WO2024169162A1 - 一种分布式光伏直流接入铝电解槽直流母线的供电装置 - Google Patents

一种分布式光伏直流接入铝电解槽直流母线的供电装置 Download PDF

Info

Publication number
WO2024169162A1
WO2024169162A1 PCT/CN2023/116647 CN2023116647W WO2024169162A1 WO 2024169162 A1 WO2024169162 A1 WO 2024169162A1 CN 2023116647 W CN2023116647 W CN 2023116647W WO 2024169162 A1 WO2024169162 A1 WO 2024169162A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
photovoltaic
aluminum
output end
positive
Prior art date
Application number
PCT/CN2023/116647
Other languages
English (en)
French (fr)
Inventor
张正基
路增进
周飞
刘永强
龙庆
杨德荣
杨万章
孙博群
李建宇
官自伟
李章洪
李红钧
程竹
徐加泉
任文娟
方玉林
Original Assignee
云南铝业股份有限公司
贵阳铝镁设计研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云南铝业股份有限公司, 贵阳铝镁设计研究院有限公司 filed Critical 云南铝业股份有限公司
Publication of WO2024169162A1 publication Critical patent/WO2024169162A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/22Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/02Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/16Regulation of the charging current or voltage by variation of field
    • H02J7/22Regulation of the charging current or voltage by variation of field due to variation of make-to-break ratio of intermittently-operating contacts, e.g. using Tirrill regulator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/16Regulation of the charging current or voltage by variation of field
    • H02J7/26Regulation of the charging current or voltage by variation of field using magnetic devices with controllable degree of saturation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Definitions

  • the present invention relates to the technical field of power supply for aluminum electrolysis cells, and in particular to a power supply device for connecting a distributed photovoltaic direct current to a direct current busbar of an aluminum electrolysis cell.
  • Electrolytic aluminum is a high-energy-consuming industry and also a key industry for carbon emissions.
  • photovoltaic power generation can be directly supplied to the aluminum electrolytic cell, reducing the energy loss in the inverter-rectifier process, so that large-capacity photovoltaic power can be directly supplied to the electrolytic aluminum production without being restricted by conventional access to auxiliary production power systems, it will greatly increase the proportion of renewable energy in the electricity consumption of electrolytic aluminum production and improve the local consumption capacity of photovoltaic power generation.
  • the purpose of the present invention is to provide a distributed photovoltaic direct current access to the direct current busbar of an aluminum electrolysis cell, which aims to realize direct current supply from photovoltaic power generation to the aluminum electrolysis cell.
  • a power supply device for distributed photovoltaic direct current access to the direct current bus of an aluminum electrolytic cell comprising multiple photovoltaic strings, 8 photovoltaic combiner boxes, 4 electric energy router PET modules, 4 feed-in protection modules, 2 feed-out circuit breaker modules and 2 electrolytic aluminum bus protection modules;
  • photovoltaic strings are connected to the photovoltaic combiner box, and the output ends of every two photovoltaic combiner boxes are connected to the input end of a power router PET module;
  • each PET module of the power router is respectively connected to the input end of a feed-in protection module
  • Every two infeed protection modules are commonly connected to the input terminal of an outfeed circuit breaker module;
  • each of the feeder circuit breaker modules is connected to the input end of one of the electrolytic aluminum busbar protection modules through a bridge aluminum bar;
  • the output end of the electrolytic aluminum busbar protection module is directly connected to the electrolytic cell busbar.
  • the number of photovoltaic strings that merge into each photovoltaic combiner box is 18.
  • the electric energy router PET module comprises a pre-charging module, an isolated DC/DC module and a filtering module connected in sequence;
  • the positive input terminal and the negative input terminal of the pre-charging module are respectively the positive input terminal and the negative input terminal of the PET module of the power router, and the positive output terminal and the negative output terminal of the filtering module are respectively the positive output terminal and the negative output terminal of the PET module of the power router;
  • the pre-charging module is used to limit the current at startup
  • the isolated DC/DC module is used to electrically isolate the input and output sides of the PET module of the power router;
  • the filtering module is used for filtering and noise reduction.
  • the filtering module comprises a reactance, a capacitor and a first EMI filter which are sequentially connected in parallel between the positive line and the negative line of the PET module of the power router;
  • the reactance and the capacitance are used to filter the current output by the PET module of the power router, and the first EMI filter is used to block the high-frequency current between the PET module of the power router and the external device;
  • the positive output terminal and the negative output terminal of the first EMI filter are respectively the positive output terminal and the negative output terminal of the PET module of the power router.
  • the feed-in protection module comprises a first diode, a plurality of contactors and a plurality of isolating switches;
  • a first diode, a first contactor and a first isolating switch are sequentially connected in series on the positive line of the feed-in protection module;
  • a second contactor and a second isolating switch are sequentially connected in series to the negative pole line of the feed-in protection module;
  • the first isolating switch and the second isolating switch are controlled by a knife switch linkage.
  • the feeder circuit breaker module comprises a plurality of contactors, a plurality of disconnectors, a solid-state circuit breaker and a first lightning arrester;
  • a third isolating switch, a third contactor and a solid-state circuit breaker are sequentially connected in series on the positive line of the feeder circuit breaker module;
  • a fourth isolating switch and a fourth contactor are sequentially connected in series on the negative pole line of the feeder circuit breaker module;
  • the output end of the solid-state circuit breaker is connected to the positive electrode of the first lightning arrester, the fourth contactor is connected to the negative electrode of the first lightning arrester, and the positive output end and the negative output end of the first lightning arrester are the positive output end and the negative output end of the feed circuit breaker module respectively;
  • the third isolating switch and the fourth isolating switch are controlled in linkage by a knife switch.
  • the electrolytic aluminum busbar protection module includes a second lightning arrester, a second EMI filter, a residual current detection module, a plurality of check valve groups, a plurality of fuses and a plurality of isolating switches; the positive input terminal and the negative input terminal of the second lightning arrester are the positive input terminal and the negative input and output terminal of the electrolytic aluminum busbar protection module;
  • the positive output end of the second lightning arrester is connected to the input end of the second EMI filter, the output end of the second EMI filter is connected to the positive input end of the residual current detection module, the positive output end of the residual current detection module is connected to the input end of the first check valve group, the output end of the first check valve group is connected to one end of the first fuse, and the other end of the first fuse is connected to one end of the fifth isolating switch;
  • the negative output end of the second lightning arrester is connected to the negative input end of the residual current detection module, the negative output end of the residual current detection module is connected to the input end of the second check valve group, the output end of the second check valve group is connected to one end of the second fuse, and the other end of the second fuse is connected to one end of the sixth isolating switch;
  • the other end of the fifth isolating switch and the other end of the sixth isolating switch are respectively the positive output end and the negative output end of the electrolytic aluminum busbar protection module.
  • the first check valve group includes two diodes, the anode of the second diode is connected to the positive output end of the residual current detection module, the cathode of the second diode is connected to the anode of the third diode, and the cathode of the third diode is connected to one end of the first fuse.
  • the second check valve group includes two diodes, the cathode of the fourth diode is connected to the negative output terminal of the residual current detection module, the anode of the fourth diode is connected to the cathode of the fifth diode, and the anode of the fifth diode is connected to one end of the second fuse.
  • the present invention greatly increases the proportion of renewable energy in electricity consumption in electrolytic aluminum production and improves the local consumption of photovoltaic power generation. Accommodation capacity;
  • the technology of the present invention has strong controllability, many controllable links and controllable nodes, fast control speed, and rich control functions. Compared with traditional power grids, the control capability of voltage and power will be greatly improved;
  • the present invention uses direct current power supply, and the direct current line does not have problems such as frequency stability and reactive power.
  • the power supply reliability can be improved through flexible system topology, multi-bus redundancy or closed-loop technology, and has the advantages of fast response speed and short recovery time.
  • the invention supports a large power supply capacity, which can greatly increase the transmission capacity, and the power supply is stable, reducing the energy loss and power quality problems caused by multiple commutations;
  • the DC microgrid system of the present invention does not need to consider the voltage phase and system frequency, but only needs to pay attention to the DC bus voltage, current and system power, and has higher reliability and controllability at the control system level.
  • FIG1 is a schematic diagram of the circuit principle of a power supply device for connecting a distributed photovoltaic DC to a DC bus of an aluminum electrolysis cell provided in Example 1 of the present invention
  • FIG2 is a schematic diagram of the circuit principle of the PET module of the power router provided in Example 2 of the present invention.
  • FIG3 is a schematic diagram of the circuit principle of the feed-in protection module provided in Embodiment 3 of the present invention.
  • FIG4 is a schematic diagram of the circuit principle of a feeder circuit breaker module provided in Embodiment 4 of the present invention.
  • FIG5 is a schematic diagram of the circuit principle of the electrolytic aluminum busbar protection module provided in Example 5 of the present invention.
  • Icon D1-first diode, D2-second diode, D3-third diode, D4-fourth diode, D5-fifth diode, KM1-first contactor, KM2-second contactor, KM3-third contactor, KM4-fourth contactor, QS1-first disconnector, QS2-second disconnector, QS3-third disconnector, QS4-fourth disconnector, QS5-fifth disconnector, QS6-sixth disconnector, SSCB-solid-state circuit breaker, FU1-first fuse, FU2-second fuse.
  • the terms “set”, “install”, “connected” and “connected” should be understood in a broad sense, for example, it can be a fixed connection, It can also be a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, or it can be a connection between the two components.
  • the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
  • a distributed photovoltaic DC power supply device connected to the DC bus of an aluminum electrolytic cell includes multiple photovoltaic strings, 8 photovoltaic combiner boxes, 4 power router PET modules, 4 infeed protection modules, 2 outfeed circuit breaker modules and 2 electrolytic aluminum bus protection modules;
  • photovoltaic strings are connected to the photovoltaic combiner box.
  • the output ends of every two photovoltaic combiner boxes are connected to the input end of a power router PET module;
  • each PET module of the power router is respectively connected to the input end of a feed-in protection module
  • Every two infeed protection modules are commonly connected to the input terminal of an outfeed circuit breaker module;
  • each of the feeder circuit breaker modules is connected to the input end of one of the electrolytic aluminum busbar protection modules through a bridge aluminum bar;
  • the output end of the electrolytic aluminum busbar protection module is directly connected to the electrolytic cell busbar.
  • the input and output ends of all modules contain positive and negative poles.
  • the positive poles should be connected to the positive poles and the negative poles should be connected to the negative poles according to the normal operation.
  • the positive output end and the negative output end of the PET module of the power router are respectively connected to the positive input end and the negative input end of the feed protection module, and so on.
  • the photovoltaic combiner box is used to connect multiple photovoltaic strings in parallel;
  • the power router PET module is used to track the maximum power point, isolate and transform, follow the output voltage, adjust the output current and automatically protect the energy from the photovoltaic power;
  • the feed-in protection module is used to collect, perform backstop protection and maintenance isolation on the output of the power router PET module;
  • the feed-out circuit breaker module is used to perform microsecond-level protection and disconnection on the output short-circuit fault, as well as maintenance isolation;
  • the electrolytic aluminum busbar protection module is used to detect short-circuit current and ensure the safety of maintenance personnel.
  • the number of the photovoltaic strings that merge into each photovoltaic combiner box is 18.
  • the specific implementation method is: using about 23,808m2 of the roof, building 2.04048MWp distributed photovoltaic, with a total of 3,744 photovoltaic modules.
  • Select monocrystalline silicon 545Wp solar panels for layout divided into two groups of 1.02MWp photovoltaic installations, connected to the aluminum electrolytic cell as a DC system.
  • Each group of rooftop photovoltaics is connected in series with 26 545 modules per group, and 1MW has a total of 72 strings.
  • the photovoltaic outgoing lines are laid to the prefabricated container cabin of the DC power router cabinet, and the 72 groups of wiring are installed with MC4 connectors.
  • 1MW uses 4 photovoltaic junction boxes, each photovoltaic junction box has 18 photovoltaic strings, and a total of 72 photovoltaic strings can be reached.
  • This embodiment builds a DC microgrid, using a stable flexible medium-voltage DC microgrid technology, which is completely isolated from the AC power grid, and the auxiliary power supply is self-supplied to achieve full green power generation properties.
  • the DC microgrid directly connects the electric energy generated by the photovoltaic panels to the electrolytic aluminum DC bus after efficient DC conversion and protection switches, realizing direct energy supply for photovoltaic power generation.
  • the stable flexible medium-voltage DC microgrid technology has the characteristics of high energy efficiency, high reliability, good transient stability, isolated grid operation, good power quality, no voltage flicker during fault crossing, and good economy.
  • the photovoltaic combiner box of this embodiment connects 18 photovoltaic strings for aggregated transmission
  • the DC power from the photovoltaic combiner box enters the power router PET module, realizing the maximum power tracking and energy conversion functions of the photovoltaic panel;
  • the DC power of the PET module of the power router flows into the feed-in protection module and the feed-out circuit breaker module in turn, and the feed-in protection module realizes the functions of energy output collection, line short circuit and maintenance isolation; the feed-out circuit breaker module realizes the microsecond-level disconnection of the output short circuit of the DC microgrid system;
  • the DC current is directly connected to the electrolytic aluminum DC through the bridge aluminum bar and the electrolytic aluminum busbar protection module Busbar, to realize direct energy supply of photovoltaic power generation.
  • the core idea of this embodiment is to directly connect multiple photovoltaic strings to the DC busbar of the aluminum electrolytic cell after subsequent circuit design, in order to realize the direct supply of DC power from photovoltaic power generation to the aluminum electrolytic cell. Based on this feature, this embodiment can greatly increase the proportion of renewable energy, i.e. photovoltaic power, in the electricity consumption of electrolytic aluminum production, and also improve the local consumption capacity of photovoltaic power generation;
  • this embodiment can achieve a larger power supply capacity through the combination of multiple photovoltaic strings, which can greatly increase the transmission capacity, provide stable power supply, and reduce energy loss and power quality problems caused by multiple commutations;
  • the output side After the output side is protected by a diode anti-reverse current protection circuit, a DC fuse, and a DC circuit breaker, it is connected to a bridge-type DC aluminum busbar, and then connected to the 300kA aluminum electrolytic cell busbar through a busbar DC isolation switch cabinet equipped with a diode anti-reverse current protection circuit, a DC fuse, and a DC isolation switch, forming a photovoltaic electrolytic aluminum DC microgrid.
  • the photovoltaic modules generate electricity, and the output side DC is connected to the electrolytic aluminum DC busbar for power generation.
  • the purpose of this stage is to further explore and verify the key technologies of MW-level DC microgrids applied to electrolytic aluminum DC systems, and verify the technical feasibility of large-capacity distributed photovoltaic DC access to aluminum electrolytic cells to directly supply electricity to electrolytic aluminum;
  • This embodiment further illustrates the PET module of the power router based on the technical solution of Embodiment 1.
  • the PET module of the power router includes a pre-charging module, an isolated DC/DC module and a filtering module connected in sequence;
  • the positive input terminal and the negative input terminal of the pre-charging module are respectively the positive input terminal and the negative input terminal of the PET module of the power router, and the positive output terminal and the negative output terminal of the filtering module are respectively the positive output terminal and the negative output terminal of the PET module of the power router;
  • the pre-charging module is used to limit the current at startup
  • the isolated DC/DC module is used to electrically isolate the input and output sides of the PET module of the power router;
  • the filtering module is used for filtering and noise reduction.
  • the filtering module includes a reactance, a capacitor and a first EMI filter which are sequentially connected in parallel between the positive line and the negative line of the PET module of the power router;
  • the reactance and the capacitance are used to filter the current output by the PET module of the power router, and the first EMI filter is used to block the high-frequency current between the PET module of the power router and the external device;
  • the positive output terminal and the negative output terminal of the first EMI filter are respectively the positive output terminal and the negative output terminal of the PET module of the power router.
  • This embodiment further illustrates the feed-in protection module based on the technical solution of implementation 1.
  • the feed-in protection module of this embodiment includes a first diode D1 , a plurality of contactors and a plurality of isolation switches;
  • a first diode D1, a first contactor KM1 and a first isolating switch QS1 are sequentially connected in series on the positive line of the feed-in protection module;
  • the second contactor KM2 and the second isolating switch QS2 are sequentially connected in series to the negative line of the feed-in protection module;
  • the first isolating switch QS1 and the second isolating switch QS2 are controlled by a knife switch linkage.
  • This embodiment is used for protecting the direct current of the equipment from flowing into the direct current bus, which is equivalent to controlling two isolating switches in linkage by a knife switch of a switch to realize the operation of switching the positive and negative poles simultaneously.
  • This embodiment further illustrates the feeder circuit breaker module based on the technical solution of Embodiment 1.
  • the feeder circuit breaker module includes a plurality of contactors, a plurality of disconnectors, a solid-state circuit breaker SSCB and a first lightning arrester;
  • the third isolating switch QS3, the third contactor KM3 and the solid-state circuit breaker SSCB are sequentially connected in series on the positive line of the feeder circuit breaker module;
  • the fourth isolating switch QS4 and the fourth contactor KM4 are sequentially connected in series on the negative line of the feeder circuit breaker module;
  • the output end of the solid-state circuit breaker SSCB is connected to the positive electrode of the first lightning arrester, the fourth contactor KM4 is connected to the negative electrode of the first lightning arrester, and the positive output end and the negative output end of the first lightning arrester are the positive output end and the negative output end of the feed circuit breaker module respectively;
  • the third isolating switch QS3 and the fourth isolating switch QS4 are controlled by a knife switch linkage.
  • the solid-state circuit breaker SSCB is responsible for short-circuit protection
  • the two contactors are responsible for automatic electrical isolation
  • the two isolating switches are responsible for manual maintenance isolation.
  • the two isolating switches can be linked and controlled by the knife switch of a switch to achieve simultaneous switching of the positive and negative poles.
  • This embodiment further illustrates the electrolytic aluminum busbar protection module based on the technical solution of Embodiment 1.
  • the electrolytic aluminum busbar protection module includes a second lightning arrester, a second EMI filter, a residual current detection module, a plurality of check valve groups, a plurality of fuses and a plurality of Isolating switch; the positive input terminal and the negative input terminal of the second lightning arrester are the positive input terminal and the negative input and output terminal of the electrolytic aluminum busbar protection module;
  • the positive output end of the second lightning arrester is connected to the input end of the second EMI filter, the output end of the second EMI filter is connected to the positive input end of the residual current detection module, the positive output end of the residual current detection module is connected to the input end of the first check valve group, the output end of the first check valve group is connected to one end of the first fuse FU1, and the other end of the first fuse FU1 is connected to one end of the fifth isolation switch QS5;
  • the negative output end of the second lightning arrester is connected to the negative input end of the residual current detection module, the negative output end of the residual current detection module is connected to the input end of the second check valve group, the output end of the second check valve group is connected to one end of the second fuse FU2, and the other end of the second fuse FU2 is connected to one end of the sixth isolation switch QS6;
  • the other end of the fifth isolating switch QS5 and the other end of the sixth isolating switch QS6 are respectively the positive output end and the negative output end of the electrolytic aluminum busbar protection module.
  • the first check valve group includes two diodes, the anode of the second diode D2 is connected to the positive output end of the residual current detection module, the cathode of the second diode D2 is connected to the anode of the third diode D3, and the cathode of the third diode D3 is connected to one end of the first fuse FU1.
  • the second check valve group includes two diodes, the cathode of the fourth diode D4 is connected to the negative output end of the residual current detection module, the anode of the fourth diode D4 is connected to the cathode of the fifth diode D5, and the anode of the fifth diode D5 is connected to one end of the second fuse FU2.
  • the second EMI filter is used to block the high-frequency current between the DC microgrid and the electrolytic aluminum busbar
  • the check valve group and the fuse are used to protect the short circuit of the bridge aluminum busbar and the DC microgrid
  • the residual current detection module is used to detect and protect against ground faults.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

本发明提供了一种分布式光伏直流接入铝电解槽直流母线的供电装置,涉及铝电解槽供电技术领域,其目的是实现光伏发电向铝电解槽直接供送直流电,包括多路光伏串、8个光伏汇流箱、4个电能路由器PET模块、4个馈入保护模块、2个馈出断路器模块和2个电解铝母线保护模块;多路光伏串汇总接入光伏汇流箱,每两个光伏汇流箱共同连接到一个电能路由器PET模块;每个电能路由器PET模块分别连接到一个馈入保护模块;每两个馈入保护模块共同连接到一个馈出断路器模块;两个馈出断路器模块分别通过一个桥架铝排连接到一个电解铝母线保护模块;电解铝母线保护模块直接连接到电解槽母线。本发明具有光伏直接供电,稳定能耗低的优点。

Description

一种分布式光伏直流接入铝电解槽直流母线的供电装置 技术领域
本发明涉及铝电解槽供电技术领域,具体而言,涉及一种分布式光伏直流接入铝电解槽直流母线的供电装置。
背景技术
电解铝属于高耗能行业,也是碳排放的重点行业。
针对高耗能电解铝行业低碳转型对新能源的发展需求,亟需创新方式方法提高电解铝行业的可再生能源利用水平、提高能效水平,从而加快其转型升级,实现绿色低碳发展。电解铝企业生产用电约95%为铝冶炼直流耗电,辅助生产用电部分仅为5%左右,目前国内电解铝企业已建成并网的分布式光伏发电接入系统,均采用将光伏直流电逆变为交流电并网接入380V低压或10kV高压配电系统,如何将光伏直流电不经过工频逆变直接供给铝冶炼生产,是一项前所未有意义重大的创新应用技术。目前电解铝企业分布式光伏电站接入系统设计,主要是将目前采用将光伏直流电通过逆变为交流电后并网接入380V低压配电系统或10kV高压配电系统的传统接入方式。
如果可以实现通过创新研发及试验应用将分布式光伏直流电直接接入铝电解槽直流母线,也就是光伏发电向铝电解槽直接供送直流电的创新应用技术,立足于“光伏+电解铝”直流微电网,实现光伏发电直接向铝电解槽供电,减少逆变-整流过程中的电能损耗,使大容量光伏电能够直接供给电解铝生产而不受限于常规接入辅助生产用电系统,将极大提高可再生能源在电解铝生产用电的占比,提高光伏发电就地消纳能力。
发明内容
本发明的目的在于提供一种分布式光伏直流接入铝电解槽直流母线的供电装置,其目的是实现光伏发电向铝电解槽直接供送直流电。
本发明的实施例通过以下技术方案实现:
一种分布式光伏直流接入铝电解槽直流母线的供电装置,包括多路光伏串、8个光伏汇流箱、4个电能路由器PET模块、4个馈入保护模块、2个馈出断路器模块和2个电解铝母线保护模块;
多路光伏串汇总接入所述光伏汇流箱,每两个所述光伏汇流箱的输出端共同连接到一个电能路由器PET模块的输入端;
每个电能路由器PET模块的输出端分别连接到一个馈入保护模块的输入端;
每两个馈入保护模块的输出端共同连接到一个馈出断路器模块的输入端;
每个所述馈出断路器模块的输出端分别通过一个桥架铝排连接到一个所述电解铝母线保护模块的输入端;
所述电解铝母线保护模块的输出端直接连接到电解槽母线。
优选地,汇入每个所述光伏汇流箱中的所述光伏串的路数为18路。
优选地,所述电能路由器PET模块包括依次连接的预充电模块、隔离型DC/DC模块和滤波模块;
所述预充电模块的正极输入端和负极输入端分别为所述电能路由器PET模块正极输入端和负极输入端,所述滤波模块的正极输出端和负极输出端分别为所述电能路由器PET模块正极输出端和负极输出端;
所述预充电模块用于在启动时限制电流;
所述隔离型DC/DC模块用于对所述电能路由器PET模块的输入、输出侧进行电气隔离;
所述滤波模块用于滤波降噪。
优选地,所述滤波模块包括依次并联在电能路由器PET模块的正极线路和负极线路之间的的电抗、电容和第一EMI滤波器;
所述电抗和电容用于对所述电能路由器PET模块输出的电流进行滤波,第一EMI滤波器用于阻断所述电能路由器PET模块和外部设备间的高频电流;
所述第一EMI滤波器的正极输出端和负极输出端分别为所述电能路由器PET模块正极输出端和负极输出端。
优选地,所述馈入保护模块包括第一二极管、多个接触器和多个隔离开关;
第一二极管、第一接触器和第一隔离开关依次串联在所述馈入保护模块的正极线路上;
第二接触器和第二隔离开关依次串联在所述馈入保护模块的负极线路上;
所述第一隔离开关和所述第二隔离开关由一个刀闸联动控制。
优选地,所述馈出断路器模块包括多个接触器、多个隔离开关、固态断路器和第一避雷器;
第三隔离开关、第三接触器和固态断路器依次串联在所述馈出断路器模块的正极线路上;
第四隔离开关、第四接触器依次串联在所述馈出断路器模块的负极线路上;
所述固态断路器的输出端连接所述第一避雷器的正极,所述第四接触器连接到所述第一避雷器的负极,所述第一避雷器的正极输出端和负极输出端分别为所述馈出断路器模块的正极输出端和负极输出端;
所述第三隔离开关和所述第四隔离开关由一个刀闸联动控制。
优选地,所述电解铝母线保护模块包括第二避雷器、第二EMI滤波器、剩余电流检测模块、多个逆止阀组、多个熔断器和多个隔离开关;第二避雷器的正极输入端和负极输入端为所述电解铝母线保护模块的正极输入端和负入输出端;
第二避雷器的正极输出端连接到第二EMI滤波器的输入端,第二EMI滤波器的输出端连接剩余电流检测模块的正极输入端,剩余电流检测模块的正极输出端连接到第一逆止阀组的输入端,第一逆止阀组的输出端连接到第一熔断器的一端,第一熔断器的另一端连接第五隔离开关的一端;
第二避雷器的负极输出端连接剩余电流检测模块的负极输入端,剩余电流检测模块的负极输出端连接到第二逆止阀组的输入端,第二逆止阀组的输出端连接到第二熔断器的一端,第二熔断器的另一端连接第六隔离开关的一端;
第五隔离开关的另一端和第六隔离开关的另一端分别为所述电解铝母线保护模块的正极输出端和负极输出端。
优选地,所述第一逆止阀组包括两个二极管,第二二极管的阳极连接所述剩余电流检测模块的正极输出端,第二二极管的阴极连接第三二极管的阳极,第三二极管的阴极连接所述第一熔断器的一端。
优选地,所述第二逆止阀组包括两个二极管,第四二极管的阴极连接所述剩余电流检测模块的负极输出端,第四二极管的阳极连接第五二极管的阴极,第五二极管的阳极连接所述第二熔断器的一端。
本发明实施例的技术方案至少具有如下优点和有益效果:
本发明极大提高可再生能源在电解铝生产用电的占比,提高光伏发电就地消 纳能力;
本发明的技术可控性强,可控环节和可控节点多,控制速度快,控制功能丰富,与传统电网相比,电压、功率的控制能力将大幅提升;
本发明通过直流供电,直流线路不存在频率稳定和无功功率等问题,可通过灵活的系统拓扑,采用多母线冗余或闭环技术提高供电可靠性,且响应速度快、恢复时间短的优点;
本发明支持的供电容量大,可以大幅提升输送容量,且供电稳定,减少多次换流带来的能量损耗及电能质量问题;
本发明直流微电网系统无需考虑电压相位和系统频率,只需要关注直流母线电压、电流和系统功率,在控制系统层面具有更高的可靠性和可控性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明实施例1提供的分布式光伏直流接入铝电解槽直流母线的供电装置的电路原理示意图;
图2为本发明实施例2提供的电能路由器PET模块的电路原理示意图;
图3为本发明实施例3提供的馈入保护模块的电路原理示意图;
图4为本发明实施例4提供的馈出断路器模块的电路原理示意图;
图5为本发明实施例5提供的电解铝母线保护模块的电路原理示意图;
图标:D1-第一二极管,D2-第二二极管,D3-第三二极管,D4-第四二极管,D5-第五二极管,KM1-第一接触器,KM2-第二接触器,KM3-第三接触器,KM4-第四接触器,QS1-第一隔离开关,QS2-第二隔离开关,QS3-第三隔离开关,QS4-第四隔离开关,QS5-第五隔离开关,QS6-第六隔离开关,SSCB-固态断路器,FU1-第一熔断器,FU2-第二熔断器。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本发明的描述中,需要说明的是,若出现术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,若出现术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接, 也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例1
参阅图1,一种分布式光伏直流接入铝电解槽直流母线的供电装置,包括多路光伏串、8个光伏汇流箱、4个电能路由器PET模块、4个馈入保护模块、2个馈出断路器模块和2个电解铝母线保护模块;
多路光伏串汇总接入所述光伏汇流箱。每两个所述光伏汇流箱的输出端共同连接到一个电能路由器PET模块的输入端;
每个电能路由器PET模块的输出端分别连接到一个馈入保护模块的输入端;
每两个馈入保护模块的输出端共同连接到一个馈出断路器模块的输入端;
每个所述馈出断路器模块的输出端分别通过一个桥架铝排连接到一个所述电解铝母线保护模块的输入端;
所述电解铝母线保护模块的输出端直接连接到电解槽母线。
特别说明的是,这里采用的是直流电,所有模块的输入端和输出端均包含正极和负极,在接线时需按照常规操作正极和正极相接负极和负极相接,例如电能路由器PET模块的正极输出端和负极输出端分别连接到馈入保护模块的正极输入端和负极输入端,以此类推。
以上模块中,所述光伏汇流箱用于对多路光伏串进行并联汇集;所述电能路由器PET模块用于对来自光伏的能量进行最大功率点追踪、隔离变换、输出电压跟随、输出电流调节和自动保护;所述馈入保护模块用于对电能路由器PET模块的输出进行汇集、逆止保护和检修隔离;所述馈出断路器模块用于对输出的短路故障进行微秒级的保护分断,以及检修隔离;所述电解铝母线保护模块用于检测短路电流和确保检修人员的安全。
在本实施例中,汇入每个所述光伏汇流箱中的所述光伏串的路数为18路。
具体实现方法为:利用屋顶约23808m2,建设2.04048MWp分布式光伏,光伏组件总数为3744块。选用单晶硅545Wp太阳能电池板进行布置,分为两组1.02MWp光伏装机,作为直流系统接入铝电解槽。每组屋顶光伏按照每个组串26块545组件串联,1MW共72串的接线方式将光伏出线敷设至直流电能路由器柜集装箱预制舱,72组接线安装有MC4接头。其中1MW使用4个光伏汇流箱,每个光伏汇流箱18路光伏串,进而总共可以达到72个光伏串。
本实施例搭建直流微电网,采用稳固型柔性中压直流微电网技术,与交流电网完全隔离,辅助电源自供,实现全绿色发电属性。直流微电网将光伏电池板发出的电能经过高效直流变换和保护开关后,直接连接到电解铝直流母线,实现光伏发电的直接供能。与传统技术相比,稳固型柔性中压直流微电网技术具有能效高、可靠性高、暂态稳定性好、可孤网运行、电能质量好、故障穿越无电压闪变、经济性好等特点。
综合来说,本实施例的光伏汇流箱将18路光伏串进行汇总传输的接入;
接着光伏汇流箱的直流电进入电能路由器PET模块,实现了光伏板的最大功率跟踪和能量变换功能;
然后电能路由器PET模块的直流电依次流入馈入保护模块和馈出断路器模块,通过馈入保护模块实现能量输出的汇集、线路短路和检修隔离功能;馈出断路器模块实现直流微网系统输出短路的微秒级切断;
最后直流电流通过桥架铝排和电解铝母线保护模块直接连接到电解铝直流 母线,实现光伏发电的直接供能。
综上所述,本实施例的核心思想是通过多路光伏串经过后续电路设计以后直接接入铝电解槽直流母线,目的是实现光伏发电向铝电解槽直接供送直流电,基于此特征,本实施例可以极大提高可再生能源即光伏电力在电解铝生产用电的占比,也提高了光伏发电就地消纳能力;
另一方面,在4个电能路由器PET模块、4个馈入保护模块、2个馈出断路器模块和2个电解铝母线保护模块的设计下,可控环节和可控节点多,控制速度快,控制功能丰富,与传统电网相比,电压、功率的控制能力将大幅提升;
此外,由于直接通过光伏实现直流供电,所以直流线路不存在频率稳定和无功功率等问题,可通过灵活的系统拓扑,采用多母线冗余或闭环技术提高供电可靠性,且响应速度快、恢复时间短的优点;
其次,本实施例可以通过多组光伏串的组合实现较大供电容量,可以大幅提升输送容量,且供电稳定,减少多次换流带来的能量损耗及电能质量问题;
最后同样基于光伏直接直流供电这一特征,因为是直流电所以无需考虑电压相位和系统频率,只需要关注直流母线电压、电流和系统功率,控制因素更少,进而在控制系统层面具有更高的可靠性和可控性。
对于本发明的方案,分别从以下角度进行验证:
(1)开展300kW直流电能路由器直流接入试验验证:即光伏接入电解铝试验采用32组接线经MC4接头接入300kW(隔离型DC/DC变流器),通过直流电缆接入电解槽直流铝排,输出电压跟随电解槽直流母线电压。300kW直流接入投运试验中,32路光伏串通过光伏智能直流汇流箱连入300kW直流电能路由器,其输出侧经过二极管防逆流保护电路、直流熔断器、直流断路器保护后,连入桥架式直流铝排,再经过设有带二极管防逆流保护电路、直流熔断器、直流隔离开关的母线直流隔离开关柜连入300kA铝电解槽母线,形成光伏电解铝直流微电网,由光伏组件发电,输出侧直流接入电解铝直流母线发电。本阶段试验探索和验证了分布式光伏直流接入电解铝直流母线的可行性及可靠性,收集相关试验数据;
(2)开展2×1MW直流接入试验验证:采用2台1MW直流电能路由器(隔离型DC-DC变压器)组成2个子阵,每个光伏发电子阵通过光伏智能直流汇流箱接入2个1MW直流电能路由器,再通过直流电缆接入电解槽直流铝排采用2套1MW直流电能路由器(由隔离型DC/DC变换装置和直流微电网保护与控制系统组成),形成光伏电解铝直流微电网,由光伏组件发电,输出侧直流接入电解铝直流母线发电。本阶段的目的是进一步探索和验证MW级直流微电网应用于电解铝直流系统关键技术,验证了大容量分布式光伏直流接入铝电解槽直供电解铝供电的技术可行性;
(3)开展15MW直流接入试验验证:本阶段规划建设15MW直流微电网系统,由分布式光伏组件供电,通过直流电能路由器直流接入铝电解槽直流母线供电。本阶段是验证该技术可以推广应用并实现“光伏+电解铝”直流微电网规模化、产业化的终极目标。
实施例2
本实施例基于实施例1的技术方案,对电能路由器PET模块进行进一步说明。
在本实施例中,参阅图2,所述电能路由器PET模块包括依次连接的预充电模块、隔离型DC/DC模块和滤波模块;
所述预充电模块的正极输入端和负极输入端分别为所述电能路由器PET模块正极输入端和负极输入端,所述滤波模块的正极输出端和负极输出端分别为所述电能路由器PET模块正极输出端和负极输出端;
所述预充电模块用于在启动时限制电流;
所述隔离型DC/DC模块用于对所述电能路由器PET模块的输入、输出侧进行电气隔离;
所述滤波模块用于滤波降噪。
进一步地,所述滤波模块包括依次并联在电能路由器PET模块的正极线路和负极线路之间的的电抗、电容和第一EMI滤波器;
所述电抗和电容用于对所述电能路由器PET模块输出的电流进行滤波,第一EMI滤波器用于阻断所述电能路由器PET模块和外部设备间的高频电流;
所述第一EMI滤波器的正极输出端和负极输出端分别为所述电能路由器PET模块正极输出端和负极输出端。
实施例3
本实施例基于实施1的技术方案,对馈入保护模块进行进一步说明。
参阅图3,本实施例的所述馈入保护模块包括第一二极管D1、多个接触器和多个隔离开关;
第一二极管D1、第一接触器KM1和第一隔离开关QS1依次串联在所述馈入保护模块的正极线路上;
第二接触器KM2和第二隔离开关QS2依次串联在所述馈入保护模块的负极线路上;
所述第一隔离开关QS1和所述第二隔离开关QS2由一个刀闸联动控制。
本实施例用于设备的直流电流流入直流母线的保护,相当于可以由一个开关的刀闸进行联动控制两个隔离开关,实现正极和负极同时开关的操作。
实施例4
本实施例基于实施例1的技术方案,对馈出断路器模块进行进一步说明。
作为优选方案,参阅图4,所述馈出断路器模块包括多个接触器、多个隔离开关、固态断路器SSCB和第一避雷器;
第三隔离开关QS3、第三接触器KM3和固态断路器SSCB依次串联在所述馈出断路器模块的正极线路上;
第四隔离开关QS4、第四接触器KM4依次串联在所述馈出断路器模块的负极线路上;
所述固态断路器SSCB的输出端连接所述第一避雷器的正极,所述第四接触器KM4连接到所述第一避雷器的负极,所述第一避雷器的正极输出端和负极输出端分别为所述馈出断路器模块的正极输出端和负极输出端;
所述第三隔离开关QS3和所述第四隔离开关QS4由一个刀闸联动控制。
其中,固态断路器SSCB负责短路保护,两个接触器负责自动电气隔离,两个隔离开关负责实现手动检修隔离,同样的可以由一个开关的刀闸进行联动控制两个隔离开关,实现正极和负极同时开关的操作。
实施例5
本实施例基于实施例1的技术方案,对电解铝母线保护模块进行进一步说明。
作为本实施例的优选方案,参阅图5,所述电解铝母线保护模块包括第二避雷器、第二EMI滤波器、剩余电流检测模块、多个逆止阀组、多个熔断器和多个 隔离开关;第二避雷器的正极输入端和负极输入端为所述电解铝母线保护模块的正极输入端和负入输出端;
第二避雷器的正极输出端连接到第二EMI滤波器的输入端,第二EMI滤波器的输出端连接剩余电流检测模块的正极输入端,剩余电流检测模块的正极输出端连接到第一逆止阀组的输入端,第一逆止阀组的输出端连接到第一熔断器FU1的一端,第一熔断器FU1的另一端连接第五隔离开关QS5的一端;
第二避雷器的负极输出端连接剩余电流检测模块的负极输入端,剩余电流检测模块的负极输出端连接到第二逆止阀组的输入端,第二逆止阀组的输出端连接到第二熔断器FU2的一端,第二熔断器FU2的另一端连接第六隔离开关QS6的一端;
第五隔离开关QS5的另一端和第六隔离开关QS6的另一端分别为所述电解铝母线保护模块的正极输出端和负极输出端。
进一步地,所述第一逆止阀组包括两个二极管,第二二极管D2的阳极连接所述剩余电流检测模块的正极输出端,第二二极管D2的阴极连接第三二极管D3的阳极,第三二极管D3的阴极连接所述第一熔断器FU1的一端。
此外,所述第二逆止阀组包括两个二极管,第四二极管D4的阴极连接所述剩余电流检测模块的负极输出端,第四二极管D4的阳极连接第五二极管D5的阴极,第五二极管D5的阳极连接所述第二熔断器FU2的一端。
其中,第二EMI滤波器用于阻断直流微网和电解铝母线间的高频电流,逆止阀组和熔断器用于对桥架铝排和直流微网的短路进行保护,剩余电流检测模块用于对接地故障进行检测和保护。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种分布式光伏直流接入铝电解槽直流母线的供电装置,其特征在于:包括多路光伏串、8个光伏汇流箱、4个电能路由器PET模块、4个馈入保护模块、2个馈出断路器模块和2个电解铝母线保护模块;
    多路光伏串汇总接入所述光伏汇流箱,每两个所述光伏汇流箱的输出端共同连接到一个电能路由器PET模块的输入端;
    每个电能路由器PET模块的输出端分别连接到一个馈入保护模块的输入端;
    每两个馈入保护模块的输出端共同连接到一个馈出断路器模块的输入端;
    每个所述馈出断路器模块的输出端分别通过一个桥架铝排连接到一个所述电解铝母线保护模块的输入端;
    所述电解铝母线保护模块的输出端直接连接到电解槽母线。
  2. 根据权利要求1所述的一种分布式光伏直流接入铝电解槽直流母线的供电装置,其特征在于:汇入每个所述光伏汇流箱中的所述光伏串的路数为18路。
  3. 根据权利要求1所述的一种分布式光伏直流接入铝电解槽直流母线的供电装置,其特征在于:所述电能路由器PET模块包括依次连接的预充电模块、隔离型DC/DC模块和滤波模块;
    所述预充电模块的正极输入端和负极输入端分别为所述电能路由器PET模块正极输入端和负极输入端,所述滤波模块的正极输出端和负极输出端分别为所述电能路由器PET模块正极输出端和负极输出端;
    所述预充电模块用于在启动时限制电流;
    所述隔离型DC/DC模块用于对所述电能路由器PET模块的输入、输出侧进行电气隔离;
    所述滤波模块用于滤波降噪。
  4. 根据权利要求3所述的一种分布式光伏直流接入铝电解槽直流母线的供电装置,其特征在于:所述滤波模块包括依次并联在电能路由器PET模块的正极线路和负极线路之间的的电抗、电容和第一EMI滤波器;
    所述电抗和电容用于对所述电能路由器PET模块输出的电流进行滤波,第一EMI滤波器用于阻断所述电能路由器PET模块和外部设备间的高频电流;
    所述第一EMI滤波器的正极输出端和负极输出端分别为所述电能路由器PET模块正极输出端和负极输出端。
  5. 根据权利要求1所述的一种分布式光伏直流接入铝电解槽直流母线的供电装置,其特征在于:所述馈入保护模块包括第一二极管、多个接触器和多个隔离开关;
    第一二极管、第一接触器和第一隔离开关依次串联在所述馈入保护模块的正极线路上;
    第二接触器和第二隔离开关依次串联在所述馈入保护模块的负极线路上;
    所述第一隔离开关和所述第二隔离开关由一个刀闸联动控制。
  6. 根据权利要求1所述的一种分布式光伏直流接入铝电解槽直流母线的供电装置,其特征在于:所述馈出断路器模块包括多个接触器、多个隔离开关、固态断路器和第一避雷器;
    第三隔离开关、第三接触器和固态断路器依次串联在所述馈出断路器模块的正极线路上;
    第四隔离开关、第四接触器依次串联在所述馈出断路器模块的负极线路上;
    所述固态断路器的输出端连接所述第一避雷器的正极,所述第四接触器连接到所述第一避雷器的负极,所述第一避雷器的正极输出端和负极输出端分别为所述馈出断路器模块的正极输出端和负极输出端;
    所述第三隔离开关和所述第四隔离开关由一个刀闸联动控制。
  7. 根据权利要求1所述的一种分布式光伏直流接入铝电解槽直流母线的供电装置,其特征在于:所述电解铝母线保护模块包括第二避雷器、第二EMI滤波器、剩余电流检测模块、多个逆止阀组、多个熔断器和多个隔离开关;第二避雷器的正极输入端和负极输入端为所述电解铝母线保护模块的正极输入端和负入输出端;
    第二避雷器的正极输出端连接到第二EMI滤波器的输入端,第二EMI滤波器的输出端连接剩余电流检测模块的正极输入端,剩余电流检测模块的正极输出端连接到第一逆止阀组的输入端,第一逆止阀组的输出端连接到第一熔断器的一端,第一熔断器的另一端连接第五隔离开关的一端;
    第二避雷器的负极输出端连接剩余电流检测模块的负极输入端,剩余电流检测模块的负极输出端连接到第二逆止阀组的输入端,第二逆止阀组的输出端连接到第二熔断器的一端,第二熔断器的另一端连接第六隔离开关的一端;
    第五隔离开关的另一端和第六隔离开关的另一端分别为所述电解铝母线保护模块的正极输出端和负极输出端。
  8. 根据权利要求7所述的一种分布式光伏直流接入铝电解槽直流母线的供电装置,其特征在于:所述第一逆止阀组包括两个二极管,第二二极管的阳极连接所述剩余电流检测模块的正极输出端,第二二极管的阴极连接第三二极管的阳极,第三二极管的阴极连接所述第一熔断器的一端。
  9. 根据权利要求8所述的一种分布式光伏直流接入铝电解槽直流母线的供电装置,其特征在于:所述第二逆止阀组包括两个二极管,第四二极管的阴极连接所述剩余电流检测模块的负极输出端,第四二极管的阳极连接第五二极管的阴极,第五二极管的阳极连接所述第二熔断器的一端。
PCT/CN2023/116647 2023-02-16 2023-09-04 一种分布式光伏直流接入铝电解槽直流母线的供电装置 WO2024169162A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310123987.5 2023-02-16
CN202310123987.5A CN115864355B (zh) 2023-02-16 2023-02-16 一种分布式光伏直流接入铝电解槽直流母线的供电装置

Publications (1)

Publication Number Publication Date
WO2024169162A1 true WO2024169162A1 (zh) 2024-08-22

Family

ID=85658241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116647 WO2024169162A1 (zh) 2023-02-16 2023-09-04 一种分布式光伏直流接入铝电解槽直流母线的供电装置

Country Status (2)

Country Link
CN (1) CN115864355B (zh)
WO (1) WO2024169162A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115864355B (zh) * 2023-02-16 2023-05-05 云南铝业股份有限公司 一种分布式光伏直流接入铝电解槽直流母线的供电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204578458U (zh) * 2015-03-09 2015-08-19 南车株洲电力机车研究所有限公司 一种汇流箱电路结构及光伏发电系统
CN105356589A (zh) * 2015-11-04 2016-02-24 四川华索自动化信息工程有限公司 基于铝电解槽的稳流式多源直流变压器
CN113462897A (zh) * 2019-04-30 2021-10-01 易航时代(北京)科技有限公司 铝和金属硅的生产装置、生产方法及生产装置的控制方法
CN114825488A (zh) * 2022-03-18 2022-07-29 沈阳铝镁设计研究院有限公司 分布式光伏发电用于电解铝厂供电整流系统的方法
CN115441565A (zh) * 2022-09-13 2022-12-06 中国科学院电工研究所 一种新能源高效接入的电解铝碳减排系统
CN115864355A (zh) * 2023-02-16 2023-03-28 云南铝业股份有限公司 一种分布式光伏直流接入铝电解槽直流母线的供电装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201918409U (zh) * 2011-01-01 2011-08-03 国网电力科学研究院 一种新型光伏汇流箱
DE202016005237U1 (de) * 2016-08-26 2017-03-27 Hilary Emanuel Weinberg PV-Fassade mit Wärmerückgewinnung am Neu- und Altbau
CN111342483A (zh) * 2018-12-18 2020-06-26 汉能移动能源控股集团有限公司 一种太阳能发电系统
CN216215926U (zh) * 2021-10-25 2022-04-05 天津新展高速公路有限公司 一种分布式光伏发电系统
CN114048970A (zh) * 2021-10-27 2022-02-15 云南电网有限责任公司 一种计及电解铝负荷参与电网运行的双层调度方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204578458U (zh) * 2015-03-09 2015-08-19 南车株洲电力机车研究所有限公司 一种汇流箱电路结构及光伏发电系统
CN105356589A (zh) * 2015-11-04 2016-02-24 四川华索自动化信息工程有限公司 基于铝电解槽的稳流式多源直流变压器
CN113462897A (zh) * 2019-04-30 2021-10-01 易航时代(北京)科技有限公司 铝和金属硅的生产装置、生产方法及生产装置的控制方法
CN114825488A (zh) * 2022-03-18 2022-07-29 沈阳铝镁设计研究院有限公司 分布式光伏发电用于电解铝厂供电整流系统的方法
CN115441565A (zh) * 2022-09-13 2022-12-06 中国科学院电工研究所 一种新能源高效接入的电解铝碳减排系统
CN115864355A (zh) * 2023-02-16 2023-03-28 云南铝业股份有限公司 一种分布式光伏直流接入铝电解槽直流母线的供电装置

Also Published As

Publication number Publication date
CN115864355B (zh) 2023-05-05
CN115864355A (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
EP3651305A1 (en) Chained multi-port grid-connected interface apparatus and control method
CN112398308B (zh) 一种多端口能量路由器及其控制系统和控制方法
CN110970922A (zh) 一种交直流混合分布式可再生能源系统
CN104702114A (zh) 一种开关电容接入的高频链双向直流变压器及其控制方法
WO2024169162A1 (zh) 一种分布式光伏直流接入铝电解槽直流母线的供电装置
CN207010253U (zh) 一种链式多端口并网接口装置
CN105680476A (zh) 一种直流升压集中逆变光伏发电系统
US20220200290A1 (en) Power System
CN1776990A (zh) 大功率风力发电的并网技术
Zhao et al. Summary and prospect of technology development of MVDC and LVDC distribution technology
EP4170887A1 (en) Power supply system
WO2021208141A1 (zh) 一种电源系统
CN204103855U (zh) 串联式光伏方阵
CN116231616A (zh) 一种分布式光伏直流接入电解铝供电系统
CN116131325A (zh) 一种用于远距离海上风电场直流汇集外送的固态变压器
CN115441739A (zh) 一种基于海上风力发电的直流耗能装置及其控制方法
CN210074787U (zh) 一种用于海上风电的大功率变流器电路拓扑结构
CN112787304B (zh) 一种船舶直流电网纯固态短路保护装置
CN210007409U (zh) 一种箱式变电站及微网连接结构
CN113904377A (zh) 一种多功能多端口模块化能量路由器装置
CN112332683A (zh) 一种基于方波变换器的电力电子变压器
Xu et al. Design and Operation of Hangzhou Jiangdong flexible DC distribution network
CN111277002A (zh) 一种柔性励磁功率单元并联拓扑结构及其控制方法
CN114172141B (zh) 一种串联型直流升压汇集系统及其控制方法
Zheng et al. Research on AC/DC hybrid power supply system in industrial park