E). The curable composition R2 may further comprise a resin (C). The wavelength conversion layer formed from the curable composition R2 is a cured film. The cured film can be obtained by applying the curable composition R2 to a substrate or support, drying the composition, and curing the composition by the action of light and/or heat.
One embodiment of the curable composition R2 is a photocurable composition R3 containing a photopolymerizable compound and a photopolymerization initiator. The photocurable composition R3 may further contain a resin (C).
 2.保護層(組成物II)とその製造方法
 保護層は、波長変換層の上に形成される。保護層が波長変換層上に配置されるとは、波長変換層が有する表面の少なくとも一部に直接又は他の層を介して保護層が配置されることが意味する。上記表面は、波長変換層の主面であってもよいし、側面であってもよい。該主面は、好ましくは、波長変換層の光取り出し方向側の主面である。保護層は、波長変換層の主面全体を覆うように配置されてもよいし、主面の一部を覆うように配置されてもよい。保護層は、好ましくは、波長変換層の光取り出し方向側の主面全体を覆うように配置される。保護層は、波長変換層が有する表面全体を覆うように配置されてよい。
2. Protective layer (composition II) and its manufacturing method The protective layer is formed on the wavelength conversion layer. The protective layer is disposed on the wavelength conversion layer, meaning that the protective layer is disposed on at least a part of the surface of the wavelength conversion layer directly or via another layer. The surface may be the main surface or side surface of the wavelength conversion layer. The main surface is preferably the main surface of the wavelength conversion layer in the light extraction direction. The protective layer may be disposed so as to cover the entire main surface of the wavelength conversion layer, or may be disposed so as to cover a part of the main surface. The protective layer is preferably disposed so as to cover the entire main surface of the wavelength conversion layer in the light extraction direction. The protective layer may be disposed so as to cover the entire surface of the wavelength conversion layer.
 保護層の厚みは、例えば0.1μm以上20μm以下であり、硬化時に生じ得る反りやシワを抑制する観点及び波長変換層の熱による発光強度の低下を抑制する観点から、好ましくは0.1μm以上15μm以下、より好ましくは0.5μm以上10μm以下、さらに好ましくは0.5μm以上6μm以下、なおさらに好ましくは0.5μm以上4.5μm以下である。 The thickness of the protective layer is, for example, 0.1 μm or more and 20 μm or less, and from the viewpoint of suppressing warping or wrinkles that may occur during curing and suppressing a decrease in the luminescence intensity of the wavelength conversion layer due to heat, is preferably 0.1 μm or more and 15 μm or less, more preferably 0.5 μm or more and 10 μm or less, even more preferably 0.5 μm or more and 6 μm or less, and even more preferably 0.5 μm or more and 4.5 μm or less.
 組成物IIは、樹脂(C)を含む樹脂組成物R4である。樹脂組成物R4から形成される保護層(樹脂膜)は、組成物IIを基材に塗布した後に乾燥させることにより形成することができる。
 好ましい実施形態において、組成物IIは、樹脂(C)と、更に重合性化合物(D)と重合開始剤(E)とをさらに含む硬化性組成物R5である。硬化性組成物R5から形成されるオーバーコート層は、硬化膜である。該硬化膜は、硬化性組成物R5を基材に塗布した後に乾燥させ、光の作用及び/又は熱の作用で硬化させることにより得ることができる。
 硬化性組成物R5の一態様は、樹脂(C)と、更に光重合性化合物及び光重合開始剤を含む光硬化性組成物R6である。
Composition II is resin composition R4 containing resin (C). The protective layer (resin film) formed from resin composition R4 can be formed by applying composition II to a substrate and then drying it.
In a preferred embodiment, the composition II is a curable composition R5 that further includes a resin (C), a polymerizable compound (D), and a polymerization initiator (E). The overcoat layer formed from the curable composition R5 is a cured film. The cured film can be obtained by applying the curable composition R5 to a substrate, drying the composition, and curing the composition by the action of light and/or heat.
One embodiment of the curable composition R5 is a photocurable composition R6 that contains the resin (C) and further a photopolymerizable compound and a photopolymerization initiator.
 3.光吸収層(組成物III)とその製造方法
 組成物IIIから形成される光吸収層を波長変換層上に設けることにより、光吸収層の視認側への一次光(例えば青色光)の漏れを抑制できるとともに、波長変換層上に光吸収層を配置した場合における、光吸収層を配置しない場合と比較したときの発光強度の低下を抑制することができる。波長変換層を透過する一次光の量は少ないことが望ましいが、波長変換層上に、有彩色の着色剤(Ic)を含有する組成物IIIから形成される光吸収層を配置することにより、一次光の一部が波長変換層を透過する場合であっても、視認側への一次光の漏れを抑制できるとともに、発光強度の低下を抑制することができる。この観点から、波長変換層は、波長450nmにおける光線透過率が、10%以上、さらには15%以上、なおさらには20%以上であってもよい。
3. Light absorbing layer (composition III) and its manufacturing method By providing a light absorbing layer formed from composition III on the wavelength conversion layer, it is possible to suppress leakage of primary light (e.g., blue light) to the viewing side of the light absorbing layer, and to suppress the decrease in luminous intensity when the light absorbing layer is arranged on the wavelength conversion layer, as compared with the case where the light absorbing layer is not arranged. Although it is desirable that the amount of primary light transmitted through the wavelength conversion layer is small, by arranging a light absorbing layer formed from composition III containing a chromatic colorant (Ic) on the wavelength conversion layer, it is possible to suppress leakage of primary light to the viewing side and suppress the decrease in luminous intensity even when a part of the primary light transmits through the wavelength conversion layer. From this viewpoint, the wavelength conversion layer may have a light transmittance at a wavelength of 450 nm of 10% or more, further 15% or more, and even 20% or more.
 光吸収層が透過する光の波長域は、好ましくは、緑色又は赤色の波長域である。該緑色の波長域は、例えば495nm以上585nm以下に含まれる波長域である。該赤色の波長域は、例えば585nm以上780nm以下に含まれる波長域である。光吸収層が吸収する光の波長域は、好ましくは青色の波長域であり、より好ましくは450nmを含む波長範囲であり、例えば380nm以上495nm未満に含まれる波長域である。
 一実施形態において、組成物III及び光吸収層は、520nm以上780nm以下の波長域における平均光線透過率が98%以上である。平均光線透過率が98%以上であることにより、発光強度をより高めることができる。平均光線透過率は、積分球を具備した紫外可視近赤外分光光度計を用いて吸光スペクトルを測定し、これに基づいて求めることができる。
The wavelength range of light transmitted through the light absorbing layer is preferably a green or red wavelength range. The green wavelength range is, for example, a wavelength range from 495 nm to 585 nm. The red wavelength range is, for example, a wavelength range from 585 nm to 780 nm. The wavelength range of light absorbed by the light absorbing layer is preferably a blue wavelength range, more preferably a wavelength range including 450 nm, for example, a wavelength range from 380 nm to less than 495 nm.
In one embodiment, the composition III and the light absorbing layer have an average light transmittance of 98% or more in the wavelength range of 520 nm to 780 nm. The average light transmittance of 98% or more can further increase the emission intensity. The average light transmittance can be determined based on an absorption spectrum measured using an ultraviolet-visible-near infrared spectrophotometer equipped with an integrating sphere.
 光吸収層の厚みは、例えば0.1μm以上30μm以下であり、光吸収層の視認側への一次光(青色光)の漏れを効果的に抑制する観点から、好ましくは0.1μm以上20μm以下、より好ましくは0.5μm以上10μm以下、さらに好ましくは0.5μm以上6μm以下である。 The thickness of the light absorbing layer is, for example, 0.1 μm or more and 30 μm or less, and from the viewpoint of effectively suppressing leakage of primary light (blue light) to the viewing side of the light absorbing layer, is preferably 0.1 μm or more and 20 μm or less, more preferably 0.5 μm or more and 10 μm or less, and even more preferably 0.5 μm or more and 6 μm or less.
 一実施形態において、組成物IIIは、樹脂(C)をさらに含む樹脂組成物R7である。樹脂組成物R7から形成される光吸収層(樹脂膜)は、組成物IIを基材に塗布した後に乾燥させることにより形成することができる。
 他の実施形態において、組成物IIIは、重合性化合物(D)と重合開始剤(E)とをさらに含む硬化性組成物R8である。硬化性組成物R8は、樹脂(C)をさらに含んでいてもよい。硬化性組成物R8から形成される光吸収層は、硬化膜である。該硬化膜は、硬化性組成物R8を基材に塗布した後に乾燥させ、光の作用及び/又は熱の作用で硬化させることにより得ることができる。
 硬化性組成物R8の一態様は、光重合性化合物及び光重合開始剤を含む光硬化性組成物R9である。光硬化性組成物R9は、樹脂(C)をさらに含んでいてもよい。
In one embodiment, the composition III is a resin composition R7 further containing a resin (C). The light absorbing layer (resin film) formed from the resin composition R7 can be formed by applying the composition II to a substrate and then drying it.
In another embodiment, the composition III is a curable composition R8 further comprising a polymerizable compound (D) and a polymerization initiator (E). The curable composition R8 may further comprise a resin (C). The light absorbing layer formed from the curable composition R8 is a cured film. The cured film can be obtained by applying the curable composition R8 to a substrate, drying the composition, and curing the composition by the action of light and/or heat.
One embodiment of the curable composition R8 is a photocurable composition R9 containing a photopolymerizable compound and a photopolymerization initiator. The photocurable composition R9 may further contain a resin (C).
 4.基材
 波長変換層が形成される基材としては、石英ガラス、ホウケイ酸ガラス、アルミナケイ酸塩ガラス、表面をシリカコートしたソーダライムガラス等のガラス板;ポリカーボネート、ポリメタクリル酸メチル、ポリエチレンテレフタレート等の樹脂板;シリコン;これらの基材上にアルミニウム、銀、銀/銅/パラジウム合金薄膜等を形成したもの;表示装置に含まれる又は含まれ得る部材等が挙げられる。表示装置に含まれる又は含まれ得る部材としては、例えば、一次光源(例えば青色光源)、導光板、拡散フィルム(拡散層)、光反射部材(反射フィルム等)、輝度強化部材、プリズムシート、バリア層、等が挙げられる。
4. Substrate Examples of the substrate on which the wavelength conversion layer is formed include glass plates such as quartz glass, borosilicate glass, alumina silicate glass, and soda lime glass with a silica-coated surface; resin plates such as polycarbonate, polymethyl methacrylate, and polyethylene terephthalate; silicon; aluminum, silver, and silver/copper/palladium alloy thin films formed on these substrates; and components that are or may be included in the display device. Examples of components that are or may be included in the display device include a primary light source (e.g., a blue light source), a light guide plate, a diffusion film (diffusion layer), a light reflecting member (such as a reflection film), a brightness enhancing member, a prism sheet, and a barrier layer.
 保護層が形成される基材は、波長変換層又は波長変換層上に形成される他の層(ただし波長変換層、保護層及び光吸収層とは異なる層)である。 The substrate on which the protective layer is formed is the wavelength conversion layer or another layer formed on the wavelength conversion layer (however, a layer different from the wavelength conversion layer, the protective layer, and the light absorbing layer).
 光吸収層が形成される基材は、保護層又は保護層上に形成される他の層(ただし波長変換層、保護層及び光吸収層とは異なる層)である。 The substrate on which the light absorbing layer is formed is the protective layer or another layer formed on the protective layer (however, a layer different from the wavelength conversion layer, the protective layer, and the light absorbing layer).
 波長変換層、保護層及び光吸収層は、それぞれ各基材全面に設けられてもよいし、該基材の一部にパターン状に設けられてもよい。基材上に各層(波長変換層、保護層または光吸収層)をパターン状に形成する方法としては、フォトリソグラフ法、インクジェット法、印刷法等が挙げられる。印刷法としては、ステンシル印刷法、スクリーン印刷法、アプリケーターによる印刷塗工等が挙げられる。 The wavelength conversion layer, protective layer, and light absorbing layer may be provided on the entire surface of each substrate, or may be provided in a pattern on a part of the substrate. Methods for forming each layer (wavelength conversion layer, protective layer, or light absorbing layer) in a pattern on the substrate include photolithography, inkjet, and printing. Printing methods include stencil printing, screen printing, and printing and coating using an applicator.
 5.積層体の製造方法
 樹脂組成物R1から形成されるパターン状の樹脂膜(波長変換層)、樹脂組成物R4から形成されるパターン状の樹脂膜(保護層)、及び樹脂組成物R7から形成されるパターン状の樹脂膜(光吸収層)は、それぞれ例えば、以下のようにして上述した各層に対応する基材上に形成することができる。まず、樹脂組成物R1、R4又はR7をマスクを介して上述した各層に対応する基材上に塗布して、パターン状の組成物層を形成する。樹脂組成物の塗布方法としては、スピンコート法、スリットコート法、スリット アンド スピンコート法等が挙げられる。
5. Manufacturing method of laminate The patterned resin film (wavelength conversion layer) formed from the resin composition R1, the patterned resin film (protective layer) formed from the resin composition R4, and the patterned resin film (light absorbing layer) formed from the resin composition R7 can be formed on the substrate corresponding to each of the above-mentioned layers, for example, as follows. First, the resin composition R1, R4, or R7 is applied to the substrate corresponding to each of the above-mentioned layers through a mask to form a patterned composition layer. Examples of the method for applying the resin composition include spin coating, slit coating, and slit and spin coating.
 次に、組成物層を乾燥させる(溶剤等の揮発成分を除去する)ことにより樹脂膜(波長変換層、保護層または光吸収層)を得る。乾燥方法としては、加熱乾燥、減圧乾燥又はこれらの組み合わせが挙げられる。加熱乾燥を行う場合の温度は、好ましくは30℃以上250℃以下、より好ましくは50℃以上235℃以下である。加熱時間は、好ましくは10秒間以上180分間以下、より好ましくは30秒間以上90分間以下である。減圧乾燥を行う場合は、50Pa以上150Pa以下の圧力下で行うことが好ましい。組成物層の乾燥は、例えば乾燥温度の異なる複数の乾燥工程を実施するなど、複数段で実施してもよい。 Then, the composition layer is dried (volatile components such as the solvent are removed) to obtain a resin film (wavelength conversion layer, protective layer, or light absorption layer). Drying methods include heat drying, reduced pressure drying, and a combination of these. The temperature when heat drying is performed is preferably 30°C or higher and 250°C or lower, more preferably 50°C or higher and 235°C or lower. The heating time is preferably 10 seconds or higher and 180 minutes or lower, more preferably 30 seconds or higher and 90 minutes or lower. When reduced pressure drying is performed, it is preferably performed under a pressure of 50 Pa or higher and 150 Pa or lower. Drying of the composition layer may be performed in multiple stages, for example by performing multiple drying steps with different drying temperatures.
 光硬化性組成物R3から形成されるパターン状の硬化膜(波長変換層)、光硬化性組成物R6から形成されるパターン状の硬化膜(保護層)、光硬化性組成物R9から形成されるパターン状の硬化膜(光吸収層)は、それぞれ例えば、フォトリソグラフ法を用いる方法を例に挙げると、例えば、以下のようにして上述した各層に対応する基材上に形成することができる。まず、光硬化性組成物R3、R6又はR9を上述した各層に対応する基材上に塗布し、加熱乾燥(プリベーク)及び/又は減圧乾燥することにより溶剤等の揮発成分を除去して、組成物層を得る。塗布方法としては、上記と同様の方法が挙げられる。 The patterned cured film (wavelength conversion layer) formed from photocurable composition R3, the patterned cured film (protective layer) formed from photocurable composition R6, and the patterned cured film (light absorption layer) formed from photocurable composition R9 can each be formed on a substrate corresponding to each of the layers described above, for example, by a method using photolithography as follows. First, photocurable composition R3, R6, or R9 is applied onto a substrate corresponding to each of the layers described above, and volatile components such as the solvent are removed by heating and drying (pre-baking) and/or drying under reduced pressure to obtain a composition layer. Examples of application methods include the same methods as those described above.
 加熱乾燥を行う場合の温度は、30℃以上120℃以下が好ましく、50℃以上110℃以下がより好ましい。加熱時間は、10秒間以上60分間以下であることが好ましく、30秒間以上30分間以下であることがより好ましい。減圧乾燥を行う場合は、50Pa以上150Pa以下の圧力下、20℃以上25℃以下の温度範囲で行うことが好ましい。 When drying by heating, the temperature is preferably 30°C or higher and 120°C or lower, and more preferably 50°C or higher and 110°C or lower. The heating time is preferably 10 seconds or higher and 60 minutes or lower, and more preferably 30 seconds or higher and 30 minutes or lower. When drying under reduced pressure, it is preferably performed under a pressure of 50 Pa or higher and 150 Pa or lower, and at a temperature range of 20°C or higher and 25°C or lower.
 次に、組成物層は、目的のパターン形状を形成するためのフォトマスクを介して露光される。露光に用いられる光源としては、250nm以上450nm以下の波長の光を発生する光源が好ましい。例えば、該波長の光から、光重合開始剤の吸収波長に応じて、436nm付近、408nm付近、又は365nm付近の光をバンドパスフィルタにより選択的に取り出してもよい。光源として具体的には、水銀灯、発光ダイオード、メタルハライドランプ、ハロゲンランプ等が挙げられる。 The composition layer is then exposed through a photomask to form the desired pattern shape. The light source used for exposure is preferably a light source that generates light with a wavelength of 250 nm or more and 450 nm or less. For example, from the light with this wavelength, light with a wavelength of around 436 nm, around 408 nm, or around 365 nm may be selectively extracted using a bandpass filter depending on the absorption wavelength of the photopolymerization initiator. Specific examples of light sources include mercury lamps, light-emitting diodes, metal halide lamps, halogen lamps, etc.
 露光面全体に均一に平行光線を照射することができたり、フォトマスクと組成物層が形成された基材との正確な位置合わせを行うことができたりするため、マスクアライナ及びステッパ等の露光装置を使用することが好ましい。露光された組成物層は、該組成物層に含まれる光重合性化合物等が重合することにより硬化する。 It is preferable to use an exposure device such as a mask aligner or stepper, since this allows for uniform irradiation of the entire exposure surface with parallel light and allows for accurate alignment of the photomask with the substrate on which the composition layer is formed. The exposed composition layer hardens as the photopolymerizable compound contained in the composition layer polymerizes.
 露光後の組成物層を現像液に接触させて現像することにより、組成物層の未露光部が現像液に溶解して除去されて、パターン状の硬化膜(波長変換層、保護層または光吸収層)が得られる。現像液としては、例えば、水酸化カリウム、炭酸水素ナトリウム、炭酸ナトリウム、水酸化テトラメチルアンモニウム等のアルカリ性化合物の水溶液や有機溶剤が挙げられる。アルカリ性化合物の水溶液中の濃度は、好ましくは0.01質量%以上10質量%以下であり、より好ましくは0.03質量%以上5質量%以下である。有機溶剤としては、上述の溶剤(J)と同様のものが挙げられる。現像液は、界面活性剤を含んでいてもよい。 By contacting the exposed composition layer with a developer and developing it, the unexposed portions of the composition layer are dissolved and removed in the developer, resulting in a patterned cured film (wavelength conversion layer, protective layer, or light absorbing layer). Examples of the developer include aqueous solutions of alkaline compounds such as potassium hydroxide, sodium bicarbonate, sodium carbonate, and tetramethylammonium hydroxide, and organic solvents. The concentration of the alkaline compound in the aqueous solution is preferably 0.01% by mass or more and 10% by mass or less, and more preferably 0.03% by mass or more and 5% by mass or less. Examples of the organic solvent include the same as the solvent (J) described above. The developer may contain a surfactant.
 現像方法は、パドル法、ディッピング法及びスプレー法等のいずれでもよい。さらに現像時に基材を任意の角度に傾けてもよい。 The development method may be any of the puddle method, dipping method, spray method, etc. Furthermore, the substrate may be tilted at any angle during development.
 現像により得られたパターン状の膜に対して、さらに加熱(ポストベーク)を行うことが好ましい。加熱温度は、150℃以上250℃以下が好ましく、160℃以上235℃以下がより好ましい。加熱時間は、1分間以上120分間以下が好ましく、10分間以上60分間以下がより好ましい。現像後に加熱を行うことにより、膜に含まれる未反応の光重合性化合物等の重合を進行させることができるため、より耐薬品性に優れた硬化膜を得ることができる。現像を行わない場合においても、露光された組成物層に対して、加熱(ポストベーク)をさらに行うことが好ましい。 It is preferable to further heat (post-bake) the patterned film obtained by development. The heating temperature is preferably 150°C or higher and 250°C or lower, and more preferably 160°C or higher and 235°C or lower. The heating time is preferably 1 minute or higher and 120 minutes or lower, and more preferably 10 minutes or higher and 60 minutes or lower. By heating after development, the polymerization of unreacted photopolymerizable compounds contained in the film can be promoted, and a cured film with better chemical resistance can be obtained. Even if development is not performed, it is preferable to further heat (post-bake) the exposed composition layer.
 一方、基材全面に硬化膜(波長変換層、保護層または光吸収層)を形成する方法としては、硬化性組成物を上述した各層に対応する基材に塗布し、必要に応じて乾燥させて組成物層を形成し、該組成物層を加熱及び/又は該組成物層全面に露光する方法が挙げられる。 On the other hand, a method for forming a cured film (wavelength conversion layer, protective layer, or light absorbing layer) on the entire surface of a substrate includes a method in which a curable composition is applied to a substrate corresponding to each of the above-mentioned layers, dried as necessary to form a composition layer, and the composition layer is heated and/or the entire surface of the composition layer is exposed to light.
 硬化性組成物R2、R5及びR7から形成される硬化膜は、硬化性組成物R2、R5及びR7に含まれる重合性化合物及び重合開始剤の硬化反応物を含む。該硬化反応物は、重合性化合物、重合開始剤の構造に起因する構造を含む物質である。重合性化合物、重合開始剤の構造に起因する構造とは、例えば、重合性化合物、重合開始剤の硬化反応部位以外の骨格構造又はその部分である。 The cured films formed from the curable compositions R2, R5, and R7 contain a cured reaction product of the polymerizable compound and polymerization initiator contained in the curable compositions R2, R5, and R7. The cured reaction product is a substance containing a structure resulting from the structure of the polymerizable compound and polymerization initiator. The structure resulting from the structure of the polymerizable compound and polymerization initiator is, for example, a skeletal structure or a part thereof other than the curing reaction site of the polymerizable compound and polymerization initiator.
 パターン状の波長変換層、保護層及び光吸収層の形状及び寸法は特に制限されない。パターン状の波長変換層、保護層及び光吸収層は、例えばその平面視形状が方形形状である。 The shapes and dimensions of the patterned wavelength conversion layer, protective layer, and light absorbing layer are not particularly limited. For example, the patterned wavelength conversion layer, protective layer, and light absorbing layer have a rectangular shape in plan view.
 一実施形態に係る波長変換層は、一次光源からの一次光を吸収して緑色を発光する層であり、好ましくは、該一次光である青色の光の波長を緑色の光の波長に変換する層である。該波長変換層が発する緑色光は、発光スペクトルにおいて、好ましくは、500nm以上560nm以下の波長域に極大値を有するピークを含み、より好ましくは、520nm以上555nm以下の波長域に極大値を有するピークを含み、さらに好ましくは、525nm以上550nm以下の波長域に極大値を有するピークを含む。該ピークは、好ましくは、半値全幅が15nm以上80nm以下、より好ましくは15nm以上60nm以下、さらに好ましくは15nm以上50nm以下、特に好ましくは15nm以上45nm以下である。 The wavelength conversion layer according to one embodiment is a layer that absorbs primary light from a primary light source and emits green light, and is preferably a layer that converts the wavelength of the primary light, that is, blue light, into the wavelength of green light. The green light emitted by the wavelength conversion layer preferably includes a peak having a maximum value in a wavelength range of 500 nm to 560 nm inclusive, more preferably includes a peak having a maximum value in a wavelength range of 520 nm to 555 nm inclusive, and even more preferably includes a peak having a maximum value in a wavelength range of 525 nm to 550 nm inclusive. The peak preferably has a full width at half maximum of 15 nm to 80 nm inclusive, more preferably 15 nm to 60 nm inclusive, even more preferably 15 nm to 50 nm inclusive, and particularly preferably 15 nm to 45 nm inclusive.
 他の実施形態に係る波長変換層は、一次光源からの一次光を吸収して赤色を発光する層であり、好ましくは、該一次光である青色の光の波長を赤色の光の波長に変換する層である。該波長変換層が発する赤色光は、発光スペクトルにおいて、好ましくは、610nm以上750nm以下の波長域に極大値を有するピークを含み、より好ましくは、620nm以上650nm以下の波長域に極大値を有するピークを含み、さらに好ましくは、625nm以上645nm以下の波長域に極大値を有するピークを含む。該ピークは、好ましくは、半値全幅が15nm以上80nm以下、より好ましくは15nm以上60nm以下、さらに好ましくは15nm以上50nm以下、特に好ましくは15nm以上45nm以下である。 The wavelength conversion layer according to another embodiment is a layer that absorbs primary light from a primary light source and emits red light, and is preferably a layer that converts the wavelength of the primary light, that is, blue light, into the wavelength of red light. The red light emitted by the wavelength conversion layer preferably includes a peak having a maximum value in the wavelength range of 610 nm to 750 nm inclusive, more preferably includes a peak having a maximum value in the wavelength range of 620 nm to 650 nm inclusive, and even more preferably includes a peak having a maximum value in the wavelength range of 625 nm to 645 nm inclusive. The peak preferably has a full width at half maximum of 15 nm to 80 nm inclusive, more preferably 15 nm to 60 nm inclusive, even more preferably 15 nm to 50 nm inclusive, and particularly preferably 15 nm to 45 nm inclusive.
 後述する積層体及び表示装置は、緑色を発光する波長変換層及び赤色を発光する波長変換層の両方を備えることができる。 The laminate and display device described below can include both a wavelength conversion layer that emits green light and a wavelength conversion layer that emits red light.
 波長変換層は、一次光の一部を吸収し、一次光の残部を透過する層であってもよい。表示装置の広色域化及びエネルギー効率の観点から、波長変換層は、波長450nmにおける光線透過率が、好ましくは90%以下、より好ましくは85%以下、さらに好ましくは75%以下、なおさらに好ましくは60%以下、特に好ましくは40%以下、より特に好ましくは30%以下、最も好ましくは20%以下である。波長変換層を透過する一次光の量は少ないことが望ましいが、光吸収層を備える本発明によれば、一次光の一部が波長変換層を透過する場合であっても、視認側への一次光の漏れを抑制できるとともに、光吸収層を設けることにより発光強度の低下を抑制することができる。この観点から、波長変換層は、波長450nmにおける光線透過率が、10%以上、さらには15%以上、なおさらには20%以上であってもよい。 The wavelength conversion layer may be a layer that absorbs a part of the primary light and transmits the remaining part of the primary light. From the viewpoint of widening the color gamut and energy efficiency of the display device, the wavelength conversion layer preferably has a light transmittance of 90% or less at a wavelength of 450 nm, more preferably 85% or less, even more preferably 75% or less, even more preferably 60% or less, particularly preferably 40% or less, even more particularly preferably 30% or less, and most preferably 20% or less. It is desirable that the amount of primary light that transmits through the wavelength conversion layer is small, but according to the present invention that includes a light absorbing layer, even if a part of the primary light transmits through the wavelength conversion layer, leakage of the primary light to the viewing side can be suppressed, and the provision of the light absorbing layer can suppress a decrease in the emission intensity. From this viewpoint, the wavelength conversion layer may have a light transmittance of 10% or more, even 15% or more, and even 20% or more at a wavelength of 450 nm.
 <表示装置>
 本発明に係る表示装置(以下、単に「表示装置」ともいう。)は、一次光源と、上記本発明に係る積層体とを含む。表示装置は、一次光源からの一次光を波長変換層に照射することにより波長変換層を発光させ、その発光した光を、光吸収層を介して取り出す装置である。
<Display Device>
A display device according to the present invention (hereinafter, also simply referred to as a "display device") includes a primary light source and the laminate according to the present invention. The display device is a device that irradiates a wavelength conversion layer with primary light from the primary light source to cause the wavelength conversion layer to emit light, and extracts the emitted light via a light absorbing layer.
 図5は、本発明に係る表示装置の一例を示す概略断面図である。図5に示される表示装置は、図4に示される積層体を含むものであり、互いに異なる領域である第1領域、第2領域及び第3領域を有する一次光源である青色光源40と、青色光源40の第1領域上に配置され、例えば赤色を発光する第1波長変換層11と、その上に配置される第1保護層21と、青色光源40の第2領域上に配置され、例えば緑色を発光する第2波長変換層12と、その上に配置される第2保護層22とを含む。該表示装置は、赤色発光領域(すなわち、第1領域)、緑色発光領域(すなわち、第2領域)及び青色発光領域(すなわち、第3領域)を有する。このように、該表示装置は、青色光源40からの光の光路において、青色光源と波長変換層と保護層とをこの順に有する。 5 is a schematic cross-sectional view showing an example of a display device according to the present invention. The display device shown in FIG. 5 includes the laminate shown in FIG. 4, and includes a blue light source 40 as a primary light source having a first region, a second region, and a third region that are different from each other, a first wavelength conversion layer 11 arranged on the first region of the blue light source 40 and emitting, for example, red light, a first protective layer 21 arranged thereon, a second wavelength conversion layer 12 arranged on the second region of the blue light source 40 and emitting, for example, green light, and a second protective layer 22 arranged thereon. The display device has a red light emission region (i.e., the first region), a green light emission region (i.e., the second region), and a blue light emission region (i.e., the third region). In this way, the display device has a blue light source, a wavelength conversion layer, and a protective layer in this order in the optical path of light from the blue light source 40.
 第1波長変換層11及び第2波長変換層12は、青色光源40上に直接配置されてもよいし、青色光源40からの光の光路において、青色光源40と第1波長変換層11及び第2波長変換層12との間に配置された導光板上に配置されてもよい。 The first wavelength conversion layer 11 and the second wavelength conversion layer 12 may be disposed directly on the blue light source 40, or may be disposed on a light guide plate disposed between the blue light source 40 and the first wavelength conversion layer 11 and the second wavelength conversion layer 12 in the optical path of the light from the blue light source 40.
 表示装置は、青色光源40の第3領域上に配置され、青色光を透過する透明層又は光拡散剤を含有する層をさらに備えていてもよい。また、表示装置が備える積層体は、図2や図3の積層体と同様に光吸収層30を有していてもよい。上記青色光を透過する透明層又は光拡散剤を含有する層の上に、青色光を透過し、青色光以外の光を吸収する第3光吸収層を設けてもよい。 The display device may further include a transparent layer that transmits blue light or a layer that contains a light diffusing agent, which is disposed on the third region of the blue light source 40. The laminate included in the display device may also include a light absorbing layer 30, similar to the laminates in Figures 2 and 3. A third light absorbing layer that transmits blue light and absorbs light other than blue light may be provided on the transparent layer that transmits blue light or the layer that contains a light diffusing agent.
 青色光源40としては、例えば、青色発光ダイオード等の発光ダイオード(LED)、レーザー、EL等の公知の光源を用いることができる。青色光源40は、色域及びエネルギー効率の観点から、好ましくは495nm以下にピークを有する光を放出する光源であり、より好ましくは425nm以上495nm以下にピークを有する光を放出する光源である。 The blue light source 40 may be, for example, a known light source such as a light emitting diode (LED) such as a blue light emitting diode, a laser, or an EL. From the standpoint of color gamut and energy efficiency, the blue light source 40 is preferably a light source that emits light having a peak at 495 nm or less, and more preferably a light source that emits light having a peak at 425 nm or more and 495 nm or less.
 表示装置は、例えば、導光板、拡散フィルム(拡散層)、光反射部材(反射フィルム等)、輝度強化部材、プリズムシート、バリア層等をさらに含んでいてもよい。 The display device may further include, for example, a light guide plate, a diffusion film (diffusion layer), a light reflecting member (such as a reflective film), a brightness enhancing member, a prism sheet, a barrier layer, etc.
 導光板としては、任意の適切な導光板が用いられる。例えば、横方向からの光を厚さ方向に偏向可能となるよう、背面側にレンズパターンが形成された導光板、背面側及び/又は視認側にプリズム形状等が形成された導光板が用いられる。 Any suitable light guide plate can be used as the light guide plate. For example, a light guide plate having a lens pattern formed on the back side, or a light guide plate having a prism shape or the like formed on the back side and/or the viewing side can be used so that light from the lateral direction can be deflected in the thickness direction.
 拡散フィルムは、一次光又は波長変換層から発せられた光を拡散させるためのフィルムであり、増幅拡散フィルム等であってよい。光反射部材は、一次光を波長変換層に向けて反射させるための部材であり、例えば、反射鏡、反射粒子のフィルム、反射金属フィルム、又は反射体等であってよい。輝度強化部材は、光の一部分を、光が伝送された方向に向かって反射して戻すための部材である。 The diffusion film is a film for diffusing the primary light or the light emitted from the wavelength conversion layer, and may be an amplifying diffusion film, etc. The light reflecting member is a member for reflecting the primary light toward the wavelength conversion layer, and may be, for example, a reflecting mirror, a film of reflective particles, a reflective metal film, or a reflector, etc. The brightness enhancing member is a member for reflecting a portion of the light back in the direction from which the light was transmitted.
 プリズムシートは、代表的には、基材部とプリズム部とを有する。基材部は、隣接する部材に応じて省略してもよい。プリズムシートは、任意の適切な接着層(例えば、接着剤層、粘着剤層)を介して隣接する部材に貼り合わせることができる。プリズムシートは、視認側とは反対側(背面側)に凸となる複数の単位プリズムが並列されて構成されている。プリズムシートの凸部を背面側に向けて配置することにより、プリズムシートを透過する光が集光されやすくなる。また、プリズムシートの凸部を背面側に向けて配置すれば、凸部を視認側に向けて配置する場合と比較して、プリズムシートに入射せずに反射する光が少なく、発光強度の高い表示装置を得ることができる。 A prism sheet typically has a base portion and a prism portion. The base portion may be omitted depending on the adjacent member. The prism sheet can be attached to the adjacent member via any appropriate adhesive layer (e.g., an adhesive layer, a pressure-sensitive adhesive layer). The prism sheet is composed of a number of unit prisms arranged in parallel, each of which is convex on the side opposite the viewing side (the rear side). By arranging the convex portions of the prism sheet facing the rear side, the light passing through the prism sheet is easily concentrated. Furthermore, by arranging the convex portions of the prism sheet facing the rear side, less light is reflected without entering the prism sheet compared to when the convex portions are arranged facing the viewing side, and a display device with high luminous intensity can be obtained.
 バリア層は、波長変換層を外気の水蒸気、及び大気中の酸素から保護するための層である。一実施形態に係る表示装置は、保護層と、波長変換層を外気の水蒸気、及び大気中の酸素から保護するためのバリア層との両方を含む。 The barrier layer is a layer for protecting the wavelength conversion layer from water vapor in the outside air and oxygen in the atmosphere. A display device according to one embodiment includes both a protective layer and a barrier layer for protecting the wavelength conversion layer from water vapor in the outside air and oxygen in the atmosphere.
 表示装置は、隣接する要素(層)間の光路上に1以上の媒体材料からなる層を含んでいてもよい。1以上の媒体材料としては、例えば真空、空気、ガス、光学材料、接着剤、光学接着剤、ガラス、ポリマー、固体、液体、ゲル、硬化材料、光学結合材料、屈折率整合又は屈折率不整合材料、屈折率勾配材料、クラッディング又は抗クラッディング材料、スペーサー、シリカゲル、輝度強化材料、散乱又は拡散材料、反射又は抗反射材料、波長選択性材料、波長選択性抗反射材料又は当該技術分野で既知の他の好適な媒体が含まれるが、これらに限定されず、任意の好適な材料が含まれてもよい。 The display device may include a layer of one or more media materials in the optical path between adjacent elements (layers). The one or more media materials may include any suitable material, including, but not limited to, vacuum, air, gas, optical material, adhesive, optical adhesive, glass, polymer, solid, liquid, gel, curable material, optical bonding material, index matching or index mismatching material, index gradient material, cladding or anti-cladding material, spacer, silica gel, brightness enhancing material, scattering or diffusing material, reflective or anti-reflective material, wavelength selective material, wavelength selective anti-reflective material, or other suitable media known in the art.
 表示装置の具体例としては、例えば、ELディスプレイや液晶ディスプレイ用の波長変換材料を備えたものが挙げられる。表示装置は、図5を用いて示した例に限定されるものではなく、例えば、
 波長変換層を導光板の端面(側面)に沿うように、青色光源と導光板の間に配置し、白色光を放出するバックライト(オンエッジ方式のバックライト)とし、導光板側に光吸収層を配置した表示装置;
 波長変換層を導光板の上に設置して、導光板の端面(側面)に置かれた青色光源から導光板を通して波長変換層に照射される光を白色光として放出するバックライト(表面実装方式のバックライト)とし、波長変換層上に光吸収層を配置した表示装置;
 波長変換層を青色光源の発光部近傍に設置し、照射される光を白色光として放出するバックライト(オンチップ方式のバックライト)とし、波長変換層上に光吸収層を配置した表示装置;
等であってもよい。
Specific examples of the display device include those equipped with a wavelength conversion material for an EL display or a liquid crystal display. The display device is not limited to the example shown in FIG. 5, and may be, for example,
A display device in which a wavelength conversion layer is disposed between a blue light source and a light guide plate along an end face (side face) of the light guide plate to form a backlight that emits white light (on-edge type backlight), and a light absorbing layer is disposed on the light guide plate side;
A display device in which a wavelength conversion layer is placed on a light guide plate, a backlight (surface mount type backlight) is formed in which light irradiated from a blue light source placed on an end face (side face) of the light guide plate to the wavelength conversion layer through the light guide plate is emitted as white light, and a light absorbing layer is placed on the wavelength conversion layer;
A display device in which a wavelength conversion layer is disposed near a light emitting portion of a blue light source, and a backlight (on-chip type backlight) is formed to emit irradiated light as white light, and a light absorbing layer is disposed on the wavelength conversion layer;
etc.
 以下、実施例により本発明をさらに詳細に説明する。例中の「%」及び「部」は、特記のない限り、質量%及び質量部である。 The present invention will be explained in more detail below with reference to examples. In the examples, "%" and "parts" are by mass % and parts by mass unless otherwise specified.
 <測定>
 (1)波長変換層及び保護層の厚み測定
 膜厚測定装置(DEKTAKXT;ブルカー社製)により測定した。
<Measurement>
(1) Measurement of Thickness of Wavelength Conversion Layer and Protective Layer The thickness was measured using a film thickness measuring device (DEKTAKXT; manufactured by Bruker Corporation).
 (2)発光強度維持率の測定
 発光ピーク波長が450nmである青色LEDランプを点光源とするバックライト上に光拡散板を配置してバックライト部とした。光拡散板を上に向けてバックライト部を載置し、光拡散板の表面から高さ60cmの位置に、分光放射輝度計(トプコン(株)製の「SR-UL1R」)を設置した。ガラス基板上に形成した波長変換層、及びガラス基板上に形成した波長変換層と保護層との積層体を測定サンプルとし、該測定サンプルを、積層体を上に向けて光拡散板の表面に配置した。この状態でバックライトを点灯させ、積層体から発せられる光について、上記分光放射輝度計を用いて分光放射輝度スペクトルを測定し、このスペクトルから、緑色発光ピークの最大ピーク波長における発光強度EI(μW)を算出した。
 上述の緑色発光ピークの最大ピーク波長は、波長変換層に含まれる半導体粒子(A)の発光スペクトルにおける緑色発光ピークの最大ピーク波長であり、530nmであった。該緑色発光ピークの半値全幅は42nmであった。
 半導体粒子(A)の発光スペクトルは、絶対PL量子収率測定装置(浜松ホトニクス製の「C9920-02」、励起光450nm、室温、大気下)を用いて、波長450nmにおける吸光度が0.4となるように希釈した半導体粒子(A)分散液を測定サンプルとして測定した。
 ガラス基板上に形成した波長変換層と保護層との積層体の発光強度EIを測定し、ガラス基板上に形成した波長変換層の発光強度をEIとし、下記式に従って保護層積層前後の発光強度EIの維持率を求めた。
 発光強度EIの維持率(%)=[EI/EI]×100
(2) Measurement of Emission Intensity Maintenance Rate A light diffusion plate was placed on a backlight using a blue LED lamp with an emission peak wavelength of 450 nm as a point light source to form a backlight unit. The backlight unit was placed with the light diffusion plate facing upward, and a spectroradiometer ("SR-UL1R" manufactured by Topcon Corporation) was installed at a height of 60 cm from the surface of the light diffusion plate. A wavelength conversion layer formed on a glass substrate, and a laminate of the wavelength conversion layer and protective layer formed on a glass substrate were used as measurement samples, and the measurement samples were placed on the surface of the light diffusion plate with the laminate facing upward. In this state, the backlight was turned on, and the spectral radiance spectrum of the light emitted from the laminate was measured using the spectroradiometer, and the emission intensity EI (μW) at the maximum peak wavelength of the green emission peak was calculated from this spectrum.
The maximum peak wavelength of the green emission peak described above was 530 nm, which is the maximum peak wavelength of the green emission peak in the emission spectrum of the semiconductor particles (A) contained in the wavelength conversion layer. The full width at half maximum of the green emission peak was 42 nm.
The emission spectrum of the semiconductor particles (A) was measured using an absolute PL quantum yield measurement device ("C9920-02" manufactured by Hamamatsu Photonics, excitation light of 450 nm, room temperature, under atmospheric air) using a dispersion of semiconductor particles (A) diluted so as to have an absorbance of 0.4 at a wavelength of 450 nm as a measurement sample.
The luminous intensity EI a of the laminate of the wavelength conversion layer and the protective layer formed on the glass substrate was measured, and the luminous intensity of the wavelength conversion layer formed on the glass substrate was designated as EI b . The maintenance rate of the luminous intensity EI before and after the lamination of the protective layer was calculated according to the following formula.
Maintenance rate of luminescence intensity EI (%) = [EI a /EI b ] × 100
 (3)樹脂の重量平均分子量(Mw)の測定
 樹脂(C)のポリスチレン換算の重量平均分子量(Mw)の測定は、GPC法により以下の条件で行った。
 装置:HLC-8120GPC(東ソー(株)製)
 カラム:TSK-GELG2000HXL
 カラム温度:40℃
 溶媒:テトラヒドロフラン
 流速:1.0mL/分
 分析試料の固形分濃度:0.001~0.01質量%
 注入量:50μL
 検出器:RI
 校正用標準物質:TSK STANDARD POLYSTYRENE F-40、F-4、F-288、A-2500、A-500(東ソー(株)製)
(3) Measurement of Weight Average Molecular Weight (Mw) of Resin The polystyrene-equivalent weight average molecular weight (Mw) of Resin (C) was measured by GPC under the following conditions.
Apparatus: HLC-8120GPC (manufactured by Tosoh Corporation)
Column: TSK-GELG2000HXL
Column temperature: 40°C
Solvent: tetrahydrofuran Flow rate: 1.0 mL/min Solids concentration of analytical sample: 0.001 to 0.01% by mass
Injection volume: 50 μL
Detector: RI
Calibration standard material: TSK STANDARD POLYSTYRENE F-40, F-4, F-288, A-2500, A-500 (manufactured by Tosoh Corporation)
 (4)樹脂(C)の酸価
 樹脂(C)溶液3gを精秤し、アセトン90gと水10gとの混合溶剤に溶解し、0.1規定のKOH水溶液を滴定液として用いて、自動滴定装置(平沼産業社製、商品名:COM-555)により、樹脂(C)溶液の酸価を測定し、溶液の酸価と溶液の固形分とから固形分1g当たりの酸価(mgKOH/g)を求めた。
(4) Acid Value of Resin (C) 3 g of resin (C) solution was precisely weighed and dissolved in a mixed solvent of 90 g of acetone and 10 g of water. Using a 0.1 N KOH aqueous solution as a titrant, the acid value of the resin (C) solution was measured with an automatic titrator (manufactured by Hiranuma Sangyo Co., Ltd., product name: COM-555). The acid value per 1 g of solid content (mg KOH/g) was calculated from the acid value of the solution and the solid content of the solution.
 (5)現像速度の測定
 後述の実施例において、波長変換層上に組成物II-1~II-11を塗布してプリベークして得られた積層体を、現像液(0.02wt%のTMAH水溶液)に浸漬し、現像を行った。保護層が完全に除去される時間(秒)を測定して、現像速度(μm/秒)を評価した。
(5) Measurement of development rate In the examples described later, the laminate obtained by applying the compositions II-1 to II-11 onto the wavelength conversion layer and pre-baking was immersed in a developer (a 0.02 wt % aqueous TMAH solution) for development. The time (seconds) until the protective layer was completely removed was measured to evaluate the development rate (μm/second).
 (6)残膜率の評価
 後述の実施例において、波長変換層上に組成物II-1~II-11を塗布してプリベーク及び露光し、0.02wt%のTMAH水溶液に25℃で30秒浸漬する現像の後、180℃で60分間ポストベークを行った積層体試料も作製した。プリベーク及び露光した後の露光部における膜厚、及び露光後更に現像及びポストベークした積層体試料の膜厚を、触針式段差計(DektakXT、Bluker社製)を用いて、膜の表面につけた傷の段差を測定することにより測定した。下記式で算出される残膜率が、80%以上である場合は◎、80%未満、70%以上である場合は○、70%未満である場合は×と評価した。
 残膜率(%)=100×(ポストベーク後の膜厚)/(露光後の膜厚)
(6) Evaluation of film remaining rate In the examples described later, compositions II-1 to II-11 were applied onto the wavelength conversion layer, prebaked and exposed, and developed by immersing in a 0.02 wt % aqueous TMAH solution at 25° C. for 30 seconds, followed by post-baking at 180° C. for 60 minutes. The film thickness in the exposed area after pre-baking and exposure, and the film thickness of the laminate sample further developed and post-baked after exposure were measured by measuring the step of the scratches made on the surface of the film using a stylus-type step gauge (DektakXT, manufactured by Bluker). The film remaining rate calculated by the following formula was evaluated as ◎ when it was 80% or more, ○ when it was less than 80% or 70% or more, and × when it was less than 70%.
Residual film ratio (%)=100×(film thickness after post-baking)/(film thickness after exposure)
 <合成例1:樹脂(C1)の合成>
 還流冷却器、滴下ロート及び攪拌機を備えたフラスコ内に窒素を適量流し窒素雰囲気に置換し、プロピレングリコールモノメチルエーテルアセテート(PGMEA)80部を入れ、攪拌しながら85℃まで加熱した。次いで、メタクリル酸6部、ジシクロペンタニルメタクリレート25部、メチルメタクリレート40部、コハク酸1-[2-(メタクリロイルオキシ)エチル]29部を、PGMEA20部に溶解させて調製した混合溶液を4時間かけてフラスコ内に滴下した。一方、重合開始剤2,2-アゾビス(2,4-ジメチルバレロニトリル)9部をPGMEA40部に溶解させた溶液を5時間かけて滴下した。開始剤溶液の滴下終了後、85℃で4時間保持した後、室温まで冷却して、共重合体(樹脂(C1))溶液を得た。樹脂(C1)溶液の固形分は40%、重量平均分子量Mwは11500であった。
<Synthesis Example 1: Synthesis of Resin (C1)>
A suitable amount of nitrogen was flowed into a flask equipped with a reflux condenser, a dropping funnel and a stirrer to replace the atmosphere with nitrogen, 80 parts of propylene glycol monomethyl ether acetate (PGMEA) was added, and the mixture was heated to 85°C while stirring. Next, a mixed solution prepared by dissolving 6 parts of methacrylic acid, 25 parts of dicyclopentanyl methacrylate, 40 parts of methyl methacrylate, and 29 parts of 1-[2-(methacryloyloxy)ethyl] succinate in 20 parts of PGMEA was dropped into the flask over 4 hours. Meanwhile, a solution prepared by dissolving 9 parts of polymerization initiator 2,2-azobis(2,4-dimethylvaleronitrile) in 40 parts of PGMEA was dropped over 5 hours. After the drop of the initiator solution was completed, the mixture was kept at 85°C for 4 hours and then cooled to room temperature to obtain a copolymer (resin (C1)) solution. The solid content of the resin (C1) solution was 40%, and the weight average molecular weight Mw was 11,500.
 <合成例2:樹脂(C2)の合成>
 撹拌器、温度計付き還流冷却管、滴下ロート及び窒素導入管を具備したフラスコに、PGMEAを110部投入した後、窒素置換しながら撹拌し、80℃に昇温した。ジシクロペンタニルメタクリレート25部、メチルメタクリレート23部、メタクリル酸19部、2,2’-アゾビス(2,4-ジメチルバレロニトリル)10部をPGMEA110部に溶解した溶液を、滴下ロートからフラスコ中に滴下した後、80℃で3時間撹拌した。
 次に、グリシジルメタクリレート16部、2、2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)0.4部、トリフェニルホスフィン0.8部をフラスコ内に投入して110℃まで昇温、8時間撹拌することで重合体中のカルボン酸とエポキシ基とを反応させて、重合性不飽和結合を導入した。次いで、1,2,3,6-テトラヒドロフタル酸無水物17部を加え3時間反応を続けて、側鎖にカルボン酸基を導入した。反応液を室温まで冷却することで樹脂(C2)溶液を得た。
 樹脂(C2)は、標準ポリスチレン換算の重量平均分子量Mwが8400、分子量分布が2.2、酸価が100mgKOH/gであり、樹脂(C2)溶液中の固形分は40質量%であった。
<Synthesis Example 2: Synthesis of Resin (C2)>
Into a flask equipped with a stirrer, a reflux condenser with a thermometer, a dropping funnel, and a nitrogen inlet tube, 110 parts of PGMEA were put, and then the mixture was stirred while replacing with nitrogen, and the temperature was raised to 80° C. A solution obtained by dissolving 25 parts of dicyclopentanyl methacrylate, 23 parts of methyl methacrylate, 19 parts of methacrylic acid, and 10 parts of 2,2′-azobis(2,4-dimethylvaleronitrile) in 110 parts of PGMEA was dropped from the dropping funnel into the flask, and then the mixture was stirred at 80° C. for 3 hours.
Next, 16 parts of glycidyl methacrylate, 0.4 parts of 2,2'-methylenebis(4-methyl-6-tert-butylphenol), and 0.8 parts of triphenylphosphine were added to the flask, and the temperature was raised to 110°C. The mixture was stirred for 8 hours to react the carboxylic acid and epoxy group in the polymer, thereby introducing a polymerizable unsaturated bond. Next, 17 parts of 1,2,3,6-tetrahydrophthalic anhydride were added and the reaction was continued for 3 hours to introduce a carboxylic acid group into the side chain. The reaction solution was cooled to room temperature to obtain a resin (C2) solution.
Resin (C2) had a weight average molecular weight Mw of 8,400 in terms of standard polystyrene, a molecular weight distribution of 2.2, and an acid value of 100 mgKOH/g, and the solid content in the resin (C2) solution was 40 mass %.
 <合成例3:樹脂(C3)の合成>
 還流冷却器、滴下ロート及び攪拌機を備えたフラスコ内に窒素を適量流し窒素雰囲気に置換し、PGMEA371部を入れ、攪拌しながら85℃まで加熱した。次いで、アクリル酸54部、3,4-エポキシトリシクロ[5.2.1.02,6]デカン-8-イルアクリレート及び3,4-エポキシトリシクロ[5.2.1.02,6]デカン-9-イルアクリレートの混合物(含有比はモル比で50:50)225部、ビニルトルエン(異性体混合物)81部を、PGMEA80部に溶解させて調製した混合溶液を4時間かけてフラスコ内に滴下した。一方、重合開始剤2,2-アゾビス(2,4-ジメチルバレロニトリル)30部をPGMEA160部に溶解させた溶液を5時間かけて滴下した。開始剤溶液の滴下終了後、85℃で4時間保持した後、室温まで冷却して、共重合体(樹脂(C3))溶液を得た。樹脂(C3)溶液の固形分は37%、酸価が120mgKOH/g、重量平均分子量Mwは10600であった。
<Synthesis Example 3: Synthesis of Resin (C3)>
A suitable amount of nitrogen was poured into a flask equipped with a reflux condenser, a dropping funnel and a stirrer to replace the atmosphere with nitrogen, 371 parts of PGMEA was added, and the mixture was heated to 85°C while stirring. Next, a mixed solution prepared by dissolving 54 parts of acrylic acid, 225 parts of a mixture of 3,4-epoxytricyclo[5.2.1.0 2,6 ]decan-8-yl acrylate and 3,4-epoxytricyclo[5.2.1.0 2,6 ]decan-9-yl acrylate (content ratio is 50:50 in molar ratio), and 81 parts of vinyltoluene (mixture of isomers) in 80 parts of PGMEA was dropped into the flask over 4 hours. Meanwhile, a solution prepared by dissolving 30 parts of polymerization initiator 2,2-azobis(2,4-dimethylvaleronitrile) in 160 parts of PGMEA was dropped over 5 hours. After the dropwise addition of the initiator solution was completed, the mixture was kept at 85° C. for 4 hours and then cooled to room temperature to obtain a copolymer (resin (C3)) solution. The resin (C3) solution had a solid content of 37%, an acid value of 120 mgKOH/g, and a weight average molecular weight Mw of 10,600.
 <合成例4:樹脂(C4)の合成>
 原料モノマーの量を調整して下記要領で樹脂(C4)を調製した。撹拌装置、滴下ロート、コンデンサー、温度計、ガス導入管を備えたフラスコに、プロピレングリコールモノメチルエーテルアセテートを取り、窒素置換しながら撹拌し120℃に昇温した。次いで、2-エチルヘキシルアクリレート、グリシジルメタクリレート及びジシクロペンタニルメタクリレートからなるモノマー混合物に、t-ブチルパーオキシ-2-エチルヘキサノエート(重合開始剤)を添加したものを、滴下ロートから2時間にわたって前記フラスコ中に滴下した。滴下終了後、120℃でさらに30分間撹拌して共重合反応を行い、付加共重合体を生成させた。
<Synthesis Example 4: Synthesis of Resin (C4)>
Resin (C4) was prepared as follows by adjusting the amount of raw material monomer. Propylene glycol monomethyl ether acetate was placed in a flask equipped with a stirrer, dropping funnel, condenser, thermometer, and gas inlet tube, and the mixture was stirred and heated to 120°C while replacing with nitrogen. Next, a monomer mixture consisting of 2-ethylhexyl acrylate, glycidyl methacrylate, and dicyclopentanyl methacrylate to which t-butylperoxy-2-ethylhexanoate (polymerization initiator) had been added was dropped into the flask from the dropping funnel over a period of 2 hours. After the dropwise addition was completed, the mixture was stirred for an additional 30 minutes at 120°C to carry out a copolymerization reaction, and an addition copolymer was produced.
 その後、フラスコ内を空気に置換し、アクリル酸、トリフェニルホスフィン(触媒)およびメトキノン(重合禁止剤)を上記の付加共重合体溶液中に投入し、110℃で10時間にわたり反応を続け、グリシジルメタクリレート由来のエポキシ基とアクリル酸の反応によりエポキシ基を開裂すると同時にポリマーの側鎖に重合性不飽和結合を導入した。次いで、反応系に無水コハク酸を加え、110℃で1時間にわたり反応を続け、エポキシ基の開裂により生じたヒドロキシ基と無水コハク酸を反応させて側鎖にカルボキシル基を導入し、ポリマー(樹脂(C4))を得た。 Then, the atmosphere in the flask was replaced with air, and acrylic acid, triphenylphosphine (catalyst), and methoquinone (polymerization inhibitor) were added to the addition copolymer solution, and the reaction was continued at 110°C for 10 hours, cleaving the epoxy groups by the reaction of the epoxy groups derived from glycidyl methacrylate with acrylic acid, while simultaneously introducing polymerizable unsaturated bonds into the side chains of the polymer. Succinic anhydride was then added to the reaction system, and the reaction was continued at 110°C for 1 hour, introducing carboxyl groups into the side chains by reacting the hydroxyl groups generated by the cleavage of the epoxy groups with succinic anhydride, yielding a polymer (resin (C4)).
 最後に反応溶液に、プロピレングリコールモノメチルエーテルアセテート383.3gを加え、ポリマー固形分40%の樹脂(C4)溶液を得た。 Finally, 383.3 g of propylene glycol monomethyl ether acetate was added to the reaction solution to obtain a resin (C4) solution with a polymer solids content of 40%.
 生成した共重合体の重量平均分子量Mwは4960、固形分換算の酸価は37mg-KOH/g、二重結合当量344g/eqであった。 The weight average molecular weight Mw of the resulting copolymer was 4,960, the acid value calculated as solids was 37 mg-KOH/g, and the double bond equivalent was 344 g/eq.
 <調製例1:半導体粒子(A1)分散液の調製>
 有機配位子(G1)としてオレイン酸を含む半導体粒子(A1)〔緑色発光のInP/ZnSeS量子ドット〕のトルエン分散液aを準備した。上記のとおり、該量子ドットの緑色発光ピークの最大ピーク波長は530nmであり、該緑色発光ピークの半値全幅は42nmであった。
<Preparation Example 1: Preparation of semiconductor particle (A1) dispersion>
A toluene dispersion a of semiconductor particles (A1) [green-emitting InP/ZnSeS quantum dots] containing oleic acid as an organic ligand (G1) was prepared. As described above, the maximum peak wavelength of the green emission peak of the quantum dots was 530 nm, and the full width at half maximum of the green emission peak was 42 nm.
 上記トルエン分散液aから減圧蒸留でトルエンを除去した後、半導体粒子(A1)及び有機配位子(G1)の合計量30部に対し、シクロヘキシルアセテート(J3)70部を添加して、半導体粒子(A1)分散液bを得た。半導体粒子(A1)分散液bの組成は表1のとおりである。 After removing the toluene from the toluene dispersion a by vacuum distillation, 70 parts of cyclohexyl acetate (J3) was added to a total of 30 parts of the semiconductor particles (A1) and organic ligand (G1) to obtain semiconductor particle (A1) dispersion b. The composition of semiconductor particle (A1) dispersion b is shown in Table 1.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 半導体粒子(A1)と有機配位子(G1)との組成比は、トルエンを除去した後の混合物について、TG-DTA測定により昇温速度5℃/minで550℃まで加熱したときの残量を測定し、該残量が有機配位子(G1)の重量として算出した。 The composition ratio of the semiconductor particles (A1) and the organic ligand (G1) was determined by measuring the amount of the mixture remaining after removing the toluene and heating it to 550°C at a heating rate of 5°C/min using TG-DTA measurement, and calculating the weight of the organic ligand (G1).
 <調製例2:波長変換層形成用組成物Iの調製>
 半導体粒子(A1)分散液bと各成分を混合し、表2に示す組成を有する波長変換層形成用組成物Iを調製した。表2中、溶剤(J)以外の成分の部数は固形分換算値を示す。
<Preparation Example 2: Preparation of wavelength conversion layer forming composition I>
The semiconductor particle (A1) dispersion b and each component were mixed to prepare a wavelength conversion layer forming composition I having the composition shown in Table 2. In Table 2, the parts of the components other than the solvent (J) are shown as solid content equivalents.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 表2に示される成分の略称の詳細は次のとおりである。 Details of the abbreviations of the ingredients shown in Table 2 are as follows:
 有機配位子(G1):オレイン酸
 白の着色剤(Iw1):酸化チタン粒子60部に、樹脂C1を10部(固形分換算)、PGMEAを30部混合し、ビーズミルを用いて、酸化チタン粒子を十分に分散させたものである。表2に記載の光散乱剤(B1)の部数は、酸化チタン粒子の部数である。
 重合性化合物(D1): カルボキシ基含有多官能(メタ)アクリレート(東亞合成(株)製の商品名「アロニックス(登録商標)M-510」)
 重合開始剤(E1): BASF社製の「イルガキュア(登録商標)OXE-02」
 酸化防止剤(Fb1): 住友化学(株)製の商品名「スミライザー(登録商標)GP」
 レベリング剤(H1): ポリエーテル変性シリコーンオイル(東レダウコーニング(株)製の商品名「トーレシリコーンSH8400」)
 溶剤(J1): プロピレングリコールモノメチルエーテルアセテート
 溶剤(J3): シクロヘキシルアセテート
Organic ligand (G1): Oleic acid White colorant (Iw1): 60 parts of titanium oxide particles, 10 parts of resin C1 (solid content equivalent), and 30 parts of PGMEA were mixed, and the titanium oxide particles were thoroughly dispersed using a bead mill. The number of parts of light scattering agent (B1) shown in Table 2 is the number of parts of titanium oxide particles.
Polymerizable compound (D1): Carboxy group-containing polyfunctional (meth)acrylate (product name "Aronix (registered trademark) M-510" manufactured by Toagosei Co., Ltd.)
Polymerization initiator (E1): "Irgacure (registered trademark) OXE-02" manufactured by BASF Corporation
Antioxidant (Fb1): Trade name "Sumilizer (registered trademark) GP" manufactured by Sumitomo Chemical Co., Ltd.
Leveling agent (H1): Polyether modified silicone oil (product name "Toray Silicone SH8400" manufactured by Toray Dow Corning Co., Ltd.)
Solvent (J1): Propylene glycol monomethyl ether acetate Solvent (J3): Cyclohexyl acetate
 <実施例1-1~実施例1-10及び比較例1:組成物IIの調製>
 表3の各成分を混合して、組成物II-1~II-11を得た。表3中、樹脂の部数は固形分換算値である。
<Examples 1-1 to 1-10 and Comparative Example 1: Preparation of Composition II>
Compositions II-1 to II-11 were obtained by mixing the components shown in Table 3. In Table 3, the parts of the resin are calculated as solid content.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 表3に示される成分の略称の詳細は次のとおりである。 Details of the abbreviations of the ingredients shown in Table 3 are as follows:
 重合性化合物(Da): カルボキシ基含有多官能(メタ)アクリレート(東亞合成(株)製の商品名「アロニックス(登録商標)M-510」)
 重合性化合物(Db): A-9550(光重合性化合物、ジペンタエリスリトールポリアクリレート、新中村化学工業株式会社製、固形分100%)
 重合開始剤(E2): 下記式で表される光重合開始剤。特開2011-132215号公報に記載される方法により製造した(固形分100%)。
Polymerizable compound (Da): Carboxy group-containing polyfunctional (meth)acrylate (product name "Aronix (registered trademark) M-510" manufactured by Toagosei Co., Ltd.)
Polymerizable compound (Db): A-9550 (photopolymerizable compound, dipentaerythritol polyacrylate, manufactured by Shin-Nakamura Chemical Co., Ltd., solid content 100%)
Polymerization initiator (E2): A photopolymerization initiator represented by the following formula, produced by the method described in JP-A-2011-132215 (solid content 100%).
Figure JPOXMLDOC01-appb-C000029
 重合開始剤(E3):下記式(EA-1)で表される化合物。
Figure JPOXMLDOC01-appb-C000029
Polymerization initiator (E3): a compound represented by the following formula (EA-1).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 酸化防止剤(Fb1): 住友化学(株)製の商品名「スミライザー(登録商標)GP」
 酸化防止剤(Fb2): 住友化学(株)製の商品名「スミライザー(登録商標)GA80」
 紫外線吸収剤(Fc1): 大和化成製の商品名「DAINSORB T-0」(2-(2,4-ジヒドロキシフェニル)-2H-ベンゾトリアゾール)
 溶剤(J1): プロピレングリコールモノメチルエーテルアセテート(PGMEA)
Antioxidant (Fb1): Trade name "Sumilizer (registered trademark) GP" manufactured by Sumitomo Chemical Co., Ltd.
Antioxidant (Fb2): Trade name "Sumilizer (registered trademark) GA80" manufactured by Sumitomo Chemical Co., Ltd.
Ultraviolet absorber (Fc1): Trade name "DAINSORB T-0" (2-(2,4-dihydroxyphenyl)-2H-benzotriazole) manufactured by Daiwa Kasei
Solvent (J1): Propylene glycol monomethyl ether acetate (PGMEA)
 <実施例2-1>
 5cm角のガラス基板(コーニング社製の「イーグルXG」)上に、調製例2で作製した波長変換層形成用組成物Iを、ポストベーク後の層の厚みが3μmとなるようにスピンコート法で塗布した後、100℃で3分間プリベークして組成物層を形成した。この組成物層が形成された基板に対して、露光機(トプコン(株)製の「TME-150RSK」)を用いて、大気雰囲気下、80mJ/cmの露光量(365nm基準)で光照射し、現像後、180℃で30分間ポストベークを行うことにより波長変換層を形成した。得られた波長変換層の発光強度(保護層積層前の発光強度)EIを測定した。
<Example 2-1>
The composition I for forming a wavelength conversion layer prepared in Preparation Example 2 was applied by spin coating onto a 5 cm square glass substrate ("Eagle XG" manufactured by Corning Incorporated) so that the thickness of the layer after post-baking was 3 μm, and then pre-baked at 100° C. for 3 minutes to form a composition layer. The substrate on which this composition layer was formed was irradiated with light at an exposure dose of 80 mJ/cm 2 (based on 365 nm) in an air atmosphere using an exposure machine ("TME-150RSK" manufactured by Topcon Corporation), and after development, post-baked at 180° C. for 30 minutes to form a wavelength conversion layer. The luminescence intensity EI b of the obtained wavelength conversion layer (luminescence intensity before lamination of the protective layer) was measured.
 次に、この波長変換層上に、実施例1-1で作製した組成物II-1を、ポストベーク後の層の厚みが1μmとなるようにスピンコート法で塗布した後、100℃で3分間プリベークして組成物層を形成した。この波長変換層上に組成物層が形成された基板に対して、露光機(トプコン(株)製の「TME-150RSK」)を用いて、大気雰囲気下、100mJ/cmの露光量(365nm基準)で光照射し、180℃で30分間ポストベークを行うことにより、波長変換層と保護層との積層体を形成した。得られた積層体の発光強度(保護層積層後の発光強度)EIを測定し、上記した測定方法に従って、発光強度維持率を測定した。また、上記「(5)現像速度の測定」及び「(6)残膜率の評価」に従って、現像速度と残膜率を測定した。 Next, the composition II-1 prepared in Example 1-1 was applied onto the wavelength conversion layer by spin coating so that the thickness of the layer after post-baking was 1 μm, and then pre-baked at 100 ° C. for 3 minutes to form a composition layer. The substrate on which the composition layer was formed on the wavelength conversion layer was irradiated with light at an exposure dose of 100 mJ / cm 2 (based on 365 nm) in an air atmosphere using an exposure machine (Topcon Corporation's "TME-150RSK"), and post-baked at 180 ° C. for 30 minutes to form a laminate of the wavelength conversion layer and the protective layer. The luminescence intensity (luminescence intensity after lamination of the protective layer) EI a of the obtained laminate was measured, and the luminescence intensity maintenance rate was measured according to the measurement method described above. In addition, the development rate and the residual film rate were measured according to the above "(5) Measurement of development rate" and "(6) Evaluation of residual film rate".
 <実施例2-2~2-10及び比較例2>
 組成物II-1の代わりに、組成物II-2~II-11を用いたこと以外は実施例2-1と同様にして、実施例2-2~2-10及び比較例2の波長変換層と保護層との積層体を形成し、保護層積層前後の発光強度EIの維持率を求めた。また、上記「(5)現像速度の測定」及び「(6)残膜率の評価」に従って、現像速度と残膜率を測定した。
<Examples 2-2 to 2-10 and Comparative Example 2>
Laminates of wavelength conversion layers and protective layers of Examples 2-2 to 2-10 and Comparative Example 2 were formed in the same manner as in Example 2-1, except that compositions II-2 to II-11 were used instead of composition II-1, and the maintenance rates of luminous intensity EI before and after lamination of the protective layer were determined. In addition, the development rate and the film remaining rate were measured according to the above "(5) Measurement of development rate" and "(6) Evaluation of film remaining rate".
 実施例2-1~実施例2-10及び比較例2について、発光強度維持率、現像速度、及び残膜率の結果を表4に示す。 Table 4 shows the results of the luminescence intensity maintenance rate, development speed, and film remaining rate for Examples 2-1 to 2-10 and Comparative Example 2.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 10 波長変換層、11 第1波長変換層、12 第2波長変換層、20 保護層、21 第1保護層、22 第2保護層、30 光吸収層、40 青色光源 10 wavelength conversion layer, 11 first wavelength conversion layer, 12 second wavelength conversion layer, 20 protective layer, 21 first protective layer, 22 second protective layer, 30 light absorbing layer, 40 blue light source

Claims (7)

  1.  半導体粒子(A)及び着色剤(I)のいずれも含まない組成物であって、
     前記組成物は、樹脂(C)を含むとともに、光安定剤(F)を含み、
     前記樹脂(C)は、重量平均分子量Mwが10000以下である樹脂(C-1)を含む組成物。
    A composition containing neither semiconductor particles (A) nor a colorant (I),
    The composition contains a resin (C) and a light stabilizer (F),
    The resin (C) is a composition containing a resin (C-1) having a weight average molecular weight Mw of 10,000 or less.
  2.  前記樹脂(C-1)の酸価が110mgKOH/g以下である請求項1に記載の組成物。 The composition according to claim 1, wherein the acid value of the resin (C-1) is 110 mg KOH/g or less.
  3.  前記組成物が、更に重合性化合物(D)を含み、
     前記樹脂(C-1)と前記重合性化合物(D)の質量比(樹脂(C-1)/重合性化合物(D))が1.8以下である請求項1に記載の組成物。
    The composition further comprises a polymerizable compound (D),
    The composition according to claim 1, wherein a mass ratio of the resin (C-1) to the polymerizable compound (D) (resin (C-1)/polymerizable compound (D)) is 1.8 or less.
  4.  半導体粒子(A)を含有する波長変換層上に配置される保護層を形成するために用いられる請求項1に記載の組成物。 The composition according to claim 1, which is used to form a protective layer to be placed on a wavelength conversion layer containing semiconductor particles (A).
  5.  半導体粒子(A)を有する波長変換層と、
     請求項1に記載の組成物から形成され、前記波長変換層上に配置される保護層とを含む積層体。
    a wavelength conversion layer having semiconductor particles (A);
    and a protective layer formed from the composition of claim 1 and disposed on the wavelength converting layer.
  6.  半導体粒子(A)を有する波長変換層と、保護層と、光吸収層を含む積層体であって、
     前記保護層は、半導体粒子(A)及び着色剤(I)のいずれも含まない組成物であって、樹脂(C)を含むとともに、更に光安定剤(F)を含み、樹脂(C)は、重量平均分子量Mwが10000以下である樹脂(C-1)を含む組成物から形成される層である積層体。
    A laminate including a wavelength conversion layer having semiconductor particles (A), a protective layer, and a light absorbing layer,
    The protective layer is a laminate which is a layer formed from a composition which does not contain any of semiconductor particles (A) and colorant (I), and which contains a resin (C) and further contains a light stabilizer (F), the resin (C) containing a resin (C-1) having a weight average molecular weight Mw of 10,000 or less.
  7.  請求項5または6に記載の積層体を含む表示装置。 A display device comprising the laminate according to claim 5 or 6.
PCT/JP2024/008980 2023-03-08 2024-03-08 Composition, laminate, and display device WO2024185878A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2023-035906 2023-03-08
JP2023035906 2023-03-08
JP2024033139A JP2024127827A (en) 2023-03-08 2024-03-05 Composition, laminate and display device
JP2024-033139 2024-03-05

Publications (1)

Publication Number Publication Date
WO2024185878A1 true WO2024185878A1 (en) 2024-09-12

Family

ID=92675274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/008980 WO2024185878A1 (en) 2023-03-08 2024-03-08 Composition, laminate, and display device

Country Status (1)

Country Link
WO (1) WO2024185878A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030580A1 (en) * 2009-09-10 2011-03-17 積水化学工業株式会社 Photosensitive composition and printed wiring board
JP2013122576A (en) * 2011-11-07 2013-06-20 Sumitomo Chemical Co Ltd Curable resin composition
JP2017021322A (en) * 2015-07-07 2017-01-26 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Quantum dot dispersion and self-luminous photosensitive resin composition comprising the same, and color filter and image display device manufactured using the composition
JP2017186550A (en) * 2016-03-30 2017-10-12 住友化学株式会社 Curable resin composition and cured film
WO2019069835A1 (en) * 2017-10-04 2019-04-11 株式会社Adeka Composition, cured product, and method for producing cured product
WO2020054719A1 (en) * 2018-09-14 2020-03-19 富士フイルム株式会社 Near-infrared-absorbent photosensitive composition, cured film, optical filter, pattern formation method, layered body, solid-state imaging element, image display device, and infrared sensor
JP2020086074A (en) * 2018-11-22 2020-06-04 東洋インキScホールディングス株式会社 Fine semiconductor particle composition and use thereof
JP2021015731A (en) * 2019-07-12 2021-02-12 キヤノン株式会社 Light-emitting device
JP2021138916A (en) * 2020-03-06 2021-09-16 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and electronic component

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030580A1 (en) * 2009-09-10 2011-03-17 積水化学工業株式会社 Photosensitive composition and printed wiring board
JP2013122576A (en) * 2011-11-07 2013-06-20 Sumitomo Chemical Co Ltd Curable resin composition
JP2017021322A (en) * 2015-07-07 2017-01-26 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Quantum dot dispersion and self-luminous photosensitive resin composition comprising the same, and color filter and image display device manufactured using the composition
JP2017186550A (en) * 2016-03-30 2017-10-12 住友化学株式会社 Curable resin composition and cured film
WO2019069835A1 (en) * 2017-10-04 2019-04-11 株式会社Adeka Composition, cured product, and method for producing cured product
WO2020054719A1 (en) * 2018-09-14 2020-03-19 富士フイルム株式会社 Near-infrared-absorbent photosensitive composition, cured film, optical filter, pattern formation method, layered body, solid-state imaging element, image display device, and infrared sensor
JP2020086074A (en) * 2018-11-22 2020-06-04 東洋インキScホールディングス株式会社 Fine semiconductor particle composition and use thereof
JP2021015731A (en) * 2019-07-12 2021-02-12 キヤノン株式会社 Light-emitting device
JP2021138916A (en) * 2020-03-06 2021-09-16 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and electronic component

Similar Documents

Publication Publication Date Title
CN115362179B (en) Curable resin composition and display device
WO2023157560A1 (en) Composition, light-absorbing layer, laminate, and display device
WO2021200276A1 (en) Curable resin composition and display device
WO2021200277A1 (en) Curable resin composition and display device
WO2022044824A1 (en) Layered body and display device
WO2024185878A1 (en) Composition, laminate, and display device
WO2024185880A1 (en) Laminate and display device comprising said laminate
WO2024185879A1 (en) Laminate and display device comprising said laminate
WO2023157559A1 (en) Composition, protective layer, laminate, and display device
JP2024127827A (en) Composition, laminate and display device
JP2024127829A (en) LAMINATE AND DISPLAY DEVICE INCLUDING SAME
JP2024127828A (en) LAMINATE AND DISPLAY DEVICE INCLUDING SAME
WO2022044823A1 (en) Layered body and display device
WO2024084904A1 (en) Curable composition, cured film, and display device
KR20240152873A (en) Compositions, protective layers, laminates and display devices
KR20240151801A (en) Composition, light absorbing layer, laminate and display device
WO2023120215A1 (en) Composition, film and display device
WO2024195219A1 (en) Curable composition
WO2024195218A1 (en) Curable composition
WO2022044822A1 (en) Resin composition, resin film, and display device
WO2024185881A1 (en) Composition, cured film and display device
JP2024127830A (en) Composition, cured film and display device