WO2024179118A1 - 一种全氧燃烧熟料冷却机供风系统 - Google Patents

一种全氧燃烧熟料冷却机供风系统 Download PDF

Info

Publication number
WO2024179118A1
WO2024179118A1 PCT/CN2023/137801 CN2023137801W WO2024179118A1 WO 2024179118 A1 WO2024179118 A1 WO 2024179118A1 CN 2023137801 W CN2023137801 W CN 2023137801W WO 2024179118 A1 WO2024179118 A1 WO 2024179118A1
Authority
WO
WIPO (PCT)
Prior art keywords
air supply
air
supply area
oxygen
flue gas
Prior art date
Application number
PCT/CN2023/137801
Other languages
English (en)
French (fr)
Inventor
康宇
吴涛
王东
Original Assignee
中材国际智能科技有限公司
中国建材集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中材国际智能科技有限公司, 中国建材集团有限公司 filed Critical 中材国际智能科技有限公司
Publication of WO2024179118A1 publication Critical patent/WO2024179118A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • F27D15/02Cooling
    • F27D15/0206Cooling with means to convey the charge
    • F27D15/0213Cooling with means to convey the charge comprising a cooling grate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling
    • C04B7/44Burning; Melting
    • C04B7/4407Treatment or selection of the fuel therefor, e.g. use of hazardous waste as secondary fuel ; Use of particular energy sources, e.g. waste hot gases from other processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling
    • C04B7/47Cooling ; Waste heat management
    • C04B7/475Cooling ; Waste heat management using the waste heat, e.g. of the cooled clinker, in an other way than by simple heat exchange in the cement production line, e.g. for generating steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • F27D15/02Cooling
    • F27D15/0206Cooling with means to convey the charge
    • F27D15/0213Cooling with means to convey the charge comprising a cooling grate
    • F27D15/022Cooling with means to convey the charge comprising a cooling grate grate plates
    • F27D2015/0233Cooling with means to convey the charge comprising a cooling grate grate plates with gas, e.g. air, supply to the grate

Definitions

  • the invention relates to the technical field of carbon dioxide enrichment, in particular to an air supply system for an oxy-combustion clinker cooler.
  • the hot air above the medium-temperature zone that is, hot air mainly composed of nitrogen
  • the hot air above the medium-temperature zone that is, hot air mainly composed of nitrogen
  • the kiln head hood to the rotary kiln and the tertiary air duct
  • the CO2 and O2 concentrations in the gas entering the rotary kiln and the tertiary air duct are reduced, the nitrogen concentration is increased, and the CO2 concentration in the kiln tail flue gas after oxygen-enriched or full oxygen combustion is reduced.
  • the present invention provides a solution to the problem that the gases above the material bed in the high-temperature zone and the medium-temperature zone of the clinker cooler are easily confused, thereby reducing the carbon dioxide content in the cement full oxygen combustion and carbon dioxide enrichment system.
  • the present invention provides an air supply system for a full oxygen combustion clinker cooler, which is mainly used to solve the problem that the gases above the material bed in the high temperature zone and the medium temperature zone of the existing clinker cooler are easily confused, thereby reducing the carbon dioxide content in the cement full oxygen combustion and carbon dioxide enrichment system.
  • the present invention provides the following technical solutions:
  • An air supply system for a full oxygen combustion clinker cooler comprises a clinker cooler, a kiln tail system, an oxygen production system and a water intake cooling system.
  • the air supply area of the clinker cooler comprises a fixed end air supply area, a first air supply area, a
  • the cooling air in the fixed-end air supply area and the first air supply area is a mixed gas composed of the circulating flue gas of the kiln tail system and the oxygen prepared by the oxygen production system.
  • a rotary kiln and a tertiary air duct are arranged at one end of the clinker cooler air outlet, and a decomposition furnace is fixedly connected to one end of the tertiary air duct air outlet.
  • the cooling air in the second air supply area is the circulating flue gas of the kiln tail
  • the cooling air in the third air supply area is air.
  • the air outlet of the kiln tail system is connected with the air inlet of the dehydration cooling system
  • a circulating flue gas main duct is provided at one end of the air outlet of the dehydration cooling system, and the air outlet of the circulating flue gas main duct is connected with one side of the air inlet duct of the fixed end air supply area, the first air supply area and the second air supply area of the clinker cooler.
  • a first flow valve is fixedly connected to one side of the circulating flue gas main pipeline.
  • a second flow valve is fixedly connected to one side of the air intake pipe of the fixed-end air supply area, and a third flow valve is fixedly connected to one side of the air intake pipe of the first air supply area.
  • a fourth flow valve is fixedly connected to one side of the air inlet duct of the second air supply area.
  • a fifth flow valve is fixedly connected to one side of the air outlet duct of the oxygen production system.
  • a first fan is provided on one side of the fixed end air supply area
  • a second fan is provided on one side of the first air supply area
  • a third fan is provided on one side of the second air supply area
  • a fourth fan is provided on one side of the third air supply area.
  • the first fan, the second fan, the third fan and the fourth fan are each composed of ⁇ 2 fans connected in parallel, and the volume ratio of carbon dioxide in the circulating flue gas at the kiln tail is ⁇ 65%.
  • the present invention provides an air supply system for an oxyfuel combustion clinker cooler, which has the following beneficial effects:
  • different gases are used for cooling air in each section of the clinker cooler.
  • the fixed end and the first air supply area use a mixed gas rich in carbon dioxide and oxygen.
  • the mixed gas is composed of prepared oxygen and
  • the cement burning system is composed of circulating flue gas rich in carbon dioxide at the kiln tail. This part of the gas is heated by clinker and then enters the rotary kiln and decomposition furnace, which not only provides the oxygen required for the combustion of fuel in the burning system, but also enriches carbon dioxide, thus realizing full oxygen combustion and carbon dioxide enrichment of the entire burning process.
  • the second air supply area uses circulating flue gas rich in carbon dioxide, which acts as a "partition wall" to prevent hot air from the third air supply area from entering the rotary kiln and decomposition furnace.
  • the third air supply area uses air instead of circulating flue gas, thus saving the carbon dioxide-rich flue gas prepared by the kiln tail system and providing more external discharge volume for the capture, purification and utilization of the carbon dioxide-rich flue gas at the kiln tail.
  • the present invention designs a second air supply area that acts as a "partition wall” between the first air supply area and the third air supply area, thereby realizing a "gas barrier” above the clinker grate cooler in the second air supply area, preventing hot air from the third air supply area from entering the fixed end and above the first air supply area. This is more adaptable to fluctuations in air pull and supply than setting a hardware retaining wall behind the first air supply area.
  • the present invention can control the oxygen demand of the entire cement oxy-fuel combustion system by regulating the amount of oxygen provided by the oxygen production device. By regulating the amount of circulating flue gas, the material-gas ratio of the entire cement oxy-fuel combustion system can be controlled to better adapt to the kiln tail preheating and predecomposition system.
  • the cooler By adjusting the oxygen concentration and the amount of oxygen, the nitrogen content in the flue gas can be reduced to the maximum extent. If the remaining gas entering the fuel combustion system is also replaced with recycled flue gas, oxygen-enriched or pure oxygen gas, such as replacing air with recycled flue gas for fuel air, air cannon air, etc., and replacing the primary air of the burner with oxygen-enriched or full oxygen, the entire full oxygen combustion system can increase the carbon dioxide concentration in the system flue gas to a greater extent.
  • FIG1 is a schematic diagram of the system process flow structure of an air supply system for an oxy-fuel combustion clinker cooler proposed by the present invention
  • FIG2 is a schematic structural diagram of a cooling system with kiln tail flue gas dewatering in an air supply system of an oxyfuel combustion clinker cooler proposed by the present invention
  • FIG. 3 is a schematic diagram of the control structure of flow valves in each air supply area of an air supply system for an oxy-fuel combustion clinker cooler proposed by the present invention
  • FIG4 is a schematic diagram of the structure of a flow valve of an apparatus system of an air supply system for an oxy-fuel combustion clinker cooler proposed by the present invention
  • FIG. 5 is a schematic diagram of the structure of multiple groups of fans of an air supply system for an oxy-fuel combustion clinker cooler proposed by the present invention.
  • an air supply system for a full oxygen combustion clinker cooler the air supply area of the clinker cooler 1 is divided into a fixed end air supply area 1-1, a first air supply area 1-2, a second air supply area 1-3 and a third air supply area 1-4, the cooling air in the fixed end air supply area 1-1 and the first air supply area 1-2 is a mixed gas composed of the circulating flue gas of the kiln tail system 11 and the oxygen prepared by the oxygen production system 12, the volume ratio of oxygen in the mixed gas is 25-35%, and after being blown into the clinker cooler 1, it exchanges heat with the clinker to form hot air entering the rotary kiln 2 and entering the third The hot air from the air duct 3 is sent to the decomposition furnace 4.
  • the oxygen amount of the hot air entering the rotary kiln 2 meets the fuel combustion in the rotary kiln 2.
  • the oxygen amount of the hot air entering the tertiary air duct 3 meets the fuel combustion in the decomposition furnace 4.
  • the cooling air from the second air supply area 1-3 is the circulating flue gas at the kiln tail, in which the volume ratio of carbon dioxide is 67%.
  • the cooling air from the third air supply area 1-4 is air.
  • the cooling air of each section of the clinker cooler adopts different gases.
  • the fixed end and the first air supply area adopt a mixed gas rich in carbon dioxide and oxygen.
  • the mixed gas is prepared by The oxygen in the second air supply area is combined with the carbon dioxide-rich circulating flue gas at the kiln tail of the cement burning system. This part of the gas is heated by the clinker and then enters the rotary kiln and the decomposition furnace, which not only provides the oxygen required for the combustion of the fuel in the burning system, but also enriches the carbon dioxide, thus realizing the full oxygen combustion and carbon dioxide enrichment of the entire burning process.
  • the second air supply area uses carbon dioxide-rich circulating flue gas, which acts as a "partition wall" to prevent the hot air in the third air supply area from entering the rotary kiln and the decomposition furnace.
  • the third air supply area uses air instead of circulating flue gas, thus saving the carbon dioxide-rich flue gas prepared by the kiln tail system and providing more external discharge volume for the capture, purification and utilization of the carbon dioxide-rich flue gas at the kiln tail.
  • the circulating flue gas at the tail of the kiln passes through the desiccant cooling system to reduce the circulating flue gas to 95°C, and then is supplied to the fixed end air supply area 1-1, the first air supply area 1-2 and the second air supply area 1-3 of the clinker cooler 1.
  • a first flow valve 5 is arranged on the circulating flue gas main pipeline to control the total circulating flue gas flow in the tail of the kiln.
  • the air inlet duct of the fixed-end air supply area 1-1 is provided with a second flow valve 6, and the air inlet duct of the first air supply area 1-2 is provided with a third flow valve 7, which is used to control the air volume entering the fixed-end air supply area 1-1 and the first air supply area 1-2, and the air inlet duct of the second air supply area is provided with a fourth flow valve 8, which is used to control the flow of circulating flue gas entering the second air supply area 1-3.
  • a fifth flow valve 9 is provided on one side of the air outlet duct of the oxygen production system 12, which is used to control the total oxygen flow into the fixed-end air supply area 1-1 and the first air supply area 1-2.
  • the oxygen production device provides oxygen adjustment, which can control the entire cement
  • the amount of oxygen required by the oxygen combustion system can be controlled by adjusting the amount of circulating flue gas to control the material-gas ratio of the entire cement full oxygen combustion system, so as to better adapt to the kiln tail preheating and predecomposition system.
  • the fixed end air supply area 1-1 is supplied with air by the first fan 10-1
  • the first air supply area 1-2 is supplied with air by the second fan 10-2
  • the second air supply area 1-3 is supplied with air by the third fan 10-3
  • the third air supply area 1-4 is supplied with air by the fourth fan 10-4.
  • the first fan 10-1, the second fan 10-2, the third fan 10-3, and the fourth fan 10-4 are all composed of two fans connected in parallel.
  • the entire Most of the air used for burning fuel comes from the air supplied by the cooler.
  • the nitrogen content in the flue gas can be minimized.
  • the remaining gas entering the fuel combustion system is also replaced with recycled flue gas, oxygen-enriched or pure oxygen gas, such as sending fuel air, air cannon air, etc., recycled flue gas is used instead of air, and the primary air of the burner is also replaced with oxygen-enriched or full oxygen, the entire full oxygen combustion system can increase the carbon dioxide concentration in the system flue gas to a greater extent.
  • the air supply system of the present invention is divided into four air supply areas: a fixed end air supply area 1-1, a first air supply area 1-2, a second air supply area 1-3 and a third air supply area 1-4.
  • the first air supply area 1-2, the second air supply area 1-3 and the third air supply area 1-4 are arranged in a front-to-back order along the movable bed, and the circulating flue gas of the kiln tail system 11 is divided into two routes and sent to the clinker cooler 1.
  • the volume ratio of carbon dioxide in the circulating flue gas is ⁇ 65%.
  • the first route of circulating flue gas is mixed with oxygen prepared by the oxygen production system 12 to form a mixed gas and sent to the fixed end air supply area 1-1 and the first air supply area 1-2.
  • the second route of circulating flue gas is sent to the second air supply area 1-3.
  • the volume ratio of oxygen in the mixed gas composed of the first route of circulating flue gas and the prepared oxygen is 25-35%.
  • the air supply volume of the mixed gas is kiln
  • the secondary air of the system in this document refers to the hot air used for fuel combustion in the rotary kiln 2, which refers to the hot flue gas formed by heat exchange between the circulating flue gas and the mixed gas for preparing oxygen and the clinker, and enters the rotary kiln 2 through the kiln head hood 1-5.
  • the tertiary air in this document refers to the hot air used for fuel combustion in the decomposition furnace, which refers to the hot flue gas formed by heat exchange between the circulating flue gas and the mixed gas for preparing oxygen and the clinker, and enters the decomposition furnace 4 through the kiln head hood 1-5 and the tertiary air duct 3, and then enters the rotary kiln 2 and the tertiary air duct 3 after being blown into the clinker cooler 1 and exchanged with the clinker to form hot air, and then enters the decomposition furnace 4 through the tertiary air duct 3 as the main air for fuel combustion.
  • Air is introduced into the third air supply area 1-4 as gas for cooling the clinker. This part of air is discharged from the exhaust port of the clinker cooler 1 after heat exchange with the clinker, and does not enter the rotary kiln 2 and the decomposition furnace 4.
  • the second kiln tail circulating flue gas is used as the partition air between the first air supply area 1-2 and the third air supply area 1-4 and sent to the second air supply area 1-3 to cool the clinker.
  • the hot air above the clinker will not enter the first air supply area 1-2, and only the circulating flue gas from the second air supply area 1-4 will enter the first air supply area 1-3.
  • the mixed flue gas entering the rotary kiln 2 and the decomposition furnace 4 only introduces part of the circulating flue gas.
  • the total amount of oxygen entering the rotary kiln and the decomposition furnace will not decrease, and the carbon dioxide content will not decrease.
  • the mixed gas above the clinker in the first air supply area 1-2 will partially enter the second air supply area 1-3, and will not enter the third air supply area 1-3.
  • the gas amount and the total amount of oxygen in the first air supply area 1-2 will be appropriately reduced.
  • the second air supply area 1-3 is installed between the first air supply area 1-2 and the third air supply area 1-4 of the clinker cooler 1, and the circulating flue gas is used as the air supply for the second air supply area 1-3, which can effectively protect the oxygen and carbon dioxide volume fractions entering the rotary kiln 2 and the decomposition furnace 4 from fluctuating, thereby ensuring the stability of the pre-combustion atmosphere of the full oxygen combustion system, which is beneficial to full oxygen combustion and carbon dioxide enrichment, and is also one of the core technologies of the full oxygen combustion clinker cooler 1.
  • an air supply system for a full-oxygen combustion clinker cooler the air supply area of the clinker cooler 1 is divided into a fixed end air supply area 1-1, a first air supply area 1-2, a second air supply area 1-3 and a third air supply area 1-4, the cooling air of the fixed end air supply area 1-1 and the first air supply area 1-2 is a mixed gas composed of the circulating flue gas of the kiln tail system 11 and the oxygen prepared by the oxygen production system 12, the volume ratio of oxygen in the mixed gas is 25-35%, after being blown into the clinker cooler 1, it exchanges heat with the clinker to form hot air entering the rotary kiln 2 and hot air entering the tertiary air duct 3, the hot air in the tertiary air duct 3 is sent to the decomposition furnace 4, the oxygen amount of the hot air entering the rotary kiln 2 meets the fuel combustion in the rotary kiln 2, the oxygen amount of the hot air entering the tertiary
  • different gases are used for the cooling wind of each section of the clinker cooler.
  • the fixed end and the first air supply zone use a mixed gas rich in carbon dioxide and rich in oxygen.
  • the mixed gas is composed of prepared oxygen and circulating flue gas rich in carbon dioxide at the kiln tail of the cement firing system. This part of the gas is heated by the clinker and enters the rotary kiln and the decomposition furnace, which not only provides the oxygen required for the combustion of the fuel in the firing system, but also enriches carbon dioxide, thereby realizing full oxygen combustion and carbon dioxide enrichment of the entire firing.
  • the second air supply zone uses circulating flue gas rich in carbon dioxide, which acts as a "partition wall" to prevent hot air from the third air supply zone from entering the rotary kiln and the decomposition furnace.
  • the third air supply zone uses air instead of circulating flue gas, thereby saving the carbon dioxide-rich flue gas prepared by the kiln tail system and providing more external discharge volume for the capture, purification and utilization of the carbon dioxide-rich flue gas at the kiln tail.
  • the circulating flue gas at the tail of the kiln passes through the desiccant cooling system to reduce the circulating flue gas to 98°C, and then is supplied to the fixed end air supply area 1-1, the first air supply area 1-2 and the second air supply area 1-3 of the clinker cooler 1.
  • the second air supply area acting as a "partition wall” between the first air supply area and the third air supply area
  • a "gas barrier” is realized above the clinker grate cooler in the second air supply area to prevent hot air from the third air supply area from entering the fixed end and above the first air supply area. This is more adaptable to the fluctuations of air extraction and supply than setting a hardware retaining wall behind the first air supply area.
  • a first flow valve 5 is set on the circulating flue gas main pipeline to control the total circulating flue gas flow in the tail of the kiln.
  • the air intake duct of the fixed-end air supply zone 1-1 is provided with a second flow valve 6, and the air intake duct of the first air supply zone 1-2 is provided with a third flow valve 7, which are used to control the air volume entering the fixed-end air supply zone 1-1 and the first air supply zone 1-2.
  • the air intake duct of the second air supply zone is provided with a fourth flow valve 8, which is used to control the flow of circulating flue gas entering the second air supply zone 1-3.
  • a fifth flow valve 9 is provided on one side of the air outlet duct of the oxygen production system 12, which is used to control the total oxygen flow into the fixed-end air supply zone 1-1 and the first air supply zone 1-2.
  • the fixed-end air supply zone 1-1 is supplied with air by the first fan 10-1, and the oxygen demand of the entire cement full oxygen combustion system can be controlled by adjusting the amount of oxygen provided by the oxygen production device.
  • the material-gas ratio of the entire cement full oxygen combustion system can be controlled by adjusting the amount of circulating flue gas, so as to better adapt to the kiln tail preheating and predecomposition system.
  • the first air supply zone 1-2 is supplied with air by the second fan 10-2, and the second air supply zone 1-3 is supplied with air by the third fan. 10-3 air supply. In the present invention, most of the air volume for the entire burning fuel combustion comes from the cooler air supply. By adjusting the oxygen concentration and the amount of oxygen, the nitrogen content in the flue gas can be reduced to the maximum extent.
  • the third air supply area 1-4 is supplied with air by the fourth fan 10-4.
  • the first fan 10-1, the second fan 10-2, the third fan 10-3, and the fourth fan 10-4 are all composed of 3 fans connected in parallel.
  • the first air supply area 1-2, the second air supply area 1-3, and the third air supply area 1-4 are arranged in a front-to-back order along the movable bed, and the circulating flue gas of the kiln tail system 11 is divided into two routes and sent to the clinker cooler 1.
  • the volume ratio of carbon dioxide in the circulating flue gas is ⁇ 65%.
  • the first route of circulating flue gas is mixed with the oxygen prepared by the oxygen production system 12 to form a mixed gas and sent to the fixed end air supply area 1-1 and the first air supply area 1-2.
  • the second route of circulating flue gas is sent to the second air supply area 1-3.
  • the volume ratio of oxygen in the mixed gas composed of the first route of circulating flue gas and the prepared oxygen is 25-35%.
  • the air supply volume of the mixed gas is the secondary air of the kiln system. This document refers to the hot air used for fuel combustion in the rotary kiln 2, and refers to the circulating
  • the hot flue gas formed by the heat exchange between the flue gas and the mixed gas for preparing oxygen and the clinker enters the rotary kiln 2 through the kiln head hood 1-5.
  • the tertiary air that is, the hot air used for fuel combustion in the decomposition furnace in this document, refers to the hot flue gas formed by the heat exchange between the circulating flue gas and the mixed gas for preparing oxygen and the clinker, which enters the decomposition furnace 4 through the kiln head hood 1-5 and the tertiary air duct 3, is blown into the clinker cooler 1, exchanges heat with the clinker to form hot air, and then enters the rotary kiln 2 and the tertiary air duct 3, and then enters the decomposition furnace 4 through the tertiary air duct 3 as the main air for fuel combustion.
  • Air is introduced into the third air supply area 1-4 as the clinker cooling gas. This part of air is discharged from the exhaust port of the clinker cooler 1 after heat exchange with the clinker, and does not enter the rotary kiln 2 and the decomposition furnace 4.
  • the second kiln tail circulating flue gas is used as the partition air between the first air supply area 1-2 and the third air supply area 1-4 to be sent to the second air supply area 1-3 to cool the clinker.
  • the hot air above the clinker in the third air supply area 1-2 will not enter the clinker in the first air supply area 1-2, and only the circulating flue gas in the second air supply area 1-4 will enter the clinker in the first air supply area 1-3, which will not bring hot air and affect the gas above the clinker in the first air supply area 1-2.
  • the mixed flue gas entering the rotary kiln 2 and the decomposition furnace 4 only introduces part of the circulating flue gas, and the total amount of oxygen entering the rotary kiln and the decomposition furnace will not decrease, nor will the carbon dioxide content.
  • the mixed gas above the clinker in the first air supply area 1-2 will partially enter the second air supply area 1-3, and will not enter the clinker in the third air supply area 1-3.
  • the gas amount and the total amount of oxygen in the first air supply area 1-2 will be appropriately reduced, and it is only necessary to appropriately increase the supply of oxygen for preparation.
  • the amount of oxygen required for fuel combustion of the rotary kiln 2 and the decomposition furnace 4 can be met.
  • part of the circulating flue gas above the clinker in the second air supply area 1-3 will enter the third air supply area 1-4.
  • the hot air above the clinker in the third air supply area 1-4 will have a little more circulating flue gas, and the hot air extracted from the exhaust port of the clinker cooler 1 has no special requirements on the carbon dioxide concentration. More carbon dioxide will not affect the drying or power generation performance of this part of the hot air.
  • the second air supply area 1-3 is installed between the first air supply area 1-2 and the third air supply area 1-4 of the clinker cooler 1, and the circulating flue gas is used as the air supply for the second air supply area 1-3, which can effectively protect the oxygen and carbon dioxide volume fractions entering the rotary kiln 2 and the decomposition furnace 4 from fluctuating, thereby ensuring the stability of the pre-combustion atmosphere of the full oxygen combustion system, which is beneficial to the full oxygen combustion and carbon dioxide enrichment, and is also one of the core technologies of the full oxygen combustion clinker cooler 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

一种全氧燃烧熟料冷却机供风系统,包括熟料冷却机(1)、窑尾系统(11)、制氧系统(12)和取水冷却系统(13),熟料冷却机(1)供风区域包括固定端供风区(1-1)、第一供风区(1-2)、第二供风区(1-3)和第三供风区(1-4),且固定端供风区(1-1)和第一供风区(1-2)冷却风为窑尾系统(11)的循环烟气与制氧系统(12)制备的氧气组成的混合气体,熟料冷却机(1)出风口的一端设有回转窑(2)和三次风管(3)。将富含氧气与二氧化碳的气体通过熟料加热后送入回转窑(2)与分解炉(4),实现整个烧成系统的全氧燃烧与二氧化碳富集,同时能够控制整个水泥全氧燃烧系统的需氧量,还能够实现第二供风区(1-3)的熟料篦冷机上方的气体屏障。

Description

一种全氧燃烧熟料冷却机供风系统 技术领域
本发明涉及二氧化碳富集技术领域,具体为一种全氧燃烧熟料冷却机供风系统。
背景技术
随着国家“碳达峰”、“碳中和”目标的提出,作为二氧化碳较大排放源的水泥工业也开始逐渐采取二氧化碳减排措施,其中熟料篦式冷却机得到广泛使用,现有的冷却机系统高温区料床上方升温后的混合气容易和中温区料床上方热风混合,若中温区上方热风即以氮气为主的热空气,容易流向高温区熟料上方,进而通过窑头罩进而回转窑与三次风管,进而降低进入回转窑和三次风管中气体中CO2和O2浓度,提升了氮气浓度,进而降低富氧或全氧燃烧后窑尾烟气中CO2浓度。
为提高水泥烧成系统烟气中二氧化碳浓度,降低空气带来的氮气含量,需尽量保证入窑头罩的热风没有热空气混入,本发明提供了一种解决熟料冷却机高温区和中温区料床上方气体容易混淆、进而降低水泥全氧燃烧与二氧化碳富集系统的二氧化碳含量的问题。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了一种全氧燃烧熟料冷却机供风系统,主要为解决现有的熟料冷却机高温区和中温区料床上方气体容易混淆、进而降低水泥全氧燃烧与二氧化碳富集系统的二氧化碳含量的问题。
(二)技术方案
为实现上述目的,本发明提供如下技术方案:
一种全氧燃烧熟料冷却机供风系统,包括熟料冷却机、窑尾系统、制氧系统和取水冷却系统,所述熟料冷却机供风区域包括固定端供风区、第一供 风区、第二供风区和第三供风区,且固定端供风区和第一供风区冷却风为窑尾系统的循环烟气与制氧系统制备的氧气组成的混合气体,所述熟料冷却机出风口的一端设有回转窑和三次风管,三次风管出风口的一端固定连接有分解炉,所述第二供风区冷却风为窑尾循环烟气,第三供风区冷却风为空气。
进一步的,所述窑尾系统的出气口与去水冷却系统的进气口相连通,所述去水冷却系统的出气口的一端设有循环烟气主管道,且循环烟气主管道的出气口与熟料冷却机的固定端供风区、第一供风区和第二供风区进气管道的一侧相连通。
在前述方案的基础上,所述循环烟气主管道的一侧固定连接有第一流量阀。
作为本发明再进一步的方案,所述固定端供风区进气管道的一侧固定连接有第二流量阀,所述第一供风区进气管道的一侧固定连接有第三流量阀。
进一步的,所述第二供风区进气管道的一侧固定连接有第四流量阀。
在前述方案的基础上,所述制氧系统出风管道的一侧固定连接有第五流量阀。
作为本发明再进一步的方案,所述固定端供风区的一侧设有第一风机,所述第一供风区的一侧设有第二风机,所述第二供风区的一侧设有第三风机,所述第三供风区的一侧设有第四风机。
进一步的,所述第一风机、第二风机、第三风机和第四风机均由≥2台风机并联组成,所述窑尾循环烟气中二氧化碳体积比≥65%。
(三)有益效果
与现有技术相比,本发明提供了一种全氧燃烧熟料冷却机供风系统,具备以下有益效果:
1、本发明中熟料冷却机各段冷却风采用不同的气体,固定端、第一供风区供风采用富含二氧化碳与富含氧气的混合气体,混合气体由制备的氧气与 水泥烧成系统窑尾富二氧化碳的循环烟气组成,这部分气体被熟料加热后入回转窑与分解炉,既提供了烧成系统燃料燃烧所需的氧气,又进行了二氧化碳富集,实现了整个烧成的全氧燃烧与二氧化碳富集,第二供风区采用富二氧化碳的循环烟气,充当“隔墙”,防止第三供风区的热空气入回转窑与分解炉,第三供风区采用空气,不用循环烟气,节省窑尾系统制备的富二氧化碳烟气,为窑尾富二氧化碳烟气的捕集、提纯与利用提供更多的外排量。
2、本发明通过在第一供风区与第三供风区之间设计充当“隔墙角色”的第二供风区,实现第二供风区的熟料篦冷机上方的“气体屏障”,防止第三供风区的热空气进入固定端与第一供风区的上方,比在第一供风区后设置硬件挡墙更适应拉风与供风的波动。
3、本发明通过制氧装置提供氧气量的调节,可以控制整个水泥全氧燃烧系统需氧量的多少,通过循环烟气量的调节,可以控制整个水泥全氧燃烧系统料气比,以更好地与窑尾预热预分解系统相适应。
4、本发明中整个烧成的燃料燃烧用风绝大多数风量来自冷却机供风,通过制氧浓度、氧气量的调节,可以最大限度地降低烟气中氮气的含量,若将剩余入燃料燃烧系统的气体也更换为循环烟气、富氧或纯氧气体,如送燃料风、空气炮风等用循环烟气替代空气,将燃烧器一次风也用富氧或全氧替代,整个全氧燃烧系统可以更大程度地提高系统烟气中的二氧化碳浓度。
附图说明
图1为本发明提出的一种全氧燃烧熟料冷却机供风系统的系统工艺流程结构示意图;
图2为本发明提出的一种全氧燃烧熟料冷却机供风系统的带窑尾烟气去水冷却系统结构示意图;
图3为本发明提出的一种全氧燃烧熟料冷却机供风系统的各供风区流量阀控制结构示意图;
图4为本发明提出的一种全氧燃烧熟料冷却机供风系统的装置系统流量阀结构示意图;
图5为本发明提出的一种全氧燃烧熟料冷却机供风系统的多组风机结构示意图。
图中:1、熟料冷却机;1-1、固定端供风区;1-2、第一供风区;1-3、第二供风区;1-4、第三供风区;2、回转窑;3、三次风管;4、分解炉;5、第一流量阀;6、第二流量阀;7、第三流量阀;8、第四流量阀;9、第五流量阀;10-1、第一风机;10-2、第二风机;10-3、第三风机;10-4、第四风机;11、窑尾系统;12、制氧系统;13、取水冷却系统。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
参照图1-图5,一种全氧燃烧熟料冷却机供风系统,熟料冷却机1供风区域分为固定端供风区1-1、第一供风区1-2、第二供风区1-3和第三供风区1-4,固定端供风区1-1和第一供风区1-2冷却风为窑尾系统11的循环烟气与制氧系统12制备的氧气组成的混合气体,混合气体中氧气体积比为25-35%,鼓入熟料冷却机1后与熟料以换热形成进入回转窑2热风和进入三次风管3热风,三次风管3热风送入分解炉4,进入回转窑2热风的氧气量满足回转窑2内燃料燃烧,进入三次风管3热风的氧气量满足分解炉4内燃料燃烧,第二供风区1-3冷却风为窑尾循环烟气,其中二氧化碳体积比67%,第三供风区1-4冷却风为空气,本发明中熟料冷却机各段冷却风采用不同的气体,固定端、第一供风区供风采用富含二氧化碳与富含氧气的混合气体,混合气体由制备 的氧气与水泥烧成系统窑尾富二氧化碳的循环烟气组成,这部分气体被熟料加热后入回转窑与分解炉,既提供了烧成系统燃料燃烧所需的氧气,又进行了二氧化碳富集,实现了整个烧成的全氧燃烧与二氧化碳富集,第二供风区采用富二氧化碳的循环烟气,充当“隔墙”,防止第三供风区的热空气入回转窑与分解炉,第三供风区采用空气,不用循环烟气,节省窑尾系统制备的富二氧化碳烟气,为窑尾富二氧化碳烟气的捕集、提纯与利用提供更多的外排量。
尤其的,窑尾循环烟气经过去水汽冷却系统,将循环烟气降低至95℃后,供给熟料冷却机1的固定端供风区1-1、第一供风区1-2和第二供风区1-3,在循环烟气主管道上设置第一流量阀5,用于控制窑尾烟气中的总循环烟气流量,通过在第一供风区与第三供风区之间设计充当“隔墙角色”的第二供风区,实现第二供风区的熟料篦冷机上方的“气体屏障”,防止第三供风区的热空气进入固定端与第一供风区的上方,比在第一供风区后设置硬件挡墙更适应拉风与供风的波动。
需要说明的是,固定端供风区1-1进气管道设置有第二流量阀6、第一供风区1-2进气管道设置有第三流量阀7,用于控制进入固定端供风区1-1和第一供风区1-2的风量,第二供风区进气管道设置有第四流量阀8,用于控制进入第二供风区1-3循环烟气的流量,制氧系统12出风管道的一侧设置有第五流量阀9,用于控制入固定端供风区1-1、第一供风区1-2总的氧气流量,制氧装置提供氧气量的调节,可以控制整个水泥全氧燃烧系统需氧量的多少,通过循环烟气量的调节,可以控制整个水泥全氧燃烧系统料气比,以更好地与窑尾预热预分解系统相适应,固定端供风区1-1通过第一风机10-1供风,第一供风区1-2通过第二风机10-2供风、第二供风区1-3通过第三风机10-3供风,第三供风区1-4通过第四风机10-4供风,第一风机10-1、第二风机10-2、第三风机10-3、第四风机10-4均由2台风机并联组成,本发明中整个 烧成的燃料燃烧用风绝大多数风量来自冷却机供风,通过制氧浓度、氧气量的调节,可以最大限度地降低烟气中氮气的含量,若将剩余入燃料燃烧系统的气体也更换为循环烟气、富氧或纯氧气体,如送燃料风、空气炮风等用循环烟气替代空气,将燃烧器一次风也用富氧或全氧替代,整个全氧燃烧系统可以更大程度地提高系统烟气中的二氧化碳浓度。
工作原理:本发明供风系统分为四个供风区:固定端供风区1-1、第一供风区1-2、第二供风区1-3和第三供风区1-4,当需要使用装置时,第一供风区1-2、第二供风区1-3、第三供风区1-4沿活动床按前后顺序排列,将窑尾系统11的循环烟气分两路送至熟料冷却机1,循环烟气中二氧化碳体积比≥65%,第一路循环烟气与制氧系统12制备的氧气混合后组成混合气体送入固定端供风区1-1、第一供风区1-2,第二路循环烟气送入第二供风区1-3,第一路循环烟气与制备的氧气组成的混合气体中氧气体积比为25-35%,混合气体供风量为窑系统的二次风本文件指回转窑2内燃料燃烧用热风,指循环烟气、制备氧气的混合气体与熟料换热后形成的热烟气,通过窑头罩1-5进入回转窑2、三次风即本文件指分解炉内燃料燃烧用热风,指循环烟气、制备氧气的混合气体与熟料换热后形成的热烟气,通过窑头罩1-5、三次风管3进入分解炉4之和,鼓入熟料冷却机1后与熟料换热形成热风后进入回转窑2和三次风管3,再通过三次风管3进入分解炉4,作为燃料燃烧主要用风,第三供风区1-4通入空气作为冷却熟料气体,这部分空气经过熟料换热后由熟料冷却机1的废气口排出,不进入回转窑2与分解炉4。
为了避免第三供风区1-4料床上方热空气因为窑头、窑尾风机拉风波动而入固定端供风区1-1、第一供风区1-2料床上方,进而影响进入回转窑2与分解炉4系统中CO2、N2浓度,将第二路窑尾循环烟气作为第一供风区1-2与第三供风区1-4之间的隔断风送至第二供风区1-3来冷却熟料。当窑尾风机拉风过大时,在第二供风区1-3循环烟气隔断作用下,第三供风区1-2熟 料上方热空气不会进入第一供风区1-2熟料上方,只有第二供风区1-4的循环烟气进入第一供风区1-3熟料上方,不会带来热空气而影响第一供风区1-2熟料上方的气体,进入回转窑2与分解炉4的混合烟气只是多引入部分循环烟气,入回转窑与分解炉内的氧气总量不会减少,二氧化碳含量也不会减少,当窑头风机拉风过大时,在第二供风区1-3循环烟气隔断作用下,第一供风区1-2熟料上方混合气会部分进入第二供风区1-3,不会进入第三供风区1-3熟料上方,第一供风区1-2气体量与氧气总量会适当减少,只需适当增大制备氧气的供给量即可满足回转窑2、分解炉4燃料燃烧用氧气量,另外,会有部分第二供风区1-3熟料上方循环烟气进入第三供风区1-4,第三供风区1-4熟料上方热风会稍多些循环烟气,而熟料冷却机1废气口抽取的热风对二氧化碳浓度无特别要求,多些二氧化碳量不会影响这部分热风烘干或发电性能,因此在熟料冷却机1第一供风区1-2与第三供风区1-4之间设施第二供风区1-3,且以循环烟气作为第二供风区1-3的供风,可以有效保护入回转窑2、分解炉4的氧气与二氧化碳体积分数基本不发生波动,进而保证全氧燃烧系统的燃前气氛的稳定,对于全氧燃烧与二氧化碳富集是有利的,也是全氧燃烧熟料冷却机1的核心技术之一。
实施例2
参照图1-图5,一种全氧燃烧熟料冷却机供风系统,熟料冷却机1供风区域分为固定端供风区1-1、第一供风区1-2、第二供风区1-3和第三供风区1-4,固定端供风区1-1和第一供风区1-2冷却风为窑尾系统11的循环烟气与制氧系统12制备的氧气组成的混合气体,混合气体中氧气体积比为25-35%,鼓入熟料冷却机1后与熟料以换热形成进入回转窑2热风和进入三次风管3热风,三次风管3热风送入分解炉4,进入回转窑2热风的氧气量满足回转窑2内燃料燃烧,进入三次风管3热风的氧气量满足分解炉4内燃料燃烧,第二供风区1-3冷却风为窑尾循环烟气,其中二氧化碳体积比70%,第三供风区 1-4冷却风为空气,本发明中熟料冷却机各段冷却风采用不同的气体,固定端、第一供风区供风采用富含二氧化碳与富含氧气的混合气体,混合气体由制备的氧气与水泥烧成系统窑尾富二氧化碳的循环烟气组成,这部分气体被熟料加热后入回转窑与分解炉,既提供了烧成系统燃料燃烧所需的氧气,又进行了二氧化碳富集,实现了整个烧成的全氧燃烧与二氧化碳富集,第二供风区采用富二氧化碳的循环烟气,充当“隔墙”,防止第三供风区的热空气入回转窑与分解炉,第三供风区采用空气,不用循环烟气,节省窑尾系统制备的富二氧化碳烟气,为窑尾富二氧化碳烟气的捕集、提纯与利用提供更多的外排量。
尤其的,窑尾循环烟气经过去水汽冷却系统,将循环烟气降低至98℃后,供给熟料冷却机1的固定端供风区1-1、第一供风区1-2和第二供风区1-3,通过在第一供风区与第三供风区之间设计充当“隔墙角色”的第二供风区,实现第二供风区的熟料篦冷机上方的“气体屏障”,防止第三供风区的热空气进入固定端与第一供风区的上方,比在第一供风区后设置硬件挡墙更适应拉风与供风的波动,在循环烟气主管道上设置第一流量阀5,用于控制窑尾烟气中的总循环烟气流量。
需要说明的是,固定端供风区1-1进气管道设置有第二流量阀6、第一供风区1-2进气管道设置有第三流量阀7,用于控制进入固定端供风区1-1和第一供风区1-2的风量,第二供风区进气管道设置有第四流量阀8,用于控制进入第二供风区1-3循环烟气的流量,制氧系统12出风管道的一侧设置有第五流量阀9,用于控制入固定端供风区1-1、第一供风区1-2总的氧气流量,固定端供风区1-1通过第一风机10-1供风,通过制氧装置提供氧气量的调节,可以控制整个水泥全氧燃烧系统需氧量的多少,通过循环烟气量的调节,可以控制整个水泥全氧燃烧系统料气比,以更好地与窑尾预热预分解系统相适应,第一供风区1-2通过第二风机10-2供风、第二供风区1-3通过第三风机 10-3供风,本发明中整个烧成的燃料燃烧用风绝大多数风量来自冷却机供风,通过制氧浓度、氧气量的调节,可以最大限度地降低烟气中氮气的含量,若将剩余入燃料燃烧系统的气体也更换为循环烟气、富氧或纯氧气体,如送燃料风、空气炮风等用循环烟气替代空气,将燃烧器一次风也用富氧或全氧替代,整个全氧燃烧系统可以更大程度地提高系统烟气中的二氧化碳浓度,第三供风区1-4通过第四风机10-4供风,第一风机10-1、第二风机10-2、第三风机10-3、第四风机10-4均由3台风机并联组成。
工作原理:当需要使用装置时,第一供风区1-2、第二供风区1-3、第三供风区1-4沿活动床按前后顺序排列,将窑尾系统11的循环烟气分两路送至熟料冷却机1,循环烟气中二氧化碳体积比≥65%,第一路循环烟气与制氧系统12制备的氧气混合后组成混合气体送入固定端供风区1-1、第一供风区1-2,第二路循环烟气送入第二供风区1-3,第一路循环烟气与制备的氧气组成的混合气体中氧气体积比为25-35%,混合气体供风量为窑系统的二次风本文件指回转窑2内燃料燃烧用热风,指循环烟气、制备氧气的混合气体与熟料换热后形成的热烟气,通过窑头罩1-5进入回转窑2、三次风即本文件指分解炉内燃料燃烧用热风,指循环烟气、制备氧气的混合气体与熟料换热后形成的热烟气,通过窑头罩1-5、三次风管3进入分解炉4之和,鼓入熟料冷却机1后与熟料换热形成热风后进入回转窑2和三次风管3,再通过三次风管3进入分解炉4,作为燃料燃烧主要用风,第三供风区1-4通入空气作为冷却熟料气体,这部分空气经过熟料换热后由熟料冷却机1的废气口排出,不进入回转窑2与分解炉4。
为了避免第三供风区1-4料床上方热空气因为窑头、窑尾风机拉风波动而入固定端供风区1-1、第一供风区1-2料床上方,进而影响进入回转窑2与分解炉4系统中CO2、N2浓度,将第二路窑尾循环烟气作为第一供风区1-2与第三供风区1-4之间的隔断风送至第二供风区1-3来冷却熟料。当窑尾风 机拉风过大时,在第二供风区1-3循环烟气隔断作用下,第三供风区1-2熟料上方热空气不会进入第一供风区1-2熟料上方,只有第二供风区1-4的循环烟气进入第一供风区1-3熟料上方,不会带来热空气而影响第一供风区1-2熟料上方的气体,进入回转窑2与分解炉4的混合烟气只是多引入部分循环烟气,入回转窑与分解炉内的氧气总量不会减少,二氧化碳含量也不会减少,当窑头风机拉风过大时,在第二供风区1-3循环烟气隔断作用下,第一供风区1-2熟料上方混合气会部分进入第二供风区1-3,不会进入第三供风区1-3熟料上方,第一供风区1-2气体量与氧气总量会适当减少,只需适当增大制备氧气的供给量即可满足回转窑2、分解炉4燃料燃烧用氧气量,另外,会有部分第二供风区1-3熟料上方循环烟气进入第三供风区1-4,第三供风区1-4熟料上方热风会稍多些循环烟气,而熟料冷却机1废气口抽取的热风对二氧化碳浓度无特别要求,多些二氧化碳量不会影响这部分热风烘干或发电性能,因此在熟料冷却机1第一供风区1-2与第三供风区1-4之间设施第二供风区1-3,且以循环烟气作为第二供风区1-3的供风,可以有效保护入回转窑2、分解炉4的氧气与二氧化碳体积分数基本不发生波动,进而保证全氧燃烧系统的燃前气氛的稳定,对于全氧燃烧与二氧化碳富集是有利的,也是全氧燃烧熟料冷却机1的核心技术之一。
在该文中的描述中,需要说明的是,以上实施例仅用以说明本实用发明的技术方案,而非对其限制,尽管参照前述实施例对本发明进行了详细的说明,本领域的技术人员应当理解,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行同等替换,而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神与范围。

Claims (8)

  1. 一种全氧燃烧熟料冷却机供风系统,包括熟料冷却机(1)、窑尾系统(11)、制氧系统(12)和取水冷却系统(13),其特征在于,所述熟料冷却机(1)供风区域包括固定端供风区(1-1)、第一供风区(1-2)、第二供风区(1-3)和第三供风区(1-4),且固定端供风区(1-1)和第一供风区(1-2)冷却风为窑尾系统(11)的循环烟气与制氧系统(12)制备的氧气组成的混合气体,所述熟料冷却机(1)出风口的一端设有回转窑(2)和三次风管(3),三次风管(3)出风口的一端固定连接有分解炉(4),所述第二供风区(1-3)冷却风为窑尾循环烟气,第三供风区(1-4)冷却风为空气。
  2. 根据权利要求1所述的一种全氧燃烧熟料冷却机供风系统,其特征在于,所述窑尾系统(11)的出气口与去水冷却系统(13)的进气口相连通,所述去水冷却系统(13)的出气口的一端设有循环烟气主管道,且循环烟气主管道的出气口与熟料冷却机(1)的固定端供风区(1-1)、第一供风区(1-2)和第二供风区(1-3)进气管道的一侧相连通。
  3. 根据权利要求2所述的一种全氧燃烧熟料冷却机供风系统,其特征在于,所述循环烟气主管道的一侧固定连接有第一流量阀(5)。
  4. 根据权利要求1所述的一种全氧燃烧熟料冷却机供风系统,其特征在于,所述固定端供风区(1-1)进气管道的一侧固定连接有第二流量阀(6),所述第一供风区(1-2)进气管道的一侧固定连接有第三流量阀(7)。
  5. 根据权利要求1所述的一种全氧燃烧熟料冷却机供风系统,其特征在于,所述第二供风区(1-3)进气管道的一侧固定连接有第四流量阀(8)。
  6. 根据权利要求1所述的一种全氧燃烧熟料冷却机供风系统,其特征在于,所述制氧系统(12)出风管道的一侧固定连接有第五流量阀(9)。
  7. 根据权利要求2所述的一种全氧燃烧熟料冷却机供风系统,其特征在于,所述固定端供风区(1-1)的一侧设有第一风机(10-1),所述第一供风区(1-2)的一侧设有第二风机(10-2),所述第二供风区(1-3)的一侧设 有第三风机(10-3),所述第三供风区(1-4)的一侧设有第四风机(10-4)。
  8. 根据权利要求7所述的一种全氧燃烧熟料冷却机供风系统,其特征在于,所述第一风机(10-1)、第二风机(10-2)、第三风机(10-3)和第四风机(10-4)均由≥2台风机并联组成,所述窑尾循环烟气中二氧化碳体积比≥65%。
PCT/CN2023/137801 2023-02-28 2023-12-11 一种全氧燃烧熟料冷却机供风系统 WO2024179118A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310172995.9A CN116294640A (zh) 2023-02-28 2023-02-28 一种全氧燃烧熟料冷却机供风系统
CN202310172995.9 2023-02-28

Publications (1)

Publication Number Publication Date
WO2024179118A1 true WO2024179118A1 (zh) 2024-09-06

Family

ID=86831742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/137801 WO2024179118A1 (zh) 2023-02-28 2023-12-11 一种全氧燃烧熟料冷却机供风系统

Country Status (2)

Country Link
CN (1) CN116294640A (zh)
WO (1) WO2024179118A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116294640A (zh) * 2023-02-28 2023-06-23 南京凯盛国际工程有限公司 一种全氧燃烧熟料冷却机供风系统
CN117091399B (zh) * 2023-10-17 2024-01-09 山西卓越水泥有限公司 一种水泥生产用生料煅烧回转窑

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084142A (ja) * 2007-09-12 2009-04-23 Mitsubishi Materials Corp セメントクリンカーの製造装置
CN112321183A (zh) * 2020-11-12 2021-02-05 天津水泥工业设计研究院有限公司 实现二氧化碳零排放的水泥窑系统及水泥熟料制备方法
CN112500001A (zh) * 2020-12-16 2021-03-16 天津水泥工业设计研究院有限公司 一种低能耗碳富集水泥生产系统及生产水泥熟料的方法
CN113267053A (zh) * 2021-05-10 2021-08-17 天津水泥工业设计研究院有限公司 一种全氧燃烧循环预热生产水泥熟料的系统及方法
CN115183593A (zh) * 2022-07-06 2022-10-14 天津水泥工业设计研究院有限公司 一种可实现节能降耗的水泥窑全氧燃烧多介质分区供风篦冷机系统
CN116294640A (zh) * 2023-02-28 2023-06-23 南京凯盛国际工程有限公司 一种全氧燃烧熟料冷却机供风系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084142A (ja) * 2007-09-12 2009-04-23 Mitsubishi Materials Corp セメントクリンカーの製造装置
CN112321183A (zh) * 2020-11-12 2021-02-05 天津水泥工业设计研究院有限公司 实现二氧化碳零排放的水泥窑系统及水泥熟料制备方法
CN112500001A (zh) * 2020-12-16 2021-03-16 天津水泥工业设计研究院有限公司 一种低能耗碳富集水泥生产系统及生产水泥熟料的方法
CN113267053A (zh) * 2021-05-10 2021-08-17 天津水泥工业设计研究院有限公司 一种全氧燃烧循环预热生产水泥熟料的系统及方法
CN115183593A (zh) * 2022-07-06 2022-10-14 天津水泥工业设计研究院有限公司 一种可实现节能降耗的水泥窑全氧燃烧多介质分区供风篦冷机系统
CN116294640A (zh) * 2023-02-28 2023-06-23 南京凯盛国际工程有限公司 一种全氧燃烧熟料冷却机供风系统

Also Published As

Publication number Publication date
CN116294640A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
WO2024179118A1 (zh) 一种全氧燃烧熟料冷却机供风系统
CN103062745B (zh) 一种用于煤粉锅炉的水蒸汽循环调节式富氧燃烧方法
CN113267053B (zh) 一种全氧燃烧循环预热生产水泥熟料的系统及方法
CN112500001B (zh) 一种低能耗碳富集水泥生产系统及生产水泥熟料的方法
CN112608049B (zh) 一种循环预热的低能耗碳富集水泥生产系统及方法
WO2021026714A1 (zh) 一种水泥预分解窑系统及制备水泥熟料的方法
CN220265584U (zh) 一种零co2排放的石灰制备系统
CN115768734A (zh) 一种水泥窑系统及制备水泥熟料的方法
CN203534159U (zh) 一种气氛保护青砖隧道窑
CN220485559U (zh) 一种基于碳减排的石灰窑装备
CN100513871C (zh) 一种低氧高温空气燃烧方法及其装置
CN218442255U (zh) 一种蓄热式无氮燃烧加热系统
WO2021026713A1 (zh) 由在线型分解炉改造的可调节co2富集量水泥窑系统及其使用方法
CN102563635B (zh) 煤粉火焰预热燃烧装置
WO2022236593A1 (zh) 一种全氧燃烧生产水泥熟料的系统及方法
CN101846447A (zh) 一种倒焰窑
CN104006405A (zh) 一种陶瓷窑炉富氧助燃节能装置
WO2020258636A1 (zh) 一种以天然气为燃料的套筒窑
WO2022126410A1 (zh) 一种低能耗碳富集水泥生产系统及生产水泥熟料的方法
CN217939696U (zh) 一种水泥工业二氧化碳富集系统
CN205897119U (zh) 高效烟气再循环富氧燃烧系统
CN114739163A (zh) 一种水泥工业二氧化碳富集系统及其工艺原理
CN104988266B (zh) 高炉用共享热风炉系统及其使用方法
CN118482569B (zh) 一种回转窑纯氧燃烧的熟料煅烧生产设备及生产方法
CN203949171U (zh) 富氧煤粉燃烧器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23925063

Country of ref document: EP

Kind code of ref document: A1