WO2024180627A1 - Method for producing semiconductor device - Google Patents

Method for producing semiconductor device Download PDF

Info

Publication number
WO2024180627A1
WO2024180627A1 PCT/JP2023/007126 JP2023007126W WO2024180627A1 WO 2024180627 A1 WO2024180627 A1 WO 2024180627A1 JP 2023007126 W JP2023007126 W JP 2023007126W WO 2024180627 A1 WO2024180627 A1 WO 2024180627A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor substrate
hydrogen
semiconductor device
silicon wafer
annealing
Prior art date
Application number
PCT/JP2023/007126
Other languages
French (fr)
Japanese (ja)
Inventor
明 清井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023550589A priority Critical patent/JP7466790B1/en
Priority to PCT/JP2023/007126 priority patent/WO2024180627A1/en
Publication of WO2024180627A1 publication Critical patent/WO2024180627A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes

Definitions

  • This disclosure relates to a method for manufacturing a semiconductor device.
  • a buffer layer is formed in the semiconductor device, for example, by proton irradiation and annealing.
  • the method for manufacturing a semiconductor device disclosed in International Publication No. 2021/181644 includes a step of irradiating an ion or electron beam so as to penetrate a semiconductor substrate doped with phosphorus or arsenic, and a step of irradiating the semiconductor substrate with hydrogen plasma to perform annealing.
  • This disclosure has been made to solve the problems described above, and the purpose of this disclosure is to provide a semiconductor device including a buffer layer in which the occurrence of high resistance regions is suppressed.
  • the method for manufacturing a semiconductor device includes the steps of preparing a semiconductor substrate, introducing hydrogen into the semiconductor substrate, irradiating the semiconductor substrate with a charged particle beam, and, after the step of irradiating the charged particle beam, performing activation annealing on the semiconductor substrate.
  • the step of introducing hydrogen is performed before the step of performing activation annealing.
  • 1 is a cross-sectional view of a semiconductor device according to a first embodiment; 1 is a distribution diagram of carrier concentration in a semiconductor substrate not including a high-resistance region. 1 is a distribution diagram of hydrogen concentration in a semiconductor substrate not including a high-resistance region. 1 is a distribution diagram of carrier concentration in a semiconductor substrate including a high-resistance region. 1 is a distribution diagram of hydrogen concentration in a semiconductor substrate including a high-resistance region. 1 is a flowchart of a method for manufacturing a semiconductor device according to a first embodiment. 7 is a schematic distribution diagram of hydrogen concentration in a semiconductor device obtained by the semiconductor device manufacturing method shown in FIG. 6.
  • FIG. 7 is a cross-sectional view showing a modified example of the semiconductor device obtained by the manufacturing method of the semiconductor device shown in FIG. 6.
  • 10 is a flowchart of a method for manufacturing a semiconductor device according to a second embodiment.
  • 1 is a diagram showing the distribution of carrier concentrations in semiconductor substrates containing different oxygen concentrations;
  • 10 is a schematic distribution diagram of hydrogen concentration in a semiconductor device obtained by the manufacturing method of a semiconductor device shown in FIG. 9 .
  • Embodiment 1 is a cross-sectional view of a semiconductor device 100 according to a first embodiment of the present invention.
  • the semiconductor device 100 shown in FIG. 1 is obtained by a manufacturing method of the semiconductor device 100 shown in FIG.
  • the semiconductor device 100 shown in FIG. 1 is, for example, a vertical diode used as a power semiconductor device, and mainly comprises a semiconductor substrate 200, a surface electrode 10, and a back electrode 11.
  • the semiconductor substrate 200 has a first main surface 1a and a second main surface 1b.
  • the second main surface 1b is the surface opposite to the first main surface 1a.
  • the surface electrode 10 is connected to the first main surface 1a.
  • the back electrode 11 is connected to the second main surface 1b.
  • the semiconductor substrate 200 includes a p + type anode layer 22, an n - type drift layer 1, an n type buffer layer 2, and an n + type cathode layer 21.
  • the n + type cathode layer 21, the n type buffer layer 2, the n - type drift layer 1, and the p + type anode layer 22 are formed in this order in the semiconductor substrate 200 from the second main surface 1b in the first direction X.
  • the p + type anode layer 22 is formed on the first main surface 1a.
  • the n + type cathode layer 21 is formed on the second main surface 1b.
  • the n - type drift layer 1 is formed between the p + type anode layer 22 and the n + type cathode layer 21.
  • the n - type drift layer 1 is formed so as to be in contact with the p + type anode layer 22.
  • An n -type buffer layer 2 is formed between the n- type drift layer 1 and the n + type cathode layer 21.
  • the n-type buffer layer 2 is formed so as to be in contact with both the n - type drift layer 1 and the n + type cathode layer 21.
  • the n - type buffer layer 2 has a higher n-type impurity concentration than the n-type drift layer 1.
  • the n + type cathode layer 21 has a higher n-type impurity concentration than the n-type buffer layer 2.
  • the process of forming the buffer layer includes a step of irradiating a semiconductor substrate (silicon wafer) with a charged particle beam such as a proton.
  • Donors contribute to the formation of the buffer layer.
  • the donors are formed by utilizing a process in which hydrogen and point defects contained in the semiconductor substrate 200, which is a silicon wafer, are combined.
  • Point defects are localized disturbances in the crystal lattice. There are two types of point defects: a vacancy type and an interstitial silicon type. In general, when a point defect is combined with hydrogen, the dangling bond of the point defect is shielded by hydrogen. As a result, the dangling bond does not show an intraband level.
  • the donors formed in the silicon wafer can be controlled to form a buffer layer so as to control the carrier concentration in the semiconductor substrate 200.
  • the time change of the switching waveform during reverse recovery and turn-off of the power semiconductor device becomes gentle, and snap-off and oscillation can be suppressed.
  • a process of irradiating the semiconductor substrate with protons is often used, but for example, a process of irradiating the semiconductor substrate with a charged particle beam of hydrogen isotopes such as helium ions may also be used.
  • a suitable annealing process is required after irradiation with a charged particle beam.
  • the region in which donors are formed expands on the back surface side.
  • a buffer layer having a desired thickness can be formed.
  • the way in which the buffer layer expands may differ depending on the type of semiconductor substrate. If the thickness of this buffer layer in the first direction X is small, a high resistance region remains on the back surface side of the semiconductor substrate. As a result, the high resistance region causes a decrease in the breakdown voltage of the semiconductor device and the generation of leakage current, leading to deterioration of device characteristics.
  • FIG. 2 is a distribution diagram of carrier concentration in a semiconductor substrate not including a high resistance region.
  • the horizontal axis indicates the distance (unit: ⁇ m) from the back surface of the semiconductor substrate, and the vertical axis indicates the carrier concentration (unit: cm ⁇ 3 ) in the semiconductor substrate.
  • FIG. 3 is a distribution diagram of hydrogen concentration in a semiconductor substrate not including a high resistance region.
  • the horizontal axis indicates the distance (unit: ⁇ m) from the back surface of the semiconductor substrate, and the vertical axis indicates the hydrogen concentration (unit: cm ⁇ 3 ) in the semiconductor substrate.
  • FIG. 4 is a distribution diagram of carrier concentration in a semiconductor substrate including a high resistance region. In FIG.
  • FIG. 5 is a distribution diagram of hydrogen concentration in a semiconductor substrate including a high resistance region.
  • the horizontal axis indicates the distance from the back surface of the semiconductor substrate
  • the vertical axis indicates the hydrogen concentration in the semiconductor substrate. Note that the semiconductor substrate including a high resistance region and the semiconductor substrate not including a high resistance region shown in FIG. 2 to FIG. 5 were manufactured by carrying out proton irradiation and annealing treatment under the same conditions. Furthermore, since secondary ion mass spectrometry cannot detect hydrogen concentrations of 5 ⁇ 10 16 cm ⁇ 3 or less, background signals are shown in regions in FIGS. 2 and 5 where the hydrogen concentration is 5 ⁇ 10 16 cm ⁇ 3 or less.
  • the hydrogen concentration was 5 x 10 16 cm -3 or more in all the donor generation regions, and hydrogen was detected.
  • a high resistance region exists in a region that is 5 ⁇ m or less away from the back surface.
  • the carrier concentration in the high resistance region is lower than the carrier concentration in the donor generation region.
  • the region that is 5 ⁇ m or less away from the back surface is a region where hydrogen was not detected.
  • the data on the hydrogen concentration in the region that is 5 ⁇ m or less away from the back surface in Figure 5 indicates the background signal of secondary ion mass spectrometry, and the hydrogen concentration in the region is 5 x 10 16 cm -3 or less.
  • the distance from the back surface that indicates the high resistance region and the distance from the back surface where hydrogen was not detected were almost the same.
  • the manufacturing method of the semiconductor device 100 according to this embodiment is characterized in that a step of introducing hydrogen into the semiconductor substrate is carried out before the activation annealing step. Based on the above experimental results, the manufacturing method of the semiconductor device 100 described below can obtain a semiconductor device 100 including a buffer layer 2 in which the occurrence of high resistance regions is suppressed. As a result, a power semiconductor device in which deterioration of device characteristics is prevented can be obtained.
  • FIG. 6 is a flow chart of a method for manufacturing the semiconductor device 100 according to the first embodiment.
  • a step (S1a) of preparing a semiconductor substrate 200 is first performed.
  • a silicon wafer is prepared as the semiconductor substrate 200 constituting the semiconductor device 100.
  • the silicon wafer is cut out from an n-type or n ⁇ -type ingot.
  • the silicon wafer has a front surface (first main surface 1a) and a back surface opposite to the front surface.
  • the hydrogen concentration in the silicon wafer is, for example, 1 ⁇ 10 13 cm ⁇ 3 or less.
  • this step (S2a) includes a step of annealing the silicon wafer in at least one of a state in which the silicon wafer is in contact with a film containing hydrogen or a state in which the silicon wafer is exposed to a hydrogen atmosphere.
  • a state in which the silicon wafer is exposed to a hydrogen atmosphere the silicon wafer is annealed in a furnace such as a vertical furnace at a temperature range of 1000°C to 1300°C (627K to 1027K).
  • annealing the silicon wafer at 1100°C for 5 hours can impregnate the entire silicon wafer with a high concentration of hydrogen.
  • the step (S2a) of introducing hydrogen may include a step of exposing the silicon wafer to hydrogen plasma or a step of immersing the silicon wafer in a liquid containing hydrogen ions, in addition to a step of annealing the silicon wafer in at least one of a state in which the silicon wafer is in contact with a film containing hydrogen or a state in which the silicon wafer is exposed to a hydrogen atmosphere.
  • hydrogen may be introduced not only from the front surface of the silicon wafer, but also from the side surface connecting the front surface and back surface.
  • a step (S3a) of forming a surface structure is performed.
  • the surface structure of the semiconductor device 100 is formed on the first main surface 1a of the silicon wafer.
  • a p + type anode layer 22 is formed on the surface layer of the first main surface 1a of the silicon wafer.
  • a surface electrode 10 (anode electrode) connected to the p + type anode layer is formed on the first main surface 1a.
  • a step (S4a) of grinding the back surface is carried out.
  • the back surface of the silicon wafer is ground.
  • the back surface of the silicon wafer is ground using a grinding method such as CMP (Chemical Mechanical Polish).
  • CMP Chemical Mechanical Polish
  • the thickness of the silicon wafer is thinned to the thickness required for the semiconductor device 100.
  • the back surface of the silicon wafer after grinding is the second main surface 1b, and the region from the first main surface 1a to the second main surface 1b is the semiconductor layer.
  • a step (S5a) of forming a first buffer layer is carried out.
  • a first buffer layer is formed on the second main surface 1b of the silicon wafer.
  • an n-type layer is formed on the surface of the second main surface 1b by implanting n-type dopant ions such as phosphorus into the second main surface 1b. Note that the ion implantation may be carried out multiple times. Also, since the first buffer layer can be substituted with the second buffer layer described later, the step (S5a) of forming the first buffer layer may be omitted.
  • a step (S6a) of forming a back surface structure is performed.
  • the back surface structure of the semiconductor device 100 is formed on the second main surface 1b of the silicon wafer.
  • an n + type cathode layer 21 is formed on the surface layer of the second main surface 1b of the silicon wafer.
  • a p + type cathode layer may be partially formed to manufacture a RFC (Relaxed Field of Cathode) diode.
  • a step (S7a) of irradiating a charged particle beam is performed.
  • point defects are formed in the silicon wafer.
  • the second main surface 1b of the silicon wafer is irradiated with a charged particle beam.
  • the charged particle beam is, for example, protons.
  • the protons are irradiated, for example, by using an accelerator. By using the accelerator, the protons are accelerated to several hundreds KeV to several tens MeV and irradiated onto the silicon wafer.
  • the dose of the protons is, for example, 1 ⁇ 10 12 to 1 ⁇ 10 15 cm ⁇ 2 .
  • helium ions may be irradiated as the charged particle beam. In this way, point defects are locally formed in the silicon wafer.
  • the step of irradiating the charged particle beam (S7a) may be performed before the step of performing activation annealing (S8a) described below.
  • the step of irradiating the charged particle beam (S7a) is not limited to being performed immediately after the step of forming the back surface structure (S6a), and may be performed, for example, after the step of grinding the back surface (S4a).
  • a step (S8a) of activation annealing is performed.
  • the silicon wafer is annealed for the purpose of at least one of forming donors and eliminating point defects.
  • the silicon wafer is annealed at a temperature range of 200°C to 500°C while exposed to an inert gas atmosphere such as nitrogen.
  • an inert gas atmosphere such as nitrogen.
  • hydrogen in the silicon wafer reacts with the point defects to form donors.
  • the n-type buffer layer 2 shown in FIG. 1 is formed.
  • the layer thus formed is the second buffer layer, and the step (S7a) of irradiating the charged particle beam and the step (S8a) of activation annealing are collectively referred to as the step of forming the second buffer layer.
  • the annealing temperature range is preferably 200°C to 500°C. If the annealing temperature is lower than 200°C, the efficiency of donor formation decreases. If the annealing temperature is higher than 500°C, the annihilation of donors becomes significant.
  • the silicon wafer is used as the semiconductor substrate 200.
  • Fig. 7 is a schematic distribution diagram of hydrogen concentration in the semiconductor device 100 obtained by the above-mentioned manufacturing method of the semiconductor device 100.
  • the horizontal axis indicates the distance (unit: ⁇ m) from the surface of the semiconductor substrate 200
  • the vertical axis indicates the hydrogen concentration (unit: cm -3 ) in the semiconductor substrate 200.
  • Example 1 is a silicon wafer in which the annealing temperature is low and the annealing time is short in the step (S2a) of introducing hydrogen.
  • Example 2 is a silicon wafer in which the annealing temperature is sufficiently high and the annealing time is sufficiently long in the step (S2a) of introducing hydrogen.
  • the hydrogen concentration in the semiconductor substrate is almost constant in the first direction X from the front surface to the back surface.
  • the hydrogen concentration in the region in the semiconductor layer where the hydrogen concentration is constant is preferably 1 ⁇ 10 14 cm ⁇ 3 or more, and more preferably 1 ⁇ 10 15 cm ⁇ 3 or more.
  • the step of introducing hydrogen (S2a) may be performed before the step of performing activation annealing (S8a).
  • the step of introducing hydrogen (S2a) may be performed, for example, before the step of irradiating a charged particle beam (S7a), or, as in the manufacturing method of the semiconductor device 100 according to the first embodiment, before the step of forming a surface structure (S3a).
  • the profile of the buffer layer 2 is affected not only by the conditions for irradiation with the charged particle beam and the conditions for activation annealing, but also by the oxygen concentration contained in the silicon wafer.
  • the step of introducing hydrogen is carried out immediately after the step (S1a) of preparing the semiconductor substrate 200, so that a semiconductor device 100 including a buffer layer 2 in which the occurrence of high resistance regions is suppressed can be obtained regardless of the oxygen concentration in the silicon wafer.
  • a power semiconductor device in which deterioration of device characteristics is prevented can be obtained regardless of the type of silicon wafer.
  • the process of forming the surface structure (S3a), the process of forming the first buffer layer (S5a), the process of forming the back surface structure (S6a), and the process of forming an electrode on the back surface (S9a) can be modified as appropriate depending on the type of semiconductor device 100 (e.g., a diode, an IGBT, etc.).
  • Fig. 8 is a cross-sectional view showing a modified example of the semiconductor device 100 obtained by the manufacturing method of the semiconductor device 100 shown in Fig. 1.
  • Fig. 8 corresponds to Fig. 1.
  • the semiconductor device 100 shown in Fig. 8 basically has the same configuration as the semiconductor device 100 shown in Fig. 1, but differs in that the semiconductor device 100 is an IGBT.
  • the semiconductor device 100 shown in Fig. 8 is obtained by a manufacturing method similar to that of the semiconductor device 100 shown in Fig. 6.
  • the semiconductor substrate 200 mainly includes a p-type contact layer 4, an n + type emitter layer 6, a p-type base layer 5, an n - type drift layer 1, an n-type buffer layer 2, a p + type collector layer 3, a gate electrode 8, and a gate insulating film 7.
  • the p + type collector layer 3, the n-type buffer layer 2, the n - type drift layer 1, the p-type base layer 5, the p-type contact layer 4, and the n + type emitter layer 6 are formed in this order from the second main surface 1b in the first direction X.
  • a plurality of p-type contact layers 4 and a plurality of n + -type emitter layers 6 are formed on the surface layer of the first main surface 1a. Between the two n + -type emitter layers 6, a trench is formed on the first main surface 1a. The trench is formed so as to reach the n - -type drift layer 1 via the p-type base layer 5.
  • a gate insulating film 7 is formed so as to cover the inner surface of the trench.
  • a gate electrode 8 is formed so as to contact the gate insulating film 7. The inside of the trench is filled with the gate electrode 8 and the gate insulating film 7.
  • the p-type contact layers 4 are configured as a pair, and the pair of p-type contact layers 4 are formed so as to sandwich the pair of n + -type emitter layers 6.
  • the pair of n + -type emitter layers 6 are formed so as to sandwich the gate electrode 8 and the gate insulating film 7.
  • the gate electrode 8 is arranged so as to be surrounded by the gate insulating film 7 and the interlayer insulating film 9.
  • a p-type base layer 5 is formed between the first main surface 1a and the n - -type drift layer 1.
  • a p + type collector layer 3 is formed on the surface layer of the second main surface 1b.
  • An n - type drift layer 1 is formed between a p type base layer 5 and the p + type collector layer 3.
  • the n - type drift layer 1 is in contact with the p type base layer 5.
  • An n type buffer layer 2 is formed between the n - type drift layer 1 and the p + type collector layer 3.
  • the n type buffer layer 2 is in contact with the n - type drift layer 1 and the p + type collector layer 3.
  • the gate electrode 8 and the gate insulating film 7 are formed so as to extend in the first direction X from the first main surface 1a to the region where the n - type drift layer 1 is formed.
  • the n type buffer layer 2 and the n + type emitter layer 6 have a higher n type impurity concentration than the n - type drift layer 1.
  • the p + type collector layer and the p type contact layer 4 have a higher p type impurity concentration than the p type base layer 5.
  • the semiconductor device 100 shown in FIG. 8 is basically obtained by the same manufacturing method as the semiconductor device 100 shown in FIG. 1, but the process of forming the front surface structure (S3a), the process of forming the back surface structure (S6a), and the process of forming an electrode on the back surface (S9a) are different.
  • a p-type base layer 5, an n + -type emitter layer 6, and a p-type contact layer 4 are formed on the surface layer of the first main surface 1a of the silicon wafer.
  • the first main surface 1a of the silicon wafer is dry etched to form a trench.
  • a gate insulating film 7 and a gate electrode 8 are formed inside the trench.
  • the material of the gate electrode 8 is, for example, polysilicon.
  • An interlayer insulating film 9 and a surface electrode 10 (emitter electrode) are formed on the first main surface 1a.
  • the material of the interlayer insulating film 9 is, for example, tetraethyl orthosilicate (TEOS).
  • p + type collector layer 3 is formed in a surface layer portion of second main surface 1b of the silicon wafer.
  • an n + type cathode layer may be partially formed to manufacture a RC (Reverse Conductive)-IGBT.
  • a back surface electrode 11 (collector electrode) is formed on the second main surface 1b of the silicon wafer. In this manner, a semiconductor device 100 with an IGBT structure as shown in FIG. 8 can be obtained.
  • the method for manufacturing the semiconductor device 100 includes a step (S1a) of preparing the semiconductor substrate 200, a step (S2a) of introducing hydrogen into the semiconductor substrate 200, a step (S7a) of irradiating the semiconductor substrate 200 with a charged particle beam, and, after the step (S7a) of irradiating the charged particle beam, a step (S8a) of performing activation annealing on the semiconductor substrate 200.
  • the step (S2a) of introducing hydrogen is performed before the step (S8a) of performing activation annealing.
  • the semiconductor substrate 200 (silicon wafer) has a sufficient hydrogen concentration.
  • the point defects formed in the charged particle beam irradiation step (S7a) are sufficiently compounded with hydrogen by the subsequent annealing process, so that a semiconductor device 100 can be obtained that includes a buffer layer in which the occurrence of high resistance regions is suppressed. In other words, a power semiconductor device in which deterioration of device characteristics is prevented can be obtained.
  • the step of introducing hydrogen (S2a) includes any one of the steps of annealing the semiconductor substrate 200 while the semiconductor substrate 200 is in contact with a film containing hydrogen or while the semiconductor substrate 200 is exposed to a hydrogen atmosphere, exposing the semiconductor substrate 200 to hydrogen plasma, and immersing the semiconductor substrate 200 in a liquid containing hydrogen ions.
  • hydrogen can be introduced into the silicon wafer by any method.
  • the step (S2a) of introducing hydrogen is performed before the step (S7a) of irradiating the charged particle beam.
  • the step (S2a) of introducing hydrogen is performed before the step (S7a) of irradiating the charged particle beam.
  • Fig. 9 is a flowchart of a method for manufacturing the semiconductor device 100 according to the second embodiment.
  • Fig. 9 corresponds to Fig. 6.
  • the method for manufacturing the semiconductor device 100 shown in Fig. 9 basically has the same configuration as the method for manufacturing the semiconductor device 100 shown in Fig. 6, but differs in that the step of introducing hydrogen (S7b) is performed after the step of irradiating a charged particle beam (S6b).
  • the step of introducing hydrogen (S7b) may be performed before the step of performing activation annealing (S8b).
  • the step of introducing hydrogen (S7b) is performed after forming a certain device structure on the silicon wafer, there is a limit to the temperature and time of annealing in the step of introducing hydrogen (S7b) so as not to destroy the device structure.
  • aluminum is usually used as the surface electrode of a power semiconductor device. The melting point of aluminum is about 650°C.
  • the melting point of the aluminum electrode is the upper limit of the temperature of annealing in the step of introducing hydrogen (S7b).
  • the depth to which hydrogen penetrates in the silicon wafer is reduced.
  • the effect of suppressing the occurrence of high resistance regions may be insufficient.
  • a method of manufacturing a semiconductor device 100 that sets the depth to which hydrogen penetrates to a desired value is described.
  • a step (S1b) of preparing a semiconductor substrate 200 is first performed.
  • a silicon wafer constituting the semiconductor device 100 is prepared.
  • the silicon wafer is cut from an n-type or n -type ingot.
  • the silicon wafer has a front surface (first main surface 1a) and a back surface opposite the front surface.
  • the hydrogen concentration in the silicon wafer is, for example, 1 ⁇ 10 13 cm -3 or less.
  • a step (S2b) of forming a surface structure is performed.
  • the surface structure of the semiconductor device 100 is formed on the first main surface 1a of the silicon wafer.
  • a p + type anode layer 22 is formed on the surface layer of the first main surface 1a of the silicon wafer.
  • a surface electrode 10 (anode electrode) connected to the p + type anode layer 22 is formed on the first main surface 1a.
  • a step (S3b) of grinding the back surface is carried out.
  • the back surface of the silicon wafer is ground. Specifically, after protecting the surface structure, the back surface of the silicon wafer is ground using a grinding method such as CMP (Chemical Mechanical Polish). Note that the back surface of the silicon wafer after grinding is the second main surface 1b, and the region from the first main surface 1a to the second main surface 1b is the semiconductor layer.
  • CMP Chemical Mechanical Polish
  • a step (S4b) of forming a first buffer layer is carried out.
  • a first buffer layer is formed on the second main surface 1b of the silicon wafer.
  • an n-type layer is formed on the surface of the second main surface 1b by implanting n-type dopant ions such as phosphorus into the second main surface 1b. Note that the ion implantation may be carried out multiple times. Also, since the first buffer layer can be substituted with the second buffer layer described later, the step of forming the first buffer layer may be omitted.
  • a step (S5b) of forming a back surface structure is performed.
  • the back surface structure of the semiconductor device 100 is formed on the second main surface 1b of the silicon wafer.
  • an n + type cathode layer 21 is formed on the surface layer of the second main surface 1b of the silicon wafer.
  • a p + type cathode layer may be partially formed to manufacture a RFC (Relaxed Field of Cathode) diode.
  • a step (S6b) of irradiating a charged particle beam is performed.
  • point defects are formed in the silicon wafer.
  • the second main surface 1b of the silicon wafer is irradiated with a charged particle beam.
  • the charged particle beam is, for example, protons.
  • an accelerator is used for the proton irradiation.
  • the protons are accelerated to several hundreds KeV to several tens MeV and irradiated onto the silicon wafer.
  • the dose of the protons is, for example, 1 ⁇ 10 12 to 1 ⁇ 10 15 cm ⁇ 2 .
  • helium ions may be irradiated as the charged particle beam. In this way, point defects are locally formed in the silicon wafer.
  • the step (S6b) of irradiating the charged particle beam is not performed, silicon wafers inherently contain some point defects. Therefore, if the silicon wafer has point defects, the step (S6b) of irradiating the charged particle beam does not need to be performed. Furthermore, the step (S6b) of irradiating the charged particle beam may be performed before the step (S8b) of performing activation annealing, which will be described later.
  • the step (S6b) of irradiating the charged particle beam is not limited to being performed immediately after the step (S5b) of forming the back surface structure, and may be performed, for example, after the step (S3b) of grinding the back surface.
  • this step (S7b) includes a step of annealing the silicon wafer in at least one of a state in which the silicon wafer is in contact with a film containing hydrogen or a state in which the silicon wafer is exposed to a hydrogen atmosphere. At this time, as described above, there are limitations on the temperature and time during annealing.
  • the step (S7b) of introducing hydrogen may include a step of exposing the silicon wafer to hydrogen plasma or a step of immersing the silicon wafer in a liquid containing hydrogen ions, instead of a step of annealing the silicon wafer in at least one of a state in which the silicon wafer is in contact with a film containing hydrogen or a state in which the silicon wafer is exposed to a hydrogen atmosphere.
  • hydrogen may be introduced not only from the front surface of the silicon wafer, but also from the side surface connecting the front surface and back surface.
  • an activation annealing step (S8b) is performed.
  • the silicon wafer is annealed for the purpose of at least one of forming donors and eliminating point defects.
  • the silicon wafer is annealed at a temperature range of 200°C to 500°C while exposed to an inert gas atmosphere such as nitrogen. In this way, hydrogen and point defects in the silicon wafer react to form donors.
  • the n-type buffer layer 2 shown in FIG. 1 is formed.
  • the layer thus formed is the second buffer layer, and the step of irradiating the charged particle beam (S6b), the step of introducing hydrogen (S7b), and the activation annealing step (S8b) are collectively referred to as the step of forming the second buffer layer.
  • the thickness of the n-type buffer layer 2 in the first direction X can be increased by lengthening the annealing time.
  • the annealing temperature range is preferably 200°C to 500°C. If the annealing temperature is lower than 200°C, the efficiency of donor formation decreases. If the annealing temperature is higher than 500°C, the annihilation of donors becomes significant.
  • a process (S9b) of forming an electrode on the back surface is carried out.
  • an electrode is formed on the second main surface 1b.
  • a back electrode 11 (cathode electrode) is formed on the second main surface 1b.
  • a semiconductor device 100 including a buffer layer can be obtained in which the occurrence of high resistance regions as shown in FIG. 1 is suppressed.
  • FIG. 10 is a distribution diagram of carrier concentration in each of the semiconductor substrates containing different oxygen concentrations.
  • the horizontal axis indicates the distance from the back surface of the semiconductor substrate, and the vertical axis indicates the carrier concentration in the semiconductor substrate.
  • Sample 1, Sample 2, Sample 3, and Sample 4 are semiconductor devices containing different oxygen concentrations, and the oxygen concentration in the silicon wafer increases in the order of Sample 1, Sample 2, Sample 3, and Sample 4. In other words, Sample 1 has the highest oxygen concentration.
  • all of the semiconductor devices are processed under the same conditions in the step of irradiating the charged particle beam and the step of activating annealing. Note that the semiconductor devices related to Sample 1, Sample 2, Sample 3, and Sample 4 are all processed in the step of activating annealing at an annealing temperature of 350° C. for 4 hours.
  • the distribution of carrier concentration changes when the oxygen concentration contained in different silicon wafers differs.
  • the distance from the back surface to the end of the high resistance region in sample 1, which has a high oxygen concentration, is longer than the distance from the back surface to the end of the high resistance region in sample 4, which has a low oxygen concentration.
  • the higher the oxygen concentration the larger the range in the depth direction of the high resistance region (the distance from the back surface to the end of the high resistance region in the depth direction).
  • the depth L of the region where the high resistance region occurs (the distance from the back surface to the end of the high resistance region in the depth direction) in the semiconductor device obtained by the manufacturing method of the semiconductor device not including the step of introducing hydrogen is expressed by the following formula (1).
  • the depth L is the distance (unit: cm) from the second main surface 1b in the first direction X.
  • Rp is the irradiation range (unit: cm) of the charged particle beam in the step of irradiating the charged particle beam.
  • D1 is the diffusion constant (unit: cm 2 /sec) of hydrogen in the step of performing activation annealing.
  • t1 is the annealing time (unit: seconds) in the step of performing activation annealing.
  • the irradiation range of the charged particle beam at the time of the irradiation is the irradiation range Rp used in the formula (1).
  • the irradiation range Rp used in the formula (1) is the irradiation range of the charged particle beam when the charged particle beam is irradiated to the area closest to the surface of the silicon wafer.
  • the hydrogen diffusion constant D1 is expressed by the following formula (2).
  • D01 is a frequency factor (unit: cm2 /sec).
  • Ea1 is the activation energy (unit: eV) of hydrogen diffusion in the activation annealing step.
  • T1 is the annealing temperature (unit: K) in the activation annealing step.
  • k is the Boltzmann constant (unit: eV/K).
  • the diffusion constant D1 of hydrogen is expressed by the following formula (3).
  • the diffusion constant D1 of hydrogen is expressed by the following formula (4).
  • the diffusion constant D1 of hydrogen is expressed by the following formula (5).
  • the depth L of the region where the high resistance region occurs can be predicted by substituting the diffusion constant D 1 of hydrogen into formula (1). Then, by introducing hydrogen into the silicon wafer so that the depth of the region where hydrogen is introduced is equal to or greater than this depth L, the occurrence of the high resistance region can be effectively suppressed.
  • the oxygen concentration contained in the silicon wafer is 1 ⁇ 10 17 cm ⁇ 3 or more
  • the depth L is expressed by the formula shown in formula (6) below.
  • the oxygen concentration contained in the silicon wafer is less than 1 ⁇ 10 17 cm ⁇ 3 and equal to or greater than 1 ⁇ 10 15 cm ⁇ 3
  • the depth L is expressed by the formula shown in formula (7) below.
  • the oxygen concentration contained in the silicon wafer is less than 1 ⁇ 10 15 cm ⁇ 3
  • the depth L is expressed by the formula shown in formula (8) below.
  • FIG. 11 is a schematic distribution diagram of hydrogen concentration in the semiconductor device 100 (Example 3) obtained by the manufacturing method of the semiconductor device 100 shown in FIG. 9.
  • the horizontal axis indicates the distance (unit: ⁇ m) from the surface (first main surface 1a) of the semiconductor substrate 200
  • the vertical axis indicates the hydrogen concentration (unit: cm ⁇ 3 ) in the semiconductor substrate 200.
  • the graph of Example 3 in FIG. 11 shows the hydrogen concentration originally contained in the silicon wafer in a region away from the back surface (second main surface 1b) to the front surface side (an internal region whose distance from the back surface is greater than the depth L of the region where the high resistance region occurs).
  • the depth of the region where hydrogen is introduced is greater than the depth L of the region where the high resistance region occurs. In this way, it is preferable to make the region where hydrogen is introduced as large as possible. Therefore, it is preferable that the depth from the back surface of the region where hydrogen is introduced is greater than the depth L of the region where the high resistance region occurs, and the hydrogen concentration in the region where hydrogen is introduced is greater than the hydrogen concentration originally contained in the silicon wafer in the region (internal region) away from the back surface to the front surface side.
  • the preferred range of the depth of the region into which hydrogen is introduced in the step of introducing hydrogen (the distance from the back surface to the end of the region into which hydrogen is introduced that is located on the inner region side: ⁇ ( D2 ⁇ t2)) is represented by the following formula (9).
  • D2 is the diffusion constant of hydrogen in the step of introducing hydrogen (unit: cm2 /sec).
  • t2 is the annealing time in the step of introducing hydrogen (unit: seconds).
  • the hydrogen diffusion constant D2 is expressed by the following formula (10).
  • D02 is a frequency factor (unit: cm2 /sec).
  • Ea2 is the activation energy of hydrogen diffusion in the hydrogen introduction step (unit: eV).
  • T2 is the annealing temperature in the hydrogen introduction step (unit: K).
  • the diffusion constant D 2 of hydrogen in the step of introducing hydrogen is expressed by the following formula (11).
  • the diffusion constant D 2 of hydrogen in the step of introducing hydrogen is expressed by the following formula (12).
  • the diffusion constant D 2 of hydrogen in the step of introducing hydrogen is expressed by the following formula (13).
  • the annealing time t2 and temperature T2 in the step of introducing hydrogen are preferably determined using the depth L so as to satisfy the relational expression shown in the following formula (14) when the oxygen concentration contained in the silicon wafer is 1 ⁇ 10 17 cm -3 or more.
  • the annealing time t2 and temperature T2 in the step of introducing hydrogen are preferably determined so as to satisfy the relational expression shown in the following formula (15) when the oxygen concentration contained in the silicon wafer is less than 1 ⁇ 10 17 cm -3 and 1 ⁇ 10 15 cm -3 or more.
  • the annealing time t2 and temperature T2 in the step of introducing hydrogen are preferably determined so as to satisfy the relational expression shown in the following formula (16) when the oxygen concentration contained in the silicon wafer is less than 1 ⁇ 10 15 cm -3 .
  • the manufacturing method of the semiconductor device 100 according to the second embodiment may include a step of measuring the oxygen concentration. Specifically, the oxygen concentration contained in the silicon wafer is measured by secondary ion mass spectrometry. The oxygen concentration contained in the silicon wafer changes after the step of forming the surface structure (S2b) is performed. Therefore, it is preferable to perform the step of measuring the oxygen concentration after the step of forming the surface structure (S2b).
  • the process of forming a surface structure (S2b), the process of forming a first buffer layer (S4b), the process of forming a back surface structure (S5b), and the process of forming an electrode on the back surface (S9b) can be modified as appropriate depending on the type of semiconductor device 100.
  • the depth of the region into which hydrogen is introduced in the semiconductor substrate 200 is defined as L.
  • the Boltzmann constant is defined as k.
  • the annealing time is defined as t1
  • the annealing temperature is defined as T1.
  • the step (S7b) of introducing hydrogen includes at least a step of annealing the semiconductor substrate 200 in at least one of a state in which the semiconductor substrate 200 is in contact with a film containing hydrogen or a state in which the semiconductor substrate 200 is exposed to a hydrogen atmosphere.
  • the annealing time is t2 and the annealing temperature is T2.
  • the annealing time t2 and the annealing temperature T2 satisfy the relational expression L ⁇ 3.8 ⁇ 10 5 ⁇ e ⁇ ( ⁇ 2.19)/(k ⁇ T2) ⁇ ⁇ t2 ⁇ when the oxygen concentration contained in the semiconductor substrate 200 is 1 ⁇ 10 17 cm ⁇ 3 or more.
  • the annealing time t2 and the annealing temperature T2 satisfy the relational expression L ⁇ 5.3 ⁇ 10-3 ⁇ e ⁇ (-1.15)/(k ⁇ T2) ⁇ ⁇ t2 ⁇ when the oxygen concentration contained in the semiconductor substrate 200 is less than 1 ⁇ 1017 cm- 3 and is equal to or greater than 1 ⁇ 1015 cm - 3 .
  • the annealing time t2 and the annealing temperature T2 satisfy the relational expression L ⁇ 9.4 ⁇ 10-3 ⁇ e ⁇ (-0.48)/(k ⁇ T2) ⁇ ⁇ t2 ⁇ when the oxygen concentration contained in the semiconductor substrate 200 is less than 1 ⁇ 1015 cm -3.
  • the manufacturing method of the semiconductor device 100 includes a step of forming an element structure in the semiconductor substrate 200 and a step of measuring the oxygen concentration of the semiconductor substrate 200.
  • the step of measuring the oxygen concentration is carried out after the step (S2b) of forming a surface structure as a step of forming the element structure.
  • the oxygen concentration in the silicon wafer can be measured.
  • a semiconductor device 100 that includes a buffer layer in which the occurrence of high resistance regions is suppressed.
  • the electrode material, film formation method, impurity concentration in the p-type region or n-type region, etc. may be changed to match the general design conditions of the semiconductor device 100.
  • MOSFETs Metal Oxide Semiconductor Field Effect Transistors
  • SBDs Schottky Barrier Diodes
  • Thyristors may be manufactured by the manufacturing method of the semiconductor device 100 according to the first and second embodiments.
  • 1 n - type drift layer 1a first main surface, 1b second main surface, 2 n type buffer layer, 3 p + type collector layer, 4 p type contact layer, 5 p type base layer, 6 n + type emitter layer, 7 gate insulating film, 8 gate electrode, 9 interlayer insulating film, 10 front surface electrode, 11 rear surface electrode, 21 n + type cathode layer, 22 p + type anode layer, 100 semiconductor device, 200 semiconductor substrate, D1, D2 hydrogen diffusion constant, L depth, X first direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

According to the present invention, there is obtained a semiconductor device with a buffer layer, for which the generation of a high-resistance region is suppressed. In this invention, a method for producing the semiconductor device comprises: a step of preparing a semiconductor substrate (S1a); a step of introducing hydrogen into the semiconductor substrate (S2a); a step of irradiating the semiconductor substrate with a charged particle beam (S7a); and, after the step of irradiating with a charged particle beam (S7a), a step of performing activation annealing on the semiconductor substrate (S8a). The step of introducing hydrogen (S2a) is performed before the step of performing activation annealing (S8a).

Description

半導体装置の製造方法Method for manufacturing semiconductor device
 本開示は、半導体装置の製造方法に関する。 This disclosure relates to a method for manufacturing a semiconductor device.
 従来、パワーダイオードや絶縁ゲートバイポーラトランジスタ(IGBT)等の半導体装置が知られている。これらの半導体装置の薄板化は損失低減に有効であるが、スナップオフに対する余裕度の低下および発振といった問題が発生する恐れがある。このような問題の発生を抑制するため、たとえばプロトン照射およびアニール処理によって、半導体装置にバッファ層が形成される。例えば、国際公開第2021/181644号公報に開示される半導体装置の製造方法は、リンまたはヒ素をドープした半導体基板を貫通させるように、イオンまたは電子線を照射する工程と、当該半導体基板に水素プラズマを照射してアニールを行う工程とを備える。  Conventionally, semiconductor devices such as power diodes and insulated gate bipolar transistors (IGBTs) are known. Thinning these semiconductor devices is effective in reducing losses, but can cause problems such as a decrease in the margin for snap-off and oscillation. To prevent such problems from occurring, a buffer layer is formed in the semiconductor device, for example, by proton irradiation and annealing. For example, the method for manufacturing a semiconductor device disclosed in International Publication No. 2021/181644 includes a step of irradiating an ion or electron beam so as to penetrate a semiconductor substrate doped with phosphorus or arsenic, and a step of irradiating the semiconductor substrate with hydrogen plasma to perform annealing.
国際公開第2021/181644号公報International Publication No. 2021/181644
 しかし、半導体基板にイオンまたは電子線を照射すると、余分な点欠陥が生じ、高抵抗領域が残存することがある。このような高抵抗領域は、半導体装置の耐圧低下やリーク電流の発生の原因になり、デバイス特性の悪化を招く。 However, when a semiconductor substrate is irradiated with an ion or electron beam, extra point defects can occur, leaving behind high-resistance regions. Such high-resistance regions can cause a decrease in the breakdown voltage of the semiconductor device and the generation of leakage current, resulting in a deterioration of device characteristics.
 本開示は、上記のような課題を解決するために成されたものであり、本開示の目的は、高抵抗領域の発生が抑制された、バッファ層を含む半導体装置を提供することである。 This disclosure has been made to solve the problems described above, and the purpose of this disclosure is to provide a semiconductor device including a buffer layer in which the occurrence of high resistance regions is suppressed.
 本開示に従った半導体装置の製造方法は、半導体基板を準備する工程と、半導体基板に水素を導入する工程と、半導体基板に荷電粒子線を照射する工程と、荷電粒子線を照射する工程の後に、半導体基板に活性化アニールする工程とを備える。水素を導入する工程は、活性化アニールする工程の前に実施される。 The method for manufacturing a semiconductor device according to the present disclosure includes the steps of preparing a semiconductor substrate, introducing hydrogen into the semiconductor substrate, irradiating the semiconductor substrate with a charged particle beam, and, after the step of irradiating the charged particle beam, performing activation annealing on the semiconductor substrate. The step of introducing hydrogen is performed before the step of performing activation annealing.
 上記によれば、高抵抗領域の発生が抑制された、バッファ層を含む半導体装置を得ることができる。 As a result of the above, it is possible to obtain a semiconductor device including a buffer layer in which the occurrence of high resistance regions is suppressed.
実施の形態1に係る半導体装置の断面図である。1 is a cross-sectional view of a semiconductor device according to a first embodiment; 高抵抗領域を含まない半導体基板における、キャリア濃度の分布図である。1 is a distribution diagram of carrier concentration in a semiconductor substrate not including a high-resistance region. 高抵抗領域を含まない半導体基板における、水素濃度の分布図である。1 is a distribution diagram of hydrogen concentration in a semiconductor substrate not including a high-resistance region. 高抵抗領域を含む半導体基板における、キャリア濃度の分布図である。1 is a distribution diagram of carrier concentration in a semiconductor substrate including a high-resistance region. 高抵抗領域を含む半導体基板における、水素濃度の分布図である。1 is a distribution diagram of hydrogen concentration in a semiconductor substrate including a high-resistance region. 実施の形態1に係る半導体装置の製造方法のフローチャートである。1 is a flowchart of a method for manufacturing a semiconductor device according to a first embodiment. 図6に示した半導体装置の製造方法により得られた半導体装置における水素濃度の概略分布図である。7 is a schematic distribution diagram of hydrogen concentration in a semiconductor device obtained by the semiconductor device manufacturing method shown in FIG. 6. 図6に示した半導体装置の製造方法により得られた半導体装置の変形例を示す断面図である。7 is a cross-sectional view showing a modified example of the semiconductor device obtained by the manufacturing method of the semiconductor device shown in FIG. 6. 実施の形態2に係る半導体装置の製造方法のフローチャートである。10 is a flowchart of a method for manufacturing a semiconductor device according to a second embodiment. 異なる酸素濃度を含む半導体基板のそれぞれにおける、キャリア濃度の分布図である。1 is a diagram showing the distribution of carrier concentrations in semiconductor substrates containing different oxygen concentrations; 図9に示した半導体装置の製造方法により得られた半導体装置における水素濃度の概略分布図である。10 is a schematic distribution diagram of hydrogen concentration in a semiconductor device obtained by the manufacturing method of a semiconductor device shown in FIG. 9 .
 以下、本開示の実施の形態を説明する。なお、特に言及しない限り、以下の図面において同一または対応する部分には同一の参照番号を付し、その説明は繰り返さない。 The following describes an embodiment of the present disclosure. Unless otherwise specified, the same or corresponding parts in the following drawings are given the same reference numbers and their description will not be repeated.
 実施の形態1.
 <半導体装置の構成>
 図1は、実施の形態1に係る半導体装置100の断面図である。図1は、後述する図6に示した半導体装置100の製造方法により得られた半導体装置100である。
Embodiment 1.
<Configuration of Semiconductor Device>
1 is a cross-sectional view of a semiconductor device 100 according to a first embodiment of the present invention. The semiconductor device 100 shown in FIG. 1 is obtained by a manufacturing method of the semiconductor device 100 shown in FIG.
 図1に示す半導体装置100は、たとえば、パワー半導体装置として用いられる縦型ダイオードであって、半導体基板200と、表面電極10と、裏面電極11とを主に備える。半導体基板200は、第1主面1aと第2主面1bを有する。第2主面1bは、第1主面1aの反対側にある面である。表面電極10は、第1主面1aに接続されている。裏面電極11は、第2主面1bに接続されている。 The semiconductor device 100 shown in FIG. 1 is, for example, a vertical diode used as a power semiconductor device, and mainly comprises a semiconductor substrate 200, a surface electrode 10, and a back electrode 11. The semiconductor substrate 200 has a first main surface 1a and a second main surface 1b. The second main surface 1b is the surface opposite to the first main surface 1a. The surface electrode 10 is connected to the first main surface 1a. The back electrode 11 is connected to the second main surface 1b.
 半導体基板200は、p型アノード層22と、n型ドリフト層1と、n型バッファ層2と、n型カソード層21とを含む。図1に示されるように、第2主面1bからみて第1主面1aが配置されている方向を第1方向Xとすると、半導体基板200において、第2主面1bから第1方向Xにn型カソード層21、n型バッファ層2、n型ドリフト層1、p型アノード層22が順番に形成されている。具体的には、第1主面1aにp型アノード層22が形成されている。第2主面1bにn型カソード層21が形成されている。p型アノード層22とn型カソード層21との間にn型ドリフト層1が形成されている。p型アノード層22に接するようにn型ドリフト層1が形成されている。n型ドリフト層1とn型カソード層21との間にn型バッファ層2が形成されている。n型バッファ層2は、n型ドリフト層1とn型カソード層21との両方と接するように形成されている。n型バッファ層2は、n型ドリフト層1よりも、高いn型不純物濃度を有している。n型カソード層21は、n型バッファ層2よりも、高いn型不純物濃度を有している。 The semiconductor substrate 200 includes a p + type anode layer 22, an n - type drift layer 1, an n type buffer layer 2, and an n + type cathode layer 21. As shown in FIG. 1, if the direction in which the first main surface 1a is disposed as viewed from the second main surface 1b is the first direction X, the n + type cathode layer 21, the n type buffer layer 2, the n - type drift layer 1, and the p + type anode layer 22 are formed in this order in the semiconductor substrate 200 from the second main surface 1b in the first direction X. Specifically, the p + type anode layer 22 is formed on the first main surface 1a. The n + type cathode layer 21 is formed on the second main surface 1b. The n - type drift layer 1 is formed between the p + type anode layer 22 and the n + type cathode layer 21. The n - type drift layer 1 is formed so as to be in contact with the p + type anode layer 22. An n -type buffer layer 2 is formed between the n- type drift layer 1 and the n + type cathode layer 21. The n-type buffer layer 2 is formed so as to be in contact with both the n - type drift layer 1 and the n + type cathode layer 21. The n - type buffer layer 2 has a higher n-type impurity concentration than the n-type drift layer 1. The n + type cathode layer 21 has a higher n-type impurity concentration than the n-type buffer layer 2.
 ここで、半導体基板200に含まれるバッファ層について説明する。後述するようにバッファ層を形成するプロセスは、プロトンなどの荷電粒子線を半導体基板(シリコンウエハ)に照射する工程を含む。バッファ層の形成にはドナーが寄与する。このドナーは、シリコンウエハである半導体基板200に含まれる水素と点欠陥とが複合化するプロセスを利用して形成される。点欠陥は、結晶格子の局所的な乱れである。点欠陥は、空孔(Vacancy)タイプと、格子間原子(Interstitial Silicon)タイプとの2種類がある。一般的に、点欠陥と水素とが複合化されると、点欠陥のダングリングボンドが水素によって遮蔽される。その結果、当該ダングリングボンドはバンド内準位を示さない。一方、水素による遮蔽効果が不十分で、点欠陥のダングリングボンドが残ると、浅いドナー型準位が形成される。この物理現象を利用することによって、シリコンウエハに形成されるドナーを制御することで、半導体基板200内のキャリア濃度を制御するようにバッファ層を形成することができる。その結果、パワー半導体装置のリバースリカバリー時およびターンオフ時のスイッチング波形の時間変化が緩やかとなり、スナップオフおよび発振を抑制することができる。後述するように、バッファ層を形成するプロセスにおいては、プロトンを半導体基板に照射するプロセスを用いることが多いが、たとえば、ヘリウムイオンなどの水素の同位体を荷電粒子線として半導体基板に照射するプロセスを用いてもよい。 Here, the buffer layer contained in the semiconductor substrate 200 will be described. As described later, the process of forming the buffer layer includes a step of irradiating a semiconductor substrate (silicon wafer) with a charged particle beam such as a proton. Donors contribute to the formation of the buffer layer. The donors are formed by utilizing a process in which hydrogen and point defects contained in the semiconductor substrate 200, which is a silicon wafer, are combined. Point defects are localized disturbances in the crystal lattice. There are two types of point defects: a vacancy type and an interstitial silicon type. In general, when a point defect is combined with hydrogen, the dangling bond of the point defect is shielded by hydrogen. As a result, the dangling bond does not show an intraband level. On the other hand, if the shielding effect of hydrogen is insufficient and the dangling bond of the point defect remains, a shallow donor type level is formed. By utilizing this physical phenomenon, the donors formed in the silicon wafer can be controlled to form a buffer layer so as to control the carrier concentration in the semiconductor substrate 200. As a result, the time change of the switching waveform during reverse recovery and turn-off of the power semiconductor device becomes gentle, and snap-off and oscillation can be suppressed. As described later, in the process of forming the buffer layer, a process of irradiating the semiconductor substrate with protons is often used, but for example, a process of irradiating the semiconductor substrate with a charged particle beam of hydrogen isotopes such as helium ions may also be used.
 半導体基板にバッファ層を形成するプロセスでは、荷電粒子線を照射した後に、適切なアニール処理が必要である。半導体基板の裏面(第2主面1b)に荷電粒子線を照射した後に、当該半導体基板にアニール処理を行うと、裏面側においてドナーが形成された領域が広がる。その結果、所望の厚みを有するバッファ層を形成することができる。ただし、半導体基板の種類によって、バッファ層の広がり方(第1方向Xにおけるバッファ層の厚み)が異なることがある。このバッファ層の第1方向Xにおける厚みが小さいと、半導体基板の裏面側に高抵抗領域が残る。その結果、高抵抗領域が半導体装置の耐圧低下やリーク電流の発生の原因になり、デバイス特性の悪化を招く。 In the process of forming a buffer layer on a semiconductor substrate, a suitable annealing process is required after irradiation with a charged particle beam. When the back surface (second main surface 1b) of the semiconductor substrate is irradiated with a charged particle beam and then annealed, the region in which donors are formed expands on the back surface side. As a result, a buffer layer having a desired thickness can be formed. However, the way in which the buffer layer expands (the thickness of the buffer layer in the first direction X) may differ depending on the type of semiconductor substrate. If the thickness of this buffer layer in the first direction X is small, a high resistance region remains on the back surface side of the semiconductor substrate. As a result, the high resistance region causes a decrease in the breakdown voltage of the semiconductor device and the generation of leakage current, leading to deterioration of device characteristics.
 ここで、半導体基板に含まれる高抵抗領域に関する調査結果を説明する。二次イオン質量分析法(Secondary Ion Mass Spectrometry)によって半導体基板に含まれる水素濃度を計測し、広がり抵抗測定によって半導体基板に含まれるキャリア濃度を計測した。 Here, we explain the results of our investigation into high-resistance regions contained in semiconductor substrates. We measured the hydrogen concentration contained in the semiconductor substrates using secondary ion mass spectrometry, and the carrier concentration contained in the semiconductor substrates using spreading resistance measurements.
 図2は、高抵抗領域を含まない半導体基板における、キャリア濃度の分布図である。図2において、横軸は半導体基板の裏面からの距離(単位:μm)を示し、縦軸は半導体基板におけるキャリア濃度(単位:cm-3)を示す。図3は、高抵抗領域を含まない半導体基板における水素濃度の分布図である。図3において、横軸は半導体基板の裏面からの距離(単位:μm)を示し、縦軸は半導体基板における水素濃度(単位:cm-3)を示す。図4は、高抵抗領域を含む半導体基板におけるキャリア濃度の分布図である。図4において、横軸は半導体基板の裏面からの距離を示し、縦軸は半導体基板におけるキャリア濃度を示す。図5は、高抵抗領域を含む半導体基板における水素濃度の分布図である。図5において、横軸は半導体基板の裏面からの距離を示し、縦軸は半導体基板における水素濃度を示す。なお、図2から図5に示される高抵抗領域を含む半導体基板および高抵抗領域を含まない半導体基板は、それぞれ同じ条件下でプロトンによる照射とアニール処理が実施されて製造されたものである。また、二次イオン質量分析法では5×1016cm-3以下の水素濃度が検出できないため、図2および図5において水素濃度が5×1016cm-3以下の領域ではバックグラウンド信号が示される。 FIG. 2 is a distribution diagram of carrier concentration in a semiconductor substrate not including a high resistance region. In FIG. 2, the horizontal axis indicates the distance (unit: μm) from the back surface of the semiconductor substrate, and the vertical axis indicates the carrier concentration (unit: cm −3 ) in the semiconductor substrate. FIG. 3 is a distribution diagram of hydrogen concentration in a semiconductor substrate not including a high resistance region. In FIG. 3, the horizontal axis indicates the distance (unit: μm) from the back surface of the semiconductor substrate, and the vertical axis indicates the hydrogen concentration (unit: cm −3 ) in the semiconductor substrate. FIG. 4 is a distribution diagram of carrier concentration in a semiconductor substrate including a high resistance region. In FIG. 4, the horizontal axis indicates the distance from the back surface of the semiconductor substrate, and the vertical axis indicates the carrier concentration in the semiconductor substrate. FIG. 5 is a distribution diagram of hydrogen concentration in a semiconductor substrate including a high resistance region. In FIG. 5, the horizontal axis indicates the distance from the back surface of the semiconductor substrate, and the vertical axis indicates the hydrogen concentration in the semiconductor substrate. Note that the semiconductor substrate including a high resistance region and the semiconductor substrate not including a high resistance region shown in FIG. 2 to FIG. 5 were manufactured by carrying out proton irradiation and annealing treatment under the same conditions. Furthermore, since secondary ion mass spectrometry cannot detect hydrogen concentrations of 5×10 16 cm −3 or less, background signals are shown in regions in FIGS. 2 and 5 where the hydrogen concentration is 5×10 16 cm −3 or less.
 図2および図3から分かるように、高抵抗領域を含まない半導体基板において、ドナー発生領域すべてにおいて、水素濃度は5×1016cm-3以上であり、水素が検出された。一方、図4から分かるように、高抵抗領域を含む半導体基板において、裏面からの距離が5μm以下の領域に高抵抗領域が存在する。高抵抗領域におけるキャリア濃度は、ドナー発生領域におけるキャリア濃度よりも低い。また、図5から分かるように、裏面からの距離が5μm以下の領域は水素が検出されなかった領域である。なお、図5における裏面からの距離が5μm以下の領域における水素濃度のデータは、二次イオン質量分析法のバックグラウンド信号を示しており、当該領域の水素濃度は5×1016cm-3以下である。図4および図5から分かるように、高抵抗領域を示す裏面からの距離と、水素が検出されない裏面からの距離とはほぼ一致した。 As can be seen from Figures 2 and 3, in the semiconductor substrate not including a high resistance region, the hydrogen concentration was 5 x 10 16 cm -3 or more in all the donor generation regions, and hydrogen was detected. On the other hand, as can be seen from Figure 4, in the semiconductor substrate including a high resistance region, a high resistance region exists in a region that is 5 μm or less away from the back surface. The carrier concentration in the high resistance region is lower than the carrier concentration in the donor generation region. Also, as can be seen from Figure 5, the region that is 5 μm or less away from the back surface is a region where hydrogen was not detected. Note that the data on the hydrogen concentration in the region that is 5 μm or less away from the back surface in Figure 5 indicates the background signal of secondary ion mass spectrometry, and the hydrogen concentration in the region is 5 x 10 16 cm -3 or less. As can be seen from Figures 4 and 5, the distance from the back surface that indicates the high resistance region and the distance from the back surface where hydrogen was not detected were almost the same.
 アニール処理におけるアニール温度を変更しても、この高抵抗領域の外周(高抵抗領域とドナー発生領域との境界部)の裏面からの距離と、水素が検出されない領域の外周(水素が検出されない領域と水素が検出される領域との境界部)の裏面からの距離とがほぼ一致するという結果は変わらなかった。つまり、半導体基板において水素の濃度が低い領域では、高抵抗領域が発生すると考えられる。また、後述するが、高抵抗領域を示す裏面からの距離は、半導体基板の酸素濃度に依存することが明らかになった。 Even if the annealing temperature in the annealing process was changed, the result that the distance from the back surface of the periphery of this high resistance region (the boundary between the high resistance region and the donor generation region) and the distance from the back surface of the periphery of the region where hydrogen is not detected (the boundary between the region where hydrogen is not detected and the region where hydrogen is detected) remained almost the same. In other words, it is believed that high resistance regions occur in regions of the semiconductor substrate where the concentration of hydrogen is low. In addition, as will be described later, it was revealed that the distance from the back surface indicating the high resistance region depends on the oxygen concentration of the semiconductor substrate.
 ここで、本実施の形態に係る半導体装置100の製造方法の特徴は、活性化アニールをする工程の前に、半導体基板に水素を導入する工程を実施した点である。上記の実験結果を踏まえて、後述する半導体装置100の製造方法によれば、高抵抗領域の発生が抑制されたバッファ層2を含む半導体装置100を得ることができる。その結果、デバイス特性の悪化が防止されたパワー半導体装置を得ることができる。 The manufacturing method of the semiconductor device 100 according to this embodiment is characterized in that a step of introducing hydrogen into the semiconductor substrate is carried out before the activation annealing step. Based on the above experimental results, the manufacturing method of the semiconductor device 100 described below can obtain a semiconductor device 100 including a buffer layer 2 in which the occurrence of high resistance regions is suppressed. As a result, a power semiconductor device in which deterioration of device characteristics is prevented can be obtained.
 <半導体装置100の製造方法>
 図6は、実施の形態1に係る半導体装置100の製造方法のフローチャートである。なお、ここでは、半導体装置100の製造方法の一例として、図1に示されるような縦型ダイオードの製造方法について説明する。図6に示されるように、本実施の形態に係る半導体装置100の製造方法では、まず半導体基板200を準備する工程(S1a)を実施する。この工程(S1a)では半導体装置100を構成する半導体基板200としてのシリコンウエハを準備する。シリコンウエハは、n型またはn型のインゴットから切り出される。シリコンウエハは表面(第1主面1a)と、表面の反対側の裏面とを有する。シリコンウエハにおける水素濃度は、たとえば、1×1013cm-3以下である。
<Method of Manufacturing Semiconductor Device 100>
FIG. 6 is a flow chart of a method for manufacturing the semiconductor device 100 according to the first embodiment. Here, as an example of a method for manufacturing the semiconductor device 100, a method for manufacturing a vertical diode as shown in FIG. 1 will be described. As shown in FIG. 6, in the method for manufacturing the semiconductor device 100 according to the present embodiment, a step (S1a) of preparing a semiconductor substrate 200 is first performed. In this step (S1a), a silicon wafer is prepared as the semiconductor substrate 200 constituting the semiconductor device 100. The silicon wafer is cut out from an n-type or n −-type ingot. The silicon wafer has a front surface (first main surface 1a) and a back surface opposite to the front surface. The hydrogen concentration in the silicon wafer is, for example, 1×10 13 cm −3 or less.
 次に、水素を導入する工程(S2a)を実施する。この工程(S2a)では、第1方向Xにおいて表面から裏面にかけて水素が含侵される。具体的には、この工程(S2a)は、シリコンウエハが水素を含む膜に接している状態、若しくはシリコンウエハが水素雰囲気下に晒されている状態の少なくともいずれかの状態で、シリコンウエハにアニールする工程を含む。例えば、シリコンウエハが水素雰囲気下に晒されている状態で、1000℃~1300℃(627K~1027K)の温度範囲で、縦型炉などの炉中で当該シリコンウエハにアニールする。たとえば、1100℃でシリコンウエハに5時間アニールすると、シリコンウエハ全体に高濃度の水素を含侵させことができる。 Next, a step (S2a) of introducing hydrogen is carried out. In this step (S2a), hydrogen is impregnated from the front surface to the back surface in the first direction X. Specifically, this step (S2a) includes a step of annealing the silicon wafer in at least one of a state in which the silicon wafer is in contact with a film containing hydrogen or a state in which the silicon wafer is exposed to a hydrogen atmosphere. For example, in a state in which the silicon wafer is exposed to a hydrogen atmosphere, the silicon wafer is annealed in a furnace such as a vertical furnace at a temperature range of 1000°C to 1300°C (627K to 1027K). For example, annealing the silicon wafer at 1100°C for 5 hours can impregnate the entire silicon wafer with a high concentration of hydrogen.
 この工程(S2a)では、シリコンウエハに水素を含侵させることができれば、他の方法を用いてもよい。そのため、水素を導入する工程(S2a)は、シリコンウエハが水素を含む膜に接している状態、若しくはシリコンウエハが水素雰囲気下に晒されている状態の少なくともいずれかの状態でシリコンウエハにアニールする工程の他に、シリコンウエハを水素プラズマに晒す工程あるいは水素イオンを含む液体にシリコンウエハを浸漬させる工程を含んでいてもよい。水素を導入する工程(S2a)において、シリコンウエハの表面からだけでなく、表面と裏面とを接続する側面から水素を導入してもよい。 In this step (S2a), other methods may be used as long as hydrogen can be impregnated into the silicon wafer. Therefore, the step (S2a) of introducing hydrogen may include a step of exposing the silicon wafer to hydrogen plasma or a step of immersing the silicon wafer in a liquid containing hydrogen ions, in addition to a step of annealing the silicon wafer in at least one of a state in which the silicon wafer is in contact with a film containing hydrogen or a state in which the silicon wafer is exposed to a hydrogen atmosphere. In the step (S2a) of introducing hydrogen, hydrogen may be introduced not only from the front surface of the silicon wafer, but also from the side surface connecting the front surface and back surface.
 次に、表面構造を形成する工程(S3a)を実施する。この工程(S3a)では、シリコンウエハの第1主面1aに、半導体装置100の表面構造を形成する。具体的には、シリコンウエハの第1主面1aの表層部に、p型アノード層22が形成される。さらに、第1主面1a上に、p型アノード層に接続される表面電極10(アノード電極)が形成される。 Next, a step (S3a) of forming a surface structure is performed. In this step (S3a), the surface structure of the semiconductor device 100 is formed on the first main surface 1a of the silicon wafer. Specifically, a p + type anode layer 22 is formed on the surface layer of the first main surface 1a of the silicon wafer. Furthermore, a surface electrode 10 (anode electrode) connected to the p + type anode layer is formed on the first main surface 1a.
 次に、裏面を研削する工程(S4a)を実施する。この工程(S4a)では、シリコンウエハの裏面を研削する。具体的には、表面構造を保護した後に、CMP(Chemical Mechanical Polish)等の研削手段を用いて、シリコンウエハの裏面を研削する。この結果、半導体装置100として必要とされる厚みまで、シリコンウエハの厚みを薄くする。なお、研削後におけるシリコンウエハの裏面を第2主面1bとし、第1主面1aから第2主面1bまでの領域を半導体層とする。 Next, a step (S4a) of grinding the back surface is carried out. In this step (S4a), the back surface of the silicon wafer is ground. Specifically, after protecting the surface structure, the back surface of the silicon wafer is ground using a grinding method such as CMP (Chemical Mechanical Polish). As a result, the thickness of the silicon wafer is thinned to the thickness required for the semiconductor device 100. Note that the back surface of the silicon wafer after grinding is the second main surface 1b, and the region from the first main surface 1a to the second main surface 1b is the semiconductor layer.
 次に、第1バッファ層を形成する工程(S5a)を実施する。この工程(S5a)では、シリコンウエハの第2主面1bに、第1バッファ層を形成する。具体的には、第2主面1bに、リンなどのn型ドーパントイオンを注入することで、第2主面1bの表層部にn型層が形成される。なお、イオンの注入は、複数回実施されてもよい。また、第1バッファ層は、後述する第2バッファ層で代用可能であるため、第1バッファ層を形成する工程(S5a)は省略されてもよい。 Next, a step (S5a) of forming a first buffer layer is carried out. In this step (S5a), a first buffer layer is formed on the second main surface 1b of the silicon wafer. Specifically, an n-type layer is formed on the surface of the second main surface 1b by implanting n-type dopant ions such as phosphorus into the second main surface 1b. Note that the ion implantation may be carried out multiple times. Also, since the first buffer layer can be substituted with the second buffer layer described later, the step (S5a) of forming the first buffer layer may be omitted.
 次に、裏面構造を形成する工程(S6a)を実施する。この工程(S6a)では、シリコンウエハの第2主面1bに、半導体装置100の裏面構造を形成する。具体的には、シリコンウエハの第2主面1bの表層部に、n型カソード層21が形成される。また、n型カソード層21だけでなく、たとえば、p型カソード層を部分的に形成して、RFC(Relaxed Field of Cathod)ダイオードを製造してもよい。 Next, a step (S6a) of forming a back surface structure is performed. In this step (S6a), the back surface structure of the semiconductor device 100 is formed on the second main surface 1b of the silicon wafer. Specifically, an n + type cathode layer 21 is formed on the surface layer of the second main surface 1b of the silicon wafer. In addition to the n + type cathode layer 21, for example, a p + type cathode layer may be partially formed to manufacture a RFC (Relaxed Field of Cathode) diode.
 次に、荷電粒子線を照射する工程(S7a)を実施する。この工程(S7a)では、シリコンウエハに点欠陥を形成させる。具体的には、シリコンウエハの第2主面1bに、荷電粒子線を照射する。荷電粒子線は、たとえば、プロトンである。プロトンは、たとえば加速器を用いて照射される。加速器を用いることで、プロトンを数100KeV~数10MeVにまで加速させてシリコンウエハに照射する。プロトンのドーズ量は、例えば、1×1012~1×1015cm-2である。なお、荷電粒子線としてヘリウムイオンを照射してもよい。このようにすることで、シリコンウエハにおいて局所的に点欠陥が形成される。 Next, a step (S7a) of irradiating a charged particle beam is performed. In this step (S7a), point defects are formed in the silicon wafer. Specifically, the second main surface 1b of the silicon wafer is irradiated with a charged particle beam. The charged particle beam is, for example, protons. The protons are irradiated, for example, by using an accelerator. By using the accelerator, the protons are accelerated to several hundreds KeV to several tens MeV and irradiated onto the silicon wafer. The dose of the protons is, for example, 1×10 12 to 1×10 15 cm −2 . Note that helium ions may be irradiated as the charged particle beam. In this way, point defects are locally formed in the silicon wafer.
 なお、荷電粒子線を照射する工程(S7a)を実施しなくても、元来シリコンウエハは多少の点欠陥を含む。そのため、シリコンウエハに点欠陥があれば、荷電粒子線を照射する工程(S7a)は実施しなくてもよい。また、荷電粒子線を照射する工程(S7a)は、後述する活性化アニールをする工程(S8a)の前に実施されればよい。荷電粒子線を照射する工程(S7a)は、裏面構造を形成する工程(S6a)の直後に限らず、たとえば、裏面を研削する工程(S4a)の後に実施されてもよい。 Incidentally, even if the step of irradiating the charged particle beam (S7a) is not performed, silicon wafers inherently contain some point defects. Therefore, if the silicon wafer has point defects, the step of irradiating the charged particle beam (S7a) does not need to be performed. Furthermore, the step of irradiating the charged particle beam (S7a) may be performed before the step of performing activation annealing (S8a) described below. The step of irradiating the charged particle beam (S7a) is not limited to being performed immediately after the step of forming the back surface structure (S6a), and may be performed, for example, after the step of grinding the back surface (S4a).
 次に、活性化アニールをする工程(S8a)を実施する。この工程(S8a)では、ドナーの形成および点欠陥の消滅の少なくともいずれかを目的として、シリコンウエハにアニールする。具体的には、シリコンウエハが窒素等の不活性ガス雰囲気下に晒されている状態で、200℃~500℃の温度範囲で当該シリコンウエハにアニールする。このようにして、シリコンウエハ内の水素と点欠陥とが反応して、ドナーが形成される。その結果、図1に示されているn型バッファ層2が形成される。このようにして形成された層を第2バッファ層とし、荷電粒子線を照射する工程(S7a)および活性化アニールをする工程(S8a)をまとめて第2バッファ層を形成する工程とする。 Next, a step (S8a) of activation annealing is performed. In this step (S8a), the silicon wafer is annealed for the purpose of at least one of forming donors and eliminating point defects. Specifically, the silicon wafer is annealed at a temperature range of 200°C to 500°C while exposed to an inert gas atmosphere such as nitrogen. In this way, hydrogen in the silicon wafer reacts with the point defects to form donors. As a result, the n-type buffer layer 2 shown in FIG. 1 is formed. The layer thus formed is the second buffer layer, and the step (S7a) of irradiating the charged particle beam and the step (S8a) of activation annealing are collectively referred to as the step of forming the second buffer layer.
 なお、活性化アニールをする工程(S8a)において、アニールする時間を長くすれば、第1方向Xにおけるn型バッファ層2の厚みが増加する。また、活性化アニールをする工程(S8a)において、アニールする時の温度範囲は、200℃~500℃が好ましい。アニールする時の温度が200℃よりも低いと、ドナーが形成される効率が低下する。アニールする時の温度が500℃よりも高いと、ドナーの消滅が顕著になる。このようにしてシリコンウエハに上記第2バッファ層などの構造が形成されることで、当該シリコンウエハは半導体基板200として用いられる。 In the activation annealing step (S8a), if the annealing time is increased, the thickness of the n-type buffer layer 2 in the first direction X increases. In the activation annealing step (S8a), the annealing temperature range is preferably 200°C to 500°C. If the annealing temperature is lower than 200°C, the efficiency of donor formation decreases. If the annealing temperature is higher than 500°C, the annihilation of donors becomes significant. By forming structures such as the second buffer layer in this manner on the silicon wafer, the silicon wafer is used as the semiconductor substrate 200.
 次に、裏面に電極を形成する工程(S9a)を実施する。この工程(S9a)では、第2主面1bに電極を形成する。具体的には、第2主面1b上に裏面電極11(カソード電極)が形成される。このようにして、図1に示されるような高抵抗領域の発生が抑制された、バッファ層2を含む半導体装置100を得ることができる。 Next, a step (S9a) of forming an electrode on the back surface is carried out. In this step (S9a), an electrode is formed on the second main surface 1b. Specifically, a back electrode 11 (cathode electrode) is formed on the second main surface 1b. In this manner, a semiconductor device 100 including a buffer layer 2 in which the occurrence of high resistance regions as shown in FIG. 1 is suppressed can be obtained.
 ここで、半導体基板内の水素濃度の好ましい範囲について説明する。図7は、上述の半導体装置100の製造方法により得られた半導体装置100における水素濃度の概略分布図である。図7において、横軸は半導体基板200の表面からの距離(単位:μm)を示し、縦軸は半導体基板200における水素濃度(単位:cm-3)を示す。実施例1は、水素を導入する工程(S2a)において、アニールする温度が低く、アニールする時間が短い条件とされたシリコンウエハである。実施例2は、水素を導入する工程(S2a)において、アニールする温度が十分高く、アニールする時間が十分長い条件とされたシリコンウエハである。 Here, a preferred range of hydrogen concentration in the semiconductor substrate will be described. Fig. 7 is a schematic distribution diagram of hydrogen concentration in the semiconductor device 100 obtained by the above-mentioned manufacturing method of the semiconductor device 100. In Fig. 7, the horizontal axis indicates the distance (unit: μm) from the surface of the semiconductor substrate 200, and the vertical axis indicates the hydrogen concentration (unit: cm -3 ) in the semiconductor substrate 200. Example 1 is a silicon wafer in which the annealing temperature is low and the annealing time is short in the step (S2a) of introducing hydrogen. Example 2 is a silicon wafer in which the annealing temperature is sufficiently high and the annealing time is sufficiently long in the step (S2a) of introducing hydrogen.
 図7から分かるように、実施例2に係るシリコンウエハでは、半導体装置100となった場合での半導体基板(半導体層)中の水素濃度が表面から裏面まで第1方向Xにおいてほぼ一定になる。一方、実施例1に係るシリコンウエハでは、シリコンウエハの表面および裏面から当該シリコンウエハの中央に向かって水素濃度が単調に減少する。このため、半導体装置100となった場合での半導体基板(半導体層)中の水素濃度は、第1主面1aから半導体基板の厚さ方向の中央部に向かって単調に減少する。また、半導体基板における裏面である第2主面1b側では水素濃度が第1主面1a側の水素濃度より低い状態となる。このように、水素を導入する工程(S2a)において、アニールする時間が十分長い場合あるいはアニールする温度が十分高い場合、半導体基板における水素濃度は表面から裏面まで第1方向Xにおいてほぼ一定になる。バッファ層2内の高抵抗領域を十分抑制するためには、半導体層内の水素濃度が一定になる領域において、当該水素濃度が1×1014cm-3以上となることが好ましく、1×1015cm-3以上となることがより好適である。 As can be seen from FIG. 7, in the silicon wafer according to the second embodiment, the hydrogen concentration in the semiconductor substrate (semiconductor layer) when the semiconductor device 100 is formed is almost constant in the first direction X from the front surface to the back surface. On the other hand, in the silicon wafer according to the first embodiment, the hydrogen concentration monotonically decreases from the front and back surfaces of the silicon wafer toward the center of the silicon wafer. Therefore, the hydrogen concentration in the semiconductor substrate (semiconductor layer) when the semiconductor device 100 is formed is monotonically decreased from the first main surface 1a toward the center in the thickness direction of the semiconductor substrate. In addition, the hydrogen concentration on the second main surface 1b side, which is the back surface of the semiconductor substrate, is lower than the hydrogen concentration on the first main surface 1a side. Thus, in the step (S2a) of introducing hydrogen, when the annealing time is sufficiently long or the annealing temperature is sufficiently high, the hydrogen concentration in the semiconductor substrate is almost constant in the first direction X from the front surface to the back surface. In order to sufficiently suppress a high resistance region in the buffer layer 2, the hydrogen concentration in the region in the semiconductor layer where the hydrogen concentration is constant is preferably 1×10 14 cm −3 or more, and more preferably 1×10 15 cm −3 or more.
 水素を導入する工程(S2a)は、活性化アニールをする工程(S8a)の前に実施されればよい。水素を導入する工程(S2a)は、たとえば、荷電粒子線を照射する工程(S7a)の前に実施されてもよく、本実施の形態1に係る半導体装置100の製造方法のように、表面構造を形成する工程(S3a)の前に実施されてもよい。 The step of introducing hydrogen (S2a) may be performed before the step of performing activation annealing (S8a). The step of introducing hydrogen (S2a) may be performed, for example, before the step of irradiating a charged particle beam (S7a), or, as in the manufacturing method of the semiconductor device 100 according to the first embodiment, before the step of forming a surface structure (S3a).
 ただし、後述するように、バッファ層2のプロファイルは、荷電粒子線による照射における条件および活性化アニールをする時の条件だけでなく、シリコンウエハが含む酸素濃度によっても影響を受ける。本実施の形態1に係る半導体装置100の製造方法のように、水素を導入する工程が、半導体基板200を準備する工程(S1a)の直後に実施されることで、シリコンウエハにおける酸素濃度がいかなる値でも、高抵抗領域の発生が抑制されたバッファ層2を含む半導体装置100を得ることができる。つまり、シリコンウエハの種類によることなく、デバイス特性の悪化が防止されたパワー半導体装置を得ることができる。 However, as described below, the profile of the buffer layer 2 is affected not only by the conditions for irradiation with the charged particle beam and the conditions for activation annealing, but also by the oxygen concentration contained in the silicon wafer. As in the manufacturing method of the semiconductor device 100 according to the first embodiment, the step of introducing hydrogen is carried out immediately after the step (S1a) of preparing the semiconductor substrate 200, so that a semiconductor device 100 including a buffer layer 2 in which the occurrence of high resistance regions is suppressed can be obtained regardless of the oxygen concentration in the silicon wafer. In other words, a power semiconductor device in which deterioration of device characteristics is prevented can be obtained regardless of the type of silicon wafer.
 また、上述した半導体装置100の製造方法において、表面構造を形成する工程(S3a)、第1バッファ層を形成する工程(S5a)、裏面構造を形成する工程(S6a)、および裏面に電極を形成する工程(S9a)は、半導体装置100の種類(たとえばダイオードおよびIGBTなど)に応じて、適宜変更可能である。 In addition, in the above-mentioned method for manufacturing the semiconductor device 100, the process of forming the surface structure (S3a), the process of forming the first buffer layer (S5a), the process of forming the back surface structure (S6a), and the process of forming an electrode on the back surface (S9a) can be modified as appropriate depending on the type of semiconductor device 100 (e.g., a diode, an IGBT, etc.).
 (半導体装置100の変形例の構成)
 図8は、図1に示した半導体装置100の製造方法により得られた半導体装置100の変形例を示す断面図である。図8は、図1に対応する。図8に示された半導体装置100は、基本的には図1に示された半導体装置100と同様の構成を備えるが、当該半導体装置100がIGBTである点で異なる。
(Configuration of Modified Example of Semiconductor Device 100)
Fig. 8 is a cross-sectional view showing a modified example of the semiconductor device 100 obtained by the manufacturing method of the semiconductor device 100 shown in Fig. 1. Fig. 8 corresponds to Fig. 1. The semiconductor device 100 shown in Fig. 8 basically has the same configuration as the semiconductor device 100 shown in Fig. 1, but differs in that the semiconductor device 100 is an IGBT.
 図8に示す半導体装置100は、図6に示すような半導体装置100の製造方法と同様の製造方法によって得られる。半導体基板200は、p型コンタクト層4と、n型エミッタ層6と、p型ベース層5と、n型ドリフト層1と、n型バッファ層2と、p型コレクタ層3と、ゲート電極8と、ゲート絶縁膜7とを主に含む。図8に示されるように、半導体基板200において、第2主面1bから第1方向Xにp型コレクタ層3、n型バッファ層2、n型ドリフト層1、p型ベース層5、p型コンタクト層4およびn型エミッタ層6が順番に形成されている。 The semiconductor device 100 shown in Fig. 8 is obtained by a manufacturing method similar to that of the semiconductor device 100 shown in Fig. 6. The semiconductor substrate 200 mainly includes a p-type contact layer 4, an n + type emitter layer 6, a p-type base layer 5, an n - type drift layer 1, an n-type buffer layer 2, a p + type collector layer 3, a gate electrode 8, and a gate insulating film 7. As shown in Fig. 8, in the semiconductor substrate 200, the p + type collector layer 3, the n-type buffer layer 2, the n - type drift layer 1, the p-type base layer 5, the p-type contact layer 4, and the n + type emitter layer 6 are formed in this order from the second main surface 1b in the first direction X.
 具体的には、第1主面1aの表層部に複数のp型コンタクト層4および複数のn型エミッタ層6が形成されている。2つのn型エミッタ層6の間において、第1主面1aにはトレンチが形成されている。トレンチはp型ベース層5を介してn型ドリフト層1にまで到達するように形成されている。トレンチの内面を覆うようにゲート絶縁膜7が形成されている。ゲート絶縁膜7に接するようにゲート電極8が形成されている。ゲート電極8とゲート絶縁膜7とによりトレンチの内部は充填されている。異なる観点から言えば、p型コンタクト層4は一対となって構成されており、一対のp型コンタクト層4は、一対のn型エミッタ層6を挟むように形成されている。一対のn型エミッタ層6は、ゲート電極8およびゲート絶縁膜7を挟むように形成されている。ゲート電極8は、ゲート絶縁膜7および層間絶縁膜9に囲まれるように配置されている。第1主面1aとn型ドリフト層1との間にp型ベース層5が形成されている。第2主面1bの表層部にp型コレクタ層3が形成されている。p型ベース層5とp型コレクタ層3との間にn型ドリフト層1が形成されている。n型ドリフト層1はp型ベース層5と接している。n型ドリフト層1とp型コレクタ層3との間にn型バッファ層2が形成されている。n型バッファ層2はn型ドリフト層1とp型コレクタ層3とに接している。ゲート電極8およびゲート絶縁膜7は、第1主面1aからn型ドリフト層1が形成されている領域まで第1方向Xに延びるように形成されている。n型バッファ層2およびn型エミッタ層6は、n型ドリフト層1よりも、高いn型不純物濃度を有している。p型コレクタ層およびp型コンタクト層4は、p型ベース層5よりも、高いp型不純物濃度を有している。 Specifically, a plurality of p-type contact layers 4 and a plurality of n + -type emitter layers 6 are formed on the surface layer of the first main surface 1a. Between the two n + -type emitter layers 6, a trench is formed on the first main surface 1a. The trench is formed so as to reach the n - -type drift layer 1 via the p-type base layer 5. A gate insulating film 7 is formed so as to cover the inner surface of the trench. A gate electrode 8 is formed so as to contact the gate insulating film 7. The inside of the trench is filled with the gate electrode 8 and the gate insulating film 7. From a different perspective, the p-type contact layers 4 are configured as a pair, and the pair of p-type contact layers 4 are formed so as to sandwich the pair of n + -type emitter layers 6. The pair of n + -type emitter layers 6 are formed so as to sandwich the gate electrode 8 and the gate insulating film 7. The gate electrode 8 is arranged so as to be surrounded by the gate insulating film 7 and the interlayer insulating film 9. A p-type base layer 5 is formed between the first main surface 1a and the n - -type drift layer 1. A p + type collector layer 3 is formed on the surface layer of the second main surface 1b. An n - type drift layer 1 is formed between a p type base layer 5 and the p + type collector layer 3. The n - type drift layer 1 is in contact with the p type base layer 5. An n type buffer layer 2 is formed between the n - type drift layer 1 and the p + type collector layer 3. The n type buffer layer 2 is in contact with the n - type drift layer 1 and the p + type collector layer 3. The gate electrode 8 and the gate insulating film 7 are formed so as to extend in the first direction X from the first main surface 1a to the region where the n - type drift layer 1 is formed. The n type buffer layer 2 and the n + type emitter layer 6 have a higher n type impurity concentration than the n - type drift layer 1. The p + type collector layer and the p type contact layer 4 have a higher p type impurity concentration than the p type base layer 5.
 図8に示された半導体装置100は、基本的には図1に示された半導体装置100の製造方法と同様の製造方法で得られるが、表面構造を形成する工程(S3a)、裏面構造を形成する工程(S6a)、および裏面に電極を形成する工程(S9a)が異なる。 The semiconductor device 100 shown in FIG. 8 is basically obtained by the same manufacturing method as the semiconductor device 100 shown in FIG. 1, but the process of forming the front surface structure (S3a), the process of forming the back surface structure (S6a), and the process of forming an electrode on the back surface (S9a) are different.
 図8に示された半導体装置100の製造方法において、表面構造を形成する工程(S3a)では、シリコンウエハの第1主面1aの表層部に、p型ベース層5、n型エミッタ層6、およびp型コンタクト層4が形成される。また、トレンチゲートを形成するために、シリコンウエハの第1主面1aをドライエッチングし、トレンチが形成される。当該トレンチの内部にゲート絶縁膜7およびゲート電極8が形成される。ゲート電極8の材料は、たとえば、ポリシリコンである。第1主面1a上に、層間絶縁膜9および表面電極10(エミッタ電極)が形成される。層間絶縁膜9の材料は、たとえば、オルトケイ酸テトラエチル(TEOS)である。 In the manufacturing method of the semiconductor device 100 shown in FIG. 8, in the step (S3a) of forming a surface structure, a p-type base layer 5, an n + -type emitter layer 6, and a p-type contact layer 4 are formed on the surface layer of the first main surface 1a of the silicon wafer. In addition, in order to form a trench gate, the first main surface 1a of the silicon wafer is dry etched to form a trench. A gate insulating film 7 and a gate electrode 8 are formed inside the trench. The material of the gate electrode 8 is, for example, polysilicon. An interlayer insulating film 9 and a surface electrode 10 (emitter electrode) are formed on the first main surface 1a. The material of the interlayer insulating film 9 is, for example, tetraethyl orthosilicate (TEOS).
 図8に示された半導体装置100の製造方法において、裏面構造を形成する工程(S6a)では、シリコンウエハの第2主面1bの表層部に、p型コレクタ層3が形成される。また、p型コレクタ層3だけでなく、たとえば、n型カソード層を部分的に形成して、RC(Revers Conductive)-IGBTを製造してもよい。 8, in the step (S6a) of forming a back surface structure, p + type collector layer 3 is formed in a surface layer portion of second main surface 1b of the silicon wafer. In addition to p + type collector layer 3, for example, an n + type cathode layer may be partially formed to manufacture a RC (Reverse Conductive)-IGBT.
 図8に示された半導体装置100の製造方法において、裏面に電極を形成する工程(S9a)では、シリコンウエハの第2主面1b上に裏面電極11(コレクタ電極)が形成される。このようにして、図8に示されるようなIGBT構造の半導体装置100を得ることができる。 In the manufacturing method of the semiconductor device 100 shown in FIG. 8, in the step (S9a) of forming an electrode on the back surface, a back surface electrode 11 (collector electrode) is formed on the second main surface 1b of the silicon wafer. In this manner, a semiconductor device 100 with an IGBT structure as shown in FIG. 8 can be obtained.
 <作用効果>
 本開示に従った半導体装置100の製造方法は、半導体基板200を準備する工程(S1a)と、半導体基板200に水素を導入する工程(S2a)と、半導体基板200に荷電粒子線を照射する工程(S7a)と、荷電粒子線を照射する工程(S7a)の後に、半導体基板200に活性化アニールする工程(S8a)とを備える。水素を導入する工程(S2a)は、活性化アニールする工程(S8a)の前に実施される。
<Action and effect>
The method for manufacturing the semiconductor device 100 according to the present disclosure includes a step (S1a) of preparing the semiconductor substrate 200, a step (S2a) of introducing hydrogen into the semiconductor substrate 200, a step (S7a) of irradiating the semiconductor substrate 200 with a charged particle beam, and, after the step (S7a) of irradiating the charged particle beam, a step (S8a) of performing activation annealing on the semiconductor substrate 200. The step (S2a) of introducing hydrogen is performed before the step (S8a) of performing activation annealing.
 このようにすれば、半導体基板200(シリコンウエハ)は十分な水素濃度を有する。その結果、荷電粒子線を照射する工程(S7a)で形成された点欠陥は、その後のアニール処理によって水素と十分複合化するため、高抵抗領域の発生が抑制されたバッファ層を含む半導体装置100を得ることができる。つまり、デバイス特性の悪化が防止されたパワー半導体装置を得ることができる。 In this way, the semiconductor substrate 200 (silicon wafer) has a sufficient hydrogen concentration. As a result, the point defects formed in the charged particle beam irradiation step (S7a) are sufficiently compounded with hydrogen by the subsequent annealing process, so that a semiconductor device 100 can be obtained that includes a buffer layer in which the occurrence of high resistance regions is suppressed. In other words, a power semiconductor device in which deterioration of device characteristics is prevented can be obtained.
 上記半導体装置100の製造方法において、水素を導入する工程(S2a)は、半導体基板200が水素を含む膜に接している状態、若しくは半導体基板200が水素雰囲気下に晒されている状態の少なくともいずれかの状態で半導体基板200にアニールする工程、半導体基板200を水素プラズマに晒す工程、および水素イオンを含む液体に半導体基板200を浸漬させる工程のいずれかの工程を含む。このようにすれば、任意の方法でシリコンウエハに水素を導入することができる。 In the manufacturing method of the semiconductor device 100, the step of introducing hydrogen (S2a) includes any one of the steps of annealing the semiconductor substrate 200 while the semiconductor substrate 200 is in contact with a film containing hydrogen or while the semiconductor substrate 200 is exposed to a hydrogen atmosphere, exposing the semiconductor substrate 200 to hydrogen plasma, and immersing the semiconductor substrate 200 in a liquid containing hydrogen ions. In this way, hydrogen can be introduced into the silicon wafer by any method.
 上記半導体装置100の製造方法において、水素を導入する工程(S2a)は、荷電粒子線を照射する工程(S7a)の前に実施される。このようにすれば、シリコンウエハにおける酸素濃度がいかなる値でも、高抵抗領域の発生が抑制されたバッファ層を含む半導体装置100を得ることができる。つまり、シリコンウエハの種類によることなく、デバイス特性の悪化が防止されたパワー半導体装置を得ることができる。 In the manufacturing method of the semiconductor device 100, the step (S2a) of introducing hydrogen is performed before the step (S7a) of irradiating the charged particle beam. In this way, it is possible to obtain a semiconductor device 100 including a buffer layer in which the occurrence of high resistance regions is suppressed, regardless of the oxygen concentration in the silicon wafer. In other words, it is possible to obtain a power semiconductor device in which deterioration of device characteristics is prevented, regardless of the type of silicon wafer.
 実施の形態2.
 <半導体装置100の製造方法>
 図9は、実施の形態2に係る半導体装置100の製造方法のフローチャートである。図9は、図6に対応する。図9に示された半導体装置100の製造方法は、基本的には図6に示された半導体装置100の製造方法と同様の構成を備えるが、水素を導入する工程(S7b)が、荷電粒子線を照射する工程(S6b)の後に実施される点で異なる。
Embodiment 2.
<Method of Manufacturing Semiconductor Device 100>
Fig. 9 is a flowchart of a method for manufacturing the semiconductor device 100 according to the second embodiment. Fig. 9 corresponds to Fig. 6. The method for manufacturing the semiconductor device 100 shown in Fig. 9 basically has the same configuration as the method for manufacturing the semiconductor device 100 shown in Fig. 6, but differs in that the step of introducing hydrogen (S7b) is performed after the step of irradiating a charged particle beam (S6b).
 実施の形態1でも述べたように、水素を導入する工程(S7b)は、活性化アニールをする工程(S8b)の前に実施されればよい。ただし、シリコンウエハに何らかのデバイス構造を形成した後に水素を導入する工程(S7b)を実施する時、当該デバイス構造を壊さないように、水素を導入する工程(S7b)におけるアニールする時の温度および時間には制限がある。たとえば、通常、パワー半導体装置の表面電極として、アルミニウムが用いられる。アルミニウムの融点は約650℃である。そのため、たとえば、表面構造を形成する工程(S2b)においてアルミニウム電極が形成され、その後に水素を導入する工程(S7b)が実施された時、水素を導入する工程(S7b)におけるアニールする時の温度はアルミニウム電極の融点が上限となる。この場合、シリコンウエハにおいて水素が侵入する深さが減少する。その結果、高抵抗領域の発生を抑制するという効果が不十分となる可能性がある。本実施の形態2では、水素が侵入する深さを所望の値にする半導体装置100の製造方法について説明する。 As described in the first embodiment, the step of introducing hydrogen (S7b) may be performed before the step of performing activation annealing (S8b). However, when the step of introducing hydrogen (S7b) is performed after forming a certain device structure on the silicon wafer, there is a limit to the temperature and time of annealing in the step of introducing hydrogen (S7b) so as not to destroy the device structure. For example, aluminum is usually used as the surface electrode of a power semiconductor device. The melting point of aluminum is about 650°C. Therefore, for example, when an aluminum electrode is formed in the step of forming a surface structure (S2b) and then the step of introducing hydrogen (S7b) is performed, the melting point of the aluminum electrode is the upper limit of the temperature of annealing in the step of introducing hydrogen (S7b). In this case, the depth to which hydrogen penetrates in the silicon wafer is reduced. As a result, the effect of suppressing the occurrence of high resistance regions may be insufficient. In the second embodiment, a method of manufacturing a semiconductor device 100 that sets the depth to which hydrogen penetrates to a desired value is described.
 なお、ここでは、半導体装置100の製造方法の一例として、図1に示されるような縦型ダイオードの製造方法について説明する。図9に示されるように、本実施の形態に係る半導体装置100の製造方法では、まず半導体基板200を準備する工程(S1b)を実施する。この工程(S1b)では半導体装置100を構成するシリコンウエハを準備する。シリコンウエハは、n型またはn型のインゴットから切り出される。シリコンウエハは表面(第1主面1a)と、表面の反対側の裏面とを有する。シリコンウエハにおける水素濃度は、たとえば、1×1013cm-3以下である。 As an example of a method for manufacturing the semiconductor device 100, a method for manufacturing a vertical diode as shown in FIG. 1 will be described. As shown in FIG. 9, in the method for manufacturing the semiconductor device 100 according to this embodiment, a step (S1b) of preparing a semiconductor substrate 200 is first performed. In this step (S1b), a silicon wafer constituting the semiconductor device 100 is prepared. The silicon wafer is cut from an n-type or n -type ingot. The silicon wafer has a front surface (first main surface 1a) and a back surface opposite the front surface. The hydrogen concentration in the silicon wafer is, for example, 1×10 13 cm -3 or less.
 次に、表面構造を形成する工程(S2b)を実施する。この工程(S2b)では、シリコンウエハの第1主面1aに、半導体装置100の表面構造を形成する。具体的には、シリコンウエハの第1主面1aの表層部には、p型アノード層22が形成される。さらに、第1主面1a上に、p型アノード層22に接続される表面電極10(アノード電極)が形成される。 Next, a step (S2b) of forming a surface structure is performed. In this step (S2b), the surface structure of the semiconductor device 100 is formed on the first main surface 1a of the silicon wafer. Specifically, a p + type anode layer 22 is formed on the surface layer of the first main surface 1a of the silicon wafer. Furthermore, a surface electrode 10 (anode electrode) connected to the p + type anode layer 22 is formed on the first main surface 1a.
 次に、裏面を研削する工程(S3b)を実施する。この工程(S3b)では、シリコンウエハの裏面を研削する。具体的には、表面構造を保護した後に、CMP(Chemical Mechanical Polish)等の研削手段を用いて、シリコンウエハの裏面を研削する。なお、研削後におけるシリコンウエハの裏面を第2主面1bとし、第1主面1aから第2主面1bまでの領域を半導体層とする。 Next, a step (S3b) of grinding the back surface is carried out. In this step (S3b), the back surface of the silicon wafer is ground. Specifically, after protecting the surface structure, the back surface of the silicon wafer is ground using a grinding method such as CMP (Chemical Mechanical Polish). Note that the back surface of the silicon wafer after grinding is the second main surface 1b, and the region from the first main surface 1a to the second main surface 1b is the semiconductor layer.
 次に、第1バッファ層を形成する工程(S4b)を実施する。この工程(S4b)では、シリコンウエハの第2主面1bに、第1バッファ層を形成する。具体的には、第2主面1bに、リンなどのn型ドーパントイオンを注入することで、第2主面1bの表層部にn型層が形成される。なお、イオンの注入は、複数回実施されてもよい。また、第1バッファ層は、後述する第2バッファ層で代用可能であるため、第1バッファ層を形成する工程は省略されてもよい。 Next, a step (S4b) of forming a first buffer layer is carried out. In this step (S4b), a first buffer layer is formed on the second main surface 1b of the silicon wafer. Specifically, an n-type layer is formed on the surface of the second main surface 1b by implanting n-type dopant ions such as phosphorus into the second main surface 1b. Note that the ion implantation may be carried out multiple times. Also, since the first buffer layer can be substituted with the second buffer layer described later, the step of forming the first buffer layer may be omitted.
 次に、裏面構造を形成する工程(S5b)を実施する。この工程(S5b)では、シリコンウエハの第2主面1bに、半導体装置100の裏面構造を形成する。具体的には、シリコンウエハの第2主面1bの表層部に、n型カソード層21が形成される。また、n型カソード層21だけでなく、たとえば、p型カソード層を部分的に形成して、RFC(Relaxed Field of Cathod)ダイオードを製造してもよい。 Next, a step (S5b) of forming a back surface structure is performed. In this step (S5b), the back surface structure of the semiconductor device 100 is formed on the second main surface 1b of the silicon wafer. Specifically, an n + type cathode layer 21 is formed on the surface layer of the second main surface 1b of the silicon wafer. In addition to the n + type cathode layer 21, for example, a p + type cathode layer may be partially formed to manufacture a RFC (Relaxed Field of Cathode) diode.
 次に、荷電粒子線を照射する工程(S6b)を実施する。この工程(S6b)では、シリコンウエハに点欠陥を形成させる。具体的には、シリコンウエハの第2主面1bに、荷電粒子線を照射する。荷電粒子線は、たとえば、プロトンである。プロトンの照射では、たとえば加速器を用いる。加速器を用いることで、プロトンを数100KeV~数10MeVにまで加速させてシリコンウエハに照射する。プロトンのドーズ量は、例えば、1×1012~1×1015cm-2である。なお、荷電粒子線としてヘリウムイオンを照射してもよい。このようにすることで、シリコンウエハにおいて局所的に点欠陥が形成される。 Next, a step (S6b) of irradiating a charged particle beam is performed. In this step (S6b), point defects are formed in the silicon wafer. Specifically, the second main surface 1b of the silicon wafer is irradiated with a charged particle beam. The charged particle beam is, for example, protons. For example, an accelerator is used for the proton irradiation. By using the accelerator, the protons are accelerated to several hundreds KeV to several tens MeV and irradiated onto the silicon wafer. The dose of the protons is, for example, 1×10 12 to 1×10 15 cm −2 . Note that helium ions may be irradiated as the charged particle beam. In this way, point defects are locally formed in the silicon wafer.
 なお、荷電粒子線を照射する工程(S6b)を実施しなくても、元来シリコンウエハは多少の点欠陥を含む。そのため、シリコンウエハに点欠陥があれば、荷電粒子線を照射する工程(S6b)は実施しなくてもよい。また、荷電粒子線を照射する工程(S6b)は、後述する活性化アニールをする工程(S8b)の前に実施されればよい。荷電粒子線を照射する工程(S6b)は、裏面構造を形成する工程(S5b)の直後に限らず、たとえば、裏面を研削する工程(S3b)の後に実施されてもよい。 Incidentally, even if the step (S6b) of irradiating the charged particle beam is not performed, silicon wafers inherently contain some point defects. Therefore, if the silicon wafer has point defects, the step (S6b) of irradiating the charged particle beam does not need to be performed. Furthermore, the step (S6b) of irradiating the charged particle beam may be performed before the step (S8b) of performing activation annealing, which will be described later. The step (S6b) of irradiating the charged particle beam is not limited to being performed immediately after the step (S5b) of forming the back surface structure, and may be performed, for example, after the step (S3b) of grinding the back surface.
 次に、水素を導入する工程(S7b)を実施する。この工程(S7b)では、第1方向Xにおいてシリコンウエハの表面から裏面にかけて水素を含侵する。具体的には、この工程(S7b)は、シリコンウエハが水素を含む膜に接している状態、若しくはシリコンウエハが水素雰囲気下に晒されている状態の少なくともいずれかの状態で、シリコンウエハにアニールする工程を含む。この時、前述したようにアニールするときの温度および時間には制限がある。 Next, a step (S7b) of introducing hydrogen is carried out. In this step (S7b), hydrogen is impregnated from the front surface to the back surface of the silicon wafer in the first direction X. Specifically, this step (S7b) includes a step of annealing the silicon wafer in at least one of a state in which the silicon wafer is in contact with a film containing hydrogen or a state in which the silicon wafer is exposed to a hydrogen atmosphere. At this time, as described above, there are limitations on the temperature and time during annealing.
 この工程(S7b)では、シリコンウエハに水素を含侵させればよい。そのため、水素を導入する工程(S7b)は、シリコンウエハが水素を含む膜に接している状態、若しくはシリコンウエハが水素雰囲気下に晒されている状態の少なくともいずれかの状態でシリコンウエハにアニールする工程に替えて、シリコンウエハを水素プラズマに晒す工程あるいは水素イオンを含む液体にシリコンウエハを浸漬させる工程を含んでいてもよい。水素を導入する工程(S7b)において、シリコンウエハの表面からだけでなく、表面と裏面とを接続する側面から水素を導入してもよい。 In this step (S7b), hydrogen may be impregnated into the silicon wafer. Therefore, the step (S7b) of introducing hydrogen may include a step of exposing the silicon wafer to hydrogen plasma or a step of immersing the silicon wafer in a liquid containing hydrogen ions, instead of a step of annealing the silicon wafer in at least one of a state in which the silicon wafer is in contact with a film containing hydrogen or a state in which the silicon wafer is exposed to a hydrogen atmosphere. In the step (S7b) of introducing hydrogen, hydrogen may be introduced not only from the front surface of the silicon wafer, but also from the side surface connecting the front surface and back surface.
 次に、活性化アニールをする工程(S8b)を実施する。この工程(S8b)では、ドナーの形成および点欠陥の消滅の少なくともいずれかを目的として、シリコンウエハにアニールする。具体的には、シリコンウエハが窒素等の不活性ガス雰囲気下に晒されている状態で、200℃~500℃の温度範囲で当該シリコンウエハにアニールする。このようにして、シリコンウエハ内の水素および点欠陥が反応して、ドナーが形成される。その結果、図1に示されているn型バッファ層2が形成される。このようにして形成された層を第2バッファ層とし、荷電粒子線を照射する工程(S6b)、水素を導入する工程(S7b)および活性化アニールをする工程(S8b)をまとめて第2バッファ層を形成する工程とする。 Next, an activation annealing step (S8b) is performed. In this step (S8b), the silicon wafer is annealed for the purpose of at least one of forming donors and eliminating point defects. Specifically, the silicon wafer is annealed at a temperature range of 200°C to 500°C while exposed to an inert gas atmosphere such as nitrogen. In this way, hydrogen and point defects in the silicon wafer react to form donors. As a result, the n-type buffer layer 2 shown in FIG. 1 is formed. The layer thus formed is the second buffer layer, and the step of irradiating the charged particle beam (S6b), the step of introducing hydrogen (S7b), and the activation annealing step (S8b) are collectively referred to as the step of forming the second buffer layer.
 なお、活性化アニールをする工程(S8b)において、アニールする時間を長くすることで、第1方向Xにおけるn型バッファ層2の厚みを増加させることができる。また、活性化アニールをする工程(S8b)において、アニールする時の温度範囲は、200℃~500℃が好ましい。アニールする時の温度が200℃よりも低いと、ドナーが形成される効率が低下する。アニールする時の温度が500℃よりも高いと、ドナーの消滅が顕著になる。このようにしてシリコンウエハに半導体層が形成されることで、当該シリコンウエハは半導体基板200として用いられる。 In addition, in the activation annealing step (S8b), the thickness of the n-type buffer layer 2 in the first direction X can be increased by lengthening the annealing time. In addition, in the activation annealing step (S8b), the annealing temperature range is preferably 200°C to 500°C. If the annealing temperature is lower than 200°C, the efficiency of donor formation decreases. If the annealing temperature is higher than 500°C, the annihilation of donors becomes significant. By forming a semiconductor layer on the silicon wafer in this manner, the silicon wafer is used as a semiconductor substrate 200.
 次に、裏面に電極を形成する工程(S9b)を実施する。この工程(S9b)では、第2主面1bに電極を形成する。具体的には、第2主面1b上に裏面電極11(カソード電極)が形成される。このようにして、図1に示されるような高抵抗領域の発生が抑制された、バッファ層を含む半導体装置100を得ることができる。 Next, a process (S9b) of forming an electrode on the back surface is carried out. In this process (S9b), an electrode is formed on the second main surface 1b. Specifically, a back electrode 11 (cathode electrode) is formed on the second main surface 1b. In this manner, a semiconductor device 100 including a buffer layer can be obtained in which the occurrence of high resistance regions as shown in FIG. 1 is suppressed.
 ここで、水素を導入する工程(S7b)において、水素が侵入する深さを所望の値に制御する方法について説明する。図10は、異なる酸素濃度を含む半導体基板のそれぞれにおける、キャリア濃度の分布図である。図10において、横軸は半導体基板の裏面からの距離を示し、縦軸は半導体基板におけるキャリア濃度を示す。サンプル1、サンプル2、サンプル3、サンプル4はそれぞれ異なる酸素濃度を含む半導体装置であり、サンプル1、サンプル2、サンプル3、サンプル4の順に、シリコンウエハ中の酸素濃度が高い。つまりサンプル1が最も酸素濃度が高い。ただし、いずれの半導体装置も、荷電粒子線を照射する工程および活性化アニールする工程において、同じ条件で処理している。なお、サンプル1、サンプル2、サンプル3、サンプル4に係る半導体装置はいずれも、活性化アニールする工程において、アニールする温度は350℃であり、アニールする時間は4時間で処理されている。 Here, a method for controlling the depth to which hydrogen penetrates to a desired value in the step of introducing hydrogen (S7b) will be described. FIG. 10 is a distribution diagram of carrier concentration in each of the semiconductor substrates containing different oxygen concentrations. In FIG. 10, the horizontal axis indicates the distance from the back surface of the semiconductor substrate, and the vertical axis indicates the carrier concentration in the semiconductor substrate. Sample 1, Sample 2, Sample 3, and Sample 4 are semiconductor devices containing different oxygen concentrations, and the oxygen concentration in the silicon wafer increases in the order of Sample 1, Sample 2, Sample 3, and Sample 4. In other words, Sample 1 has the highest oxygen concentration. However, all of the semiconductor devices are processed under the same conditions in the step of irradiating the charged particle beam and the step of activating annealing. Note that the semiconductor devices related to Sample 1, Sample 2, Sample 3, and Sample 4 are all processed in the step of activating annealing at an annealing temperature of 350° C. for 4 hours.
 図10から分かるように、異なるシリコンウエハに含まれる酸素濃度が異なると、キャリア濃度の分布が変化している。酸素濃度が高いサンプル1における高抵抗領域の端部までの裏面からの距離は、酸素濃度が低いサンプル4における高抵抗領域の端部までの裏面からの距離よりも長い。つまり、酸素濃度が高いほど、高抵抗領域の深さ方向における範囲(高抵抗領域の深さ方向における端部までの裏面からの距離)が大きくなる。 As can be seen from Figure 10, the distribution of carrier concentration changes when the oxygen concentration contained in different silicon wafers differs. The distance from the back surface to the end of the high resistance region in sample 1, which has a high oxygen concentration, is longer than the distance from the back surface to the end of the high resistance region in sample 4, which has a low oxygen concentration. In other words, the higher the oxygen concentration, the larger the range in the depth direction of the high resistance region (the distance from the back surface to the end of the high resistance region in the depth direction).
 ここで、水素を導入する工程を備えない半導体装置の製造方法で得られた半導体装置における、高抵抗領域が発生する領域の深さL(高抵抗領域の深さ方向における端部までの裏面からの距離)は、下記の式(1)で示される式により表される。なお、深さLは第1方向Xにおける第2主面1bからの距離(単位:cm)である。Rpは、荷電粒子線を照射する工程における荷電粒子線の照射飛程(単位:cm)である。Dは、活性化アニールをする工程における水素の拡散定数(単位:cm/秒)である。t1は、活性化アニールをする工程におけるアニールする時間(単位:秒)である。第2バッファ層を形成するとき、荷電粒子線の照射回数が1回の場合は、当該照射時での荷電粒子線に関する照射飛程が、当該式(1)で用いる照射飛程Rpである。荷電粒子線の照射が複数回実施された場合は、シリコンウエハの表面から最も近い領域に荷電粒子線を照射した時における荷電粒子線の照射飛程が、当該式(1)で用いる照射飛程Rpである。 Here, the depth L of the region where the high resistance region occurs (the distance from the back surface to the end of the high resistance region in the depth direction) in the semiconductor device obtained by the manufacturing method of the semiconductor device not including the step of introducing hydrogen is expressed by the following formula (1). The depth L is the distance (unit: cm) from the second main surface 1b in the first direction X. Rp is the irradiation range (unit: cm) of the charged particle beam in the step of irradiating the charged particle beam. D1 is the diffusion constant (unit: cm 2 /sec) of hydrogen in the step of performing activation annealing. t1 is the annealing time (unit: seconds) in the step of performing activation annealing. When the second buffer layer is formed, if the number of times of irradiation with the charged particle beam is one, the irradiation range of the charged particle beam at the time of the irradiation is the irradiation range Rp used in the formula (1). When the charged particle beam is irradiated multiple times, the irradiation range Rp used in the formula (1) is the irradiation range of the charged particle beam when the charged particle beam is irradiated to the area closest to the surface of the silicon wafer.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 水素の拡散定数Dは、下記の式(2)で示される式により表される。D01は、頻度因子(単位:cm/秒)である。Ea1は、活性化アニールする工程における水素の拡散の活性化エネルギー(単位:eV)である。T1は、活性化アニールする工程におけるアニールする温度(単位:K)である。kは、ボルツマン定数(単位:eV/K)である。 The hydrogen diffusion constant D1 is expressed by the following formula (2). D01 is a frequency factor (unit: cm2 /sec). Ea1 is the activation energy (unit: eV) of hydrogen diffusion in the activation annealing step. T1 is the annealing temperature (unit: K) in the activation annealing step. k is the Boltzmann constant (unit: eV/K).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 図10のキャリア濃度の分布図に示される結果、式(1)および式(2)より、シリコンウエハに含まれる酸素濃度が1×1017cm-3以上の時において、水素の拡散定数Dは下記の式(3)で示される式により表される。シリコンウエハに含まれる酸素濃度が1×1017cm-3未満1×1015cm-3以上の時において、水素の拡散定数Dは下記の式(4)で示される式により表される。シリコンウエハに含まれる酸素濃度が1×1015cm-3未満の時において、水素の拡散定数Dは下記の式(5)で示される式により表される。 As a result shown in the carrier concentration distribution diagram of Fig. 10, from formulas (1) and (2), when the oxygen concentration contained in the silicon wafer is 1 x 1017 cm -3 or more, the diffusion constant D1 of hydrogen is expressed by the following formula (3). When the oxygen concentration contained in the silicon wafer is less than 1 x 1017 cm -3 and is 1 x 1015 cm -3 or more, the diffusion constant D1 of hydrogen is expressed by the following formula (4). When the oxygen concentration contained in the silicon wafer is less than 1 x 1015 cm -3 , the diffusion constant D1 of hydrogen is expressed by the following formula (5).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 つまり、式(3)、式(4)、式(5)より、水素の拡散定数Dを式(1)に代入することで、高抵抗領域が発生する領域の深さLを予測することができる。そして、水素が導入される領域の深さがこの深さL以上になるように、シリコンウエハに対して水素を導入することで、高抵抗領域の発生を効果的に抑制できる。シリコンウエハに含まれる酸素濃度が1×1017cm-3以上の時において、深さLは下記の式(6)で示される式により表される。シリコンウエハに含まれる酸素濃度が1×1017cm-3未満1×1015cm-3以上の時において、深さLは下記の式(7)で示される式により表される。シリコンウエハに含まれる酸素濃度が1×1015cm-3未満の時において、深さLは下記の式(8)で示される式により表される。 That is, from formulas (3), (4), and (5), the depth L of the region where the high resistance region occurs can be predicted by substituting the diffusion constant D 1 of hydrogen into formula (1). Then, by introducing hydrogen into the silicon wafer so that the depth of the region where hydrogen is introduced is equal to or greater than this depth L, the occurrence of the high resistance region can be effectively suppressed. When the oxygen concentration contained in the silicon wafer is 1×10 17 cm −3 or more, the depth L is expressed by the formula shown in formula (6) below. When the oxygen concentration contained in the silicon wafer is less than 1×10 17 cm −3 and equal to or greater than 1×10 15 cm −3 , the depth L is expressed by the formula shown in formula (7) below. When the oxygen concentration contained in the silicon wafer is less than 1×10 15 cm −3 , the depth L is expressed by the formula shown in formula (8) below.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 上記の議論を踏まえて、水素を導入する工程における条件について説明する。図11は、図9に示した半導体装置100の製造方法により得られた半導体装置100(実施例3)における水素濃度の概略分布図である。図11において、横軸は半導体基板200の表面(第1主面1a)からの距離(単位:μm)を示し、縦軸は半導体基板200における水素濃度(単位:cm-3)を示す。図11における実施例3のグラフでは、裏面(第2主面1b)から表面側に離れた領域(裏面からの距離が、高抵抗領域が発生する領域の深さLより大きい内部領域)において、シリコンウエハが元来含む水素濃度を示す。一方、裏面側において、水素が導入された領域の深さは、高抵抗領域が発生する領域の深さLよりも大きい。このように、水素が導入された領域をできるだけ大きくすることが好ましい。そのため、水素が導入される領域の裏面からの深さは、高抵抗領域が発生する領域の深さLよりも大きく、水素が導入される領域における水素濃度は、裏面から表面側に離れた領域(内部領域)におけるシリコンウエハが元来有する水素濃度よりも大きいことが好ましい。 Based on the above discussion, the conditions in the step of introducing hydrogen will be described. FIG. 11 is a schematic distribution diagram of hydrogen concentration in the semiconductor device 100 (Example 3) obtained by the manufacturing method of the semiconductor device 100 shown in FIG. 9. In FIG. 11, the horizontal axis indicates the distance (unit: μm) from the surface (first main surface 1a) of the semiconductor substrate 200, and the vertical axis indicates the hydrogen concentration (unit: cm −3 ) in the semiconductor substrate 200. The graph of Example 3 in FIG. 11 shows the hydrogen concentration originally contained in the silicon wafer in a region away from the back surface (second main surface 1b) to the front surface side (an internal region whose distance from the back surface is greater than the depth L of the region where the high resistance region occurs). On the other hand, on the back surface side, the depth of the region where hydrogen is introduced is greater than the depth L of the region where the high resistance region occurs. In this way, it is preferable to make the region where hydrogen is introduced as large as possible. Therefore, it is preferable that the depth from the back surface of the region where hydrogen is introduced is greater than the depth L of the region where the high resistance region occurs, and the hydrogen concentration in the region where hydrogen is introduced is greater than the hydrogen concentration originally contained in the silicon wafer in the region (internal region) away from the back surface to the front surface side.
 上述の議論から、水素を導入する工程において、水素が導入される領域の深さ(裏面から、水素が導入された領域の内部領域側に位置する端部までの距離:√(D×t2))の好ましい範囲は、下記の式(9)で示される式により表される。Dは、水素を導入する工程における水素の拡散定数(単位:cm/秒)である。t2は、水素を導入する工程におけるアニールする時間(単位:秒)である。 From the above discussion, the preferred range of the depth of the region into which hydrogen is introduced in the step of introducing hydrogen (the distance from the back surface to the end of the region into which hydrogen is introduced that is located on the inner region side: √( D2 ×t2)) is represented by the following formula (9). D2 is the diffusion constant of hydrogen in the step of introducing hydrogen (unit: cm2 /sec). t2 is the annealing time in the step of introducing hydrogen (unit: seconds).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 水素の拡散定数Dは、下記の式(10)で示される式により表される。D02は、頻度因子(単位:cm/秒)である。Ea2は、水素を導入する工程における水素の拡散の活性化エネルギー(単位:eV)である。T2は、水素を導入する工程におけるアニールする温度(単位:K)である。 The hydrogen diffusion constant D2 is expressed by the following formula (10). D02 is a frequency factor (unit: cm2 /sec). Ea2 is the activation energy of hydrogen diffusion in the hydrogen introduction step (unit: eV). T2 is the annealing temperature in the hydrogen introduction step (unit: K).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 ここで、シリコンウエハに含まれる酸素濃度が1×1017cm-3以上の時において、水素を導入する工程における水素の拡散定数Dは下記の式(11)で示される式により表される。シリコンウエハに含まれる酸素濃度が1×1017cm-3未満1×1015cm-3以上の時において、水素を導入する工程における水素の拡散定数Dは下記の式(12)で示される式により表される。シリコンウエハに含まれる酸素濃度が1×1015cm-3未満の時において、水素を導入する工程における水素の拡散定数Dは下記の式(13)で示される式により表される。これらの式(11)、式(12)、式(13)のそれぞれは、式(6)、式(7)、式(8)のそれぞれにおけるT1をT2に置き換えることで導出される。 Here, when the oxygen concentration contained in the silicon wafer is 1×10 17 cm −3 or more, the diffusion constant D 2 of hydrogen in the step of introducing hydrogen is expressed by the following formula (11). When the oxygen concentration contained in the silicon wafer is less than 1×10 17 cm −3 and is 1×10 15 cm −3 or more, the diffusion constant D 2 of hydrogen in the step of introducing hydrogen is expressed by the following formula (12). When the oxygen concentration contained in the silicon wafer is less than 1×10 15 cm −3 , the diffusion constant D 2 of hydrogen in the step of introducing hydrogen is expressed by the following formula (13). Each of these formulas (11), (12), and (13) is derived by replacing T1 with T2 in each of formulas (6), (7), and (8).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 従って、実施の形態2に係る半導体装置100の製造方法において、水素を導入する工程におけるアニールする時間t2および温度T2は、深さLを用いて、シリコンウエハに含まれる酸素濃度が1×1017cm-3以上の時において、下記の式(14)で示される関係式を満たすように決定されることが好ましい。水素を導入する工程におけるアニールする時間t2および温度T2は、シリコンウエハに含まれる酸素濃度が1×1017cm-3未満1×1015cm-3以上の時において、下記の式(15)で示される関係式を満たすように決定されることが好ましい。水素を導入する工程におけるアニールする時間t2および温度T2は、シリコンウエハに含まれる酸素濃度が1×1015cm-3未満の時において、下記の式(16)で示される関係式を満たすように決定されることが好ましい。 Therefore, in the manufacturing method of semiconductor device 100 according to the second embodiment, the annealing time t2 and temperature T2 in the step of introducing hydrogen are preferably determined using the depth L so as to satisfy the relational expression shown in the following formula (14) when the oxygen concentration contained in the silicon wafer is 1×10 17 cm -3 or more. The annealing time t2 and temperature T2 in the step of introducing hydrogen are preferably determined so as to satisfy the relational expression shown in the following formula (15) when the oxygen concentration contained in the silicon wafer is less than 1×10 17 cm -3 and 1×10 15 cm -3 or more. The annealing time t2 and temperature T2 in the step of introducing hydrogen are preferably determined so as to satisfy the relational expression shown in the following formula (16) when the oxygen concentration contained in the silicon wafer is less than 1×10 15 cm -3 .
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 このようにすれば、荷電粒子線を照射する工程の後に、水素を導入する工程が実施されても、半導体基板200が含む水素濃度は十分に調整することが可能である。水素濃度を調整することで、高抵抗領域の発生が抑制されたバッファ層を含む半導体装置100を得ることができる。 In this way, even if a process of introducing hydrogen is carried out after the process of irradiating the charged particle beam, it is possible to sufficiently adjust the hydrogen concentration in the semiconductor substrate 200. By adjusting the hydrogen concentration, it is possible to obtain a semiconductor device 100 including a buffer layer in which the occurrence of high resistance regions is suppressed.
 なお、本実施の形態2に係る半導体装置100の製造方法は、酸素濃度を計測する工程を備えてもよい。具体的には、シリコンウエハに含まれる酸素濃度を二次イオン質量分析法によって計測する。シリコンウエハに含まれる酸素濃度は、表面構造を形成する工程(S2b)を実施した後で変化する。そのため、酸素濃度を計測する工程は、表面構造を形成する工程(S2b)の後に実施することが好ましい。 The manufacturing method of the semiconductor device 100 according to the second embodiment may include a step of measuring the oxygen concentration. Specifically, the oxygen concentration contained in the silicon wafer is measured by secondary ion mass spectrometry. The oxygen concentration contained in the silicon wafer changes after the step of forming the surface structure (S2b) is performed. Therefore, it is preferable to perform the step of measuring the oxygen concentration after the step of forming the surface structure (S2b).
 上述した半導体装置100の製造方法において、表面構造を形成する工程(S2b)、第1バッファ層を形成する工程(S4b)、裏面構造を形成する工程(S5b)、および裏面に電極を形成する工程(S9b)は、半導体装置100の種類に応じて適宜変更可能である。 In the manufacturing method of the semiconductor device 100 described above, the process of forming a surface structure (S2b), the process of forming a first buffer layer (S4b), the process of forming a back surface structure (S5b), and the process of forming an electrode on the back surface (S9b) can be modified as appropriate depending on the type of semiconductor device 100.
 <作用効果>
 上記半導体装置100の製造方法について、水素を導入する工程(S7b)において、半導体基板200に水素が導入された領域の深さをLとする。ボルツマン定数をkとする。活性化アニールをする工程(S8b)において、アニールする時間をt1とし、アニールする時の温度をT1とする。深さLは、半導体基板200に含まれる酸素濃度が1×1017cm-3以上の時において、L=Rp-2×√{3.8×10×e{(-2.19)/(k×T1)}×t1}という関係式を満たす。深さLは、半導体基板200に含まれる酸素濃度が1×1017cm-3未満1×1015cm-3以上の時において、L=Rp-2×√{5.3×10-3×e{(-1.15)/(k×T1)}×t1}という関係式を満たす。深さLは、半導体基板200に含まれる酸素濃度が1×1015cm-3未満の時において、L=Rp-2×√{9.4×10-3×e{(-0.48)/(k×T1)}×t1}という関係式を満たす。
<Action and effect>
In the manufacturing method of the semiconductor device 100, in the step (S7b) of introducing hydrogen, the depth of the region into which hydrogen is introduced in the semiconductor substrate 200 is defined as L. The Boltzmann constant is defined as k. In the step (S8b) of performing activation annealing, the annealing time is defined as t1, and the annealing temperature is defined as T1. When the oxygen concentration contained in the semiconductor substrate 200 is 1×10 17 cm −3 or more, the depth L satisfies the relational expression L=Rp-2×√{3.8×10 5 ×e {(−2.19)/(k×T1)} ×t1}. When the oxygen concentration contained in the semiconductor substrate 200 is less than 1×10 17 cm −3 and is 1×10 15 cm −3 or more, the depth L satisfies the relational expression L=Rp-2×√{5.3×10 −3 ×e {(−1.15)/(k×T1)} ×t1}. When the oxygen concentration contained in the semiconductor substrate 200 is less than 1×10 15 cm −3 , the depth L satisfies the relation L=Rp−2×√{9.4×10 −3 ×e {(−0.48)/(k×T1)} ×t1}.
 このようにすれば、高抵抗領域が発生する領域の深さLを予測することができる。その結果、深さLから水素を導入する工程(S7b)におけるアニールする時の温度T2および時間t2を決定することができ、高抵抗領域の発生が抑制されたバッファ層2を含む半導体装置100を得ることができる。 In this way, it is possible to predict the depth L of the region where a high resistance region will occur. As a result, it is possible to determine the temperature T2 and time t2 for annealing in the step (S7b) of introducing hydrogen from the depth L, and it is possible to obtain a semiconductor device 100 including a buffer layer 2 in which the occurrence of a high resistance region is suppressed.
 上記半導体装置100の製造方法について、水素を導入する工程(S7b)は、半導体基板200が水素を含む膜に接している状態、若しくは前記半導体基板200が水素雰囲気下に晒されている状態の少なくともいずれかの状態で、半導体基板200にアニールする工程を少なくとも含む。水素を導入する工程(S7b)において、アニールする時間をt2とし、アニールする時の温度をT2とする。この場合に、水素を導入する工程(S7b)において、アニールする時間t2およびアニールする時の温度T2は、半導体基板200に含まれる酸素濃度が1×1017cm-3以上の時において、L≦√{3.8×10×e{(-2.19)/(k×T2)}×t2}という関係式を満たす。アニールする時間t2およびアニールする時の温度T2は、半導体基板200に含まれる酸素濃度が1×1017cm-3未満1×1015cm-3以上の時において、L≦√{5.3×10-3×e{(-1.15)/(k×T2)}×t2}という関係式を満たす。アニールする時間t2およびアニールする時の温度T2は、半導体基板200に含まれる酸素濃度が1×1015cm-3未満の時において、L≦√{9.4×10-3×e{(-0.48)/(k×T2)}×t2}という関係式を満たす。 In the manufacturing method of the semiconductor device 100, the step (S7b) of introducing hydrogen includes at least a step of annealing the semiconductor substrate 200 in at least one of a state in which the semiconductor substrate 200 is in contact with a film containing hydrogen or a state in which the semiconductor substrate 200 is exposed to a hydrogen atmosphere. In the step (S7b) of introducing hydrogen, the annealing time is t2 and the annealing temperature is T2. In this case, in the step (S7b) of introducing hydrogen, the annealing time t2 and the annealing temperature T2 satisfy the relational expression L≦√{3.8×10 5 ×e {(−2.19)/(k×T2)} ×t2} when the oxygen concentration contained in the semiconductor substrate 200 is 1×10 17 cm −3 or more. The annealing time t2 and the annealing temperature T2 satisfy the relational expression L≦√{5.3× 10-3 ×e{ (-1.15)/(k×T2)} ×t2} when the oxygen concentration contained in the semiconductor substrate 200 is less than 1× 1017 cm- 3 and is equal to or greater than 1× 1015 cm - 3 . The annealing time t2 and the annealing temperature T2 satisfy the relational expression L≦√{9.4× 10-3 ×e {(-0.48)/(k×T2)} ×t2} when the oxygen concentration contained in the semiconductor substrate 200 is less than 1×1015 cm -3.
 このようにすれば、高抵抗領域が発生する領域の深さLから水素を導入する工程(S7b)におけるアニールする時の温度T2および時間t2を決定することができ、高抵抗領域の発生が抑制されたバッファ層2を含む半導体装置100を得ることができる。 In this way, it is possible to determine the temperature T2 and time t2 for annealing in the step (S7b) of introducing hydrogen from the depth L of the region where the high resistance region occurs, and it is possible to obtain a semiconductor device 100 including a buffer layer 2 in which the occurrence of the high resistance region is suppressed.
 上記半導体装置100の製造方法について、半導体基板200に素子構造を形成する工程と、半導体基板200の酸素濃度を測定する工程とを備える。酸素濃度を測定する工程は、素子構造を形成する工程としての表面構造を形成する工程(S2b)の後に実施される。 The manufacturing method of the semiconductor device 100 includes a step of forming an element structure in the semiconductor substrate 200 and a step of measuring the oxygen concentration of the semiconductor substrate 200. The step of measuring the oxygen concentration is carried out after the step (S2b) of forming a surface structure as a step of forming the element structure.
 このようにすれば、シリコンウエハに含まれる酸素濃度を測定することができる。その結果、使用するシリコンウエハの種類が異なっても、高抵抗領域の発生が抑制されたバッファ層を含む半導体装置100を得ることができる。 In this way, the oxygen concentration in the silicon wafer can be measured. As a result, even if different types of silicon wafers are used, it is possible to obtain a semiconductor device 100 that includes a buffer layer in which the occurrence of high resistance regions is suppressed.
 また、実施の形態1および実施の形態2に係る半導体装置100の製造方法において、電極の材料、成膜方法、p型領域もしくはn型領域における不純物濃度などは、一般的な半導体装置100の設計条件に合わせて変更されてもよい。実施の形態1および実施の形態2に係る半導体装置100の製造方法によって、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)およびSBD(Schottky Barrier Diode)、Thyristorが製造されてもよい。 In addition, in the manufacturing method of the semiconductor device 100 according to the first and second embodiments, the electrode material, film formation method, impurity concentration in the p-type region or n-type region, etc. may be changed to match the general design conditions of the semiconductor device 100. MOSFETs (Metal Oxide Semiconductor Field Effect Transistors), SBDs (Schottky Barrier Diodes), and Thyristors may be manufactured by the manufacturing method of the semiconductor device 100 according to the first and second embodiments.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。矛盾のない限り、今回開示された実施の形態の少なくとも2つを組み合わせてもよい。本開示の基本的な範囲は、上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図される。 The embodiments disclosed herein should be considered to be illustrative and not restrictive in all respects. Unless there is a contradiction, at least two of the embodiments disclosed herein may be combined. The basic scope of the present disclosure is indicated by the claims, not the above description, and is intended to include all modifications within the meaning and scope equivalent to the claims.
 1 n型ドリフト層、1a 第1主面、1b 第2主面、2 n型バッファ層、3 p型コレクタ層、4 p型コンタクト層、5 p型ベース層、6 n型エミッタ層、7 ゲート絶縁膜、8 ゲート電極、9 層間絶縁膜、10 表面電極、11 裏面電極、21 n型カソード層、22 p型アノード層、100 半導体装置、200 半導体基板、D1,D2 水素の拡散定数、L 深さ、X 第1方向。 1 n - type drift layer, 1a first main surface, 1b second main surface, 2 n type buffer layer, 3 p + type collector layer, 4 p type contact layer, 5 p type base layer, 6 n + type emitter layer, 7 gate insulating film, 8 gate electrode, 9 interlayer insulating film, 10 front surface electrode, 11 rear surface electrode, 21 n + type cathode layer, 22 p + type anode layer, 100 semiconductor device, 200 semiconductor substrate, D1, D2 hydrogen diffusion constant, L depth, X first direction.

Claims (6)

  1.  半導体基板を準備する工程と、
     前記半導体基板に水素を導入する工程と、
     前記半導体基板に荷電粒子線を照射する工程と、
     前記荷電粒子線を照射する工程の後に、前記半導体基板に活性化アニールする工程とを備え、
     前記水素を導入する工程は、前記活性化アニールする工程の前に実施される、半導体装置の製造方法。
    Providing a semiconductor substrate;
    introducing hydrogen into the semiconductor substrate;
    irradiating the semiconductor substrate with a charged particle beam;
    and performing activation annealing on the semiconductor substrate after the step of irradiating the charged particle beam,
    The method for manufacturing a semiconductor device, wherein the step of introducing hydrogen is carried out before the step of performing activation annealing.
  2.  前記水素を導入する工程は、
     前記半導体基板が水素を含む膜に接している状態、若しくは前記半導体基板が水素雰囲気下に晒されている状態の少なくともいずれかの状態で前記半導体基板にアニールする工程、前記半導体基板を水素プラズマに晒す工程、および水素イオンを含む液体に前記半導体基板を浸漬させる工程のいずれかの工程を含む、請求項1に記載の半導体装置の製造方法。
    The step of introducing hydrogen includes:
    2. The method for manufacturing a semiconductor device according to claim 1, comprising any one of a step of annealing the semiconductor substrate in at least one of a state in which the semiconductor substrate is in contact with a film containing hydrogen or a state in which the semiconductor substrate is exposed to a hydrogen atmosphere, a step of exposing the semiconductor substrate to hydrogen plasma, and a step of immersing the semiconductor substrate in a liquid containing hydrogen ions.
  3.  前記水素を導入する工程は前記荷電粒子線を照射する工程の前に実施される、請求項1または請求項2に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1 or 2, wherein the step of introducing hydrogen is carried out before the step of irradiating the charged particle beam.
  4.  前記水素を導入する工程において、前記半導体基板に水素が導入される領域の深さをLとし、ボルツマン定数をkとし、
     前記荷電粒子線を照射する工程において、前記荷電粒子線の照射飛程をRpとし、
     前記活性化アニールをする工程において、アニールする時間をt1とし、アニールする時の温度をT1とすると、
     前記深さは、
     前記半導体基板に含まれる酸素濃度が1×1017cm-3以上の時において、
     L=Rp-2×√{3.8×10×e{(-2.19)/(k×T1)}×t1}
     という関係式を満たし、
     前記半導体基板に含まれる酸素濃度が1×1015cm-3以上1×1017cm-3未満の時において、
     L=Rp-2×√{5.3×10-3×e{(-1.15)/(k×T1)}×t1}
     という関係式を満たし、
     前記半導体基板に含まれる酸素濃度が1×1015cm-3未満の時において、
     L=Rp-2×√{9.4×10-3×e{(-0.48)/(k×T1)}×t1}
     という関係式を満たす、請求項1から請求項3のいずれか1項に記載の半導体装置の製造方法。
    In the step of introducing hydrogen, a depth of a region into which hydrogen is introduced into the semiconductor substrate is defined as L, a Boltzmann constant is defined as k,
    In the step of irradiating the charged particle beam, an irradiation range of the charged particle beam is Rp,
    In the activation annealing step, if the annealing time is t1 and the annealing temperature is T1,
    The depth is
    When the oxygen concentration contained in the semiconductor substrate is 1×10 17 cm −3 or more,
    L=Rp-2×√{3.8×10 5 ×e {(-2.19)/(k×T1)} ×t1}
    The following relation is satisfied:
    When the oxygen concentration contained in the semiconductor substrate is 1×10 15 cm −3 or more and less than 1×10 17 cm −3 ,
    L=Rp-2×√{5.3×10 −3 ×e {(-1.15)/(k×T1)} ×t1}
    The following relation is satisfied:
    When the oxygen concentration contained in the semiconductor substrate is less than 1×10 15 cm −3 ,
    L=Rp-2×√{9.4×10 −3 ×e {(-0.48)/(k×T1)} ×t1}
    The method for manufacturing a semiconductor device according to claim 1 , wherein the following relational expression is satisfied:
  5.  前記水素を導入する工程は、前記半導体基板が水素を含む膜に接している状態、若しくは前記半導体基板が水素雰囲気下に晒されている状態の少なくともいずれかの状態で前記半導体基板にアニールする工程を少なくとも含み、
     前記水素を導入する工程において、アニールする時間をt2とし、アニールする時の温度をT2とした場合に、
     前記水素を導入する工程において、アニールする時間およびアニールする時の温度は、
     前記半導体基板に含まれる酸素濃度が1×1017cm-3以上の時において、
     L≦√{3.8×10×e{(-2.19)/(k×T2)}×t2}
     という関係式を満たし、
     前記半導体基板に含まれる酸素濃度が1×1015cm-3以上1×1017cm-3未満の時において、
     L≦√{5.3×10-3×e{(-1.15)/(k×T2)}×t2}
     という関係式を満たし、
     前記半導体基板に含まれる酸素濃度が1×1015cm-3未満の時において、
     L≦√{9.4×10-3×e{(-0.48)/(k×T2)}×t2}
     という関係式を満たす、請求項4に記載の半導体装置の製造方法。
    the step of introducing hydrogen includes at least a step of annealing the semiconductor substrate in at least one of a state in which the semiconductor substrate is in contact with a film containing hydrogen and a state in which the semiconductor substrate is exposed to a hydrogen atmosphere;
    In the hydrogen introduction step, when the annealing time is t2 and the annealing temperature is T2,
    In the step of introducing hydrogen, the annealing time and the annealing temperature are:
    When the oxygen concentration contained in the semiconductor substrate is 1×10 17 cm −3 or more,
    L≦√{3.8×10 5 ×e {(-2.19)/(k×T2)} ×t2}
    The following relation is satisfied:
    When the oxygen concentration contained in the semiconductor substrate is 1×10 15 cm −3 or more and less than 1×10 17 cm −3 ,
    L≦√{5.3×10 −3 ×e {(−1.15)/(k×T2)} ×t2}
    The following relation is satisfied:
    When the oxygen concentration contained in the semiconductor substrate is less than 1×10 15 cm −3 ,
    L≦√{9.4×10 −3 ×e {(−0.48)/(k×T2)} ×t2}
    5. The method for manufacturing a semiconductor device according to claim 4, wherein the following relational expression is satisfied:
  6.  前記半導体基板に素子構造を形成する工程と、
     前記半導体基板の酸素濃度を測定する工程とを備え、
     前記酸素濃度を測定する工程は、前記素子構造を形成する工程の後に実施される、請求項1から請求項5のいずれか1項に記載の半導体装置の製造方法。
    forming a device structure on the semiconductor substrate;
    measuring an oxygen concentration in the semiconductor substrate;
    6. The method for manufacturing a semiconductor device according to claim 1, wherein the step of measuring the oxygen concentration is performed after the step of forming the element structure.
PCT/JP2023/007126 2023-02-27 2023-02-27 Method for producing semiconductor device WO2024180627A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023550589A JP7466790B1 (en) 2023-02-27 2023-02-27 Method for manufacturing semiconductor device
PCT/JP2023/007126 WO2024180627A1 (en) 2023-02-27 2023-02-27 Method for producing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/007126 WO2024180627A1 (en) 2023-02-27 2023-02-27 Method for producing semiconductor device

Publications (1)

Publication Number Publication Date
WO2024180627A1 true WO2024180627A1 (en) 2024-09-06

Family

ID=90622467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007126 WO2024180627A1 (en) 2023-02-27 2023-02-27 Method for producing semiconductor device

Country Status (2)

Country Link
JP (1) JP7466790B1 (en)
WO (1) WO2024180627A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009025338A1 (en) * 2007-08-21 2009-02-26 Sumco Corporation Silicon single crystal wafer for igbt and method for manufacturing silicon single crystal wafer for igbt
WO2020138218A1 (en) * 2018-12-28 2020-07-02 富士電機株式会社 Semiconductor device and production method
WO2021181644A1 (en) * 2020-03-13 2021-09-16 三菱電機株式会社 Semiconductor device, and manufacturing method therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020001029T5 (en) 2019-10-11 2021-11-25 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing a semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009025338A1 (en) * 2007-08-21 2009-02-26 Sumco Corporation Silicon single crystal wafer for igbt and method for manufacturing silicon single crystal wafer for igbt
WO2020138218A1 (en) * 2018-12-28 2020-07-02 富士電機株式会社 Semiconductor device and production method
WO2021181644A1 (en) * 2020-03-13 2021-09-16 三菱電機株式会社 Semiconductor device, and manufacturing method therefor

Also Published As

Publication number Publication date
JP7466790B1 (en) 2024-04-12

Similar Documents

Publication Publication Date Title
US11569092B2 (en) Semiconductor device
US11735424B2 (en) Semiconductor device and manufacturing method thereof
JP5104314B2 (en) Semiconductor device and manufacturing method thereof
JP5272299B2 (en) Semiconductor device and manufacturing method thereof
US9887190B2 (en) Semiconductor device and method for manufacturing the same
JP2014099643A (en) Semiconductor device
US8846544B2 (en) Reverse recovery using oxygen-vacancy defects
US20150008478A1 (en) Semiconductor device and manufacturing method of the same
US9934988B2 (en) Method for processing a silicon wafer
US20220285501A1 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
US20230111002A1 (en) Semiconductor device, and method of manufacturing semiconductor device
WO2024180627A1 (en) Method for producing semiconductor device
US11557506B2 (en) Methods for processing a semiconductor substrate
US20220262638A1 (en) Semiconductor device and method of manufacturing semiconductor device
CN110892514A (en) Method for manufacturing semiconductor device and semiconductor device
WO2011058035A2 (en) Punch-through semiconductor device and method for producing same
US20230125859A1 (en) Method of manufacturing a semiconductor device including ion implantation and semiconductor device
US20240087898A1 (en) Semiconductor device and method of manufacturing the same
WO2022265061A1 (en) Semiconductor device and method for producing semiconductor device
US20230092013A1 (en) Method of Forming a Semiconductor Device Including an Absorption Layer
US20230268398A1 (en) Power semiconductor device and method for manufacturing power semiconductor device
US20230335410A1 (en) Semiconductor device manufacturing method, and semiconductor device
US20240339322A1 (en) Semiconductor device having a reduced concentration of carbon vacancies and its manufacturing method
WO2023176887A1 (en) Semiconductor device and manufacturing method for semiconductor device
JP2024517321A (en) Method for Producing Silicon Carbide Substrates