WO2024177351A1 - Lithium metal secondary battery comprising electrolyte-swellable polymer film - Google Patents

Lithium metal secondary battery comprising electrolyte-swellable polymer film Download PDF

Info

Publication number
WO2024177351A1
WO2024177351A1 PCT/KR2024/002186 KR2024002186W WO2024177351A1 WO 2024177351 A1 WO2024177351 A1 WO 2024177351A1 KR 2024002186 W KR2024002186 W KR 2024002186W WO 2024177351 A1 WO2024177351 A1 WO 2024177351A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
lithium metal
pdmams
layer
polymer
Prior art date
Application number
PCT/KR2024/002186
Other languages
French (fr)
Korean (ko)
Inventor
김홍신
김일두
임성갑
배재형
송현섭
최건우
Original Assignee
주식회사 엘지에너지솔루션
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션, 한국과학기술원 filed Critical 주식회사 엘지에너지솔루션
Priority claimed from KR1020240024293A external-priority patent/KR20240129594A/en
Publication of WO2024177351A1 publication Critical patent/WO2024177351A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This specification discloses a lithium metal secondary battery including an electrolyte swellable polymer thin film.
  • Lithium metal has been recognized as an anode material for high-energy lithium batteries due to its high theoretical specific capacity (3860 mAh g -1 ) and low redox potential (-3.040 V vs. standard hydrogen electrode).
  • metal anodes have not been easily applied to actual battery systems due to their unstable surface chemistry, which induces dendrite formation during the charge/discharge process.
  • Metal Li itself is a strong reducing agent with high hydration enthalpy (-520 kJ mol -1 ) and can easily react with electrolyte to form a solid-electrolyte interphase (SEI) layer without applying a potential.
  • SEI solid-electrolyte interphase
  • the SEI layer has a mechanical weakness because it has heterogeneous polycrystalline grain boundaries that easily crack depending on the volume change of the lithium metal anode, and as lithium grows through the cracks, it is exposed to the electrolyte, and as an additional SEI layer is formed spontaneously on the surface, the liquid electrolyte is consumed (Fig. 6). As the lithium metal and electrolyte are consumed as dead lithium, lithium dendrites grow over subsequent cycles, which leads to long-term low Coulombic efficiency, short battery cycle life, and safety issues due to the risk of lithium metal explosion.
  • one method is to introduce an ‘artificial SEI layer’ that stabilizes the electrochemical reaction by modifying the lithium surface through a functional outer layer.
  • the Li metal surface can be coated with various materials, such as an etched polymer layer, an organic/inorganic framework, and a nanosheet, which promote lithium ion transport while blocking lithium dendrites.
  • the native SEI layer begins to grow preferentially between the Li surfaces adjacent to the artificial SEI layer, which is because the native SEI layer has low interfacial resistance with respect to the Li surface, whereas the artificial SEI layer, which does not have good contact with the Li surface, exhibits high resistance. Due to these problems, the introduction of an artificial SEI layer is limited.
  • the native SEI layer can be modified to promote or hinder the electrochemical reaction at the anode and cathode by adjusting the electrolyte composition with additives or by adjusting the cycling conditions.
  • the contact between the SEI layer and the lithium surface can be improved, but the directly modified SEI layer has polycrystalline characteristics with randomly distributed particles and different elemental compositions, and these structural characteristics weaken the mechanical stability, making it particularly prone to cracking, and the native SEI layer is vulnerable to expansion by various electrolytes, which reduces the mechanical strength. Therefore, it is necessary to develop a solution strategy that can promote the formation of a structurally strengthened native SEI layer.
  • Lithium (Li) metal anodes have the problems of instability and reactivity toward electrolytes, and form a brittle SEI layer with non-uniform distribution, which ultimately forms Li dendrites, which deteriorate the battery life. Therefore, in an embodiment of the present invention, an electrolyte-swellable polymer nanolayer can be monolithically deposited using initiator-assisted chemical vapor deposition (iCVD) to strengthen the SEI layer and stabilize the interface to passivate lithium metal.
  • iCVD initiator-assisted chemical vapor deposition
  • a 100 nm thick iCVD poly(dimethylaminomethylstyrene) (pDMAMS) layer can be constructed to swell about 264% in a carbonate electrolyte to form a soft scaffold filled with the electrolyte for lithium ion transport.
  • pDMAMS poly(dimethylaminomethylstyrene)
  • a native SEI layer that is uniform, free of Li 2 O, and rich in Li 2 CO 3 can be provided.
  • a novel functional polymer scaffold capable of structurally accommodating and reinforcing an SEI layer to improve mechanical properties and stabilize electrochemical reactions.
  • the functional polymer scaffold requires the following properties: 1) it should be able to transport lithium ions and electrolyte through the matrix, 2) it should be compatible and miscible with the native SEI layer to enable the integration of lithium ions and electrolyte into the matrix, 3) it should provide sufficient mechanical strength, and 4) it should not be structurally damaged upon electrochemical decomposition.
  • a functional polymer layer capable of being swelled by an electrolyte present in a battery system while completely accommodating the native SEI layer in a large free space should satisfy the above-mentioned criteria. Accordingly, an embodiment of the present invention applies a polymer protective film layer including an electrolyte-swellable polymer (FIG. 1a).
  • inductive chemical vapor deposition a method for coating a functional polymer layer on a lithium metal surface, can precisely fabricate a uniform polymer layer with a thickness of less than 10 nm, which can be particularly useful for minimizing cell resistance, improving lithium ion diffusion, and investigating interfacial phenomena (Fig. 1b).
  • the iCVD method can modify the lithium surface without a solvent or a high-temperature process, so that various types of high-purity functional polymers can be directly applied while preventing potential damage to lithium.
  • the iCVD method can control the composition of copolymers with opposite chemical properties (e.g., hydrophilic-hydrophobic).
  • an electrode for a lithium metal battery comprising: a negative electrode current collector; a lithium metal layer formed on the negative electrode current collector; and a polymer protective film layer formed on the lithium metal layer, wherein the polymer protective film layer includes an electrolyte swellable polymer, and the electrolyte swellable polymer has a swelling ratio (%) expressed by the following mathematical formula 1 of 15% or more.
  • d pristine is the thickness of the polymer protective film layer before swelling
  • d swollen is the thickness of the polymer protective film layer after swelling.
  • the lithium metal layer can have a thickness of 1 to 200 ⁇ m.
  • the electrolyte swellable polymer can be a polymer comprising one or more monomers selected from the group consisting of dimethylaminomethyl styrene, ethylene glycol dimethacrylate, acrylic acid, 2-(perfluorohexyl) ethyl acrylate, and divinylbenzene.
  • the electrolyte swellable polymer may include one or more polymers selected from the group consisting of pDMAMS [poly(dimethylaminomethyl styrene)], pDVB (polydivinylbenzne), pC6FA [poly ⁇ 2-(perfluorohexyl) ethyl acrylate ⁇ ], pEGDMA [poly(ethylene glycol dimethacrylate)], and pAA [poly(acrylic acid)].
  • pDMAMS poly(dimethylaminomethyl styrene)
  • pDVB polydivinylbenzne
  • pC6FA poly ⁇ 2-(perfluorohexyl) ethyl acrylate ⁇
  • pEGDMA poly(ethylene glycol dimethacrylate
  • pAA poly(acrylic acid)
  • amine-rich poly(dimethylaminomethylstyrene) pDMAMS
  • fluorine-rich poly[2-(perfluorohexyl) ethyl acrylate] pC6FA
  • oxygen-rich poly(ethylene glycol dimethacrylate) pEGDMA
  • anionic poly(acrylic acid) pAA
  • aromatic polydivinylbenzene pDVB
  • the iCVD technique which is not affected by oxygen and moisture at all, can directly coat the polymers on lithium metal with a uniform and controlled thickness because they can be free from the effects of oxygen and moisture.
  • a surface-growth polymerization process can be performed to promote stable and continuous adsorption of monomers and radicals vaporized in iCVD on lithium metal (Table S1).
  • the cross-sectional SEM image in Fig. 1d shows that a uniform 100 nm pDMAMS coating is formed on the Li metal surface (Fig. 1d).
  • a constant iCVD deposition rate (2 nm/min -1 ⁇ 12 nm/min -1 )
  • precise nanolayer thicknesses can be obtained by simply adjusting the deposition time (Fig. 7 ).
  • This one-step surface treatment process which is performed at a relatively low treatment temperature of less than 40 °C, protects key functional groups of each monomer, as confirmed by in situ Fourier transform infrared (FT-IR) analysis (Fig. 8).
  • Table 1 shows the iCVD process conditions and composition of poly(DMAMS-co-C6FA).
  • a) the flow rate of TBPO in the copolymerization is 0.59 sccm
  • the polymer protective film layer may be provided to cover all or part of the surface where the negative electrode current collector and the lithium metal layer come into contact.
  • the iCVD technique is particularly useful for forming a conformal coating on a rough surface, since the vaporized monomer and initiator can easily access even the deep part of the concave surface.
  • the lithium surface coated with pDMAMS showed almost the same topology as the bare lithium surface (Figs. 1e and 1f).
  • Such smooth contact and sufficient adhesion of the polymer nanolayer and the Li surface are very important for stabilizing the interface to withstand mechanical stress during cell fabrication and electrochemical cell operation.
  • the iCVD-treated surface can be effectively planarized, as can be seen from the reduction in sharp edges (Fig. 1f) and the flattening of the upper boundary (Fig. 7b) compared to the untreated region at the bottom.
  • This planarization effect evenly induces an electric field throughout the cell for uniform lithium ion transport and electrochemical reaction.
  • the electrolyte swellable polymer can swell in an electrolyte solution to form a solid-electrolyte layer complex.
  • the polymer protective film layer should have very high permeability to the battery electrolyte to ensure high lithium ion conductivity.
  • Lithium ion permeability can be achieved by diffusing through the open polymer network via a hopping mechanism or through the expanded polymer network swollen by the electrolyte solution.
  • all the polymer candidates in the unswollen state are essentially composed of multiple open channels that allow the passage of oxygen molecules (diameter 0.35 nm) and water vapor (diameter 0.26 nm) as evidenced by the oxidation of the polymer-coated lithium when exposed to ambient air (Figure 9).
  • the pores of the scaffold should be larger (diameter ⁇ 0.9 nm) to ensure that the free space within the polymer protective film layer is completely filled with the battery electrolyte to facilitate the movement of lithium ions.
  • the one with the best interfacial affinity with the electrolyte solvent was pEGDMA (3.52°), followed by pDMAMS (11.89°), pDVB (13.30°), pAA (27.69°), and pC6FA (43.72°) (Fig. 1g).
  • pEGDMA, pDMAMS, and pDVB can be identified as electrolyte hydrophilic materials that facilitate the interfacial transport of electrolyte.
  • pEGDMA did not contribute to the swelling characteristics, as in the case of pDVB.
  • pC6FA showed the worst interfacial contact with the battery electrolyte solvent and its swelling characteristics were also below par. Although pC6FA may appear to be swollen by the solvent, the slight change in refractive index indicates that the thickness change is actually due to the partial rearrangement of the ethyl groups of pC6FA.
  • pDMAMS showed the best swelling performance among other iCVD polymers, which may lead to its high lithium ion transport properties.
  • FIG. 2a shows the galvanostatic voltage profiles over time at high current density (1 mA cm -2 ) versus actual lithium capacity (1 mAh cm -2 ) in each discharge/charge cycle.
  • the bare Li cell lasts only for 120 h, at which high cell polarization of 150 mV occurs, mainly due to the formation of Li dendrites, dead Li fragments, and depleted electrolyte, which are identified by voltage fluctuations, respectively.
  • the iCVD polymer-coated Li cells showed very different electrochemical performances depending on the type of polymer used due to their different chemical structures (Fig. 2a).
  • the electrolyte-swellable pDMAMS-Li exhibited the longest cycling performance with a low polarization of 50 mV and a cumulative capacity of 410 mAh cm -2 for 820 h, followed by pAA-Li (430 h), pDVB-Li (270 h), pEGDMA-Li (130 h), and pC6FA-Li (20 h).
  • pDMAMS-Li exhibited the lowest ⁇ mtc and tip potential ( ⁇ tip,begin; ⁇ tip,end), which are correlated with the formation of Li dendrites and dead Li, respectively.
  • the low polarization degree of the pDMAMS-Li cell could be attributed to the uniform and close adhesion of pDMAMS to Li metal, which significantly reduces the interfacial resistance and induces a uniform Li ion flux.
  • the pDMAMS-Li cell showed a significant reduction in the formation of Li dendrites and dead Li ( Figures 2a and S11).
  • the bare lithium cell exhibited irregular and mossy dendrite formation within a few cycles, which then gradually transformed into isolated dead lithium, which led to a deterioration of the battery life.
  • the pDMAMS-Li cathode still exhibited a densely packed and well-preserved topology without dendrites even after 100 cycles (200 h), indicating uniform lithium transport through the layer ( Figure 11).
  • the electrolyte may have a lithium ion transfer number (tLi+) of 0.2 to 1 as measured by the Bruce-Vincent method.
  • the lithium ion transfer numbers (tLi; the contribution of cations to the overall ion conduction performance) of bare-Li and pDMAMS-Li cells were measured using the Bruce–Vincent method (Figs. 2c, 2d, and S12).
  • poly(DMAMS-co-C6FA)-Li with different ratios of electrolyte-swellable DMAMS and electrolyte-hating C6FA moieties were prepared (Figs. 1g and 2e).
  • three copolymer nanolayer samples with different ratios of DMAMS and C6FA were prepared by adjusting the flow rates of each monomer during the iCVD process, and the mixing ratios were confirmed by FT-IR and X-ray photoelectron spectroscopy (XPS) analyses (Figs. 2f, 14, and 15, Table S1).
  • the cycle life of poly(DMAMS-co-C6FA)-Li was found to be proportional to the ratio of DMAMS/C6FA (Fig. 2g). Incorporation of C6FA moieties can modulate three properties of the polymer-Li layer, namely, the degree of electrolyte swelling, the adhesion, and the mechanical robustness of the lithium surface and the poly(DMAMS-co-C6FA) layer.
  • the ⁇ mtc value of poly(DMAMS-co-C6FA)-Li showed a positive correlation with the C6FA content, but was lower than that of the bare Li cell.
  • the C6FA domains at the poly(DMAMS-co-C6FA)-Li interface act as impurities on which lithium dendrites and dead lithium grow preferably (Fig. 17).
  • the mechanical robustness of poly(DMAMS-co-C6FA) weakens with increasing C6FA content because the number of DMAMS moieties with rigid aromatic rings decreases.
  • the long fluoroalkyl chains of C6FA facilitate chain mobility and enlarge the free volume in the copolymer network. Therefore, the C6FA domains are vulnerable to dendritic lithium growth, and the cycle life of poly(DMAMS-co-C6FA) is inversely proportional to the content of C6FA (Figs. 2g and 17a).
  • the leakage current of the pDMAMS-Li cell at 4.8 V was 0.5 ⁇ A lower than that of the bare Li.
  • cyclic voltammetry data collected within the entire cell voltage window (3.0 V to 4.2 V) support that other iCVD polymers except pC6FA do not undergo electrochemical degradation in the operating cell (Fig. 19).
  • the 3S layer can also be applied to NMC-622 full cells using a high voltage of 4.2 V (Fig. 3a).
  • Table 2 shows the corresponding fitting parameters for bare lithium and pDMAMS-Li(100 nm) cells obtained by fitting the impedance data of Figs. 3d and 3e to the equivalent circuit model of Fig. 21.
  • Table 3 shows the resistance measured in a symmetric cell and the Nyquist plot of an embodiment of the present invention compared to prior studies.
  • bare Li forms an additional SEI layer on the surface, so the single semicircle of the electrical impedance spectroscopy (EIS) data is split into two parts for analysis after the first cycle.
  • EIS electrical impedance spectroscopy
  • pDMAMS-Li retains the initial two interfaces (i.e., two semicircles for Li and pDMAMS, respectively) after cycling, which demonstrates that the native SEI layer formed by the LiPF6 carbonate electrolyte is compatible with the pDMAMS layer.
  • the native SEI layer evolves inside the electrolyte-swollen structure to form a single thermodynamic phase that is electrochemically indistinguishable.
  • the unique interfacial design according to the present invention that accommodates the native SEI layer opens up another chemically transformable route toward practical lithium metal anodes.
  • the pDMAMS-Li in the NMC-622 full cell was examined, and it was confirmed that it maintained a much brighter surface compared to the bare Li and pC6FA-Li cases (Fig. 3f).
  • the pure pDMAMS-Li cell exhibited the highest capacity of 130 mAh g -1 at a rate of 2 °C (70% of the capacity at a rate of 0.1 °C), demonstrating reasonable rate capability (Fig. 3g).
  • the critical current density of the pDMAMS solvogel was about 2 mA cm -2 , after which the capacity and cycle life started to degrade (Fig. 22).
  • Lithium dendrites started to appear only in the region above the critical current density because the supersaturated Li ions accumulated at the pDMAMS/Li interface, providing space for the dendrite growth. Owing to the flexibility of the swollen pDMAMS layer, the further growth of Li dendrites was effectively mitigated even in the full cell operated at 2 °C (Fig. 3h). Overall, the overall performance of the pDMAMS-Li full cell was significantly superior to that of other types of iCVD thin films and bare lithium (Fig. 23).
  • the pDMAMS-Li cathode was analyzed before and after lithiation (i.e., after the first cycle using the NMC cathode in a full cell) using time-of-flight secondary ion mass spectrometry (TOF-SIMS) and XPS with depth profiling.
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • the pDMAMS was characterized by the C 12 H 16 + fragments released from the backbone and the amine-containing C 3 H 8 N + and C 8 H 7 N + that were well retained in the pDMAMS-Li ( Figures 4a, 4b, and 24).
  • pDMAMS can be described as the 'reinforcement' and the native SEI layer as the 'concrete body', Fig. 4g).
  • the native SEI layer is usually composed of a multi-granular structure with an inorganic layer adjacent to the electrode and an organic-rich layer going outward, the SEI layer formed in the pDMAMS structure was more homogeneous, and it was confirmed that the outer layer was richer in inorganic species, i.e., LiF + and PF2 + , instead of CH 2 Li + and other organic components.
  • the structural composition of the SEI layer was further investigated using XPS in depth profiling mode.
  • the native SEI layer in bare lithium showed a typical composition of an organic outer layer and an inorganic inner layer with noticeably enriched Li 2 O ( Figures 4d, 4h, and 25).
  • the organic and inorganic components of the composite layer composed of native SEI and pDMAMS were largely homogenized, which is because the pDMAMS and native SEI layers have excellent miscibility ( Figures 4e, 4f, 4i, 26, 27, and 28).
  • Li 2 O component completely disappeared in the SEI layer formed on the pDMAMS structure, which is because the formation of Li 2 O is inhibited due to the low miscibility of pDMAMS and Li 2 O and the fact that pDMAMS prevents further decomposition of lithium carbonate into Li 2 O and LiF (Fig. 4i).
  • Another mechanism may involve that some tertiary amine groups at the ends of the pDMAMS polymer branches electrochemically react with DEC to form quaternary ammonium cations and carbonate ions (Figs. 27, 28, and 29).
  • the resulting quaternary ammonium cation polymer (poly(vinylbenzyl trimethylammonium carbonate), pVBTMAC) constitutes one of the important precursors for the synthesis of selective ion-exchange polymers with side-chain functionalities, and it can effectively trap and preserve carbonate anions and other beneficial SEI components.
  • the partially tetrameric poly(DMAMS-co-VBTMAC) layer selectively filters out lithium ions from the molten shell, allowing only the 3S layer to pass through, which results in the high tLi+ value (0.95). It should be noted that the quaternization reaction is always accompanied by an electrochemical reaction (Figure 30).
  • the homogeneous and Li 2 O-free pDMAMS-SEI composite layer provides flexibility and durability to the Li/SEI interface to withstand large volume changes induced by Li metal and dendrite formation (Figure 3h).
  • the Li 2 O-free homogeneous SEI layer improves the adhesion between the Li surface and the pDMAMS layer, which imparts mechanical properties and electrochemical stability to the Li/SEI/pDMAMS interface.
  • the SEI layer structurally reinforces the 3S layer similar to how steel bars reinforce concrete, thereby physically suppressing the expansion of the SEI layer, and this reinforcing mechanism can explain the low polarization in Li–Li symmetric cells, low interfacial resistance in the whole cell, and extended battery cycle.
  • the polymer protective film layer can have a thickness in the range of 10 to 500 nm.
  • the thickness needs to be optimized for practical considerations. If it is too thick, it will reduce the lithium flux, whereas if it is too thin, it is more likely to cause physical damage (e.g., bruising, tearing, punctures, creases, etc.). Therefore, cells made with symmetric and full pDMAMS-Li with thicknesses ranging from 10 nm to 500 nm were evaluated, and it was confirmed that a 3S layer of 100 nm in particular provided the optimal cycle performance (Figs. 5a, 5b, 5c).
  • the pDMAMS layer could not fully accommodate the native SEI layer, which led to the formation of Li dendrites and dead Li, as can be seen from the reduced double peak potential compared to bare Li (Fig. 5c).
  • the 3S layer was much thicker than 100 nm, the interfacial resistance increased, which decreased the initial specific capacity (Figs. 5b, 5d, 5e, and 5f).
  • the non-swollen region was located at the bottom of the layer, which reduced the utilization of the 3S layer (Figs. 5c and 31). This increased the overall cell resistance, which deteriorated the cell performance.
  • transition number of 300 nm pDMAMS-Li was significantly reduced compared to that of 100 nm pDMAMS-Li (0.95), indicating that complete swelling of the pDMAMS layer is required to provide high lithium ion flux (Fig. 32).
  • pDMAMS-Li with an optimal thickness of 100 nm showed a cycle life extension of 550% in a symmetrical cell and 600% in a full cell using a highly loaded NMC anode, compared with that of bare Li metal.
  • Table S4 summarizes the ionic conductivity, lithium transfer number, and cycling performance data.
  • the inventors set the ideal criteria required for the swollen soft scaffold layer (Fig. 5h).
  • the 3S layer should be adequately swollen by the battery electrolyte to provide sufficient free volume to facilitate lithium ion transport.
  • the electrolyte solvogel should be thermodynamically miscible with the native SEI layer.
  • the thickness of the 3S layer should be approximately 100 nm to minimize cell resistance and completely accommodate the native SEI layer.
  • the 3S layer should be chemically and electrochemically inert over the large voltage range of high-voltage cathode batteries.
  • the layer should be flexible and mechanically strong to withstand the large volume change of lithium metal.
  • the adhesion of the 3S layer to the Li surface should be strong enough to suppress the formation of Li dendrites or dead Li.
  • the 3S layer formation method using iCVD can be widely applied to other metal battery systems (e.g., sodium, potassium, zinc, magnesium, aluminum, etc.), especially because it supports roll-to-roll process that supports commercial-scale production.
  • a secondary battery which comprises: an anode, which is an electrode for a lithium metal battery as described above; an anode; and an electrolyte layer interposed between the anode and the anode; wherein the anode includes a solid electrolyte interphase formed on a surface thereof.
  • the solid-electrolyte interfacial layer may be a Li 2 O free-SEI layer.
  • the Li 2 O free-SEI layer may not substantially contain Li 2 O on the SEI layer.
  • the electrolyte swellable polymer is pDMAMS
  • the miscibility of pDMAMS and Li 2 O is low, and the pDMAMS may prevent lithium carbonate from further decomposing into Li 2 O and LiF, thereby forming a Li 2 O free-SEI layer.
  • substantially not containing Li 2 O on the SEI layer flexibility and durability may be maintained against volume changes due to the formation of dendrites.
  • the positive electrode described above may be manufactured by, for example, dispersing and mixing the positive electrode active material, the binder, and the conductive agent in a dispersion medium (solvent) to make a slurry, applying the slurry on a positive electrode current collector, and then drying and rolling.
  • a dispersion medium solvent
  • NMP N-methyl-2-pyrrolidone
  • DMF Dimethyl formamide
  • DMSO Dimethyl sulfoxide
  • ethanol isopropanol
  • water and mixtures thereof can be used as the dispersion medium, but are not necessarily limited thereto.
  • the above positive electrode active material is not particularly limited as long as it is a material capable of reversible insertion and de-insertion of lithium ions, and may include, for example, a lithium metal composite oxide including one or more metal elements selected from the group consisting of Co, Mn, Ni, W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, and Mo.
  • a lithium metal composite oxide including one or more metal elements selected from the group consisting of Co, Mn, Ni, W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, and Mo.
  • Li a A 1-b R b D 2 (wherein 0.90 ⁇ a ⁇ 1.8 and 0 ⁇ b ⁇ 0.5); Li a E 1-b R b O 2-c D c (wherein 0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, and 0 ⁇ c ⁇ 0.05); LiE 2-b R b O 4-c D c (wherein 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05); Li a Ni 1-bc Co b R c D ⁇ (in the above formula, 0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05 and 0 ⁇ ⁇ ⁇ 2); Li a Ni 1-bc Co b R c O 2- ⁇ Z ⁇ (in the above formula, 0.90 ⁇ a ⁇ 1.8,
  • A is Ni, Co, Mn or a combination thereof;
  • R is Al, Ni, Co, Mn, Cr, Fe, Mg, V or a combination thereof;
  • D is O, F, S, P or a combination thereof;
  • E is Co, Mn or a combination thereof;
  • Z is F, S, P or a combination thereof;
  • G is Al, Cr, Mn, Fe, Mg, La, Ce, V or a combination thereof;
  • Q is Ti, Mo, Mn or a combination thereof;
  • T is Cr, V, Fe, Sc, Y or a combination thereof;
  • J is V, Cr, Mn, Co, Ni, Cu or a combination thereof.
  • the positive electrode may further include a binder and a conductive material in addition to the positive electrode active material described above.
  • the above binder is a component that assists in the bonding of the positive electrode active material and the conductive agent and the bonding to the current collector, and may be, for example, polyvinylidene fluoride (PVdF), polyvinylidene fluoride-polyhexafluoropropylene copolymer (PVdF/HFP), polyvinylacetate, polyvinyl alcohol, polyvinyl ether, polyethylene, polyethylene oxide, alkylated polyethylene oxide, polypropylene, polymethyl(meth)acrylate, polyethyl(meth)acrylate, polytetrafluoroethylene (PTFE), polyvinyl chloride, polyacrylonitrile, polyvinylpyridine, polyvinylpyrrolidone, styrene-butadiene rubber, acrylonitrile-butadiene rubber, ethylene-propylene-d
  • the above binder can be used in an amount of 1 to 50 parts by weight, or 3 to 15 parts by weight, based on 100 parts by weight of the total weight of the positive electrode. As a result, the adhesive strength between the positive electrode active material and the current collector and the capacity characteristics of the secondary battery can be excellently maintained.
  • the conductive material included in the positive electrode is not particularly limited as long as it has excellent electrical conductivity without causing side reactions in the internal environment of the lithium secondary battery and without causing chemical changes in the battery
  • graphite or conductive carbon can be used as representative examples thereof, and for example, graphite such as natural graphite or artificial graphite; carbon black such as carbon black, acetylene black, Ketjen black, Denka black, thermal black, channel black, furnace black, lamp black, etc.; carbon-based materials having a crystal structure of graphene or graphite; conductive fibers such as carbon fibers or metal fibers; fluorinated carbon; metal powders such as aluminum powder and nickel powder; conductive whiskey such as zinc oxide or potassium titanate; conductive oxides such as titanium oxide; and conductive polymers such as polyphenylene derivatives; may be used alone or in combination of two or more thereof, but is not necessarily limited thereto.
  • the above-mentioned conductive agent can be used in an amount of 0.5 to 50 parts by weight, or 1 to 30 parts by weight, based on 100 parts by weight of the total weight of the positive electrode. As a result, the electrochemical properties such as conductivity and capacity of the positive electrode and the lithium secondary battery can be excellently maintained.
  • a filler may be optionally added to the positive electrode as a component that suppresses its expansion.
  • the filler is not particularly limited as long as it can suppress the expansion of the electrode without causing a chemical change in the battery, and for example, an olefin polymer such as polyethylene or polypropylene; a fibrous material such as glass fiber or carbon fiber; and the like may be used.
  • the positive electrode current collector platinum (Pt), gold (Au), palladium (Pd), iridium (Ir), silver (Ag), ruthenium (Ru), nickel (Ni), stainless steel (STS), aluminum (Al), molybdenum (Mo), chromium (Cr), carbon (C), titanium (Ti), tungsten (W), ITO (In doped SnO 2 ), FTO (F doped SnO 2 ), and alloys thereof, as well as aluminum (Al) or stainless steel surface-treated with carbon (C), nickel (Ni), titanium (Ti), or silver (Ag), but the present invention is not necessarily limited thereto.
  • the form of the positive electrode current collector may be in the form of a foil, a film, a sheet, a punched body, a porous body, a foam, or the like.
  • the liquid electrolyte included in the electrolyte layer may include a non-aqueous organic solvent and a lithium salt.
  • the type of non-aqueous organic solvent that can be used is not particularly limited, and any organic solvent that has been previously known to be applicable to electrolytes of lithium ion batteries, etc. may be used.
  • organic solvents include at least one selected from the group consisting of carbonate solvents, ether solvents, nitrile solvents, phosphate solvents, and sulfone solvents.
  • carbonate solvent dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, fluoroethylene carbonate, methyl propyl carbonate, ethyl methyl carbonate, ethyl propyl carbonate or methyl (2,2,2-trifluoroethyl) carbonate
  • phosphate solvent trimethyl phosphate, triethyl phosphate or 2-(2,2,2-trifluoroethoxy)-1,3,2-dioxaphosphorane 2-oxide can be used.
  • ether solvent tetrahydrofuran derivatives such as dibutyl ether, tetraglyme, diglyme, dimethoxy ethane or 2-methyl tetrahydrofuran
  • nitrile solvent succinonitrile, adiponitrile, sebaconitrile, acetonitrile or propionitrile
  • sulfone solvent dimethyl sulfone, ethylmethyl sulfone or sulforane can be used.
  • the electrolyte can be a liquid electrolyte or a solid electrolyte, for example, the liquid electrolyte can include one or a mixture of two or more selected from the group consisting of cyclic carbonate compounds of ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate, vinylethylene carbonate, and fluoroethylene carbonate (FEC), and linear carbonate compounds of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethyl methyl carbonate (EMC), methylpropyl carbonate, and ethylpropyl carbonate.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • the solid-state electrolyte may include Li 10 GeP 2 S 12 (LGPS), Li 2 SiP 2 S 5 Cl (LSPSCl), LPS, LiLaTiO 4 (LLTO), Li 7 La 3 Zr 2 O 12 (LLZO), Li 2+2x Zn 1-x GeO 4 (LISICON), Na 1+x Zr 2 Si x P 3-x O 12 (NASICON, 0 ⁇ x ⁇ 3) and combinations thereof.
  • the organic solvent a carbonate solvent, a sulfone solvent, or a phosphate solvent, which can be cured at least in part together with the crosslinked polymer and exhibit flame retardancy.
  • a solvent which exhibits low volatility under curing conditions for forming the crosslinked polymer for example, under thermal curing conditions of 60 to 80° C.
  • the lithium salt dissolved or dispersed in the organic solvent may be any lithium salt that has been previously known to be applicable to the electrolyte of a lithium secondary battery, for example, LiFSI (lithium bis(fluorosulfonyl)imide), LiTFSI (lithium bis(trifluoromethanesulfonyl)imide), LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiPF 6 , LiB 10 Cl 10 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiC 4 BO 8 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (C 2 F 5 SO 2 ) 2 NLi, (CF 3 SO 2 ) 3 CLi, lithium chloroborane, lithium lower aliphatic carboxylic acid having 4 or fewer carbon atoms, lithium 4-phenylborate, and lithium imide.
  • LiFSI lithium bis(fluoros
  • Such lithium salts may be included in the organic solvent of the liquid electrolyte at a concentration of 0.8 M to 4.0 M, or 1.0 M to 2.0 M, thereby enabling the composite electrolyte membrane of one embodiment to exhibit excellent thermal stability and ionic conductivity.
  • an electrolyte layer may be interposed between the positive and negative electrodes, for example, in the form of a layered membrane or film.
  • the electrolyte layer may also function as a separator (i.e., electrically insulating the negative and positive electrodes while allowing lithium ions to pass through).
  • the electrolyte layer may be included in the secondary battery by being coated and attached in the form of a thin film on one surface of the positive or negative electrode.
  • the electrolyte layer may be independently interposed between the positive and negative electrodes.
  • the lithium secondary battery of the other embodiment may be a semi-solid battery that uses a liquid electrolyte and a solid electrolyte together.
  • the separator when a porous separator is added to the electrolyte layer in the lithium secondary battery, the separator can be used in the form of a sheet, a multi-membrane, a microporous film, a woven fabric, a non-woven fabric, etc., such as an olefin polymer such as polyethylene or polypropylene, glass fiber, etc., but is not necessarily limited thereto.
  • porous polyethylene or porous glass fiber non-woven fabric (glass filter) as the separator, and it may be more preferable to apply porous glass fiber non-woven fabric as the separator.
  • the separator may be an insulating thin film having high ion permeability and mechanical strength, and the pore diameter of the separator may generally be in the range of 0.01 to 10 ⁇ m, and the thickness may generally be in the range of 5 to 300 ⁇ m, but is not limited thereto.
  • the lithium secondary battery of the above other embodiment can be manufactured according to a conventional method in the art.
  • it can be manufactured by forming a composite electrolyte membrane, etc. between the positive electrode and the negative electrode, and optionally adding a porous separator, etc.
  • lithium secondary batteries can be applied to battery cells used as power sources for small devices, and are particularly suitable for use as unit cells for battery modules that are power sources for medium- to large-sized devices.
  • a method for manufacturing an electrode for a lithium metal battery comprising: forming a polymer protective film layer on a negative electrode current collector by an initiated Chemical Vapor Deposition (iCVD) process using an initiator, wherein the polymer protective film layer includes an electrolyte swellable polymer, and the electrolyte swellable polymer is formed from at least one monomer selected from the group consisting of dimethylaminomethyl styrene, ethylene glycol dimethacrylate, acrylic acid, 2-(perfluorohexyl) ethyl acrylate, and divinylbenzene.
  • iCVD Chemical Vapor Deposition
  • a chemical vapor deposition process using the initiator may be performed using an initiator including tert-butyl peroxide (TBPO).
  • TBPO tert-butyl peroxide
  • the chemical vapor deposition process using the initiator may be performed at a deposition rate of 2 nm/min -1 to 14 nm/min -1 .
  • the deposition rate may be in the range of 2 to 12 nm/min -1 .
  • Figure 1 illustrates the schematic of the electrolyte-expandable iCVD polymer nanolayers formed on Li metal: a) a schematic of the expandable-soft scaffold formed on Li metal anode for strengthening the SEI layer, b) a schematic of the formation of the iCVD polymer nanolayers directly on Li metal. c) chemical structures of pDMAMS, pC6FA, pDVB, pAA, and pEGDMA. d) cross-sectional focused ion beam scanning electron microscopy (FIB-SEM) image of Li metal coated with a 100 nm thick pDMAMS layer (scale bar is 500 nm). e) SEM image of bare Li.
  • FIB-SEM focused ion beam scanning electron microscopy
  • Figure 2 shows voltage profiles of symmetric bare-Li and 100 nm iCVD polymer-Li symmetric cells.
  • the inset images are the Li cathode images after the 10th and 50th cycles of pDMAMS-Li.
  • FIG. 3 Electrochemical behaviors of 3S-Li
  • Figure 4 illustrates TOF-SIMS analysis results for a) to c) non-cycled 100 nm pDMAMS-Li, resourced 100 nm pDMAMS-Li, and resourced bare-Li cathodes with depth profiling; d) to f) XPS analysis results for non-cycled 100 nm pDMAMS-Li, lithiated 100 nm pDMAMS-Li, and lithiated bare-Li cathodes with depth profiling; g) Schematic illustration of native SEI layer accommodated in swollen pDMAMS layer; h) and i) XPS spectra for C1s and O1s data of lithiated bare Li and 100 nm pDMAMS-Li with depth profiling.
  • Figure 5 shows the electrochemical performances of 3S-Li batteries with different layer thicknesses: a) voltage profiles of symmetric pDMAMS-Li batteries with pDMAMS layers ranging from 10 nm to 500 nm; b) cycling performances and Coulombic efficiencies of pDMAMS-Li
  • Figure 6 is a schematic diagram of the challenges of lithium metal anodes, a) schematic diagram showing the general interfacial problems of lithium metal anodes; b) schematic diagram showing the limitations of the artificial SEI layer approach.
  • Figure 7 shows the cross-sectional focused ion beam scanning electron microscopy (FIB-SEM) analysis results.
  • FIB-SEM cross-sectional focused ion beam scanning electron microscopy
  • Figure 8 shows Fourier transform infrared (FT-IR) spectroscopy results of monomers and iCVD-polymers in embodiments of the present invention.
  • Figure 9 shows images of iCVD polymer-coated lithium metal exposed to ambient air at 25°C and relative humidity (RH) of 20% to 35% for 0 h, 1 h, 2 h, and 24 h.
  • Figure 10 shows the results of ellipsometry analysis of pAA-Si, pEGDMA-Si, pDVB-Si, and pC6FA-Si swollen by battery electrolyte solvents (a) to d) respectively.
  • Figure 11 shows the topologies of bare and iCVD-coated lithium anodes after cycling, a) SEM images of bare lithium after the 1st, 10th, and 100th cycle; b) SEM images of pDMAMS-Li after the 1st, 10th, and 100th cycle.
  • Figure 12 shows a) the steady-state current measurement of a symmetric bare-Li cell under 10 mV polarization for 1 hour in the 50th cycle. b) the steady-state current measurement of a symmetric pDMAMS-Li(100 nm) cell under 10 mV polarization for 1 hour in the 50th cycle. c) the electrochemical impedance spectroscopy (EIS) of a symmetric bare-Li cell measured at an open-circuit voltage range of 100 mHz to 1 MHz with an amplitude of 10 mV. d) the EIS of a symmetric pDMAMS-Li(100 nm) cell measured at an open-circuit voltage range of 100 mHz to 1 MHz with an amplitude of 10 mV.
  • EIS electrochemical impedance spectroscopy
  • Figure 13 shows the ionic conductivity of iCVD polymer nanolayers, a) comparing various 100 nm iCVD polymer layers as measured by Electromagnetic Scattering (EIS); b) measuring (EIS) data from assembled cells of stainless steel/iCVD polymer/stainless steel.
  • EIS Electromagnetic Scattering
  • Figure 14 shows a) FT-IR spectroscopy results; b) X-ray photoelectron spectroscopy (XPS) survey spectra; and c) high-resolution (N1s) XPS spectra of pDMAMS, poly(DMAMS-co-C6FA) and pC6FA according to embodiments of the present invention.
  • XPS X-ray photoelectron spectroscopy
  • Figure 15 shows the topologies of pDMAMS and pC6FA homopolymers and poly(DMAMS-co-pC6FA) copolymers, comparing SEM images of pDMAMS-Li, pD2F1-Li, and pC6FA-Li (a) to c, respectively), scale bar, 50 ⁇ m.
  • Figure 16 shows a FIB-SEM image of pC6FA-Li (scale bar, 400 nm).
  • Figure 17 shows the topological evaluation of pD2F1 after cycling, showing SEM images of pD2F1-Li after the 1st, 10th, and 100th cycles (a) to c, respectively), scale bar, 50 ⁇ m.
  • Figure 18 shows the electrochemical floating experiments of bare-Li, pC6FA - Li, pEGDMA-Li, pDVB-Li, pAA-Li, and pDMAMS-Li full cells using LiNi0.6Mn0.2Co0.2O2 (NMC-622) cathodes (a) to f) ( the cells were charged to 4.0 V at 0.2°C and then gradually increased to 4.9 V for 10 h).
  • NMC-622 LiNi0.6Mn0.2Co0.2O2
  • Figure 19 shows cyclic voltammetry experiments of bare lithium, pC6FA-Li, pEGDMA-Li, pDVB-Li, pAA-Li, and pDMAMS-Li cells at scan rates of 0.1, 0.2, 0.3, 0.5, and 1.0 mV s -1 (a) to f, respectively).
  • Figure 20 shows the galvanic intermittent titration technique (GITT) and in situ XPS analysis of NMC cathodes, where a-b) typical GITT plots of bare lithium and pDMAMS-Li (100 nm) full cells using NMC 622, respectively; c-d) reaction resistances of bare-lithium and pDMAMS-Li (100 nm) cells in a) and b), respectively; e-f) high-resolution N1s XPS spectra of NMC cathodes assembled with bare-lithium and pDMAMS-Li cathodes.
  • GITT galvanic intermittent titration technique
  • Figure 21 shows the equivalent circuit for EIS analysis.
  • Figure 22 shows the rate capacity of a symmetric cell, a) voltage profiles of a symmetric bare lithium cell at various current densities of 1, 2, 5, and 10 mA cm -2 (1 mAh cm -2 ). b) voltage profiles of a symmetric pDMAMS-Li(100 nm) cell at various current densities of 1, 2, 5, and 10 mA cm -2 (1 mAh cm -2 ).
  • Figure 23 shows the full-cell performances of iCVD polymers with NMC anode, a) Cycling performance and coulombic efficiency of 100 nm pC6FA-Li, pEGDMA-Li, pDVB-Li, pAA-Li, and pDMAMS-Li full cells using NMC 622 anode (charge and discharge current densities were fixed at 0.1 mA cm -2 and 2 mA cm -2 after the formation cycle at 25°C). b) to d) Charge/discharge profiles of 100 nm pAA-Li, pEGDMA-Li, and pDVB-Li full cells using NMC from the 1st to the 100th cycle. e) to h) Charge/discharge profiles of 100 nm pC6FA-Li and poly(DMAMS-co-C6FA)-Li full cells using NMC anode from the 1st to the 100th cycle.
  • Figure 24 shows the TOF-SIMS analysis results of a) uncirculated 300 nm pDMAMS-Li as a time-of-flight secondary ion mass spectrometry (TOF-SIMS). b) TOF-SIMS analysis results of cycled 300 nm pDMAMS-Li.
  • Figure 25 shows the XPS analysis results of a non-cycled bare lithium negative electrode through depth profiling.
  • Figure 26 shows the XPS analysis results of the pDMAMS-Li cathode with depth profiling, a) XPS analysis results of the non-cycled 300 nm pDMAMS-Li cathode with depth profiling; b) XPS analysis results of the cycled 300 nm pDMAMS-Li cathode with depth profiling.
  • Figure 27 shows the N1s XPS spectra of pDMAMS-Li with depth profiling, where the XPS spectra of N1s data of lithiated bare lithium, lithiated pDMAMS-Li, and non-cycled pDMAMS-Li with depth profiling are shown (a) to c) respectively.
  • Figure 28 shows N1s XPS spectra of pDMAMS-Li with depth profiling, where a) a survey XPS spectrum of 100 nm pDMAMS-Li is shown. b) a high-resolution N1s XPS spectrum of 100 nm pDMAMS-Li is shown. c) a high-resolution C1s XPS spectrum of 100 nm pDMAMS-Li is shown. d) an XPS spectrum of N1s in pDMAMS-Li after the 50th cycle is shown. e) an XPS spectrum of C1s in pDMAMS-Li after the 50th cycle is shown.
  • Figure 29 illustrates a schematic diagram of the proposed quaternary reaction of pDMAMS and diethyl carbonate (DEC) to form poly(DMAMS-co-VBTMAC).
  • Figure 30 shows the NMR analysis results of pDMAMS cultured in various solvents, a) NMR analysis results of pDMAMS, DEC, and pDMAMS cultured in DEC solvent. b) NMR analysis results of pDMAMS, DEC, and pDMAMS cultured in DEC solvent at 3.0 ppm to 3.5 ppm and 2.0 ppm to 2.5 ppm. c) FT-IR analysis results for pDMAMS, DEC, ethylene carbonate (EC):DEC (3:7, v/v), and pDMAMS cultured in solvents (*: tertiary amine (2764 cm -1 ), **: CN (CH 3 ) 3 (930 cm -1 to 920 cm -1 ).
  • Figure 31 shows the results of a) ellipsometry analysis of 300 nm pDMAMS-Li swollen by electrolyte solvent; b) Nyquist plot of 300 nm pDMAMS-Li
  • Figure 32 shows the results of steady-state current measurements of a) a symmetric 300 nm pDMAMS-Li cell under 10 mV polarization for 1 hour at 1 cycle, as a function of the transition number of the thick pDMAMS layer; b) a symmetric 300 nm pDMAMS-Li cell under 10 mV polarization for 1 hour at 50 cycles; and c) an EIS measurement result of a symmetric 300 nm (10 nm) cell in the range of 100 mHz to 1 MHz at an open-circuit voltage of 10 mV amplitude.
  • the monomers and polymers synthesized by iCVD were characterized by Fourier transform infrared (FT-IR) spectroscopy.
  • FT-IR Fourier transform infrared
  • Fig. 8 the peaks in the blue region from 1637 cm -1 to 1627 cm -1 were derived only from the vinyl moieties of each monomer, and the peak intensities of the iCVD polymers were reduced compared to those of the monomers.
  • the decrease in the vinyl peak in the spectrum indicates successful polymerization through the iCVD process.
  • the copolymerization of DMAMS and C6FA was confirmed by the tertiary amino-methyl peak at 2764 cm -1 in the red region and the carbonyl peak at 1735 cm -1 in the green region in Fig. 14a.
  • each copolymer could be appropriately controlled by precisely controlling the flow rate of the monomers injected into the iCVD chamber (Table S1).
  • the SEI components of the pDMAMS layers were investigated by X-ray photoelectron spectroscopy (XPS) depth profiling using an Ar cluster gun (10 keV).
  • XPS X-ray photoelectron spectroscopy
  • C1, O1, and N1 high-resolution spectra at various depths were obtained by Ar sputtering.
  • Survey scans and high-resolution XPS deconvolution of the electrolyte-swollen pDMAMS layers were performed on a flat Si substrate for more accurate XPS deconvolution.
  • the peak at 399.25 eV in the N1s spectrum corresponds to CN
  • the C1s spectrum is decomposed into Li 2 CO 3 (290 eV), COC (288.5 eV), CO (286.8 eV), CC (284.8 eV), and lithium carbide (R-Li) (283.5 eV) derived from organic components in the electrolyte, especially ethylene carbonate (EC) (left side of Fig. 4h).
  • the O1s spectrum shows peaks related to COC of ROCO 2 Li (533.5 eV), Li 2 CO 3 (532 eV), LiOR (531.5 eV) associated with the carbonate electrolyte, and inorganic Li 2 O (528 eV) of LiPF 6 salt (right side of Fig. 4h).
  • the organic SEI component rapidly disappeared, while at the same time, the intensity of the inorganic SEI component increased.
  • Fig. 4i shows the peaks of pDMAMS and the organic electrolyte except for the reduced R-Li and Li 2 O of the salt by EC.
  • the precipitated pDMAMS-Li exhibited a uniform organic SEI component without a significant decrease in the intensity of the existing peaks or the formation of other inorganic peaks.
  • the quaternized pDMAMS was characterized by a peak at 402.5 eV corresponding to the quaternary ammonium salt (CN + (CH 3 ) 3 ) in the N1s spectrum (Fig. 28d).
  • NMR nuclear magnetic resonance
  • the ratio of pDMAMS to electrolyte was adjusted to 1:10, and the NMR solution was prepared with a mixture ratio of 5 mg per 1 mL of CDCl 3 , and approximately 0.6 mL of the solution was transferred to a 5 mm NMR tube.
  • DMAMS Dimethylaminomethylstyrene
  • C6FA 2-(perfluorohexyl)ethyl acrylate
  • EGDMA ethylene glycol dimethacrylate
  • DVB divinylbenzene
  • acrylic acid AA, 99%, TCI, Japan
  • TBPO butyl peroxide
  • Li metal foil was punched and then functionalized using a custom iCVD reactor installed in an Ar atmosphere glove box.
  • Poly(dimethylaminomethylstyrene) (pDMAMS), poly[2-(perfluorohexyl) ethyl acrylate] (pC6FA), poly(ethylene glycol dimethacrylate) (pEGDMA), polydivinylbenzene (pDVB), and poly(acrylic acid) (pAA), poly(DMAMS-co-C6FA) were synthesized and conformally coated onto the Li metal cathode by iCVD process.
  • Monomers, DMAMS, C6FA, EGDMA, DVB, AA, and initiator, TBPO, were vaporized by heating to 50, 50, 65, 45, 35, and 25 °C, respectively, and then fed into the iCVD reactor.
  • the flow rates of DMAMS, C6FA, EGDMA, DVB, and AA were fixed at 0.82, 0.55, 0.33, 2.50, and 1.43 sccm, respectively, and that of TBPO was fixed at 0.59, 0.30, 0.44, 0.89, and 0.74 sccm, respectively.
  • the substrate temperature was changed from 30 to 40 °C, and the corresponding chamber pressure was adjusted from 100 to 300 mTorr to prevent excessive adsorption of reactants, such as lithium metal surface condensation.
  • the deposition rates of pDMAMS, pC6FA, pEGDMA, pDVB, and pAA are 2.4, 12.5, 4.0, 6.1, and 8.0 nm/min -1 , respectively.
  • the Pm/Psat and the surface concentration of each comonomer were controlled by the flow rates of DMAMS and C6FA at fixed chamber pressure and substrate temperature. In all iCVD processes, the filament temperature was maintained at 140°C to initiate vapor phase polymerization.
  • the polymerization in each monomer was chemically confirmed by absorbance mode of Fourier transform infrared (FT-IR) spectroscopy (ALPHA FT-IR, Bruker Optics).
  • FT-IR Fourier transform infrared
  • the structural compositions including the DMAMS ratio of the DMAMS and C6FA copolymers were obtained by multipurpose X-ray photoelectron spectroscopy (Sigma Probe, Thermo VG Scientific) using a microfocus monochromated Al source (1486.7 eV).
  • the electrolyte contact angles of the iCVD-coated polymers were measured by a contact angle analyzer (Phoenix 150, SEO).
  • In-situ X-ray photoelectron spectroscopy (In-situ XPS, Axis-Supra, Kratos) and time-of-flight secondary ion mass spectrometry (TOF-SIMS, TOF.SIMS 5, ION-TOF) were used to perform depth profiling to identify the pDMAMS-SEI layer.
  • the components and bonding states of the SEI layer were investigated using in-situ XPS with an Al K ⁇ radiation source at 15 kV operation under 1 ⁇ 10 -9 torr.
  • XPS depth profiling was performed by etching with Ar clusters (10 keV).
  • TOF-SIMS was also performed to analyze the chemical components of the SEI layer in a vacuum chamber at 5 ⁇ 10 -9 mbar.
  • the etching area of 300 ⁇ m ⁇ 300 ⁇ m and the analysis area of 100 ⁇ m ⁇ 100 ⁇ m were sputtered and profiled with Ar cluster (5 keV) and Bi 3+ (60 keV) ion beams, respectively.
  • Ar cluster 5 keV
  • Bi 3+ 60 keV
  • the refractive indices (n) and thicknesses (d) of all iCVD polymer films on Si substrates were obtained by spectroscopic ellipsometry (M2000U with auto-angle ESM-300 base, JA Woollam).
  • the swelling ratios of the polymer films in organic electrolytes were measured in a liquid cell (5 mL Heated Liquid Cell TM , JA Woollam) with an optical attachment to the ellipsometer at a constant temperature of 25 °C, where d pristine and d swollen are the thicknesses before and after introducing the electrolyte into the liquid cell, respectively.
  • spectroscopic ellipsometry was started at the air/film interface with a nominal angle of 75°, and the thickness and refractive index of the deposited films in ambient air were measured at optical wavelengths from 400 nm to 800 nm. All profile data were fitted using the Cauchy model.
  • the refractive index dispersion as a function of wavelength is described as follows:
  • is the wavelength of the beam
  • a 25 nm SiO 2 calibration Si wafer fixed in an electrolyte-filled cell was used to verify the liquid-surrounding model at the liquid/solid interface to observe the swelling behavior.
  • the optical constants of the EC:DEC (3:7, v/v) electrolyte were found to be in agreement with previously reported literature values. After the electrolyte was infiltrated into the thin film, it was assumed that the corresponding refractive index gradient occurs in the direction perpendicular to the plane of the polymer film when the film swells.
  • the graded layer was divided into five layers and analyzed as each layer having an individual refractive index. All model fits were performed within a mean square error (MSE) of 5 or less using CompleteEASE 6 software (JA Woollam).
  • Li foil 200 ⁇ m, 99.95% (Shinhyung E&T)
  • LiNi 0.6 Mn 0.2 Co 0.2 O 2 (NMC 622) sheets (94% active material, Welcos) were punched into 1 cm 2 and used as bare-Li symmetric cells and bare Li
  • Galvanostatic cycling measurements of Li-Li symmetric cells were performed at a current density of 1 mA cm -2 (1 mAh cm -2 ).
  • NMC full cells were cycled at 1C (2 mA cm -2 , 177 mA g -1 ) within a voltage window of 3.0 V to 4.2 V after the first activation cycle at C/20 charge/discharge.
  • EIS Electrical impedance spectroscopy
  • is the ionic conductivity
  • t is the thickness
  • R is the resistance
  • A is the area of the iCVD-coated polymer film.
  • I s and I 0 are the steady-state current and initial current, respectively, ⁇ V is the applied potential, and R s and R 0 are the steady-state resistance and initial resistance before and after polarization, respectively.
  • cyclic voltammetry, galvanostatic intermittent titration (GITT), and floating experiments were performed to confirm the stability of the NMC cathode and the interface between the lithium metal anode and the deposited polymer.
  • the cyclic voltammetry test was performed for 3 cycles within the voltage range of 0.1 mV to 1 V.
  • the entire cell was repeatedly discharged and charged at C/2 for 5 min, and then rested for 1 h within the window voltage. Lithium ion diffusivity was measured using the Wepner–Huggins method considering the planar shape of the electrode.
  • the floating test the entire cell was charged to 4.0 V at 0.05°C, and then applied up to 4.9 V for 10 h.
  • Example 1 100 nm pDMAMS
  • a cathode was used (2 mAhcm -2 ) coated on an aluminum current collector by mixing 94% of NMC-based cathode active material, 3% of conductive agent, and 3% of binder by weight ratio.
  • a 25 ⁇ m thick separator (Celgard 2325) was interposed between the cathode and lithium metal, which was protected by covering with a pDMAMS [poly(dimethylaminomethyl styrene)] polymer, which was about 100 nm thick by the iCVD process, and the electrolyte was injected to manufacture a 2032 type coin cell as a lithium metal secondary battery.
  • the electrolyte used was an organic solvent consisting of EC: DEC in a volume ratio of 3:7 and a salt of 1 M LiPF 6 dissolved therein.
  • a 2032 type coin cell manufactured by placing the same lithium metal anode in the cathode position without using the NMC-based cathode was used as a lithium metal symmetric battery.
  • the pDMAMS polymer thin film was manufactured using the iCVD process. The substrate was placed in the iCVD chamber, and the temperature of the substrate was maintained at 40°C.
  • DMAMS dimethylaminomethyl styrene
  • TBPO tert-butyl peroxide
  • an initiator a dimethylaminomethyl styrene
  • the pressure within the chamber was maintained as a vacuum state of 200 mTorr, and at the same time, the filament was heated to 140°C to radically polymerize the monomers adsorbed on the substrate to produce a pDMAMS homopolymer.
  • the desired thickness of the polymer thin film was obtained at a deposition rate of 2.4 nm/min.
  • Coin cells were manufactured in the same manner as in Example 1, except that the thickness of the pDMAMS polymer protective layer in the cathode of Example 1 was about 10 nm.
  • Coin cells were manufactured in the same manner as in Example 1, except that the thickness of the pDMAMS polymer protective layer in the cathode of Example 1 was 500 nm.
  • a coin cell was manufactured in the same manner as in Example 1. Specifically, a pDVB polymer thin film was manufactured using an iCVD process. The substrate was placed in an iCVD chamber, and the temperature of the substrate was maintained at 30°C. Thereafter, divinylbenzene and tert-butyl peroxide (TBPO), an initiator, were vaporized at a ratio of 2.50 and 0.89 sccm, respectively, and transferred to the chemical vapor deposition chamber.
  • TBPO tert-butyl peroxide
  • the pressure in the chamber was maintained in a vacuum state of 300 mTorr, and at the same time, the filament was heated to 140°C to radically polymerize the monomers adsorbed on the substrate to manufacture a pDVB homopolymer.
  • the desired thickness of the polymer thin film was obtained at a deposition rate of 6.1 nm/min.
  • Coin cells were manufactured in the same manner as in Example 1, except that the thickness of the pC6FA [poly ⁇ 2-(perfluorohexyl) ethyl acrylate ⁇ ] polymer protective layer on the cathode of Example 1 was about 100 nm.
  • a pC6FA polymer thin film was manufactured using an iCVD process. The substrate was placed in an iCVD chamber, and the temperature of the substrate was maintained at 30°C.
  • 2-perfluorohexyl ethyl acrylate [2-(perfluorohexyl) ethyl acrylate, C6FA] and tert-butyl peroxide (TBPO), an initiator, were vaporized at a ratio of 0.55 and 0.30 sccm, respectively, and transferred to the chemical vapor deposition chamber.
  • the pressure inside the chamber was maintained as a vacuum state of 100 mTorr, and at the same time, the filament was heated to 140°C to radically polymerize the monomers adsorbed on the substrate to produce a pC6FA homopolymer.
  • the desired thickness of the polymer thin film was obtained at a deposition rate of 12.5 nm/min.
  • a coin cell was manufactured in the same manner as in Example 1. Specifically, a pEGDMA polymer thin film was manufactured using an iCVD process. The substrate was placed in an iCVD chamber, and the temperature of the substrate was maintained at 30°C. Thereafter, ethylene glycol dimethacrylate (EGDMA) and tert-butyl peroxide (TBPO), an initiator, were vaporized at a ratio of 0.33 and 0.44 sccm, respectively, and transferred to the chemical vapor deposition chamber.
  • EGDMA ethylene glycol dimethacrylate
  • TBPO tert-butyl peroxide
  • the pressure in the chamber was maintained in a vacuum state of 150 mTorr, and at the same time, the filament was heated to 140°C to radically polymerize the monomers adsorbed on the substrate to manufacture a pEGDMA homopolymer.
  • the desired thickness of the polymer thin film was obtained at a deposition rate of 4.0 nm/min.
  • a coin cell was manufactured in the same manner as in Example 1. Specifically, a pAA [poly(acrylic acid)] polymer thin film was manufactured using an iCVD process. The substrate was placed in an iCVD chamber, and the temperature of the substrate was maintained at 30°C. Thereafter, acrylic acid and tert-butyl peroxide (TBPO), an initiator, were vaporized at a ratio of 1.43 and 0.74 sccm, respectively, and transferred to a chemical vapor deposition chamber.
  • TBPO tert-butyl peroxide
  • the pressure in the chamber was maintained in a vacuum state of 200 mTorr, and at the same time, the filament was heated to 140°C to radically polymerize the monomers adsorbed on the substrate to manufacture a pAA homopolymer.
  • the desired thickness of the polymer thin film was obtained at a deposition rate of 8.0 nm/min.
  • Example 1 a 2032 type coin cell of the same size was fabricated using pure lithium metal of about 200 ⁇ m thickness without a polymer protective film.
  • the refractive index and swelling ratio of the thin film obtained by the ellipsometer liquid cell according to the embodiment of the present invention were measured.
  • the polymer thin film deposited with a thickness of 100 nm on a silicon wafer (Si wafer) substrate was prepared in the liquid cell, and the change in the refractive index and swelling ratio of the polymer thin film before and after the electrolyte was injected into the liquid cell were recorded in Table 4.
  • the lithium metal symmetrical batteries manufactured in Examples 1 to 7 and Comparative Example 1 were charged and discharged at a current density of 1 mAcm-2 for 1 hour each, and the number of cycles in which an overvoltage of 5 V or more occurred was recorded in Table 5.
  • the lithium metal secondary batteries manufactured in the above Examples 1 to 7 and Comparative Example 1 were evaluated by the following charge/discharge test.
  • the secondary battery In the first cycle of the charge/discharge test, the secondary battery was charged at a constant current of 0.5 C until the voltage became 4.2 V, and then discharged at a constant current of 0.5 C until the voltage became 3.0 V. After that, the lithium metal secondary battery was charged under the CC/CV conditions of 1 C, 4.2 V, and then a charge/discharge test was performed under the discharge conditions of 1 C, CC 3 V.
  • the number of cycles at which the initial specific capacity reached 80% is recorded in Table 6 below.
  • the cycle number of the lithium metal secondary battery of Example 1 was significantly improved compared to that of the lithium metal secondary battery of Comparative Example 1, indicating that the pDMAMS polymer thin film suppresses the formation of lithium metal dendrites and dead lithium.
  • a significant improvement in cycle life was confirmed in Example 7 and Example 1, where the swelling ratio was 15% or higher, compared to that of the Comparative Example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a lithium metal secondary battery comprising an electrolyte-swellable polymer thin film that inhibits the high reactivity of lithium metal, the formation of lithium dendrites and dead lithium by forming a special polymer film capable of swelling in a liquid electrolyte, to increase the cycle life of lithium metal symmetrical batteries and secondary batteries.

Description

전해질 팽윤성 고분자 박막을 포함하는 리튬 금속 이차전지Lithium metal secondary battery comprising electrolyte swellable polymer thin film
관련 출원(들)과의 상호 인용Cross-citation with related application(s)
본 출원은 2023년 2월 20일자 한국 특허 출원 제10-2023-0022353호 및 2024년 2월 20일자 한국 특허 출원 제10-2024-0024293호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority to Korean Patent Application No. 10-2023-0022353, filed Feb. 20, 2023, and Korean Patent Application No. 10-2024-0024293, filed Feb. 20, 2024, the entire contents of which are incorporated herein by reference.
본 명세서에서는 전해질 팽윤성 고분자 박막을 포함하는 리튬 금속 이차전지에 관하여 개시한다. This specification discloses a lithium metal secondary battery including an electrolyte swellable polymer thin film.
리튬 금속은 높은 이론적 비용량(3860mAh g-1)과 낮은 레독스 전위(표준 수소 전극 대비 -3.040V)로 인해 고에너지 리튬 배터리의 음극 소재로 인식되어 왔다. 그러나 100년이 넘는 리튬 배터리 개발 역사에도 불구하고 리튬 금속 음극은 불안정한 표면화학으로 인하여 충/방전 과정에서 수상돌기 형성을 유도하기 때문에 실제 배터리 시스템에 적용이 쉽지 않았다. 금속 Li 자체는 높은 수화 엔탈피(-520kJ mol-1)를 갖는 강력한 환원제로서 전위를 가하지 않아도 전해질과 쉽게 반응하여 고체-전해질 간상(SEI) 층을 형성할 수 있다. 그러나 SEI 층은 리튬 금속 음극의 부피 변화에 따라 쉽게 균열이 생기는 이질적인 다결정립 경계를 가지기 때문에 기계적으로 약한 단점을 가지며, 균열을 통해 리튬이 성장하면서 이를 전해질에 노출시키며, 표면에 추가적인 SEI 층이 자발적 반응으로 형성됨에 따라 액체 전해질이 소모된다(도 6). 이와 같이 리튬 금속과 전해질이 죽은 리튬으로 소모되어 후속 주기에 걸쳐 리튬 수상 돌기가 성장하기 때문에 리튬 금속 전지는 장기간에 걸쳐 낮은 쿨롱 효율, 짧은 배터리 주기 수명, 리튬 금속의 폭발 위험으로 인한 안전 문제를 보이게 된다.Lithium metal has been recognized as an anode material for high-energy lithium batteries due to its high theoretical specific capacity (3860 mAh g -1 ) and low redox potential (-3.040 V vs. standard hydrogen electrode). However, despite the development of lithium batteries for over 100 years, lithium metal anodes have not been easily applied to actual battery systems due to their unstable surface chemistry, which induces dendrite formation during the charge/discharge process. Metal Li itself is a strong reducing agent with high hydration enthalpy (-520 kJ mol -1 ) and can easily react with electrolyte to form a solid-electrolyte interphase (SEI) layer without applying a potential. However, the SEI layer has a mechanical weakness because it has heterogeneous polycrystalline grain boundaries that easily crack depending on the volume change of the lithium metal anode, and as lithium grows through the cracks, it is exposed to the electrolyte, and as an additional SEI layer is formed spontaneously on the surface, the liquid electrolyte is consumed (Fig. 6). As the lithium metal and electrolyte are consumed as dead lithium, lithium dendrites grow over subsequent cycles, which leads to long-term low Coulombic efficiency, short battery cycle life, and safety issues due to the risk of lithium metal explosion.
이러한 문제를 해결하기 위한 방법으로 기능적 외부 층을 통하여 리튬 표면을 개질하여 전기화학 반응을 안정화시키는 ‘인공 SEI 층’을 도입하는 방법이 있다. 예를 들어, Li 금속 표면은 에칭된 폴리머 층, 유기/무기 프레임워크, 나노시트 등과 같은 다양한 물질로 코팅될 수 있으며, 이들은 리튬 이온 수송을 촉진하는 동시에 리튬 덴드라이트를 차단한다. 또한 최외곽 리튬 표면을 액체 및 기체 화학 물질로 처리하여 리튬 표면을 안정화시키는 리튬 기반 복합 필름을 인공 SEI층으로 생성하는 방법도 있으나, 인공 SEI층에 인접한 Li 표면 사이에서 네이티브 SEI 층이 우선적으로 성장하기 시작하며, 이는 네이티브 SEI 층이 Li 표면에 대한 계면 저항이 낮은 반면, Li 표면과의 접촉이 좋지 않은 인공 SEI 층은 높은 저항을 나타내기 때문이다. 이러한 문제로 인하여 인공 SEI 층 도입 방식은 제한을 받게 된다.To solve these problems, one method is to introduce an ‘artificial SEI layer’ that stabilizes the electrochemical reaction by modifying the lithium surface through a functional outer layer. For example, the Li metal surface can be coated with various materials, such as an etched polymer layer, an organic/inorganic framework, and a nanosheet, which promote lithium ion transport while blocking lithium dendrites. In addition, there is a method to create a lithium-based composite film as an artificial SEI layer by treating the outermost lithium surface with liquid and gaseous chemicals to stabilize the lithium surface. However, the native SEI layer begins to grow preferentially between the Li surfaces adjacent to the artificial SEI layer, which is because the native SEI layer has low interfacial resistance with respect to the Li surface, whereas the artificial SEI layer, which does not have good contact with the Li surface, exhibits high resistance. Due to these problems, the introduction of an artificial SEI layer is limited.
한편, 전극 재료와 반응하여 분해된 전해질을 활용하여 네이티브 SEI 층을 직접 개질하는 방법도 제안되었다. 첨가제로 전해질 조성을 조정하거나 사이클링 조건을 조정하여 양극과 음극에서 전기 화학 반응을 촉진하거나 방해하도록 네이티브 SEI 층을 개질할 수 있다. 이 경우 SEI 층과 리튬 표면 사이의 접촉이 개선될 수 있지만, 직접 개질된 SEI 층은 입자가 무작위로 분포하고 원소 구성이 서로 다른 다결정 특성을 가지며, 이러한 구조적 특성으로 인해 기계적 안정성이 약해져 특히 균열이 발생하기 쉽고 네이티브 SEI 층은 다양한 전해질에 의한 팽창에 취약하여 기계적 강도가 저하된다. 따라서 구조적으로 강화된 네이티브 SEI 층의 형성을 촉진할 수 있는 해결 전략을 개발할 필요가 있다.Meanwhile, a method of directly modifying the native SEI layer by utilizing the electrolyte decomposed by reacting with the electrode material has also been proposed. The native SEI layer can be modified to promote or hinder the electrochemical reaction at the anode and cathode by adjusting the electrolyte composition with additives or by adjusting the cycling conditions. In this case, the contact between the SEI layer and the lithium surface can be improved, but the directly modified SEI layer has polycrystalline characteristics with randomly distributed particles and different elemental compositions, and these structural characteristics weaken the mechanical stability, making it particularly prone to cracking, and the native SEI layer is vulnerable to expansion by various electrolytes, which reduces the mechanical strength. Therefore, it is necessary to develop a solution strategy that can promote the formation of a structurally strengthened native SEI layer.
리튬(Li) 금속 음극은 불안정하고 전해질에 대한 반응성을 갖는 문제를 가지며, 불균일한 분포를 가져 부서지기 쉬운 SEI 층을 형성하고 궁극적으로는 Li 수상 돌기를 형성하여 배터리 수명을 악화시킨다. 이에 본 발명의 구현예에서는 SEI 층을 강화하고 인터페이스를 안정화시키기 위하여 개시제 사용 화학 기상 증착(iCVD)을 이용하여 전해질 팽윤성 폴리머 나노층을 모놀리식으로 증착하여 리튬 금속을 부동태화할 수 있다. 예를 들어, 100nm 두께의 iCVD 폴리(디메틸아미노메틸스티렌)(pDMAMS) 층은 탄산염 전해질에서 약 264% 팽윤하여 리튬 이온 수송을 위한 전해질로 채워진 소프트 스캐폴드를 구축한 것일 수 있다. 이 경우, 균일하면서도 Li2O가 없고 Li2CO3가 풍부한 네이티브 SEI 층을 제공할 수 있다. Lithium (Li) metal anodes have the problems of instability and reactivity toward electrolytes, and form a brittle SEI layer with non-uniform distribution, which ultimately forms Li dendrites, which deteriorate the battery life. Therefore, in an embodiment of the present invention, an electrolyte-swellable polymer nanolayer can be monolithically deposited using initiator-assisted chemical vapor deposition (iCVD) to strengthen the SEI layer and stabilize the interface to passivate lithium metal. For example, a 100 nm thick iCVD poly(dimethylaminomethylstyrene) (pDMAMS) layer can be constructed to swell about 264% in a carbonate electrolyte to form a soft scaffold filled with the electrolyte for lithium ion transport. In this case, a native SEI layer that is uniform, free of Li 2 O, and rich in Li 2 CO 3 can be provided.
본 명세서에서는 SEI 층을 구조적으로 수용하고 강화하여 기계적 물성을 개선하고 전기화학 반응을 안정화할 수 있는 새로운 기능성 고분자 스캐폴드를 개시한다. 구체적으로 상기 기능성 고분자 스캐폴드는 다음의 특성을 필요로 한다: 1) 매트릭스를 통해 리튬 이온과 전해질을 수송할 수 있어야 하고, 2) 네이티브 SEI 층과 호환성 및 혼화성이 있어 리튬 이온과 전해질을 매트릭스에 통합할 수 있어야 하며, 3) 충분한 기계적 강도를 제공하고, 4) 전기 화학적 분해 시 구조적으로 손상되지 않아야 한다. 이상적으로는 배터리 시스템에 존재하는 전해질에 의해 팽윤되는 동시에 넓은 여유 공간에 네이티브 SEI 층을 완전히 수용할 수 있는 기능성 폴리머 층이 전술한 기준을 충족해야 한다. 이에 본 발명의 구현예에서는 전해질 팽윤성 고분자를 포함하는 고분자 보호 박막층을 적용한다(도 1a). In this specification, a novel functional polymer scaffold capable of structurally accommodating and reinforcing an SEI layer to improve mechanical properties and stabilize electrochemical reactions is disclosed. Specifically, the functional polymer scaffold requires the following properties: 1) it should be able to transport lithium ions and electrolyte through the matrix, 2) it should be compatible and miscible with the native SEI layer to enable the integration of lithium ions and electrolyte into the matrix, 3) it should provide sufficient mechanical strength, and 4) it should not be structurally damaged upon electrochemical decomposition. Ideally, a functional polymer layer capable of being swelled by an electrolyte present in a battery system while completely accommodating the native SEI layer in a large free space should satisfy the above-mentioned criteria. Accordingly, an embodiment of the present invention applies a polymer protective film layer including an electrolyte-swellable polymer (FIG. 1a).
한편, 리튬 금속 표면에 기능성 폴리머 층을 코팅하는 방법인 개시 화학 기상 증착(iCVD)은 10nm 이하의 두께로 균일한 폴리머 층을 정밀하게 제작할 수 있어 셀 저항 최소화, 리튬 이온 확산도 개선, 계면 현상 조사에 특히 유용할 수 있다(도 1b). 특히 iCVD 방법은 용매나 고온 공정 없이도 리튬 표면을 개질시킬 수 있기 때문에 리튬의 잠재적 손상을 방지하면서도 다양한 유형의 고순도 기능성 폴리머를 직접 도포할 수 있다. 또한, iCVD 방식을 통하여 반대되는 화학적 성질로 구성된 공중합체(예컨대, 친수성-소수성)의 조성을 조절할 수 있다. Meanwhile, inductive chemical vapor deposition (iCVD), a method for coating a functional polymer layer on a lithium metal surface, can precisely fabricate a uniform polymer layer with a thickness of less than 10 nm, which can be particularly useful for minimizing cell resistance, improving lithium ion diffusion, and investigating interfacial phenomena (Fig. 1b). In particular, the iCVD method can modify the lithium surface without a solvent or a high-temperature process, so that various types of high-purity functional polymers can be directly applied while preventing potential damage to lithium. In addition, the iCVD method can control the composition of copolymers with opposite chemical properties (e.g., hydrophilic-hydrophobic).
본 발명의 일 구현예에서, 음극 집전체; 상기 음극 집전체 상에 형성된 리튬 금속층; 및 상기 리튬 금속층 상에 형성된 고분자 보호 박막층;을 포함하며, 상기 고분자 보호 박막층은 전해질 팽윤성 고분자를 포함하고, 상기 전해질 팽윤성 고분자는 아래 수학식 1로 표시되는 팽윤율(%)을 15% 이상으로 갖는, 리튬 금속 전지용 전극을 제공한다.In one embodiment of the present invention, an electrode for a lithium metal battery is provided, comprising: a negative electrode current collector; a lithium metal layer formed on the negative electrode current collector; and a polymer protective film layer formed on the lithium metal layer, wherein the polymer protective film layer includes an electrolyte swellable polymer, and the electrolyte swellable polymer has a swelling ratio (%) expressed by the following mathematical formula 1 of 15% or more.
[수학식 1][Mathematical formula 1]
Figure PCTKR2024002186-appb-img-000001
Figure PCTKR2024002186-appb-img-000001
여기서, dpristine는 팽윤 전의 고분자 보호 박막층 두께, dswollen은 팽윤 후의 고분자 보호 박막층 두께이다Here, d pristine is the thickness of the polymer protective film layer before swelling, and d swollen is the thickness of the polymer protective film layer after swelling.
예시적인 구현예에서, 상기 리튬 금속층은 1 내지 200 ㎛ 두께를 가질 수 있다.In an exemplary embodiment, the lithium metal layer can have a thickness of 1 to 200 μm.
예시적인 구현예에서, 상기 전해질 팽윤성 고분자는 다이메틸아미노메틸 스티렌(dimethylaminomethyl styrene), 에틸렌 글리콜 다이메틸아크릴레이트(ethylene glycol dimethacrylate), 아크릴산 (acrylic acid), 2-(퍼플루오로헥실) 에틸 아크릴레이트 [(2-perfluorohexyl) ethyl acrylate)], 및 다이바이닐벤젠 (divinylbenzene)으로 구성된 군에서 선택되는 하나 이상의 단량체를 포함하는 중합체일 수 있다.In an exemplary embodiment, the electrolyte swellable polymer can be a polymer comprising one or more monomers selected from the group consisting of dimethylaminomethyl styrene, ethylene glycol dimethacrylate, acrylic acid, 2-(perfluorohexyl) ethyl acrylate, and divinylbenzene.
예를 들어, 상기 전해질 팽윤성 고분자는 pDMAMS [poly(dimethylaminomethyl styrene)], pDVB (polydivinylbenzne), pC6FA [poly{2-(perfluorohexyl) ethyl acrylate}], pEGDMA [poly(ethylene glycol dimethacrylate)], 및 pAA [poly(acrylic acid)]로 구성된 군에서 선택되는 하나 이상의 고분자를 포함할 수 있다. For example, the electrolyte swellable polymer may include one or more polymers selected from the group consisting of pDMAMS [poly(dimethylaminomethyl styrene)], pDVB (polydivinylbenzne), pC6FA [poly{2-(perfluorohexyl) ethyl acrylate}], pEGDMA [poly(ethylene glycol dimethacrylate)], and pAA [poly(acrylic acid)].
한편 본 출원인들은, 아민이 풍부한 폴리(디메틸아미노메틸스티렌)(pDMAMS), 불소가 풍부한 폴리[2-(퍼플루오로헥실) 에틸 아크릴레이트](pC6FA), 산소가 풍부한 폴리(에틸렌 글리콜 디메타크릴레이트)(pEGDMA), 음이온성 폴리(아크릴산)(pAA) 및 방향족 폴리디비닐벤젠(pDVB)을 선택하여 전해질과의 상호작용을 확인하였다(도 1c). 상기 폴리머들은 전해질과의 호환성, LUMO의 높은 에너지 수준, 우수한 전기 절연성 등의 특성을 가져서 종래에도 리튬 이온 배터리용 첨가제나 바인더로 널리 연구되었다. 특히, 산소와 수분의 영향을 전혀 받지 않는 iCVD 기술은 산소와 수분의 영향에서 자유로울 수 있는 관계로 상기 폴리머를 균일하고 제어된 두께로 리튬 금속에 직접 코팅할 수 있다. 구체적으로, iCVD에서 기화된 모노머와 라디칼이 리튬 금속에 안정적이고 지속적으로 흡착되도록 촉진하는 표면 성장 중합 공정을 수행할 수 있다(표 S1). 예를 들어, 도 1d의 단면 SEM 이미지에서는 Li 금속 표면에 균일한 100nm의 pDMAMS 코팅이 형성된 것을 보여준다(도 1d). 일정한 iCVD 증착 속도(2nm/min-1 ~ 12nm/min-1)를 사용하면 증착 시간을 간단히 조정하여 정밀한 나노층 두께를 얻을 수 있다(도 7). 40℃ 미만의 비교적 낮은 처리 온도로 이루어지는 이러한 원스텝 표면 처리 공정은 각 모노머의 핵심 작용기를 보호하며, 이는 현장 푸리에 변환 적외선(FT-IR) 분석에서 확인할 수 있다(도 8). Meanwhile, the present applicants selected amine-rich poly(dimethylaminomethylstyrene) (pDMAMS), fluorine-rich poly[2-(perfluorohexyl) ethyl acrylate] (pC6FA), oxygen-rich poly(ethylene glycol dimethacrylate) (pEGDMA), anionic poly(acrylic acid) (pAA), and aromatic polydivinylbenzene (pDVB) to investigate their interactions with the electrolyte (Fig. 1c). These polymers have been widely studied as additives or binders for lithium-ion batteries due to their properties such as compatibility with electrolytes, high energy levels of LUMO, and excellent electrical insulation. In particular, the iCVD technique, which is not affected by oxygen and moisture at all, can directly coat the polymers on lithium metal with a uniform and controlled thickness because they can be free from the effects of oxygen and moisture. Specifically, a surface-growth polymerization process can be performed to promote stable and continuous adsorption of monomers and radicals vaporized in iCVD on lithium metal (Table S1). For example, the cross-sectional SEM image in Fig. 1d shows that a uniform 100 nm pDMAMS coating is formed on the Li metal surface (Fig. 1d). With a constant iCVD deposition rate (2 nm/min -1 ~ 12 nm/min -1 ), precise nanolayer thicknesses can be obtained by simply adjusting the deposition time (Fig. 7 ). This one-step surface treatment process, which is performed at a relatively low treatment temperature of less than 40 °C, protects key functional groups of each monomer, as confirmed by in situ Fourier transform infrared (FT-IR) analysis (Fig. 8).
Figure PCTKR2024002186-appb-img-000002
Figure PCTKR2024002186-appb-img-000002
표 1은 폴리(DMAMS-co-C6FA)의 iCVD 공정 조건 및 조성을 나타낸다. 여기서 a)는 공중합에서 TBPO의 유속은 0.59 sccm이고, b) 중합체 필름에 존재하는 DMAMS와 C6FA의 조성 비율을 나타낸다.Table 1 shows the iCVD process conditions and composition of poly(DMAMS-co-C6FA). Here, a) the flow rate of TBPO in the copolymerization is 0.59 sccm, and b) the composition ratio of DMAMS and C6FA present in the polymer film.
예시적인 구현예에서, 상기 고분자 보호 박막층은 상기 음극 집전체와 리튬 금속층이 접하는 면을 모두 덮도록 또는 일부를 덮도록 구비될 수 있다. 구체적으로, iCVD 기술은 기화된 모노머와 개시제는 오목한 표면의 깊은 곳까지도 쉽게 접근할 수 있는 점에서, 거친 표면에 컨포멀 코팅을 생성하는데 특히 유용하다. 그 결과, pDMAMS로 코팅된 리튬 표면은 베어 리튬 표면과 거의 동일한 토폴로지를 보였다(도 1e 및 도 1f). 이러한 매끄러운 접촉과 폴리머 나노층과 Li 표면의 충분한 접착은 셀 제조 및 전기 화학 셀 작동 중 기계적 스트레스를 견딜 수 있도록 인터페이스를 안정화시키는 데 매우 중요하다. 특히 코팅 두께가 100nm 미만인 경우, 하단의 미처리 영역에 비해 날카로운 모서리(도 1f)가 감소하고 상단 경계가 평평해진 것(도 7b)에서 알 수 있듯이 iCVD 처리된 표면은 효과적으로 평탄화될 수 있다. 이러한 평탄화 효과는 균일한 리튬 이온 수송과 전기 화학 반응을 위해 전기장을 셀 전체에 고르게 유도한다.In an exemplary embodiment, the polymer protective film layer may be provided to cover all or part of the surface where the negative electrode current collector and the lithium metal layer come into contact. Specifically, the iCVD technique is particularly useful for forming a conformal coating on a rough surface, since the vaporized monomer and initiator can easily access even the deep part of the concave surface. As a result, the lithium surface coated with pDMAMS showed almost the same topology as the bare lithium surface (Figs. 1e and 1f). Such smooth contact and sufficient adhesion of the polymer nanolayer and the Li surface are very important for stabilizing the interface to withstand mechanical stress during cell fabrication and electrochemical cell operation. In particular, when the coating thickness is less than 100 nm, the iCVD-treated surface can be effectively planarized, as can be seen from the reduction in sharp edges (Fig. 1f) and the flattening of the upper boundary (Fig. 7b) compared to the untreated region at the bottom. This planarization effect evenly induces an electric field throughout the cell for uniform lithium ion transport and electrochemical reaction.
예시적인 구현예에서, 상기 전해질 팽윤성 고분자는 전해액에 팽윤되어 고체-전해질층 복합체를 형성할 수 있다.In an exemplary embodiment, the electrolyte swellable polymer can swell in an electrolyte solution to form a solid-electrolyte layer complex.
구체적으로, 고분자 보호 박막층은 높은 리튬 이온 전도성을 보장하기 위해 배터리 전해질에 대한 투과성이 매우 높아야 한다. 리튬 이온의 투과성은 호핑 메커니즘을 통해 열린 폴리머 네트워크를 통해 또는 전해질 용액에 의해 부풀어 오른 확장된 폴리머 네트워크를 통해 확산함으로써 달성할 수 있다. 참고로, 부풀어 오르지 않은 상태의 모든 폴리머 후보 물질은 주변 공기에 노출되었을 때 폴리머로 코팅된 리튬이 산화되는 것으로 알 수 있듯이 산소 분자(직경 0.35nm)와 수증기(직경 0.26nm)의 통과를 허용하는 여러 개의 개방 채널로 본질적으로 구성된다(도 9). 그럼에도 불구하고 고분자 보호 박막층 내의 여유 공간이 리튬 이온의 이동을 용이하게 하는 배터리 전해질로 완전히 채워지도록 하려면 스캐폴드의 기공이 더 커야 한다(직경 ≒ 0.9 nm). 이에 전해질 용매(EC: DEC = 30:70, v/v의 혼합물)를 사용하여 예상 고분자 층의 표면 및 팽창 특성을 종합적으로 평가했다. 접촉각 측정 결과, 전해질 용매와의 계면 친화력이 가장 우수한 것은 pEGDMA(3.52°)였으며, 그 다음으로는 pDMAMS(11.89°), pDVB(13.30°), pAA(27.69°), pC6FA(43.72°) 순으로 나타났다(도 1g). 측정된 접촉각 값을 바탕으로 전해질의 계면 수송을 용이하게 하는 전해질 친수성 물질로 pEGDMA, pDMAMS 및 pDVB를 확인할 수 있다. Specifically, the polymer protective film layer should have very high permeability to the battery electrolyte to ensure high lithium ion conductivity. Lithium ion permeability can be achieved by diffusing through the open polymer network via a hopping mechanism or through the expanded polymer network swollen by the electrolyte solution. For reference, all the polymer candidates in the unswollen state are essentially composed of multiple open channels that allow the passage of oxygen molecules (diameter 0.35 nm) and water vapor (diameter 0.26 nm) as evidenced by the oxidation of the polymer-coated lithium when exposed to ambient air (Figure 9). Nevertheless, the pores of the scaffold should be larger (diameter ≒ 0.9 nm) to ensure that the free space within the polymer protective film layer is completely filled with the battery electrolyte to facilitate the movement of lithium ions. Accordingly, the surface and swelling properties of the prospective polymer layers were comprehensively evaluated using an electrolyte solvent (EC: DEC = 30:70, v/v mixture). As a result of the contact angle measurement, the one with the best interfacial affinity with the electrolyte solvent was pEGDMA (3.52°), followed by pDMAMS (11.89°), pDVB (13.30°), pAA (27.69°), and pC6FA (43.72°) (Fig. 1g). Based on the measured contact angle values, pEGDMA, pDMAMS, and pDVB can be identified as electrolyte hydrophilic materials that facilitate the interfacial transport of electrolyte.
전해질 용액에 담그기 전과 후의 iCVD 필름의 두께 변화를 비교하는 타원 측정 분석을 사용하여 이들의 팽창 특성을 확인했다. 계면 특성의 경향과는 달리 아민이 풍부한 pDMAMS 층이 164%의 현저한 팽창 비율로 가장 큰 팽창 능력을 보였으며, 그 뒤를 이어 pAA(16%), pC6FA(12%), pDVB(6%), pEGDMA(2%)가 뒤를 이었다(도 1h, 1i 및 10). 탄산염 용매에서 pDMAMS의 이러한 비정상적인 빠른(<3분) 팽창 거동은 아마도 곁가지에 풍부한 아민 작용기가 있기 때문일 것으로 추정되며, 이는 DEC(20.2 MPa1/2) 및 디메틸아미노메틸 함유 폴리머(20.4 MPa1/2 ~ 21.0 MPa1/2)의 유사한 한센 용해도 파라미터에 의해 확인된다. 또한 전해질로 부풀어 오른 pDMAMS 층은 3분 후에도 층 두께를 유지하여 추가 용해에 대한 저항성과 구조적으로 결함이 없을 수 있으며, 이는 모두 pDMAMS 폴리머 사슬의 높은 수준의 얽힘으로 인한 것이다. 또한 다중이온 아민은 리튬 이온과 결합하여 구조를 동역학적으로 안정화시키고 164%의 고도로 부풀어 오른 상태에서도 리튬 표면과 강한 접착력을 얻을 수 있다. 반면, pEGDMA의 가교 분자 구조는 pDVB의 경우와 마찬가지로 팽창 특성에 기여하지 않았다. pC6FA는 배터리 전해질 용매와의 계면 접촉이 가장 나빴으며 팽창 특성도 수준 이하로 나타났다. pC6FA가 용매에 의해 부풀어 오른 것처럼 보일 수 있지만 굴절률의 미세한 변화는 두께 변화가 실제로 pC6FA의 에틸기의 부분적인 재배열에서 비롯된 것임을 나타낸다. 특히 pDMAMS는 다른 iCVD 폴리머 중에서 가장 우수한 팽창 성능을 보였으며, 이에 높은 리튬 이온 수송성을 나타낼 수 있다.Ellipsometric analysis was used to compare the thickness changes of the iCVD films before and after immersion in electrolyte solutions to characterize their swelling properties. In contrast to the trend of interfacial properties, the amine-rich pDMAMS layer exhibited the highest swelling ability with a remarkable swelling ratio of 164%, followed by pAA (16%), pC6FA (12%), pDVB (6%), and pEGDMA (2%) (Figures 1h, 1i, and S10). This unusual fast (<3 min) swelling behavior of pDMAMS in carbonate solvents is probably due to the abundant amine functionalities in the side chains, which is confirmed by the similar Hansen solubility parameters of DEC (20.2 MPa 1/2 ) and dimethylaminomethyl-containing polymers (20.4 MPa 1/2 ~ 21.0 MPa 1/2 ). In addition, the electrolyte-swollen pDMAMS layer can maintain its layer thickness even after 3 min, which can be resistant to further dissolution and structurally intact, all of which is due to the high degree of entanglement of the pDMAMS polymer chains. In addition, the polyionic amine can dynamically stabilize the structure by binding to lithium ions and achieve strong adhesion to the lithium surface even at a highly swollen state of 164%. In contrast, the cross-linked molecular structure of pEGDMA did not contribute to the swelling characteristics, as in the case of pDVB. pC6FA showed the worst interfacial contact with the battery electrolyte solvent and its swelling characteristics were also below par. Although pC6FA may appear to be swollen by the solvent, the slight change in refractive index indicates that the thickness change is actually due to the partial rearrangement of the ethyl groups of pC6FA. In particular, pDMAMS showed the best swelling performance among other iCVD polymers, which may lead to its high lithium ion transport properties.
또한, 대칭형 리튬-리튬 코인 셀에서 리튬 박리/도금 측정을 통해 iCVD 폴리머 층의 리튬 이온 수송성을 평가했다. 도 2a는 각 방전/충전 사이클에서 높은 전류 밀도(1mA cm-2)에서 실제 리튬 용량(1mAh cm-2)에 따른 시간에 따른 정전류 전압 프로파일(galvanostatic voltage profiles)을 보여준다. 베어 리튬 전지는 120시간 동안만 지속되며, 주로 리튬 수상돌기, 죽은 리튬 파편 및 고갈된 전해질의 형성으로 인해 150mV의 높은 셀 분극이 발생하며, 이는 각각 전압 변동으로 식별된다. Additionally, the lithium ion transport properties of the iCVD polymer layer were evaluated by lithium stripping/plating measurements in symmetrical Li-Li coin cells. Figure 2a shows the galvanostatic voltage profiles over time at high current density (1 mA cm -2 ) versus actual lithium capacity (1 mAh cm -2 ) in each discharge/charge cycle. The bare Li cell lasts only for 120 h, at which high cell polarization of 150 mV occurs, mainly due to the formation of Li dendrites, dead Li fragments, and depleted electrolyte, which are identified by voltage fluctuations, respectively.
반면에, iCVD 폴리머로 코팅된 리튬 전지는 화학 구조가 서로 다르기 때문에 사용된 폴리머 유형에 따라 매우 다른 전기 화학적 성능을 보여준다(도 2a). 스웰링 테스트 결과에서 예측한 바와 같이, 전해질 스웰링이 가능한 pDMAMS-Li는 820시간 동안 50mV의 낮은 분극과 410mAh cm-2의 누적 용량으로 가장 긴 사이클링 성능을 보였으며, 그다음으로 pAA-Li(430시간), pDVB-Li(270시간), pEGDMA-Li(130시간), pC6FA-Li(20시간)가 그 뒤를 이었다. 모든 iCVD 폴리머-Li 셀은 초기 사이클(50시간 미만)에서 높은 셀 분극을 보였으며, 이는 저임피던스 SEI 층의 형성으로 인해 이후 감소하였다. 그러나 pC6FA는 빠르게 증가하는 셀 분극과 함께 14시간 동안만 지속되어 전해질 혐오성 불소가 풍부한 폴리머가 리튬 이온에 대해 절연성이 있음을 보여주었다. 다른 폴리머의 경우 사이클 수명은 질량 전달 제어 전위(μmtc, 도 2b)에 반비례하며, 이는 팽윤 없이는 폴리머 층을 통해 리튬 이온을 전달하기가 어렵다는 것을 나타낸다. pDMAMS-Li는 가장 낮은 μmtc와 팁 전위(μtip,begin, μtip,end)를 나타냈는데, 이는 각각 Li 수상돌기 및 죽은 Li 형성과 상관관계가 있다. pDMAMS-Li 셀의 낮은 분극 정도는 Li 금속에 pDMAMS가 균일하고 근접하게 접착되어 계면 저항을 크게 줄이고 균일한 리튬 이온 플럭스를 유도하기 때문일 수 있다. 1mA cm-2에서 1, 10, 100번째 사이클 후 각각 1, 10, 100번째 사이클을 거친 pDMAMS-Li와 베어 Li의 사진 및 SEM 이미지를 비교 분석하여 입증된 바와 같이, pDMAMS-Li 세포는 Li 수상돌기와 죽은 Li의 형성이 현저히 감소했다(도 2a 및 11). 특히, 베어 리튬 셀은 몇 사이클 내에 불규칙하고 이끼가 낀 수상 돌기 형성을 보였고, 이후 점차 고립된 죽은 리튬으로 변화하여 배터리 수명이 저하되었다. 이와 반대로, pDMAMS-Li 음극은 100싸이클(200시간) 후에도 수상돌기 없이 조밀하게 포장되고 잘 보존된 토폴로지를 보여 층을 통한 균일한 리튬 수송을 나타냈다(도 11).On the other hand, the iCVD polymer-coated Li cells showed very different electrochemical performances depending on the type of polymer used due to their different chemical structures (Fig. 2a). As predicted from the swelling test results, the electrolyte-swellable pDMAMS-Li exhibited the longest cycling performance with a low polarization of 50 mV and a cumulative capacity of 410 mAh cm -2 for 820 h, followed by pAA-Li (430 h), pDVB-Li (270 h), pEGDMA-Li (130 h), and pC6FA-Li (20 h). All the iCVD polymer-Li cells showed high cell polarization in the initial cycles (<50 h), which decreased thereafter due to the formation of a low-impedance SEI layer. However, pC6FA lasted only for 14 h with a rapidly increasing cell polarization, indicating that the electrolyte-hating fluorine-rich polymer is insulating toward lithium ions. For other polymers, the cycle life is inversely proportional to the mass transfer control potential (μmtc, Figure 2b), indicating that it is difficult to transport Li ions through the polymer layer without swelling. pDMAMS-Li exhibited the lowest μmtc and tip potential (μtip,begin; μtip,end), which are correlated with the formation of Li dendrites and dead Li, respectively. The low polarization degree of the pDMAMS-Li cell could be attributed to the uniform and close adhesion of pDMAMS to Li metal, which significantly reduces the interfacial resistance and induces a uniform Li ion flux. As evidenced by comparative analysis of the micrographs and SEM images of pDMAMS-Li and bare Li after the 1st, 10th, and 100th cycles at 1 mA cm -2 , the pDMAMS-Li cell showed a significant reduction in the formation of Li dendrites and dead Li (Figures 2a and S11). In particular, the bare lithium cell exhibited irregular and mossy dendrite formation within a few cycles, which then gradually transformed into isolated dead lithium, which led to a deterioration of the battery life. In contrast, the pDMAMS-Li cathode still exhibited a densely packed and well-preserved topology without dendrites even after 100 cycles (200 h), indicating uniform lithium transport through the layer (Figure 11).
예시적인 구현예에서, 상기 전해액은 브루스-빈센트 방법을 통하여 측정한 리튬 이온 전달수(tLi+)가 0.2 내지 1 범위를 가질 수 있다.In an exemplary embodiment, the electrolyte may have a lithium ion transfer number (tLi+) of 0.2 to 1 as measured by the Bruce-Vincent method.
구체적으로, 브루스-빈센트 방법을 사용하여 베어-Li 및 pDMAMS-Li 셀의 리튬 이온 전이 수(tLi; 전체 이온 전도 성능에서 양이온의 기여도)를 측정했다(도 2c, 2d 및 12). 그 결과, 기존의 유기 액체 전해질(LiPF6 EC/DEC = 3:7 (v/v), tLi ≒ 0.4)과 비교했을 때 pDMAMS-Li는 0.95의 tLi+ 값을 보였는데, 이는 지금까지 알려진 모든 종류의 전해질 첨가제, 인공 SEI 또는 고체 전해질에 대해 보고된 것 중 가장 높은 값에 해당한다. 이러한 높은 tLi+ 값은 전해질로 부풀어 오른 pDMAMS 매트릭스가 용해 껍질을 지니지 않고 리튬 이온에 유리한 확산 경로를 제공하며, 여기서 리튬과 고분자 다중이당 아민의 배위 복합체가 리튬 이온 선택성에 기여할 수 있음을 나타낸다. 또한, 100nm pDMAMS 층은 전해질로 팽윤된 pDMAMS 매트릭스 덕분에 6.54mS cm-1의 우수한 이온 전도도를 나타낸다(도 13).Specifically, the lithium ion transfer numbers (tLi; the contribution of cations to the overall ion conduction performance) of bare-Li and pDMAMS-Li cells were measured using the Bruce–Vincent method (Figs. 2c, 2d, and S12). As a result, pDMAMS-Li exhibited a tLi+ value of 0.95, which is the highest value reported for any kind of electrolyte additive, artificial SEI, or solid electrolyte known so far, compared with that of the conventional organic liquid electrolyte (LiPF6 EC/DEC = 3:7 (v/v), tLi ≈ 0.4). This high tLi+ value indicates that the electrolyte-swollen pDMAMS matrix provides favorable diffusion paths for lithium ions without a dissolution shell, where the coordination complexes of lithium and polymeric polydisaccharide amines can contribute to the lithium ion selectivity. Additionally, the 100 nm pDMAMS layer exhibits excellent ionic conductivity of 6.54 mS cm -1 due to the electrolyte-swollen pDMAMS matrix (Figure 13).
전기화학 반응을 안정화하기 위해 계면 효과와 pDMAMS-Li의 팽윤 현상의 기여도를 분리하기 위해, 전해질 팽윤성 DMAMS와 전해질 혐오성 C6FA 모어티의 비율이 다른 폴리(DMAMS-co-C6FA)-Li를 제조했다(도 1g 및 2e). 이를 위해 iCVD 공정 중 각 모노머의 유속을 조정하여 DMAMS와 C6FA의 비율이 다양한 세 가지 공중합체 나노층 샘플을 준비했으며, FT-IR 및 X-선 광전자 분광법(XPS) 분석을 통해 혼합 비율을 확인했다(도 2f, 14 및 15, 표 S1). 폴리(DMAMS-co-C6FA)-Li의 사이클 수명은 DMAMS/C6FA의 비율에 비례한다는 것을 발견했다(도 2g). C6FA 모이오티를 통합하면 폴리머-Li 층의 세 가지 특성, 즉 전해질 팽윤 정도, 접착력, 리튬 표면과 폴리(DMAMS-co-C6FA) 층의 기계적 견고성을 조절할 수 있다. 폴리(DMAMS-co-C6FA)-Li의 μmtc 값은 C6FA 함량과 양의 상관관계를 보였지만, 베어 리튬 셀보다는 낮았다. μmtc(44mV ~54mV) 값이 평가된 모든 유형의 pDMAMS 함유 폴리머 간에 어느 정도 비슷하다는 점을 고려할 때(도 2h), C6FA 모이오티의 통합이 리튬 이온 수송성에 미치는 영향은 미미한 것으로 보인다. 이는 리튬 이온이 전해질로 부풀어 오른 DMAMS 도메인을 통해 전해질 혐오성 C6FA 도메인을 우회할 수 있기 때문이다(도 1h 및 1i). 또한, C6FA 함유 폴리머의 전압 프로파일의 초기 (수상 돌기 형성) 및 말단 (죽은 Li 형성) 섹션의 두 피크는 C6FA 함량이 높을수록 더 강해지며 (도 2h), 이는 C6FA가 리튬과의 계면 접촉 및 접착력을 약화시킨다는 것을 나타낸다 (도 16). 폴리(DMAMS-co-C6FA)-Li 계면의 C6FA 도메인은 리튬 수상돌기와 죽은 리튬이 바람직하게 성장하는 불순물 역할을 한다(도 17). 마지막으로, C6FA의 함량이 높을수록 단단한 방향족 고리를 가진 DMAMS 모이어티의 수가 감소하기 때문에 폴리(DMAMS-co-C6FA)의 기계적 견고성이 약해진다. 또한 C6FA의 긴 플루오로알킬 사슬은 사슬 이동성을 촉진하고 공중합체 네트워크에서 자유 부피를 확대한다. 따라서 C6FA 도메인은 수지상 리튬 성장에 취약하며 폴리(DMAMS-co-C6FA)의 사이클 수명은 C6FA의 함량에 반비례한다(도 2g 및 17a). 종합적으로, 우리는 3S 층과 리튬 표면 사이의 적절한 접착력이 안정적인 전기 화학 반응을 촉진하기 위해 적절한 리튬 이온 수송성을 갖는 것만큼이나 중요하다는 것을 확인할 수 있었다.To separate the contributions of the interfacial effect and the swelling phenomenon of pDMAMS-Li to stabilize the electrochemical reaction, poly(DMAMS-co-C6FA)-Li with different ratios of electrolyte-swellable DMAMS and electrolyte-hating C6FA moieties were prepared (Figs. 1g and 2e). To this end, three copolymer nanolayer samples with different ratios of DMAMS and C6FA were prepared by adjusting the flow rates of each monomer during the iCVD process, and the mixing ratios were confirmed by FT-IR and X-ray photoelectron spectroscopy (XPS) analyses (Figs. 2f, 14, and 15, Table S1). The cycle life of poly(DMAMS-co-C6FA)-Li was found to be proportional to the ratio of DMAMS/C6FA (Fig. 2g). Incorporation of C6FA moieties can modulate three properties of the polymer-Li layer, namely, the degree of electrolyte swelling, the adhesion, and the mechanical robustness of the lithium surface and the poly(DMAMS-co-C6FA) layer. The μmtc value of poly(DMAMS-co-C6FA)-Li showed a positive correlation with the C6FA content, but was lower than that of the bare Li cell. Considering that the μmtc values (44 mV–54 mV) were relatively similar among all types of pDMAMS-containing polymers evaluated ( Figure 2h), the incorporation of C6FA moieties appears to have a minimal effect on the Li ion transport properties because Li ions can bypass the electrolyte-hating C6FA domains through the electrolyte-swollen DMAMS domains ( Figures 1h and 1i). In addition, the two peaks in the initial (dendrite formation) and terminal (dead Li formation) sections of the voltage profile of the C6FA-containing polymer become stronger with increasing C6FA content (Fig. 2h), indicating that C6FA weakens the interfacial contact and adhesion with lithium (Fig. 16). The C6FA domains at the poly(DMAMS-co-C6FA)-Li interface act as impurities on which lithium dendrites and dead lithium grow preferably (Fig. 17). Finally, the mechanical robustness of poly(DMAMS-co-C6FA) weakens with increasing C6FA content because the number of DMAMS moieties with rigid aromatic rings decreases. In addition, the long fluoroalkyl chains of C6FA facilitate chain mobility and enlarge the free volume in the copolymer network. Therefore, the C6FA domains are vulnerable to dendritic lithium growth, and the cycle life of poly(DMAMS-co-C6FA) is inversely proportional to the content of C6FA (Figs. 2g and 17a). In summary, we could confirm that proper adhesion between the 3S layer and the lithium surface is as important as proper lithium ion transport to promote stable electrochemical reactions.
또한 폴리(DMAMS-co-C6FA)-Li 음극과 LiNi0.6Mn0.2Co0.2O2(NMC-622) 음극으로 조립된 풀 셀의 전기화학적 성능을 조사했다. 종래에는, 특히 4.2V 이상에서 작동하는 고전압 음극의 경우 작동 전압 윈도우가 다르기 때문에 대칭형 리튬 전지 성능이 전체 전지 평가에 충분히 반영되지 않았다. 따라서 배터리 성능을 평가하기 전에 전기화학적 분해를 완전히 피할 수 있는 전압 윈도우를 결정하기 위해 iCVD 층에 대한 전기화학적 플로팅 실험을 수행했다. 베어 리튬과 비교했을 때, pC6FA를 제외한 대부분의 iCVD 폴리머 층은 4.8V 이하에서 전기화학적으로 안정적이었다(도 18). 특히, 4.8V에서 pDMAMS-Li 셀의 누설 전류는 베어 Li보다 0.5μA 낮았다. 또한, 전체 셀 전압 창(3.0V ~ 4.2V) 내에서 수집된 주기적 전압 측정 데이터는 pC6FA를 제외한 다른 iCVD 폴리머가 작동 셀에서 전기 화학적 분해를 겪지 않는다는 사실을 뒷받침한다(도 19). 이러한 우수한 전기화학적 안정성 덕분에 3S 층은 4.2V의 고전압을 사용하는 NMC-622 풀 셀에도 적용할 수 있다(도 3a). 20℃에서 650 사이클 이상 동안 용량 감소(사이클당 0.08%)없이 1℃(2mA cm-2)에서 159mAh g-1의 방전 용량을 유지한 반면, 베어 리튬에서는 사이클당 0.29%의 심각한 감쇠가 발생했다(도 3b 및 3c). 또한, 갈바노스태틱 간헐적 적정 기법(GITT)과 현장 XPS 데이터는 리튬 금속의 pDMAMS 코팅이 음극에 유해한 부작용이 없으며 대신 베어 리튬에 비해 NMC 음극의 리튬 이온 확산도가 약간 향상된다는 사실을 뒷받침했다(도 20).Furthermore, the electrochemical performance of the full cell assembled with the poly(DMAMS-co-C6FA)-Li cathode and LiNi 0.6 Mn 0.2 Co 0.2 O 2 (NMC-622) cathode was investigated. Conventionally, the performance of symmetric lithium cells was not sufficiently reflected in the evaluation of the whole cell because of the different operating voltage windows, especially for high-voltage cathodes operating above 4.2 V. Therefore, before evaluating the battery performance, electrochemical floating experiments on the iCVD layers were performed to determine the voltage window that can completely avoid electrochemical degradation. Compared with bare Li, most of the iCVD polymer layers, except for pC6FA, were electrochemically stable below 4.8 V (Figure 18). In particular, the leakage current of the pDMAMS-Li cell at 4.8 V was 0.5 μA lower than that of the bare Li. Moreover, cyclic voltammetry data collected within the entire cell voltage window (3.0 V to 4.2 V) support that other iCVD polymers except pC6FA do not undergo electrochemical degradation in the operating cell (Fig. 19). Owing to this excellent electrochemical stability, the 3S layer can also be applied to NMC-622 full cells using a high voltage of 4.2 V (Fig. 3a). It maintained a discharge capacity of 159 mAh g -1 at 1 °C (2 mA cm -2 ) without any capacity fading (0.08% per cycle) for more than 650 cycles at 20 °C, whereas a significant capacity fading of 0.29% per cycle occurred in the bare lithium (Figs. 3b and 3c). Furthermore, galvanostatic intermittent titration technique (GITT) and in situ XPS data supported that the pDMAMS coating on lithium metal had no detrimental side effects on the anode and instead slightly enhanced the lithium ion diffusion of the NMC anode compared to the bare lithium (Fig. 20).
음극의 영향이 없는 pDMAMS-Li의 계면 거동을 분석하기 위해 리튬-리튬 대칭 셀의 임피던스 분광법을 실시했다(도 3d, 3e 및 21, 표 2). 비순환 조건에서 pDMAMS-Li(~ 190Ω)의 계면 저항은 베어-Li(~ 440Ω) 및 기타 인공 SEI 층보다 두 배 낮았다(표 S3). 흥미롭게도 절연 폴리머 층을 추가하면 계면 저항이 베어 리튬의 절반 이하로 감소했다. 이는 베어 리튬/전해질 계면이 본질적인 전기화학적 불안정성을 지니고 있으며, 이는 전해질로 부풀어 오른 폴리머 층과의 계면 저항을 줄임으로써 극적으로 개선될 수 있음을 나타낸다. 또한, 셀이 순환함에 따라 pDMAMS-Li의 계면 저항은 낮은 임피던스 SEI 층을 형성하여 60Ω까지 더 감소하는데, 이 값은 베어 리튬(55Ω)과 비슷한 수준이었다(도 3d 및 3e). 이러한 계면 저항의 차이는 pDMAMS 층이 있는 경우와 없는 경우의 SEI 층의 구성이 뚜렷하게 다르다는 것을 의미하며, 저항이 더 높은 SEI 층이 셀 성능을 안정화하는 데 더 유리할 수 있음을 시사한다.To analyze the interfacial behavior of pDMAMS-Li in the absence of cathode influence, impedance spectroscopy of Li–Li symmetric cells was performed (Figures 3d, 3e, and 21, Table 2 ). The interfacial resistance of pDMAMS-Li (~ 190 Ω) under non-cycled conditions was two times lower than that of bare Li (~ 440 Ω) and other artificial SEI layers (Table S3). Interestingly, the addition of an insulating polymer layer reduced the interfacial resistance to less than half of that of bare Li. This indicates that the bare Li/electrolyte interface has intrinsic electrochemical instability, which can be dramatically improved by reducing the interfacial resistance with the electrolyte-swollen polymer layer. Furthermore, as the cell was cycled, the interfacial resistance of pDMAMS-Li further decreased to 60 Ω due to the formation of a low-impedance SEI layer, which was similar to that of bare Li (55 Ω) (Figures 3d and 3e). These differences in interfacial resistance imply distinct differences in the composition of the SEI layer with and without the pDMAMS layer, suggesting that a higher resistivity SEI layer may be more advantageous in stabilizing cell performance.
Figure PCTKR2024002186-appb-img-000003
Figure PCTKR2024002186-appb-img-000003
표 2는 도 3d 및 3e의 임피던스 데이터를 도 21의 등가 회로 모델에 피팅하여 얻은 베어 리튬 및 pDMAMS-Li(100nm) 셀에 대한 해당 피팅 파라미터를 나타낸다.Table 2 shows the corresponding fitting parameters for bare lithium and pDMAMS-Li(100 nm) cells obtained by fitting the impedance data of Figs. 3d and 3e to the equivalent circuit model of Fig. 21.
Figure PCTKR2024002186-appb-img-000004
Figure PCTKR2024002186-appb-img-000004
표 3은 대칭 셀에서 측정한 저항과 본 발명의 구현예에서의 나이퀴스트 플롯을 종래의 연구와 비교한 것을 도시한다.Table 3 shows the resistance measured in a symmetric cell and the Nyquist plot of an embodiment of the present invention compared to prior studies.
일반적으로 베어 Li는 표면에 추가 SEI 층을 형성하므로 전기 임피던스 분광법(EIS) 데이터의 단일 반원은 첫 번째 사이클 후 분석을 위해 두 부분으로 나뉜다. 특히, pDMAMS-Li는 사이클링 후에도 초기 두 개의 인터페이스(즉, Li와 pDMAMS에 대해 각각 두 개의 반원)를 유지하는데, 이는 LiPF6 탄산염 전해질에 의해 형성된 네이티브 SEI 층이 pDMAMS 층과 호환된다는 것을 증명한다. 이는 전해질로 부풀어 오른 구조 내부에서 네이티브 SEI 층이 진화하면서 전기화학적으로 구분할 수 없는 단일 열역학적 상을 형성하기 때문에 가능하다. 네이티브 SEI 층을 수용하는 본 발명의 구현예에 따른 고유한 계면 설계는 실용적인 리튬 금속 음극을 향한 또 다른 화학적 변형 가능한 경로를 열어준다.Typically, bare Li forms an additional SEI layer on the surface, so the single semicircle of the electrical impedance spectroscopy (EIS) data is split into two parts for analysis after the first cycle. In particular, pDMAMS-Li retains the initial two interfaces (i.e., two semicircles for Li and pDMAMS, respectively) after cycling, which demonstrates that the native SEI layer formed by the LiPF6 carbonate electrolyte is compatible with the pDMAMS layer. This is possible because the native SEI layer evolves inside the electrolyte-swollen structure to form a single thermodynamic phase that is electrochemically indistinguishable. The unique interfacial design according to the present invention that accommodates the native SEI layer opens up another chemically transformable route toward practical lithium metal anodes.
10 사이클 후 NMC-622 전체 셀에서 pDMAMS-Li를 검사한 결과, 베어 Li 및 pC6FA-Li의 경우와 비교하여 훨씬 더 빛나는 표면을 유지하는 것을 확인했다(도 3f). 폴리(DMAMS-co-C6FA)-Li 샘플 중 순수 pDMAMS-Li 셀은 2℃의 속도에서 130mAh g-1의 가장 높은 용량(0.1℃의 속도에서 용량의 70%)을 나타내어 합리적인 속도 능력을 보여주었다(도 3g). 대칭 셀 테스트에 따르면, pDMAMS 솔보젤의 임계 전류 밀도는 약 2mA cm-2였으며, 그 이후부터 용량과 사이클 수명이 저하되기 시작했다(도 22). 리튬 수상 돌기는 임계 전류 밀도 이상의 영역에서만 나타나기 시작하는데, 이는 과포화된 리튬 이온이 pDMAMS/Li 계면에 축적되어 수상 돌기 성장을 위한 공간을 제공하기 때문이다. 부풀어 오른 pDMAMS 층의 유연성 덕분에 2℃ 조건에서 작동하는 전체 셀에서도 Li 덴드라이트의 추가 성장이 효과적으로 완화된다(도 3h). 전체적으로 pDMAMS-Li 풀 셀의 전반적인 성능은 다른 유형의 iCVD 박막층과 베어 리튬보다 훨씬 뛰어났다(도 23).After 10 cycles, the pDMAMS-Li in the NMC-622 full cell was examined, and it was confirmed that it maintained a much brighter surface compared to the bare Li and pC6FA-Li cases (Fig. 3f). Among the poly(DMAMS-co-C6FA)-Li samples, the pure pDMAMS-Li cell exhibited the highest capacity of 130 mAh g -1 at a rate of 2 °C (70% of the capacity at a rate of 0.1 °C), demonstrating reasonable rate capability (Fig. 3g). According to the symmetric cell test, the critical current density of the pDMAMS solvogel was about 2 mA cm -2 , after which the capacity and cycle life started to degrade (Fig. 22). Lithium dendrites started to appear only in the region above the critical current density because the supersaturated Li ions accumulated at the pDMAMS/Li interface, providing space for the dendrite growth. Owing to the flexibility of the swollen pDMAMS layer, the further growth of Li dendrites was effectively mitigated even in the full cell operated at 2 °C (Fig. 3h). Overall, the overall performance of the pDMAMS-Li full cell was significantly superior to that of other types of iCVD thin films and bare lithium (Fig. 23).
3S/SEI 층의 화학적 구성을 명확히 하기 위해, 비행시간 이차 이온 질량 분석법(TOF-SIMS)과 깊이 프로파일링이 있는 XPS를 사용하여 리소레이션 전후(즉, 전체 셀에서 NMC 음극을 사용한 첫 번째 사이클 이후)에 pDMAMS-Li 음극을 분석했다. TOF-SIMS 분석에서 pDMAMS는 백본에서 방출되는 C12H16 +의 조각과 pDMAMS-Li에서 잘 유지되는 아민 함유 C3H8N+ 및 C8H7N+이 특징이다(도 4a, 4b 및 24). pDMAMS가 SEI 층과 전해질에 의해 부풀어 오르고 수용되었기 때문에, 이온화된 pDMAMS 종의 강도는 한사이클의 리튬화 이후 비순환 pDMAMS-Li의 강도에 비해 감소했다. 반면에 감소된 부분은 네이티브 SEI 층으로 대체된 것으로 보인다(도 4b 및 4c). 네이티브 SEI 레이어 구성 요소와 pDMAMS 구조의 공존은 두 구조의 혼용성과 호환성을 확인시켜 주며, EIS 데이터 분석 결과와 잘 일치한다(도 3e). 또한 이 복합재는 철근 콘크리트처럼 기계적 안정성이 향상되었다(도 3h)(이때, pDMAMS를 ‘철근’으로, 네이티브 SEI 레이어를 ‘콘크리트 몸체’에 대응하여 설명할 수 있음, 도 4g). 네이티브 SEI 층은 일반적으로 전극에 인접한 무기층과 바깥쪽으로 갈수록 유기물이 풍부한 층이 있는 다립상 구조로 구성되지만, pDMAMS 구조에서 형성된 SEI 층은 더 균질하며 바깥쪽 층이 CH2Li+ 및 기타 유기 성분 대신 무기 종, 즉 LiF+ 및 PF2+가 더 풍부한 것을 확인 하였다.To clarify the chemical composition of the 3S/SEI layer, the pDMAMS-Li cathode was analyzed before and after lithiation (i.e., after the first cycle using the NMC cathode in a full cell) using time-of-flight secondary ion mass spectrometry (TOF-SIMS) and XPS with depth profiling. In TOF-SIMS analysis, the pDMAMS was characterized by the C 12 H 16 + fragments released from the backbone and the amine-containing C 3 H 8 N + and C 8 H 7 N + that were well retained in the pDMAMS-Li (Figures 4a, 4b, and 24). Since the pDMAMS was swollen and accommodated by the SEI layer and electrolyte, the intensity of the ionized pDMAMS species decreased compared to that of the uncycled pDMAMS-Li after one cycle of lithiation. On the other hand, the decreased portion seems to be replaced by the native SEI layer (Figures 4b and 4c). The coexistence of the native SEI layer components and the pDMAMS structure confirms the miscibility and compatibility of the two structures, and is in good agreement with the results of the EIS data analysis (Fig. 3e). In addition, the mechanical stability of the composite was improved like reinforced concrete (Fig. 3h) (wherein pDMAMS can be described as the 'reinforcement' and the native SEI layer as the 'concrete body', Fig. 4g). Although the native SEI layer is usually composed of a multi-granular structure with an inorganic layer adjacent to the electrode and an organic-rich layer going outward, the SEI layer formed in the pDMAMS structure was more homogeneous, and it was confirmed that the outer layer was richer in inorganic species, i.e., LiF + and PF2 + , instead of CH 2 Li + and other organic components.
깊이 프로파일링 모드로 XPS를 사용하여 SEI 층의 구조적 구성을 추가적으로 조사하였다. 그 결과, 베어 리튬에서 네이티브 SEI 층은 유기 외층과 눈에 띄게 풍부한 Li2O가 있는 무기 내층의 전형적인 구성을 보였다(도 4d, 4h 및 25). 그러나 네이티브 SEI와 pDMAMS로 구성된 복합층의 유기 및 무기 성분은 대체로 균질화되었으며, 이는 pDMAMS와 네이티브 SEI 층이 우수한 혼화성을 갖기 때문이다(도 4e, 4f, 4i, 26, 27 및 28).The structural composition of the SEI layer was further investigated using XPS in depth profiling mode. As a result, the native SEI layer in bare lithium showed a typical composition of an organic outer layer and an inorganic inner layer with noticeably enriched Li 2 O (Figures 4d, 4h, and 25). However, the organic and inorganic components of the composite layer composed of native SEI and pDMAMS were largely homogenized, which is because the pDMAMS and native SEI layers have excellent miscibility (Figures 4e, 4f, 4i, 26, 27, and 28).
특히, Li2O 성분은 pDMAMS 구조에 형성된 SEI 층에서는 완전히 사라졌는데, 이러한 Li2O 형성이 저해된 것은 pDMAMS와 Li2O의 혼화성이 낮고, pDMAMS가 탄산리튬이 Li2O와 LiF로 더 이상 분해되는 것을 방지하기 때문이다 (도 4i). 다른 메커니즘으로는 pDMAMS 폴리머 분지 끝에 있는 일부 3차 아민기가 DEC와 전기화학적으로 반응하여 4차 암모늄 양이온 및 탄산염 이온을 형성하는 것을 들 수 있다(도 27, 28 및 29). 생성된 4급 암모늄 양이온 중합체(폴리(비닐벤질 트리메틸암모늄 카보네이트), pVBTMAC)는 측쇄 작용기가 선택적 이온 교환 중합체의 합성을 위한 중요한 전구체 중 하나를 구성하며 탄산염 음이온과 기타 유익한 SEI 성분을 효과적으로 가두어 보존할 수 있다. 또한, 부분적으로 사분자화된 폴리(DMAMS-co-VBTMAC) 층은 용해 껍질에서 리튬 이온을 선택적으로 걸러내고 3S 층만 통과할 수 있기 때문에 높은 tLi+ 수치(0.95)를 나타내게 된다. 4원화 반응에는 항상 전기 화학 반응이 수반된다는 점에 유의하여야 한다(도 30). 베어-Li(55 Ω, 도 3d 및 3e)보다 pDMAMS-Li(60 Ω)의 계면 저항이 약간 더 높은 것은 Li2CO3가 LiF 및 Li2O보다 절연성이 높은 점에서 확인될 수 있으며, 이는 또한 pDMAMS 층 주위에 형성된 SEI 층의 Li2CO3가 풍부한 조성과도 일치한다. 또한 이 결과는 무기 및 결정질 Li2O가 SEI 층이 풍부한 입자 경계를 가진 이질적인 다성분 특성을 가지게 하여 기계적 및 화학적 안정성을 저하시키는 주요 요인이 될 수 있음을 시사하며, 이는 종래 알려진 SEI 층에서의 Li2O의 역할과는 상이한 관점에 해당한다. 균일하고 Li2O가 없는 pDMAMS-SEI 복합층은 Li 금속과 덴드라이트의 형성으로 인한 큰 부피 변화를 견딜 수 있도록 Li/SEI 인터페이스에 유연성과 내구성을 제공한다(도 3h). 또한, Li2O가 없는 균질 SEI 층은 Li 표면과 pDMAMS 층의 접착력을 개선하여 Li/SEI/pDMAMS 계면의 기계적 특성과 전기화학적 안정성을 갖는다. SEI 층은 철근이 콘크리트를 보강하는 방식과 유사하게 3S 층을 구조적으로 보강하여 SEI 층의 팽창을 물리적으로 억제하며, 이러한 강화 메커니즘을 통하여 리튬-리튬 대칭 셀에서의 낮은 편광, 전체 셀에서의 낮은 계면 저항, 배터리 수명 연장의 원리가 설명될 수 있다.In particular, the Li 2 O component completely disappeared in the SEI layer formed on the pDMAMS structure, which is because the formation of Li 2 O is inhibited due to the low miscibility of pDMAMS and Li 2 O and the fact that pDMAMS prevents further decomposition of lithium carbonate into Li 2 O and LiF (Fig. 4i). Another mechanism may involve that some tertiary amine groups at the ends of the pDMAMS polymer branches electrochemically react with DEC to form quaternary ammonium cations and carbonate ions (Figs. 27, 28, and 29). The resulting quaternary ammonium cation polymer (poly(vinylbenzyl trimethylammonium carbonate), pVBTMAC) constitutes one of the important precursors for the synthesis of selective ion-exchange polymers with side-chain functionalities, and it can effectively trap and preserve carbonate anions and other beneficial SEI components. In addition, the partially tetrameric poly(DMAMS-co-VBTMAC) layer selectively filters out lithium ions from the molten shell, allowing only the 3S layer to pass through, which results in the high tLi+ value (0.95). It should be noted that the quaternization reaction is always accompanied by an electrochemical reaction (Figure 30). The slightly higher interfacial resistance of pDMAMS-Li (60 Ω) than that of bare Li (55 Ω, Figures 3d and 3e) can be confirmed by the fact that Li 2 CO 3 is a higher insulating material than LiF and Li 2 O, which is also consistent with the Li 2 CO 3 -rich composition of the SEI layer formed around the pDMAMS layer. Furthermore, these results suggest that inorganic and crystalline Li 2 O may be the main factors that deteriorate the mechanical and chemical stabilities by giving the SEI layer a heterogeneous multicomponent nature with rich grain boundaries, which is a different perspective from the previously known role of Li 2 O in the SEI layer. The homogeneous and Li 2 O-free pDMAMS-SEI composite layer provides flexibility and durability to the Li/SEI interface to withstand large volume changes induced by Li metal and dendrite formation (Figure 3h). In addition, the Li 2 O-free homogeneous SEI layer improves the adhesion between the Li surface and the pDMAMS layer, which imparts mechanical properties and electrochemical stability to the Li/SEI/pDMAMS interface. The SEI layer structurally reinforces the 3S layer similar to how steel bars reinforce concrete, thereby physically suppressing the expansion of the SEI layer, and this reinforcing mechanism can explain the low polarization in Li–Li symmetric cells, low interfacial resistance in the whole cell, and extended battery cycle.
예시적인 구현예에서, 상기 고분자 보호 박막층은 10 내지 500 nm 범위의 두께를 가질 수 있다. 3S 층에서 리튬 이온을 투과할 수 있다는 점을 확인했지만, 실용적 사항을 고려하여 두께를 최적화할 필요가 있다. 지나치게 두꺼운 경우 리튬 플럭스를 감소시키지만, 지나치게 얇은 경우 물리적 손상(예컨대 열상, 찢어짐, 구멍, 구김 등)이 발생할 가능성이 높아진다. 따라서 10nm에서 500nm 범위의 대칭형 및 전체 pDMAMS-Li로 만든 셀을 평가하였으며, 특히 100nm의 3S 층이 최적의 사이클 성능을 제공한다는 것을 확인하였다(도 5a, 5b, 5c). 더 얇은 3S 층(50nm 미만)의 경우, pDMAMS 층은 네이티브 SEI 층을 완전히 수용하지 못해 베어 Li에 비해 감소된 이중 피크 전위에서 볼 수 있듯이 Li 덴드라이트 및 죽은 Li 형성을 견딜 수 없었다 (도 5c). 반면에 3S 층이 100nm보다 훨씬 두꺼운 경우 계면 저항이 증가하여 초기 비 용량이 감소하였다(도 5b, 5d, 5e 및 5f). 또한, 층이 두꺼울수록 완전 팽윤이 어렵기 때문에 팽윤하지 않은 영역이 층 하단에 위치하게 되어 3S 층의 활용도가 떨어졌다(도 5c 및 31). 이는 전체 셀 저항을 증가시켜 셀 성능을 저하시킨다. 또한 300nm pDMAMS-Li의 전이 수(0.63)는 100nm pDMAMS-Li의 전이 수(0.95)보다 크게 감소하므로, 높은 리튬 이온 플럭스를 제공하기 위하여는 pDMAMS 층의 완전한 팽윤하여야 한다는 것을 나타낸다 (도 32).In an exemplary embodiment, the polymer protective film layer can have a thickness in the range of 10 to 500 nm. Although it has been confirmed that the 3S layer is permeable to lithium ions, the thickness needs to be optimized for practical considerations. If it is too thick, it will reduce the lithium flux, whereas if it is too thin, it is more likely to cause physical damage (e.g., bruising, tearing, punctures, creases, etc.). Therefore, cells made with symmetric and full pDMAMS-Li with thicknesses ranging from 10 nm to 500 nm were evaluated, and it was confirmed that a 3S layer of 100 nm in particular provided the optimal cycle performance (Figs. 5a, 5b, 5c). For thinner 3S layers (less than 50 nm), the pDMAMS layer could not fully accommodate the native SEI layer, which led to the formation of Li dendrites and dead Li, as can be seen from the reduced double peak potential compared to bare Li (Fig. 5c). On the other hand, when the 3S layer was much thicker than 100 nm, the interfacial resistance increased, which decreased the initial specific capacity (Figs. 5b, 5d, 5e, and 5f). In addition, since complete swelling was difficult as the layer was thicker, the non-swollen region was located at the bottom of the layer, which reduced the utilization of the 3S layer (Figs. 5c and 31). This increased the overall cell resistance, which deteriorated the cell performance. In addition, the transition number of 300 nm pDMAMS-Li (0.63) was significantly reduced compared to that of 100 nm pDMAMS-Li (0.95), indicating that complete swelling of the pDMAMS layer is required to provide high lithium ion flux (Fig. 32).
결론적으로, 본 발명자들은 iCVD 방법으로 Li 금속 음극에 직접 형성한 신규한 3S 나노층을 보고한다. pDMAMS로 제조된 3S 층은 탄산염 전해질의 존재 하에서 만족스러운 팽윤 거동을 보여준다. 형성된 전해질 솔보겔은 팽윤된 구조에서 균질하며 Li2O가 없는 네이티브 SEI 층을 호스팅 할 수 있어 낮은 DC 이온 전도도 (도 5g, 표 4), 강력한 계면 접착력을 통하여 낮은 계면 저항으로 높은 리튬 이온 전달 수치를 제공하고, 이로서 기계적 안정성 및 안정적인 전기 화학 반응을 나타낼 수 있다. 특히 최적의 두께인 100nm의 pDMAMS-Li는 베어 리튬 금속의 경우와 비교하여 대칭 셀에서는 550%, 고부하 NMC 음극을 사용한 풀 셀에서는 600%의 사이클 수명 연장을 보였다. 표 S4는 이온 전도도, 리튬 전이 수 및 사이클링 성능 데이터를 요약한다.In conclusion, we report a novel 3S nanolayer directly formed on Li metal anode by iCVD method. The 3S layer prepared by pDMAMS shows satisfactory swelling behavior in the presence of carbonate electrolyte. The formed electrolyte solvogel can host a homogeneous and Li2O -free native SEI layer in the swollen structure, which provides low DC ionic conductivity (Fig. 5g, Table S4) and high lithium ion transfer value with low interfacial resistance through strong interfacial adhesion, thereby exhibiting mechanical stability and stable electrochemical reactions. In particular, pDMAMS-Li with an optimal thickness of 100 nm showed a cycle life extension of 550% in a symmetrical cell and 600% in a full cell using a highly loaded NMC anode, compared with that of bare Li metal. Table S4 summarizes the ionic conductivity, lithium transfer number, and cycling performance data.
연구 결과를 바탕으로, 본 발명자들은 팽윤한 소프트 스캐폴드 층에 필요한 이상적인 기준을 설정했다(도 5h). 첫째, 3S 층은 배터리 전해질에 의해 적절히 부풀어 리튬 이온 전달을 촉진할 수 있는 충분한 자유 부피를 제공해야 한다. 둘째, 전해질 솔보겔은 네이티브 SEI 층과 열역학적으로 혼화 가능해야 한다. 셋째, 3S 층의 두께는 세포 저항을 최소화하고 네이티브 SEI 층을 완전히 수용하기 위해 약 100nm여야 한다. 넷째, 3S 레이어는 고전압 음극 배터리의 큰 전압 범위에서 화학적 및 전기화학적으로 불활성이어야 한다. 다섯째, 층은 리튬 금속의 큰 부피 변화를 견딜 수 있도록 유연하고 기계적으로 강해야 한다. 마지막으로, Li 표면의 3S 층의 접착력은 Li 덴드라이트 또는 죽은 Li 형성을 억제 할 수 있을 만큼 충분히 강해야 한다. 특히 3S 층과 Li은 긴밀한 접착을 유지해야 하기 때문에 구리까지 Li 금속을 완전히 스트리핑 하는 것은 바람직하지 않다. iCVD를 사용하는 3S 레이어 형성 방식은 특히 상업적 규모의 생산을 지원하는 롤투롤 공정을 지원하기 때문에 다른 금속 배터리 시스템(예컨데, 나트륨, 칼륨, 아연, 마그네슘, 알루미늄 등)에도 널리 적용될 수 있다. Based on the results of the study, the inventors set the ideal criteria required for the swollen soft scaffold layer (Fig. 5h). First, the 3S layer should be adequately swollen by the battery electrolyte to provide sufficient free volume to facilitate lithium ion transport. Second, the electrolyte solvogel should be thermodynamically miscible with the native SEI layer. Third, the thickness of the 3S layer should be approximately 100 nm to minimize cell resistance and completely accommodate the native SEI layer. Fourth, the 3S layer should be chemically and electrochemically inert over the large voltage range of high-voltage cathode batteries. Fifth, the layer should be flexible and mechanically strong to withstand the large volume change of lithium metal. Finally, the adhesion of the 3S layer to the Li surface should be strong enough to suppress the formation of Li dendrites or dead Li. In particular, it is not desirable to completely strip the Li metal to the copper because the 3S layer and Li should maintain a close bond. The 3S layer formation method using iCVD can be widely applied to other metal battery systems (e.g., sodium, potassium, zinc, magnesium, aluminum, etc.), especially because it supports roll-to-roll process that supports commercial-scale production.
본 발명의 다른 구현예에서는, 전술한 리튬 금속 전지용 전극인 음극; 양극; 및 상기 양극과 음극 사이에 개재된 전해질층;을 포함하며, 상기 음극은 표면에 형성된 고체-전해질 계면층(Solid electrolyte interphase)을 포함하는, 이차 전지가 제공된다.In another embodiment of the present invention, a secondary battery is provided, which comprises: an anode, which is an electrode for a lithium metal battery as described above; an anode; and an electrolyte layer interposed between the anode and the anode; wherein the anode includes a solid electrolyte interphase formed on a surface thereof.
예시적인 구현예에서, 상기 상기 고체-전해질 계면층은 Li2O 프리-SEI 층일 수 있다. 여기서 Li2O 프리-SEI 층은 SEI 층 상에 Li2O를 실질적으로 함유하지 않을 수 있다. 예를 들어, 전해질 팽윤성 고분자가 pDMAMS인 경우, pDMAMS와 Li2O의 혼화성이 낮고, pDMAMS가 탄산리튬이 Li2O와 LiF로 더 이상 분해되는 것을 방지한 결과 Li2O 프리-SEI 층을 형성할 수 있다. SEI 층 상에 Li2O를 실질적으로 함유하지 않음으로써 덴드라이트의 형성으로 인한 부피 변화에 유연성과 내구성을 가질 수 있다.한편, 상기 다른 구현예의 리튬 이차전지에서, 상술한 양극은, 예를 들어, 상기 양극 활물질, 바인더 및 도전재 등을 분산매(용매)에 분산, 혼합시켜 슬러리를 만들고, 이를 양극 집전체 상에 도포한 후 건조 및 압연함으로써 제조될 수 있다. 이때, 상기 분산매로는 NMP(N-methyl-2-pyrrolidone), DMF(Dimethyl formamide), DMSO(Dimethyl sulfoxide), 에탄올, 이소프로판올, 물 및 이들의 혼합물을 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다.In an exemplary embodiment, the solid-electrolyte interfacial layer may be a Li 2 O free-SEI layer. Here, the Li 2 O free-SEI layer may not substantially contain Li 2 O on the SEI layer. For example, when the electrolyte swellable polymer is pDMAMS, the miscibility of pDMAMS and Li 2 O is low, and the pDMAMS may prevent lithium carbonate from further decomposing into Li 2 O and LiF, thereby forming a Li 2 O free-SEI layer. By substantially not containing Li 2 O on the SEI layer, flexibility and durability may be maintained against volume changes due to the formation of dendrites. Meanwhile, in the lithium secondary battery of the other embodiment, the positive electrode described above may be manufactured by, for example, dispersing and mixing the positive electrode active material, the binder, and the conductive agent in a dispersion medium (solvent) to make a slurry, applying the slurry on a positive electrode current collector, and then drying and rolling. At this time, NMP (N-methyl-2-pyrrolidone), DMF (Dimethyl formamide), DMSO (Dimethyl sulfoxide), ethanol, isopropanol, water, and mixtures thereof can be used as the dispersion medium, but are not necessarily limited thereto.
상기 양극 활물질은 리튬 이온의 가역적인 삽입 및 탈리가 가능한 물질이라면, 특별히 제한되지 않으며, 예를 들어, Co, Mn, Ni, W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg 및 Mo로 이루어진 군에서 선택된 1종 이상의 금속 원소를 포함한 리튬 금속 복합 산화물을 포함할 수 있다. The above positive electrode active material is not particularly limited as long as it is a material capable of reversible insertion and de-insertion of lithium ions, and may include, for example, a lithium metal composite oxide including one or more metal elements selected from the group consisting of Co, Mn, Ni, W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, and Mo.
보다 구체적으로, 상기 양극 활물질로, 하기 화학식 중 어느 하나로 표현되는 화합물을 사용할 수 있다. LiaA1-bRbD2(상기 식에서, 0.90 ≤ a ≤ 1.8 및 0 ≤ b ≤ 0.5이다); LiaE1-bRbO2-cDc(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 및 0 ≤ c ≤ 0.05이다); LiE2-bRbO4-cDc(상기 식에서, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05이다); LiaNi1-b-cCobRcDα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 및 0 < α ≤ 2이다); LiaNi1-b-cCobRcO2-αZα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 및 0 < α < 2이다); LiaNi1-b-cCobRcO2-αZ2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 및 0 < α < 2이다); LiaNi1-b-cMnbRcDα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 및 0 < α ≤ 2이다); LiaNi1-b-cMnbRcO2-αZα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 및 0 < α < 2이다); LiaNi1-b-cMnbRcO2-αZ2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 및 0 < α < 2이다); LiaNibEcGdO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5 및 0.001 ≤ d ≤ 0.1이다.); LiaNibCocMndGeO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0 ≤ d ≤0.5 및 0.001 ≤ e ≤ 0.1이다.); LiaNiGbO2(상기 식에서, 0.90 ≤ a ≤ 1.8 및 0.001 ≤ b ≤ 0.1이다.); LiaCoGbO2(상기 식에서, 0.90 ≤ a ≤ 1.8 및 0.001 ≤ b ≤ 0.1이다.); LiaMnGbO2(상기 식에서, 0.90 ≤ a ≤ 1.8 및 0.001 ≤ b ≤ 0.1이다.); LiaMn2GbO4(상기 식에서, 0.90 ≤ a ≤ 1.8 및 0.001 ≤ b ≤ 0.1이다.); QO2; QS2; LiQS2; V2O5; LiV2O5; LiTO2; LiNiVO4; 및 Li(3-f)J2(PO4)3(0 ≤ f ≤ 2).More specifically, as the positive electrode active material, a compound represented by any one of the following chemical formulas can be used. Li a A 1-b R b D 2 (wherein 0.90 ≤ a ≤ 1.8 and 0 ≤ b ≤ 0.5); Li a E 1-b R b O 2-c D c (wherein 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, and 0 ≤ c ≤ 0.05); LiE 2-b R b O 4-c D c (wherein 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05); Li a Ni 1-bc Co b R c D α (in the above formula, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 and 0 < α ≤ 2); Li a Ni 1-bc Co b R c O 2-α Z α (in the above formula, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 and 0 < α <2); Li a Ni 1-bc Co b R c O 2-α Z 2 (in the above formula, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 and 0 < α <2); Li a Ni 1-bc Mn b R c D α (in the above formula, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 and 0 < α ≤ 2); Li a Ni 1-bc Mn b R c O 2-α Z α (in the above formula, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 and 0 < α <2); Li a Ni 1-bc Mn b R c O 2-α Z 2 (in the above formula, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 and 0 < α <2); Li a Ni b E c G d O 2 (wherein 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, and 0.001 ≤ d ≤ 0.1); Li a Ni b Co c Mn d GeO 2 (wherein 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0 ≤ d ≤ 0.5, and 0.001 ≤ e ≤ 0.1); Li a NiG b O 2 (wherein 0.90 ≤ a ≤ 1.8 and 0.001 ≤ b ≤ 0.1); Li a CoG b O 2 (wherein 0.90 ≤ a ≤ 1.8 and 0.001 ≤ b ≤ 0.1); Li a MnG b O 2 (wherein 0.90 ≤ a ≤ 1.8 and 0.001 ≤ b ≤ 0.1); Li a Mn 2 G b O 4 (wherein 0.90 ≤ a ≤ 1.8 and 0.001 ≤ b ≤ 0.1); QO 2 ; QS 2 ; LiQS 2 ; V 2 O 5 ; LiV 2 O 5 ; LiTO 2 ; LiNiVO 4 ; and Li (3-f) J 2 (PO 4 ) 3 (0 ≤ f ≤ 2).
상기 화학식에 있어서, A는 Ni, Co, Mn 또는 이들의 조합이고; R은 Al, Ni, Co, Mn, Cr, Fe, Mg, V 또는 이들의 조합이고; D는 O, F, S, P 또는 이들의 조합이고; E는 Co, Mn 또는 이들의 조합이고; Z는 F, S, P 또는 이들의 조합이고; G는 Al, Cr, Mn, Fe, Mg, La, Ce, V 또는 이들의 조합이고; Q는 Ti, Mo, Mn 또는 이들의 조합이고; T는 Cr, V, Fe, Sc, Y 또는 이들의 조합이고; J는 V, Cr, Mn, Co, Ni, Cu 또는 이들의 조합이다.In the chemical formula, A is Ni, Co, Mn or a combination thereof; R is Al, Ni, Co, Mn, Cr, Fe, Mg, V or a combination thereof; D is O, F, S, P or a combination thereof; E is Co, Mn or a combination thereof; Z is F, S, P or a combination thereof; G is Al, Cr, Mn, Fe, Mg, La, Ce, V or a combination thereof; Q is Ti, Mo, Mn or a combination thereof; T is Cr, V, Fe, Sc, Y or a combination thereof; J is V, Cr, Mn, Co, Ni, Cu or a combination thereof.
또한, 상기 양극은 상술한 양극 활물질 외에 바인더 및 도전재 등을 더 포함할 수 있다. 상기 바인더는 양극 활물질과 도전재 등의 결합 및 집전체에 대한 결합에 조력하는 성분으로서, 예컨대, 폴리비닐리덴플루오라이드(PVdF), 폴리비닐리덴플루오라이드-폴리헥사플루오로프로필렌 공중합체(PVdF/HFP), 폴리비닐아세테이트, 폴리비닐알코올, 폴리비닐에테르, 폴리에틸렌, 폴리에틸렌옥사이드, 알킬화 폴리에틸렌옥사이드, 폴리프로필렌, 폴리메틸(메트)아크릴레이트, 폴리에틸(메트)아크릴레이트, 폴리테트라플루오로에틸렌(PTFE), 폴리비닐클로라이드, 폴리아크릴로니트릴, 폴리비닐피리딘, 폴리비닐피롤리돈, 스티렌-부타디엔 고무, 아크릴로니트릴-부타디엔 고무, 에틸렌-프로필렌-디엔 모노머(EPDM) 고무, 설폰화 EPDM 고무, 스틸렌-부틸렌 고무, 불소 고무, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 및 이들의 혼합물로 이루어진 군에서 선택되는 1종 이상을 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다.In addition, the positive electrode may further include a binder and a conductive material in addition to the positive electrode active material described above. The above binder is a component that assists in the bonding of the positive electrode active material and the conductive agent and the bonding to the current collector, and may be, for example, polyvinylidene fluoride (PVdF), polyvinylidene fluoride-polyhexafluoropropylene copolymer (PVdF/HFP), polyvinylacetate, polyvinyl alcohol, polyvinyl ether, polyethylene, polyethylene oxide, alkylated polyethylene oxide, polypropylene, polymethyl(meth)acrylate, polyethyl(meth)acrylate, polytetrafluoroethylene (PTFE), polyvinyl chloride, polyacrylonitrile, polyvinylpyridine, polyvinylpyrrolidone, styrene-butadiene rubber, acrylonitrile-butadiene rubber, ethylene-propylene-diene monomer (EPDM) rubber, sulfonated EPDM rubber, styrene-butylene rubber, fluorine rubber, carboxymethyl cellulose (CMC), starch, One or more selected from the group consisting of hydroxypropyl cellulose, regenerated cellulose, and mixtures thereof may be used, but is not necessarily limited thereto.
상기 바인더는 양극 총 중량 100 중량부에 대해 1 내지 50 중량부, 혹은 3 내지 15 중량부의 함량으로 사용될 수 있다. 그 결과, 상기 양극 활물질 및 집전체 간의 접착력 및 이차전지의 용량 특성 등이 우수하게 유지될 수 있다. The above binder can be used in an amount of 1 to 50 parts by weight, or 3 to 15 parts by weight, based on 100 parts by weight of the total weight of the positive electrode. As a result, the adhesive strength between the positive electrode active material and the current collector and the capacity characteristics of the secondary battery can be excellently maintained.
또, 상기 양극에 포함되는 도전재는 리튬 이차전지의 내부 환경에서 부반응을 유발하지 않고 당해 전지에 화학적 변화를 유발하지 않으면서 우수한 전기 전도성을 가지는 것이라면 특별히 제한되지 않으며, 대표적으로는 흑연 또는 도전성 탄소를 사용할 수 있으며, 예컨대, 천연 흑연, 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 뎅카 블랙, 써멀 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙 등의 카본블랙; 결정구조가 그래핀이나 그래파이트인 탄소계 물질; 탄소 섬유, 금속 섬유 등의 도전성 섬유; 불화 카본; 알루미늄 분말, 니켈 분말 등의 금속 분말; 산화 아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 산화물; 및 폴리페닐렌 유도체 등의 도전성 고분자;를 단독으로 또는 2종 이상 혼합하여 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다.In addition, the conductive material included in the positive electrode is not particularly limited as long as it has excellent electrical conductivity without causing side reactions in the internal environment of the lithium secondary battery and without causing chemical changes in the battery, and graphite or conductive carbon can be used as representative examples thereof, and for example, graphite such as natural graphite or artificial graphite; carbon black such as carbon black, acetylene black, Ketjen black, Denka black, thermal black, channel black, furnace black, lamp black, etc.; carbon-based materials having a crystal structure of graphene or graphite; conductive fibers such as carbon fibers or metal fibers; fluorinated carbon; metal powders such as aluminum powder and nickel powder; conductive whiskey such as zinc oxide or potassium titanate; conductive oxides such as titanium oxide; and conductive polymers such as polyphenylene derivatives; may be used alone or in combination of two or more thereof, but is not necessarily limited thereto.
상기 도전재는 양극 총 중량 100 중량부에 대해 0.5 내지 50 중량부, 혹은 1 내지 30 중량부의 함량으로 사용될 수 있다. 이로서, 양극 및 리튬 이차전지의 전도성 및 용량 등 전기화학적 특성이 우수하게 유지될 수 있다. The above-mentioned conductive agent can be used in an amount of 0.5 to 50 parts by weight, or 1 to 30 parts by weight, based on 100 parts by weight of the total weight of the positive electrode. As a result, the electrochemical properties such as conductivity and capacity of the positive electrode and the lithium secondary battery can be excellently maintained.
또한, 상기 양극에는 그 팽창을 억제하는 성분으로서 충진제가 선택적으로 첨가될 수 있다. 이러한 충진제는 당해 전지에 화학적 변화를 유발하지 않으면서 전극의 팽창을 억제할 수 있는 것이라면 특별히 제한되는 것은 아니며, 예컨대, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소 섬유 등의 섬유상 물질; 등을 사용할 수 있다.In addition, a filler may be optionally added to the positive electrode as a component that suppresses its expansion. The filler is not particularly limited as long as it can suppress the expansion of the electrode without causing a chemical change in the battery, and for example, an olefin polymer such as polyethylene or polypropylene; a fibrous material such as glass fiber or carbon fiber; and the like may be used.
또한, 상기 양극 집전체로는 백금(Pt), 금(Au), 팔라듐(Pd), 이리듐(Ir), 은(Ag), 루테늄(Ru), 니켈(Ni), 스테인리스스틸(STS), 알루미늄(Al), 몰리브데늄(Mo), 크롬(Cr), 카본(C), 티타늄(Ti), 텅스텐(W), ITO(In doped SnO2), FTO(F doped SnO2), 및 이들의 합금과, 알루미늄(Al) 또는 스테인리스스틸의 표면에 카본(C), 니켈(Ni), 티타늄(Ti) 또는 은(Ag)을 표면 처리한 것 등을 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다. 양극 집전체의 형태는 호일, 필름, 시트, 펀칭된 것, 다공질체, 발포체 등의 형태일 수 있다.In addition, as the positive electrode current collector, platinum (Pt), gold (Au), palladium (Pd), iridium (Ir), silver (Ag), ruthenium (Ru), nickel (Ni), stainless steel (STS), aluminum (Al), molybdenum (Mo), chromium (Cr), carbon (C), titanium (Ti), tungsten (W), ITO (In doped SnO 2 ), FTO (F doped SnO 2 ), and alloys thereof, as well as aluminum (Al) or stainless steel surface-treated with carbon (C), nickel (Ni), titanium (Ti), or silver (Ag), but the present invention is not necessarily limited thereto. The form of the positive electrode current collector may be in the form of a foil, a film, a sheet, a punched body, a porous body, a foam, or the like.
한편, 상기 전해질층 내에 포함되는 액체 전해질은 비수성 유기 용매 및 리튬염을 포함할 수 있다. 이때 사용 가능한 비수성 유기 용매의 종류는 특히 한정되지 않으며, 이전부터 리튬 이온전지의 전해질 등에 적용 가능한 것으로 알려진 임의의 유기 용매를 사용할 수 있다. 이러한 유기 용매의 예로는, 카보네이트계 용매, 에테르계 용매, 니트릴계 용매, 포스페이트계 용매 및 설폰계 용매로 이루어진 군에서 선택된 1종 이상을 들 수 있다.Meanwhile, the liquid electrolyte included in the electrolyte layer may include a non-aqueous organic solvent and a lithium salt. At this time, the type of non-aqueous organic solvent that can be used is not particularly limited, and any organic solvent that has been previously known to be applicable to electrolytes of lithium ion batteries, etc. may be used. Examples of such organic solvents include at least one selected from the group consisting of carbonate solvents, ether solvents, nitrile solvents, phosphate solvents, and sulfone solvents.
보다 구체적으로, 상기 카보네이트계 용매로는, 디메틸 카보네이트, 디에틸 카보네이트, 디프로필 카보네이트, 에틸렌 카보네이트, 프로필렌 카보네이트, 부틸렌 카보네이트, 플루오로에틸렌 카보네이트, 메틸 프로필 카보네이트, 에틸 메틸 카보네이트, 에틸 프로필 카보네이트 또는 메틸(2,2,2-트리플루오로에틸)카보네이트 등을 사용할 수 있고, 상기 포스페이트계 용매로는 트리메틸 포스페이트, 트리에틸 포스페이트 또는 2-(2,2,2-트리플루오로에톡시)-1,3,2-디옥사포스포란 2-옥사이드 등을 사용할 수 있다. More specifically, as the carbonate solvent, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, fluoroethylene carbonate, methyl propyl carbonate, ethyl methyl carbonate, ethyl propyl carbonate or methyl (2,2,2-trifluoroethyl) carbonate can be used, and as the phosphate solvent, trimethyl phosphate, triethyl phosphate or 2-(2,2,2-trifluoroethoxy)-1,3,2-dioxaphosphorane 2-oxide can be used.
또, 상기 에테르계 용매로는, 디부틸 에테르, 테트라글라임, 디글라임, 디메톡시 에탄 또는 2-메틸 테트라하이드로퓨란 등의 테트라하이드로퓨란 유도체 등을 사용할 수 있고, 상기 니트릴계 용매로는 석시노니트릴 (Succinonitrile), 아디포니트릴 (Adiponitrile), 세바코니트릴 (Sebaconitrile), 아세토니트릴 (Acetonitrile) 또는 프로피오니트릴 (Propionitrile) 등을 사용할 수 있다. 또, 상기 설폰계 용매로는, 디메틸 설폰, 에틸메틸 설폰 또는 설포란 (sulforane) 등을 사용할 수 있다.In addition, as the ether solvent, tetrahydrofuran derivatives such as dibutyl ether, tetraglyme, diglyme, dimethoxy ethane or 2-methyl tetrahydrofuran can be used, and as the nitrile solvent, succinonitrile, adiponitrile, sebaconitrile, acetonitrile or propionitrile can be used. In addition, as the sulfone solvent, dimethyl sulfone, ethylmethyl sulfone or sulforane can be used.
예시적인 구현예에서, 상기 전해질은 액체상 전해질 또는 고체상 전해질일 수 있으며, 예를 들어 상기 액체상 전해질은 비수 전해질로 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트,2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 비닐에틸렌 카보네이트, 플루오로에틸렌 카보네이트(fluoroethylene carbonate, FEC)의 환형 카보네이트 화합물과 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(ethyl methyl carbonate, EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트의 선형 카보네이트 화합물로 이루어진 군에서 선택되는 어느 하나 또는 2종 이상의 혼합물을 포함할 수 있다. 또한, 상기 고체상 전해질은 Li10GeP2S12(LGPS), Li2SiP2S5Cl(LSPSCl), LPS, LiLaTiO4(LLTO), Li7La3Zr2O12(LLZO), Li2+2xZn1-xGeO4(LISICON), Na1+xZr2SixP3-xO12(NASICON, 0<x<3) 및 이들의 조합을 포함할 수 있다.In an exemplary embodiment, the electrolyte can be a liquid electrolyte or a solid electrolyte, for example, the liquid electrolyte can include one or a mixture of two or more selected from the group consisting of cyclic carbonate compounds of ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate, vinylethylene carbonate, and fluoroethylene carbonate (FEC), and linear carbonate compounds of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethyl methyl carbonate (EMC), methylpropyl carbonate, and ethylpropyl carbonate. Additionally, the solid-state electrolyte may include Li 10 GeP 2 S 12 (LGPS), Li 2 SiP 2 S 5 Cl (LSPSCl), LPS, LiLaTiO 4 (LLTO), Li 7 La 3 Zr 2 O 12 (LLZO), Li 2+2x Zn 1-x GeO 4 (LISICON), Na 1+x Zr 2 Si x P 3-x O 12 (NASICON, 0<x<3) and combinations thereof.
다만, 복합 전해질막의 보다 우수한 기계적 물성 및 안전성 등의 측면에서, 상기 유기 용매로는 그 적어도 일부가 상기 가교 중합체와 함께 경화될 수 있고, 난연성을 나타낼 수 있는 카보네이트계 용매, 설폰계 용매 또는 포스페이트계 용매 등을 사용함이 바람직하다. 또한, 상기 유기 용매로는 상기 가교 중합체의 형성을 위한 경화 조건, 예를 들어, 60 내지 80℃의 열 경화 조건에서 낮은 휘발성을 나타내는 용매를 사용함이 보다 바람직하다. However, in terms of the superior mechanical properties and safety of the composite electrolyte membrane, it is preferable to use, as the organic solvent, a carbonate solvent, a sulfone solvent, or a phosphate solvent, which can be cured at least in part together with the crosslinked polymer and exhibit flame retardancy. In addition, it is more preferable to use, as the organic solvent, a solvent which exhibits low volatility under curing conditions for forming the crosslinked polymer, for example, under thermal curing conditions of 60 to 80° C.
한편, 상기 유기 용매에 용해 또는 분산되는 리튬염으로는 이전부터 리튬 이차전지의 전해질에 적용 가능한 것으로 알려진 임의의 리튬염, 예를 들어, LiFSI (리튬 비스(플루오로설포닐)이미드), LiTFSI (리튬 비스(트리플루오로메탄설포닐)이미드), LiCl, LiBr, LiI, LiClO4, LiBF4, LiPF6, LiB10Cl10, LiCF3SO3, LiCF3CO2, LiC4BO8, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (C2F5SO2)2NLi, (CF3SO2)3CLi, 클로로 보란 리튬, 탄소수 4 이하의 저급 지방족 카르본산 리튬, 4-페닐 붕산 리튬 및 리튬 이미드로 이루어진 군에서 선택된 1종 이상 등을 사용할 수 있다. Meanwhile, the lithium salt dissolved or dispersed in the organic solvent may be any lithium salt that has been previously known to be applicable to the electrolyte of a lithium secondary battery, for example, LiFSI (lithium bis(fluorosulfonyl)imide), LiTFSI (lithium bis(trifluoromethanesulfonyl)imide), LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiPF 6 , LiB 10 Cl 10 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiC 4 BO 8 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (C 2 F 5 SO 2 ) 2 NLi, (CF 3 SO 2 ) 3 CLi, lithium chloroborane, lithium lower aliphatic carboxylic acid having 4 or fewer carbon atoms, lithium 4-phenylborate, and lithium imide. One or more of the following may be used:
이러한 리튬염은 상기 액체 전해질의 유기 용매 내에 0.8 M 내지 4.0 M, 혹은 1.0 M 내지 2.0 M의 농도로 포함될 수 있고, 이로서 일 구현예의 복합 전해질막이 우수한 열적 안정성 및 이온 전도도를 나타낼 수 있다. Such lithium salts may be included in the organic solvent of the liquid electrolyte at a concentration of 0.8 M to 4.0 M, or 1.0 M to 2.0 M, thereby enabling the composite electrolyte membrane of one embodiment to exhibit excellent thermal stability and ionic conductivity.
한편, 상기 다른 구현예의 리튬 이차전지에 있어서, 양극 및 음극의 사이에는 전해질층이, 예를 들어, 층상 구조의 막 또는 필름의 형태로 개재될 수 있다. 이 경우, 상기 전해질층이 분리막의 역할(즉, 음극과 양극을 전기적으로 절연하는 동시에 리튬 이온을 통과시키는 역할)을 겸할 수도 있다. 이때, 상기 전해질층은 양극 또는 음극의 일면에 박막의 형태로 코팅 및 부착되어 상기 이차전지에 포함될 수도 있다. 또한, 상기 전해질층은 양극과 음극의 사이에 독립적으로 개재될 수도 있다. 그리고, 상기 다른 구현예의 리튬 이차전지는 액체 전해질과 고체 전해질을 병용하는 반(Semi)고체 전지일 수 있다.Meanwhile, in the lithium secondary battery of the other embodiment, an electrolyte layer may be interposed between the positive and negative electrodes, for example, in the form of a layered membrane or film. In this case, the electrolyte layer may also function as a separator (i.e., electrically insulating the negative and positive electrodes while allowing lithium ions to pass through). At this time, the electrolyte layer may be included in the secondary battery by being coated and attached in the form of a thin film on one surface of the positive or negative electrode. In addition, the electrolyte layer may be independently interposed between the positive and negative electrodes. In addition, the lithium secondary battery of the other embodiment may be a semi-solid battery that uses a liquid electrolyte and a solid electrolyte together.
아울러, 상기 리튬 이차전지에서 상기 전해질층에 다공성 분리막이 부가될 경우, 이러한 분리막은 폴리에틸렌, 폴리프로필렌과 같은 올레핀계 폴리머, 유리섬유 등을 시트, 다중막, 미세다공성 필름, 직포 및 부직포 등의 형태로 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다. 다만, 다공성의 폴리에틸렌 또는 다공성의 유리섬유 부직포(glass filter)를 분리막으로 적용하는 것이 바람직할 수 있고, 다공성의 유리섬유 부직포를 분리막으로 적용하는 것이 더욱 바람직할 수 있다. 상기 분리막은 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막일 수 있고, 분리막의 기공 직경은 일반적으로 0.01 내지 10 ㎛, 두께는 일반적으로 5 내지 300 ㎛ 범위일 수 있으나, 이에 제한되는 것은 아니다.In addition, when a porous separator is added to the electrolyte layer in the lithium secondary battery, the separator can be used in the form of a sheet, a multi-membrane, a microporous film, a woven fabric, a non-woven fabric, etc., such as an olefin polymer such as polyethylene or polypropylene, glass fiber, etc., but is not necessarily limited thereto. However, it may be preferable to apply porous polyethylene or porous glass fiber non-woven fabric (glass filter) as the separator, and it may be more preferable to apply porous glass fiber non-woven fabric as the separator. The separator may be an insulating thin film having high ion permeability and mechanical strength, and the pore diameter of the separator may generally be in the range of 0.01 to 10 ㎛, and the thickness may generally be in the range of 5 to 300 ㎛, but is not limited thereto.
한편, 상기 다른 구현예의 리튬 이차전지는 당 분야의 통상적인 방법에 따라 제조될 수 있다. 예를 들어, 양극과 음극 사이에 복합 전해질막 등을 형성하고, 선택적으로 다공성 분리막 등을 부가하여 제조할 수 있다. Meanwhile, the lithium secondary battery of the above other embodiment can be manufactured according to a conventional method in the art. For example, it can be manufactured by forming a composite electrolyte membrane, etc. between the positive electrode and the negative electrode, and optionally adding a porous separator, etc.
이러한 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지 셀에 적용됨은 물론, 중대형 디바이스의 전원인 전지모듈의 단위전지로 특히 적합하게 사용될 수 있다.These lithium secondary batteries can be applied to battery cells used as power sources for small devices, and are particularly suitable for use as unit cells for battery modules that are power sources for medium- to large-sized devices.
본 발명의 다른 구현예에서, 전술한 리튬 금속 전지용 전극의 제조 방법으로서, 개시제를 사용하는 화학 기상 증착 (initiated Chemical Vapor Deposition; iCVD) 공정으로 음극 집전체 상에 고분자 보호 박막층을 형성하는 것을 포함하며, 상기 고분자 보호 박막층은 전해질 팽윤성 고분자를 포함하고, 상기 전해질 팽윤성 고분자는 다이메틸아미노메틸 스티렌(dimethylaminomethyl styrene), 에틸렌 글리콜 다이메틸아크릴레이트(ethylene glycol dimethacrylate), 아크릴산 (acrylic acid), 2-(퍼플루오로헥실) 에틸 아크릴레이트 [(2-perfluorohexyl) ethyl acrylate)], 및 다이바이닐벤젠 (divinylbenzene)으로 구성된 군에서 선택되는 하나 이상의 단량체로부터 형성되는, 리튬 금속 전지용 전극 제조 방법이 제공된다.In another embodiment of the present invention, a method for manufacturing an electrode for a lithium metal battery is provided, comprising: forming a polymer protective film layer on a negative electrode current collector by an initiated Chemical Vapor Deposition (iCVD) process using an initiator, wherein the polymer protective film layer includes an electrolyte swellable polymer, and the electrolyte swellable polymer is formed from at least one monomer selected from the group consisting of dimethylaminomethyl styrene, ethylene glycol dimethacrylate, acrylic acid, 2-(perfluorohexyl) ethyl acrylate, and divinylbenzene.
예시적인 구현예에서, 상기 개시제를 사용하는 화학 기상 증착 공정에서, 터트-부틸 퍼옥사이드 (tert-butyl peroxide, TBPO)를 포함하는 개시제를 사용하여 수행될 수 있다.In an exemplary embodiment, a chemical vapor deposition process using the initiator may be performed using an initiator including tert-butyl peroxide (TBPO).
예시적인 구현예에서, 상기 개시제를 사용하는 화학 기상 증착 공정에서, 2 nm/min-1 내지 14 nm/min-1의 증착 속도로 수행될 수 있다. 예를 들어, 상기 증착 속도는 2 내지 12 nm/min-1 범위일 수 있다.In an exemplary embodiment, the chemical vapor deposition process using the initiator may be performed at a deposition rate of 2 nm/min -1 to 14 nm/min -1 . For example, the deposition rate may be in the range of 2 to 12 nm/min -1 .
도 1은 Li 금속 상에 형성된 전해질 팽창성 iCVD 폴리머 나노층으로서, a) SEI 층 강화를 위하여 Li 금속 음극 상에 형성된 팽창성-소프트 스캐폴드의 개략도를 도시하고, b) Li 금속에 직접 iCVD 고분자 나노층을 형성한 개략도를 도시한다. c) pDMAMS, pC6FA, pDVB, pAA 및 pEGDMA의 화학 구조를 도시한다. d) 100nm 두께의 pDMAMS 층으로 코팅된 Li 금속의 단면 집속 이온 빔 주사 전자 현미경(FIB-SEM) 이미지를 도시한다(눈금 막대는 500nm). e) 베어 Li의 SEM 이미지를 도시한다. f) 100nm pDMAMS-Li의 SEM 이미지를 도시한다. g) Si 기판 상에 iCVD 폴리머 코팅한 샘플의 EC:DEC(3:7, v/v) 혼합물에 대한 접촉각을 도시한다. h) 전해질 용매로 팽윤된 100nm pDMAMS-Si의 일립소메트리 분석 결과를 도시한다(여기서, EC:DEC 혼합물의 굴절률(n)은 1.39) i) 전해질 용매로 팽윤되기 전/후의 iCVD 폴리머 필름의 굴절률 차이와 팽윤 비율을 도시한다.Figure 1 illustrates the schematic of the electrolyte-expandable iCVD polymer nanolayers formed on Li metal: a) a schematic of the expandable-soft scaffold formed on Li metal anode for strengthening the SEI layer, b) a schematic of the formation of the iCVD polymer nanolayers directly on Li metal. c) chemical structures of pDMAMS, pC6FA, pDVB, pAA, and pEGDMA. d) cross-sectional focused ion beam scanning electron microscopy (FIB-SEM) image of Li metal coated with a 100 nm thick pDMAMS layer (scale bar is 500 nm). e) SEM image of bare Li. f) SEM image of 100 nm pDMAMS-Li. g) Contact angle of the sample coated with iCVD polymer on Si substrate for EC:DEC (3:7, v/v) mixture. h) Ellipsometry analysis results of 100 nm pDMAMS-Si swollen with electrolyte solvent (wherein the refractive index (n) of the EC:DEC mixture is 1.39) i) Refractive index difference and swelling ratio of iCVD polymer film before/after swelling with electrolyte solvent are shown.
도 2는 대칭형 베어-Li 및 100nm iCVD 폴리머-Li 대칭 셀의 전압 프로파일을 도시한다. a) 삽입이미지는 pDMAMS-Li의 10번째 및 50번째 사이클 후 Li 음극의 이미지이다. b) a)에서 2번째, 10번째, 100번째 및 200번째 사이클의 전압 프로파일을 확대 도시한다. c) 및 d) 1싸이클에서 1시간 동안 10mV 편광 하에서 대칭형 베어-Li 및 pDMAMS-Li(100nm) 셀의 정상 상태 전류 측정 결과를 도시한다. e) poly(DMAMS-co-C6FA)의 분자 구조를 도시한다. f) poly(DMAMS-co-C6FA)-Li 샘플의 함량 비율(DMAMS:C6FA)을 도시한다. g) 대칭 poly(DMAMS-co-C6FA)-Li(100nm) 셀의 전압 프로파일을 도시한다. h) 도 2g의 10번째 사이클의 전압 프로파일을 확대 도시한다.Figure 2 shows voltage profiles of symmetric bare-Li and 100 nm iCVD polymer-Li symmetric cells. a) The inset images are the Li cathode images after the 10th and 50th cycles of pDMAMS-Li. b) Magnified views of the voltage profiles of the 2nd, 10th, 100th, and 200th cycles in a). c) and d) Steady-state current measurements of symmetric bare-Li and pDMAMS-Li(100 nm) cells under 10 mV polarization for 1 h in 1 cycle. e) Molecular structure of poly(DMAMS-co-C6FA). f) Content ratio (DMAMS:C6FA) of poly(DMAMS-co-C6FA)-Li samples. g) Voltage profile of the symmetric poly(DMAMS-co-C6FA)-Li(100 nm) cell. h) Enlarged view of the voltage profile of the 10th cycle of Fig. 2g.
도 3. 3S-Li||NMC 배터리의 전기화학적 거동을 도시하며, a) DMAMS/C6FA 비율이 다른 100nm 폴리(DMAMS-co-C6FA)-Li||NMC 배터리의 사이클링 성능 및 쿨롱 효율을 도시한다(충전 및 방전 전류 밀도는 20℃에서 0.1mA cm-2의 형성 사이클 후 2mA cm-2로 고정). b) 및 c) 1~100번째 사이클에서 베어 리튬 및 100nm pDMAMS-Li||NMC 배터리의 충전/방전 프로파일을 도시한다. d) 및 e) 0~100번째 사이클에서 대칭 베어 리튬 및 100nm pDMAMS-Li 셀의 나이퀴스트 플롯을 도시한다. f) 10번째 사이클 후 베어 리튬, pC6FA-Li, pDMAMS-Li의 이미지를 도시한다. g) 100nm 폴리(DMAMS-co-C6FA)-Li||NMC 배터리의 속도 성능을 도시한다1C=2mA cm-2). h) pDMAMS 층의 SEM 이미지로서, Li 수상 돌기의 전파를 억제하는 것을 도시한다(스케일 막대, 50 μm).Figure 3. Electrochemical behaviors of 3S-Li||NMC batteries, a) Cycling performance and Coulombic efficiency of 100 nm poly(DMAMS-co-C6FA)-Li||NMC batteries with different DMAMS/C6FA ratios (charge and discharge current densities were fixed at 2 mA cm -2 after the formation cycle of 0.1 mA cm -2 at 20 °C). b) and c) Charge/discharge profiles of bare lithium and 100 nm pDMAMS-Li||NMC batteries from the 1st to the 100th cycle. d) and e) Nyquist plots of symmetric bare lithium and 100 nm pDMAMS-Li cells from the 0th to the 100th cycle. f) Images of bare lithium, pC6FA-Li, and pDMAMS-Li after the 10th cycle. g) Rate performance of 100 nm poly(DMAMS-co-C6FA)-Li||NMC battery (1C=2 mA cm -2 ). h) SEM image of the pDMAMS layer showing inhibition of propagation of Li dendrites (scale bar, 50 μm).
도 4는 a) 내지 c) 비순환 100nm pDMAMS-Li, 리소싱된 100nm pDMAMS-Li 및 깊이 프로파일링을 통한 리소싱된 베어-Li 음극에 대한 TOF-SIMS 분석 결과를 도시한다. d) 내지 f) 깊이 프로파일링이 적용된 비순환 100nm pDMAMS-Li, 리튬화 100nm pDMAMS-Li 및 리튬화 베어-Li 음극의 XPS 분석 결과를 도시한다. g) 팽윤된 pDMAMS 층에 수용된 네이티브 SEI 층의 개략도를 도시한다. h) 및 i) 깊이 프로파일링이 적용된 리튬화 베어 Li 및 100nm pDMAMS-Li의 C1s 및 O1s 데이터에 대한 XPS 스펙트럼을 도시한다.Figure 4 illustrates TOF-SIMS analysis results for a) to c) non-cycled 100 nm pDMAMS-Li, resourced 100 nm pDMAMS-Li, and resourced bare-Li cathodes with depth profiling; d) to f) XPS analysis results for non-cycled 100 nm pDMAMS-Li, lithiated 100 nm pDMAMS-Li, and lithiated bare-Li cathodes with depth profiling; g) Schematic illustration of native SEI layer accommodated in swollen pDMAMS layer; h) and i) XPS spectra for C1s and O1s data of lithiated bare Li and 100 nm pDMAMS-Li with depth profiling.
도 5은 서로 다른층 두께가 다른 3S-Li 전지의 전기 화학적 성능으로서, a) 10nm ~ 500nm의 pDMAMS 층을 가진 대칭형 pDMAMS-Li 전지의 전압 프로파일을 도시한다. b) 층 두께가 다른 pDMAMS-Li||NMC 배터리의 사이클링 성능 및 쿨롱 효율을 도시한다(충전 및 방전 전류 밀도는 0.1mA cm-2에서 형성 사이클 후 2mA cm-2로 고정). c) a)의 전압 프로파일을 확대 도시한다. d) pDMAMS 층 두께가 다른 베어-Li 및 pDMAMS-Li||NMC 배터리의 초기 충전/방전 프로파일을 도시한다. e) 및 f) 두께가 다른 초기 및 50번째 사이클에서 pDMAMS-Li||NMC 배터리의 나이퀴스트 플롯을 도시한다. (g) 최근 연구에서 리튬 이온 전이 수와 이온 전도도를 비교한 요약한다. (h) 3S 전략의 개략도를 도시한다.Figure 5 shows the electrochemical performances of 3S-Li batteries with different layer thicknesses: a) voltage profiles of symmetric pDMAMS-Li batteries with pDMAMS layers ranging from 10 nm to 500 nm; b) cycling performances and Coulombic efficiencies of pDMAMS-Li||NMC batteries with different layer thicknesses (charge and discharge current densities were fixed at 2 mA cm -2 after the formation cycle at 0.1 mA cm -2 ). c) Magnified view of the voltage profile of a). d) Initial charge/discharge profiles of bare-Li and pDMAMS-Li||NMC batteries with different pDMAMS layer thicknesses; e) and f) Nyquist plots of pDMAMS-Li||NMC batteries with different thicknesses at the initial and 50th cycle; (g) summary of comparison of lithium ion transfer numbers and ionic conductivities in recent studies; (h) schematic diagram of the 3S strategy.
도 6은 리튬 금속 음극의 도전 과제에 대한 개략도로서, a) 리튬 금속 음극의 일반적인 계면 문제를 나타내는 개략도를 도시한다. b) 인공 SEI 층 접근법의 한계를 보여주는 개략도를 도시한다.Figure 6 is a schematic diagram of the challenges of lithium metal anodes, a) schematic diagram showing the general interfacial problems of lithium metal anodes; b) schematic diagram showing the limitations of the artificial SEI layer approach.
도 7은 단면 집속 이온 빔 주사 전자 현미경 (FIB-SEM) 분석결과로서, a) 50nm의 폴리 (디메틸 아미노 메틸 스티렌) (pDMAMS) 층으로 각각 코팅된 Li 포일의 FIB-SEM 이미지를 도시한다(스케일 막대, 500nm). b) 각각 200nm의 pDMAMS 층으로 코팅 된 Li 포일의 FIB-SEM 이미지를 도시한다(스케일 막대, 500nm).Figure 7 shows the cross-sectional focused ion beam scanning electron microscopy (FIB-SEM) analysis results. a) FIB-SEM images of Li foils each coated with a 50 nm thick poly(dimethylaminomethylstyrene) (pDMAMS) layer (scale bar, 500 nm). b) FIB-SEM images of Li foils each coated with a 200 nm thick pDMAMS layer (scale bar, 500 nm).
도 8은 본 발명의 구현예에서의 단량체 및 iCVD-폴리머의 푸리에 변환 적외선(FT-IR) 분광 결과를 도시한다.Figure 8 shows Fourier transform infrared (FT-IR) spectroscopy results of monomers and iCVD-polymers in embodiments of the present invention.
도 9는 25℃, 상대 습도(RH) 20% ~ 35%에서 0시간, 1시간, 2시간, 24시간 동안 주변 공기에 노출된 iCVD 폴리머 코팅 리튬 금속의 이미지를 도시한다.Figure 9 shows images of iCVD polymer-coated lithium metal exposed to ambient air at 25°C and relative humidity (RH) of 20% to 35% for 0 h, 1 h, 2 h, and 24 h.
도 10은 배터리 전해질 용매에 의해 부풀어 오른 pAA-Si, pEGDMA-Si, pDVB-Si 및 pC6FA-Si의 일립소메트리 분석 결과를 도시한다(각각 a) 내지 d)).Figure 10 shows the results of ellipsometry analysis of pAA-Si, pEGDMA-Si, pDVB-Si, and pC6FA-Si swollen by battery electrolyte solvents (a) to d) respectively.
도 11은 사이클 후 베어 및 iCVD 코팅된 리튬 음극의 토폴로지로서, a) 1, 10, 100번째 사이클 후 베어 리튬의 SEM 이미지를 도시한다. b) 1, 10, 100번째 사이클 후 pDMAMS-Li의 SEM 이미지를 도시한다.Figure 11 shows the topologies of bare and iCVD-coated lithium anodes after cycling, a) SEM images of bare lithium after the 1st, 10th, and 100th cycle; b) SEM images of pDMAMS-Li after the 1st, 10th, and 100th cycle.
도 12는 a) 50번째 사이클에서 1시간 동안 10mV 편광 하에서 대칭형 베어-리튬 셀의 정상 상태 전류 측정한 결과를 도시한다. b) 50번째 사이클에서 1시간 동안 10mV 편광 하에서 대칭형 pDMAMS-Li(100nm) 셀의 정상 상태 전류 측정 결과를 도시한다. c) 대칭형 베어-Li 셀의 전기화학적 임피던스 분광법(EIS)은 진폭이 10mV인 100mHz~1MHz 범위의 개방회로 전압에서 측정한 결과를 도시한다. d) 대칭형 pDMAMS-Li(100nm) 셀의 EIS는 진폭이 10mV인 100mHz~1MHz 범위의 개방회로 전압에서 측정한 결과를 도시한다.Figure 12 shows a) the steady-state current measurement of a symmetric bare-Li cell under 10 mV polarization for 1 hour in the 50th cycle. b) the steady-state current measurement of a symmetric pDMAMS-Li(100 nm) cell under 10 mV polarization for 1 hour in the 50th cycle. c) the electrochemical impedance spectroscopy (EIS) of a symmetric bare-Li cell measured at an open-circuit voltage range of 100 mHz to 1 MHz with an amplitude of 10 mV. d) the EIS of a symmetric pDMAMS-Li(100 nm) cell measured at an open-circuit voltage range of 100 mHz to 1 MHz with an amplitude of 10 mV.
도 13은 iCVD 폴리머 나노층의 이온 전도도로서, a) EIS에서 측정한 다양한 100nm iCVD 폴리머 층의 비교 도시한다. b) 스테인리스 스틸/iCVD 폴리머/스테인리스 스틸의 셀을 조립하여 측정한 (EIS) 데이터를 도시한다.Figure 13 shows the ionic conductivity of iCVD polymer nanolayers, a) comparing various 100 nm iCVD polymer layers as measured by Electromagnetic Scattering (EIS); b) measuring (EIS) data from assembled cells of stainless steel/iCVD polymer/stainless steel.
도 14는 a) FT-IR 분광법결과를 도시한다. b) X-선 광전자 분광법(XPS) 조사 스펙트럼을 도시한다. c) 본 발명의 구현예에 따른 pDMAMS, 폴리(DMAMS-co-C6FA) 및 pC6FA의 고해상도(N1s) XPS 스펙트럼을 도시한다.Figure 14 shows a) FT-IR spectroscopy results; b) X-ray photoelectron spectroscopy (XPS) survey spectra; and c) high-resolution (N1s) XPS spectra of pDMAMS, poly(DMAMS-co-C6FA) and pC6FA according to embodiments of the present invention.
도 15는 pDMAMS 및 pC6FA 단일 중합체와 폴리(DMAMS-co-pC6FA) 공중합체의 토폴로지로서, pDMAMS-Li, pD2F1-Li 및 pC6FA-Li의 SEM 이미지를 비교 도시한다(각각 a) ~ c), 스케일 막대, 50 μm).Figure 15 shows the topologies of pDMAMS and pC6FA homopolymers and poly(DMAMS-co-pC6FA) copolymers, comparing SEM images of pDMAMS-Li, pD2F1-Li, and pC6FA-Li (a) to c, respectively), scale bar, 50 μm.
도 16은 pC6FA-Li의 FIB-SEM 이미지를 도시한다(스케일 막대, 400nm).Figure 16 shows a FIB-SEM image of pC6FA-Li (scale bar, 400 nm).
도 17은 사이클 후 pD2F1의 위상학적 평가로서, 1, 10, 100번째 사이클 후 pD2F1-Li의 SEM 이미지를 도시한다(각각 a) ~ c), 스케일 막대, 50 μm).Figure 17 shows the topological evaluation of pD2F1 after cycling, showing SEM images of pD2F1-Li after the 1st, 10th, and 100th cycles (a) to c, respectively), scale bar, 50 μm.
도 18은 전기화학적 플로팅 실험으로서, a) ~ f) LiNi0.6Mn0.2Co0.2O2(NMC-622) 음극을 사용한 베어-Li, pC6FA-Li, pEGDMA-Li, pDVB-Li, pAA-Li 및 pDMAMS-Li 풀 셀의 전기화학적 플로팅 실험을 도시한다(셀을 0.2°C에서 4.0V로 충전한 다음 4.9V까지 10시간 동안 점차적으로 높은 전압에서 유지).Figure 18 shows the electrochemical floating experiments of bare-Li, pC6FA - Li, pEGDMA-Li, pDVB-Li, pAA-Li, and pDMAMS-Li full cells using LiNi0.6Mn0.2Co0.2O2 (NMC-622) cathodes (a) to f) ( the cells were charged to 4.0 V at 0.2°C and then gradually increased to 4.9 V for 10 h).
도 19는 0.1, 0.2, 0.3, 0.5, 1.0mV s-1의 스캔 속도에서 베어 리튬, pC6FA-Li, pEGDMA-Li, pDVB-Li, pAA-Li, pDMAMS-Li 셀의 순환 전압 전류 실험을 도시한다(각각 a) ~ f).Figure 19 shows cyclic voltammetry experiments of bare lithium, pC6FA-Li, pEGDMA-Li, pDVB-Li, pAA-Li, and pDMAMS-Li cells at scan rates of 0.1, 0.2, 0.3, 0.5, and 1.0 mV s -1 (a) to f, respectively).
도 20은 NMC 음극의 갈바노스틱 간헐적 적정 기법(GITT) 및 현장 XPS 분석으로서, a-b) 각각 NMC 622를 사용한 베어 리튬 및 pDMAMS-Li(100nm) 전체 셀의 일반적인 GITT 플롯을 도시한다. c-d) a) 및 b)에서 각각 베어-리튬 및 pDMAMS-Li(100nm) 셀의 반응 저항을 도시한다. e-f) 베어-리튬 및 pDMAMS-Li 음극으로 조립된 NMC 음극의 고해상도 N1s XPS 스펙트럼을 도시한다.Figure 20 shows the galvanic intermittent titration technique (GITT) and in situ XPS analysis of NMC cathodes, where a-b) typical GITT plots of bare lithium and pDMAMS-Li (100 nm) full cells using NMC 622, respectively; c-d) reaction resistances of bare-lithium and pDMAMS-Li (100 nm) cells in a) and b), respectively; e-f) high-resolution N1s XPS spectra of NMC cathodes assembled with bare-lithium and pDMAMS-Li cathodes.
도 21은 EIS 분석의 등가 회로를 도시한다.Figure 21 shows the equivalent circuit for EIS analysis.
도 22는 대칭형 셀의 속도 용량으로서, a) 1, 2, 5, 10mA cm-2(1mAh cm-2)의 다양한 전류 밀도에서 대칭형 베어 리튬 셀의 전압 프로파일을 도시한다. b) 1, 2, 5, 10mA cm-2(1mAh cm-2)의 다양한 전류 밀도에서 대칭형 pDMAMS-Li(100nm) 셀의 전압 프로파일을 도시한다.Figure 22 shows the rate capacity of a symmetric cell, a) voltage profiles of a symmetric bare lithium cell at various current densities of 1, 2, 5, and 10 mA cm -2 (1 mAh cm -2 ). b) voltage profiles of a symmetric pDMAMS-Li(100 nm) cell at various current densities of 1, 2, 5, and 10 mA cm -2 (1 mAh cm -2 ).
도 23은 NMC 양극을 적용한 iCVD 폴리머의 전체 셀 성능으로서, a) NMC 622 양극을 사용한 100nm pC6FA-Li, pEGDMA-Li, pDVB-Li, pAA-Li 및 pDMAMS-Li 전체 셀의 사이클링 성능 및 쿨로빅 효율을 도시한다(충전 및 방전 전류 밀도는 0.1mA cm-2 및 25℃에서 형성 사이클 후 2mA cm-2로 고정). b) ~ d) 1~100번째 사이클에서 NMC를 사용한 100nm pAA-Li, pEGDMA-Li 및 pDVB-Li 풀 셀의 충전/방전 프로파일을 도시한다. e) ~ h) 1~100번째 사이클에서 NMC 양극을 사용한 100nm pC6FA-Li 및 폴리(DMAMS-co-C6FA)-Li 풀 셀의 충전/방전 프로파일을 도시한다.Figure 23 shows the full-cell performances of iCVD polymers with NMC anode, a) Cycling performance and coulombic efficiency of 100 nm pC6FA-Li, pEGDMA-Li, pDVB-Li, pAA-Li, and pDMAMS-Li full cells using NMC 622 anode (charge and discharge current densities were fixed at 0.1 mA cm -2 and 2 mA cm -2 after the formation cycle at 25°C). b) to d) Charge/discharge profiles of 100 nm pAA-Li, pEGDMA-Li, and pDVB-Li full cells using NMC from the 1st to the 100th cycle. e) to h) Charge/discharge profiles of 100 nm pC6FA-Li and poly(DMAMS-co-C6FA)-Li full cells using NMC anode from the 1st to the 100th cycle.
도 24는 비행 시간 이차 이온 질량 분석법 (TOF-SIMS)으로서, a) 미순환 300nm pDMAMS-Li의 TOF-SIMS 분석 결과를 도시한다. b) 순환된 300nm pDMAMS-Li의 TOF-SIMS 분석 결과를 도시한다.Figure 24 shows the TOF-SIMS analysis results of a) uncirculated 300 nm pDMAMS-Li as a time-of-flight secondary ion mass spectrometry (TOF-SIMS). b) TOF-SIMS analysis results of cycled 300 nm pDMAMS-Li.
도 25는 깊이 프로파일링을 통한 비순환 베어 리튬 음극의 XPS 분석 결과를 도시한다.Figure 25 shows the XPS analysis results of a non-cycled bare lithium negative electrode through depth profiling.
도 26은 깊이 프로파일링이 적용된 pDMAMS-Li 음극의 XPS 분석 결과로서, a) 깊이 프로파일링이 적용된 비순환 300nm pDMAMS-Li의 XPS 분석 결과를 도시한다. b) 깊이 프로파일링이 적용된 순환 300nm pDMAMS-Li 음극의 XPS 분석 결과를 도시한다.Figure 26 shows the XPS analysis results of the pDMAMS-Li cathode with depth profiling, a) XPS analysis results of the non-cycled 300 nm pDMAMS-Li cathode with depth profiling; b) XPS analysis results of the cycled 300 nm pDMAMS-Li cathode with depth profiling.
도 27은 깊이 프로파일링이 적용된 pDMAMS-Li의 N1s XPS 스펙트럼으로서, 깊이 프로파일링이 적용된 리튬화된 베어 리튬, 리튬화된 pDMAMS-Li 및 비순환 pDMAMS-Li의 N1s 데이터의 XPS 스펙트럼을 각각 도시한다(각각 a) ~ c)).Figure 27 shows the N1s XPS spectra of pDMAMS-Li with depth profiling, where the XPS spectra of N1s data of lithiated bare lithium, lithiated pDMAMS-Li, and non-cycled pDMAMS-Li with depth profiling are shown (a) to c) respectively.
도 28은 깊이 프로파일링이 있는 pDMAMS-Li의 N1s XPS 스펙트럼으로서, a) 100nm pDMAMS-Li의 조사 XPS 스펙트럼을 도시한다. b) 100nm pDMAMS-Li의 고해상도 N1s XPS 스펙트럼을 도시한다. c) 100nm pDMAMS-Li의 고해상도 C1s XPS 스펙트럼을 도시한다. d) 50번째 사이클 후 pDMAMS-Li에서 N1s의 XPS 스펙트럼을 도시한다. e) 50번째 사이클 후 pDMAMS-Li의 C1s의 XPS 스펙트럼을 도시한다.Figure 28 shows N1s XPS spectra of pDMAMS-Li with depth profiling, where a) a survey XPS spectrum of 100 nm pDMAMS-Li is shown. b) a high-resolution N1s XPS spectrum of 100 nm pDMAMS-Li is shown. c) a high-resolution C1s XPS spectrum of 100 nm pDMAMS-Li is shown. d) an XPS spectrum of N1s in pDMAMS-Li after the 50th cycle is shown. e) an XPS spectrum of C1s in pDMAMS-Li after the 50th cycle is shown.
도 29는 poly(DMAMS-co-VBTMAC)를 형성하기 위해 제안된 pDMAMS와 디에틸 카보네이트(DEC)의 4원화 반응의 개략도를 도시한다.Figure 29 illustrates a schematic diagram of the proposed quaternary reaction of pDMAMS and diethyl carbonate (DEC) to form poly(DMAMS-co-VBTMAC).
도 30은 다양한 용매에서 배양된 pDMAMS의 NMR 분석 결과로서, a) pDMAMS, DEC 및 DEC 용매에서 배양된 pDMAMS의 NMR 분석 결과를 도시한다. b) NMR 분석 결과로서, 3.0 ppm ~ 3.5 ppm 및 2.0 ppm ~ 2.5 ppm의 pDMAMS, DEC 및 DEC 용매에 배양된 pDMAMS를 적용한 것을 도시한다. c) pDMAMS, DEC, 에틸렌 카보네이트(EC):DEC(3:7, v/v) 및 용매에 배양된 pDMAMS에 대한 FT-IR 분석 결과를 도시한다(*: 3차 아민(2764 cm-1), **: C-N (CH3)3 (930 cm-1 ~ 920 cm-1).Figure 30 shows the NMR analysis results of pDMAMS cultured in various solvents, a) NMR analysis results of pDMAMS, DEC, and pDMAMS cultured in DEC solvent. b) NMR analysis results of pDMAMS, DEC, and pDMAMS cultured in DEC solvent at 3.0 ppm to 3.5 ppm and 2.0 ppm to 2.5 ppm. c) FT-IR analysis results for pDMAMS, DEC, ethylene carbonate (EC):DEC (3:7, v/v), and pDMAMS cultured in solvents (*: tertiary amine (2764 cm -1 ), **: CN (CH 3 ) 3 (930 cm -1 to 920 cm -1 ).
도 31은 a) 전해질 용매에 의해 팽윤된 300nm pDMAMS-Li의 타원측정 분석 결과를 도시한다. b) 50 사이클 동안의 300nm pDMAMS-Li||NMC 배터리의 나이퀴스트 플롯을 도시한다. c) 50 사이클 동안의 500nm pDMAMS-Li||NMC 배터리의 나이퀴스트 플롯을 도시한다.Figure 31 shows the results of a) ellipsometry analysis of 300 nm pDMAMS-Li swollen by electrolyte solvent; b) Nyquist plot of 300 nm pDMAMS-Li||NMC battery after 50 cycles; and c) Nyquist plot of 500 nm pDMAMS-Li||NMC battery after 50 cycles.
도 32는 두꺼운 pDMAMS 층의 전이 수로서, a) 1 싸이클에서 1시간 동안 10mV 편광 하에서 대칭형 300nm pDMAMS-Li 셀의 정상 상태 전류 측정 결과를 도시한다. b) 50 싸이클에서 1시간 동안 10mV 편광 하에서 대칭형 300nm pDMAMS-Li 셀의 정상 상태 전류 측정 결과를 도시한다. c) 진폭 10mV의 개방 회로 전압에서 100mHz ~ 1MHz 범위의 대칭형 300nm (10nm) 셀의 EIS를 측정 결과를 도시한다.Figure 32 shows the results of steady-state current measurements of a) a symmetric 300 nm pDMAMS-Li cell under 10 mV polarization for 1 hour at 1 cycle, as a function of the transition number of the thick pDMAMS layer; b) a symmetric 300 nm pDMAMS-Li cell under 10 mV polarization for 1 hour at 50 cycles; and c) an EIS measurement result of a symmetric 300 nm (10 nm) cell in the range of 100 mHz to 1 MHz at an open-circuit voltage of 10 mV amplitude.
분석 방법Analysis method
FT-IR 특성 분석FT-IR Characterization
iCVD로 합성한 모노머와 폴리머는 푸리에 변환 적외선 (FT-IR) 분광법으로 특성화되었다. 도 8에서 1637 cm-1 ~ 1627 cm-1의 파란색 영역의 피크는 각 모노머의 비닐 모이어티에서만 유도되며 iCVD 폴리머의 피크 강도는 모노머의 피크 강도에 비해 감소하였다. 스펙트럼에서 비닐 피크가 감소한 것은 iCVD 공정을 통하여 성공적으로 중합하였음을 나타낸다. 반면, 도 14a에서 빨간색 영역의 2764 cm-1의 3차 아미노-메틸 피크와 녹색 영역의 1735 cm-1의 카르보닐 피크로 DMAMS와 C6FA의 공중합을 확인하였다. 폴리(DMAMS-co-C6FA)의 DMAMS 함량이 증가함에 따라 빨간색 영역의 피크 강도는 점차 강화되고, 녹색 영역의 피크 강도는 약해졌다. iCVD 챔버에 주입되는 모노머의 유속을 정밀하게 조절하여 각 공중합체의 조성을 적절히 제어할 수 있었다(표 S1).The monomers and polymers synthesized by iCVD were characterized by Fourier transform infrared (FT-IR) spectroscopy. In Fig. 8, the peaks in the blue region from 1637 cm -1 to 1627 cm -1 were derived only from the vinyl moieties of each monomer, and the peak intensities of the iCVD polymers were reduced compared to those of the monomers. The decrease in the vinyl peak in the spectrum indicates successful polymerization through the iCVD process. In contrast, the copolymerization of DMAMS and C6FA was confirmed by the tertiary amino-methyl peak at 2764 cm -1 in the red region and the carbonyl peak at 1735 cm -1 in the green region in Fig. 14a. As the DMAMS content of poly(DMAMS-co-C6FA) increased, the peak intensity in the red region gradually strengthened, and the peak intensity in the green region weakened. The composition of each copolymer could be appropriately controlled by precisely controlling the flow rate of the monomers injected into the iCVD chamber (Table S1).
XPS 피크 디컨볼루션XPS peak deconvolution
Ar 클러스터 건(10 keV)을 사용한 X선 광전자 분광법(XPS) 깊이 프로파일링으로 pDMAMS 층의 SEI 성분을 조사하였다. 석출된 베어 Li 및 pDMAMS-Li, C1, O1 및 N1의 경우, Ar 스퍼터링을 통해 다양한 깊이의 고해상도 스펙트럼을 얻었다. 전해질로 부풀어 오른 pDMAMS 층의보다 정확한 XPS 디컨볼루션을 위해 평평한 Si 기판에서 pDMAMS의 조사 스캔 및 고해상도를 수행하였다. 도 28a, 28b 및 28c에서 볼 수 있듯이 N1s 스펙트럼에서 399.25 eV의 피크는 C-N으로, C1s 스펙트럼에서 285.6 eV 및 284.7 eV의 피크는 각각 C-N 및 C-C/C=C에 해당한다. 베어 리튬으로 석출한 후 C1s 스펙트럼은 전해질 내 유기 성분 중 특히 에틸렌 카보네이트(EC)에서 유래한 Li2CO3(290 eV), C-O-C(288.5 eV), C-O(286.8 eV), C-C(284.8 eV), 리튬 카바이드(R-Li)(283.5 eV)로 분해된다(도 4h의 왼쪽). 반면, O1s 스펙트럼은 탄산염 전해질과 관련된 ROCO2Li(533.5 eV), Li2CO3(532 eV), LiOR(531.5 eV)의 C-O-C와 관련된 피크와 LiPF6 염의 무기물 Li2O(528 eV)를 나타낸다(도 4h의 오른쪽). 에칭 시간이 늘어남에 따라서 유기 SEI 성분은 급격히 사라지고, 동시에 무기 SEI 성분의 강도는 증가하였다. 석출된 pDMAMS-Li의 경우, 도 4i는 EC가 환원된 R-Li와 염의 Li2O를 제외하고 pDMAMS와 유기 전해질의 피크를 보여준다. 또한, 점진적인 표면 에칭에도 불구하고, 석출된 pDMAMS-Li는 기존 피크의 강도가 크게 감소하거나 다른 무기 피크가 형성되지 않고 균일한 유기 SEI 성분을 나타냈다. 50번째 사이클 후, N1s 스펙트럼에서 4급화 pDMAMS는 4급 암모늄염(C-N+(CH3)3)에 해당하는 402.5eV의 피크가 특징적으로 나타났다(도 28d).The SEI components of the pDMAMS layers were investigated by X-ray photoelectron spectroscopy (XPS) depth profiling using an Ar cluster gun (10 keV). For the deposited bare Li and pDMAMS-Li, C1, O1, and N1, high-resolution spectra at various depths were obtained by Ar sputtering. Survey scans and high-resolution XPS deconvolution of the electrolyte-swollen pDMAMS layers were performed on a flat Si substrate for more accurate XPS deconvolution. As shown in Figures 28a, 28b, and 28c, the peak at 399.25 eV in the N1s spectrum corresponds to CN, and the peaks at 285.6 eV and 284.7 eV in the C1s spectrum correspond to CN and CC/C=C, respectively. After deposition with bare lithium, the C1s spectrum is decomposed into Li 2 CO 3 (290 eV), COC (288.5 eV), CO (286.8 eV), CC (284.8 eV), and lithium carbide (R-Li) (283.5 eV) derived from organic components in the electrolyte, especially ethylene carbonate (EC) (left side of Fig. 4h). In contrast, the O1s spectrum shows peaks related to COC of ROCO 2 Li (533.5 eV), Li 2 CO 3 (532 eV), LiOR (531.5 eV) associated with the carbonate electrolyte, and inorganic Li 2 O (528 eV) of LiPF 6 salt (right side of Fig. 4h). As the etching time increased, the organic SEI component rapidly disappeared, while at the same time, the intensity of the inorganic SEI component increased. For the precipitated pDMAMS-Li, Fig. 4i shows the peaks of pDMAMS and the organic electrolyte except for the reduced R-Li and Li 2 O of the salt by EC. In addition, despite the gradual surface etching, the precipitated pDMAMS-Li exhibited a uniform organic SEI component without a significant decrease in the intensity of the existing peaks or the formation of other inorganic peaks. After the 50th cycle, the quaternized pDMAMS was characterized by a peak at 402.5 eV corresponding to the quaternary ammonium salt (CN + (CH 3 ) 3 ) in the N1s spectrum (Fig. 28d).
NMR 특성화NMR characterization
pDMAMS와 전해질 간의 반응을 확인하기 위해, 1H 핵자기공명(NMR) 스펙트럼을 T = 298 K에서 브루커 아방스 네오 나노베이 400 MHz NMR 분광기를 사용하여 기록하고 CentOS의 탑스핀 4.1.3 소프트웨어로 분석했다. NMR 샘플링을 위해 기판 위에 증착된 pDMAMS 필름을 면도날을 사용하여 떼어내 바이알에 수집했다. 0.03% 테트라메틸실란(TMS)을 함유한 중수성 클로로포름(CDCl3)을 NMR 용매로 사용했습니다. pDMAMS와 전해질의 비율을 1:10으로 조정하고, CDCl3 1㎖당 5㎎의 혼합물 비율로 NMR 용액을 제조하였으며, 약 0.6 mL의 용액을 5mm NMR 튜브로 옮겼다.To investigate the reaction between pDMAMS and the electrolyte, 1H nuclear magnetic resonance (NMR) spectra were recorded using a Bruker Avance Neo Nanobay 400 MHz NMR spectrometer at T = 298 K and analyzed with TopSpin 4.1.3 software in CentOS. For NMR sampling, the pDMAMS film deposited on the substrate was peeled off using a razor blade and collected in a vial. Deuterated chloroform (CDCl 3 ) containing 0.03% tetramethylsilane (TMS) was used as the NMR solvent. The ratio of pDMAMS to electrolyte was adjusted to 1:10, and the NMR solution was prepared with a mixture ratio of 5 mg per 1 mL of CDCl 3 , and approximately 0.6 mL of the solution was transferred to a 5 mm NMR tube.
실험 방법Experimental method
재료ingredient
디메틸아미노메틸스티렌(DMAMS, 90%, Acros, 벨기에), 2-(퍼플루오로헥실)에틸아크릴레이트(C6FA, 98%, 상하이친바케미칼, 중국), 에틸렌글리콜디메타크릴레이트(EGDMA, 98%, 시그마-알드리치, 미국), 디비닐벤젠(DVB, 80%, 미국 시그마-알드리치), 아크릴산(AA, 99%, 일본 TCI)을 각각 모노머로 사용하였으며, 과산화부틸(TBPO, 98%, 미국 시그마-알드리치)을 열 개시제로 사용하였다.Dimethylaminomethylstyrene (DMAMS, 90%, Acros, Belgium), 2-(perfluorohexyl)ethyl acrylate (C6FA, 98%, Shanghai Qinba Chemical, China), ethylene glycol dimethacrylate (EGDMA, 98%, Sigma-Aldrich, USA), divinylbenzene (DVB, 80%, Sigma-Aldrich, USA), and acrylic acid (AA, 99%, TCI, Japan) were used as monomers, respectively, and butyl peroxide (TBPO, 98%, Sigma-Aldrich, USA) was used as a thermal initiator.
iCVD 폴리머-Li 제작iCVD polymer-Li fabrication
iCVD 폴리머-Li의 경우, Li 금속 포일을 펀칭한 다음 Ar 분위기의 글러브 박스에 설치된 맞춤형 iCVD 반응기를 사용하여 기능화하였다. 폴리(디메틸아미노메틸스티렌)(pDMAMS), 폴리[2-(퍼플루오로헥실) 에틸아크릴레이트](pC6FA), 폴리(에틸렌글리콜 디메타크릴레이트)(pEGDMA), 폴리디비닐벤젠(pDVB) 및 폴리(아크릴산)(pAA), 폴리(DMAMS-co-C6FA)를 합성하고, iCVD 공정을 통해 Li 금속 음극에 컨포멀 코팅했습니다. 단량체, DMAMS, C6FA, EGDMA, DVB, AA 및 개시제인 TBPO를 각각 50, 50, 65, 45, 35, 25℃로 가열하여 기화시킨 후 iCVD 반응기에 투입하였다. iCVD에서 단독 모노머를 적용한 중합의 경우, DMAMS, C6FA, EGDMA, DVB 및 AA의 유속은 각각 0.82, 0.55, 0.33, 2.50 및 1.43 sccm으로 고정하였고, TBPO는 각각 0.59, 0.30, 0.44, 0.89 및 0.74 sccm으로 고정하였다. 기판 온도를 30℃에서 40℃로 변경하고 해당 챔버 압력을 100mTorr에서 300mTorr로 조정하여 리튬 금속 표면 응축과 같이 반응물이 과도하게 흡착하는 것을 방지하였다. pDMAMS, pC6FA, pEGDMA, pDVB 및 pAA의 증착 속도는 각각 2.4, 12.5, 4.0, 6.1 및 8.0 nm/min-1이다. 폴리(DMAMS-co-C6FA)의 공중합의 경우, 고정된 챔버 압력과 기판 온도에서 DMAMS와 C6FA의 유량에 의해 Pm/Psat 및 각 공단량체의 표면 농도를 제어하였다. 모든 iCVD 공정에서 필라멘트 온도는 증기상 중합을 시작하기 위하여 140℃로 유지하였다. For iCVD polymer-Li, Li metal foil was punched and then functionalized using a custom iCVD reactor installed in an Ar atmosphere glove box. Poly(dimethylaminomethylstyrene) (pDMAMS), poly[2-(perfluorohexyl) ethyl acrylate] (pC6FA), poly(ethylene glycol dimethacrylate) (pEGDMA), polydivinylbenzene (pDVB), and poly(acrylic acid) (pAA), poly(DMAMS-co-C6FA) were synthesized and conformally coated onto the Li metal cathode by iCVD process. Monomers, DMAMS, C6FA, EGDMA, DVB, AA, and initiator, TBPO, were vaporized by heating to 50, 50, 65, 45, 35, and 25 °C, respectively, and then fed into the iCVD reactor. For the polymerizations using a single monomer in iCVD, the flow rates of DMAMS, C6FA, EGDMA, DVB, and AA were fixed at 0.82, 0.55, 0.33, 2.50, and 1.43 sccm, respectively, and that of TBPO was fixed at 0.59, 0.30, 0.44, 0.89, and 0.74 sccm, respectively. The substrate temperature was changed from 30 to 40 °C, and the corresponding chamber pressure was adjusted from 100 to 300 mTorr to prevent excessive adsorption of reactants, such as lithium metal surface condensation. The deposition rates of pDMAMS, pC6FA, pEGDMA, pDVB, and pAA are 2.4, 12.5, 4.0, 6.1, and 8.0 nm/min -1 , respectively. For the copolymerization of poly(DMAMS-co-C6FA), the Pm/Psat and the surface concentration of each comonomer were controlled by the flow rates of DMAMS and C6FA at fixed chamber pressure and substrate temperature. In all iCVD processes, the filament temperature was maintained at 140°C to initiate vapor phase polymerization.
iCVD 폴리머 필름 및 SEI 층의 특성 분석Characterization of iCVD polymer films and SEI layers
푸리에 변환 적외선(FT-IR) 분광법(ALPHA FT-IR, 브루커 옵틱스)의 흡광도 모드로, 각 모노머에서의 중합을 화학적으로 확인하였다. DMAMS와 C6FA 공중합체의 DMAMS 비율을 포함한 구조적 조성은 마이크로 초점 단색화 Al 소스(1486.7 eV)를 사용한 다목적 X-선 광전자 분광법(시그마 프로브, Thermo VG Scientific)을 통해 얻었다. iCVD 코팅 폴리머의 전해질 접촉각은 접촉각 분석기(Phoenix 150, SEO)로 측정하였다. 고해상도 집속 이온 빔(FIB, Helios G4 FX, 써모피셔)을 사용하여 리튬 금속 위에 iCVD 코팅된 폴리머의 단면 이미지를 얻었다. 초고해상도 전계 방출 주사 전자 현미경(UHR FE-SEM, SU8230, Hitachi)을 사용하여 덴드라이트 및 SEI 층을 포함한 리튬 금속의 표면 형태를 관찰하였다. Si 웨이퍼에 코팅된 iCVD 폴리머 필름과 리튬 금속 산화 공정은 디지털 카메라(ILCE-7M3, SONY)를 사용하여 광학 이미지를 촬영하였다. 리튬 금속 산화에 대한 촬영은 6시간까지는 1시간마다, 그 이후부터 공기 노출 후 1일까지는 6시간마다 촬영 진행하였다. pDMAMS-SEI 층을 확인하기 위하여 현장 X선 광전자 분광법(In-situ XPS, Axis-Supra, Kratos)과 비행 시간 이차 이온 질량 분석법(TOF-SIMS, TOF.SIMS 5, ION-TOF)을 사용하여 깊이 프로파일링을 수행하였다. 현장 XPS를 사용하여 15kV 작동에서 Al Kα 방사선원을 사용하여 1 × 10-9 torr에서 SEI 층의 구성 요소와 결합 상태를 조사하였다. XPS 깊이 프로파일링은 Ar 클러스터(10 keV)로 에칭하여 수행하였다. 또한 5 × 10-9 mbar의 진공 챔버에서 SEI 층의 화학 성분을 분석하기 위해 TOF-SIMS를 수행하였다. 300 μm × 300 μm의 에칭 영역과 100 μm × 100 μm의 분석 영역은 각각 Ar 클러스터 (5 keV) 및 Bi3 + (60 keV) 이온 빔으로 스퍼터링 및 프로파일링하였다. 공기에 의한 산화를 방지하기 위해 모든 특성 분석 전에 리튬 금속을 Ar로 채워진 글러브 박스 안에 용접된 알루미늄 파우치에 밀봉하였다.The polymerization in each monomer was chemically confirmed by absorbance mode of Fourier transform infrared (FT-IR) spectroscopy (ALPHA FT-IR, Bruker Optics). The structural compositions including the DMAMS ratio of the DMAMS and C6FA copolymers were obtained by multipurpose X-ray photoelectron spectroscopy (Sigma Probe, Thermo VG Scientific) using a microfocus monochromated Al source (1486.7 eV). The electrolyte contact angles of the iCVD-coated polymers were measured by a contact angle analyzer (Phoenix 150, SEO). Cross-sectional images of the iCVD-coated polymers on lithium metal were obtained using a high-resolution focused ion beam (FIB, Helios G4 FX, Thermo Fisher). The surface morphology of the lithium metal including dendrites and SEI layer was observed using an ultrahigh-resolution field emission scanning electron microscope (UHR FE-SEM, SU8230, Hitachi). The iCVD polymer films coated on Si wafers and the lithium metal oxidation process were imaged optically using a digital camera (ILCE-7M3, SONY). The lithium metal oxidation was photographed every hour for the first 6 h, and then every 6 h for the first day after air exposure. In-situ X-ray photoelectron spectroscopy (In-situ XPS, Axis-Supra, Kratos) and time-of-flight secondary ion mass spectrometry (TOF-SIMS, TOF.SIMS 5, ION-TOF) were used to perform depth profiling to identify the pDMAMS-SEI layer. The components and bonding states of the SEI layer were investigated using in-situ XPS with an Al Kα radiation source at 15 kV operation under 1 × 10 -9 torr. XPS depth profiling was performed by etching with Ar clusters (10 keV). TOF-SIMS was also performed to analyze the chemical components of the SEI layer in a vacuum chamber at 5 × 10 -9 mbar. The etching area of 300 μm × 300 μm and the analysis area of 100 μm × 100 μm were sputtered and profiled with Ar cluster (5 keV) and Bi 3+ (60 keV) ion beams, respectively. To prevent oxidation by air, the lithium metal was sealed in a welded aluminum pouch inside an Ar-filled glove box prior to all characterizations.
iCVD 폴리머 필름의 타원측정 특성 분석Ellipsometric Characteristics of iCVD Polymer Films
분광학적 타원측정법(자동 각도 ESM-300 베이스가 장착된 M2000U, J. A. Woollam)을 통해 Si 기판의 모든 iCVD 폴리머 필름의 굴절률(n) 및 두께(d)를 얻었다. 유기 전해질 내 폴리머 필름의 팽윤 비율은 25℃의 일정한 온도 조건에서 일립소미터의 광학 부착물인 액체 셀(5mL Heated Liquid CellTM, J. A. Woollam)에서 측정하였으며, dpristine과 dswollen은 각각 액체 셀에 전해질을 주입하기 전과 주입한 후의 두께이다.The refractive indices (n) and thicknesses (d) of all iCVD polymer films on Si substrates were obtained by spectroscopic ellipsometry (M2000U with auto-angle ESM-300 base, JA Woollam). The swelling ratios of the polymer films in organic electrolytes were measured in a liquid cell (5 mL Heated Liquid Cell TM , JA Woollam) with an optical attachment to the ellipsometer at a constant temperature of 25 °C, where d pristine and d swollen are the thicknesses before and after introducing the electrolyte into the liquid cell, respectively.
Figure PCTKR2024002186-appb-img-000005
Figure PCTKR2024002186-appb-img-000005
구체적으로, 분광학적 타원측정은 공칭 각도 75°의 공기/막 계면에서 정렬하여 시작한 후, 400nm~800nm의 광학 파장에서 주변 공기 중 증착된 막의 두께와 굴절률을 측정했다. 모든 프로파일 데이터는 코시 모델을 통해 피팅하였다. 굴절률의 분산은 파장의 함수로서, 다음과 같이 설명된다.Specifically, spectroscopic ellipsometry was started at the air/film interface with a nominal angle of 75°, and the thickness and refractive index of the deposited films in ambient air were measured at optical wavelengths from 400 nm to 800 nm. All profile data were fitted using the Cauchy model. The refractive index dispersion as a function of wavelength is described as follows:
Figure PCTKR2024002186-appb-img-000006
Figure PCTKR2024002186-appb-img-000006
여기서 λ는 빔의 파장이고, A, B, C는 데이터 피팅을 통해 도출된 광학 상수이다. 피팅에서 물리적으로 벗어나지 않기 위하여 상수의 범위는 A > 0, 0 < B < 2, C = 0으로 설정했다. Here, λ is the wavelength of the beam, and A, B, and C are optical constants derived through data fitting. To avoid physical deviation from the fitting, the range of the constants is set to A > 0, 0 < B < 2, and C = 0.
팽윤 거동 관찰을 위해 전해질 충전 셀에 고정된 25nm SiO2 칼리브레이션 Si 웨이퍼를 사용하여 액체/고체 경계면에서의 액체 주변 모델을 확인했다. EC:DEC(3:7, v/v) 전해질의 광학 상수는 종래 보고된 문헌 값과 일치시켰다. 전해질을 박막에 침투시킨 후, 박막이 부풀어 오를 경우 해당 굴절률 구배가 폴리머 박막의 평면에 수직인 방향으로 발생한다고 가정했다. 등급이 매겨진 층을 5개의 층으로 나누고 각 층이 개별 굴절률을 갖는 것으로 분석했다. 모든 모델 적합도는 CompleteEASE 6 소프트웨어(J.A. Woollam)를 사용하여 5 이하의 MSE(평균 제곱 오차) 내에서 수행하였다.A 25 nm SiO 2 calibration Si wafer fixed in an electrolyte-filled cell was used to verify the liquid-surrounding model at the liquid/solid interface to observe the swelling behavior. The optical constants of the EC:DEC (3:7, v/v) electrolyte were found to be in agreement with previously reported literature values. After the electrolyte was infiltrated into the thin film, it was assumed that the corresponding refractive index gradient occurs in the direction perpendicular to the plane of the polymer film when the film swells. The graded layer was divided into five layers and analyzed as each layer having an individual refractive index. All model fits were performed within a mean square error (MSE) of 5 or less using CompleteEASE 6 software (JA Woollam).
전기화학적 측정Electrochemical measurements
모든 전기화학적 테스트에서 EC:DEC(3:7, v/v) 전해질(Panax Etec)에 1.0M LiPF6 75μL 가 포함된 2032형 코인 셀을 사용했다. 전체 전해질을 팽윤시키는 데 필요한 전해질의 양은 1.2% 미만(pDMAMS의 700 nm 미만)으로 이는 셀 작동에 미미한 양이며 실험적 오류 허용 범위에 속한다. 분리막은 폴리프로필렌-폴리에틸렌-폴리프로필렌(25μm, Celgard)을 사용하였다. 고순도 Li박(200μm, 99.95%(신형이앤티)), LiNi0.6Mn0.2Co0.2O2(NMC 622) 시트(94% 활물질, 웰코스)를 1 cm2로 펀칭하여 베어-Li 대칭 셀 및 베어 Li||NMC 전체 셀로 사용하였다. Li-Li 대칭 셀의 정전류 사이클링 측정은 1mA cm-2(1mAh cm-2)의 전류 밀도로 수행되었다. Li||NMC 전체 셀은 C/20 충전/방전에서 첫 번째 활성화 싸이클 후 3.0V ~ 4.2V의 전압 창 내에서 1C(2mA cm-2, 177mAg-1)로 순환시켰다. 전기 임피던스 분광법(EIS) 측정은 ZIVE MP1 시스템에서 수행하였다. 리튬 전극의 임피던스 데이터는 ZIVE의 ZMAN 소프트웨어를 사용하여 저항(R)과 정위상 요소(CPE)로 구성된 등가 회로에 Nyquist 플롯을 피팅하여 계산하였다. 대칭 셀과 전체 셀에 대한 사이클링 테스트는 환경 챔버의 Wonatech 배터리 시스템에서 수행하였다. EIS 측정은 10mV의 진폭으로 100mHz ~ 1MHz의 주파수 범위에서 수행하였다. iCVD 코팅 고분자 필름의 이온 전도도는 스테인레스 스틸/iCVD 코팅 고분자 필름/스테인레스 스틸 셀을 조립하여 동일한 장치를 통해 측정하였다. 이온 전도도는 다음 수식을 사용하여 Nyquist 플롯으로 계산하였다.In all electrochemical tests, 2032-type coin cells containing 75 μL of 1.0 M LiPF 6 in EC:DEC (3:7, v/v) electrolyte (Panax Etec) were used. The amount of electrolyte required to swell the entire electrolyte was less than 1.2% (less than 700 nm of pDMAMS), which is small for cell operation and within the experimental error tolerance. Polypropylene-polyethylene-polypropylene (25 μm, Celgard) was used as the separator. High-purity Li foil (200 μm, 99.95% (Shinhyung E&T)) and LiNi 0.6 Mn 0.2 Co 0.2 O 2 (NMC 622) sheets (94% active material, Welcos) were punched into 1 cm 2 and used as bare-Li symmetric cells and bare Li||NMC full cells. Galvanostatic cycling measurements of Li-Li symmetric cells were performed at a current density of 1 mA cm -2 (1 mAh cm -2 ). The Li||NMC full cells were cycled at 1C (2 mA cm -2 , 177 mA g -1 ) within a voltage window of 3.0 V to 4.2 V after the first activation cycle at C/20 charge/discharge. Electrical impedance spectroscopy (EIS) measurements were performed on a ZIVE MP1 system. The impedance data of the lithium electrode were calculated by fitting the Nyquist plot to an equivalent circuit consisting of a resistor (R) and a positive-phase element (CPE) using ZIVE's ZMAN software. Cycling tests on symmetric cells and full cells were performed on a Wonatech battery system in an environmental chamber. EIS measurements were performed in the frequency range of 100 mHz to 1 MHz with an amplitude of 10 mV. The ionic conductivity of the iCVD-coated polymer film was measured using the same device by assembling the stainless steel/iCVD-coated polymer film/stainless steel cell. The ionic conductivity was calculated from the Nyquist plot using the following formula.
Figure PCTKR2024002186-appb-img-000007
Figure PCTKR2024002186-appb-img-000007
여기서 σ는 이온 전도도, t는 두께, R은 저항, A는 iCVD 코팅된 고분자 필름의 면적이다. 전이 수 측정을 위해 리튬 대칭 셀에 10mV 정전압 바이어스를 1시간 동안 적용했으며, 리튬 이온 전이 수(tLi+)는 다음 브루스-빈센트-에반스 방정식을 통해 구했다.Here, σ is the ionic conductivity, t is the thickness, R is the resistance, and A is the area of the iCVD-coated polymer film. For the transfer number measurement, a 10 mV constant voltage bias was applied to the lithium symmetric cell for 1 h, and the lithium ion transfer number (tLi+) was obtained using the following Bruce–Vincent–Evans equation.
Figure PCTKR2024002186-appb-img-000008
Figure PCTKR2024002186-appb-img-000008
여기서 Is와 I0은 각각 정상 상태 전류와 초기 전류, ΔV는 인가 전위, Rs와 R0은 각각 편광 전후의 정상 상태 저항과 초기 저항이다. Here, I s and I 0 are the steady-state current and initial current, respectively, ΔV is the applied potential, and R s and R 0 are the steady-state resistance and initial resistance before and after polarization, respectively.
또한, NMC 양극의 안정성과 리튬 금속 음극과 증착된 고분자 사이의 계면을 확인하기 위해 순환 전압전류법, 정전류식 간헐적 적정법(GITT), 플로팅 실험을 수행했다. 순환 전압 측정 테스트는 0.1mV ~ 1V의 전압 범위 내에서 3싸이클 동안 수행하였다. GITT 실험에서는 전체 셀을 C/2에서 5분 동안 방전 및 충전을 반복한 후 창 전압 내에서 1시간 동안 휴식을 취하는 방식으로 수행하였다. 리튬 이온 확산도는 전극의 평면 형상을 고려하여 웨프너-허긴스 방법을 사용하였다. 플로팅 테스트의 경우, 전체 셀을 0.05°C에서 4.0V로 충전한 후 최대 4.9V까지 10시간 동안 적용했다.In addition, cyclic voltammetry, galvanostatic intermittent titration (GITT), and floating experiments were performed to confirm the stability of the NMC cathode and the interface between the lithium metal anode and the deposited polymer. The cyclic voltammetry test was performed for 3 cycles within the voltage range of 0.1 mV to 1 V. In the GITT experiment, the entire cell was repeatedly discharged and charged at C/2 for 5 min, and then rested for 1 h within the window voltage. Lithium ion diffusivity was measured using the Wepner–Huggins method considering the planar shape of the electrode. In the floating test, the entire cell was charged to 4.0 V at 0.05°C, and then applied up to 4.9 V for 10 h.
실시예 1: 100 nm pDMAMSExample 1: 100 nm pDMAMS
NMC계 양극 활물질 94%, 도전재 3%, 바인더 3%의 중량비로 혼합되어 알루미늄 집전체에 도포된 양극을 사용하였다 (2mAhcm-2). iCVD 공정으로 약 100 nm 두께의 pDMAMS [poly(dimethylaminomethyl styrene)] 고분자가 덮여 보호된 약 200 μm 두께의 리튬 금속과 양극 사이에 25 μm 두께의 분리막 (Celgard 2325)을 게재하고 전해질을 주입하여 2032 type coin cell을 리튬 금속 이차전지로 제작하였다. 전해질은 EC: DEC가 3:7의 부피비로 이루어진 유기 용매와 1M LiPF6의 염이 용해된 것을 사용하였다. 상기 제조 방법 중 NMC계 양극을 사용하지 않고 동일한 리튬 금속 음극을 양극 위치에 게재하여 제작한 2032 type coin cell을 리튬 금속 대칭 전지로 사용하였다. 구체적으로, pDMAMS 고분자 박막을 iCVD 공정을 이용하여 제조하였다. iCVD 챔버 내에 기판을 위치시키고, 기판의 온도를 40℃로 유지하였다. 그 후 다이메틸아미노메틸 스티렌 (dimethylaminomethyl styrene, DMAMS)와 개시제인 터트-부틸 퍼옥사이드(tert-butyl peroxide, TBPO)를 각각 0.82, 0.59 sccm의 비율로 기화시켜 화학기상증착기 챔버로 이송하고, 챔버 내 압력은 200 mTorr 진공 상태를 유지하여 주며, 동시에 필라멘트를 140℃로 가열하여 상기 기판에 흡착된 단량체들을 라디칼 중합시켜 pDMAMS 호모폴리머를 제조하였다. 여기서, 2.4 nm/min의 증착 속도로 목적하는 고분자 박막의 두께를 획득하였다.A cathode was used (2 mAhcm -2 ) coated on an aluminum current collector by mixing 94% of NMC-based cathode active material, 3% of conductive agent, and 3% of binder by weight ratio. A 25 μm thick separator (Celgard 2325) was interposed between the cathode and lithium metal, which was protected by covering with a pDMAMS [poly(dimethylaminomethyl styrene)] polymer, which was about 100 nm thick by the iCVD process, and the electrolyte was injected to manufacture a 2032 type coin cell as a lithium metal secondary battery. The electrolyte used was an organic solvent consisting of EC: DEC in a volume ratio of 3:7 and a salt of 1 M LiPF 6 dissolved therein. Among the above manufacturing methods, a 2032 type coin cell manufactured by placing the same lithium metal anode in the cathode position without using the NMC-based cathode was used as a lithium metal symmetric battery. Specifically, the pDMAMS polymer thin film was manufactured using the iCVD process. The substrate was placed in the iCVD chamber, and the temperature of the substrate was maintained at 40°C. Thereafter, dimethylaminomethyl styrene (DMAMS) and tert-butyl peroxide (TBPO), an initiator, were vaporized at rates of 0.82 and 0.59 sccm, respectively, and transferred to the chemical vapor deposition chamber. The pressure within the chamber was maintained as a vacuum state of 200 mTorr, and at the same time, the filament was heated to 140°C to radically polymerize the monomers adsorbed on the substrate to produce a pDMAMS homopolymer. Here, the desired thickness of the polymer thin film was obtained at a deposition rate of 2.4 nm/min.
실시예 2: 10 nm pDMAMSExample 2: 10 nm pDMAMS
상기 실시예 1의 음극에서 pDMAMS 고분자 보호층의 두께가 약 10 nm인 것을 제외하고는, 상기 실시예 1과 동일하게 실시하여 코인셀을 제조하였다.Coin cells were manufactured in the same manner as in Example 1, except that the thickness of the pDMAMS polymer protective layer in the cathode of Example 1 was about 10 nm.
실시예 3: 500 nm pDMAMSExample 3: 500 nm pDMAMS
상기 실시예 1의 음극에서 pDMAMS 고분자 보호층의 두께가 500 nm인 것을 제외하고는, 상기 실시예 1과 동일하게 실시하여 코인셀을 제조하였다.Coin cells were manufactured in the same manner as in Example 1, except that the thickness of the pDMAMS polymer protective layer in the cathode of Example 1 was 500 nm.
실시예 4: 100nm pDVBExample 4: 100 nm pDVB
상기 실시예 1의 음극에서 pDVB (polydivinylbenzne) 고분자 보호층의 두께가 약 100nm인 것을 제외하고는, 상기 실시예 1과 동일하게 실시하여 코인셀을 제조하였다. 구체적으로, pDVB 고분자 박막을 iCVD 공정을 이용하여 제조하였다. iCVD 챔버 내에 기판을 위치시키고, 기판의 온도를 30℃로 유지하였다. 그 후 다이바이닐벤젠 (divinylbenzene)와 개시제인 tert-부틸 퍼옥사이드(tert-butyl peroxide, TBPO)를 각각 2.50, 0.89 sccm의 비율로 기화시켜 화학기상증착기 챔버로 이송하고, 챔버 내 압력은 300 mTorr 진공 상태를 유지하여 주며, 동시에 필라멘트를 140℃로 가열하여 상기 기판에 흡착된 단량체들을 라디칼 중합시켜 pDVB 호모폴리머를 제조하였다. 여기서, 6.1 nm/min의 증착 속도로 목적하는 고분자 박막의 두께를 획득하였다.Except that the thickness of the pDVB (polydivinylbenzne) polymer protective layer in the cathode of Example 1 was about 100 nm, a coin cell was manufactured in the same manner as in Example 1. Specifically, a pDVB polymer thin film was manufactured using an iCVD process. The substrate was placed in an iCVD chamber, and the temperature of the substrate was maintained at 30°C. Thereafter, divinylbenzene and tert-butyl peroxide (TBPO), an initiator, were vaporized at a ratio of 2.50 and 0.89 sccm, respectively, and transferred to the chemical vapor deposition chamber. The pressure in the chamber was maintained in a vacuum state of 300 mTorr, and at the same time, the filament was heated to 140°C to radically polymerize the monomers adsorbed on the substrate to manufacture a pDVB homopolymer. Here, the desired thickness of the polymer thin film was obtained at a deposition rate of 6.1 nm/min.
실시예 5: 100nm pC6FAExample 5: 100 nm pC6FA
상기 실시예 1의 음극에서 pC6FA [poly{2-(perfluorohexyl) ethyl acrylate}] 고분자 보호층의 두께가 약 100 nm인 것을 제외하고는, 상기 실시예 1과 동일하게 실시하여 코인셀을 제조하였다. 구체적으로, pC6FA 고분자 박막을 iCVD 공정을 이용하여 제조하였다. iCVD 챔버 내에 기판을 위치시키고, 기판의 온도를 30℃로 유지하였다. 그 후 2-퍼플루오로헥실 에틸 아크릴레이트 [2-(perfluorohexyl) ethyl acrylate), C6FA]와 개시제인 터트-부틸 퍼옥사이드(tert-butyl peroxide, TBPO)를 각각 0.55, 0.30 sccm의 비율로 기화시켜 화학기상증착기 챔버로 이송하고, 챔버 내 압력은 100 mTorr 진공 상태를 유지하여 주며, 동시에 필라멘트를 140℃로 가열하여 상기 기판에 흡착된 단량체들을 라디칼 중합시켜 pC6FA 호모폴리머를 제조하였다. 여기서, 12.5 nm/min의 증착 속도로 목적하는 고분자 박막의 두께를 획득하였다.Coin cells were manufactured in the same manner as in Example 1, except that the thickness of the pC6FA [poly{2-(perfluorohexyl) ethyl acrylate}] polymer protective layer on the cathode of Example 1 was about 100 nm. Specifically, a pC6FA polymer thin film was manufactured using an iCVD process. The substrate was placed in an iCVD chamber, and the temperature of the substrate was maintained at 30°C. After that, 2-perfluorohexyl ethyl acrylate [2-(perfluorohexyl) ethyl acrylate, C6FA] and tert-butyl peroxide (TBPO), an initiator, were vaporized at a ratio of 0.55 and 0.30 sccm, respectively, and transferred to the chemical vapor deposition chamber. The pressure inside the chamber was maintained as a vacuum state of 100 mTorr, and at the same time, the filament was heated to 140°C to radically polymerize the monomers adsorbed on the substrate to produce a pC6FA homopolymer. Here, the desired thickness of the polymer thin film was obtained at a deposition rate of 12.5 nm/min.
실시예 6: 100 nm pEGDMAExample 6: 100 nm pEGDMA
상기 실시예 1의 음극에서 pEGDMA [poly(ethylene glycol dimethacrylate)] 고분자의 두께가 약 100 nm인 것을 제외하고는, 상기 실시예 1과 동일하게 실시하여 코인셀을 제조하였다. 구체적으로, pEGDMA 고분자 박막을 iCVD 공정을 이용하여 제조하였다. iCVD 챔버 내에 기판을 위치시키고, 기판의 온도를 30℃로 유지하였다. 그 후 에틸렌 글리콜 다이메틸아크릴레이트 (ethylene glycol dimethacrylate, EGDMA)와 개시제인 터트-부틸 퍼옥사이드(tert-butyl peroxide, TBPO)를 각각 0.33, 0.44 sccm의 비율로 기화시켜 화학기상증착기 챔버로 이송하고, 챔버 내 압력은 150 mTorr 진공 상태를 유지하여 주며, 동시에 필라멘트를 140 ℃로 가열하여 상기 기판에 흡착된 단량체들을 라디칼 중합시켜 pEGDMA 호모폴리머를 제조하였다. 여기서, 4.0 nm/min의 증착 속도로 목적하는 고분자 박막의 두께를 획득하였다.Except that the thickness of the pEGDMA [poly(ethylene glycol dimethacrylate)] polymer in the cathode of Example 1 was about 100 nm, a coin cell was manufactured in the same manner as in Example 1. Specifically, a pEGDMA polymer thin film was manufactured using an iCVD process. The substrate was placed in an iCVD chamber, and the temperature of the substrate was maintained at 30°C. Thereafter, ethylene glycol dimethacrylate (EGDMA) and tert-butyl peroxide (TBPO), an initiator, were vaporized at a ratio of 0.33 and 0.44 sccm, respectively, and transferred to the chemical vapor deposition chamber. The pressure in the chamber was maintained in a vacuum state of 150 mTorr, and at the same time, the filament was heated to 140°C to radically polymerize the monomers adsorbed on the substrate to manufacture a pEGDMA homopolymer. Here, the desired thickness of the polymer thin film was obtained at a deposition rate of 4.0 nm/min.
실시예 7: 100 nm pAAExample 7: 100 nm pAA
상기 실시예 1의 음극에서 pAA 고분자의 두께가 약 100 nm인 것을 제외하고는, 상기 실시예 1과 동일하게 실시하여 코인셀을 제조하였다. 구체적으로, pAA [poly(acrylic acid)] 고분자 박막을 iCVD 공정을 이용하여 제조하였다. iCVD 챔버 내에 기판을 위치시키고, 기판의 온도를 30 ℃로 유지하였다. 그 후 아크릴산 (acrylic acid)와 개시제인 터트-부틸 퍼옥사이드(tert-butyl peroxide, TBPO)를 각각 1.43, 0.74 sccm의 비율로 기화시켜 화학기상증착기 챔버로 이송하고, 챔버 내 압력은 200 mTorr 진공 상태를 유지하여 주며, 동시에 필라멘트를 140℃로 가열하여 상기 기판에 흡착된 단량체들을 라디칼 중합시켜 pAA 호모폴리머를 제조하였다. 여기서, 8.0 nm/min의 증착 속도로 목적하는 고분자 박막의 두께를 획득하였다.Except that the thickness of the pAA polymer in the cathode of Example 1 was about 100 nm, a coin cell was manufactured in the same manner as in Example 1. Specifically, a pAA [poly(acrylic acid)] polymer thin film was manufactured using an iCVD process. The substrate was placed in an iCVD chamber, and the temperature of the substrate was maintained at 30°C. Thereafter, acrylic acid and tert-butyl peroxide (TBPO), an initiator, were vaporized at a ratio of 1.43 and 0.74 sccm, respectively, and transferred to a chemical vapor deposition chamber. The pressure in the chamber was maintained in a vacuum state of 200 mTorr, and at the same time, the filament was heated to 140°C to radically polymerize the monomers adsorbed on the substrate to manufacture a pAA homopolymer. Here, the desired thickness of the polymer thin film was obtained at a deposition rate of 8.0 nm/min.
비교예 1: 200 μm 순수 리튬 금속Comparative Example 1: 200 μm pure lithium metal
상시 실시예 1에서 고분자 보호막을 덮지 않은 약 200 μm 두께의 순수한 리튬 금속을 사용하여 동일한 크기의 2032 type coin cell을 제작하였다.In Example 1, a 2032 type coin cell of the same size was fabricated using pure lithium metal of about 200 μm thickness without a polymer protective film.
실험예 1: 굴절율 및 팽윤율 분석Experimental Example 1: Refractive Index and Swelling Rate Analysis
본 발명의 실시예에 따른 고분자 박막에 대한 엘립소미터 리퀴드셀로 얻어진 박막의 굴절률 및 팽윤성을 측정하였다. 실리콘 웨이퍼 (Si wafer) 기판 상에 100 nm 두께로 증착된 고분자 박막을 리퀴드셀 내로 준비하고, 전해질을 리퀴드셀 내부로 주입하기 전후로 하여 고분자 박막의 굴절률 변화 및 팽윤비 (swelling ratio) 변화를 표 4에 기록하였다. The refractive index and swelling ratio of the thin film obtained by the ellipsometer liquid cell according to the embodiment of the present invention were measured. The polymer thin film deposited with a thickness of 100 nm on a silicon wafer (Si wafer) substrate was prepared in the liquid cell, and the change in the refractive index and swelling ratio of the polymer thin film before and after the electrolyte was injected into the liquid cell were recorded in Table 4.
Figure PCTKR2024002186-appb-img-000009
Figure PCTKR2024002186-appb-img-000009
실험예 2: 사이클 수명Experimental Example 2: Cycle Life
상기 실시예 1 내지 7 및 비교예 1에서 제조된 리튬 금속 대칭 전지들에 1 mAcm-2의 전류밀도를 각각 1시간씩 충방전을 진행하였고, 과전압이 5V이상 발생한 사이클 수를 표 5에 기록하였다. The lithium metal symmetrical batteries manufactured in Examples 1 to 7 and Comparative Example 1 were charged and discharged at a current density of 1 mAcm-2 for 1 hour each, and the number of cycles in which an overvoltage of 5 V or more occurred was recorded in Table 5.
Figure PCTKR2024002186-appb-img-000010
Figure PCTKR2024002186-appb-img-000010
비교예 1의 고분자 박막이 없는 리튬 대칭 전지에 비해 pDMAMS 고분자 박막으로 보호된 실시예 1의 리튬 대칭 전지의 사이클 수가 크게 향상된 것을 확인할 수 있었다. 또한, 팽윤율이 15%이상인 실시예 7과 실시예 1에서 비교예 대비 유의미한 사이클 수명 향상을 확인할 수 있었다.It was confirmed that the cycle life of the lithium symmetric battery of Example 1 protected by the pDMAMS polymer thin film was significantly improved compared to the lithium symmetric battery of Comparative Example 1 without the polymer thin film. In addition, it was confirmed that the cycle life was significantly improved compared to the Comparative Example in Example 7 and Example 1, where the swelling ratio was 15% or higher.
실험예 2: 충/방전 시험Experimental Example 2: Charge/Discharge Test
상기 실시예 1 내지 7 및 비교예 1에서 제조된 리튬 금속 이차전지들은 다음의 충/방전 시험으로 평가하였다. 충/방전 시험의 제1사이클은 이차전지의 전압이 4.2V가 될 때 까지 0.5C의 정전류로 충전한 후 3.0V가 될 때가지 0.5C의 정전류로 방전을 실시하였다. 이 후에는 리튬 금속 이차전지를1C, 4.2V의 CC/CV의 조건으로 충전 후, 방전 1C, CC 3V의 조건으로 충/방전 시험을 실시하였다. 이 때 초기 비용량 대비 80%에 도달하는 지점의 사이클 수를 하기 표 6에 기록하였다. The lithium metal secondary batteries manufactured in the above Examples 1 to 7 and Comparative Example 1 were evaluated by the following charge/discharge test. In the first cycle of the charge/discharge test, the secondary battery was charged at a constant current of 0.5 C until the voltage became 4.2 V, and then discharged at a constant current of 0.5 C until the voltage became 3.0 V. After that, the lithium metal secondary battery was charged under the CC/CV conditions of 1 C, 4.2 V, and then a charge/discharge test was performed under the discharge conditions of 1 C, CC 3 V. The number of cycles at which the initial specific capacity reached 80% is recorded in Table 6 below.
Figure PCTKR2024002186-appb-img-000011
Figure PCTKR2024002186-appb-img-000011
비교예 1의 리튬 금속 이차전지에 비해 실시예 1의 리튬 금속 이차전지의 사이클 수가 크게 향상된 것을 통해 pDMAMS고분자 박막이 리튬 금속의 덴드라이트 형성 및 죽은 리튬의 형성을 억제하는 것을 알 수 있다. 또한, 팽윤율이 15%이상인 실시예 7과 실시예 1에서 비교예 대비 유의미한 사이클 수명 향상을 확인할 수 있었다.The cycle number of the lithium metal secondary battery of Example 1 was significantly improved compared to that of the lithium metal secondary battery of Comparative Example 1, indicating that the pDMAMS polymer thin film suppresses the formation of lithium metal dendrites and dead lithium. In addition, a significant improvement in cycle life was confirmed in Example 7 and Example 1, where the swelling ratio was 15% or higher, compared to that of the Comparative Example.

Claims (14)

  1. 음극 집전체;Negative current collector;
    상기 음극 집전체 상에 형성된 리튬 금속층; 및A lithium metal layer formed on the negative electrode current collector; and
    상기 리튬 금속층 상에 형성된 고분자 보호 박막층;을 포함하며,A polymer protective film layer formed on the lithium metal layer;
    상기 고분자 보호 박막층은 전해질 팽윤성 고분자를 포함하고, 상기 전해질 팽윤성 고분자는 아래 수학식 1로 표시되는 팽윤율(%)을 15% 이상으로 갖는, 리튬 금속 전지용 전극.An electrode for a lithium metal battery, wherein the polymer protective film layer comprises an electrolyte-swellable polymer, and the electrolyte-swellable polymer has a swelling ratio (%) expressed by the following mathematical formula 1 of 15% or more.
    [수학식 1][Mathematical formula 1]
    Figure PCTKR2024002186-appb-img-000012
    Figure PCTKR2024002186-appb-img-000012
    여기서, dpristine는 팽윤 전의 고분자 보호 박막층 두께, dswollen은 팽윤 후의 고분자 보호 박막층 두께이다.Here, d pristine is the thickness of the polymer protective film layer before swelling, and d swollen is the thickness of the polymer protective film layer after swelling.
  2. 제1항에 있어서,In the first paragraph,
    상기 전해질 팽윤성 고분자는 다이메틸아미노메틸 스티렌(dimethylaminomethyl styrene), 에틸렌 글리콜 다이메틸아크릴레이트(ethylene glycol dimethacrylate), 아크릴산 (acrylic acid), 2-(퍼플루오로헥실) 에틸 아크릴레이트 [(2-perfluorohexyl) ethyl acrylate)], 및 다이바이닐벤젠 (divinylbenzene)으로 구성된 군에서 선택되는 하나 이상의 단량체를 포함하는 중합체인, 리튬 금속 전지용 전극.An electrode for a lithium metal battery, wherein the electrolyte swellable polymer is a polymer including at least one monomer selected from the group consisting of dimethylaminomethyl styrene, ethylene glycol dimethacrylate, acrylic acid, 2-(perfluorohexyl) ethyl acrylate, and divinylbenzene.
  3. 제1항에 있어서,In the first paragraph,
    상기 전해질 팽윤성 고분자는 pDMAMS [poly(dimethylaminomethyl styrene)], pDVB (polydivinylbenzne), pC6FA [poly{2-(perfluorohexyl) ethyl acrylate}], pEGDMA [poly(ethylene glycol dimethacrylate)], 및 pAA [poly(acrylic acid)]로 구성된 군에서 선택되는 하나 이상의 고분자를 포함하는, 리튬 금속 전지용 전극.An electrode for a lithium metal battery, wherein the electrolyte swellable polymer comprises at least one polymer selected from the group consisting of pDMAMS [poly(dimethylaminomethyl styrene)], pDVB (polydivinylbenzne), pC6FA [poly{2-(perfluorohexyl) ethyl acrylate}], pEGDMA [poly(ethylene glycol dimethacrylate)], and pAA [poly(acrylic acid)].
  4. 제1항에 있어서,In the first paragraph,
    상기 고분자 보호 박막층은 상기 음극 집전체와 리튬 금속층이 접하는 면을 모두 또는 일부를 덮도록 구비된, 리튬 금속 전지용 전극.An electrode for a lithium metal battery, wherein the polymer protective film layer is provided to cover all or part of the surface where the negative electrode current collector and the lithium metal layer come into contact.
  5. 제1항에 있어서,In the first paragraph,
    상기 고분자 보호 박막층은 10 내지 500 nm 범위의 두께를 갖는, 리튬 금속 전지용 전극.An electrode for a lithium metal battery, wherein the polymer protective film layer has a thickness in the range of 10 to 500 nm.
  6. 제1항에 있어서,In the first paragraph,
    상기 고분자 보호 박막층은 개시제를 사용하는 iCVD 공정을 기반으로 하여 형성되고, 상기 개시제는 터트-부틸 퍼옥사이드 (tert-butyl peroxide, TBPO)를 포함하는, 리튬 금속 전지용 전극.An electrode for a lithium metal battery, wherein the polymer protective film layer is formed based on an iCVD process using an initiator, and the initiator comprises tert-butyl peroxide (TBPO).
  7. 제1항에 있어서,In the first paragraph,
    상기 전해질 팽윤성 고분자는 전해액에 팽윤되어 고체-전해질층 복합체를 형성하는, 리튬 금속 전지용 전극.An electrode for a lithium metal battery, wherein the above electrolyte swellable polymer swells in an electrolyte solution to form a solid-electrolyte layer composite.
  8. 제7항에 있어서,In Article 7,
    상기 전해액은 브루스-빈센트 방법을 통하여 측정한 리튬 이온 전달수(tLi+)가 0.2 내지 1 범위인, 리튬 금속 전지용 전극.The above electrolyte is an electrode for a lithium metal battery, wherein the lithium ion transfer number (tLi+) measured using the Bruce-Vincent method is in the range of 0.2 to 1.
  9. 제1항에 있어서,In the first paragraph,
    상기 리튬 금속층은 1 내지 200 ㎛ 두께를 갖는, 리튬 금속 전지용 전극.An electrode for a lithium metal battery, wherein the lithium metal layer has a thickness of 1 to 200 ㎛.
  10. 제1항 내지 제9항 중 어느 하나의 리튬 금속 전지용 전극인 음극; 양극; 및 상기 양극과 음극 사이에 개재된 전해질 층;을 포함하며,A lithium metal battery electrode according to any one of claims 1 to 9, comprising: an anode; an anode; and an electrolyte layer interposed between the anode and the cathode;
    상기 음극은 표면에 형성된 고체-전해질 계면층(Solid electrolyte interphase)을 포함하는, 이차 전지.A secondary battery, wherein the cathode includes a solid electrolyte interphase formed on the surface.
  11. 제10항에 있어서,In Article 10,
    상기 고체-전해질 계면층은 Li2O 프리-SEI 층인, 이차 전지.A secondary battery, wherein the solid-electrolyte interface layer is a Li 2 O free-SEI layer.
  12. 제1항 내지 제9항 중 어느 하나의 리튬 금속 전지용 전극의 제조 방법으로서,A method for manufacturing an electrode for a lithium metal battery according to any one of claims 1 to 9,
    개시제를 사용하는 화학 기상 증착 (initiated Chemical Vapor Deposition; iCVD) 공정으로 음극 집전체 상에 고분자 보호 박막층을 형성하는 것을 포함하며, It comprises forming a polymer protective thin film layer on a negative electrode current collector by an initiated Chemical Vapor Deposition (iCVD) process using an initiator,
    상기 고분자 보호 박막층은 전해질 팽윤성 고분자를 포함하고, 상기 전해질 팽윤성 고분자는 다이메틸아미노메틸 스티렌(dimethylaminomethyl styrene), 에틸렌 글리콜 다이메틸아크릴레이트(ethylene glycol dimethacrylate), 아크릴산 (acrylic acid), 2-(퍼플루오로헥실) 에틸 아크릴레이트 [(2-perfluorohexyl) ethyl acrylate)], 및 다이바이닐벤젠 (divinylbenzene)으로 구성된 군에서 선택되는 하나 이상의 단량체로부터 형성되는, 리튬 금속 전지용 전극 제조 방법.A method for manufacturing an electrode for a lithium metal battery, wherein the polymer protective film layer comprises an electrolyte swellable polymer, and the electrolyte swellable polymer is formed from one or more monomers selected from the group consisting of dimethylaminomethyl styrene, ethylene glycol dimethacrylate, acrylic acid, 2-(perfluorohexyl) ethyl acrylate, and divinylbenzene.
  13. 제12항에 있어서,In Article 12,
    상기 개시제를 사용하는 화학 기상 증착 공정에서, 터트-부틸 퍼옥사이드 (tert-butyl peroxide, TBPO)를 포함하는 개시제를 사용하여 수행되는, 리튬 금속 전지용 전극 제조 방법.A method for manufacturing an electrode for a lithium metal battery, wherein the method is performed using an initiator comprising tert-butyl peroxide (TBPO) in a chemical vapor deposition process using the above initiator.
  14. 제12항에 있어서,In Article 12,
    상기 개시제를 사용하는 화학 기상 증착 공정에서, 2 nm/min-1 내지 14 nm/min-1의 증착 속도로 수행되는, 리튬 금속 전지용 전극 제조 방법.A method for manufacturing an electrode for a lithium metal battery, wherein the chemical vapor deposition process using the above initiator is performed at a deposition rate of 2 nm/min -1 to 14 nm/min -1 .
PCT/KR2024/002186 2023-02-20 2024-02-20 Lithium metal secondary battery comprising electrolyte-swellable polymer film WO2024177351A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2023-0022353 2023-02-20
KR20230022353 2023-02-20
KR10-2024-0024293 2024-02-20
KR1020240024293A KR20240129594A (en) 2023-02-20 2024-02-20 Lithium metal battery comprising electrolyte-swellable polymer film

Publications (1)

Publication Number Publication Date
WO2024177351A1 true WO2024177351A1 (en) 2024-08-29

Family

ID=92501418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2024/002186 WO2024177351A1 (en) 2023-02-20 2024-02-20 Lithium metal secondary battery comprising electrolyte-swellable polymer film

Country Status (1)

Country Link
WO (1) WO2024177351A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050043674A (en) * 2003-11-05 2005-05-11 주식회사 엘지화학 Functional polymer film-coated electrode and electrochemical device using the same
KR20190091220A (en) * 2018-01-26 2019-08-05 주식회사 엘지화학 An anode for a lithium secondary battery and a battery comprising the same
KR20210015103A (en) * 2019-07-31 2021-02-10 울산과학기술원 Lithium metal composite electrodes and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050043674A (en) * 2003-11-05 2005-05-11 주식회사 엘지화학 Functional polymer film-coated electrode and electrochemical device using the same
KR20190091220A (en) * 2018-01-26 2019-08-05 주식회사 엘지화학 An anode for a lithium secondary battery and a battery comprising the same
KR20210015103A (en) * 2019-07-31 2021-02-10 울산과학기술원 Lithium metal composite electrodes and manufacturing method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BAE JAEHYEONG, CHOI KEONWOO, SONG HYUNSUB, KIM DO HEUNG, YOUN DOO YOUNG, CHO SU‐HO, JEON DOGYEONG, LEE JIYOUNG, LEE JUNYOUNG, JANG: "Reinforcing Native Solid‐Electrolyte Interphase Layers via Electrolyte‐Swellable Soft‐Scaffold for Lithium Metal Anode", ADVANCED ENERGY MATERIALS, vol. 13, no. 16, 1 April 2023 (2023-04-01), DE , pages 1 - 12, XP093203333, ISSN: 1614-6832, DOI: 10.1002/aenm.202203818 *
STALIN SANJUNA, CHEN PENGYU, LI GAOJIN, DENG YUE, ROUSE ZACHARY, CHENG YIFAN, ZHANG ZHEYUAN, BISWAL PRAYAG, JIN SHUO, BAKER SHEFFO: "Ultrathin zwitterionic polymeric interphases for stable lithium metal anodes", MATTER, vol. 4, no. 11, 1 November 2021 (2021-11-01), US , pages 3753 - 3773, XP093067297, ISSN: 2590-2385, DOI: 10.1016/j.matt.2021.09.025 *
WANG QIYU, XU XIANGQUN, HONG BO, BAI MAOHUI, LI JIE, ZHANG ZHIAN, LAI YANQING: "Molecular engineering of a gel polymer electrolyte via in-situ polymerization for high performance lithium metal batteries", CHEMICAL ENGENEERING JOURNAL, vol. 428, 1 January 2022 (2022-01-01), AMSTERDAM, NL , pages 1 - 8, XP093203332, ISSN: 1385-8947, DOI: 10.1016/j.cej.2021.131331 *

Similar Documents

Publication Publication Date Title
EP3336931B1 (en) Composite electrolyte structure and lithium metal battery including the same
EP3093906B1 (en) Lithium metal battery
KR101486130B1 (en) Lithium metal electrode modified by conductive polymer, method for preparing the same and lithium metal battery comprising the same
WO2018135862A1 (en) A solid electrolyte for a negative electrode of a secondary battery and method for manufacture of an electrochemical cell
US9755268B2 (en) Gel electrolytes and electrodes
EP3002814B1 (en) Electrolyte, method of preparing the electrolyte, and secondary battery including the electrolyte
KR100467705B1 (en) Seperator having inorganic protective film and lithium battery using the same
JP5372954B2 (en) Homogeneous double layer solid film deposition for structural and / or electrochemical properties
US11646442B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery including same
KR102692563B1 (en) Negative electrode for lithium metal battery, preparing method thereof and lithium metal battery comprising the same
WO2018212481A1 (en) Method for manufacturing anode for lithium secondary battery
WO2020085823A1 (en) Method for manufacturing anode for lithium secondary battery
KR102664380B1 (en) Lithium battery, and preparing method thereof
WO2019139271A1 (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising same
KR20200018902A (en) A negative electrode for a lithium secondary battery formed with a ferroelectric polymer protective layer, method for preparing the same, and a lithium secondary battery including the negative electrode
WO2020242266A1 (en) Positive electrode for lithium secondary battery, and lithium secondary battery including same
WO2015141952A1 (en) Lithium sulfur battery
WO2024177351A1 (en) Lithium metal secondary battery comprising electrolyte-swellable polymer film
WO2020159284A1 (en) Electrode and lithium secondary battery comprising same
KR20240129594A (en) Lithium metal battery comprising electrolyte-swellable polymer film
WO2020091479A1 (en) Lithium electrode and lithium secondary battery comprising same
WO2020179998A1 (en) Separator, preparation method of same, and secondary battery comprising same
WO2020091426A1 (en) Lithium electrode and lithium secondary battery comprising same
WO2023243952A1 (en) Electrode assembly for lithium secondary battery, method for producing same, and lithium secondary battery comprising same
WO2023239128A1 (en) Electrode and electrode assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24760540

Country of ref document: EP

Kind code of ref document: A1