WO2024180584A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2024180584A1
WO2024180584A1 PCT/JP2023/006973 JP2023006973W WO2024180584A1 WO 2024180584 A1 WO2024180584 A1 WO 2024180584A1 JP 2023006973 W JP2023006973 W JP 2023006973W WO 2024180584 A1 WO2024180584 A1 WO 2024180584A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
line
capacitance electrode
capacitance
display device
Prior art date
Application number
PCT/JP2023/006973
Other languages
French (fr)
Japanese (ja)
Inventor
史幸 小林
Original Assignee
シャープディスプレイテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープディスプレイテクノロジー株式会社 filed Critical シャープディスプレイテクノロジー株式会社
Priority to PCT/JP2023/006973 priority Critical patent/WO2024180584A1/en
Publication of WO2024180584A1 publication Critical patent/WO2024180584A1/en

Links

Images

Definitions

  • This disclosure relates to a display device.
  • Patent Document 1 discloses that in a display device in which power supply lines and source signal lines are arranged in parallel, display unevenness occurs due to potential variations in the power supply lines.
  • display abnormalities can occur due to fluctuations in the potential of the high-potential power line.
  • the display device includes a first power line on the high potential side and a second power line on the low potential side, a data signal line, a drive transistor, a first capacitance electrode electrically connected to the first power line and forming a capacitance with the gate electrode of the drive transistor, and a second capacitance electrode electrically connected to the second power line and forming a capacitance with the first capacitance electrode.
  • a display device includes a first power line on the high potential side and a second power line on the low potential side, a data signal line, a drive transistor, a third capacitance electrode electrically connected to the second power line and forming a capacitance with the gate electrode of the drive transistor, and a fourth capacitance electrode electrically connected to the gate electrode and forming a capacitance with the third capacitance electrode.
  • This disclosure makes it possible to suppress display abnormalities.
  • FIG. 1 is a plan view showing a configuration example of a display device according to an embodiment of the present invention.
  • 1A and 1B are a plan view and a cross-sectional view showing a configuration example of a display device according to an embodiment of the present invention.
  • 11A to 11C are explanatory diagrams showing a display example in the present embodiment and a display example in a comparative example.
  • 1A and 1B are a plan view and a cross-sectional view showing another configuration example of the display device of the present embodiment.
  • FIG. 1 is a plan view illustrating a display device according to a first embodiment of the present disclosure.
  • FIG. 1 is a plan view illustrating an example of a display device according to a first embodiment of the present disclosure.
  • FIG. 2 is a circuit diagram of a pixel circuit included in the display device according to the first embodiment of the present disclosure. This is a cross-sectional view taken along line A1-A1 of FIG. 10 is a timing chart showing an example of a potential fluctuation of a first power supply line in accordance with a potential fluctuation of a data signal.
  • FIG. 11 is a plan view illustrating an example of a display device according to a second embodiment of the present disclosure. This is a cross-sectional view taken along line A2-A2 of FIG.
  • FIG. 11 is a circuit diagram of a pixel circuit included in a display device according to a second embodiment of the present disclosure.
  • FIG. 1 is a plan view showing an example of the configuration of the display device of this embodiment.
  • FIG. 2 is a plan view and a cross-sectional view showing an example of the configuration of the display device of this embodiment.
  • the display device 1 includes a plurality of light-emitting elements 5, a first power supply line 14 on the high potential side (e.g., ELVDD) and a second power supply line 15 on the low potential side (e.g., ELVSS), a data signal line 11, a scanning signal line 12, a driving transistor T4, a first capacitance electrode 21 electrically connected to the first power supply line 14 and forming a capacitance C1 (control capacitance) with the gate electrode 23 of the driving transistor T4, and a second capacitance electrode 22 electrically connected to the second power supply line 15 and forming a capacitance C2 (storage capacitance) with the first capacitance electrode 21.
  • ELVDD high potential side
  • ELVSS low potential side
  • the first power supply line 14 and the data signal line 11 may be adjacent to each other (formed adjacent to each other in the same layer).
  • the driving transistor T4 is formed in the pixel circuit 13.
  • the light-emitting element 5A connected to pixel circuit 13A, the light-emitting element 5B connected to pixel circuit 13B, and the light-emitting element 5C connected to pixel circuit 13C may emit light of different colors.
  • the light-emitting element 5 may be a light-emitting diode (e.g., an OLED).
  • a first capacitance electrode 21 is disposed on the gate electrode 23 via a first inorganic insulating film 71, and a second capacitance electrode 22 is disposed on the first capacitance electrode 21 via a second inorganic insulating film 72.
  • a first power supply line 14 is disposed on the second capacitance electrode 22 via an organic insulating film 73.
  • the first power supply line 14, the second power supply line 15, and the data signal line 11 are located in the same layer.
  • the second power supply line 15 and the second capacitance electrode 22 are connected via a contact hole H1.
  • the display device 1 includes, from the bottom up, a semiconductor layer SC (e.g., polysilicon), a metal layer GM including a gate electrode 23, a metal layer M3 including a first capacitance electrode 21, a metal layer SE including a second capacitance electrode 22, and a metal layer M4 including a first power line 14, a second power line 15, and a data signal line 11.
  • the overlapping portion of the semiconductor layer SC with the gate electrode 23 becomes the channel of the driving transistor T4.
  • the portion of the semiconductor layer SC that does not overlap with the metal layer GM may function as a conductor (electrode, wiring).
  • the display device 1 includes a third power line 16 on the high potential side (e.g., ELVDD) that extends in a direction (second direction) perpendicular to the extension direction (first direction) of the data signal line 11, and the third power line 16 and the second capacitance electrode 22 are located in the same layer (metal layer SE).
  • the third power line 16 and the first capacitance electrode 21 are connected via a contact hole H2, and the third power line 16 and the first power line 14 are connected via a contact hole H3.
  • a capacitance CX storage capacitance
  • the distance between the data signal line 11 and the second power line 15 may be greater than the distance between the data signal line 11 and the first power line 14.
  • FIG. 3 is an explanatory diagram showing a display example in this embodiment and a display example in a comparative example. Since the display device 1 includes the first capacitance electrode 21 and the second capacitance electrode 22 forming the capacitance C2 (storage capacitance), the potential of the first power line 14 is unlikely to fluctuate even if the potential of the data signal line 11 fluctuates.
  • the potential of the data signal line 11 changes from middle to high (High: black potential) or from high (High: black potential) to middle, the potential of the first power line 14 hardly fluctuates, and the gate potential (potential of the gate electrode 23) of the driving transistor T4 is appropriately set (maintained at a potential according to the grayscale data), so that display abnormalities are suppressed even when a black block is displayed on a gray background.
  • the potential of the ELVDD power line is likely to fluctuate due to fluctuations in the potential of the data signal line.
  • the potential of the data signal line changes from medium to high (high: black potential)
  • the gate potential of the drive transistor is pulled in and the boundary line shifts to the high brightness side
  • the gate potential of the drive transistor is pushed up and the boundary line shifts to the low brightness side, so that a white line extending the upper edge of a black block and a black line extending the lower edge of a black block are likely to be displayed (abnormal display) on a gray background.
  • the display device 1 includes a first power line 14 on the high potential side and a second power line 15 on the low potential side, a data signal line 11, a driving transistor T4, a third capacitance electrode 121 electrically connected to the second power line 15 and forming a capacitance C3 (storage capacitance) with the gate electrode 23 of the driving transistor T4, and a fourth capacitance electrode 122 electrically connected to the gate electrode 23 and forming a capacitance C4 (storage capacitance) with the third capacitance electrode 121.
  • a capacitance C1 (control capacitance) is formed between the first power line 14 and the fourth capacitance electrode 122.
  • the third capacitance electrode 121 is disposed on the gate electrode 23 via the first inorganic insulating film 71, and the fourth capacitance electrode 122 is disposed on the third capacitance electrode 121 via the second inorganic insulating film 72.
  • the first power line 14 is disposed on the fourth capacitance electrode 122 via the organic insulating film 73.
  • the third capacitance electrode 121 is formed on metal layer M3, and the fourth capacitance electrode 122 is formed on metal layer SE.
  • the gate electrode 23 and the fourth capacitance electrode 122 are connected via a contact hole H4.
  • An opening K is formed in the third capacitance electrode 121, and the contact hole H4 is formed so as to be located within the opening in a plan view (so as not to contact the third capacitance electrode 121).
  • the second power line 15 and the third capacitance electrode 121 are connected via a contact hole H5.
  • the display device 1 in FIG. 4 includes a third capacitance electrode 121 that forms a storage capacitance with the gate electrode 23 and the fourth capacitance electrode 122, so that even if the potential of the first power line 14 fluctuates, the gate potential of the drive transistor T4 (the potential of the gate electrode 23) is less likely to fluctuate, making it possible to suppress display abnormalities such as those in the comparative example (FIG. 3).
  • a first power supply line 14 may be provided for each of the pixel circuits 13A to 13C, and second power supply lines 15 may be provided corresponding to the pixel circuits 13A to 13C.
  • the number of second power supply lines 15 may be less than the number of first power supply lines 14.
  • the anode (e.g., a light-reflecting electrode) of the light-emitting element 5A may overlap the data signal line 11A in a planar view
  • the anode of the light-emitting element 5B may overlap the data signal line 11B in a planar view
  • the anode of the light-emitting element 5C may overlap the data signal line 11C in a planar view.
  • FIG. 5 is a plan view showing a display device 1 according to a first embodiment of the present disclosure.
  • the display device 1 includes a plurality of pixel circuits 13, a plurality of data signal lines 11, and a plurality of scanning signal lines 12.
  • the plurality of data signal lines 11 extend in a first direction Y.
  • the plurality of scanning signal lines 12 extend in a second direction X perpendicular to the first direction Y.
  • three data signal lines 11 and one scanning signal line 12 are formed in each of the plurality of pixel circuits 13.
  • the data signal line 11 is formed so as to overlap the plurality of pixel circuits 13 arranged in parallel in the first direction Y.
  • the scanning signal line 12 is formed so as to overlap the plurality of pixel circuits 13 arranged in parallel in the second direction X.
  • FIG. 6 is a plan view showing an example of a pixel circuit 13 provided in a display device 1 according to a first embodiment of the present disclosure.
  • the pixel circuit 13 includes a pixel circuit 13R corresponding to red, a pixel circuit 13G corresponding to green, and a pixel circuit 13B corresponding to blue.
  • the pixel circuits 13R, 13G, and 13B are formed along the second direction X.
  • the three data signal lines 11 formed in the pixel circuit 13 are formed one for each of the pixel circuits 13R, 13G, and 13B.
  • a data signal data is input to the data signal line 11.
  • the scanning signal line 12 is formed so as to straddle the pixel circuits 13R, 13G, and 13B.
  • the scanning signal line 12 straddling the pixel circuits 13R, 13G, and 13B means that the scanning signal line 12 overlaps the pixel circuits 13R, 13G, and 13B in a plan view.
  • a scanning signal scan[n] is input to the scanning signal line 12 in the nth row.
  • the pixel circuit 13 is supplied with a high-level potential ELVDD and a low-level potential ELVSS, as well as initialization potentials Vini1 and Vini2.
  • a first power supply line 14 extending in the first direction Y is formed in each of the pixel circuits 13R, 13G, and 13B.
  • the first power supply line 14 is a high-potential side wiring, and supplies the high-level potential ELVDD to the pixel circuit 13.
  • a second power supply line 15 extending in the first direction Y is formed in the pixel circuit 13.
  • the second power supply line 15 is a low-potential side wiring, and supplies the low-level potential ELVSS to the pixel circuit 13.
  • a third power supply line 16 is formed in the pixel circuit 13, extending in the second direction X so as to straddle the pixel circuits 13R, 13G, and 13B.
  • the third power supply line 16 straddling the pixel circuits 13R, 13G, and 13B means that the third power supply line 16 overlaps the pixel circuits 13R, 13G, and 13B in a planar view.
  • the third power supply line 16 is a high-potential wiring and supplies a high-level potential ELVDD to the pixel circuit 13.
  • the third power supply line 16 is formed in a layer lower than the first power supply line 14 and the second power supply line 15.
  • the third power supply line 16 is electrically connected to the first power supply line 14 via a third contact hole 41.
  • the contact holes formed in common to pixel circuits 13R, 13G, and 13B, such as the third contact hole 41, are represented by the reference symbol for pixel circuit 13B.
  • the pixel circuit 13 includes a wiring 17 used to supply an initialization potential Vini1, and a wiring 18 used to supply an initialization potential Vini2.
  • the pixel circuit 13 also includes a wiring 19 to which a light emission control signal dis[n-1] is input, and a wiring 20 to which a light emission control signal em[n] is input.
  • the wirings 17, 18, 19, and 20 extend in the second direction X.
  • the display device 1 includes a first capacitance electrode 21 for each of the pixel circuits 13R, 13G, and 13B.
  • the first capacitance electrode 21 is electrically connected to the third power supply line 16 via the second contact hole 42.
  • the first capacitance electrode 21 is electrically connected to the first power supply line 14 via the third power supply line 16.
  • the display device 1 includes a second capacitance electrode 22.
  • the second capacitance electrode 22 is electrically connected to the second power line 15 via a first contact hole 43.
  • the first contact hole 43 is formed at a position where the second power line 15 and the second capacitance electrode 22 overlap in a plan view.
  • the second capacitance electrode 22 extends in the second direction X from a position where it is connected to the first contact hole 43 in a plan view.
  • the second capacitance electrode 22 has a wide portion 22A whose size in the first direction Y is locally large. In a plan view, the wide portion 22A of the second capacitance electrode 22 overlaps with the first capacitance electrodes 21 of the pixel circuits 13R, 13G, and 13B.
  • pixel circuits 13R, 13G, and 13B may be referred to as pixel circuit 13.
  • FIG. 7 is a circuit diagram of a pixel circuit 13 provided in a display device 1 according to a first embodiment of the present disclosure. As shown in FIG. 7, each of the pixel circuits 13 has a 7T2C configuration. Each of the pixel circuits 13 includes seven thin-film transistors T1-T7, an organic light-emitting diode OLED, a first capacitance C1, and a second capacitance C2.
  • FIG. 6 shows the positions where the thin-film transistors T1-T7 are formed in the pixel circuit 13.
  • the positions corresponding to the gate electrodes of the thin-film transistors T1-T7 in the pixel circuit 13R are denoted with reference symbols.
  • the thin-film transistor T4 is a drive transistor for the organic light-emitting diode OLED. That is, the display device 1 includes a thin-film transistor T4 that is a drive transistor for the organic light-emitting diode OLED. Hereinafter, the thin-film transistor T4 will be referred to as the drive transistor T4.
  • the first capacitance C1 is formed between the gate electrode 23 of the drive transistor T4 and the first capacitance electrode 21.
  • the second capacitance C2 is formed between the first capacitance electrode 21 and the second capacitance electrode 22.
  • the light emission control signal dis[n-1] input to wiring 19 is input to the gate electrode of thin-film transistor T1.
  • the scan signal scan[n] is input to the gate electrodes of thin-film transistors T2 and T3.
  • the light emission control signal em[n] is input to the gate electrodes of thin-film transistors T5 and T6.
  • the light emission control signal dis[n] is input to the gate electrode of thin-film transistor T7.
  • one of the drain and source of the thin-film transistor T1 is electrically connected to the wiring 17 via the fourth contact hole 44, and the other is electrically connected to the gate electrode 23 of the drive transistor T4 via the fifth contact hole 45 and the sixth contact hole 46.
  • One of the drain and source of the thin-film transistor T2 is electrically connected to the gate electrode 23 of the drive transistor T4 via the fifth contact hole 45 and the sixth contact hole 46, and the other is connected to the source (drain) of the drive transistor T4 via a wiring 61.
  • One of the drain and source of the thin-film transistor T3 is electrically connected to the data signal line 11 via the seventh contact hole 47 and the eighth contact hole 48, and the other is connected to the drain (source) of the drive transistor T4 via a wiring 60.
  • One of the drain and source of the thin-film transistor T5 is electrically connected to the third power line 16 via the ninth contact hole 49, and the other is connected to the drain (source) of the drive transistor T4.
  • One of the drain and source of the thin-film transistor T6 is connected to the organic light-emitting diode OLED via the tenth contact hole 50, and the other is connected to the source (drain) of the drive transistor T4.
  • One of the drain and source of the thin-film transistor T7 is electrically connected to the wiring 18 via the 11th contact hole 51, and the other is connected to the organic light-emitting diode OLED via the 12th contact hole 52.
  • FIG. 8 is a cross-sectional view taken along the line A1-A1 in FIG. 6.
  • a first capacitance electrode 21 is disposed on the gate electrode 23 of the driving transistor T4 via a first inorganic insulating film 71.
  • the first capacitance electrode 21 forms a first capacitance C1 together with the gate electrode 23.
  • a wide portion 22A of the second capacitance electrode 22 is disposed on the first capacitance electrode 21 via a second inorganic insulating film 72.
  • a first power supply line 14 is disposed on the wide portion 22A of the second capacitance electrode 22 via an organic insulating film 73.
  • the wide portion 22A of the second capacitance electrode 22 forms a second capacitance C2 with the first capacitance electrode 21 and the first power supply line 14.
  • a light-reflecting electrode 80 is disposed on the first power line 14 via a planarization film 74.
  • a light-emitting layer 81 and a common electrode 82 are disposed above the light-reflecting electrode 80.
  • the common electrode 82 has the same potential as the second power line 15. In other words, the potential of the common electrode 82 is the low-level potential ELVSS.
  • the end of the light-reflecting electrode 80 is covered with an edge cover 83.
  • FIG. 6 the outline of the light-reflecting electrode 80 disposed on the first power line 14 is shown.
  • the light-reflecting electrode 80 is formed of, for example, silver or the like.
  • the first power supply line 14, the second power supply line 15, and the data signal line 11 are located in the same layer.
  • the third power supply line 16, which is not shown in FIG. 8, is located in the same layer as the second capacitance electrode 22.
  • the first power supply line 14, the second power supply line 15, the data signal line 11, the third power supply line 16, and the second capacitance electrode 22 are formed of the same material containing aluminum.
  • the gate electrode 23 and the first capacitance electrode 21 of the driving transistor T4 are formed of molybdenum.
  • the data signal line 11 is adjacent to the first power supply line 14.
  • the data signal line 11 being adjacent to the first power supply line 14 may mean that the data signal line 11 is located in the same layer as the first power supply line 14, the data signal line 11 extends in parallel with the first power supply line 14, and the voltage fluctuation of the data signal line 11 affects the first power supply line 14.
  • the data signal line 11 forms a parasitic capacitance C elvdd-data with the first power supply line 14.
  • a power supply line such as the first power supply line 14 is designed to have a wiring width as large as possible in order to reduce a voltage drop (IR drop) of an IR product occurring on the power supply line.
  • FIG. 9 is a timing chart showing an example of the potential fluctuation of the first power supply line 14 accompanying the potential fluctuation of the data signal data.
  • the data signal data changes from a low level potential to a high level potential at timing TM1.
  • the potential of the first power supply line 14 changes by ⁇ V elvdd1 following the fluctuation of the data signal data. Thereafter, the potential of the first power supply line 14 gradually returns to the value before the fluctuation.
  • the amount of fluctuation ⁇ V elvdd1 is the value of formula (1) and is proportional to the magnitude of the parasitic capacitance C elvdd-data .
  • V elvdd1 (V DataH - V DataL ) x C elvdd-data / ⁇ C elvdd ...(1)
  • V DataH is the high level potential of the data signal data
  • V DataL is the low level potential of the data signal data
  • ⁇ C elvdd is the total capacitance of ELVDD, which is the combined capacitance of the first capacitance C1, the second capacitance C2, and the parasitic capacitance C T4 of the driving transistor T4.
  • the potential Vn_g of the gate electrode of the driving transistor T4 becomes equal to the data signal "data” minus the magnitude
  • the potential Vn_g of the gate electrode of the driving transistor T4 fluctuates following the potential fluctuation of the first power supply line 14.
  • the data writing is completed at timing TM2
  • the potential Vn_g of the gate electrode 23 of the driving transistor T4 after timing TM2 drops by ⁇ Vn_g following the drop in the first power supply line 14.
  • the potential fluctuation amount ⁇ Vn_g is the value of formula (2) and is based on the potential fluctuation amount ⁇ Velvdd2 of the first power supply line 14 at timing TM2 and the first capacitance C1.
  • C1/ ⁇ C n_g is the capacitive coupling coefficient between the first power line 14 and the gate electrode 23 of the driving transistor T4, and is 1 in the case of the circuit diagram of FIG.
  • the second capacitance electrode 22 electrically connected to the second power line 15 extends in the second direction X and is formed so as to overlap the first capacitance electrode 21 in a plan view.
  • a second capacitance C2 is formed between the first capacitance electrode 21 and the second capacitance electrode 22 and between the first power line 14 and the second capacitance electrode 22, and the ELVDD total capacitance ⁇ C elvdd increases.
  • FIG. 10 is a plan view showing an example of a pixel circuit 13A in the display device 1 according to the second embodiment of the present disclosure.
  • the pixel circuit 13A includes a pixel circuit 113R corresponding to red, a pixel circuit 113G corresponding to green, and a pixel circuit 113B corresponding to blue.
  • the pixel circuits 113R, 113G, and 113B are formed along the second direction X.
  • the three data signal lines 11 formed in the pixel circuit 13A are formed in each of the pixel circuits 113R, 113G, and 113B, respectively.
  • the pixel circuit 13A in the display device 1 does not include a first capacitance electrode 21 and a second capacitance electrode 22, but includes a third capacitance electrode 121 and a fourth capacitance electrode 122.
  • the third capacitance electrode 121 is electrically connected to the second power line 15 via a first contact hole 43 and a thirteenth contact hole 53.
  • the third capacitance electrode 121 extends in the second direction X in a plan view.
  • the fourth capacitance electrode 122 is electrically connected to the gate electrode 23 of the drive transistor T4 via a fourteenth contact hole 54.
  • pixel circuits 113R, 113G, and 113B may be referred to as pixel circuit 113.
  • FIG. 11 is a cross-sectional view taken along line A2-A2 of FIG. 10.
  • a third capacitance electrode 121 is arranged on the gate electrode 23 of the driving transistor T4 (driving transistor) via a first inorganic insulating film 71.
  • a fourth capacitance electrode 122 is arranged on the third capacitance electrode 121 via a second inorganic insulating film 72.
  • a first power supply line 14 is arranged on the fourth capacitance electrode 122 via an organic insulating film 73.
  • the fourth capacitance electrode 122 is located in the same layer as the third power supply line 16.
  • the first power supply line 14, the second power supply line 15, the data signal line 11, the third power supply line 16, and the fourth capacitance electrode 122 are made of the same material containing aluminum.
  • the gate electrode 23 and the third capacitance electrode 121 of the driving transistor T4 are made of molybdenum.
  • the third capacitance electrode 121 forms a third capacitance C3 together with the gate electrode 23 and the fourth capacitance electrode 122.
  • the fourth capacitance electrode 122 forms a first capacitance C1 with the first power line 14.
  • a relay electrode 91 is disposed on the third capacitance electrode 121 via the second inorganic insulating film 72.
  • the first contact hole 43 and the thirteenth contact hole 53 are electrically connected via the relay electrode 91.
  • the relay electrode 91 is formed in the same layer and made of the same material as the fourth capacitance electrode 122.
  • the second power line 15 is electrically connected to the third capacitance electrode 121 via the first contact hole 43, the thirteenth contact hole 53, and the relay electrode 91.
  • a light-reflecting electrode 80A is disposed on the first power supply line 14 via a planarization film 74.
  • the light-reflecting electrode 80A is disposed so as to overlap with the data signal line 11 in a planar view. This prevents parasitic capacitance from being formed between the data signal line 11 and the common electrode 82.
  • the parasitic capacitance C elvdd-data between the data signal line 11 and the first power supply line 14 is larger than the parasitic capacitance C elvss-data between the data signal line 11 and a power supply line to which a low-level potential ELVSS is supplied, such as the second power supply line 15.
  • the common electrode 82 has the same potential as the second power line 15.
  • An insulating film 90 is formed around the periphery of the 14th contact hole 54 to prevent a short circuit between the third capacitance electrode and 121.
  • FIG. 12 is a circuit diagram of a pixel circuit 113 provided in a display device 1 according to a second embodiment of the present disclosure.
  • the pixel circuit 113 provided in a display device 1 according to a second embodiment of the present disclosure has a 7T2C configuration.
  • Seven thin film transistors T1-T7, an organic light emitting diode OLED, a first capacitance C1, and a third capacitance C3 are formed in the pixel circuit 113.
  • the capacitive coupling coefficient C1/ ⁇ C n_g between the first power line 14 and the gate electrode 23 of the driving transistor T4 becomes small.
  • the potential fluctuation amount ⁇ V n_g of the potential V n_g of the gate electrode 23 of the driving transistor T4 becomes small. Therefore, it is possible to reduce display unevenness that causes bright lines and dark lines in the display device 1 according to the second embodiment of the present disclosure.
  • Display device 11 Data signal line 14 First power line 15 Second power line 16 Third power line 21 First capacitance electrode 22 Second capacitance electrode 22A Wide portion 23 Gate electrode 71 First inorganic insulating film 72 Second inorganic insulating film 73 Organic insulating film 74 Planarization film 80, 80A Light-reflecting electrode 81 Light-emitting layer 82 Common electrode 121 Third capacitance electrode 122 Fourth capacitance electrode T4 Thin film transistor (driving transistor) Y 1st direction X 2nd direction

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A display device (1) comprising a high-potential-side first power source line (14), a low-potential-side second power source line (15), a data signal line (11), a drive transistor (T4), a first capacitance electrode (21) that is electrically connected to the first power source line (14) and that forms capacitance with a gate electrode (23) of the drive transistor (T4), and a second capacitance electrode (22) that is electrically connected to the second power source line (15) and that forms capacitance with the first capacitance electrode (21).

Description

表示装置Display device
 本開示は、表示装置に関する。 This disclosure relates to a display device.
 特許文献1には、電源供給線とソース信号線とが平行に配置された表示装置において、電源供給線の電位ばらつきにより表示ムラが生じることが開示されている。 Patent Document 1 discloses that in a display device in which power supply lines and source signal lines are arranged in parallel, display unevenness occurs due to potential variations in the power supply lines.
日本国特開2021-152669号公報Japanese Patent Application Publication No. 2021-152669
 高電位側の電源線とデータ信号線を有する表示装置にあっては、高電位側の電源線の電位変動に起因して表示異常が生じることがある。 In display devices that have a high-potential power line and a data signal line, display abnormalities can occur due to fluctuations in the potential of the high-potential power line.
 本開示に係る表示装置は、高電位側の第1電源線および低電位側の第2電源線と、データ信号線と、駆動トランジスタと、前記第1電源線に電気的に接続し、前記駆動トランジスタのゲート電極と容量を形成する第1容量電極と、前記第2電源線に電気的に接続し、前記第1容量電極と容量を形成する第2容量電極とを備える。 The display device according to the present disclosure includes a first power line on the high potential side and a second power line on the low potential side, a data signal line, a drive transistor, a first capacitance electrode electrically connected to the first power line and forming a capacitance with the gate electrode of the drive transistor, and a second capacitance electrode electrically connected to the second power line and forming a capacitance with the first capacitance electrode.
 本開示に係る別の態様の表示装置は、高電位側の第1電源線および低電位側の第2電源線と、データ信号線と、駆動トランジスタと、前記第2電源線に電気的に接続し、前記駆動トランジスタのゲート電極と容量を形成する第3容量電極と、前記ゲート電極に電気的に接続し、前記第3容量電極と容量を形成する第4容量電極とを備える。 A display device according to another aspect of the present disclosure includes a first power line on the high potential side and a second power line on the low potential side, a data signal line, a drive transistor, a third capacitance electrode electrically connected to the second power line and forming a capacitance with the gate electrode of the drive transistor, and a fourth capacitance electrode electrically connected to the gate electrode and forming a capacitance with the third capacitance electrode.
 本開示によれば、表示異常を抑制することができる。 This disclosure makes it possible to suppress display abnormalities.
本実施形態の表示装置の構成例を示す平面図である。FIG. 1 is a plan view showing a configuration example of a display device according to an embodiment of the present invention. 本実施形態の表示装置の構成例を示す平面図および断面面である。1A and 1B are a plan view and a cross-sectional view showing a configuration example of a display device according to an embodiment of the present invention. 本実施形態での表示例および比較例での表示例での表示例を示す説明図である。11A to 11C are explanatory diagrams showing a display example in the present embodiment and a display example in a comparative example. 本実施形態の表示装置の別構成例を示す平面図および断面面である。1A and 1B are a plan view and a cross-sectional view showing another configuration example of the display device of the present embodiment. 本開示の第1実施例に係る表示装置を模式的に示す平面図である。FIG. 1 is a plan view illustrating a display device according to a first embodiment of the present disclosure. 本開示の第1実施例に係る表示装置の一例を示す平面図である。FIG. 1 is a plan view illustrating an example of a display device according to a first embodiment of the present disclosure. 本開示の第1実施例に係る表示装置に備わる画素回路の回路図である。2 is a circuit diagram of a pixel circuit included in the display device according to the first embodiment of the present disclosure. 図6のA1-A1断面図である。This is a cross-sectional view taken along line A1-A1 of FIG. データ信号の電位変動に伴う第1電源線の電位変動の一例を示すタイミングチャートである。10 is a timing chart showing an example of a potential fluctuation of a first power supply line in accordance with a potential fluctuation of a data signal. 本開示の第2実施例に係る表示装置の一例を示す平面図である。FIG. 11 is a plan view illustrating an example of a display device according to a second embodiment of the present disclosure. 図10のA2-A2断面図である。This is a cross-sectional view taken along line A2-A2 of FIG. 本開示の第2実施例に係る表示装置に備わる画素回路の回路図である。FIG. 11 is a circuit diagram of a pixel circuit included in a display device according to a second embodiment of the present disclosure.
 図1は、本実施形態の表示装置の構成例を示す平面図である。図2は、本実施形態の表示装置の構成例を示す平面図および断面面である。図1および図2に示すように、表示装置1は、複数の発光素子5と、高電位側(例えばELVDD)の第1電源線14および低電位側の第2電源線15(例えばELVSS)と、データ信号線11と、走査信号線12と、駆動トランジスタT4と、第1電源線14に電気的に接続し、駆動トランジスタT4のゲート電極23と容量C1(制御容量)を形成する第1容量電極21と、第2電源線15に電気的に接続し、第1容量電極21と容量C2(保持容量)を形成する第2容量電極22とを備える。第1電源線14およびデータ信号線11が、隣り合っていて(同層に隣接形成されていて)もよい。駆動トランジスタT4は、画素回路13に形成される。画素回路13Aに接続する発光素子5A、画素回路13Bに接続する発光素子5B、および画素回路13Cに接続する発光素子5Cが、互いに異なる色で発光してもよい。発光素子5が発光ダイオード(例えば、OLED)であってよい。 FIG. 1 is a plan view showing an example of the configuration of the display device of this embodiment. FIG. 2 is a plan view and a cross-sectional view showing an example of the configuration of the display device of this embodiment. As shown in FIGS. 1 and 2, the display device 1 includes a plurality of light-emitting elements 5, a first power supply line 14 on the high potential side (e.g., ELVDD) and a second power supply line 15 on the low potential side (e.g., ELVSS), a data signal line 11, a scanning signal line 12, a driving transistor T4, a first capacitance electrode 21 electrically connected to the first power supply line 14 and forming a capacitance C1 (control capacitance) with the gate electrode 23 of the driving transistor T4, and a second capacitance electrode 22 electrically connected to the second power supply line 15 and forming a capacitance C2 (storage capacitance) with the first capacitance electrode 21. The first power supply line 14 and the data signal line 11 may be adjacent to each other (formed adjacent to each other in the same layer). The driving transistor T4 is formed in the pixel circuit 13. The light-emitting element 5A connected to pixel circuit 13A, the light-emitting element 5B connected to pixel circuit 13B, and the light-emitting element 5C connected to pixel circuit 13C may emit light of different colors. The light-emitting element 5 may be a light-emitting diode (e.g., an OLED).
 ゲート電極23上には、第1無機絶縁膜71を介して第1容量電極21が配され、第1容量電極21上には、第2無機絶縁膜72を介して第2容量電極22が配されている。第2容量電極22上には、有機絶縁膜73を介して第1電源線14が配されている。第1電源線14、第2電源線15、およびデータ信号線11は、同層に位置する。第2電源線15および第2容量電極22はコンタクトホールH1を介して接続されている。
 表示装置1は、図2に示すように、下層側から順に、半導体層SC(例えば、ポリシリコン)と、ゲート電極23を含む金属層GMと、第1容量電極21を含む金属層M3と、第2容量電極22を含む金属層SEと、第1電源線14、第2電源線15およびデータ信号線11を含む金属層M4とを有する。半導体層SCについては、ゲート電極23との重畳部分が駆動トランジスタT4のチャネルとなる。半導体層SCのうち金属層GMと重ならない部分は導体(電極、配線)として機能してよい。
A first capacitance electrode 21 is disposed on the gate electrode 23 via a first inorganic insulating film 71, and a second capacitance electrode 22 is disposed on the first capacitance electrode 21 via a second inorganic insulating film 72. A first power supply line 14 is disposed on the second capacitance electrode 22 via an organic insulating film 73. The first power supply line 14, the second power supply line 15, and the data signal line 11 are located in the same layer. The second power supply line 15 and the second capacitance electrode 22 are connected via a contact hole H1.
2, the display device 1 includes, from the bottom up, a semiconductor layer SC (e.g., polysilicon), a metal layer GM including a gate electrode 23, a metal layer M3 including a first capacitance electrode 21, a metal layer SE including a second capacitance electrode 22, and a metal layer M4 including a first power line 14, a second power line 15, and a data signal line 11. The overlapping portion of the semiconductor layer SC with the gate electrode 23 becomes the channel of the driving transistor T4. The portion of the semiconductor layer SC that does not overlap with the metal layer GM may function as a conductor (electrode, wiring).
 表示装置1は、データ信号線11の延伸方向(第1方向)と直交する方向(第2方向)に延伸する、高電位側(例えばELVDD)の第3電源線16を備え、第3電源線16および第2容量電極22が同層(金属層SE)に位置する。第3電源線16および第1容量電極21がコンタクトホールH2を介して接続され、第3電源線16および第1電源線14がコンタクトホールH3を介して接続される。第1電源線14および第2容量電極22間に容量CX(保持容量)が形成されてよい。データ信号線11および第2電源線15間の距離は、データ信号線11および第1電源線14間の距離よりも大きくてよい。
 図3は、本実施形態での表示例および比較例での表示例を示す説明図である。表示装置1では、第1容量電極21と容量C2(保持容量)を形成する第2容量電極22を備えるため、データ信号線11の電位が変動しても第1電源線14の電位が変動し難くなる。例えば、データ信号線11の電位が中(Middle)から高(High:黒電位)に変化しても、高(High:黒電位)から中(Middle)に変動しても第1電源線14の電位はほぼ変動せず、駆動トランジスタT4のゲート電位(ゲート電極23の電位)が適正に設定(階調データに応じた電位に維持)されるため、グレー背景内に黒ブロックを表示したような場合でも表示異常は抑制される。
The display device 1 includes a third power line 16 on the high potential side (e.g., ELVDD) that extends in a direction (second direction) perpendicular to the extension direction (first direction) of the data signal line 11, and the third power line 16 and the second capacitance electrode 22 are located in the same layer (metal layer SE). The third power line 16 and the first capacitance electrode 21 are connected via a contact hole H2, and the third power line 16 and the first power line 14 are connected via a contact hole H3. A capacitance CX (storage capacitance) may be formed between the first power line 14 and the second capacitance electrode 22. The distance between the data signal line 11 and the second power line 15 may be greater than the distance between the data signal line 11 and the first power line 14.
3 is an explanatory diagram showing a display example in this embodiment and a display example in a comparative example. Since the display device 1 includes the first capacitance electrode 21 and the second capacitance electrode 22 forming the capacitance C2 (storage capacitance), the potential of the first power line 14 is unlikely to fluctuate even if the potential of the data signal line 11 fluctuates. For example, even if the potential of the data signal line 11 changes from middle to high (High: black potential) or from high (High: black potential) to middle, the potential of the first power line 14 hardly fluctuates, and the gate potential (potential of the gate electrode 23) of the driving transistor T4 is appropriately set (maintained at a potential according to the grayscale data), so that display abnormalities are suppressed even when a black block is displayed on a gray background.
 一方、第2容量電極を含まない比較例の表示装置では、データ信号線の電位変動によってELVDD電源線の電位が変動し易くなる。例えば、データ信号線の電位が中(Middle)から高(High:黒電位)に変化した場合には、駆動トランジスタのゲート電位が引き込まれて境界ラインが高輝度側にシフトし、データ信号線の電位が高(High:黒電位)から中(Middle)に変動した場合には、駆動トランジスタのゲート電位が突き上げられて境界ラインが低輝度側にシフトすることで、黒ブロックの上側エッジを延長するような白線、黒ブロックの下側エッジを延長するような黒線がグレー背景に表示(異常表示)され易い。 On the other hand, in a comparative display device that does not include a second capacitive electrode, the potential of the ELVDD power line is likely to fluctuate due to fluctuations in the potential of the data signal line. For example, when the potential of the data signal line changes from medium to high (high: black potential), the gate potential of the drive transistor is pulled in and the boundary line shifts to the high brightness side, and when the potential of the data signal line changes from high (high: black potential) to medium, the gate potential of the drive transistor is pushed up and the boundary line shifts to the low brightness side, so that a white line extending the upper edge of a black block and a black line extending the lower edge of a black block are likely to be displayed (abnormal display) on a gray background.
 図4は、本実施形態の表示装置の別構成例を示す平面図および断面面である。図4に示すように、表示装置1は、高電位側の第1電源線14および低電位側の第2電源線15と、データ信号線11と、駆動トランジスタT4と、第2電源線15に電気的に接続し、駆動トランジスタT4のゲート電極23と容量C3(保持容量)を形成する第3容量電極121と、ゲート電極23に電気的に接続し、第3容量電極121と容量C4(保持容量)を形成する第4容量電極122とを備える。第1電源線14および第4容量電極122間には容量C1(制御容量)が形成される。ゲート電極23上には、第1無機絶縁膜71を介して第3容量電極121が配され、第3容量電極121上には、第2無機絶縁膜72を介して第4容量電極122が配されている。第4容量電極122上には、有機絶縁膜73を介して第1電源線14が配される。 4 is a plan view and a cross-sectional view showing another example of the configuration of the display device of this embodiment. As shown in FIG. 4, the display device 1 includes a first power line 14 on the high potential side and a second power line 15 on the low potential side, a data signal line 11, a driving transistor T4, a third capacitance electrode 121 electrically connected to the second power line 15 and forming a capacitance C3 (storage capacitance) with the gate electrode 23 of the driving transistor T4, and a fourth capacitance electrode 122 electrically connected to the gate electrode 23 and forming a capacitance C4 (storage capacitance) with the third capacitance electrode 121. A capacitance C1 (control capacitance) is formed between the first power line 14 and the fourth capacitance electrode 122. The third capacitance electrode 121 is disposed on the gate electrode 23 via the first inorganic insulating film 71, and the fourth capacitance electrode 122 is disposed on the third capacitance electrode 121 via the second inorganic insulating film 72. The first power line 14 is disposed on the fourth capacitance electrode 122 via the organic insulating film 73.
 第3容量電極121は金属層M3に形成され、第4容量電極122は金属層SEに形成される。ゲート電極23および第4容量電極122がコンタクトホールH4を介して接続されている。第3容量電極121には開口部Kが形成されており、コンタクトホールH4は、平面視で開口部内に位置するように(第3容量電極121と接触しないように)形成される。第2電源線15および第3容量電極121はコンタクトホールH5を介して接続される。 The third capacitance electrode 121 is formed on metal layer M3, and the fourth capacitance electrode 122 is formed on metal layer SE. The gate electrode 23 and the fourth capacitance electrode 122 are connected via a contact hole H4. An opening K is formed in the third capacitance electrode 121, and the contact hole H4 is formed so as to be located within the opening in a plan view (so as not to contact the third capacitance electrode 121). The second power line 15 and the third capacitance electrode 121 are connected via a contact hole H5.
 図4の表示装置1では、ゲート電極23および第4容量電極122それぞれと保持容量を形成する第3容量電極121を備えるため、第1電源線14の電位が変動しても駆動トランジスタT4のゲート電位(ゲート電極23の電位)は変動し難くなり、比較例(図3)のような表示異常を抑制することができる。 The display device 1 in FIG. 4 includes a third capacitance electrode 121 that forms a storage capacitance with the gate electrode 23 and the fourth capacitance electrode 122, so that even if the potential of the first power line 14 fluctuates, the gate potential of the drive transistor T4 (the potential of the gate electrode 23) is less likely to fluctuate, making it possible to suppress display abnormalities such as those in the comparative example (FIG. 3).
 図1に示すように、複数の画素回路13A~13Cそれぞれに対して第1電源線14が設けられ、複数の画素回路13A~13Cに対応して第2電源線15が設けられていてよい。すなわち、第2電源線15の数は、第1電源線14の数よりも少なくてよい。 As shown in FIG. 1, a first power supply line 14 may be provided for each of the pixel circuits 13A to 13C, and second power supply lines 15 may be provided corresponding to the pixel circuits 13A to 13C. In other words, the number of second power supply lines 15 may be less than the number of first power supply lines 14.
 図1に示すように、発光素子5Aのアノード(例えば、光反射電極)が平面視でデータ信号線11Aと重なり、発光素子5Bのアノードが平面視でデータ信号線11Bと重なり、発光素子5Cのアノードが平面視でデータ信号線11Cと重なってよい。こうすれば、データ信号線11A~11Cの電位変動が発光素子5A~5Cの共通電極(例えば、第2電源線15と同電位のカソード)に与える影響を抑えることができる。 1, the anode (e.g., a light-reflecting electrode) of the light-emitting element 5A may overlap the data signal line 11A in a planar view, the anode of the light-emitting element 5B may overlap the data signal line 11B in a planar view, and the anode of the light-emitting element 5C may overlap the data signal line 11C in a planar view. This makes it possible to suppress the effect of potential fluctuations in the data signal lines 11A to 11C on the common electrode (e.g., a cathode at the same potential as the second power line 15) of the light-emitting elements 5A to 5C.
 以下、図面を参照しながら本開示に係る実施例について説明する。なお、図面は模式的に示されるものであり、異なる図面にそれぞれ示されている画像の大きさと位置との相関関係は必ずしも正確に記載されるものではなく、適宜変更され得るものである。また、以下に示される説明では、同様の構成要素には同じ符号を付して図示する。 Below, examples of the present disclosure will be described with reference to the drawings. Note that the drawings are schematic, and the correlation between the size and position of images shown in different drawings is not necessarily described accurately and may be changed as appropriate. In addition, in the following description, similar components are illustrated with the same reference numerals.
 〔第1実施例〕
 図5は、本開示の第1実施例に係る表示装置1を模式的に示す平面図である。図5に示すように、表示装置1は、複数の画素回路13と、複数のデータ信号線11と、複数の走査信号線12と、を備えている。複数のデータ信号線11は、第1方向Yに延伸している。複数の走査信号線12は、第1方向Yに直交する第2方向Xに延伸している。平面視において、複数の画素回路13には、それぞれ、3本のデータ信号線11と、1本の走査信号線12が形成されている。平面視において、データ信号線11は、第1方向Yに並置された複数の画素回路13に重なるように形成されている。平面視において、走査信号線12は、第2方向Xに並置された複数の画素回路13に重なるように形成されている。
[First embodiment]
5 is a plan view showing a display device 1 according to a first embodiment of the present disclosure. As shown in FIG. 5, the display device 1 includes a plurality of pixel circuits 13, a plurality of data signal lines 11, and a plurality of scanning signal lines 12. The plurality of data signal lines 11 extend in a first direction Y. The plurality of scanning signal lines 12 extend in a second direction X perpendicular to the first direction Y. In a plan view, three data signal lines 11 and one scanning signal line 12 are formed in each of the plurality of pixel circuits 13. In a plan view, the data signal line 11 is formed so as to overlap the plurality of pixel circuits 13 arranged in parallel in the first direction Y. In a plan view, the scanning signal line 12 is formed so as to overlap the plurality of pixel circuits 13 arranged in parallel in the second direction X.
 図6は、本開示の第1実施例に係る表示装置1に備わる画素回路13の一例を示す平面図である。画素回路13は、赤色に対応する画素回路13R、緑色に対応する画素回路13G、および青色に対応する画素回路13Bを含む。画素回路13R、13G、および13Bは、第2方向Xに沿って形成されている。画素回路13に形成される3本のデータ信号線11は、それぞれ、画素回路13R、13G、および13Bのそれぞれに1本ずつ形成されている。データ信号線11には、データ信号dataが入力されている。 FIG. 6 is a plan view showing an example of a pixel circuit 13 provided in a display device 1 according to a first embodiment of the present disclosure. The pixel circuit 13 includes a pixel circuit 13R corresponding to red, a pixel circuit 13G corresponding to green, and a pixel circuit 13B corresponding to blue. The pixel circuits 13R, 13G, and 13B are formed along the second direction X. The three data signal lines 11 formed in the pixel circuit 13 are formed one for each of the pixel circuits 13R, 13G, and 13B. A data signal data is input to the data signal line 11.
 走査信号線12は、画素回路13R、13G、および13Bを跨ぐように形成されている。走査信号線12が画素回路13R、13G、および画素回路13Bを跨ぐとは、平面視において、走査信号線12が画素回路13R、13G、および13Bに重なることをいう。図5においてn行目の走査信号線12には、走査信号scan[n]が入力されている。 The scanning signal line 12 is formed so as to straddle the pixel circuits 13R, 13G, and 13B. The scanning signal line 12 straddling the pixel circuits 13R, 13G, and 13B means that the scanning signal line 12 overlaps the pixel circuits 13R, 13G, and 13B in a plan view. In FIG. 5, a scanning signal scan[n] is input to the scanning signal line 12 in the nth row.
 画素回路13には、ハイレベル電位ELVDDおよびローレベル電位ELVSS、ならびに、初期化電位Vini1およびVini2が供給されている。画素回路13R、13G、および13Bには、それぞれ、第1方向Yに延伸する第1電源線14が形成されている。第1電源線14は、高電位側の配線であって、画素回路13へハイレベル電位ELVDDを供給する。画素回路13には、第1方向Yに延伸する第2電源線15が形成されている。第2電源線15は、低電位側の配線であって、画素回路13へローレベル電位ELVSSを供給する。 The pixel circuit 13 is supplied with a high-level potential ELVDD and a low-level potential ELVSS, as well as initialization potentials Vini1 and Vini2. A first power supply line 14 extending in the first direction Y is formed in each of the pixel circuits 13R, 13G, and 13B. The first power supply line 14 is a high-potential side wiring, and supplies the high-level potential ELVDD to the pixel circuit 13. A second power supply line 15 extending in the first direction Y is formed in the pixel circuit 13. The second power supply line 15 is a low-potential side wiring, and supplies the low-level potential ELVSS to the pixel circuit 13.
 画素回路13には、画素回路13R、13G、および13Bを跨ぐように、第2方向Xに延伸する第3電源線16が形成されている。第3電源線16が画素回路13R、13G、および画素回路13Bを跨ぐとは、平面視において、第3電源線16が画素回路13R、13G、および13Bに重なることをいう。第3電源線16は、高電位側の配線であって、画素回路13へハイレベル電位ELVDDを供給する。第3電源線16は、第1電源線14および第2電源線15よりも下層に形成されている。画素回路13R、13G、および13Bにおいて、第3電源線16は、第3コンタクトホール41を介して、第1電源線14に電気的に接続されている。なお、図6では、第3コンタクトホール41等、画素回路13R、13G、および13Bに共通して形成されているコンタクトホールに対しては、画素回路13Bに代表して符号を付している。 A third power supply line 16 is formed in the pixel circuit 13, extending in the second direction X so as to straddle the pixel circuits 13R, 13G, and 13B. The third power supply line 16 straddling the pixel circuits 13R, 13G, and 13B means that the third power supply line 16 overlaps the pixel circuits 13R, 13G, and 13B in a planar view. The third power supply line 16 is a high-potential wiring and supplies a high-level potential ELVDD to the pixel circuit 13. The third power supply line 16 is formed in a layer lower than the first power supply line 14 and the second power supply line 15. In the pixel circuits 13R, 13G, and 13B, the third power supply line 16 is electrically connected to the first power supply line 14 via a third contact hole 41. In FIG. 6, the contact holes formed in common to pixel circuits 13R, 13G, and 13B, such as the third contact hole 41, are represented by the reference symbol for pixel circuit 13B.
 画素回路13には、初期化電位Vini1の供給に用いられる配線17と、初期化電位Vini2の供給に用いられる配線18とを備える。また、画素回路13には、発光制御信号dis[n-1]が入力される配線19と、発光制御信号em[n]が入力される配線20とを備える。配線17、18、19、および20は、第2方向Xに延伸している。 The pixel circuit 13 includes a wiring 17 used to supply an initialization potential Vini1, and a wiring 18 used to supply an initialization potential Vini2. The pixel circuit 13 also includes a wiring 19 to which a light emission control signal dis[n-1] is input, and a wiring 20 to which a light emission control signal em[n] is input. The wirings 17, 18, 19, and 20 extend in the second direction X.
 表示装置1は、画素回路13R、13G、および13Bのそれぞれについて、第1容量電極21を備えている。第1容量電極21は、第2コンタクトホール42を介して、第3電源線16に電気的に接続されている。第1容量電極21は、第3電源線16を介して、第1電源線14に電気的に接続されている。 The display device 1 includes a first capacitance electrode 21 for each of the pixel circuits 13R, 13G, and 13B. The first capacitance electrode 21 is electrically connected to the third power supply line 16 via the second contact hole 42. The first capacitance electrode 21 is electrically connected to the first power supply line 14 via the third power supply line 16.
 表示装置1は、第2容量電極22を備える。第2容量電極22は、第1コンタクトホール43を介して、第2電源線15に電気的に接続されている。第1コンタクトホール43は、平面視において、第2電源線15と第2容量電極22とが重なる位置に形成されている。第2容量電極22は、平面視において、第1コンタクトホール43と接続されている位置から第2方向Xに延伸している。第2容量電極22は、第1方向Yのサイズが局所的に大きい幅広部分22Aを有している。平面視において、第2容量電極22の幅広部分22Aは、画素回路13R、13Gおよび13Bの第1容量電極21と重なっている。 The display device 1 includes a second capacitance electrode 22. The second capacitance electrode 22 is electrically connected to the second power line 15 via a first contact hole 43. The first contact hole 43 is formed at a position where the second power line 15 and the second capacitance electrode 22 overlap in a plan view. The second capacitance electrode 22 extends in the second direction X from a position where it is connected to the first contact hole 43 in a plan view. The second capacitance electrode 22 has a wide portion 22A whose size in the first direction Y is locally large. In a plan view, the wide portion 22A of the second capacitance electrode 22 overlaps with the first capacitance electrodes 21 of the pixel circuits 13R, 13G, and 13B.
 以下では、画素回路13R、13G、および13Bを画素回路13と呼ぶことがある。 Hereinafter, pixel circuits 13R, 13G, and 13B may be referred to as pixel circuit 13.
 図7は、本開示の第1実施例に係る表示装置1に備わる画素回路13の回路図である。図7に示すように、複数の画素回路13の各々は、7T2C構成を有している。複数の画素回路13の各々には、7つの薄膜トランジスタT1-T7、有機発光ダイオードOLED、第1容量C1、および第2容量C2が形成されている。 FIG. 7 is a circuit diagram of a pixel circuit 13 provided in a display device 1 according to a first embodiment of the present disclosure. As shown in FIG. 7, each of the pixel circuits 13 has a 7T2C configuration. Each of the pixel circuits 13 includes seven thin-film transistors T1-T7, an organic light-emitting diode OLED, a first capacitance C1, and a second capacitance C2.
 画素回路13において、薄膜トランジスタT1-T7が形成される位置を図6に示す。図6では、画素回路13Rにおいて、薄膜トランジスタT1-T7のゲート電極に対応する位置に符号が付されている。 FIG. 6 shows the positions where the thin-film transistors T1-T7 are formed in the pixel circuit 13. In FIG. 6, the positions corresponding to the gate electrodes of the thin-film transistors T1-T7 in the pixel circuit 13R are denoted with reference symbols.
 薄膜トランジスタT4は、有機発光ダイオードOLEDの駆動トランジスタである。すなわち、表示装置1は、有機発光ダイオードOLEDの駆動トランジスタである薄膜トランジスタT4を備えている。以下では、薄膜トランジスタT4のことを駆動トランジスタT4と呼ぶ。第1容量C1は、駆動トランジスタT4のゲート電極23と、第1容量電極21との間に形成されている。第2容量C2は、第1容量電極21と第2容量電極22との間に形成されている。 The thin-film transistor T4 is a drive transistor for the organic light-emitting diode OLED. That is, the display device 1 includes a thin-film transistor T4 that is a drive transistor for the organic light-emitting diode OLED. Hereinafter, the thin-film transistor T4 will be referred to as the drive transistor T4. The first capacitance C1 is formed between the gate electrode 23 of the drive transistor T4 and the first capacitance electrode 21. The second capacitance C2 is formed between the first capacitance electrode 21 and the second capacitance electrode 22.
 薄膜トランジスタT1は、ゲート電極に配線19に入力されている発光制御信号dis[n-1]が入力されている。薄膜トランジスタT2およびT3は、ゲート電極に走査信号scan[n]が入力されている。薄膜トランジスタT5およびT6は、ゲート電極に発光制御信号em[n]が入力されている。薄膜トランジスタT7は、ゲート電極に発光制御信号dis[n]が入力されている。 The light emission control signal dis[n-1] input to wiring 19 is input to the gate electrode of thin-film transistor T1. The scan signal scan[n] is input to the gate electrodes of thin-film transistors T2 and T3. The light emission control signal em[n] is input to the gate electrodes of thin-film transistors T5 and T6. The light emission control signal dis[n] is input to the gate electrode of thin-film transistor T7.
 図6に示すように、薄膜トランジスタT1は、ドレインおよびソースの一方が第4コンタクトホール44を介して配線17に電気的に接続されており、他方が第5コンタクトホール45および第6コンタクトホール46を介して駆動トランジスタT4のゲート電極23に電気的に接続されている。 As shown in FIG. 6, one of the drain and source of the thin-film transistor T1 is electrically connected to the wiring 17 via the fourth contact hole 44, and the other is electrically connected to the gate electrode 23 of the drive transistor T4 via the fifth contact hole 45 and the sixth contact hole 46.
 薄膜トランジスタT2は、ドレインおよびソースの一方が第5コンタクトホール45および第6コンタクトホール46を介して駆動トランジスタT4のゲート電極23に電気的に接続されており、他方が配線61を介して駆動トランジスタT4のソース(ドレイン)に接続されている。薄膜トランジスタT3は、ドレインおよびソースの一方が第7コンタクトホール47および第8コンタクトホール48を介してデータ信号線11に電気的に接続されており、他方が配線60を介して駆動トランジスタT4のドレイン(ソース)に接続されている。 One of the drain and source of the thin-film transistor T2 is electrically connected to the gate electrode 23 of the drive transistor T4 via the fifth contact hole 45 and the sixth contact hole 46, and the other is connected to the source (drain) of the drive transistor T4 via a wiring 61. One of the drain and source of the thin-film transistor T3 is electrically connected to the data signal line 11 via the seventh contact hole 47 and the eighth contact hole 48, and the other is connected to the drain (source) of the drive transistor T4 via a wiring 60.
 薄膜トランジスタT5は、ドレインおよびソースの一方が第9コンタクトホール49を介して第3電源線16に電気的に接続されており、他方が駆動トランジスタT4のドレイン(ソース)に接続されている。薄膜トランジスタT6は、ドレインおよびソースの一方が第10コンタクトホール50を介して有機発光ダイオードOLEDに接続されており、他方が駆動トランジスタT4のソース(ドレイン)に接続されている。 One of the drain and source of the thin-film transistor T5 is electrically connected to the third power line 16 via the ninth contact hole 49, and the other is connected to the drain (source) of the drive transistor T4. One of the drain and source of the thin-film transistor T6 is connected to the organic light-emitting diode OLED via the tenth contact hole 50, and the other is connected to the source (drain) of the drive transistor T4.
 薄膜トランジスタT7は、ドレインおよびソースの一方が第11コンタクトホール51を介して配線18に電気的に接続されており、他方が第12コンタクトホール52を介して有機発光ダイオードOLEDに接続されている。 One of the drain and source of the thin-film transistor T7 is electrically connected to the wiring 18 via the 11th contact hole 51, and the other is connected to the organic light-emitting diode OLED via the 12th contact hole 52.
 図8は、図6のA1-A1断面図である。図8に示すとおり、駆動トランジスタT4のゲート電極23の上には、第1無機絶縁膜71を介して第1容量電極21が配されている。第1容量電極21は、ゲート電極23と第1容量C1を形成している。 FIG. 8 is a cross-sectional view taken along the line A1-A1 in FIG. 6. As shown in FIG. 8, a first capacitance electrode 21 is disposed on the gate electrode 23 of the driving transistor T4 via a first inorganic insulating film 71. The first capacitance electrode 21 forms a first capacitance C1 together with the gate electrode 23.
 第1容量電極21の上には、第2無機絶縁膜72を介して第2容量電極22の幅広部分22Aが配されている。第2容量電極22の幅広部分22Aの上には、有機絶縁膜73を介して第1電源線14が配されている。第2容量電極22の幅広部分22Aは、第1容量電極21および第1電源線14と第2容量C2を形成する。 A wide portion 22A of the second capacitance electrode 22 is disposed on the first capacitance electrode 21 via a second inorganic insulating film 72. A first power supply line 14 is disposed on the wide portion 22A of the second capacitance electrode 22 via an organic insulating film 73. The wide portion 22A of the second capacitance electrode 22 forms a second capacitance C2 with the first capacitance electrode 21 and the first power supply line 14.
 第1電源線14の上には、平坦化膜74を介して、光反射電極80が配されている。光反射電極80の上方には、発光層81および共通電極82が配されている。共通電極82は、第2電源線15と同電位である。すなわち、共通電極82の電位は、ローレベル電位ELVSSである。光反射電極80の端部は、エッジカバー83で覆われている。図6では、第1電源線14の上に配せられた光反射電極80の輪郭が図示されている。光反射電極80は、例えば、銀等で形成される。 A light-reflecting electrode 80 is disposed on the first power line 14 via a planarization film 74. A light-emitting layer 81 and a common electrode 82 are disposed above the light-reflecting electrode 80. The common electrode 82 has the same potential as the second power line 15. In other words, the potential of the common electrode 82 is the low-level potential ELVSS. The end of the light-reflecting electrode 80 is covered with an edge cover 83. In FIG. 6, the outline of the light-reflecting electrode 80 disposed on the first power line 14 is shown. The light-reflecting electrode 80 is formed of, for example, silver or the like.
 図8に示すとおり、第1電源線14、第2電源線15、およびデータ信号線11は、同層に位置している。また、図8に図示されていない第3電源線16は、第2容量電極22と同層に位置している。第1電源線14、第2電源線15、データ信号線11、第3電源線16、および第2容量電極22は、アルミニウムを含む同材料で形成されている。駆動トランジスタT4のゲート電極23および第1容量電極21は、モリブデンで形成されている。 As shown in FIG. 8, the first power supply line 14, the second power supply line 15, and the data signal line 11 are located in the same layer. In addition, the third power supply line 16, which is not shown in FIG. 8, is located in the same layer as the second capacitance electrode 22. The first power supply line 14, the second power supply line 15, the data signal line 11, the third power supply line 16, and the second capacitance electrode 22 are formed of the same material containing aluminum. The gate electrode 23 and the first capacitance electrode 21 of the driving transistor T4 are formed of molybdenum.
 図8では、データ信号線11は、第1電源線14と隣り合っている。データ信号線11が第1電源線14と隣り合うとは、データ信号線11が第1電源線14と同層に位置し、データ信号線11が第1電源線14と平行に延伸しており、データ信号線11の電圧変動が第1電源線14に影響を与えることであってよい。このとき、データ信号線11は、第1電源線14と寄生容量Celvdd-dataを形成する。第1電源線14のような電源配線は、その電源配線上に生じるIR積の電圧降下(IRドロップ)を低減するために配線幅が可能な限り大きくなるように設計される。第1電源線14の配線幅が増加すると、データ信号線11と第1電源線14との間の距離が近付き、寄生容量Celvdd-dataが増加する。図9を用いて寄生容量Celvdd-dataが第1電源線14に与える影響について説明する。 In FIG. 8, the data signal line 11 is adjacent to the first power supply line 14. The data signal line 11 being adjacent to the first power supply line 14 may mean that the data signal line 11 is located in the same layer as the first power supply line 14, the data signal line 11 extends in parallel with the first power supply line 14, and the voltage fluctuation of the data signal line 11 affects the first power supply line 14. At this time, the data signal line 11 forms a parasitic capacitance C elvdd-data with the first power supply line 14. A power supply line such as the first power supply line 14 is designed to have a wiring width as large as possible in order to reduce a voltage drop (IR drop) of an IR product occurring on the power supply line. When the wiring width of the first power supply line 14 increases, the distance between the data signal line 11 and the first power supply line 14 becomes closer, and the parasitic capacitance C elvdd-data increases. The effect of the parasitic capacitance C elvdd-data on the first power supply line 14 will be described with reference to FIG. 9.
 図9は、データ信号dataの電位変動に伴う第1電源線14の電位変動の一例を示すタイミングチャートである。図9の例では、タイミングTM1にデータ信号dataがローレベル電位からハイレベル電位に変動する。第1電源線14の電位は、データ信号dataの変動に追従して、ΔVelvdd1だけ変動する。その後、第1電源線14の電位は、変動前の値に徐々に戻る。変動量ΔVelvdd1は、式(1)の値となり、寄生容量Celvdd-dataの大きさに比例する。
 ΔVelvdd1=(VDataH - VDataL)×Celvdd-data/ΣCelvdd …(1)
 ここで、VDataHは、データ信号dataのハイレベル電位である。VDataLは、データ信号dataのローレベル電位である。ΣCelvddは、ELVDD総容量であり、第1容量C1、第2容量C2、および駆動トランジスタT4の寄生容量CT4の合成容量である。
9 is a timing chart showing an example of the potential fluctuation of the first power supply line 14 accompanying the potential fluctuation of the data signal data. In the example of FIG. 9, the data signal data changes from a low level potential to a high level potential at timing TM1. The potential of the first power supply line 14 changes by ΔV elvdd1 following the fluctuation of the data signal data. Thereafter, the potential of the first power supply line 14 gradually returns to the value before the fluctuation. The amount of fluctuation ΔV elvdd1 is the value of formula (1) and is proportional to the magnitude of the parasitic capacitance C elvdd-data .
ΔV elvdd1 = (V DataH - V DataL ) x C elvdd-data / ΣC elvdd ...(1)
Here, V DataH is the high level potential of the data signal data, V DataL is the low level potential of the data signal data, and ΣC elvdd is the total capacitance of ELVDD, which is the combined capacitance of the first capacitance C1, the second capacitance C2, and the parasitic capacitance C T4 of the driving transistor T4.
 駆動トランジスタT4のゲート電極の電位Vn_gは、データの書き込みが行われている間、データ信号dataから駆動トランジスタT4の閾値電圧Vthの大きさ|Vth|を減じた値となる。 The potential Vn_g of the gate electrode of the driving transistor T4 becomes equal to the data signal "data" minus the magnitude | Vth | of the threshold voltage Vth of the driving transistor T4 while data is being written.
 しかし、駆動トランジスタT4のゲート電極の電位Vn_gは、データの書き込みが終了すると、第1電源線14の電位変動に追従して変動する。図9の例では、タイミングTM2にデータの書き込みが終了しており、タイミングTM2以後の駆動トランジスタT4のゲート電極23の電位Vn_gは、第1電源線14の低下に追従してΔVn_g低下している。電位変動量ΔVn_gは、式(2)の値となり、タイミングTM2における第1電源線14の電位変動量ΔVelvdd2と、第1容量C1とに基づく。
 ΔVn_g=ΔVelvdd2×C1/ΣCn_g …(2)
 ここで、C1/ΣCn_gは、第1電源線14と駆動トランジスタT4のゲート電極23との間の容量結合係数であり、図7の回路図の場合は1となる。
However, when the data writing is completed, the potential Vn_g of the gate electrode of the driving transistor T4 fluctuates following the potential fluctuation of the first power supply line 14. In the example of Fig. 9, the data writing is completed at timing TM2, and the potential Vn_g of the gate electrode 23 of the driving transistor T4 after timing TM2 drops by ΔVn_g following the drop in the first power supply line 14. The potential fluctuation amount ΔVn_g is the value of formula (2) and is based on the potential fluctuation amount ΔVelvdd2 of the first power supply line 14 at timing TM2 and the first capacitance C1.
ΔV n_g = ΔV elvdd2 ×C1/ΣC n_g …(2)
Here, C1/ΣC n_g is the capacitive coupling coefficient between the first power line 14 and the gate electrode 23 of the driving transistor T4, and is 1 in the case of the circuit diagram of FIG.
 図9の例では、タイミングTM3に第1電源線14の電位変動量は0に戻っているが、駆動トランジスタT4のゲート電極の電位Vn_gは、ΔVn_g低下した状態のままである。このように、データ信号dataの変動に応じて駆動トランジスタT4のゲート電極の電位Vn_gが変動したままの状態では、表示装置1に明線や暗線が生じる表示ムラが発生することがある。 9, the amount of potential fluctuation of the first power supply line 14 returns to 0 at timing TM3, but the potential Vn_g of the gate electrode of the driving transistor T4 remains in a state where it has decreased by ΔVn_g . In this manner, if the potential Vn_g of the gate electrode of the driving transistor T4 remains in a state where it fluctuates in response to fluctuations in the data signal data, display unevenness in which bright lines and dark lines appear on the display device 1 may occur.
 本開示の第1実施例に係る表示装置1では、第2電源線15と電気的に接続している第2容量電極22が第2方向Xに延伸しており、平面視において第1容量電極21と重なるように形成されている。これにより、第1容量電極21と第2容量電極22との間、および、第1電源線14と第2容量電極22との間に第2容量C2が形成され、ELVDD総容量ΣCelvddが増加する。そして、データ信号dataの変化に伴う第1電源線14の電位電動量ΔVelvdd1とデータの書き込み終了時の第1電源線14の電位変動量ΔVelvdd2とが小さくなるため、駆動トランジスタT4のゲート電極23の電位Vn_gの電位変動量ΔVn_gが小さくなる。そのため、本開示の第1実施例に係る表示装置1に明線や暗線が生じる表示ムラを軽減することができる。 In the display device 1 according to the first embodiment of the present disclosure, the second capacitance electrode 22 electrically connected to the second power line 15 extends in the second direction X and is formed so as to overlap the first capacitance electrode 21 in a plan view. As a result, a second capacitance C2 is formed between the first capacitance electrode 21 and the second capacitance electrode 22 and between the first power line 14 and the second capacitance electrode 22, and the ELVDD total capacitance ΣC elvdd increases. Then, the potential electric charge ΔV elvdd1 of the first power line 14 accompanying the change in the data signal data and the potential fluctuation amount ΔV elvdd2 of the first power line 14 at the end of writing data become small, so that the potential fluctuation amount ΔV n_g of the potential V n_g of the gate electrode 23 of the driving transistor T4 becomes small. Therefore, it is possible to reduce display unevenness that causes bright lines and dark lines in the display device 1 according to the first embodiment of the present disclosure.
 〔第2実施例〕
 本開示の第2実施例に係る表示装置1について説明する。図10は、本開示の第2実施例に係る表示装置1における画素回路13Aの一例を示す平面図である。画素回路13Aは、赤色に対応する画素回路113R、緑色に対応する画素回路113G、および青色に対応する画素回路113Bを含む。画素回路113R、113G、および113Bは、第2方向Xに沿って形成されている。画素回路13Aに形成される3本のデータ信号線11は、それぞれ、画素回路113R、113G、および113Bのそれぞれに1本ずつ形成されている。
Second Example
A display device 1 according to a second embodiment of the present disclosure will be described. Fig. 10 is a plan view showing an example of a pixel circuit 13A in the display device 1 according to the second embodiment of the present disclosure. The pixel circuit 13A includes a pixel circuit 113R corresponding to red, a pixel circuit 113G corresponding to green, and a pixel circuit 113B corresponding to blue. The pixel circuits 113R, 113G, and 113B are formed along the second direction X. The three data signal lines 11 formed in the pixel circuit 13A are formed in each of the pixel circuits 113R, 113G, and 113B, respectively.
 本開示の第2実施例に係る表示装置1における画素回路13Aは、第1容量電極21および第2容量電極22を備えず、第3容量電極121および第4容量電極122を備えている。第3容量電極121は、第1コンタクトホール43および第13コンタクトホール53を介して第2電源線15に電気的に接続されている。第3容量電極121は、平面視において、第2方向Xに延伸している。第4容量電極122は、第14コンタクトホール54を介して駆動トランジスタT4のゲート電極23に電気的に接続されている。 The pixel circuit 13A in the display device 1 according to the second embodiment of the present disclosure does not include a first capacitance electrode 21 and a second capacitance electrode 22, but includes a third capacitance electrode 121 and a fourth capacitance electrode 122. The third capacitance electrode 121 is electrically connected to the second power line 15 via a first contact hole 43 and a thirteenth contact hole 53. The third capacitance electrode 121 extends in the second direction X in a plan view. The fourth capacitance electrode 122 is electrically connected to the gate electrode 23 of the drive transistor T4 via a fourteenth contact hole 54.
 以下では、画素回路113R、113G、および113Bを画素回路113と呼ぶことがある。 Hereinafter, pixel circuits 113R, 113G, and 113B may be referred to as pixel circuit 113.
 図11は、図10のA2-A2断面図である。図11に示すとおり、駆動トランジスタT4(駆動トランジスタ)のゲート電極23の上には、第1無機絶縁膜71を介して第3容量電極121が配されている。第3容量電極121の上には、第2無機絶縁膜72を介して、第4容量電極122が配されている。第4容量電極122の上には、有機絶縁膜73を介して、第1電源線14が配されている。第4容量電極122は、第3電源線16と同層に位置している。第1電源線14、第2電源線15、データ信号線11、第3電源線16、および第4容量電極122は、アルミニウムを含む同材料で形成されている。駆動トランジスタT4のゲート電極23および第3容量電極121は、モリブデンで形成されている。第3容量電極121は、ゲート電極23および第4容量電極122と第3容量C3を形成する。第4容量電極122は、第1電源線14と第1容量C1を形成する。 11 is a cross-sectional view taken along line A2-A2 of FIG. 10. As shown in FIG. 11, a third capacitance electrode 121 is arranged on the gate electrode 23 of the driving transistor T4 (driving transistor) via a first inorganic insulating film 71. A fourth capacitance electrode 122 is arranged on the third capacitance electrode 121 via a second inorganic insulating film 72. A first power supply line 14 is arranged on the fourth capacitance electrode 122 via an organic insulating film 73. The fourth capacitance electrode 122 is located in the same layer as the third power supply line 16. The first power supply line 14, the second power supply line 15, the data signal line 11, the third power supply line 16, and the fourth capacitance electrode 122 are made of the same material containing aluminum. The gate electrode 23 and the third capacitance electrode 121 of the driving transistor T4 are made of molybdenum. The third capacitance electrode 121 forms a third capacitance C3 together with the gate electrode 23 and the fourth capacitance electrode 122. The fourth capacitance electrode 122 forms a first capacitance C1 with the first power line 14.
 また、第3容量電極121の上には、第2無機絶縁膜72を介して、中継電極91が配されている。第1コンタクトホール43および第13コンタクトホール53は、中継電極91を介して電気的に接続されている。中継電極91は、第4容量電極122と同一層に同一材料で形成されている。第2電源線15は、第1コンタクトホール43、第13コンタクトホール53、および中継電極91を介して、第3容量電極121に電気的に接続されている。 In addition, a relay electrode 91 is disposed on the third capacitance electrode 121 via the second inorganic insulating film 72. The first contact hole 43 and the thirteenth contact hole 53 are electrically connected via the relay electrode 91. The relay electrode 91 is formed in the same layer and made of the same material as the fourth capacitance electrode 122. The second power line 15 is electrically connected to the third capacitance electrode 121 via the first contact hole 43, the thirteenth contact hole 53, and the relay electrode 91.
 第1電源線14の上には、平坦化膜74を介して、光反射電極80Aが配されている。本開示の第2実施例に係る表示装置1における画素回路13Aでは、光反射電極80Aは、平面視においてデータ信号線11と重なるように配されている。これにより、データ信号線11と共通電極82との間に寄生容量が形成されない。データ信号線11と第1電源線14との間の寄生容量Celvdd-dataは、データ信号線11と、第2電源線15等のローレベル電位ELVSSが供給される電源線との間の寄生容量Celvss-dataよりも大きくなる。 A light-reflecting electrode 80A is disposed on the first power supply line 14 via a planarization film 74. In the pixel circuit 13A in the display device 1 according to the second embodiment of the present disclosure, the light-reflecting electrode 80A is disposed so as to overlap with the data signal line 11 in a planar view. This prevents parasitic capacitance from being formed between the data signal line 11 and the common electrode 82. The parasitic capacitance C elvdd-data between the data signal line 11 and the first power supply line 14 is larger than the parasitic capacitance C elvss-data between the data signal line 11 and a power supply line to which a low-level potential ELVSS is supplied, such as the second power supply line 15.
 光反射電極80Aの上方には、発光層81および共通電極82が配されている。共通電極82は、第2電源線15と同電位である。 Above the light-reflecting electrode 80A, a light-emitting layer 81 and a common electrode 82 are arranged. The common electrode 82 has the same potential as the second power line 15.
 第14コンタクトホール54の周囲には、第3容量電極と121との短絡を防ぐため、絶縁膜90が形成されている。 An insulating film 90 is formed around the periphery of the 14th contact hole 54 to prevent a short circuit between the third capacitance electrode and 121.
 図12は、本開示の第2実施例に係る表示装置1に備わる画素回路113の回路図である。本開示の第2実施例に係る表示装置1に備わる画素回路113は、7T2C構成を有している。画素回路113には、7つの薄膜トランジスタT1-T7、有機発光ダイオードOLED、第1容量C1、および第3容量C3が形成されている。第3容量C3が駆動トランジスタT4のゲート電極に接続されることにより、第1電源線14と駆動トランジスタT4のゲート電極23との間の容量結合係数C1/ΣCn_gが小さくなる。その結果、駆動トランジスタT4のゲート電極23の電位Vn_gの電位変動量ΔVn_gが小さくなる。そのため、表本開示の第2実施例に係る表示装置1に明線や暗線が生じる表示ムラを軽減することができる。 FIG. 12 is a circuit diagram of a pixel circuit 113 provided in a display device 1 according to a second embodiment of the present disclosure. The pixel circuit 113 provided in a display device 1 according to a second embodiment of the present disclosure has a 7T2C configuration. Seven thin film transistors T1-T7, an organic light emitting diode OLED, a first capacitance C1, and a third capacitance C3 are formed in the pixel circuit 113. By connecting the third capacitance C3 to the gate electrode of the driving transistor T4, the capacitive coupling coefficient C1/ΣC n_g between the first power line 14 and the gate electrode 23 of the driving transistor T4 becomes small. As a result, the potential fluctuation amount ΔV n_g of the potential V n_g of the gate electrode 23 of the driving transistor T4 becomes small. Therefore, it is possible to reduce display unevenness that causes bright lines and dark lines in the display device 1 according to the second embodiment of the present disclosure.
 以上の開示は例示および説明を目的とするものであり、限定を目的とするものではない。これら例示および説明に基づけば、多くの変形形態が当業者にとって自明となるのであるから、これら変形形態も実施形態に含まれることに留意されたい。 The above disclosure is intended to be illustrative and explanatory, and not limiting. Based on these examples and explanations, many variations will be obvious to those skilled in the art, and it should be noted that these variations are also included in the embodiments.
1 表示装置
11 データ信号線
14 第1電源線
15 第2電源線
16 第3電源線
21 第1容量電極
22 第2容量電極
22A 幅広部分
23 ゲート電極
71 第1無機絶縁膜
72 第2無機絶縁膜
73 有機絶縁膜
74 平坦化膜
80、80A 光反射電極
81 発光層
82 共通電極
121 第3容量電極
122 第4容量電極
T4 薄膜トランジスタ(駆動トランジスタ)
Y 第1方向
X 第2方向
1 Display device 11 Data signal line 14 First power line 15 Second power line 16 Third power line 21 First capacitance electrode 22 Second capacitance electrode 22A Wide portion 23 Gate electrode 71 First inorganic insulating film 72 Second inorganic insulating film 73 Organic insulating film 74 Planarization film 80, 80A Light-reflecting electrode 81 Light-emitting layer 82 Common electrode 121 Third capacitance electrode 122 Fourth capacitance electrode T4 Thin film transistor (driving transistor)
Y 1st direction X 2nd direction

Claims (22)

  1.  高電位側の第1電源線および低電位側の第2電源線と、
     データ信号線と、
     駆動トランジスタと、
     前記第1電源線に電気的に接続し、前記駆動トランジスタのゲート電極と容量を形成する第1容量電極と、
     前記第2電源線に電気的に接続し、前記第1容量電極と容量を形成する第2容量電極とを備える、表示装置。
    a first power line on a high potential side and a second power line on a low potential side;
    A data signal line;
    A drive transistor;
    a first capacitance electrode electrically connected to the first power supply line and forming a capacitance together with a gate electrode of the driving transistor;
    a second capacitance electrode electrically connected to the second power supply line and forming a capacitance with the first capacitance electrode.
  2.  前記ゲート電極上に、第1無機絶縁膜を介して前記第1容量電極が配され、
     前記第1容量電極上に、第2無機絶縁膜を介して前記第2容量電極が配されている、請求項1に記載の表示装置。
    the first capacitance electrode is disposed on the gate electrode via a first inorganic insulating film;
    The display device according to claim 1 , wherein the second capacitance electrode is disposed on the first capacitance electrode via a second inorganic insulating film.
  3.  前記第2容量電極上に、有機絶縁膜を介して前記第1電源線が配されている、請求項2に記載の表示装置。 The display device according to claim 2, wherein the first power line is disposed on the second capacitance electrode via an organic insulating film.
  4.  前記第1電源線、前記第2電源線、および前記データ信号線が同層に位置する、請求項3に記載の表示装置。 The display device according to claim 3, wherein the first power supply line, the second power supply line, and the data signal line are located on the same layer.
  5.  前記データ信号線および前記第1電源線が隣り合う、請求項4に記載の表示装置。 The display device of claim 4, wherein the data signal line and the first power supply line are adjacent to each other.
  6.  前記第1電源線および前記第2電源線間の距離は、前記データ信号線および前記第1電源線間の距離よりも大きい、請求項4に記載の表示装置。 The display device according to claim 4, wherein the distance between the first power line and the second power line is greater than the distance between the data signal line and the first power line.
  7.  前記第1電源線および前記データ信号線が第1方向に延伸し、
     前記第2容量電極は、前記第1方向と直交する第2方向に延伸する、請求項2に記載の表示装置。
    the first power supply line and the data signal line extend in a first direction;
    The display device according to claim 2 , wherein the second capacitance electrode extends in a second direction perpendicular to the first direction.
  8.  前記第2容量電極は、前記第1電源線が延伸する第1方向のサイズが局所的に大きい幅広部分を有し、
     前記幅広部分および前記第1容量電極が前記第2無機絶縁膜を介して重なる、請求項6に記載の表示装置。
    the second capacitance electrode has a wide portion whose size in a first direction in which the first power line extends is locally large;
    The display device according to claim 6 , wherein the wide portion and the first capacitance electrode overlap with each other via the second inorganic insulating film.
  9.  前記第2方向に延伸する、高電位側の第3電源線を備え、
     前記第3電源線および前記第2容量電極が同層に位置する、請求項7に記載の表示装置。
    a third power line on a high potential side extending in the second direction;
    The display device according to claim 7 , wherein the third power supply line and the second capacitance electrode are located in the same layer.
  10.  前記第2電源線および前記第2容量電極が第1コンタクトホールを介して接続され
     前記第1容量電極および前記第3電源線が第2コンタクトホールを介して接続され、
     前記第1電源線および前記第3電源線が第3コンタクトホールを介して接続されている、請求項9に記載の表示装置。
    the second power supply line and the second capacitance electrode are connected via a first contact hole; the first capacitance electrode and the third power supply line are connected via a second contact hole;
    10. The display device according to claim 9, wherein the first power supply line and the third power supply line are connected via a third contact hole.
  11.  前記第1電源線上に、平坦化膜を介して光反射電極が配され、
     前記光反射電極の上方に、発光層と、前記第2電源線と同電位である共通電極とが配される、請求項3に記載の表示装置。
    a light-reflection electrode is disposed on the first power line via a planarization film;
    The display device according to claim 3 , further comprising a light-emitting layer and a common electrode having the same potential as the second power line, disposed above the light-reflecting electrode.
  12.  前記第1電源線、前記データ信号線、および前記第2容量電極は、アルミニウムを含む同材料で形成されている、請求項1~11のいずれか1項に記載の表示装置。
     
    12. The display device according to claim 1, wherein the first power supply line, the data signal line, and the second capacitance electrode are made of the same material containing aluminum.
  13.  高電位側の第1電源線および低電位側の第2電源線と、
     データ信号線と、
     駆動トランジスタと、
     前記第2電源線に電気的に接続し、前記駆動トランジスタのゲート電極と容量を形成する第3容量電極と、
     前記ゲート電極に電気的に接続し、前記第3容量電極と容量を形成する第4容量電極とを備える、表示装置。
    a first power line on a high potential side and a second power line on a low potential side;
    A data signal line;
    A drive transistor;
    a third capacitance electrode electrically connected to the second power line and forming a capacitance together with a gate electrode of the driving transistor;
    a fourth capacitance electrode electrically connected to the gate electrode and forming a capacitance together with the third capacitance electrode.
  14.  前記第1電源線および前記データ信号線が同層に位置し、かつ隣り合う、請求項13に記載の表示装置。 The display device according to claim 13, wherein the first power supply line and the data signal line are located in the same layer and are adjacent to each other.
  15.  前記ゲート電極上に、第1無機絶縁膜を介して前記第3容量電極が配され、
     前記第3容量電極上に、第2無機絶縁膜を介して前記第4容量電極が配されている、請求項13または14に記載の表示装置。
    the third capacitance electrode is disposed on the gate electrode via a first inorganic insulating film;
    15. The display device according to claim 13, wherein the fourth capacitance electrode is disposed on the third capacitance electrode via a second inorganic insulating film.
  16.  前記第4容量電極上に、有機絶縁膜を介して前記第1電源線が配され、
     前記第4容量電極および前記第1電源線間に容量が形成される、請求項15に記載の表示装置。
    the first power supply line is disposed on the fourth capacitance electrode via an organic insulating film;
    The display device according to claim 15 , wherein a capacitance is formed between the fourth capacitance electrode and the first power supply line.
  17.  前記第1電源線よりも上層に、平面視において前記データ信号線と重なる光反射電極が配され、
     前記光反射電極の上方に、発光層と、前記第2電源線と同電位である共通電極とが配される、請求項13~16のいずれか1項に記載の表示装置。
    a light-reflection electrode overlapping the data signal line in a plan view is disposed above the first power supply line;
    17. The display device according to claim 13, further comprising a light-emitting layer and a common electrode having the same potential as the second power line, disposed above the light-reflecting electrode.
  18.  前記第1電源線および前記データ信号線が第1方向に延伸し、
     前記第3容量電極は、前記第1方向と直交する第2方向に延伸する、請求項13~17のいずれか1項に記載の表示装置。
    the first power supply line and the data signal line extend in a first direction;
    18. The display device according to claim 13, wherein the third capacitance electrode extends in a second direction perpendicular to the first direction.
  19.  前記第2方向に延伸する、高電位側の第3電源線を備え、
     前記第3電源線および前記第4容量電極が同層に位置する、請求項18に記載の表示装置。
    a third power line on a high potential side extending in the second direction;
    The display device according to claim 18 , wherein the third power supply line and the fourth capacitance electrode are located in the same layer.
  20.  前記第3容量電極が開口部を有し、
     前記ゲート電極および前記第4容量電極が第4コンタクトホールを介して接続され、
     平面視において、前記第4コンタクトホールが前記開口部内に位置する、請求項13~19のいずれか1項に記載の表示装置。
    the third capacitance electrode has an opening;
    the gate electrode and the fourth capacitance electrode are connected via a fourth contact hole;
    20. The display device according to claim 13, wherein the fourth contact hole is located within the opening in a plan view.
  21.  前記第1電源線、前記データ信号線、および前記第4容量電極は、アルミニウムを含む同材料で形成されている、請求項13~20のいずれか1項に記載の表示装置。 The display device according to any one of claims 13 to 20, wherein the first power supply line, the data signal line, and the fourth capacitance electrode are made of the same material containing aluminum.
  22.  それぞれが前記駆動トランジスタを含む複数の画素回路を備え、
     前記複数の画素回路それぞれに対して前記第1電源線が設けられ、
     前記複数の画素回路に対応して前記第2電源線が設けられている、請求項1~21のいずれか1項に記載の表示装置。
    a plurality of pixel circuits each including the drive transistor;
    the first power supply line is provided for each of the plurality of pixel circuits;
    22. The display device according to claim 1, wherein the second power supply lines are provided corresponding to the plurality of pixel circuits.
PCT/JP2023/006973 2023-02-27 2023-02-27 Display device WO2024180584A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/006973 WO2024180584A1 (en) 2023-02-27 2023-02-27 Display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/006973 WO2024180584A1 (en) 2023-02-27 2023-02-27 Display device

Publications (1)

Publication Number Publication Date
WO2024180584A1 true WO2024180584A1 (en) 2024-09-06

Family

ID=92589389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006973 WO2024180584A1 (en) 2023-02-27 2023-02-27 Display device

Country Status (1)

Country Link
WO (1) WO2024180584A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008102214A (en) * 2006-10-17 2008-05-01 Toshiba Matsushita Display Technology Co Ltd Active matrix type display device
JP2008129155A (en) * 2006-11-17 2008-06-05 Sony Corp Pixel circuit, display device, and method of manufacturing pixel circuit
JP2013167854A (en) * 2012-02-17 2013-08-29 Seiko Epson Corp Electro-optic device and electronic equipment
US20150356920A1 (en) * 2014-06-10 2015-12-10 Lg Display Co., Ltd. Organic light emitting display
US20160247837A1 (en) * 2014-07-11 2016-08-25 Shenzhen China Star Optoelectronics Technology Co., Ltd. Method for manufacturing tft substrate having storage capacitors and tft substrate
US20180182302A1 (en) * 2016-12-28 2018-06-28 Lg Display Co., Ltd. Electroluminescent display device
US20180218684A1 (en) * 2017-02-01 2018-08-02 Samsung Display Co., Ltd. Display device
US20190206328A1 (en) * 2017-12-29 2019-07-04 Lg Display Co., Ltd. Organic light emitting diode (oled) display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008102214A (en) * 2006-10-17 2008-05-01 Toshiba Matsushita Display Technology Co Ltd Active matrix type display device
JP2008129155A (en) * 2006-11-17 2008-06-05 Sony Corp Pixel circuit, display device, and method of manufacturing pixel circuit
JP2013167854A (en) * 2012-02-17 2013-08-29 Seiko Epson Corp Electro-optic device and electronic equipment
US20150356920A1 (en) * 2014-06-10 2015-12-10 Lg Display Co., Ltd. Organic light emitting display
US20160247837A1 (en) * 2014-07-11 2016-08-25 Shenzhen China Star Optoelectronics Technology Co., Ltd. Method for manufacturing tft substrate having storage capacitors and tft substrate
US20180182302A1 (en) * 2016-12-28 2018-06-28 Lg Display Co., Ltd. Electroluminescent display device
US20180218684A1 (en) * 2017-02-01 2018-08-02 Samsung Display Co., Ltd. Display device
US20190206328A1 (en) * 2017-12-29 2019-07-04 Lg Display Co., Ltd. Organic light emitting diode (oled) display device

Similar Documents

Publication Publication Date Title
US20230169923A1 (en) Display device
KR102554862B1 (en) Display device
US20220045150A1 (en) Amoled display panel and corresponding display device
KR100637458B1 (en) Organic electro luminescent display panel
EP2450869A1 (en) Active matrix substrate and organic el display device
CN114127836B (en) Array substrate, display panel and display device
US20240276811A1 (en) Display panel and display apparatus including the same
KR100658631B1 (en) Organic light emitting diode display and driving method thereof
WO2019064523A1 (en) Display device and pixel circuit
US20230316999A1 (en) Method for image display in a display apparatus, display apparatus, peripheral sensing circuit, and pixel driving circuit
KR20210085736A (en) Display apparatus
KR20210086275A (en) Display apparatus
KR20210086230A (en) Display panel
WO2024180584A1 (en) Display device
KR102491261B1 (en) Organic light emitting diode display device
CN113130568A (en) Display device and method for manufacturing the same
US11574605B2 (en) Display panel and display device including the same
US20240237403A9 (en) Light emitting display device
US20240040859A1 (en) Display apparatus
US20240268146A1 (en) Method of manufacturing display device
WO2023206157A1 (en) Display panel and display apparatus
KR100627358B1 (en) Organic electro luminescent display panel
KR20210085785A (en) Display device
US20220231258A1 (en) Display device
KR20210085748A (en) Display apparatus