WO2024168899A1 - 通信方法、装置及存储介质 - Google Patents

通信方法、装置及存储介质 Download PDF

Info

Publication number
WO2024168899A1
WO2024168899A1 PCT/CN2023/076966 CN2023076966W WO2024168899A1 WO 2024168899 A1 WO2024168899 A1 WO 2024168899A1 CN 2023076966 W CN2023076966 W CN 2023076966W WO 2024168899 A1 WO2024168899 A1 WO 2024168899A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
frequency band
resource set
control resource
available resources
Prior art date
Application number
PCT/CN2023/076966
Other languages
English (en)
French (fr)
Inventor
牟勤
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202380008326.6A priority Critical patent/CN116438901A/zh
Priority to PCT/CN2023/076966 priority patent/WO2024168899A1/zh
Publication of WO2024168899A1 publication Critical patent/WO2024168899A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a communication method, device and storage medium.
  • the PDCCH is transmitted through the Control Resource Set (CORESET).
  • CORESET Control Resource Set
  • the present disclosure provides a communication method, device and storage medium.
  • a communication method which is executed by a terminal, and the method includes:
  • the system bandwidth and/or available resources of the control resource set are determined; wherein the available resources of the control resource set represent the resources in the control resource set used to transmit the physical downlink control channel PDCCH.
  • the determining the available resources and/or system bandwidth of the control resource set includes:
  • the system bandwidth and/or available resources of the control resource set are determined based on a first frequency band bandwidth, where the first frequency band bandwidth is determined based on a frequency band bandwidth corresponding to a frequency band in which the terminal operates.
  • determining the system bandwidth and/or available resources of the control resource set based on the first frequency band bandwidth includes:
  • the starting position of the control resource set is determined based on the master information block MIB.
  • the method further comprises:
  • An initial downlink bandwidth portion is determined based on the system bandwidth or available resources of the control resource set, and the initial downlink bandwidth portion is used to transmit a downlink channel/signal.
  • the initial downlink bandwidth portion is the system bandwidth.
  • the bandwidth corresponding to the available resources of the control resource set is smaller than the system bandwidth
  • the initial The initial downlink bandwidth part is the bandwidth corresponding to the available resources of the control resource set.
  • the frequency band bandwidth corresponding to the frequency band in which the terminal operates is a fixed bandwidth
  • the first frequency band bandwidth is the frequency band bandwidth corresponding to the frequency band in which the terminal operates.
  • a frequency band bandwidth corresponding to a frequency band in which the terminal operates is greater than or equal to a first threshold and less than or equal to a second threshold, and the first threshold is less than the second threshold;
  • the first frequency band bandwidth is the first threshold.
  • the method further comprises:
  • a downlink channel/signal is received based on the first frequency band bandwidth.
  • the method further comprises:
  • the downlink channel/signal is received based on the first frequency band bandwidth, and the transmission symbols mapped outside the first frequency band bandwidth are filled.
  • the method further comprises:
  • the downlink channel/signal is received based on the first frequency band bandwidth, and the transmission symbols mapped outside the first frequency band bandwidth are filled.
  • a communication method which is performed by a network device, and the method includes:
  • the bandwidth of the control resource set is greater than the system bandwidth
  • the bandwidth of the control resource set is used to determine the system bandwidth and/or the available resources of the control resource set
  • the available resources of the control resource set represent the resources in the control resource set used to transmit the physical downlink control channel PDCCH.
  • the system bandwidth and/or available resources of the control resource set are determined based on a first frequency band bandwidth, where the first frequency band bandwidth represents a frequency band bandwidth corresponding to a frequency band in which the terminal operates.
  • the system bandwidth is determined based on the position of a synchronization signal block SSB and the first frequency band bandwidth; and/or
  • the available resources of the control resource set are determined based on the position of the SSB, the first frequency band bandwidth and the starting position of the control resource set.
  • the system bandwidth and/or available resources of the control resource set are used to determine an initial downlink bandwidth portion, and the initial downlink bandwidth portion is used to transmit a downlink channel/signal.
  • the bandwidth corresponding to the available resources of the control resource set is smaller than the system bandwidth, and the initial downlink bandwidth portion is the bandwidth corresponding to the available resources of the control resource set.
  • the frequency band bandwidth corresponding to the frequency band in which the terminal operates is a fixed bandwidth
  • the first frequency band bandwidth is the frequency band bandwidth corresponding to the frequency band in which the terminal operates.
  • a frequency band bandwidth corresponding to a frequency band in which the terminal operates is greater than or equal to a first threshold and less than or equal to a second threshold, and the first threshold is less than the second threshold;
  • the first frequency band bandwidth is the first threshold.
  • the method further comprises:
  • a downlink channel/signal is sent based on the first frequency band bandwidth.
  • the method further comprises:
  • a downlink channel/signal is sent based on the first frequency band bandwidth, and transmission symbols mapped outside the first frequency band bandwidth are discarded.
  • the method further comprises:
  • a downlink channel/signal is sent based on the first frequency band bandwidth, and transmission symbols mapped outside the first frequency band bandwidth are discarded.
  • a communication device comprising:
  • a determination module is used to determine the system bandwidth and/or the available resources of the control resource set in response to determining that the bandwidth configured by the network device for the control resource set is greater than the system bandwidth; wherein the available resources of the control resource set represent the resources in the control resource set used for actually transmitting the physical downlink control channel PDCCH.
  • the determination module is used to determine the system bandwidth and/or available resources of the control resource set based on a first frequency band bandwidth, where the first frequency band bandwidth is determined based on a frequency band bandwidth corresponding to a frequency band in which the terminal operates.
  • the determination module is used to determine the system bandwidth based on the position of the synchronization signal block SSB and the first frequency band bandwidth; and/or
  • the starting position of the control resource set is determined based on the master information block MIB.
  • the determination module is used to determine an initial downlink bandwidth portion based on the system bandwidth or available resources of the control resource set, and the initial downlink bandwidth portion is used to transmit a downlink channel/signal.
  • the initial downlink bandwidth portion is the system bandwidth.
  • the bandwidth corresponding to the available resources of the control resource set is smaller than the system bandwidth
  • the initial The initial downlink bandwidth part is the bandwidth corresponding to the available resources of the control resource set.
  • the frequency band bandwidth corresponding to the frequency band in which the terminal operates is a fixed bandwidth
  • the first frequency band bandwidth is the frequency band bandwidth corresponding to the frequency band in which the terminal operates.
  • a frequency band bandwidth corresponding to a frequency band in which the terminal operates is greater than or equal to a first threshold and less than or equal to a second threshold, and the first threshold is less than the second threshold;
  • the first frequency band bandwidth is the first threshold.
  • the receiving module is configured to receive a downlink channel/signal based on the first frequency band bandwidth in response to determining that the network device performs rate matching and resource mapping based on the first frequency band bandwidth.
  • the receiving module is used to determine whether the receiving module is used to determine whether the receiving module is used to determine whether the receiving module is used to determine whether the receiving module is used to determine whether the receiving module is used to determine
  • a filling module is used to fill the transmission symbols mapped outside the bandwidth of the first frequency band.
  • the receiving module is configured to receive the downlink channel/signal based on the first frequency band bandwidth in response to determining that the network device performs rate matching according to the allocated resources corresponding to the downlink channel/signal and performs resource mapping based on the first frequency band bandwidth;
  • a filling module is used to fill the transmission symbols mapped outside the bandwidth of the first frequency band.
  • a communication device comprising:
  • a configuration module is used to configure the bandwidth of a control resource set, wherein the bandwidth of the control resource set is greater than the system bandwidth, and the bandwidth of the control resource set is used to determine the system bandwidth and/or the available resources of the control resource set, and the available resources of the control resource set represent the resources in the control resource set used to transmit the physical downlink control channel PDCCH.
  • the system bandwidth and/or available resources of the control resource set are determined based on a first frequency band bandwidth, where the first frequency band bandwidth represents a frequency band bandwidth corresponding to a frequency band in which the terminal operates.
  • the system bandwidth is determined based on the position of a synchronization signal block SSB and the first frequency band bandwidth; and/or
  • the available resources of the control resource set are determined based on the position of the SSB, the first frequency band bandwidth and the starting position of the control resource set.
  • the system bandwidth and/or available resources of the control resource set are used to determine an initial downlink bandwidth portion, and the initial downlink bandwidth portion is used to transmit a downlink channel/signal.
  • the bandwidth corresponding to the available resources of the control resource set is smaller than the system bandwidth, and the initial downlink bandwidth portion is the bandwidth corresponding to the available resources of the control resource set.
  • the frequency band bandwidth corresponding to the frequency band in which the terminal operates is a fixed bandwidth
  • the first frequency band bandwidth Width is the frequency band bandwidth corresponding to the frequency band in which the terminal operates.
  • a frequency band bandwidth corresponding to a frequency band in which the terminal operates is greater than or equal to a first threshold and less than or equal to a second threshold, and the first threshold is less than the second threshold;
  • the first frequency band bandwidth is the first threshold.
  • the processing module is configured to perform rate matching and resource mapping based on the first frequency band bandwidth
  • a sending module is used to send a downlink channel/signal based on the first frequency band bandwidth.
  • the processing module is used to perform rate matching and resource mapping according to the allocated resources corresponding to the downlink channel/signal; send the downlink channel/signal based on the first frequency band bandwidth, and discard the transmission symbols mapped outside the first frequency band bandwidth.
  • the processing module is configured to perform rate matching according to the allocated resources corresponding to the downlink channel/signal and perform resource mapping based on the first frequency band bandwidth;
  • the sending module is used to send a downlink channel/signal based on the first frequency band bandwidth and discard transmission symbols mapped outside the first frequency band bandwidth.
  • a communication device comprising: a processor; a memory for storing processor executable instructions; wherein the processor is configured to: execute the method described in the above-mentioned first aspect or any one of the embodiments of the first aspect.
  • a communication device comprising: a processor; a memory for storing processor executable instructions; wherein the processor is configured to: execute the method described in the above second aspect or any one of the implementations of the second aspect.
  • a storage medium in which instructions are stored.
  • the instructions in the storage medium are executed by a processor of a terminal device, the method described in the first aspect or any one of the embodiments of the first aspect can be executed.
  • a storage medium in which instructions are stored.
  • the instructions in the storage medium are executed by a processor of a network device, the network device is enabled to execute the method described in the second aspect or any one of the embodiments of the second aspect.
  • a communication system comprising a terminal and a network device, wherein the terminal is used to execute the method described in the above-mentioned first aspect and any one of its embodiments; and the network device is used to execute the method described in the above-mentioned second aspect and any one of its embodiments.
  • the technical solution provided by the embodiment of the present disclosure may include the following beneficial effects: when the bandwidth configured by the network device for the control resource set is greater than the system bandwidth, the terminal determines the system bandwidth and/or the available resources of the control resource set; wherein the available resources of the control resource set represent the resources in the control resource set used for actually transmitting the physical downlink control channel.
  • the terminal can receive the PDCCH based on the available resources of the control resource set, thereby improving the transmission reliability of the PDCCH.
  • the terminal can obtain the system bandwidth before receiving the PDCCH, thereby performing better processing on downlink channels/signals such as the PDCCH based on the system bandwidth.
  • Fig. 1 is a schematic diagram of a wireless communication system according to an exemplary embodiment.
  • Fig. 2 is a flow chart showing a communication method according to an exemplary embodiment.
  • Fig. 3 is a flow chart showing a communication method according to an exemplary embodiment.
  • Fig. 4 is a flow chart showing a communication method according to an exemplary embodiment.
  • Fig. 5 is a flow chart showing a communication method according to an exemplary embodiment.
  • Fig. 6 is a flow chart showing a communication method according to an exemplary embodiment.
  • Fig. 7 is a flow chart showing a communication method according to an exemplary embodiment.
  • Fig. 8 is a flow chart showing a communication method according to an exemplary embodiment.
  • Fig. 9 is a flow chart showing a communication method according to an exemplary embodiment.
  • Fig. 10 is a flowchart showing a communication method according to an exemplary embodiment.
  • Fig. 11 is a flowchart showing a communication method according to an exemplary embodiment.
  • Fig. 12 is a flow chart showing a communication method according to an exemplary embodiment.
  • Fig. 13 is a flow chart showing a communication method according to an exemplary embodiment.
  • Fig. 14 is a block diagram showing a communication device according to an exemplary embodiment.
  • Fig. 15 is a block diagram of a communication device according to an exemplary embodiment.
  • Fig. 16 is a block diagram showing a communication device according to an exemplary embodiment.
  • Fig. 17 is a block diagram showing a communication device according to an exemplary embodiment.
  • the communication method described in the present disclosure can be applied to the wireless communication system shown in FIG1. Including network devices and terminals. It is understandable that the wireless communication system shown in FIG1 is only for schematic illustration, and the wireless communication system may also include other network devices, such as core network devices, wireless relay devices, and wireless backhaul devices, which are not shown in FIG1. The embodiments of the present disclosure do not limit the number of network devices and terminals included in the wireless communication system.
  • the wireless communication system of the embodiment of the present disclosure is a network that provides wireless communication functions.
  • the wireless communication system can adopt different communication technologies, such as Code Division Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency-Division Multiple Access (OFDMA), Single Carrier FDMA (SC-FDMA), and Carrier Sense Multiple Access with Collision Avoidance.
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • SC-FDMA Single Carrier FDMA
  • Carrier Sense Multiple Access with Collision Avoidance According to the capacity, rate, delay and other factors of different networks, networks can be divided into 2G (English: Generation) networks, 3G networks, 4G networks or future evolution networks, such as the 5th Generation Wireless Communication System (5G) network. 5G
  • the network equipment involved in the present disclosure may also be referred to as a wireless access network equipment.
  • the wireless access network equipment may be: a base station, an evolved Node B (eNB), a home base station, an access point (AP) in a wireless fidelity (WIFI) system, a wireless relay node, a wireless backhaul node, a transmission point (TP) or a transmission and receiving point (TRP), etc. It may also be a gNB in an NR system, or it may also be a component or a part of a device constituting a base station, etc. When it is a vehicle-to-everything (V2X) communication system, the network equipment may also be a vehicle-mounted device.
  • V2X vehicle-to-everything
  • the terminal involved in the present disclosure may also be referred to as a terminal device, a user equipment (User Equipment, UE), a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal, MT), etc., which is a device that provides voice and/or data connectivity to users.
  • the terminal may be a handheld device with a wireless connection function, a vehicle-mounted device, etc.
  • some examples of terminals are: a smart phone (Mobile Phone), a pocket computer (Pocket Personal Computer, PPC), a handheld computer, a personal digital assistant (Personal Digital Assistant, PDA), a laptop computer, a tablet computer, a wearable device, or a vehicle-mounted device, etc.
  • V2X vehicle-to-everything
  • the terminal device may also be a vehicle-mounted device. It should be understood that the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the terminal.
  • the network device and the terminal can use any feasible wireless communication technology to achieve mutual transmission.
  • Data the transmission channel corresponding to the network device sending data or control information to the terminal is called a downlink channel (downlink, DL), and the transmission channel corresponding to the terminal sending data or control information to the network device is called an uplink channel (uplink, UL).
  • the network device involved in the embodiments of the present disclosure can be a base station.
  • the network device can also be any other possible network device
  • the terminal can be any possible terminal, which is not limited by the present disclosure.
  • the PDCCH is transmitted through the Control Resource Set (CORESET).
  • CORESET Control Resource Set
  • the transmission channel involved in the present disclosure can be understood as transmitting corresponding data on corresponding time domain and frequency domain resources, and the data path formed by transmitting the data is the above-mentioned channel.
  • the network equipment transmits downlink control information on corresponding time domain and frequency domain resources, thereby forming a data path for transmitting downlink control information.
  • the data path is the physical downlink control channel (Physical Downlink Control Channel, PDCCH).
  • PDCCH Physical Downlink Control Channel
  • the control resource set includes multiple control resource set types, and different control resource set types can be used to transmit different xi channels/signals. Among them, control resource set 0 is used to transmit the physical downlink control channel (Physical Downlink Control Channel, PDCCH).
  • PDCCH Physical Downlink Control Channel
  • the frequency domain resources occupied by control resource set 0 are indicated by the Master Information Block (MIB). As shown in Table 1, the MIB includes the following information fields:
  • the frequency domain resources of control resource set 0 are mainly determined based on the PDCCH-ConfigSIB1 information field indication.
  • the PDCCH-ConfigSIB1 information field will indicate the number of resources of control resource set 0, the number of OFDM symbols occupied, and the offset (Offset) equivalent to the first synchronization signal (Primary Synchronization Signal, PSS)/secondary synchronization signal (Secondary Synchronization Signal, SSS), as shown in Table 2 below.
  • the number of resources represents the number of frequency domain resources configured by the network device for control resource set 0
  • the number of symbols represents the number of time domain resources (OFDM symbols) configured by the network device for control resource set 0
  • the offset represents the offset (Offset) between the frequency domain resources corresponding to the current control resource set and the first synchronization signal (Primary Synchronization Signal, PSS)/secondary synchronization signal (Secondary Synchronization Signal, SSS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the frequency bands with smaller system bandwidth supported by the terminal support NR technology mainly provide services for special services such as special communications, public protection and disaster relief of power systems/railway systems in some countries and regions, such as frequency bands with band numbers n8, n26, n28 and n100.
  • band numbers n8, n26, n28 and n100 are 3MHz
  • the system bandwidth supported by n100 is 2.8MHz to 3.6MHz. Due to the small system bandwidth supported, there are fewer resources that can be transmitted on these frequency bands, and the number of PRBs available is generally around 15. However, the minimum number of PRBs configured for the configuration of control resource set 0 in the related technology is 24.
  • control resource set 0 configured by the network device is greater than the system bandwidth. Therefore, when the terminal performs PDCCH transmission processing, it cannot know which resources in control resource set 0 can be used to transmit PDCCH, and thus cannot accurately receive PDCCH.
  • the initial uplink bandwidth part (initial DL BWP) is determined by the control resource set 0, and the PDSCH resource allocation is performed in the initial DL BWP.
  • the bandwidth of the control resource set 0 configured by the network device is greater than the system bandwidth, the system bandwidth needs to be determined first.
  • the system bandwidth in the related art is carried in the system information block SIB.
  • the terminal can obtain the system bandwidth only after demodulating the PDCCH. How to obtain the system bandwidth before demodulating the PDCCH is also a problem that needs to be determined.
  • the embodiment of the present disclosure proposes a communication method, in which, when the bandwidth configured by the network device for the control resource set is greater than the system bandwidth, the terminal can determine the system bandwidth and/or the available resources of the control resource set; wherein the available resources of the control resource set represent the resources in the control resource set used for the actual transmission of the physical downlink control channel.
  • the terminal can receive the PDCCH based on the available resources of the control resource set, thereby improving the transmission reliability of the PDCCH.
  • the terminal can obtain the system bandwidth before receiving the PDCCH, thereby performing better processing on downlink channels/signals such as the PDCCH based on the system bandwidth.
  • Fig. 2 is a flow chart showing a communication method according to an exemplary embodiment. As shown in Fig. 2 , the communication method is executed by a terminal and includes the following steps.
  • step S11 in response to determining that the bandwidth configured by the network device for the control resource set is greater than the system bandwidth, the system bandwidth and/or available resources of the control resource set are determined.
  • control resource set is control resource set 0.
  • the available resources of the control resource set represent the resources in the control resource set used for actually transmitting the PDCCH. This is because the bandwidth configured by the network device for the control resource set is greater than the system bandwidth, and the resources configured by the network device for the control resource set cannot all be carried in the system bandwidth. Only part of the resources configured by the network device for the control resource set are in the system bandwidth, that is, the resources that can actually transmit channels/signals. Resources outside the system bandwidth cannot transmit channels/signals.
  • the terminal can determine the available resources of the control resource set.
  • the network device configures resources for the control resource set.
  • the resources configured by the network device for the control resource set cannot be fully carried in the system bandwidth.
  • the terminal cannot know which part of the resources of the control resource set is within the system bandwidth, that is, it cannot correctly receive the PDCCH.
  • the number of resources that can be transmitted in the system bandwidth is 15, and the number of resources configured by the network device for the control resource set is 24.
  • the number of resources of the control resource set is greater than the number of resources that can be transmitted in the system bandwidth. It is necessary to determine which part of the 24 resources corresponding to the control resource set is within the system bandwidth.
  • the terminal can determine the available resources of the control resource set and receive the PDCCH based on the available resources. See the embodiment shown in Figure 5 below for how the terminal determines the available resources of the control resource set.
  • the terminal can determine the system bandwidth.
  • the network device configures transmission resources for the control resource set.
  • the bandwidth is small, the resources configured by the network device for the control resource set cannot be fully carried in the system bandwidth.
  • the terminal cannot know the system bandwidth before receiving the PDCCH, the terminal cannot know which part of the resources of the control resource set is within the system bandwidth, that is, it cannot correctly receive the PDCCH. Therefore, when the bandwidth configured by the network device for the control resource set is When the bandwidth is greater than the system bandwidth, the terminal can determine the system bandwidth and determine the available resources of the control resource set based on the system bandwidth. For how the terminal determines the available resources of the control resource set, see the embodiment shown in FIG4 below.
  • the terminal can determine the available resources and system bandwidth of the control resource set. For details, please refer to the embodiments shown in Figures 4 and 5 below.
  • the available resources of the control resource set represent the number of PRBs in the control resource set that can actually be used to transmit the PDCCH.
  • the terminal when the bandwidth configured by the network device for the control resource set is greater than the system bandwidth, the terminal can determine the available resources and/or system bandwidth of the control resource set; wherein the available resources of the control resource set represent the resources in the control resource set used to transmit the physical downlink control channel.
  • the terminal can receive the PDCCH based on the available resources of the control resource set, thereby improving the transmission reliability of the PDCCH.
  • the terminal can obtain the system bandwidth before receiving the PDCCH, thereby performing better processing on the downlink channel/signal based on the system bandwidth.
  • a terminal determines the system bandwidth and/or available resources of a control resource set based on a preset rule. As shown in FIG3 , the method includes the following steps:
  • step S21 the system bandwidth and/or available resources of the control resource set are determined based on the first frequency band bandwidth.
  • the first frequency band bandwidth indicates the frequency band bandwidth corresponding to the frequency band in which the terminal operates.
  • the terminal determines the system bandwidth and/or available resources of the control resource set based on the frequency band bandwidth corresponding to the frequency band in which the terminal operates.
  • the system bandwidth can be determined before demodulating the PDCCH, and the PDCCH can be received based on the available resources of the control resource set, thereby improving the transmission reliability of the PDCCH.
  • a terminal determines a system bandwidth based on the following method. As shown in FIG4 , the method includes the following steps:
  • step S31 the system bandwidth is determined based on the position of the SSB and the first frequency band bandwidth.
  • the system bandwidth is determined based on the lowest frequency point corresponding to the SSB and the bandwidth allocated to the NR system in the first frequency band bandwidth.
  • the lowest frequency point corresponding to SSB is x
  • the bandwidth allocated to the NR system in the first frequency band is Y
  • the system bandwidth is greater than or equal to x MHz and less than or equal to x+Y MHz.
  • the system bandwidth is any value between x and x+Y, and the specific value of the system bandwidth is determined by the network equipment.
  • a terminal determines available resources of a control resource set based on the following method. As shown in FIG5 , the method includes the following steps:
  • step S41 available resources of the control resource set are determined based on the position of the SSB, the first frequency band bandwidth, and the starting position of the control resource set.
  • the lowest frequency point corresponding to SSB is x
  • the bandwidth allocated to the NR system in the first frequency band is Y
  • the starting position of the control resource set is Z
  • the available resources of the control resource set are (x+YZ).
  • the starting position of the control resource set indicates the resource position corresponding to the first resource of the control resource set in the system bandwidth.
  • the starting position of the control resource set is determined based on the MIB indication.
  • the terminal determines the reference resource position and resource offset value of the control resource set based on the MIB indication, and determines the starting position based on the reference resource position and resource offset value.
  • the reference resource position is the Nth PRB
  • the resource offset value is a
  • the starting position is N+a PRBs.
  • the terminal determines the system bandwidth and/or available resources of the control resource set based on its own needs, so as to perform better processing on subsequent downlink channels/signals and ensure the transmission reliability of the downlink channels/signals.
  • a terminal can determine an initial DL BWP based on the system bandwidth or available resources of a control resource set, as shown in FIG6 , including the following steps:
  • step S51 the initial DL BWP is determined based on the system bandwidth or the available resources of the control resource set.
  • initial DL BWP is used to transmit downlink channels/signals.
  • the terminal determines the system bandwidth, and the initial DL BWP may be the system bandwidth.
  • the terminal determines the system bandwidth and available resources of the control resource set.
  • the bandwidth corresponding to the available resources of the control resource set is smaller than the system bandwidth
  • the initial DL BWP is the bandwidth corresponding to the available resources of the control resource set.
  • the bandwidth corresponding to the available resources of the control resource set is less than or equal to the system bandwidth.
  • the terminal can determine the initial DL BWP based on the system bandwidth or the available resources of the control resource set, so that the resources of PDSCH can be allocated in the initial DL BWP, so that the network device can transmit PDSCH based on the resources allocated to PDSCH, and then the terminal can receive PDSCH based on the allocated resources, thereby improving the transmission reliability of the channel.
  • a frequency band bandwidth corresponding to a frequency band in which a terminal operates is a fixed bandwidth
  • the first frequency band bandwidth is a frequency band bandwidth corresponding to the frequency band in which the terminal operates.
  • the frequency band number corresponding to the frequency band in which the terminal operates is n8, n26 or n28, and the frequency band bandwidth corresponding to the frequency band in which the terminal operates is a fixed bandwidth of 3 MHz, and the first frequency band bandwidth is 3 MHz.
  • the frequency band bandwidth corresponding to the frequency band in which the terminal operates is greater than or equal to a first threshold and less than or equal to a second threshold, and the first threshold is less than the second threshold; the first frequency band bandwidth is the first threshold.
  • the frequency band number corresponding to the operating frequency band of the terminal is n100, etc.
  • the frequency band bandwidth corresponding to the operating frequency band of the terminal is in the bandwidth range of 2.8MHz to 3.6MHz, then the first frequency band bandwidth is the smallest bandwidth in the bandwidth range, that is, 2.8MHz.
  • the terminal when the frequency band corresponding to the frequency band of the terminal is a bandwidth range, the terminal does not know how many MHz the system bandwidth used for the NR system is. At this time, the terminal receives the downlink channel/signal based on the minimum frequency band bandwidth (the first frequency band bandwidth), but the network device may perform rate matching and resource allocation based on the first frequency band bandwidth. Mapping, and rate matching and resource mapping may also be performed based on the resources allocated to the terminal.
  • a network device performs rate matching and resource mapping based on a first frequency band bandwidth, and a terminal receives a downlink channel/signal based on the first frequency band bandwidth. As shown in FIG. 7 , the following steps are included:
  • step S61 in response to determining that the network device performs rate matching and resource mapping based on the first frequency band bandwidth, a downlink channel/signal is received based on the first frequency band bandwidth.
  • the network device performs rate matching based on the first frequency band bandwidth, and maps the transmission information to the transmission resources corresponding to the first frequency band bandwidth in the order of frequency domain first and time domain second.
  • the terminal performs rate matching and resource demapping based on the first frequency band bandwidth, and receives the downlink channel/signal based on the first frequency band bandwidth.
  • a network device performs rate matching and resource mapping based on the allocated resources corresponding to a downlink channel/signal, and a terminal receives a downlink channel/signal based on a first frequency band bandwidth. As shown in FIG8 , the following steps are included:
  • step S71 in response to determining that the network device performs rate matching and resource mapping according to the allocated resources corresponding to the downlink channel/signal, the downlink channel/signal is received based on the first frequency band bandwidth, and the transmission symbols mapped outside the first frequency band bandwidth are filled.
  • the allocated resources corresponding to the downlink channel/signal represent the resources allocated by the terminal to the downlink channel/signal.
  • the network device performs rate matching and resource mapping according to the allocated resources corresponding to the downlink channel/signal, and discards the transmission symbols mapped outside the system bandwidth.
  • the terminal receives the downlink channel/signal based on the first frequency band bandwidth, and fills the transmission symbols mapped outside the first frequency band bandwidth.
  • the bandwidth corresponding to the allocated resources corresponding to the downlink channel/signal is 3.2MHz
  • the first frequency band bandwidth is 2.8MHz
  • corresponding to 14 OFDM symbols 1400 bits
  • the network device performs resource mapping, it maps 100 bits for each OFDM symbol, of which 0.4MHz (corresponding to 20 bits) is mapped outside the system bandwidth, and the network device discards 20 bits on each OFDM symbol, for example, discarding the 80th to 100th bits on the first OFDM symbol, discarding the 180th to 200th bits on the second OFDM transmission symbol, and so on.
  • the terminal receives the channel/signal, it fills each OFDM transmission symbol.
  • the network device performs rate matching and resource mapping according to the allocated resources corresponding to the downlink channel/signal, and discards the transmission symbols mapped outside the system bandwidth.
  • the terminal receives the downlink channel/signal based on the system bandwidth, and fills the transmission symbols mapped outside the system bandwidth.
  • a network device performs rate matching based on the allocated resources corresponding to the downlink channel/signal, performs resource mapping based on the first frequency band bandwidth, and a terminal performs resource mapping based on the first frequency band bandwidth.
  • Receiving a downlink channel/signal As shown in FIG9 , the following steps are included:
  • step S81 in response to determining that the network device performs rate matching according to the allocated resources corresponding to the downlink channel/signal and performs resource mapping based on the first frequency band bandwidth, the downlink channel/signal is received based on the first frequency band bandwidth, and the transmission symbols mapped outside the first frequency band bandwidth are filled.
  • the network device performs rate matching according to the allocated resources corresponding to the downlink channel/signal, and performs resource mapping of the transmission resources corresponding to the downlink channel/signal within the resources corresponding to the first frequency band bandwidth. If the actual system bandwidth at this time is greater than the first frequency band bandwidth, the mapping continues outside the allocated resources corresponding to the first frequency band bandwidth, and the network device discards the transmission symbols mapped outside the first frequency band bandwidth.
  • the terminal receives the downlink channel/signal based on the first frequency band bandwidth, and fills the transmission symbols mapped outside the first frequency band bandwidth.
  • the bandwidth corresponding to the allocated resources corresponding to the downlink channel/signal is 3.2MHz
  • the first frequency band bandwidth is 2.8MHz
  • the network device performs resource mapping, it maps 2.8MHz (corresponding to 80 bits) to each OFDM symbol, and there are 280 bits left, corresponding to bits 1120-1400, and the bits 1120-1400 are mapped to each OFDM symbol, for example, the bits mapped to the first OFDM symbol are bits 1-80 and bits 1121-1140, then when the network device discards, bits 1121-1140 are discarded. Accordingly, when the terminal receives the downlink channel/signal based on the first frequency band bandwidth, each OFDM symbol is filled.
  • the terminal when the terminal is unaware of the actual system bandwidth, the terminal receives the downlink channel/signal based on the minimum system bandwidth supported by the frequency band in which the terminal operates, and fills the transmission symbols mapped outside the minimum system bandwidth, thereby ensuring the transmission reliability of the downlink channel/signal.
  • an embodiment of the present disclosure also provides a communication method executed by a network device.
  • Fig. 10 is a flow chart showing a communication method according to an exemplary embodiment. As shown in Fig. 10 , the communication method is executed by a network device and includes the following steps.
  • step S91 the bandwidth of the control resource set is configured, the bandwidth of the control resource set is greater than the system bandwidth, and the bandwidth of the resource set is used to determine the system bandwidth and/or available resources of the control resource set.
  • control resource set is control resource set 0.
  • the available resources of the control resource set represent the resources in the control resource set used to transmit the PDCCH. This is because the bandwidth configured by the network device for the control resource set is greater than the system bandwidth, and the resources configured by the network device for the control resource set cannot all be carried in the system bandwidth. Only part of the resources configured by the network device for the control resource set are in the system bandwidth, that is, the resources that can actually transmit channels/signals. Resources outside the system bandwidth cannot transmit channels/signals.
  • the network device is configured to configure the transmission resources for the control resource set, and determine the transmission resources based on the configured transmission resources.
  • the bandwidth of the control resource set is determined.
  • the terminal can determine the available resources of the control resource set based on the bandwidth of the control resource set. For example, the number of resources that can be transmitted in the system bandwidth is 15, and the number of resources configured by the network device for the control resource set is 24.
  • the number of resources in the control resource set is greater than the number of resources that can be transmitted in the system bandwidth. It is necessary to determine which part of the 24 resources corresponding to the control resource set is within the system bandwidth. Therefore, when the bandwidth configured by the network device for the control resource set is greater than the system bandwidth, the terminal can determine the available resources of the control resource set and receive the PDCCH based on the available resources.
  • the network device configures transmission resources for the control resource set.
  • the resources configured by the network device for the control resource set cannot be fully carried in the system bandwidth.
  • the terminal cannot know the system bandwidth before receiving the PDCCH, the terminal cannot know which part of the resources of the control resource set is within the system bandwidth, that is, it cannot correctly receive the PDCCH. Therefore, when the bandwidth configured by the network device for the control resource set is greater than the system bandwidth, the terminal can determine the system bandwidth based on the bandwidth of the control resource set, and determine the available resources of the control resource set based on the system bandwidth.
  • the available resources of the control resource set represent the number of PRBs in the control resource set that can actually be used to transmit the PDCCH.
  • the network device configures the bandwidth of the control resource set for the terminal.
  • the terminal can determine the available resources of the control resource set and/or the system bandwidth; wherein the available resources of the control resource set represent the resources in the control resource set used for actually transmitting the physical downlink control channel.
  • the terminal can receive the PDCCH based on the available resources of the control resource set, thereby improving the transmission reliability of the PDCCH.
  • the terminal can obtain the system bandwidth before receiving the PDCCH, thereby performing better processing on downlink channels/signals such as the PDCCH based on the system bandwidth.
  • available resources and/or system bandwidth of a control resource set are determined based on a first frequency band bandwidth.
  • the first frequency band bandwidth represents the frequency band bandwidth corresponding to the frequency band in which the terminal operates.
  • the system bandwidth and/or available resources of the control resource set are determined based on the first frequency band bandwidth.
  • the system bandwidth and/or available resources of the control resource set are determined based on the frequency band bandwidth corresponding to the frequency band in which the terminal operates, so that the terminal can determine the system bandwidth before demodulating the PDCCH.
  • the terminal can receive the PDCCH based on the available resources of the control resource set, thereby improving the transmission reliability of the PDCCH.
  • the system bandwidth is determined based on the position of the synchronization signal block SSB and the first frequency band bandwidth.
  • the system bandwidth is determined based on the lowest frequency point corresponding to the SSB and the bandwidth allocated to the NR system in the first frequency band bandwidth.
  • the lowest frequency point corresponding to SSB is x
  • the bandwidth allocated to the NR system in the first frequency band is Y
  • the system bandwidth is greater than or equal to x MHz and less than or equal to x+Y MHz.
  • the system bandwidth is any value between x and x+Y, and the specific value of the system bandwidth is determined by the network equipment.
  • available resources of a control resource set are determined based on the position of an SSB, the bandwidth of a first frequency band, and the starting position of the control resource set.
  • the lowest frequency point corresponding to SSB is x
  • the bandwidth allocated to the NR system in the first frequency band is Y
  • the starting position of the control resource set is Z
  • the available resources of the control resource set are (x+Y-Z).
  • the starting position of the control resource set is determined based on the MIB.
  • the network device sends the MIB to the terminal.
  • the terminal receives the MIB, and determines the position and resource offset value of the reference resource of the control resource set based on the MIB, and determines the starting position based on the position and resource offset value of the reference resource.
  • the reference resource position is the Nth PRB
  • the resource offset value is a
  • the starting position is N+a PRBs.
  • the terminal determines the system bandwidth and/or available resources of the control resource set based on its own needs, so as to perform better processing on subsequent downlink channels/signals and ensure the transmission reliability of the downlink channels/signals.
  • available resources of a control resource set and/or system bandwidth are used to determine an initial DL BWP, and the initial DL BWP is used to transmit a downlink channel/signal.
  • the initial DL BWP may be the system bandwidth.
  • the initial DL BWP when the bandwidth corresponding to the available resources of the control resource set is smaller than the system bandwidth, the initial DL BWP may be the bandwidth corresponding to the available resources of the control resource set.
  • the bandwidth corresponding to the available resources of the control resource set is less than or equal to the system bandwidth.
  • the terminal can determine the initial DL BWP based on the system bandwidth or the available resources of the control resource set, so as to allocate resources for the PDSCH in the initial DL BWP, so that the network device can transmit the PDSCH based on the resources allocated to the PDSCH, and then the terminal can receive the PDSCH based on the allocated resources, thereby improving the transmission reliability of the channel.
  • a frequency band bandwidth corresponding to a frequency band in which a terminal operates is a fixed bandwidth
  • the first frequency band bandwidth is a frequency band bandwidth corresponding to the frequency band in which the terminal operates.
  • the frequency band number corresponding to the frequency band in which the terminal operates is n8, n26 or n28, and the frequency band bandwidth corresponding to the frequency band in which the terminal operates is a fixed bandwidth of 3 MHz, and the first frequency band bandwidth is 3 MHz.
  • the frequency band bandwidth corresponding to the frequency band in which the terminal operates is greater than or equal to
  • the first threshold is less than or equal to the second threshold, and the first threshold is less than the second threshold; the first frequency band bandwidth is the first threshold.
  • the frequency band number corresponding to the operating frequency band of the terminal is n100, etc.
  • the frequency band bandwidth corresponding to the operating frequency band of the terminal is in the bandwidth range of 2.8MHz to 3.6MHz, then the first frequency band bandwidth is the smallest bandwidth in the bandwidth range, that is, 2.8MHz.
  • the terminal when the frequency band bandwidth corresponding to the frequency band in which the terminal operates is a bandwidth range, the terminal does not know how many MHz the system bandwidth used for the NR system is. At this time, the terminal receives the downlink channel/signal based on the minimum frequency band bandwidth (first frequency band bandwidth), but the network device may perform rate matching and resource mapping based on the first frequency band bandwidth, or may perform rate matching and resource mapping based on the resources allocated to the terminal.
  • a network device performs rate matching and resource mapping based on a first frequency band bandwidth, as shown in FIG11 , including the following steps:
  • step S1001 rate matching and resource mapping are performed based on a first frequency band bandwidth.
  • step S1002 a downlink channel/signal is sent based on a first frequency band width.
  • the network device performs rate matching based on the first frequency band bandwidth, and maps the transmission information to the transmission resources corresponding to the first frequency band bandwidth in the order of frequency domain first and time domain second.
  • the terminal performs rate matching and resource demapping based on the first frequency band bandwidth, and receives the downlink channel/signal based on the first frequency band bandwidth.
  • a network device performs rate matching and resource mapping based on the allocated resources corresponding to the downlink channel/signal. As shown in FIG12 , the method includes the following steps:
  • step S1101 rate matching and resource mapping are performed according to the allocated resources corresponding to the downlink channel/signal.
  • the allocated resources corresponding to the downlink channel/signal represent the resources allocated by the terminal to the downlink channel/signal.
  • step S1102 a downlink channel/signal is sent based on a first frequency band width, and transmission symbols mapped outside the first frequency band width are discarded.
  • the network device performs rate matching and resource mapping according to the allocated resources corresponding to the downlink channel/signal, and discards the transmission symbols mapped outside the system bandwidth.
  • the terminal receives the downlink channel/signal based on the first frequency band bandwidth, and fills the transmission symbols mapped outside the first frequency band bandwidth.
  • the bandwidth corresponding to the actual transmission resource corresponding to the downlink channel/signal is 3.2MHz
  • the first frequency band bandwidth is 2.8MHz
  • corresponding to 14 OFDM symbols 1400 bits
  • the network device performs resource mapping, it maps 100 bits for each OFDM symbol, of which 0.4MHz (corresponding to 20 bits) is mapped outside the system bandwidth, and the network device discards 20 bits on each OFDM symbol, for example, discarding the 80th to 100th bits on the first OFDM symbol, discarding the 180th to 200th bits on the second OFDM transmission symbol, and so on.
  • the terminal receives the channel/signal, it fills each OFDM transmission symbol.
  • the network device performs rate matching and resource mapping according to the allocated resources corresponding to the downlink channel/signal, and discards the transmission symbols mapped outside the system bandwidth.
  • the terminal receives a downlink channel/signal based on the system bandwidth, and fills the transmission symbols mapped outside the system bandwidth.
  • the network device performs rate matching based on the actual transmission resources corresponding to the downlink channel/signal and performs resource mapping based on the first frequency band bandwidth. As shown in FIG. 13 , the following steps are included:
  • step S1201 rate matching is performed according to allocated resources corresponding to a downlink channel/signal, and resource mapping is performed based on a first frequency band bandwidth.
  • step S1202 a downlink channel/signal is sent based on a first frequency band width, and transmission symbols mapped outside the first frequency band width are discarded.
  • the network device performs rate matching according to the allocated resources corresponding to the downlink channel/signal, and performs resource mapping of the transmission resources corresponding to the downlink channel/signal within the resources corresponding to the first frequency band bandwidth. If the actual system bandwidth at this time is greater than the first frequency band bandwidth, the mapping continues outside the transmission resources corresponding to the first frequency band bandwidth, and the network device discards the transmission symbols mapped outside the first frequency band bandwidth.
  • the terminal receives the downlink channel/signal based on the first frequency band bandwidth, and fills the transmission symbols mapped outside the first frequency band bandwidth.
  • the bandwidth corresponding to the actual transmission resource corresponding to the downlink channel/signal is 3.2MHz
  • the first frequency band bandwidth is 2.8MHz, corresponding to 14 OFDM symbols, 1400 bits.
  • the network device performs resource mapping, it maps 2.8MHz (corresponding to 80 bits) to each OFDM symbol.
  • the bits 1120-1400 are mapped to each OFDM symbol respectively.
  • the bits mapped to the first OFDM symbol are bits 1-80 and bits 1121-1140.
  • bits 1121-1140 are discarded. Accordingly, when the terminal receives the downlink channel/signal based on the first frequency band bandwidth, each OFDM symbol is filled.
  • the network device when the terminal is unaware of the actual system bandwidth, the network device sends a downlink channel/signal based on the minimum system bandwidth supported by the frequency band in which the terminal operates, and the terminal discards the transmission symbols mapped outside the minimum system bandwidth, thereby ensuring the transmission reliability of the downlink channel/signal.
  • an embodiment of the present disclosure also provides a communication device.
  • the communication device provided in the embodiment of the present disclosure includes executing various The hardware structure and/or software module corresponding to the function.
  • the embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art can use different methods to implement the described functions for each specific application, but such implementation should not be considered to exceed the scope of the technical solution of the embodiments of the present disclosure.
  • Fig. 14 is a block diagram of a communication device according to an exemplary embodiment.
  • the device includes a determination module 101 .
  • a determination module 101 configured to determine the system bandwidth and/or available resources of the control resource set in response to determining that the bandwidth configured by the network device for the control resource set is greater than the system bandwidth;
  • the available resources of the control resource set refer to the resources in the control resource set used for transmitting the physical downlink control channel PDCCH.
  • the determination module 101 is configured to determine available resources and/or system bandwidth of the control resource set based on a first frequency band width, where the first frequency band width is determined based on a frequency band bandwidth corresponding to a frequency band in which the terminal operates.
  • the determination module 101 is configured to determine the system bandwidth based on the position of the synchronization signal block SSB and the first frequency band bandwidth; and/or
  • the starting position of the control resource set is determined based on the master information block MIB.
  • the determination module 101 is configured to determine an initial downlink bandwidth portion based on the system bandwidth or available resources of the control resource set, where the initial downlink bandwidth portion is used to transmit a downlink channel/signal.
  • the initial downlink bandwidth portion is the system bandwidth.
  • the bandwidth corresponding to the available resources of the control resource set is smaller than the system bandwidth, and the initial downlink bandwidth portion is the bandwidth corresponding to the available resources of the control resource set.
  • the frequency band bandwidth corresponding to the frequency band at which the terminal operates is a fixed bandwidth
  • the first frequency band bandwidth is the frequency band bandwidth corresponding to the frequency band at which the terminal operates.
  • the frequency band bandwidth corresponding to the frequency band in which the terminal operates is greater than or equal to a first threshold and less than or equal to a second threshold, and the first threshold is less than the second threshold;
  • the first frequency band bandwidth is a first threshold.
  • the apparatus further includes a receiving module 102.
  • the receiving module 102 In response to determining that the network device performs rate matching and resource mapping based on the first frequency band bandwidth, the receiving module 102 is configured to receive a downlink channel/signal based on the first frequency band bandwidth.
  • the apparatus further includes a filling module 103.
  • the receiving module 102 is configured to receive the first frequency band bandwidth based on the first frequency band bandwidth. Receive downlink channel/signal;
  • the filling module 103 is used to fill the transmission symbols mapped outside the first frequency band bandwidth.
  • the receiving module 102 in response to determining that the network device performs rate matching according to the allocated resources corresponding to the downlink channel/signal and performs resource mapping based on the first frequency band bandwidth, the receiving module 102 is configured to receive the downlink channel/signal based on the first frequency band bandwidth;
  • the filling module 103 is used to fill the transmission symbols mapped outside the first frequency band bandwidth.
  • Fig. 15 is a block diagram of a communication device according to an exemplary embodiment.
  • the device includes a configuration module 201 .
  • Configuration module 201 is used to configure the bandwidth of the control resource set.
  • the bandwidth of the control resource set is greater than the system bandwidth.
  • the bandwidth of the control resource set is used to determine the system bandwidth and/or the available resources of the configuration resource set.
  • the available resources of the control resource set represent the resources in the control resource set used to transmit PDCCH.
  • available resources and/or system bandwidth of the configured resource set are determined based on a first frequency band bandwidth, where the first frequency band bandwidth represents a frequency band bandwidth corresponding to a frequency band in which the terminal operates.
  • the system bandwidth is determined based on the position of the synchronization signal block SSB and the first frequency band bandwidth; and/or
  • the available resources of the control resource set are determined based on the position of the SSB, the first frequency band bandwidth, and the starting position of the control resource set.
  • the system bandwidth and/or available resources of the control resource set are used to determine an initial downlink bandwidth portion, and the initial downlink bandwidth portion is used to transmit a downlink channel/signal.
  • the bandwidth of the control resource set is smaller than the first frequency band bandwidth, and the initial downlink bandwidth portion is the bandwidth of the control resource set.
  • the bandwidth corresponding to the available resources of the control resource set is smaller than the system bandwidth, and the initial downlink bandwidth portion is the bandwidth corresponding to the available resources of the control resource set.
  • the frequency band bandwidth corresponding to the frequency band at which the terminal operates is a fixed bandwidth
  • the first frequency band bandwidth is the frequency band bandwidth corresponding to the frequency band at which the terminal operates.
  • a frequency band bandwidth corresponding to a frequency band in which the terminal operates is greater than or equal to a first threshold and less than or equal to a second threshold, and the first threshold is less than the second threshold;
  • the first frequency band bandwidth is a first threshold.
  • the device further includes a processing module 202 and a sending module 203 .
  • a processing module 202 configured to perform rate matching and resource mapping based on a first frequency band bandwidth
  • the sending module 203 is configured to send a downlink channel/signal based on a first frequency band bandwidth.
  • the processing module 202 is used to perform rate matching according to the allocated resources corresponding to the downlink channel/signal. matching and resource mapping;
  • the sending module 203 is configured to send a downlink channel/signal based on the first frequency band width, and discard transmission symbols mapped outside the first frequency band width.
  • the processing module 202 is configured to perform rate matching according to the allocated resources corresponding to the downlink channel/signal and perform resource mapping based on the first frequency band bandwidth;
  • the sending module 203 is configured to send a downlink channel/signal based on the first frequency band width, and discard transmission symbols mapped outside the first frequency band width.
  • Fig. 16 is a block diagram of a communication device according to an exemplary embodiment.
  • the device 300 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the apparatus 300 may include one or more of the following components: a processing component 302 , a memory 304 , a power component 306 , a multimedia component 308 , an audio component 310 , an input/output (I/O) interface 312 , a sensor component 314 , and a communication component 316 .
  • the processing component 302 generally controls the overall operation of the device 300, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 302 may include one or more processors 320 to execute instructions to complete all or part of the steps of the above-mentioned method.
  • the processing component 302 may include one or more modules to facilitate the interaction between the processing component 302 and other components.
  • the processing component 302 may include a multimedia module to facilitate the interaction between the multimedia component 308 and the processing component 302.
  • the memory 304 is configured to store various types of data to support operations on the device 300. Examples of such data include instructions for any application or method operating on the device 300, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 304 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power component 306 provides power to the various components of the device 300.
  • the power component 306 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the device 300.
  • the multimedia component 308 includes a screen that provides an output interface between the device 300 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors. Sensors are used to sense touch, slide, and gestures on the touch panel. The touch sensor can not only sense the boundaries of the touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
  • the multimedia component 308 includes a front camera and/or a rear camera. When the device 300 is in an operating mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have a focal length and optical zoom capability.
  • the audio component 310 is configured to output and/or input audio signals.
  • the audio component 310 includes a microphone (MIC), and when the device 300 is in an operating mode, such as a call mode, a recording mode, and a speech recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal can be further stored in the memory 304 or sent via the communication component 316.
  • the audio component 310 also includes a speaker for outputting audio signals.
  • I/O interface 312 provides an interface between processing component 302 and peripheral interface modules, such as keyboards, click wheels, buttons, etc. These buttons may include but are not limited to: a home button, a volume button, a start button, and a lock button.
  • the sensor assembly 314 includes one or more sensors for providing various aspects of the status assessment of the device 300.
  • the sensor assembly 314 can detect the open/closed state of the device 300, the relative positioning of components, such as the display and keypad of the device 300, the sensor assembly 314 can also detect the position change of the device 300 or a component of the device 300, the presence or absence of user contact with the device 300, the orientation or acceleration/deceleration of the device 300, and the temperature change of the device 300.
  • the sensor assembly 314 can include a proximity sensor configured to detect the presence of a nearby object without any physical contact.
  • the sensor assembly 314 can also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 314 can also include an accelerometer, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 316 is configured to facilitate wired or wireless communication between the device 300 and other devices.
  • the device 300 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 316 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 316 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the apparatus 300 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), controllers, microcontrollers, microprocessors or other electronic components to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • controllers microcontrollers, microprocessors or other electronic components to perform the above method.
  • a non-transitory computer-readable storage medium including instructions is also provided, such as a memory 304 including instructions, which can be executed by a processor 320 of the device 300 to perform the above method.
  • the non-transitory computer-readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, and the like.
  • FIG. 17 is a block diagram of a communication device according to an exemplary embodiment.
  • device 400 may be provided as a network device.
  • device 400 includes a processing component 422, which further includes one or more processors, and a memory resource represented by a memory 432 for storing instructions executable by the processing component 422, such as an application.
  • the application stored in the memory 432 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 422 is configured to execute instructions to perform the above method.
  • the device 400 may also include a power supply component 426 configured to perform power management of the device 400, a wired or wireless network interface 450 configured to connect the device 400 to a network, and an input/output (I/O) interface 458.
  • the device 400 may operate based on an operating system stored in the memory 432, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM, or the like.
  • a non-transitory computer-readable storage medium including instructions is also provided, such as a memory 432 including instructions, which can be executed by the processing component 422 of the device 400 to perform the above method.
  • the non-transitory computer-readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, etc.
  • plural refers to two or more than two, and other quantifiers are similar thereto.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist. For example, A and/or B may represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the singular forms “a”, “the”, and “the” are also intended to include plural forms, unless the context clearly indicates other meanings.
  • first, second, etc. are used to describe various information, but such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other, and do not indicate a specific order or degree of importance. In fact, the expressions “first”, “second”, etc. can be used interchangeably.
  • the first information can also be referred to as the second information, and similarly, the second information can also be referred to as the first information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种通信方法、装置以及存储介质,涉及通信技术领域,用于提高传输信道/信号的可靠性。该方法包括:响应于确定网络设备配置给控制资源集的带宽大于系统带宽,确定系统带宽和/或控制资源集的可用资源;其中,所述控制资源集的可用资源表示所述控制资源集中用于传输物理下行控制信道PDCCH的资源。

Description

通信方法、装置及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种通信方法、装置及存储介质。
背景技术
在新空口(New Radio,NR)系统中,当终端需要进行物理下行控制信道(Physical Downlink Control Channel,PDCCH)的传输时,通过控制资源集合(Control Resource Set,CORESET)进行PDCCH的传输。
目前,考虑让终端支持的系统带宽较小的频带支持NR技术。但由于其系统带宽较小,系统带宽无法承载控制资源集所包含的所有传输资源,因此终端在进行PDCCH的传输处理时,无法确定控制资源集中哪些资源能够用于传输PDCCH。
发明内容
为克服相关技术中存在的问题,本公开提供一种通信方法、装置及存储介质。
根据本公开实施例的第一方面,提供一种通信方法,由终端执行,所述方法包括:
响应于确定网络设备配置给控制资源集的带宽大于系统带宽,确定系统带宽和/或所述控制资源集的可用资源;其中,所述控制资源集的可用资源表示所述控制资源集中用于传输物理下行控制信道PDCCH的资源。
一种实施方式中,所述确定所述控制资源集的可用资源和/或系统带宽,包括:
基于第一频带带宽确定所述系统带宽和/或控制资源集的可用资源,所述第一频带带宽基于所述终端工作的频带对应的频带带宽确定。
一种实施方式中,所述基于第一频带带宽确定所述系统带宽和/或控制资源集的可用资源,包括:
基于同步信号块SSB的位置和所述第一频带带宽确定所述系统带宽;和/或
基于所述SSB的位置、所述第一频带带宽以及所述控制资源集的起始位置,确定所述控制资源集的可用资源,所述控制资源集的起始位置基于主信息块MIB确定。
一种实施方式中,所述方法还包括:
基于系统带宽或所述控制资源集的可用资源确定初始下行带宽部分,所述初始下行带宽部分用于传输下行信道/信号。
一种实施方式中,所述初始下行带宽部分为系统带宽。
一种实施方式中,所述控制资源集的可用资源对应的带宽小于所述系统带宽,所述初 始下行带宽部分为所述控制资源集的可用资源对应的带宽。
一种实施方式中,所述终端工作的频带对应的频带带宽为固定带宽,所述第一频带带宽为所述终端工作的频带对应的频带带宽。
一种实施方式中,所述终端工作的频带对应的频带带宽大于或等于第一阈值,且小于或等于第二阈值,所述第一阈值小于所述第二阈值;
所述第一频带带宽为所述第一阈值。
一种实施方式中,所述方法还包括:
响应于确定所述网络设备基于所述第一频带带宽进行速率匹配以及资源映射,基于所述第一频带带宽接收下行信道/信号。
一种实施方式中,所述方法还包括:
响应于确定网络设备按照所述下行信道/信号对应的分配资源进行速率匹配以及资源映射,基于所述第一频带带宽接收下行信道/信号,并对映射在所述第一频带带宽之外的传输符号进行填充。
一种实施方式中,所述方法还包括:
响应于确定所述网络设备按照所述下行信道/信号对应的分配资源进行速率匹配以及基于所述第一频带带宽进行资源映射,基于所述第一频带带宽接收下行信道/信号,并对映射在所述第一频带带宽之外的传输符号进行填充。
根据本公开实施例的第二方面,提供一种通信方法,由网络设备执行,所述方法包括:
配置控制资源集的带宽,所述控制资源集的带宽大于系统带宽,所述控制资源集的带宽用于确定系统带宽和/或控制资源集的可用资源,所述控制资源集的可用资源表示所述控制资源集中用于传输物理下行控制信道PDCCH的资源。
一种实施方式中,所述系统带宽和/或控制资源集的可用资源基于第一频带带宽确定,所述第一频带带宽表示所述终端工作的频带对应的频带带宽。
一种实施方式中,所述系统带宽基于同步信号块SSB的位置和所述第一频带带宽确定;和/或
所述控制资源集的可用资源基于所述SSB的位置、所述第一频带带宽以及所述控制资源集的起始位置确定。
一种实施方式中,所述系统带宽和/或控制资源集的可用资源用于确定初始下行带宽部分,所述初始下行带宽部分用于传输下行信道/信号。
一种实施方式中,所述控制资源集的可用资源对应的带宽小于所述系统带宽,所述初始下行带宽部分为所述控制资源集的可用资源对应的带宽。
一种实施方式中,所述终端工作的频带对应的频带带宽为固定带宽,所述第一频带带宽为所述终端工作的频带对应的频带带宽。
一种实施方式中,所述终端工作的频带对应的频带带宽大于或等于第一阈值,且小于或等于第二阈值,所述第一阈值小于所述第二阈值;
所述第一频带带宽为所述第一阈值。
一种实施方式中,所述方法还包括:
基于所述第一频带带宽进行速率匹配以及资源映射;
基于所述第一频带带宽发送下行信道/信号。
一种实施方式中,所述方法还包括:
按照所述下行信道/信号对应的分配资源进行速率匹配以及资源映射;
基于所述第一频带带宽发送下行信道/信号,丢弃映射在所述第一频带带宽之外的传输符号。
一种实施方式中,所述方法还包括:
按照所述下行信道/信号对应的分配资源进行速率匹配以及基于所述第一频带带宽进行资源映射;
基于所述第一频带带宽发送下行信道/信号,丢弃映射在所述第一频带带宽之外的传输符号。
根据本公开实施例的第三方面,提供一种通信装置,所述装置包括:
确定模块,用于响应于确定网络设备配置给控制资源集的带宽大于系统带宽,确定系统带宽和/或所述控制资源集的可用资源;其中,所述控制资源集的可用资源表示所述控制资源集中用于实际传输物理下行控制信道PDCCH的资源。
一种实施方式中,确定模块,用于基于第一频带带宽确定所述系统带宽和/或控制资源集的可用资源,所述第一频带带宽基于所述终端工作的频带对应的频带带宽确定。
一种实施方式中,确定模块,用于基于同步信号块SSB的位置和所述第一频带带宽确定所述系统带宽;和/或
基于所述SSB的位置、所述第一频带带宽以及所述控制资源集的起始位置,确定所述控制资源集的可用资源,所述控制资源集的起始位置基于主信息块MIB确定。
一种实施方式中,确定模块,用于基于系统带宽或所述控制资源集的可用资源确定初始下行带宽部分,所述初始下行带宽部分用于传输下行信道/信号。
一种实施方式中,所述初始下行带宽部分为系统带宽。
一种实施方式中,所述控制资源集的可用资源对应的带宽小于所述系统带宽,所述初 始下行带宽部分为所述控制资源集的可用资源对应的带宽。
一种实施方式中,所述终端工作的频带对应的频带带宽为固定带宽,所述第一频带带宽为所述终端工作的频带对应的频带带宽。
一种实施方式中,所述终端工作的频带对应的频带带宽大于或等于第一阈值,且小于或等于第二阈值,所述第一阈值小于所述第二阈值;
所述第一频带带宽为所述第一阈值。
一种实施方式中,接收模块,用于响应于确定所述网络设备基于所述第一频带带宽进行速率匹配以及资源映射,基于所述第一频带带宽接收下行信道/信号。
一种实施方式中,接收模块,用于
响应于确定网络设备按照所述下行信道/信号对应的分配资源进行速率匹配以及资源映射,基于所述第一频带带宽接收下行信道/信号;
填充模块,用于对映射在所述第一频带带宽之外的传输符号进行填充。
一种实施方式中,接收模块,用于响应于确定所述网络设备按照所述下行信道/信号对应的分配资源进行速率匹配以及基于所述第一频带带宽进行资源映射,基于所述第一频带带宽接收下行信道/信号;
填充模块,用于并对映射在所述第一频带带宽之外的传输符号进行填充。
根据本公开实施例的第四方面,提供一种通信装置,所述装置包括:
配置模块,用于配置控制资源集的带宽,所述控制资源集的带宽大于系统带宽,所述控制资源集的带宽用于确定系统带宽和/或控制资源集的可用资源,所述控制资源集的可用资源表示所述控制资源集中用于传输物理下行控制信道PDCCH的资源。
一种实施方式中,所述系统带宽和/或控制资源集的可用资源基于第一频带带宽确定,所述第一频带带宽表示所述终端工作的频带对应的频带带宽。
一种实施方式中,所述系统带宽基于同步信号块SSB的位置和所述第一频带带宽确定;和/或
所述控制资源集的可用资源基于所述SSB的位置、所述第一频带带宽以及所述控制资源集的起始位置确定。
一种实施方式中,所述系统带宽和/或控制资源集的可用资源用于确定初始下行带宽部分,所述初始下行带宽部分用于传输下行信道/信号。
一种实施方式中,所述控制资源集的可用资源对应的带宽小于所述系统带宽,所述初始下行带宽部分为所述控制资源集的可用资源对应的带宽。
一种实施方式中,所述终端工作的频带对应的频带带宽为固定带宽,所述第一频带带 宽为所述终端工作的频带对应的频带带宽。
一种实施方式中,所述终端工作的频带对应的频带带宽大于或等于第一阈值,且小于或等于第二阈值,所述第一阈值小于所述第二阈值;
所述第一频带带宽为所述第一阈值。
一种实施方式中,处理模块,用于基于所述第一频带带宽进行速率匹配以及资源映射;
发送模块,用于基于所述第一频带带宽发送下行信道/信号。
一种实施方式中,处理模块,用于按照所述下行信道/信号对应的分配资源进行速率匹配以及资源映射;基于所述第一频带带宽发送下行信道/信号,丢弃映射在所述第一频带带宽之外的传输符号。
一种实施方式中,处理模块,用于按照所述下行信道/信号对应的分配资源进行速率匹配以及基于所述第一频带带宽进行资源映射;
发送模块,用于基于所述第一频带带宽发送下行信道/信号,丢弃映射在所述第一频带带宽之外的传输符号。
根据本公开实施例的第五方面,提供一种通信装置,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为:执行上述第一方面或第一方面任意一种实施方式中所述的方法。
根据本公开实施例的第六方面,提供一种通信装置,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为:执行上述第二方面或第二方面任意一种实施方式中所述的方法。
根据本公开实施例的第七方面,提供一种存储介质,所述存储介质中存储有指令,当所述存储介质中的指令由终端设备的处理器执行时,使得的能够执行上述第一方面或第一方面任意一种实施方式中所述的方法。
根据本公开实施例的第八方面,提供一种存储介质,所述存储介质中存储有指令,当所述存储介质中的指令由网络设备的处理器执行时,使得网络设备能够执行上述第二方面或第二方面任意一种实施方式中所述的方法。
根据本公开实施例的第九方面,提供一种通信系统,包括终端和网络设备,其中,所述终端用于执行上述第一方面及其任意一种实施方式所述的方法;所述网络设备用于执行如上述第二方面及其任意一种实施方式所述的方法。
本公开的实施例提供的技术方案可以包括以下有益效果:在网络设备配置给控制资源集的带宽大于系统带宽的情况下,终端确定系统带宽和/或控制资源集的可用资源;其中,控制资源集的可用资源表示控制资源集中用于实际传输物理下行控制信道的资源。从而终 端能够基于控制资源集的可用资源接收PDCCH,提高PDCCH的传输可靠性。并且终端能够在接收PDCCH之前获取系统带宽,从而基于系统带宽对PDCCH等下行信道/信号进行更优的处理。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种无线通信系统示意图。
图2是根据一示例性实施例示出的一种通信方法的流程图。
图3是根据一示例性实施例示出的一种通信方法的流程图。
图4是根据一示例性实施例示出的一种通信方法的流程图。
图5是根据一示例性实施例示出的一种通信方法的流程图。
图6是根据一示例性实施例示出的一种通信方法的流程图。
图7是根据一示例性实施例示出的一种通信方法的流程图。
图8是根据一示例性实施例示出的一种通信方法的流程图。
图9是根据一示例性实施例示出的一种通信方法的流程图。
图10是根据一示例性实施例示出的一种通信方法的流程图。
图11是根据一示例性实施例示出的一种通信方法的流程图。
图12是根据一示例性实施例示出的一种通信方法的流程图。
图13是根据一示例性实施例示出的一种通信方法的流程图。
图14是根据一示例性实施例示出的一种通信装置的框图。
图15是根据一示例性实施例示出的一种通信装置的框图。
图16是根据一示例性实施例示出的一种用于通信装置的框图。
图17是根据一示例性实施例示出的一种用于通信装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。
本公开所述涉及的通信方法可以应用于图1所示的无线通信系统中。该网络系统可以 包括网络设备和终端。可以理解的是,图1所示的无线通信系统仅是进行示意性说明,无线通信系统中还可包括其它网络设备,例如还可以包括核心网络设备、无线中继设备和无线回传设备等,在图1中未画出。本公开实施例对该无线通信系统中包括的网络设备数量和终端数量不做限定。
进一步可以理解的是,本公开实施例的无线通信系统,是一种提供无线通信功能的网络。无线通信系统可以采用不同的通信技术,例如码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency-Division Multiple Access,OFDMA)、单载波频分多址(Single Carrier FDMA,SC-FDMA)、载波侦听多路访问/冲突避免(Carrier Sense Multiple Access with Collision Avoidance)。根据不同网络的容量、速率、时延等因素可以将网络分为2G(英文:Generation)网络、3G网络、4G网络或者未来演进网络,如第五代无线通信系统(The 5th Generation Wireless Communication System,5G)网络,5G网络也可称为是新无线网络(New Radio,NR)。为了方便描述,本公开有时会将无线通信网络简称为网络。
进一步的,本公开中涉及的网络设备也可以称为无线接入网络设备。该无线接入网络设备可以是:基站、演进型基站(evolved Node B,eNB)、家庭基站、无线保真(Wireless Fidelity,WIFI)系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(Transmission Point,TP)或者发送接收点(transmission and receiving point,TRP)等,还可以为NR系统中的gNB,或者,还可以是构成基站的组件或一部分设备等。当为车联网(V2X)通信系统时,网络设备还可以是车载设备。应理解,本公开的实施例中,对网络设备所采用的具体技术和具体设备形态不做限定。
进一步的,本公开中涉及的终端,也可以称为终端设备、用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,终端可以是具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:智能手机(Mobile Phone)、口袋计算机(Pocket Personal Computer,PPC)、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、笔记本电脑、平板电脑、可穿戴设备、或者车载设备等。此外,当为车联网(V2X)通信系统时,终端设备还可以是车载设备。应理解,本公开实施例对终端所采用的具体技术和具体设备形态不做限定。
本公开实施例中,网络设备与终端可以采用任意可行的无线通信技术以实现相互传输 数据。其中,网络设备向终端发送数据或控制信息所对应的传输通道称为下行信道(downlink,DL),终端向网络设备发送数据或控制信息所对应的传输通道称为上行信道(uplink,UL)。可以理解的是,本公开实施例中所涉及的网络设备可以是基站。当然网络设备还可以是其它任意可能的网络设备,终端可以是任意可能的终端,本公开不作限定。
在新空口(New Radio,NR)系统中,当终端需要进行物理下行控制信道(Physical Downlink Control Channel,PDCCH)的传输时,通过控制资源集合(Control Resource Set,CORESET)进行PDCCH的传输。
可以理解的是,本公开所涉及的传输信道可以理解为,在相应的时域、频域资源上传输相应的数据,而传输该数据所构成的数据通路即上述信道。例如,网络设备在相应的时域、频域资源上传输下行控制信息,从而形成传输下行控制信息的数据通路。该数据通路即物理下行控制信道(Physical Downlink Control Channel,PDCCH)。那么传输该下行控制信息也可以解释为传输PDCCH。
控制资源集包括多种控制资源集类型,不同的控制资源集类型可以用于传输不同的xi信道/信号。其中,控制资源集0用于传输物理下行控制信道(Physical Downlink Control Channel,PDCCH)。
控制资源集0所占用的频域资源由主信息块(Master Information Block,MIB)指示。如表1所示,MIB包括以下信息域:
表1

如上表1所示,控制资源集0的频域资源主要基于PDCCH-ConfigSIB1信息域指示确定。其中,PDCCH-ConfigSIB1信息域会指示控制资源集0的资源个数、所占用的OFDM符号数,以及相当于第一同步信号(Primary Synchronization Signal,PSS)/第二同步信号(Secondary Synchronization Signal,SSS)的偏移(Offset),如下表2所示。
表2

其中,资源数量表示网络设备配置给控制资源集0的频域资源数量,符号数量表示网络设备配置给控制资源集0的时域资源(OFDM符号)数量,偏移表示当前控制资源集对应的频域资源与第一同步信号(Primary Synchronization Signal,PSS)/第二同步信号(Secondary Synchronization Signal,SSS)的偏移(Offset),基于偏移可以确定控制资源集的频域位置。
目前,考虑让终端支持的系统带宽较小的频带支持NR技术,这些频带主要为部分国家和地区的电力系统/铁路系统的专用通信、公共保护和救灾等专用业务提供服务,例如频带号为n8、n26、n28以及n100的频带。一般情况下,n8、n26、n28支持的系统带宽为3MHz,n100支持的系统带宽为2.8MHz~3.6MHz。由于其支持的系统带宽较小,这些频带上可传输的资源较少,一般可用的PRB个数在15个左右,但相关技术中关于控制资源集0的配置最小配置的PRB个数为24个,在这种情况下,网络设备配置的控制资源集0的带宽大于系统带宽。因此终端在进行PDCCH的传输处理时,无法知晓控制资源集0中哪些资源能够用于传输PDCCH,进而无法准确接收PDCCH。
一种实施方式中,初始上行带宽部分(initial DL BWP)由控制资源集0确定,PDSCH的资源分配在initial DL BWP中进行,当网络设备配置的控制资源集0的带宽大于系统带宽时,首先需要确定系统带宽。然而,相关技术中的系统带宽在系统信息块SIB中携带, 终端需要在解调PDCCH后才能够获取系统带宽。如何在解调PDCCH之前获知系统带宽,也是需要确定的问题。
基于此,本公开实施例提出了一种通信方法,在网络设备配置给控制资源集的带宽大于系统带宽的情况下,终端能够确定系统带宽和/或控制资源集的可用资源;其中,控制资源集的可用资源表示控制资源集中用于实际传输物理下行控制信道的资源。从而终端能够基于控制资源集的可用资源接收PDCCH,提高PDCCH的传输可靠性。并且终端能够在接收PDCCH之前获取系统带宽,从而基于系统带宽对PDCCH等下行信道/信号进行更优的处理。
图2是根据一示例性实施例示出的一种通信方法的流程图,如图2所示,通信方法由终端执行,包括以下步骤。
在步骤S11中,响应于确定网络设备配置给控制资源集的带宽大于系统带宽,确定系统带宽和/或控制资源集的可用资源。
一种实施方式中,控制资源集为控制资源集0。
其中,控制资源集的可用资源表示控制资源集中用于实际传输PDCCH的资源。这是因为网络设备配置给控制资源集的带宽大于系统带宽,网络设备配置给控制资源集的资源无法全部承载在系统带宽中,网络设备配置给控制资源集的资源中只有部分资源处于系统带宽中,也即实际能够传输信道/信号的资源。处于系统带宽之外的资源无法进行信道/信号的传输。
在一些实施例中,终端能够确定控制资源集的可用资源。网络设备为控制资源集配置资源,当系统带宽较小时,网络设备为控制资源集配置的资源无法全部承载在系统带宽中,但由于终端在接收PDCCH之前无法获知系统带宽,因此终端无法知晓控制资源集的哪部分资源位于系统带宽内,也即无法正确接收PDCCH。例如,系统带宽中能够传输的资源个数为15个,网络设备为控制资源集配置的资源个数为24个,控制资源集的资源个数大于系统带宽中能够传输的资源个数,需要确定控制资源集对应的24个资源中的哪部分资源位于系统带宽内。因此,在网络设备配置给控制资源集的带宽大于系统带宽的情况下,终端能够确定控制资源集的可用资源,并且基于可用资源接收PDCCH。终端如何确定控制资源集的可用资源参见下图5所示的实施例。
在一些实施例中,终端能够确定系统带宽。网络设备为控制资源集配置传输资源,当系统带宽较小时,网络设备为控制资源集配置的资源无法全部承载在系统带宽中,但由于终端在接收PDCCH之前无法获知系统带宽,因此终端无法知晓控制资源集的哪部分资源位于系统带宽内,也即无法正确接收PDCCH。因此,在网络设备配置给控制资源集的带宽 大于系统带宽的情况下,终端能够确定系统带宽,并且基于系统带宽确定控制资源集的可用资源。终端如何确定控制资源集的可用资源参见下图4所示的实施例。
在一些实施例中,终端能够确定控制资源集的可用资源和系统带宽。具体可参见下图4和图5所示的实施例。
在一些实施例中,控制资源集的可用资源表示控制资源集中实际能够用于传输PDCCH的PRB个数。
在本公开实施例中,在网络设备配置给控制资源集的带宽大于系统带宽的情况下,终端能够确定控制资源集的可用资源和/或系统带宽;其中,控制资源集的可用资源表示控制资源集中用于传输物理下行控制信道的资源。从而终端能够基于控制资源集的可用资源接收PDCCH,提高PDCCH的传输可靠性。并且终端能够在接收PDCCH之前获取系统带宽,从而基于系统带宽对下行信道/信号进行更优的处理。
在本公开实施例提供的一种通信方法中,终端基于预设规则确定系统带宽和/或控制资源集的可用资源。如图3所示,包括以下步骤:
在步骤S21中,基于第一频带带宽确定系统带宽和/或控制资源集的可用资源。
其中,第一频带带宽表示终端工作的频带对应的频带带宽。
在本公开实施例中,终端基于终端工作的频带对应的频带带宽确定系统带宽和/或控制资源集的可用资源,在解调PDCCH之前即可确定系统带宽,同时能够基于控制资源集的可用资源接收PDCCH,提高PDCCH的传输可靠性。
在本公开实施例提供的一种通信方法中,终端基于以下方式确定系统带宽。如图4所示,包括以下步骤:
在步骤S31中,基于SSB的位置和第一频带带宽确定系统带宽。
在一些实施例中,基于SSB对应的最低频点和第一频带带宽中分配给NR系统的带宽确定系统带宽。
例如,SSB对应的最低频点为x,第一频带带宽中分配给NR系统的带宽为Y,则系统带宽大于或等于x MHz,小于或等于x+Y MHz。系统带宽位于x与x+Y之间的任意取直,系统带宽的具体取值由网络设备决定。
在本公开实施例提供的一种通信方法中,终端基于以下方式确定控制资源集的可用资源。如图5所示,包括以下步骤:
在步骤S41中,基于SSB的位置、第一频带带宽以及控制资源集的起始位置,确定控制资源集的可用资源。
示例性的,SSB对应的最低频点为x,第一频带带宽中分配给NR系统的带宽为Y, 控制资源集的起始位置为Z,则控制资源集的可用资源为(x+Y-Z)。
在一些实施例中,控制资源集的起始位置表示控制资源集的第一个资源在系统带宽中对应的资源位置。控制资源集的起始位置基于MIB指示确定。,终端基于MIB指示确定控制资源集的参考资源位置和资源偏移值,并基于参考资源位置和资源偏移值确定起始位置。例如,参考资源位置为第N个PRB,资源偏移值为a,起始位置为N+a个PRB。
在本公开实施例中,终端基于自身的需求确定系统带宽和/控制资源集的可用资源,以便对后续下行信道/信号进行更优的处理,保证下行信道/信号的传输可靠性。
在本公开实施例提供的一种通信方法中,终端能够基于系统带宽或控制资源集的可用资源确定initial DL BWP,如图6所示,包括以下步骤:
在步骤S51中,基于系统带宽或控制资源集的可用资源确定initial DL BWP。
其中,initial DL BWP用于传输下行信道/信号。
在本公开实施例提供的一种通信方法中的一些实施例中,终端确定了系统带宽,initial DL BWP可以为系统带宽。
在本公开实施例提供的一种通信方法中的另一些实施例中,终端确定了系统带宽和控制资源集的可用资源,在控制资源集的可用资源对应的带宽小于系统带宽的情况下,initial DL BWP为控制资源集的可用资源对应的带宽。
其中,控制资源集的可用资源对应的带宽小于或等于系统带宽。在本公开实施例中,终端能够基于系统带宽或控制资源集的可用资源确定initial DL BWP,从而能够在initial DL BWP中进行PDSCH的资源分配,使得网络设备能够基于分配给PDSCH的资源传输PDSCH,进而终端能够基于分配的资源接收PDSCH,提高信道的传输可靠性。
在本公开实施例提供的一种通信方法中,终端工作的频带对应的频带带宽为固定带宽,第一频带带宽为终端工作的频带对应的频带带宽。
示例性的,终端工作的频带对应的频带号为n8、n26或n28,则终端工作的频带对应的频带带宽为固定带宽3MHz,则第一频带带宽为3MHz。
在本公开实施例提供的一种通信方法中,终端工作的频带对应的频带带宽大于或等于第一阈值,且小于或等于第二阈值,第一阈值小于第二阈值;第一频带带宽为第一阈值。
示例性的,终端工作的频带对应的频带号为n100等,终端工作的频带对应的频带带宽为带宽范围2.8MHz~3.6MHz,则第一频带带宽为带宽范围中最小的带宽,也即2.8MHz。
在本公开实施例提供的一种通信方法中,终端工作的频带对应的频带带宽为带宽范围时,终端并不知晓用于NR系统的系统带宽是多少MHz,此时终端基于最小频带带宽(第一频带带宽)接收下行信道/信号,但网络设备可能基于第一频带带宽进行速率匹配和资源 映射,也可能基于终端分配的资源进行速率匹配和资源映射。
在本公开实施例提供的一种通信方法中的一些实施例中,网络设备基于第一频带带宽进行速率匹配和资源映射,终端基于第一频带带宽接收下行信道/信号。如图7所示,包括以下步骤:
在步骤S61中,响应于确定网络设备基于第一频带带宽进行速率匹配以及资源映射,基于第一频带带宽接收下行信道/信号。
在一些实施例中,网络设备基于第一频带带宽进行速率匹配,并将传输信息按照先频域后时域的顺序依次映射在第一频带带宽对应的传输资源上。终端基于第一频带带宽进行解速率匹配和解资源映射,并基于第一频带带宽接收下行信道/信号。
在本公开实施例提供的一种通信方法中的一些实施例中,网络设备基于下行信道/信号对应的分配资源进行速率匹配和资源映射,终端基于第一频带带宽接收下行信道/信号。如图8所示,包括以下步骤:
在步骤S71中,响应于确定网络设备按照下行信道/信号对应的分配资源进行速率匹配以及资源映射,基于第一频带带宽接收下行信道/信号,并对映射在第一频带带宽之外的传输符号进行填充。
其中,下行信道/信号对应的分配资源表示终端为下行信道/信号分配的资源。
在一些实施例中,网络设备按照下行信道/信号对应的分配资源进行速率匹配以及资源映射,对于映射在系统带宽之外的传输符号,网络设备进行丢弃。终端基于第一频带带宽接收下行信道/信号,对于映射在第一频带带宽之外的传输符号,终端进行填充。
示例性的,下行信道/信号对应的分配资源所对应的带宽为3.2MHz,第一频带带宽为2.8MHz,对应14个OFDM符号,1400个比特,网络设备在进行资源映射时,对于每个OFDM符号分别映射100个比特,其中有0.4MHz(对应20个比特)是映射到了系统带宽之外,网络设备在每个OFDM符号上丢弃20比特,例如在第一个OFDM符号上丢弃第80到100个比特,在第二OFDM传输符号上丢弃第180-200个比特,依次类推。终端在接收信道/信号时,对应在每个OFDM传输符号上进行填充。
在一些实施例中,网络设备按照下行信道/信号对应的分配资源进行速率匹配以及资源映射,对于映射在系统带宽之外的传输符号,网络设备进行丢弃。响应于终端接入了网络设备,终端基于系统带宽接收下行信道/信号,对于映射在系统带宽之外的传输符号,终端进行填充。
在本公开实施例提供的一种通信方法中的一些实施例中,网络设备基于下行信道/信号对应的分配资源进行速率匹配,基于第一频带带宽进行资源映射,终端基于第一频带带宽 接收下行信道/信号。如图9所示,包括以下步骤:
在步骤S81中,响应于确定网络设备按照下行信道/信号对应的分配资源进行速率匹配以及基于第一频带带宽进行资源映射,基于第一频带带宽接收下行信道/信号,并对映射在第一频带带宽之外的传输符号进行填充。
在一些实施例中,网络设备按照下行信道/信号对应的分配资源进行速率匹配,将下行信道/信号对应的传输资源在第一频带带宽所对应的资源内进行资源映射,如果此时的实际系统带宽大于第一频带带宽,在第一频带带宽所对应的分配资源外继续进行映射,对于映射在第一频带带宽之外的传输符号,网络设备进行丢弃。终端基于第一频带带宽接收下行信道/信号,对于映射在第一频带带宽之外的传输符号,终端进行填充。
示例性的,下行信道/信号对应的分配资源所对应的带宽为3.2MHz,第一频带带宽为2.8MHz,对应14个OFDM符号,1400个比特,网络设备在进行资源映射时,对于每个OFDM符号分别映射2.8MHz(对应80个比特),此时还剩余280个比特,对应第1120-1400个比特,将第1120-1400个比特分别映射到每个OFDM符号上,例如第一个OFDM符号映射的比特位第1-80个比特以及1121-1140个比特,那么网络设备在丢弃时,丢弃的是第1121-1140个比特。相应的,终端基于第一频带带宽接收下行信道/信号时,对每个OFDM符号进行填充。
在本公开实施例中,在终端不知道实际系统带宽的情况下,终端基于终端工作的频带所支持的最小系统带宽接收下行信道/信号,对于映射在最小系统带宽之外的传输符号,终端进行填充,从而保证了下行信道/信号的传输可靠性。
基于相同的构思,本公开实施例还提供一种由网络设备执行的通信方法。
图10是根据一示例性实施例示出的一种通信方法的流程图,如图10所示,通信方法由网络设备执行,包括以下步骤。
在步骤S91中,配置控制资源集的带宽,控制资源集的带宽大于系统带宽,资源集的带宽用于确定系统带宽和/或控制资源集的可用资源。
一种实施方式中,控制资源集为控制资源集0。
其中,控制资源集的可用资源表示控制资源集中用于传输PDCCH的资源。这是因为网络设备配置给控制资源集的带宽大于系统带宽,网络设备配置给控制资源集的资源无法全部承载在系统带宽中,网络设备配置给控制资源集的资源中只有部分资源处于系统带宽中,也即实际能够传输信道/信号的资源。处于系统带宽之外的资源无法进行信道/信号的传输。
在一些实施例中,网络设备配置为控制资源集配置传输资源,基于配置的传输资源确 定控制资源集的带宽,在控制资源集的带宽大于系统带宽的情况下,终端能够基于控制资源集的带宽确定控制资源集的可用资源。例如,系统带宽中能够传输的资源个数为15个,网络设备为控制资源集配置的资源个数为24个,控制资源集的资源个数大于系统带宽中能够传输的资源个数,需要确定控制资源集对应的24个资源中的哪部分资源位于系统带宽内。因此,在网络设备配置给控制资源集的带宽大于系统带宽的情况下,终端能够确定控制资源集的可用资源,并且基于可用资源接收PDCCH。
在一些实施例中,网络设备为控制资源集配置传输资源,当系统带宽较小时,网络设备为控制资源集配置的资源无法全部承载在系统带宽中,但由于终端在接收PDCCH之前无法获知系统带宽,因此终端无法知晓控制资源集的哪部分资源位于系统带宽内,也即无法正确接收PDCCH。因此,在网络设备配置给控制资源集的带宽大于系统带宽的情况下,终端能够基于控制资源集的带宽确定系统带宽,并且基于系统带宽确定控制资源集的可用资源。
在一些实施例中,控制资源集的可用资源表示控制资源集中实际能够用于传输PDCCH的PRB个数。
在本公开实施例中,网络设备为终端配置控制资源集的带宽,在网络设备配置的控制资源集的带宽大于系统带宽的情况下,终端能够确定控制资源集的可用资源和/或系统带宽;其中,控制资源集的可用资源表示控制资源集中用于实际传输物理下行控制信道的资源。从而终端能够基于控制资源集的可用资源接收PDCCH,提高PDCCH的传输可靠性。并且终端能够在接收PDCCH之前获取系统带宽,从而基于系统带宽对PDCCH等下行信道/信号进行更优的处理。
在本公开实施例提供的一种通信方法中,控制资源集的可用资源和/或系统带宽基于第一频带带宽确定。
,第一频带带宽表示终端工作的频带对应的频带带宽。
在一种实施方式中,系统带宽和/或控制资源集的可用资源基于第一频带带宽确定。
在本公开实施例中,系统带宽和/或控制资源集的可用资源基于终端工作的频带对应的频带带宽确定,从而终端能够在解调PDCCH之前即可确定系统带宽,同时终端能够基于控制资源集的可用资源接收PDCCH,提高PDCCH的传输可靠性。
在本公开实施例提供的一种通信方法中,系统带宽基于同步信号块SSB的位置和第一频带带宽确定。
在一些实施例中,系统带宽基于SSB对应的最低频点和第一频带带宽中分配给NR系统的带宽确定。
例如,SSB对应的最低频点为x,第一频带带宽中分配给NR系统的带宽为Y,则系统带宽大于或等于x MHz,小于或等于x+Y MHz。系统带宽位于x与x+Y之间的任意取直,系统带宽的具体取值由网络设备决定。
在本公开实施例提供的一种通信方法中,控制资源集的可用资源基于SSB的位置、第一频带带宽以及控制资源集的起始位置确定。
示例性的,SSB对应的最低频点为x,第一频带带宽中分配给NR系统的带宽为Y,控制资源集的起始位置为Z,则控制资源集的可用资源为(x+Y-Z)。
在一些实施例中,控制资源集的起始位置基于MIB确定。
在一些实施例中,网络设备向终端发送MIB。
在一些实施例中,终端接收MIB,并基于MIB确定控制资源集的参考资源的位置和资源偏移值,并基于参考资源的位置和资源偏移值确定起始位置。例如,参考资源位置为第N个PRB,资源偏移值为a,起始位置为N+a个PRB。
在本公开实施例中,终端基于自身的需求确定系统带宽和/控制资源集的可用资源,以便对后续下行信道/信号进行更优的处理,保证下行信道/信号的传输可靠性。
在本公开实施例提供的一种通信方法中,控制资源集的可用资源和/或系统带宽用于确定initial DL BWP,initial DL BWP用于传输下行信道/信号。
在本公开实施例提供的一种通信方法中的一些实施例中,initial DL BWP可以为系统带宽。
在本公开实施例提供的一种通信方法中的另一些实施例中,控制资源集的可用资源对应的带宽小于系统带宽的情况下,initial DL BWP可以为控制资源集的可用资源对应的带宽。
其中,控制资源集的可用资源对应的带宽小于或等于系统带宽。
在本公开实施例中,终端能够基于系统带宽或控制资源集的可用资源确定initial DL BWP,从而能够在initial DL BWP中进行PDSCH的资源分配,使得网络设备能够基于分配给PDSCH的资源传输PDSCH,进而终端能够基于分配的资源接收PDSCH,提高信道的传输可靠性。
在本公开实施例提供的一种通信方法中,终端工作的频带对应的频带带宽为固定带宽,第一频带带宽为终端工作的频带对应的频带带宽。
示例性的,终端工作的频带对应的频带号为n8、n26或n28,则终端工作的频带对应的频带带宽为固定带宽3MHz,则第一频带带宽为3MHz。
在本公开实施例提供的一种通信方法中,终端工作的频带对应的频带带宽大于或等于 第一阈值,且小于或等于第二阈值,第一阈值小于第二阈值;第一频带带宽为第一阈值。
示例性的,终端工作的频带对应的频带号为n100等,终端工作的频带对应的频带带宽为带宽范围2.8MHz~3.6MHz,则第一频带带宽为带宽范围中最小的带宽,也即2.8MHz。
在本公开实施例提供的一种通信方法中,终端工作的频带对应的频带带宽为带宽范围时,终端并不知晓用于NR系统的系统带宽是多少MHz,此时终端基于最小频带带宽(第一频带带宽)接收下行信道/信号,但网络设备可能基于第一频带带宽进行速率匹配和资源映射,也可能基于终端分配的资源进行速率匹配和资源映射。
在本公开实施例提供的一种通信方法中的一些实施例中,网络设备基于第一频带带宽进行速率匹配和资源映射,如图11所示,包括以下步骤:
在步骤S1001中,基于第一频带带宽进行速率匹配以及资源映射。
在步骤S1002中,基于第一频带带宽发送下行信道/信号。
在一些实施例中,网络设备基于第一频带带宽进行速率匹配,并将传输信息按照先频域后时域的顺序依次映射在第一频带带宽对应的传输资源上。终端基于第一频带带宽进行解速率匹配和解资源映射,并基于第一频带带宽接收下行信道/信号。
在本公开实施例提供的一种通信方法中的一些实施例中,网络设备基于下行信道/信号对应的分配资源进行速率匹配和资源映射。如图12所示,包括以下步骤:
在步骤S1101中,按照下行信道/信号对应的分配资源进行速率匹配以及资源映射。
其中,下行信道/信号对应的分配资源表示终端为下行信道/信号分配的资源。
在步骤S1102中,基于第一频带带宽发送下行信道/信号,丢弃映射在第一频带带宽之外的传输符号。
在一些实施例中,网络设备按照下行信道/信号对应的分配资源进行速率匹配以及资源映射,对于映射在系统带宽之外的传输符号,网络设备进行丢弃。终端基于第一频带带宽接收下行信道/信号,对于映射在第一频带带宽之外的传输符号,终端进行填充。
示例性的,下行信道/信号对应的实际传输资源所对应的带宽为3.2MHz,第一频带带宽为2.8MHz,对应14个OFDM符号,1400个比特,网络设备在进行资源映射时,对于每个OFDM符号分别映射100个比特,其中有0.4MHz(对应20个比特)是映射到了系统带宽之外,网络设备在每个OFDM符号上丢弃20比特,例如在第一个OFDM符号上丢弃第80到100个比特,在第二OFDM传输符号上丢弃第180-200个比特,依次类推。终端在接收信道/信号时,对应在每个OFDM传输符号上进行填充。
在一些实施例中,网络设备按照下行信道/信号对应的分配资源进行速率匹配以及资源映射,对于映射在系统带宽之外的传输符号,网络设备进行丢弃。响应于终端接入了网络 设备,终端基于系统带宽接收下行信道/信号,对于映射在系统带宽之外的传输符号,终端进行填充。
在本公开实施例提供的一种通信方法中的一些实施例中,网络设备基于下行信道/信号对应的实际传输资源进行速率匹配,基于第一频带带宽进行资源映射。如图13所示,包括以下步骤:
在步骤S1201中,按照下行信道/信号对应的分配资源进行速率匹配以及基于第一频带带宽进行资源映射。
在步骤S1202中,基于第一频带带宽发送下行信道/信号,丢弃映射在第一频带带宽之外的传输符号。
在一些实施例中,网络设备按照下行信道/信号对应的分配资源进行速率匹配,将下行信道/信号对应的传输资源在第一频带带宽所对应的资源内进行资源映射,如果此时的实际系统带宽大于第一频带带宽,在第一频带带宽所对应的传输资源外继续进行映射,对于映射在第一频带带宽之外的传输符号,网络设备进行丢弃。终端基于第一频带带宽接收下行信道/信号,对于映射在第一频带带宽之外的传输符号,终端进行填充。
示例性的,下行信道/信号对应的实际传输资源所对应的带宽为3.2MHz,第一频带带宽为2.8MHz,对应14个OFDM符号,1400个比特,网络设备在进行资源映射时,对于每个OFDM符号分别映射2.8MHz(对应80个比特),此时还剩余280个比特,对应第1120-1400个比特,将第1120-1400个比特分别映射到每个OFDM符号上,例如第一个OFDM符号映射的比特位第1-80个比特以及1121-1140个比特,那么网络设备在丢弃时,丢弃的是第1121-1140个比特。相应的,终端基于第一频带带宽接收下行信道/信号时,对每个OFDM符号进行填充。
在本公开实施例中,在终端不知道实际系统带宽的情况下,网络设备基于终端工作的频带所支持的最小系统带宽发送下行信道/信号,对于映射在最小系统带宽之外的传输符号,终端进行丢弃,从而保证了下行信道/信号的传输可靠性。
需要说明的是,本领域内技术人员可以理解,本公开实施例上述涉及的各种实施方式/实施例中可以配合前述的实施例使用,也可以是独立使用。无论是单独使用还是配合前述的实施例一起使用,其实现原理类似。本公开实施中,部分实施例中是以一起使用的实施方式进行说明的。当然,本领域内技术人员可以理解,这样的举例说明并非对本公开实施例的限定。
基于相同的构思,本公开实施例还提供一种通信装置。
可以理解的是,本公开实施例提供的通信装置为了实现上述功能,其包含了执行各个 功能相应的硬件结构和/或软件模块。结合本公开实施例中所公开的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图14是根据一示例性实施例示出的一种通信装置框图。参照图14,该装置包括确定模块101。
确定模块101,用于响应于确定网络设备配置给控制资源集的带宽大于系统带宽,确定系统带宽和/或控制资源集的可用资源;
其中,控制资源集的可用资源表示控制资源集中用于传输物理下行控制信道PDCCH的资源。
一种实施方式中,确定模块101,用于基于第一频带带宽定控制资源集的可用资源和/或系统带宽,第一频带带宽基于终端工作的频带对应的频带带宽确定。
一种实施方式中,确定模块101,用于基于同步信号块SSB的位置和第一频带带宽确定所述系统带宽;和/或
基于SSB的位置、第一频带带宽以及控制资源集的起始位置,确定控制资源集的可用资源,控制资源集的起始位置基于主信息块MIB确定。
一种实施方式中,确定模块101,用于基于系统带宽或控制资源集的可用资源确定初始下行带宽部分,初始下行带宽部分用于传输下行信道/信号。
一种实施方式中,初始下行带宽部分为系统带宽。
一种实施方式中,控制资源集的可用资源对应的带宽小于系统带宽,初始下行带宽部分为所述控制资源集的可用资源对应的带宽。
一种实施方式中,终端工作的频带对应的频带带宽为固定带宽,第一频带带宽为所述终端工作的频带对应的频带带宽。
一种实施方式中,终端工作的频带对应的频带带宽大于或等于第一阈值,且小于或等于第二阈值,第一阈值小于第二阈值;
第一频带带宽为第一阈值。
一种实施方式中,该装置还包括接收模块102。响应于确定网络设备基于第一频带带宽进行速率匹配以及资源映射,接收模块102,用于基于第一频带带宽接收下行信道/信号。
一种实施方式中,该装置还包括填充模块103。响应于确定网络设备按照下行信道/信号对应的分配资源进行速率匹配以及资源映射,接收模块102,用于基于第一频带带宽接 收下行信道/信号;
填充模块103,用于对映射在第一频带带宽之外的传输符号进行填充。
一种实施方式中,响应于确定网络设备按照下行信道/信号对应的分配资源进行速率匹配以及基于第一频带带宽进行资源映射,接收模块102,用于基于第一频带带宽接收下行信道/信号;
填充模块103,用于对映射在第一频带带宽之外的传输符号进行填充。
图15是根据一示例性实施例示出的一种通信装置框图。参照图15,该装置包括配置模块201。
配置模块201,用于配置控制资源集的带宽,控制资源集的带宽大于系统带宽,控制资源集的带宽用于确定系统带宽和/或配置资源集的可用资源,控制资源集的可用资源表示控制资源集中用于传输PDCCH的资源。
一种实施方式中,配置资源集的可用资源和/或系统带宽基于第一频带带宽确定,第一频带带宽表示终端工作的频带对应的频带带宽。
一种实施方式中,系统带宽基于同步信号块SSB的位置和第一频带带宽确定;和/或
控制资源集的可用资源基于SSB的位置、第一频带带宽以及控制资源集的起始位置确定。
一种实施方式中,系统带宽和/或控制资源集的可用资源用于确定初始下行带宽部分,初始下行带宽部分用于传输下行信道/信号。
一种实施方式中,控制资源集的带宽小于第一频带带宽,初始下行带宽部分为控制资源集的带宽。
一种实施方式中,控制资源集的可用资源对应的带宽小于系统带宽,初始下行带宽部分为控制资源集的可用资源对应的带宽。
一种实施方式中,终端工作的频带对应的频带带宽为固定带宽,第一频带带宽为所述终端工作的频带对应的频带带宽。
一种实施方式中,终端工作的频带对应的频带带宽大于或等于第一阈值,且小于或等于第二阈值,第一阈值小于所述第二阈值;
第一频带带宽为第一阈值。
一种实施方式中,该装置还包括处理模块202和发送模块203。
处理模块202,用于基于第一频带带宽进行速率匹配以及资源映射;
发送模块203,用于基于第一频带带宽发送下行信道/信号。
一种实施方式中,处理模块202,用于按照下行信道/信号对应的分配资源进行速率匹 配以及资源映射;
发送模块203,用于基于第一频带带宽发送下行信道/信号,丢弃映射在第一频带带宽之外的传输符号。
一种实施方式中,处理模块202,用于按照下行信道/信号对应的分配资源进行速率匹配以及基于第一频带带宽进行资源映射;
发送模块203,用于基于第一频带带宽发送下行信道/信号,丢弃映射在第一频带带宽之外的传输符号。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图16是根据一示例性实施例示出的一种通信装置的框图。例如,装置300可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图16,装置300可以包括以下一个或多个组件:处理组件302,存储器304,电力组件306,多媒体组件308,音频组件310,输入/输出(I/O)接口312,传感器组件314,以及通信组件316。
处理组件302通常控制装置300的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件302可以包括一个或多个处理器320来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件302可以包括一个或多个模块,便于处理组件302和其他组件之间的交互。例如,处理组件302可以包括多媒体模块,以方便多媒体组件308和处理组件302之间的交互。
存储器304被配置为存储各种类型的数据以支持在装置300的操作。这些数据的示例包括用于在装置300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件306为装置300的各种组件提供电力。电力组件306可以包括电源管理系统,一个或多个电源,及其他与为装置300生成、管理和分配电力相关联的组件。
多媒体组件308包括在所述装置300和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传 感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件308包括一个前置摄像头和/或后置摄像头。当装置300处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件310被配置为输出和/或输入音频信号。例如,音频组件310包括一个麦克风(MIC),当装置300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器304或经由通信组件316发送。在一些实施例中,音频组件310还包括一个扬声器,用于输出音频信号。
I/O接口312为处理组件302和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件314包括一个或多个传感器,用于为装置300提供各个方面的状态评估。例如,传感器组件314可以检测到装置300的打开/关闭状态,组件的相对定位,例如所述组件为装置300的显示器和小键盘,传感器组件314还可以检测装置300或装置300一个组件的位置改变,用户与装置300接触的存在或不存在,装置300方位或加速/减速和装置300的温度变化。传感器组件314可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件314还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件314还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件316被配置为便于装置300和其他设备之间有线或无线方式的通信。装置300可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件316经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件316还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置300可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器304,上述指令可由装置300的处理器320执行以完成上述方法。例如, 所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图17是根据一示例性实施例示出的一种通信装置的框图。例如,装置400可以被提供为一网络设备。参照图17,装置400包括处理组件422,其进一步包括一个或多个处理器,以及由存储器432所代表的存储器资源,用于存储可由处理组件422的执行的指令,例如应用程序。存储器432中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件422被配置为执行指令,以执行上述方法。
装置400还可以包括一个电源组件426被配置为执行装置400的电源管理,一个有线或无线网络接口450被配置为将装置400连接到网络,和一个输入输出(I/O)接口458。装置400可以操作基于存储在存储器432的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器432,上述指令可由装置400的处理组件422执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
进一步可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
进一步可以理解的是,本公开中涉及到的“响应于”“如果”等词语的含义取决于语境以及实际使用的场景,如在此所使用的词语“响应于”可以被解释成为“在……时”或“当……时”或“如果”。
进一步可以理解的是,术语“第一”、“第二”等用于描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开,并不表示特定的顺序或者重要程度。实际上,“第一”、“第二”等表述完全可以互换使用。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实 施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利范围来限制。

Claims (26)

  1. 一种通信方法,其特征在于,由终端执行,所述方法包括:
    响应于确定网络设备配置给控制资源集的带宽大于系统带宽,确定系统带宽和/或所述控制资源集的可用资源;
    其中,所述控制资源集的可用资源表示所述控制资源集中用于传输物理下行控制信道PDCCH的资源。
  2. 根据权利要求1所述的方法,其特征在于,所述确定所述控制资源集的可用资源和/或系统带宽,包括:
    基于第一频带带宽确定所述系统带宽和/或控制资源集的可用资源,所述第一频带带宽基于所述终端工作的频带对应的频带带宽确定。
  3. 根据权利要求2所述的方法,其特征在于,所述基于第一频带带宽确定所述系统带宽和/或控制资源集的可用资源,包括:
    基于同步信号块SSB的位置和所述第一频带带宽确定所述系统带宽;和/或
    基于所述SSB的位置、所述第一频带带宽以及所述控制资源集的起始位置,确定所述控制资源集的可用资源,所述控制资源集的起始位置基于主信息块MIB确定。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    基于系统带宽或所述控制资源集的可用资源确定初始下行带宽部分,所述初始下行带宽部分用于传输下行信道/信号。
  5. 根据权利要求4所述的方法,其特征在于,所述初始下行带宽部分为系统带宽。
  6. 根据权利要求5所述的方法,其特征在于,所述控制资源集的可用资源对应的带宽小于所述系统带宽,所述初始下行带宽部分为所述控制资源集的可用资源对应的带宽。
  7. 根据权利要求3至6中任意一项所述的方法,其特征在于,所述终端工作的频带对应的频带带宽为固定带宽,第一频带带宽为所述终端工作的频带对应的频带带宽。
  8. 根据权利要求3至6中任意一项所述的方法,其特征在于,所述终端工作的频带对应的频带带宽大于或等于第一阈值,且小于或等于第二阈值,所述第一阈值小于所述第二阈值;
    第一频带带宽为所述第一阈值。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    响应于确定所述网络设备基于所述第一频带带宽进行速率匹配以及资源映射,基于所述第一频带带宽接收下行信道/信号。
  10. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    响应于确定网络设备按照所述下行信道/信号对应的分配资源进行速率匹配以及资源映射,基于所述第一频带带宽接收下行信道/信号,并对映射在所述第一频带带宽之外的传输符号进行填充。
  11. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    响应于确定所述网络设备按照所述下行信道/信号对应的分配资源进行速率匹配以及基于所述第一频带带宽进行资源映射,基于所述第一频带带宽接收下行信道/信号,并对映射在所述第一频带带宽之外的传输符号进行填充。
  12. 一种通信方法,其特征在于,由网络设备执行,所述方法包括:
    配置控制资源集的带宽,所述控制资源集的带宽大于系统带宽,所述控制资源集的带宽用于确定系统带宽和/或控制资源集的可用资源,所述控制资源集的可用资源表示所述控制资源集中用于传输物理下行控制信道PDCCH的资源。
  13. 根据权利要求12所述的方法,其特征在于,所述系统带宽和/或控制资源集的可用资源基于第一频带带宽确定,所述第一频带带宽表示终端工作的频带对应的频带带宽。
  14. 根据权利要求13所述的方法,其特征在于,所述系统带宽基于同步信号块SSB的位置和所述第一频带带宽确定;和/或
    所述控制资源集的可用资源基于所述SSB的位置、所述第一频带带宽以及所述控制资源集的起始位置确定。
  15. 根据权利要求12所述的方法,其特征在于,所述系统带宽和/或控制资源集的可用资源用于确定初始下行带宽部分,所述初始下行带宽部分用于传输下行信道/信号。
  16. 根据权利要求15所述的方法,其特征在于,所述控制资源集的可用资源对应的带宽小于所述系统带宽,所述初始下行带宽部分为所述控制资源集的可用资源对应的带宽。
  17. 根据权利要求14至16中任意一项所述的方法,其特征在于,终端工作的频带对应的频带带宽为固定带宽,第一频带带宽为所述终端工作的频带对应的频带带宽。
  18. 根据权利要求14至16中任意一项所述的方法,其特征在于,终端工作的频带对应的频带带宽大于或等于第一阈值,且小于或等于第二阈值,所述第一阈值小于所述第二阈值;
    第一频带带宽为所述第一阈值。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    基于所述第一频带带宽进行速率匹配以及资源映射;
    基于所述第一频带带宽发送下行信道/信号。
  20. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    按照所述下行信道/信号对应的分配资源进行速率匹配以及资源映射;
    基于所述第一频带带宽发送下行信道/信号,丢弃映射在所述第一频带带宽之外的传输符号。
  21. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    按照所述下行信道/信号对应的分配资源进行速率匹配以及基于所述第一频带带宽进行资源映射;
    基于所述第一频带带宽发送下行信道/信号,丢弃映射在所述第一频带带宽之外的传输符号。
  22. 一种通信装置,其特征在于,所述装置包括:
    确定模块,用于响应于确定网络设备配置给控制资源集的带宽大于系统带宽,确定所述系统带宽和/或控制资源集的可用资源;
    其中,所述控制资源集的可用资源表示所述控制资源集中用于传输物理下行控制信道PDCCH的资源。
  23. 一种通信装置,其特征在于,所述装置包括:
    配置模块,用于配置控制资源集的带宽,所述控制资源集的带宽大于系统带宽,所述控制资源集的带宽用于确定系统带宽和/或控制资源集的可用资源,所述控制资源集的可用资源表示控制资源集中用于传输PDCCH的资源。
  24. 一种通信装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求1至11中任意一项或权利要求12至21中任意一项所述的方法。
  25. 一种存储介质,其特征在于,所述存储介质中存储有指令,当所述存储介质中的指令由终端的处理器执行时,使得终端能够执行权利要求1至11中任意一项所述的方法;或,当所述存储介质中的指令由网络设备的处理器执行时,使得网络设备能够执行权利要求12至21中任意一项所述的方法。
  26. 一种通信系统,包括终端和网络设备,其中,
    所述终端用于执行如权利要求1-11中任意一项所述的方法;
    所述网络设备用于执行如权利要求12-21中任意一项所述的方法。
PCT/CN2023/076966 2023-02-17 2023-02-17 通信方法、装置及存储介质 WO2024168899A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202380008326.6A CN116438901A (zh) 2023-02-17 2023-02-17 通信方法、装置及存储介质
PCT/CN2023/076966 WO2024168899A1 (zh) 2023-02-17 2023-02-17 通信方法、装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/076966 WO2024168899A1 (zh) 2023-02-17 2023-02-17 通信方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2024168899A1 true WO2024168899A1 (zh) 2024-08-22

Family

ID=87106575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/076966 WO2024168899A1 (zh) 2023-02-17 2023-02-17 通信方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN116438901A (zh)
WO (1) WO2024168899A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190334687A1 (en) * 2017-01-06 2019-10-31 Samsung Electronics Co., Ltd Method and apparatus for detecting signals of a downlink control channel in a wireless communication system
WO2021163857A1 (zh) * 2020-02-17 2021-08-26 北京小米移动软件有限公司 配置信息确定方法、装置及计算机可读存储介质
WO2022021031A1 (zh) * 2020-07-27 2022-02-03 Oppo广东移动通信有限公司 信道传输方法、终端设备和网络设备
CN114071429A (zh) * 2020-08-07 2022-02-18 华为技术有限公司 一种物理下行控制信道增强方法、通信装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190334687A1 (en) * 2017-01-06 2019-10-31 Samsung Electronics Co., Ltd Method and apparatus for detecting signals of a downlink control channel in a wireless communication system
WO2021163857A1 (zh) * 2020-02-17 2021-08-26 北京小米移动软件有限公司 配置信息确定方法、装置及计算机可读存储介质
WO2022021031A1 (zh) * 2020-07-27 2022-02-03 Oppo广东移动通信有限公司 信道传输方法、终端设备和网络设备
CN114071429A (zh) * 2020-08-07 2022-02-18 华为技术有限公司 一种物理下行控制信道增强方法、通信装置及系统

Also Published As

Publication number Publication date
CN116438901A (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
WO2020258335A1 (zh) 控制资源配置、确定方法及装置、通信设备及存储介质
CN113767583A (zh) 非授权频段反馈信息传输方法、装置及存储介质
WO2023123123A1 (zh) 一种频域资源确定方法、装置及存储介质
WO2024168908A1 (zh) 一种通信方法、装置及存储介质
CN112640562A (zh) 资源确定方法、资源确定装置及存储介质
WO2024159422A1 (zh) 一种侧链路通信方法、装置及存储介质
WO2023077446A1 (zh) 一种物理上行控制信道资源确定方法、装置及存储介质
WO2024168899A1 (zh) 通信方法、装置及存储介质
EP4369814A1 (en) Message configuration method, message configuration apparatus, and storage medium
WO2024168902A1 (zh) 资源分配方法、装置及存储介质
WO2024168901A1 (zh) 资源确定方法、装置及存储介质
WO2024164335A1 (zh) 资源配置方法、装置及存储介质
WO2024152221A1 (zh) 一种通信方法、装置、设备及存储介质
WO2024164353A1 (zh) 一种通信方法、装置、设备及存储介质
CN116830722B (zh) 一种上行通信方法、装置及存储介质
WO2024168624A1 (zh) 一种通信方法、装置及存储介质
WO2023097699A1 (zh) 一种srs触发方法、装置及存储介质
WO2024152262A1 (zh) 基于侧链路的通信方法、装置及存储介质
WO2024082190A1 (zh) 一种通信方法、装置、设备及存储介质
WO2024087025A1 (zh) 一种资源配置方法、装置及存储介质
WO2024130613A1 (zh) 一种传输配置指示状态的确定方法、装置及存储介质
WO2024152252A1 (zh) 一种基于侧链路的通信方法、装置及存储介质
WO2024168628A1 (zh) 一种上行通信方法、装置及存储介质
WO2022077234A1 (zh) 下行控制信息调度方法、装置及存储介质
WO2024148634A1 (zh) 一种感知资源配置方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23922030

Country of ref document: EP

Kind code of ref document: A1