WO2024169164A1 - 一种增湿组件 - Google Patents

一种增湿组件 Download PDF

Info

Publication number
WO2024169164A1
WO2024169164A1 PCT/CN2023/117156 CN2023117156W WO2024169164A1 WO 2024169164 A1 WO2024169164 A1 WO 2024169164A1 CN 2023117156 W CN2023117156 W CN 2023117156W WO 2024169164 A1 WO2024169164 A1 WO 2024169164A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover body
cover
folding
membrane
inlet
Prior art date
Application number
PCT/CN2023/117156
Other languages
English (en)
French (fr)
Inventor
李佐军
Original Assignee
惠州市沃瑞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州市沃瑞科技有限公司 filed Critical 惠州市沃瑞科技有限公司
Priority to DE212023000084.9U priority Critical patent/DE212023000084U1/de
Publication of WO2024169164A1 publication Critical patent/WO2024169164A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present application relates to the technical field of humidification components, and in particular to a humidification component.
  • a humidification component is usually required to ensure that the air inside the stack can be maintained within a certain humidity range, thereby enhancing the stability and performance of the fuel cell system.
  • the traditional humidification components and system humidification solutions of fuel cell systems often use proton exchange membranes to achieve humidification.
  • the specific principle is to pass the humidified air coming out of the stack into the humidification component, use the proton exchange membrane to absorb and store the introduced moisture, and transfer it to the dry air that is about to enter the stack, thereby achieving the effect of humidifying the air entering the stack.
  • the commonly used proton exchange membranes at present include hollow fiber membrane tubes and flat membranes.
  • the manufacturing process of hollow fiber membrane tubes for humidification is relatively complex and has high technical requirements, resulting in high product cost and difficulty in mass production.
  • the relatively complex structure also leads to a large volume; and the use of flat membranes as proton exchange membranes, in order to ensure the water transfer effect, usually need to stack the flat membranes in multiple layers.
  • the main disadvantage of stacking multiple flat membranes is that the water flow resistance is large, resulting in uneven water transfer of each part of the flat membrane, affecting the humidification effect.
  • multi-layer stacking also increases the overall volume of the humidification component to a certain extent.
  • the above problems not only lead to a high manufacturing cost of the existing humidification components, but also whether hollow fiber membrane tubes or flat membranes are used, it is difficult to improve the moisture transfer efficiency of the materials, resulting in difficulty in miniaturizing the product volume while ensuring its humidification performance.
  • the present application provides a humidification component, which can reduce the volume as much as possible while ensuring the humidification performance.
  • a humidification component comprising:
  • the support assembly comprises a frame structure and a first cover and a second cover disposed on opposite sides of the frame structure; the first cover comprises a wet inlet and a wet outlet, and the second cover comprises a dry inlet and a dry outlet; a receiving cavity is formed in the middle of the frame structure; and
  • a folding film is disposed in the accommodating cavity and has a plurality of continuous folding structures; a first cavity is formed between the folding film and the first cover body, and a second cavity is formed between the folding film and the second cover body; The two cavities are relatively isolated by the folded membrane;
  • first cover body and/or the second cover body is provided with a slow flow structure for slowing down the air flow rate in the cavity, and the slow flow structure is opposite to the folding film.
  • the flow slowing structure comprises a flow slowing ridge, and the flow slowing ridge is arranged between the wet inlet and the wet outlet of the first cover body, and/or between the dry inlet and the dry outlet of the second cover body;
  • the distance between the slow-flow ridge and the folding film is smaller than the distance between the first cover or the second cover and the folding film on both sides of the slow-flow ridge.
  • the flow-slowing structure further comprises a raised portion disposed on the first cover body and/or the second cover body, and a gently sloping surface located on at least one side of the raised portion;
  • the raised portion is arranged near the inlet and outlet of the first cover body and/or the second cover body;
  • the distance between the gentle slope surface and the folded film decreases gradually in a direction from a side close to the raised portion to a side away from the raised portion.
  • At least one of the gentle slopes is disposed between the inlet and outlet of the first cover and/or the second cover and the gentle flow ridge;
  • At least one of the gentle slope surfaces is disposed on a side of the first cover body and/or the second cover body facing directly to and away from the inlet and outlet.
  • the folding structure includes a bending portion, and the width of the folding film after folding is greater than the width between two adjacent bending portions.
  • the frame structure and the first cover body, and the frame structure and the second cover body are both detachably connected.
  • the frame structure extends out limiting edge strips on both sides of the periphery of the connection between the frame structure and the first cover body and the second cover body, and the folding film is arranged in the limiting edge strips on both sides.
  • the support assembly further includes a first limiting structure and a second limiting structure for limiting the position of the folding film
  • the first limiting structure is disposed between the folding film and the first cover body, and the second limiting structure is disposed between the folding film and the second cover body;
  • the first limiting structure and the second limiting structure have a mesh structure for air circulation.
  • first limiting structure and the second limiting structure together form a frame structure.
  • the frame structure is sealedly connected to the first cover body and the second cover body.
  • the humidification component provided by the present application based on utilizing the structural characteristics of the folded membrane to increase the contact area between the air inside the humidification component and the folded membrane, introduces air into the structural gap of the folded membrane through a slow flow structure, and slows down the flow rate of the air flowing through the folded membrane to increase the contact time, so that the contact between the air and the folded membrane is more complete, effectively improving the moisture transfer efficiency between the air inside the humidification component and the folded membrane, thereby effectively reducing the volume of the humidification component while ensuring the same humidification performance.
  • FIG1 is a schematic diagram of the explosion structure of the humidification assembly provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of the cross-sectional structure of the humidification component provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of the internal air duct of the humidification component provided in an embodiment of the present application.
  • FIG. 4 is another schematic diagram of the explosion structure of the humidification assembly provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of the external structure of the humidification component provided in an embodiment of the present application.
  • FIG. 6 is another schematic diagram of the internal air duct of the humidification component provided in an embodiment of the present application.
  • FIG. 7 is another schematic diagram of the external structure of the humidification component provided in an embodiment of the present application.
  • Figure 1 shows an exploded structure of a humidification component.
  • the humidifying assembly includes a supporting assembly 1 and a folding membrane 2.
  • the supporting assembly 1 includes a frame structure 11 and a first cover 12 and a second cover 13 disposed on opposite sides of the frame structure 11.
  • the first cover 12 includes a wet inlet 131 and a wet outlet 132
  • the second cover 13 includes a dry inlet 121 and a dry outlet 122.
  • a receiving cavity is formed in the middle of the frame structure 11.
  • the support assembly 1 is used to form a frame or shell structure, and can be manufactured using metal materials, polymer materials, and other materials commonly used for shells.
  • the shapes of the frame structure 11, the first cover body 12, and the second cover body 13 can be determined according to actual conditions.
  • the frame can be made of an aluminum frame, and the aluminum frame can include four integrally formed side panels to form a frame, so that a receiving cavity for placing the folding membrane 2 is enclosed in the middle of the frame.
  • the frame can also be two or more structures that together form the frame structure 11, so as to adapt to different installation requirements.
  • the first cover body 12 and the second cover body 13 can have a variety of shapes, and the present application does not specify the specific structural shapes of the frame structure 11, the first cover body 12, and the second cover body 13. Make limitations.
  • the frame structure 11 can be an aluminum frame with side panels on all sides.
  • a sealing ring 4 can be provided between the aluminum frame and the first cover body 12 and the second cover body 13 for sealing.
  • glue injection or adhesive tape can be used between the aluminum frame and the first cover body 12 and the second cover body 13 to ensure the sealing performance between the two.
  • the frame structure 11 extends from the periphery of both sides of the connection with the first cover body 12 and the second cover body 13 to form limiting edge strips 111, and the folding membrane 2 is arranged in the limiting edge strips 111 on both sides.
  • the limiting edge strips 111 enable the folding membrane 2 and the frame structure 11 to be relatively positioned, thereby fixing the position of the folding membrane 2 inside the humidifying assembly and improving product reliability.
  • first cover 12 and the second cover 13 can be fixed by screws by setting mounting holes 5 for screws to pass through.
  • the mounting holes 5 can be set at intervals on the periphery of the first cover 12 and the second cover 13, so as to ensure that the first cover 12, the second cover 13 and the frame structure 11 form a relatively closed space.
  • the first cover 12 and the second cover 13 can be installed by setting snaps, gluing, etc. It can be understood that during the application process, the first cover 12 and the second cover 13 can be set according to the actual situation. Common installation methods in the field can be used.
  • FIG 2 shows the cross-sectional structure of the humidification component provided in the embodiment of the present application.
  • the folding membrane 2 is arranged in the accommodating cavity and has a plurality of continuous folding structures 21.
  • a first chamber is formed between the folding membrane 2 and the first cover body 12, and a second chamber is formed between the folding membrane 2 and the second cover body 13; the first cavity 123 and the second cavity 133 are relatively isolated by the folding membrane 2.
  • the first cavity and the second cavity can be isolated by the folding membrane 2 to form a relatively independent space, thereby ensuring that the air between the two chambers is relatively isolated.
  • the cover folding membrane 2 uses a flat membrane as the material of the folding membrane 2.
  • the flat membrane can be a hydrophilic membrane composed of PVDF (polyvinylidene fluoride) and PET non-woven fabric, which can capture and store moisture in the air.
  • PVDF polyvinylidene fluoride
  • PET non-woven fabric PET non-woven fabric
  • other hydrophilic materials can also be used to make the folding membrane 2.
  • the folding membrane 2 is formed by folding the flat membrane to form a folding membrane 2 with a continuous, multiple folding structures 21.
  • the folding structure 21 can be a structure formed by bending the membrane. Through multiple continuous folding structures 21, the folding membrane 2 can have a larger contact area with the air at the same length or width. Not only is the moisture transfer effect of the single-layer membrane better, but it will not produce the problem of uneven moisture in the traditional multi-layer stacked flat membrane, and thus improve the moisture transfer efficiency under the same volume. At the same time, the manufacturing method of the folding membrane 2 is relatively simple, and the material is cheaper and more reliable, which can effectively reduce the manufacturing cost of the product.
  • the folding structure 21 can also be multi- It is made by folding and splicing two flat film sheets, or by using the same flat film. The specific production method can be determined according to the actual situation.
  • the folding structure 21 includes a bending portion, and the width formed by the folding film 2 after folding is greater than the width between two adjacent bending portions.
  • the width of the folding film 2 in Figure 2 after folding is d1
  • the width between the two folding structures 21 is d2.
  • d1 is set to be greater than d2.
  • the above method can not only increase the contact area between the folding film 2 and the air per unit volume, but also appropriately reduce the flow rate of air flowing in the gap between the folding structures 21, thereby further improving the moisture transfer efficiency. More specifically, the ratio of d1 to d2 can be greater than 1 or 5:1, 10:1 or even 20:1 or above.
  • the ratio can be determined according to actual application requirements, as long as it can ensure that the air can flow between different folding structures 21.
  • the cross-section of the bending portion of the folding structure 21 can be V-shaped or U-shaped, and the specific shape is not limited.
  • the first cover 12 and/or the second cover 13 are provided with a slow flow structure 3 for slowing down the air flow rate in the cavity, and the slow flow structure 3 is opposite to the folding membrane 2.
  • the first cover 12 and the second cover 13, or one of the first cover 12 and the second cover 13, can be provided with the slow flow structure 3, so that the air flowing into the first cover 12 and the second cover 13 from the outside can reduce its flow rate inside, improve the contact degree between the air and the surface of the folding membrane 2, and thus improve the moisture transfer efficiency per unit area.
  • the slow flow structure 3 includes a slow flow ridge, which is arranged between the wet inlet 131 and the wet outlet 132 of the first cover body 12, and/or between the dry inlet 121 and the dry outlet 122 of the second cover body 13; the distance between the slow flow ridge and the folding membrane 2 is less than the distance between the first cover body 12 or the second cover body 13 and the folding membrane 2 on both sides of the slow flow ridge.
  • the slow flow ridge can not only reduce the distance between the folding membrane 2 and the cover body, so that the air decelerates between the slow flow ridge and the folding membrane 2, thereby reducing the air flow rate between the inlet and the outlet of the first cover body 12 or the second cover body 13, but also can guide part of the air to flow into the gap between the folding structure 21, so that the part of the air can be more fully in contact with the surface of the folding membrane 2, thereby improving the humidification effect.
  • the slow flow ridge in the humidification component can be provided with one or more than two, which can be a ridge-shaped structure arranged inside the cover body, or the ridge-shaped structure can be formed by changing the shape of the cover body, and the specific form is not limited.
  • the support component 1 is used to support the folded membrane 2 and form the shell of the humidification component, so that the air with water vapor coming out of the battery stack is passed into the first cover 12, and the water vapor is transferred to one side of the folded membrane 2 arranged inside the accommodating cavity, and the water is stored by utilizing the hydrophilic property of the folded membrane 2.
  • the dry air for entering the battery stack is passed into the second cover 13, so that the dry air flows through the folded membrane 2 storing the water vapor.
  • the dry air is humidified and discharged after passing through the membrane 2.
  • the above process uses the water vapor from the battery stack to humidify the dry air, without the need for additional energy drive, which can reduce the energy consumption of the equipment.
  • Figure 3 shows the internal air duct structure of the humidification component provided in the embodiment of the present application.
  • the figure includes a slow flow structure 3, a first cavity 123 and a folded membrane 2.
  • the slow flow structure 3 can be a slow flow ridge, and the airflow (corresponding to the arrow) flows from the right side to the left side in the figure.
  • the airflow rate is reduced after being blocked by the slow flow ridge, and flows from the side in the first cavity 123 to the other side of the slow flow ridge, and part of the airflow will change the flow direction after being blocked by the slow flow ridge, so that it is guided by the structural surface of the slow flow ridge and flows to the gap between the adjacent folding structures 21 of the folding membrane 2.
  • the airflow can be affected by the slow flow ridge and enter the gap of the folding membrane 2 more, thereby realizing moisture transfer with the folding membrane 2.
  • the slow flow structure 3 is not provided, although the folded membrane 2 increases the contact area, the air flow rate is slow due to the small space in the gap of the folded membrane 2, which easily affects the overall air humidification efficiency.
  • the cooperation between the slow flow structure 3 and the folded membrane 2 can increase the flow rate of the air in the gap of the folded membrane 2, and the moisture transfer efficiency between the air and the folded membrane 2 can be improved compared with the method without the slow flow structure 3.
  • the direction of the air duct formed by the dry inlet 121 and the dry outlet 122 can be the same direction or opposite direction as the direction of the air duct formed by the wet inlet 131 and the wet outlet 132, which can be determined according to the installation method or other conditions required by the humidification component, and this application does not limit this.
  • the humidification component of the present application can be applied to a battery assembly having a fuel cell, providing a humidity regulating function for the air flowing into and out of the battery assembly of the fuel cell, thereby ensuring the working reliability and working efficiency of the fuel cell.
  • the humidification component can also be applied to other products that require humidification.
  • the humidification component provided by the present application based on utilizing the structural characteristics of the folded membrane to increase the contact area between the air inside the humidification component and the folded membrane, introduces air into the structural gap of the folded membrane through a slow flow structure, and slows down the flow rate of the air flowing through the folded membrane to increase the contact time, so that the contact between the air and the folded membrane is more complete, effectively improving the moisture transfer efficiency between the air inside the humidification component and the folded membrane, thereby effectively reducing the volume of the humidification component while ensuring the same humidification performance.
  • the humidification component includes a support component 1 and a folding membrane.
  • the support component 1 includes a first limiting structure 112 and a second limiting structure 113 for limiting the folding membrane.
  • the first limiting structure 112 is arranged between the folding membrane and the first cover body 12, and the second limiting structure 113 is arranged between the folding membrane and the second cover body 13.
  • the first limiting structure 112 and the second limiting structure 113 are used to limit the position of the folding membrane to prevent the folding membrane from failing due to physical impact.
  • the first limiting structure 112 and the second limiting structure 113 can be installed through the mounting hole 5, and the mounting hole 5 can be set at the periphery of the first limiting structure 112 and the second limiting structure 113, so as to use screws and the mounting hole 5 to cooperate for installation and fixation, and ensure installation reliability.
  • the mounting hole 5 can also be set at the periphery of the first cover body 12 and the second cover body 13, so as to fix the cover body and the limiting structure at the same time by screws.
  • a sealing ring 4 can be set between the first limiting structure 112 and the first cover body 12, and between the second limiting structure 113 and the second cover body 13 for sealing.
  • the first limiting structure 112 and the first cover body 12, and between the second limiting structure 113 and the second cover body 13 can also be sealed by means of glue injection or adhesive tape to ensure the sealing performance between the two.
  • the first limiting structure 112 and the second limiting structure 113 have a mesh structure for air circulation.
  • the mesh structure can not only limit the folding membrane so that the folding membrane is limited between the first limiting structure 112 and the second limiting structure 113, thereby improving the structural reliability of the product, but also avoid affecting the air flow effect in the cavity, thereby ensuring the moisture transfer efficiency inside the humidification component.
  • one or more beam-like structures or baffle structures for limiting the folding membrane may also be set, and the specific placement method and implementation form of the beam-like structure or baffle structure may be determined according to actual conditions.
  • first limiting structure 112 and the second limiting structure 113 can jointly form a frame structure, so that under the premise of having a certain support and protection effect on the folding film, it can be set to be detachably connected, and the user can take out or put in the folding film by disassembling the first limiting structure 112 and the second limiting structure 113, which is convenient for the user to disassemble and replace the folding film and reduce maintenance costs.
  • first limiting structure 112 and the second limiting structure 113 can also be integrally formed, and the specific method is not limited.
  • the first flow-slowing structure further includes a raised portion 32 disposed on the first cover 12 and/or the second cover 13, and a gently sloping surface 33 located on at least one side of the raised portion 32.
  • the raised portion 32 is disposed near the inlet and outlet of the first cover 12 and/or the second cover 13, and the gently sloping surface 33 decreases in distance from the folded film from the side close to the raised portion 32 to the side away from the raised portion 32.
  • the side of the cavity corresponding to the ridge 32 is connected to the inlet and outlet, and the distance between the top of the ridge 32 and the folding membrane can be greater than or equal to the distance between the top of the tube body of the inlet and outlet and the folding membrane, thereby ensuring that the cavity corresponding to the ridge 32 has a certain space, so that a certain amount of air can be accommodated inside.
  • the gentle slope 33 extends inward from the side of the ridge 32 close to the inlet and outlet to the side of the principle inlet and outlet, so that the distance between the gentle slope 33 and the folding membrane is different at different sides, and the structural characteristics of the gentle slope 33 are used to further control the flow rate of the internal air, thereby improving the air and folding
  • the water transfer efficiency between membranes can effectively reduce the volume of the humidification component while ensuring the same humidification performance.
  • FIG5 shows a schematic diagram of the external structure of a humidification component provided in an embodiment of the present application.
  • the second cover body 13 is provided with a dry inlet 131 and a dry outlet 132.
  • a raised portion 32 is provided at the connection between the dry inlet 131 and the dry outlet 132 and the second cover body 13, and the distance between the top of the raised portion 32 and the folding membrane is equivalent to the vertical distance between the top of the dry inlet 131 and the dry outlet 132 and the folding membrane.
  • a gentle slope 33 is provided around the raised portion 32, and the gentle slope 33 is inclined from the side connected to the raised portion 32 to the side away from the raised portion 32, so that the distance between the gentle slope 33 and the folding membrane decreases in the direction from the side close to the raised portion 32 to the side away from the raised portion 32.
  • the second cover body 13 is also provided with a slow-flow ridge 31, and the slow-flow ridge 31 is arranged between the dry outlet 132 and the dry inlet 131, so that the second cavity formed by the second cover body 13 is roughly divided into two parts, and is connected through the gap between the slow-flow ridge 31 and the folding membrane.
  • the dry inlet 131 and the dry outlet 132 can be arranged on opposite sides of the second cover body 13 and are arranged in reverse.
  • the airflow path can be optimized, thereby facilitating the installation and application of the humidification component, and can also enhance the air duct effect between the airflow and the folding membrane.
  • the setting direction of the dry inlet 131 and the dry outlet 132 can be determined according to the actual situation, for example, set to the same direction or at other angles, and the present application does not limit this.
  • Figure 6 shows the structure of another internal air duct provided in an embodiment of the present application.
  • the airflow at the dry inlet enters the chamber corresponding to the raised portion 32, it is decelerated by the gentle slope surface 33 and the slow flow ridge 31 in sequence, so that the airflow stays in the humidification component for a longer time.
  • the airflow is guided by the structural features of the gentle slope surface 33 and the slow flow ridge 31, so that the airflow moves toward the folding membrane when it touches the gentle slope surface 33 and the slow flow ridge 31, and it is easier to enter the gap between different folding structures of the folding membrane, so that the air and the folding membrane surface in the gap between the folding structures can be more fully contacted, which can further improve the moisture transfer efficiency between the folding membrane and the air.
  • the above-mentioned structural method can also be applied to the first cover body 12, so as to ensure that the airflow carrying water vapor can more fully contact the folding membrane, thereby making the moisture transfer efficiency between the folding membrane and the air carrying water vapor higher, thereby improving the water storage effect of the folding membrane.
  • FIG. 7 shows another external structure of the humidification component provided in an embodiment of the present application.
  • the external structure of the humidification assembly can be applied to the first cover 12.
  • the first cover 12 may include a wet inlet 131 and a wet outlet 132.
  • a slow-flow ridge 31 for slowing down the airflow velocity is provided in the middle of the first cover 12 or between the wet inlet 131 and the wet outlet 132.
  • the width of the slow-flow ridge 31 along the airflow direction can be set larger, for example, to be greater than
  • the cover body is one quarter of its width in the airflow direction, so that the airflow entering from the wet inlet 131 can fully flow through the gaps between the different folding structures of the folding film, thereby improving the moisture transfer effect between the folding film and the air.
  • the gently sloping surface 33 of the first cover body 12 is arranged on the other side of the raised portion 32 relative to the inlet and outlet, and is opposite to the direction of the inlet and outlet. Such an arrangement allows the airflow to be slowed down accordingly through the gently sloping surface 33 when it enters or flows out, thereby ensuring that the airflow can more fully contact the folding membrane.
  • the at least one gentle slope surface 33 is arranged between the inlet and outlet of the first cover body 12 and/or the second cover body 13 and the slow flow ridge; or at least one gentle slope surface 33 is arranged on the side of the first cover body 12 and/or the second cover body 13 facing and away from the inlet and outlet.
  • the above structure can be applied to the second cover body 13 in addition to the first cover body 12.
  • the design methods of the different slow flow structures of the ridge 32, the gentle slope surface 33 and the slow flow ridge 31, the first cover body 12 and the second cover body 13 can adopt the methods shown in Figures 5 and 7 at the same time, or can adopt the methods shown in Figures 5 or 7 alone.
  • the above designs can be adjusted according to actual conditions. Obviously, the above design can improve the moisture transfer efficiency between the air and the folded membrane, and thus can effectively reduce the volume of the humidification component while ensuring the same humidification performance.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features. In the description of this application, the meaning of “plurality” is two or more, unless otherwise clearly and specifically defined.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Air Humidification (AREA)

Abstract

一种增湿组件,包括:支撑组件,包括框体结构以及设置于框体结构相对两侧的第一盖体与第二盖体;该第一盖体包括湿进口及湿出口,该第二盖体包括干进口与干出口;该框体结构中部形成容置腔;以及折叠膜,设于该容置腔内,且具有多个连续的折叠结构;该折叠膜与第一盖体之间形成第一腔室,该折叠膜与第二盖体之间形成第二腔室;该第一腔体与第二腔体之间经折叠膜相对隔离;其中,第一盖体和/或第二盖体上设有用于减缓腔内空气流速的缓流结构,该缓流结构与折叠膜相对。所述增湿组件能够有效提高增湿组件内部空气与折叠膜之间的水分传递效率,从而在确保相同增湿性能下能够有效减小增湿组件的体积。

Description

一种增湿组件 技术领域
本申请涉及增湿组件技术领域,尤其是涉及一种增湿组件。
背景技术
在现有的燃料电池系统中,通常需要设置增湿组件来确保电堆内部的空气能够维持在一定的湿度范围内,从而增强燃料电池系统的稳定性及性能表现。目前燃料电池系统传统的增湿组件及系统增湿方案常采用质子交换膜来实现加湿处理,具体原理是将经过电堆出来的带有湿气空气通入到增湿组件,利用质子交换膜将通入的湿气进行吸收、存储,并将其传递到即将进入到电堆内的干燥的空气中,从而实现对进入电堆的空气进行加湿的效果。
目前常用到的质子交换膜包括中空纤维膜管以及平板膜两种。其中,利用中空纤维膜管进行增湿,其制造工艺较为复杂且技术要求高,导致产品造价成本贵,批量生产困难,同时较为复杂的结构也导致体积偏大;而采用平板膜作为质子交换膜,为了确保水分的传递效果,通常需要对平板膜进行多层堆叠,将多个平板膜进行堆叠后其主要的缺点在于水分流阻较大,导致各个部分的平板膜的水分传递不均匀,影响增湿效果,同时,多层堆叠也一定程度增加了增湿组件整体体积。
因此,上述问题不仅导致现有的增湿组件其制造成本较高,且无论是应用了中空纤维膜管还是平板膜,因材料的水分传递效率难以提高,导致在确保其增湿性能的前提下产品体积难以实现小型化。
发明内容
为了解决现有技术存在的上述问题,本申请提供了一种增湿组件,能够在确保增湿性能的前提下尽可能减小体积。
本申请提供了如下技术方案:一种增湿组件,所述增湿组件包括:
支撑组件,包括框体结构以及设置于所述框体结构相对两侧的第一盖体与第二盖体;所述第一盖体包括湿进口及湿出口,所述第二盖体包括干进口与干出口;所述框体结构中部形成容置腔;以及
折叠膜,设于所述容置腔内,且具有多个连续的折叠结构;所述折叠膜与第一盖体之间形成第一腔室,所述折叠膜与所述第二盖体之间形成第二腔室;所述第一腔体与所述第 二腔体之间经所述折叠膜相对隔离;
其中,所述第一盖体和/或所述第二盖体上设有用于减缓腔内空气流速的缓流结构,所述缓流结构与所述折叠膜相对。
在一实施例中,所述缓流结构包括缓流脊,所述缓流脊设置于所述第一盖体的湿进口与湿出口之间,和/或设置于所述第二盖体的干进口与干出口之间;
所述缓流脊与所述折叠膜之间的距离,小于所述缓流脊两侧的第一盖体或者第二盖体与所述折叠膜之间的距离。
在一实施例中,所述缓流结构还包括设置于所述第一盖体和/或第二盖体上的隆起部,以及位于所述隆起部至少一侧的缓坡面;
所述隆起部设于靠近所述第一盖体和/或第二盖体的进出口处;
所述缓坡面在靠近所述隆起部的一侧往远离所述隆起部的一侧的方向上,与所述折叠膜之间的距离递减。
在一实施例中,至少一所述缓坡面设置于所述第一盖体和/或第二盖体的进出口与所述缓流脊之间;或者
至少一所述缓坡面设置于所述第一盖体和/或第二盖体正对并远离所述进出口的一侧。
在一实施例中,所述折叠结构包括弯折部分,所述折叠膜折叠后形成的宽度大于相邻两个所述弯折部分之间的宽度。
在一实施例中,所述框体结构与所述第一盖体之间、所述框体结构与所述第二盖体之间均为可拆卸连接。
在一实施例中,所述框体结构在与第一盖体、第二盖体连接处的两侧周缘延伸出限位边条,所述折叠膜设置于两侧的限位边条内。
在一实施例中,所述支撑组件还包括用于对所述折叠膜进行限位的第一限位结构及第二限位结构;
所述第一限位结构设于所述折叠膜与所述第一盖体之间,所述第二限位结构设于所述折叠膜与所述第二盖体之间;
所述第一限位结构与所述第二限位结构具有用于空气流通的网状结构。
在一实施例中,所述第一限位结构与所述第二限位结构共同构成框架结构。
在一实施例中,所述框架结构与所述第一盖体、第二盖体之间密封连接。
由上可知,本申请提供的增湿组件,在利用折叠膜的结构特性增加增湿组件内部空气与折叠膜之间的接触面积的基础上,通过缓流结构将空气引入折叠膜的结构空隙,并对流经折叠膜的空气进行流速减缓来增加接触时间,使得空气与折叠膜的接触更加充分,有效提高增湿组件内部空气与折叠膜之间的水分传递效率,从而在确保相同增湿性能下能够有效减小增湿组件的体积。
附图说明
图1为本申请实施例提供的增湿组件的爆炸结构示意图。
图2为本申请实施例提供的增湿组件的剖面结构示意图。
图3为本申请实施例提供的增湿组件的内部风道示意图。
图4为本申请实施例提供的增湿组件的另一爆炸结构示意图。
图5为本申请实施例提供的增湿组件的外部结构示意图。
图6为本申请实施例提供的增湿组件的另一内部风道示意图。
图7为本申请实施例提供的增湿组件的另一种外部结构示意图。
具体实施方式
为了便于理解本申请,下面将结合附图和具体的实施例对本申请进行更全面的描述。附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。
请参考图1,图中示出了一种增湿组件的爆炸结构。
如图1所示,该增湿组件包括支撑组件1以及折叠膜2,该支撑组件1包括框体结构11以及设置于框体结构11相对两侧的第一盖体12与第二盖体13。该第一盖体12包括湿进口131及湿出口132,该第二盖体13包括干进口121与干出口122,该框体结构11中部形成容置腔。
该支撑组件1用于形成框体或壳体结构,可采用金属材料、高分子材料等常用于壳体的材料进行制造。该框体结构11、第一盖体12及第二盖体13的形态可以根据实际情况而定,例如该框体可以采用铝制框体,该铝制框体可以包括一体成型的四个侧板构成框架,从而在该框架中部围设成一个可以用于放置折叠膜2的容置腔。该框体还可以是两个或以上的结构共同构成框体结构11,从而适应不同的安装需求。同样的,该第一盖体12与第二盖体13的形态可以有多种,本申请对该框体结构11、第一盖体12及第二盖体13的具体结构形态不 做限定。
在一实施例中,该框体结构11可以采用四周包含侧板的铝框,该铝框与第一盖体12、第二盖体13之间可以设置有密封圈4进行密封,除此之外,铝框与第一盖体12、第二盖体13之间还可以采用注胶或者胶纸的方式确保两者之间的密封性能。
在另一实施例中,该框体结构11在与第一盖体12、第二盖体13连接处的两侧周缘延伸出限位边条111,该折叠膜2设置于两侧的限位边条111内。该限位边条111使得折叠膜2与框体结构11之间获得相对定位,从而固定折叠膜2在该增湿组件内部的位置,提高产品可靠性。
更具体的,该第一盖体12、第二盖体13之间可以通过在上面设置用于螺丝穿过的安装孔5,通过螺丝来对第一盖体12与第二盖体13之间进行固定。该安装孔5可以在第一盖体12与第二盖体13的周缘间隔设置,从而确保第一盖体12、第二盖体13与框体结构11内部形成相对密闭的空间。当然,除了安装孔5以外,可以通过设置卡扣、胶粘等方式实现第一盖体12与第二盖体13之间的安装,可以理解的,应用过程中第一盖体12与第二盖体13之间可根据实际情况设置本领域常见的安装方式。
请结合图2,图中示出了本申请实施例提供的增湿组件的剖面结构。如图2所示,该折叠膜2设于容置腔内,且具有多个连续的折叠结构21。折叠膜2与第一盖体12之间形成第一腔室,折叠膜2与第二盖体13之间形成第二腔室;第一腔体123与第二腔体133之间经折叠膜2相对隔离。具体的,该第一腔室与第二腔室之间可以利用折叠膜2进行隔离形成相对独立的空间,从而确保两个腔室之间的空气相对隔离。
部分传统的增湿组件采用了多层平板膜,将平板膜上下堆叠形成一个厚度较大的膜结构,利用多层平板膜的储水及水分传递效果来实现对一侧干燥空气的增湿。在本申请的一实施例中,盖折叠膜2采用了平板膜作为折叠膜2的材料,该平板膜可以是采用PVDF(聚偏氟乙烯)及PET无纺布构成的亲水膜,可以将空气中的水分进行捕获及存储。当然还可以采用其他亲水材料构成的膜材来制作折叠膜2。具体的,该折叠膜2通过对平板膜进行折叠,形成具有连续的、多个折叠结构21的折叠膜2。折叠结构21可以是对膜进行弯折形成的结构,通过多个连续的折叠结构21可以使得折叠膜2在同样的长度或宽度下具有与空气更大的接触面积,不仅单层膜的水分传递效果更好,不会产生传统多层堆叠平板膜出现的水分不均匀的问题,也因此提高了相同体积下的水分传递效率。同时,折叠膜2的制造方式相对简单,材料也更加便宜可靠,能有效降低产品的制造成本。除此之外,该折叠结构21也可以是多 个平板膜折叠后拼接而成,或者是采用同一块平板膜进行制作,具体的制作方式可根据实际情况而定。
为了获得更好的水分传递效率,该折叠结构21包括弯折部分,该折叠膜2折叠后形成的宽度大于相邻两个弯折部分之间的宽度。例如,图2中的折叠膜2在折叠后的宽度为d1,两个折叠结构21之间的d2,此时d1设置成大于d2,通过上述方式不仅可以提高单位体积下的折叠膜2与空气接触的接触面积,还可以适当降低空气在折叠结构21之间空隙中流动的流速,从而进一步提高水分传递效率。更具体的,该d1与d2的比值可以是大于1或者是5:1、10:1甚至达到20:1或以上比例。当然,该比值可以根据实际的应用需求而定,只要能确保空气能在不同折叠结构21之间进行流动即可。另外,该折叠结构21的折弯部分横截面可以呈V形或U形,具体的形态不限。
该第一盖体12和/或第二盖体13上设有用于减缓腔内空气流速的缓流结构3,该缓流结构3与折叠膜2相对。具体的,该第一盖体12以及第二盖体13,或者第一盖体12与第二盖体13的其中一个可以通过设置缓流结构3,使得外部流入到第一盖体12、第二盖体13内的空气能够在内部降低其流速,提高空气与折叠膜2表面的接触充分度,从而提高单位面积下的水分传递效率。
在一个实施例中,缓流结构3包括缓流脊,该缓流脊设置于第一盖体12的湿进口131与湿出口132之间,和/或设置于第二盖体13的干进口121与干出口122之间;该缓流脊与折叠膜2之间的距离,小于缓流脊两侧的第一盖体12或者第二盖体13与折叠膜2之间的距离。该缓流脊不仅可以通过将折叠膜2与盖体之间的距离减小,使得空气在缓流脊与折叠膜2之间减速,从而降低第一盖体12或第二盖体13的入口与出口之间的空气流速,并且能够引导部分空气流入到折叠结构21之间的间隙内,从而使得该部分空气能够更充分地与折叠膜2的表面进行接触,提高增湿效果。可以理解的,该增湿组件中的缓流脊可以设置一个或两个以上,可以是在盖体内部设置的脊状结构,也可以通过改变盖体的外形来形成该脊状结构,具体的形态方式不限。
该增湿组件具体的工作过程中,该支撑组件1用于支撑折叠膜2并形成该增湿组件的壳体,使得用于从电堆出来的带有水汽的空气通入到第一盖体12内,通过将水汽传递给到设置在容置腔内部的折叠膜2的一侧,利用折叠膜2的亲水特性将水分进行存储。与此同时,将用于进入到电堆的干燥空气通入到第二盖体13内,使得干燥空气流经存储有水分的折叠 膜2的一侧,从而对该干燥空气进行增湿后排出。上述过程利用到电堆出来的水汽对干燥空气进行增湿,无需额外的能源驱动,能够降低设备的能耗。
具体的,请参阅图3,图中示出了本申请实施例提供的增湿组件的内部风道结构。结合图3,在本实施例中,图中包括缓流结构3、第一腔体123及折叠膜2。其中该缓流结构3可以为缓流脊,气流(对应箭头)从图中的右侧往左侧流动,当部分气流流动到缓流脊后,受到缓流脊的阻挡后气流流动速率降低,并从第一腔体123内的该侧流动至缓流脊的另一侧,而部分气流经缓流脊的阻隔会改变流动方向,从而受缓流脊的结构表面引导而流向折叠膜2的相邻折叠结构21之间的空隙处,此时气流可以受到缓流脊的影响而更多地进入到折叠膜2的空隙中,从而与折叠膜2之间实现水分传递。
若没有设置缓流结构3,虽然折叠膜2提高了接触面积,但折叠膜2内的空隙因空间较小造成空气流速较慢,容易影响整体空气的增湿效率。通过缓流结构3与折叠膜2之间的配合,能够提高空气在折叠膜2内空隙的流速,相对于没有设置缓流结构3的方式可以提高空气与折叠膜2之间的水分传递效率。
另外,该干进口121与干出口122所形成的风道方向,与湿进口131与湿出口132所形成的风道方向可以是同向或者是反向,具体可以根据增湿组件所需的安装方式或其他条件而定,本申请对此不做限定。
本申请的增湿组件可以应用于具有燃料电池的电池组件中,为流入及流出该燃料电池的电池组件的空气提供湿度调节功能,确保该燃料电池的工作可靠性及工作效率。除此之外,该增湿组件也可以应用于其他需要增湿的产品中。
由上可知,本申请提供的增湿组件,在利用折叠膜的结构特性增加增湿组件内部空气与折叠膜之间的接触面积的基础上,通过缓流结构将空气引入折叠膜的结构空隙,并对流经折叠膜的空气进行流速减缓来增加接触时间,使得空气与折叠膜的接触更加充分,有效提高增湿组件内部空气与折叠膜之间的水分传递效率,从而在确保相同增湿性能下能够有效减小增湿组件的体积。
请参阅图4,图中示出了本申请实施例提供的增湿组件的另一爆炸结构。如图4所示,该增湿组件包括支撑组件1以及折叠膜,与图1的不同点在于,该支撑组件1包括用于对所述折叠膜进行限位的第一限位结构112及第二限位结构113。该第一限位结构112设于折叠膜与第一盖体12之间,该第二限位结构113设于折叠膜与第二盖体13之间。其中,第一限位结构112与第二限位结构113,用于限制折叠膜的位置,避免折叠膜因物理撞击导致失效。
其中,该第一限位结构112与第二限位结构113之间可以通过安装孔5进行安装,可将安装孔5设置在第一限位结构112与第二限位结构113的周缘,从而利用螺丝与安装孔5配合来进行安装固定,确保安装可靠性。并且,该安装孔5还可以设置在第一盖体12与第二盖体13的周缘,以通过螺丝同时将盖体与限位结构进行固定。另外,该第一限位结构112与第一盖体12之间、第二限位结构113与第二盖体13之间可以设置有密封圈4进行密封,除此之外,该第一限位结构112与第一盖体12之间、第二限位结构113与第二盖体13之间还可以采用注胶或者胶纸的方式确保两者之间的密封性能。
在一些实施例中,第一限位结构112与第二限位结构113具有用于空气流通的网状结构,该网状结构不仅可以对折叠膜进行限位,使得折叠膜限位在第一限位结构112与第二限位结构113之间,提升该产品的结构可靠性,还能够避免影响到腔体内的空气流动效果,确保增湿组件内部的水分传递效率。
在另一些实施例中,除了将第一限位结构112与第二限位结构113设置成具有网状结构以外,还可以设置一个或多个用于对折叠膜进行限位的梁状结构或者是挡板结构,该梁状结构或挡板结构的具体放置方式及实现形式可以根据实际情况而定。
进一步的,第一限位结构112与第二限位结构113可以共同构成框架结构,从而在对折叠膜具有一定的支撑与保护作用的前提下,可将其设置为可拆式连接,用户可以通过拆卸第一限位结构112与第二限位结构113即可取出或放入折叠膜,便于用户对折叠膜进行拆卸更换,降低维护成本。当然,该第一限位结构112与第二限位结构113也可以是一体成型,具体方式不限。
在一实施例中,该第一缓流结构还包括设置于第一盖体12和/或第二盖体13上的隆起部32,以及位于隆起部32至少一侧的缓坡面33。该隆起部32设于靠近第一盖体12和/或第二盖体13的进出口处,该缓坡面33在靠近隆起部32的一侧往远离隆起部32的一侧的方向上,与折叠膜之间的距离递减。
其中,该隆起部32所对应的腔体一侧与进出口连通,并且该隆起部32的顶部与折叠膜之间的距离可以大于或等于进出口的管体顶部至折叠膜之间的距离,从而确保隆起部32对应的腔体具有一定的空间,使得内部可容纳一定量的空气。该缓坡面33从隆起部32靠近进出口的一侧往原理进出口的一侧往内延伸,使得该缓坡面33在不同侧处与折叠膜之间的距离不同,利用缓坡面33的结构特点进一步控制内部空气的流速,从而提高空气与折叠 膜之间的水分传递效率,进而在确保相同增湿性能下能够有效减小增湿组件的体积。
请参阅图5,图中示出了本申请实施例提供的一种增湿组件的外部结构示意图。
如图5所示,包括第二盖体13,该第二盖体13上设置有干进口131与干出口132。该干进口131与干出口132与第二盖体13的连接处设置有隆起部32,该隆起部32的顶部与折叠膜之间的距离,与该干进口131、干出口132的顶部至折叠膜之间的垂直距离相当。并且,该隆起部32的四周设置有缓坡面33,该缓坡面33自于隆起部32连接的一侧往远离该隆起部32的方向一侧倾斜,使得该缓坡面33在靠近隆起部32的一侧往远离隆起部32的一侧的方向上,与折叠膜之间的距离递减。
具体的,该第二盖体13还设置有缓流脊31,该缓流脊31设置在干出口132与干进口131之间,使得该第二盖体13所形成的第二腔体大致分成两部分,并通过缓流脊31与折叠膜之间的空隙进行连通。另外,该干进口131与干出口132可以是设置于第二盖体13的相对两侧并且为反向设置。通过将干进口131与干出口132反向设置,能够优化气流路径,从而便于增湿组件的安装与应用,还可以提升气流与折叠膜之间的风道效果。可以理解的,该干进口131与干出口132的设置方向可以根据实际情况而定,例如设置成同向或者呈其他角度,本申请对此不做限定。
请结合图6,图中示出了本申请实施例提供的另一内部风道的结构。
结合图6,干入口的气流进入到隆起部32对应的腔室后,依次经缓坡面33、缓流脊31的减速,使得该气流停留在增湿组件内部的时间更长。并且,该气流受缓坡面33、缓流脊31的结构特征的引导,使得气流在触碰到缓坡面33及缓流脊31时往折叠膜的方向移动,更容易进入到折叠膜的不同折叠结构之间的缝隙中,从而让空气与折叠结构之间的缝隙的折叠膜表面进行更充分的接触,能进一步提升折叠膜与空气之间的水分传递效率。
可以理解的,上述结构方式除了应用于第二盖体13以外,还可以应用于第一盖体12内,从而确保带有水汽的气流能够更加充分地接触折叠膜,进而使得折叠膜与带有水汽的空气之间的水分传递效率更高,提升折叠膜的储水效果。
请参阅图7,图中示出了本申请实施例提供的增湿组件的另一种外部结构。
该增湿组件的外部结构可应用于第一盖体12。该第一盖体12可以包括湿进口131与湿出口132,在第一盖体12的中部、或者湿进口131与湿出口132之间的位置处,设置有用于减缓气流流速的缓流脊31。该缓流脊31沿气流方向上的宽度可以设置得较大,例如设置成大于 盖体在气流方向宽度的四分之一,如此可以更好地确保从湿进口131进入的气流可以充分流经折叠膜的不同折叠结构之间的空隙,进而提升该折叠膜与空气之间的水分传递效果。
另外,该第一盖体12的缓坡面33设置在隆起部32相对于进出口的另一侧,并与进出口的方向相对,如此设置可以使得气流进入或流出时可以相应地通过缓坡面33来减缓气流速度,从而确保气流能够更充分地与折叠膜进行接触。
进一步的,该至少一缓坡面33设置于第一盖体12和/或第二盖体13的进出口与缓流脊之间;或者至少一缓坡面33设置于第一盖体12和/或第二盖体13正对并远离进出口的一侧。通过上述设置,可以使缓坡面33有效提高其缓流功能。
可以理解的,上述结构除了应用于第一盖体12外,还可以应用于第二盖体13,除此之外该隆起部32、缓坡面33以及缓流脊31的不同缓流结构的设计方式,第一盖体12与第二盖体13可以同时采用图5与图7中的方式,也可以单独采用图5或者图7的方式,上述设计均可以根据实际情况而进行调整。显然,上述设计能够提高空气与折叠膜之间的水分传递效率,进而在确保相同增湿性能下能够有效减小增湿组件的体积。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。
以上内容仅仅为本申请的结构所作的举例和说明,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些显而易见的替换形式均属于本申请的保护范围。

Claims (10)

  1. 一种增湿组件,其特征在于,所述增湿组件包括:
    支撑组件,包括框体结构以及设置于所述框体结构相对两侧的第一盖体与第二盖体;所述第一盖体包括湿进口及湿出口,所述第二盖体包括干进口与干出口;所述框体结构中部形成容置腔;以及
    折叠膜,设于所述容置腔内,且具有多个连续的折叠结构;所述折叠膜与第一盖体之间形成第一腔室,所述折叠膜与所述第二盖体之间形成第二腔室;所述第一腔体与所述第二腔体之间经所述折叠膜相对隔离;
    其中,所述第一盖体和/或所述第二盖体上设有用于减缓腔内空气流速的缓流结构,所述缓流结构与所述折叠膜相对。
  2. 如权利要求1所述的增湿组件,其特征在于,所述缓流结构包括缓流脊,所述缓流脊设置于所述第一盖体的湿进口与湿出口之间,和/或设置于所述第二盖体的干进口与干出口之间;
    所述缓流脊与所述折叠膜之间的距离,小于所述缓流脊两侧的第一盖体或者第二盖体与所述折叠膜之间的距离。
  3. 如权利要求2所述的增湿组件,其特征在于,所述缓流结构还包括设置于所述第一盖体和/或第二盖体上的隆起部,以及位于所述隆起部至少一侧的缓坡面;
    所述隆起部设于靠近所述第一盖体和/或第二盖体的进出口处;
    所述缓坡面在靠近所述隆起部的一侧往远离所述隆起部的一侧的方向上,与所述折叠膜之间的距离递减。
  4. 如权利要求3所述的增湿组件,其特征在于:
    至少一所述缓坡面设置于所述第一盖体和/或第二盖体的进出口与所述缓流脊之间;或者
    至少一所述缓坡面设置于所述第一盖体和/或第二盖体正对并远离所述进出口的一侧。
  5. 如权利要求1所述的增湿组件,其特征在于,所述折叠结构包括弯折部分,所述折叠膜折叠后形成的宽度大于相邻两个所述弯折部分之间的宽度。
  6. 如权利要求1所述的增湿组件,其特征在于,所述框体结构与所述第一盖体之间、所述框体结构与所述第二盖体之间均为可拆卸连接。
  7. 如权利要求1所述的增湿组件,其特征在于,所述框体结构在与第一盖体、第二盖 体连接处的两侧周缘延伸出限位边条,所述折叠膜设置于两侧的限位边条内。
  8. 如权利要求1所述的增湿组件,其特征在于,所述支撑组件还包括用于对所述折叠膜进行限位的第一限位结构及第二限位结构;
    所述第一限位结构设于所述折叠膜与所述第一盖体之间,所述第二限位结构设于所述折叠膜与所述第二盖体之间;
    所述第一限位结构与所述第二限位结构具有用于空气流通的网状结构。
  9. 如权利要求8所述的增湿组件,其特征在于,所述第一限位结构与所述第二限位结构共同构成框架结构。
  10. 如权利要求1所述的增湿组件,其特征在于,所述框架结构与所述第一盖体、第二盖体之间密封连接。
PCT/CN2023/117156 2023-02-15 2023-09-06 一种增湿组件 WO2024169164A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE212023000084.9U DE212023000084U1 (de) 2023-02-15 2023-09-06 Befeuchtungsanordnung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202320212697.3U CN219553680U (zh) 2023-02-15 2023-02-15 一种应用于燃料电池的平板式增湿器组件
CN202320212697.3 2023-02-15

Publications (1)

Publication Number Publication Date
WO2024169164A1 true WO2024169164A1 (zh) 2024-08-22

Family

ID=87734937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117156 WO2024169164A1 (zh) 2023-02-15 2023-09-06 一种增湿组件

Country Status (2)

Country Link
CN (1) CN219553680U (zh)
WO (1) WO2024169164A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN219553680U (zh) * 2023-02-15 2023-08-18 惠州市沃瑞科技有限公司 一种应用于燃料电池的平板式增湿器组件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1953799A (zh) * 2004-05-18 2007-04-25 旭化成化学株式会社 气体分离器和气体分离器的操作方法
CN210489744U (zh) * 2019-09-16 2020-05-08 嘉兴德燃动力系统有限公司 一种车用燃料电池发动机系统用膜增湿器
CN111509272A (zh) * 2019-01-30 2020-08-07 深圳伊腾迪新能源有限公司 一种燃料电池用高效率气体增湿器
CN112303775A (zh) * 2020-11-06 2021-02-02 风氢扬氢能科技(上海)有限公司 一种板式气体增湿器
CN114156509A (zh) * 2021-12-20 2022-03-08 有研资源环境技术研究院(北京)有限公司 一种燃料电池的膜增湿器和燃料电池系统
WO2022265297A1 (ko) * 2021-06-17 2022-12-22 코오롱인더스트리 주식회사 연료전지 막가습기
CN219553680U (zh) * 2023-02-15 2023-08-18 惠州市沃瑞科技有限公司 一种应用于燃料电池的平板式增湿器组件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1953799A (zh) * 2004-05-18 2007-04-25 旭化成化学株式会社 气体分离器和气体分离器的操作方法
CN111509272A (zh) * 2019-01-30 2020-08-07 深圳伊腾迪新能源有限公司 一种燃料电池用高效率气体增湿器
CN210489744U (zh) * 2019-09-16 2020-05-08 嘉兴德燃动力系统有限公司 一种车用燃料电池发动机系统用膜增湿器
CN112303775A (zh) * 2020-11-06 2021-02-02 风氢扬氢能科技(上海)有限公司 一种板式气体增湿器
WO2022265297A1 (ko) * 2021-06-17 2022-12-22 코오롱인더스트리 주식회사 연료전지 막가습기
CN114156509A (zh) * 2021-12-20 2022-03-08 有研资源环境技术研究院(北京)有限公司 一种燃料电池的膜增湿器和燃料电池系统
CN219553680U (zh) * 2023-02-15 2023-08-18 惠州市沃瑞科技有限公司 一种应用于燃料电池的平板式增湿器组件

Also Published As

Publication number Publication date
CN219553680U (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
WO2024169164A1 (zh) 一种增湿组件
US10317095B2 (en) Counter-flow energy recovery ventilator (ERV) core
JP3159566U (ja) 間接式気化式冷却装置
JP6032785B2 (ja) 燃料電池用膜加湿器
JP6989256B2 (ja) 燃料電池用加湿器
WO2009038322A3 (en) Unified air cooling structure of high-capacity battery system
CN108463919B (zh) 空气冷却式电池模块
CN210489744U (zh) 一种车用燃料电池发动机系统用膜增湿器
CN221201225U (zh) 一种应用于燃料电池的增湿器
CN210425419U (zh) 新风处理设备
KR101262004B1 (ko) 연료전지용 막 가습기
KR20220015022A (ko) 열전공조기의 제어방법
CN117276586A (zh) 一种增湿组件
KR101956542B1 (ko) 발전기용 가스재열기에 구비되는 탈황설비용 열전달판 바스켓에 장착되는 통풍용 지지구조체
CN218568901U (zh) 一种车辆、燃料电池发动机及其加湿系统
CN214672701U (zh) 一种燃料电池高效膜加湿器
JP2019060582A (ja) 全熱交換素子用仕切部材、全熱交換素子用仕切部材を用いた全熱交換素子および全熱交換形換気装置
CN112103534A (zh) 一种燃料电池高效膜加湿器
JP6801735B2 (ja) 熱交換器
CN214861867U (zh) 分水器及具有其的燃料电池系统
CN214898518U (zh) 一种串联式燃料电池增湿器
CN221407438U (zh) 适用于飞行设备的电池包及飞行设备
CN219163439U (zh) 一种与电堆集成组装的板式集成式增湿器
CN116387562B (zh) 增湿器、燃料电池系统和湿度调节方法
CN214068342U (zh) 一种具有温湿自动调控功能的光盘库

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23922286

Country of ref document: EP

Kind code of ref document: A1