WO2024166871A1 - Position detection device, electric power transmitting device, position detection method, and position detection program - Google Patents

Position detection device, electric power transmitting device, position detection method, and position detection program Download PDF

Info

Publication number
WO2024166871A1
WO2024166871A1 PCT/JP2024/003734 JP2024003734W WO2024166871A1 WO 2024166871 A1 WO2024166871 A1 WO 2024166871A1 JP 2024003734 W JP2024003734 W JP 2024003734W WO 2024166871 A1 WO2024166871 A1 WO 2024166871A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power receiving
position detection
receiving device
coil
Prior art date
Application number
PCT/JP2024/003734
Other languages
French (fr)
Japanese (ja)
Inventor
修一郎 山口
達雄 八木
Original Assignee
パナソニックコネクト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックコネクト株式会社 filed Critical パナソニックコネクト株式会社
Publication of WO2024166871A1 publication Critical patent/WO2024166871A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • This disclosure relates to a position detection device, a power transmission device, a position detection method, and a position detection program.
  • Patent Document 1 describes a contactless power supply device that starts supplying power when a proximity sensor provided in the power transmission device detects that the power receiving unit of the power receiving device has approached the power transmission unit of the power transmission device. It is shown that this proximity sensor can be appropriately selected from among commonly known sensors, such as those that use light, those that use changes in capacitance, those that use ultrasonic waves, those that use air pressure, and those that use changes in input impedance of an excitation coil due to eddy currents caused by electromagnetic induction.
  • the accuracy of position detection is an error of several meters, so it is difficult to actually detect whether the power transmitting device and the power receiving device are close to each other. In other words, there is a problem that it is difficult to detect the proximity of the power transmitting unit and the power receiving unit underwater using a general sensor.
  • the purpose of this disclosure is to provide technology that can detect whether a power transmitting device and a power receiving device are in close proximity, even underwater.
  • a position detection device is a position detection device that detects position information of a power receiving device with a power receiving coil relative to a power transmitting device with a power transmitting coil that wirelessly transmits power to the power receiving device, and includes an electrical information detection unit that detects electrical information of the power transmitting device, and a position detection unit that detects position information of the power receiving device using the electrical information.
  • a power transmission device includes a position detection device and a voltage control unit that controls the voltage applied to the power transmission coil.
  • the position detection device detects that the power receiving device is in a position where it can be charged based on the position information of the power receiving device detected by the position detection unit
  • the voltage control unit applies a predetermined voltage to the power transmission coil to activate a charging control circuit in the power receiving device.
  • a position detection method is a position detection method for detecting position information of a power receiving device with a power receiving coil relative to a power transmitting device with a power transmitting coil that wirelessly transmits power to the power receiving device, by detecting electrical information of the power transmitting device and using the electrical information to detect the position information of the power receiving device.
  • a position detection program is a position detection method for detecting position information of a power receiving device with a power receiving coil relative to a power transmitting device with a power transmitting coil that wirelessly transmits power to the power receiving device, and detects electrical information of the power transmitting device and uses the electrical information to detect the position information of the power receiving device.
  • FIG. 1 is a diagram illustrating an example of a usage environment in which an underwater power supply system according to a first embodiment is installed;
  • FIG. 1 is a block diagram showing an example of a configuration of an underwater power supply system according to a first embodiment.
  • FIG. 1 is a diagram showing an example of the positional relationship between a power transmitting coil and a power receiving coil of a power receiving device;
  • FIG. 1 is a diagram showing an example of the positional relationship between a power transmitting coil and a power receiving coil of a power receiving device;
  • FIG. 1 is a diagram showing an example of the positional relationship between a power transmitting coil and a power receiving coil of a power receiving device;
  • FIG. 3C is a view from the ⁇ X-axis direction.
  • FIG. 1 is a diagram showing an example of a relationship between a coupling coefficient and a transmission current of a power transmitting device according to the first embodiment
  • FIG. 1 is a diagram showing an example of a relationship between a coupling coefficient and a transmission power of a power transmitting device according to the first embodiment
  • FIG. 1 is a diagram showing an example of a relationship between a coupling coefficient and a transmission power rate of a power transmitting device according to the first embodiment
  • FIG. 1 is a flow diagram showing the operation of the position detection device according to the first embodiment.
  • FIG. 1 is a diagram illustrating an example of a usage environment in which an underwater power supply system 1000 according to the first embodiment is installed.
  • the underwater power supply system 1000 includes at least a power transmission device 100 (see FIG. 2) and a power receiving device 200 (see FIG. 2).
  • the underwater power supply system 1000 may further include a management unit 108 (see FIG. 2).
  • the power transmission device 100 and the power receiving device 200 each include at least one coil CL.
  • the power transmission device 100 transmits power wirelessly (contactlessly) to the power receiving device 200 via each coil CL by a magnetic resonance method.
  • a part of the power transmission device 100 is installed on the ship 50.
  • the power transmission device 100 may be installed at another location (e.g., a power supply facility 1200 installed on land) or may be entirely installed underwater.
  • a power supply stand including a bobbin bn10 floating in water and a power supply stand including a bobbin bn11 arranged on the seabed 910 are installed to perform underwater power supply (e.g., subsea power supply).
  • a part of the vessel 50 is above the water surface 90 (e.g., sea surface), i.e., above the water, and another part of the vessel 50 is below the water surface 90, i.e., underwater (e.g., under the sea).
  • the vessel 50 is movable above the water surface (e.g., above the sea) and underwater, and can move freely, for example, above a data acquisition location underwater.
  • a power supply stand is formed by winding a power transmission coil CLA11 and a relay coil CLC11 around the outer circumference of a cylindrical bobbin bn10.
  • the relay coil CLC11 is not necessarily required.
  • a power cable 280 is connected to the power transmission coil CLA11, and power is supplied from a ship 50 moored at sea via the power cable 280.
  • the power cable 280 supports the power supply stand including the bobbin bn10, the power transmission coil CLA11, and the relay coil CLC11 in a floating state in the sea.
  • an underwater vehicle 70 which will be described later, enters the entrance of the floating power supply stand horizontally and stops inside the bobbin bn10, it can receive power. Therefore, in FIG. 1, power transmission is not performed at the power supply stand including the bobbin bn10.
  • the power supply stand including the bobbin bn11 is fixed to the top of two pillars 1101 embedded in the seabed 910.
  • the power transmission coil CLA12 is wound around the cylindrical bobbin bn11, but the relay coil CLC is not arranged.
  • the relay coil CLC may be arranged.
  • a power cable 280A laid on the seabed 910 is connected to the power transmission coil CLA12, and power may be supplied from the power supply equipment 1200 via the power cable 280A.
  • the underwater vehicle 70 can enter the entrance of the power supply stand installed on the seabed 910 in the horizontal direction and receive power by staying inside the bobbin bn11. In FIG. 1, the underwater vehicle 70 is stopped inside the power supply stand including the bobbin bn11, so that power transmission is performed.
  • the power receiving device 200 is provided in a mobile underwater vehicle 70 (e.g., a submarine or a bottom drilling machine). However, the power receiving device 200 may also be provided in a fixedly installed underwater facility (e.g., a seismometer, a surveillance camera, a geothermal power generator), etc. In Fig. 1, a submarine is illustrated as an example of the underwater vehicle 70. Each power receiving coil CLB included in the power receiving device 200 is provided underwater (e.g., in the sea).
  • the underwater vehicle 70 is, for example, a remotely operated vehicle (ROV), an unmanned underwater vehicle (UUV), or an autonomous underwater vehicle (AUV).
  • ROV remotely operated vehicle
  • UUV unmanned underwater vehicle
  • AUV autonomous underwater vehicle
  • the underwater vehicle 70 can submerge underwater and move freely to a specified data acquisition point based on instructions from the ship 50 or the like. Instructions from the ship 50 or the like may be transmitted by communication via each coil CL or the communication antenna 203 (see FIG. 2), or by other communication methods.
  • the coil CL is formed, for example, in a ring shape and insulated by being covered with a resin cover.
  • the coil CL is formed, for example, by a cab-tire cable, a helical coil, or a spiral coil.
  • a helical coil is a ring-shaped coil wound in a spiral shape not in the same plane but along the direction of power transmission by the magnetic resonance method.
  • a spiral coil is a ring-shaped coil formed in a spiral shape in the same plane.
  • the use of a spiral coil makes it possible to make the coil CL thinner.
  • the use of a helical coil makes it possible to secure a large space inside the wound coil CL. Note that an example of a helical coil is illustrated in FIG. 1.
  • the coil CL used for power transmission includes a power transmission coil CLA (Primary Coil) and a power receiving coil CLB (Secondary Coil).
  • the coil CL may also include other coils CL, such as at least one relay coil CLC (Booster Coil) arranged between the power transmission coil CLA and the power receiving coil CLB.
  • the relay coil CLC can be considered an example of a power transmission coil, and assists the power transmission by the power transmission coil CLA.
  • the relay coils CLC are arranged approximately parallel to each other, and more than half of the opening surfaces formed by the relay coils CLC overlap.
  • the interval between the multiple relay coils CLC is, for example, equal to or greater than the radius of the relay coil CLC.
  • the power transmission coil CLA is the power transmission coil 107 in FIG. 2 and is provided in the power transmission device 100 (see FIG. 2).
  • the power transmission coil CLA is wound around the bobbin bn10 and the bobbin bn11.
  • the power receiving coil CLB is the power receiving coil 207 in FIG. 2 and is provided in the power receiving device 200 (see FIG. 2).
  • the relay coil CLC functions as part of the power transmission coil 107 and may be provided in the power transmission device 100, in the power receiving device 200, or separately from the power transmission device 100 and the power receiving device 200. A part of the relay coil CLC may be provided in the power transmission device 100 and another part may be provided in the power receiving device 200.
  • the coils CL are arranged, for example, at equal intervals.
  • the distance between adjacent coils CL (coil interval) is, for example, 5 m.
  • the coil interval may be, for example, about half the diameter of the coil CL.
  • the power transmission frequency is, for example, 40 kHz or less and preferably less than 10 kHz.
  • a specified simulation must be performed based on the provisions of the Radio Law, but this work can be omitted when the frequency is less than 10 kHz.
  • the transmission frequency may be a frequency higher than 40 kHz, for example, when a communication signal is superimposed.
  • the power transmission frequency is determined based on coil characteristics such as the inductance of the coil CL, the diameter of the coil CL, and the number of turns of the coil CL.
  • the diameter of the coil CL is, for example, several meters to several tens of meters.
  • the power transmitted via the coil CL is, for example, 50 W or more, and may be on the order of kW.
  • Positional information of the power receiving device 200 relative to the power transmitting device 100 power transmission is not performed at the power supply station including the bobbin bn10. This is because the underwater vehicle 70 equipped with the power receiving device 200 is not inside the power supply station which is part of the power transmitting device 100. In other words, the positional information in this case is information indicating to the power transmitting device 100 that the power receiving device 200 is not in a "chargeable area”. On the other hand, the underwater vehicle 70 is stopped inside the power supply station including the bobbin bn11, so power transmission is possible. In other words, the positional information in this case is information indicating to the power transmitting device 100 that the power receiving device 200 is in a "chargeable area".
  • Fig. 2 is a block diagram showing an example of the configuration of the underwater power supply system according to the first embodiment.
  • the underwater power supply system 1000 includes the power transmitting device 100 and the power receiving device 200.
  • the power transmitting device 100 includes a management unit 108 on land or at sea as a part of the power transmitting device 100.
  • the other components of the power transmitting device 100 and the power receiving device 200 may be provided underwater.
  • the power transmission device 100 includes a control unit 101, a communication unit 102, an antenna 103, a storage unit 104, a high-frequency power source 105, a matching circuit 106, a power transmission coil 107, and a management unit 108.
  • the control unit 101 includes an electric information detection unit 101a and a position detection unit 101b.
  • the control unit 101, the communication unit 102, and the storage unit 104 may be realized as an LSI (Large Scale Integration) which is an integrated circuit. These functional blocks may be individually integrated into one chip, or may be integrated into one chip so as to include some or all of them.
  • LSI Large Scale Integration
  • the control unit 101 may be a device that executes a computer program stored in the storage unit 104 (including a memory) and realizes the functional blocks of the control unit 101.
  • the control unit 101 and the high-frequency power source 105 may be arranged as part of a management unit 108 on land (sea).
  • the control unit 101 controls each component block included in the power transmission device 100.
  • the electrical information detection unit 101a detects electrical information of the power transmission device 100.
  • the electrical information of the power transmission device 100 is, for example, electrical information of the power transmission coil 107 when a low voltage (an example of a first voltage) is applied to the power transmission coil 107 of the power transmission device 100.
  • the electrical information may be at least one of the transmission current, the transmission voltage, the transmission power, or the transmission power rate and electrical information generated using at least one of these electrical information.
  • the low voltage is, for example, a voltage of about 10V.
  • the electrical information of the power transmission coil 107 when a low voltage is applied to the power transmission coil 107 fluctuates depending on the positional relationship between the position of the power transmission device 100 and the position where the power receiving device 200 can be charged.
  • the electrical information detection unit 101a detects this variable electrical information.
  • the position detection unit 101b detects the position information of the power receiving device 200 using the electrical information detected by the electrical information detection unit 101a.
  • the position information detected by the position detection unit 101b indicates whether the power receiving device 200 is in a position where the storage battery 208 (see FIG. 2) can be charged.
  • the position information detected by the position detection unit 101b may indicate in detail the positional relationship between the position of the power receiving device 200 and the position where charging is possible. That is, for example, it may indicate the distance between the power transmitting device 100 and the power receiving device.
  • the voltage control unit 101c controls the voltage applied to the power transmitting coil 107.
  • the position detection device 100a is formed by including at least the electrical information detection unit 101a and the position detection unit 101b of the control unit 101.
  • the communication unit 102 can perform wireless communication (transmission and reception) with the power receiving device 200, the management unit 108, and other devices via the antenna 103.
  • communication between the power transmitting device 100, the power receiving device 200, and other devices may be performed using a wired cable, or communication networks such as a wired LAN (Local Area Network), a wireless LAN, LTE (Long Term Evolution), 4G (fourth generation mobile communication system), 5G (fifth generation mobile communication system), the Internet, and a VPN (Virtual Private Network).
  • the position detection device 100a may include the communication unit 102 in addition to the electrical information detection unit 101a and the position detection unit 101b.
  • the storage unit 104 stores thresholds and the like used by the position detection unit 101b, which will be described later.
  • a memory may be provided as part of the storage unit 104, and a position detection program may be stored therein. This position detection program is executed by the control unit 101.
  • the high frequency power supply 105 is a power supply for transmitting power wirelessly (without contact) to the power receiving device 200.
  • the alternating current supplied by the high frequency power supply 105 controlled by the control unit 101 is applied to the power transmitting coil 107 via a matching circuit 106.
  • the power transmitting coil 107 is the power transmitting coils CLA11 and CLA12.
  • the relay coil CLC11 may also be considered as the power transmitting coil 107.
  • the management unit 108 has, for example, a database (DB), and obtains from the control unit 101 the relative position information of the power transmission device 100 and the power receiving device 200 detected by the position detection device 100a, and stores and manages the information in the DB.
  • DB database
  • the power receiving device 200 includes a control unit 201, a communication unit 202, an antenna 203, a sensor 204, a rectifier 205, a matching circuit 206, a power receiving coil 207, and a storage battery 208.
  • the control unit 201 and the communication unit 202 may be realized as an LSI, which is an integrated circuit. These functional blocks may be individually formed into single chips, or may be formed into a single chip so as to include some or all of these functional blocks.
  • the control unit 201 controls each component block included in the power receiving device 200.
  • the communication unit 202 can perform wireless communication (transmission and reception) with the power transmitting device 100 and other devices via the antenna 203.
  • the sensor 204 is, for example, a camera, and is an example of a load that consumes power from the underwater vehicle 70.
  • the sensor 204 may also be a drive mechanism (thruster, etc.) that controls movement in the sea, as an example of a load that is mounted on the underwater vehicle 70 and consumes power.
  • the power received via the power receiving coil 207 is stored in the storage battery 208 via the matching circuit 206 and rectifier 205 (i.e., the storage battery 208 is charged).
  • the sensor 204, the thruster, etc. consume the power stored in the storage battery 208.
  • the power receiving coil 207 is the power receiving coil CLB in FIG. 1.
  • Figs. 3A, 3B, and 3C are diagrams showing an example of the positional relationship between the power transmission coil 107 and the power receiving coil 207 of the power receiving device 200.
  • Fig. 3D is a view seen from the arrow X in Fig. 3C.
  • the same reference numerals are given to overlapping elements to simplify or omit the description, and different contents will be described.
  • the XYZ axes are defined.
  • the X-axis indicates the direction in which the power receiving device 200 approaches the power transmission coil 107
  • the Y-axis is perpendicular to the X-axis and Z-axis and indicates the width direction of the power receiving device 200
  • the Z-axis is perpendicular to the X-axis and Y-axis and indicates the height direction of the power receiving device 200.
  • the power transmission coil 107 is configured such that the first power transmission coil 107a, the second power transmission coil 107b, and the third power transmission coil 107c are connected along the moving direction of the power receiving device 200 (i.e., the X-axis direction).
  • the third power transmission coil 107c may be the relay coil CLC11 (see FIG. 1).
  • the first power transmission coil 107a and the second power transmission coil 107b are connected, for example, 1 m apart along the X-axis direction.
  • the position where the power receiving device 200 can be charged is, for example, a position where at least half of the power receiving coil 207 of the power receiving device 200 is located between the first power transmission coil 107a and the third power transmission coil 107c.
  • the antenna 103 configured in a rectangular shape is arranged to cover the upper ends of the first power transmission coil 107a to the third power transmission coil 107c in the Z-axis direction. Furthermore, the module that constitutes the communication unit 102 is located above the antenna 103 in the Z-axis direction.
  • FIG. 3A shows an example of the relative positional relationship of the power receiving coil 207 of the power receiving device 200 with respect to the power transmitting coil 107.
  • the power receiving coil 207 of the power receiving device 200 is located halfway between the first power transmitting coil 107a and the second power transmitting coil 107b. In this case, the power receiving coil 207 of the power receiving device 200 has reached a position where the power receiving device 200 can be charged (see point C in FIG. 4).
  • FIG. 3B shows another example of the relative positional relationship of the power receiving coil 207 of the power receiving device 200 with respect to the power transmitting coil 107.
  • the power receiving coil 207 of the power receiving device 200 is located in the range from the first power transmitting coil 107a to the third power transmitting coil 107c.
  • the power receiving coil 207 of the power receiving device 200 is located in a stable position where the power receiving device 200 can be charged (see point D in FIG. 4).
  • 3C and 3D show other examples of the relative positional relationship of the power receiving coil 207 of the power receiving device 200 with respect to the power transmitting coil 107.
  • the power receiving coil 207 of the power receiving device 200 is located in the range from the first power transmitting coil 107a to the third power transmitting coil 107c, and is located higher along the Z axis direction compared to FIG. 3B (see FIG. 3D).
  • the power receiving coil 207 of the power receiving device 200 is located in a more stable position where the power receiving device 200 can be charged compared to the position shown in FIG. 3B (see point E in FIG. 4). This is because the distance between the power transmitting coil 107 and the power receiving coil 207 of the power receiving device 200 is shorter in the length shown in FIG. 3C than in FIG. 3B, and the coupling coefficient is higher.
  • Fig. 4, Fig. 5, and Fig. 6 are diagrams showing an example of a relationship between a coupling coefficient and a transmission current of a power transmitting device according to the first embodiment.
  • the coupling coefficient indicating the degree of magnetic coupling between the power transmitting coil 107 and the power receiving coil 207 becomes low. Then, the closer the power receiving device 200 is to the position (area) where the power transmitting device 100 can be charged, the higher the coupling coefficient indicating the degree of magnetic coupling between the power transmitting coil 107 and the power receiving coil 207 becomes.
  • the experimental results are as follows.
  • the current value of the power transmitting coil 107 is 2 Arms or more.
  • the power receiving device 200 is not in a position where charging is possible.
  • the power receiving device 200 is slightly far from the power transmitting device 100 (point B)
  • the current value of the power transmitting coil 107 is about 1.7 Arms. At this time, the power receiving device 200 is still not in a position where charging is possible.
  • the current value of the power transmitting coil 107 is about 1.2 Arms.
  • the current value of the power transmitting coil 107 is about 1 Arms.
  • the power receiving device 200 is in a position where it can charge the power transmitting device 100 most efficiently (point E)
  • the current value of the power transmitting coil 107 is 1 Arm or less. Note that the power receiving device 200 is in a position where it can just barely charge the power transmitting device 100 means, for example, a position where the power supply efficiency is equal to or greater than a predetermined ratio, such as 50%.
  • the power supply efficiency is 50% or more, it means that "the power receiving device 200 is in a position where it can be charged”.
  • the power supply efficiency is less than 49%, it means that "the power receiving device 200 is not in a position where it can be charged”.
  • the position detection unit 101b can determine that "the power receiving device 200 is in a position where it can be charged" when the coupling coefficient is 0.169 or more. Therefore, when the current of the power transmission coil 107 becomes lower than about 1.3 Arms (threshold value), the position detection unit 101b can detect that the power transmission device 100 is in a position where the power receiving device 200 can be charged. At the same time, when the current of the power transmission coil 107 is higher than about 1.3 Arms, the position detection unit 101b can detect that the power transmission device 100 is not in a position where the power receiving device 200 can be charged. In other words, the position information of the power receiving device 200 relative to the power transmission device 100 can be detected simply by detecting the current of the power transmission coil 107 of the power transmission device 100.
  • the position information of the power receiving device 200 relative to the power transmitting device 100 can be detected by detecting electrical information of not only the power transmitting coil CLA in FIG. 1 but also the relay coil CLC. In any case, the position information of the power receiving device 200 relative to the power transmitting device 100 can be detected simply by detecting the current of the power transmitting coil 107 of the power transmitting device 100.
  • the position detection unit 101b can detect and estimate the position (distance) of the receiving coil 207 relative to the transmitting coil 107. By detecting and estimating the position (distance) of the receiving coil 207 relative to the transmitting coil 107, more accurate position detection is possible.
  • the position information of the power receiving device 200 is detected by the current flowing through the power transmission coil 107, but as shown in FIG. 5 or FIG. 6, the position information of the power receiving device 200 may be detected by the power transmission or power transmission rate of the power transmission coil 107. In either case, under the same conditions as in FIG. 4, when the coupling coefficient is greater than about 0.169, it is detected that "the power receiving device 200 is in a position where it can be charged.” The power and power factor when the coupling coefficient is 0.169 are the threshold values. However, when making a judgment based only on the current flowing through the power transmission coil 107, it is possible to do so by detecting only the current, but when making a judgment based on the power transmission or power transmission rate, information on the power transmission voltage is also required. Therefore, it is easy to detect only the current.
  • the electric information detection unit 101a described above can detect the current, power, and power factor of the power transmission coil 107.
  • the position detection unit 101b can use the electrical information to detect not only whether the power receiving device 200 is located in a position where the power transmitting device 100 can be charged, but also how far the power receiving device 200 is from the power transmitting device 100.
  • the low voltage (an example of the first voltage) applied to the power transmission coil 107 constantly or at regular time intervals is, for example, 10V.
  • This low voltage may be a number other than 10V, but if the voltage is set to a certain level or higher, the power receiving device 200 may start receiving power. Therefore, it is preferable that the voltage be low enough that the power receiving device 200 does not start receiving power.
  • the communication unit 102 of the power transmitting device 100 may transmit alert information to the power receiving device 200 via the antenna 103. This makes it possible to efficiently encourage charging when the power receiving device 200 needs charging.
  • the communication unit 202 of the power receiving device 200 receives this alert information via the antenna 203.
  • the alert information may indicate that the position detection unit 101b has not detected the position of the power receiving device 200, i.e., that charging is not possible.
  • This alert is particularly effective when the power receiving device 200 transmits information indicating that charging is necessary via the communication unit 202 and the antenna 203, and the power transmitting device 100 receives the information via the communication unit 102 and the antenna 103. In other words, it is preferable to communicate the alert information when charging has not started despite the power receiving device 200 needing charging. In addition, information regarding the distance between the power receiving device 200 and the power transmitting device 100 may be communicated as part of the alert at this time.
  • communication between the power transmitting device 100 and the power receiving device 200 is preferably by radio waves, and the communication units 102 and 202 provided in each of them preferably communicate by radio waves. This allows for efficient communication.
  • the communication area in which the communication units 102, 202 can communicate is wider than the area in which the power transmission device 100 can charge the power receiving device 200.
  • the communication unit 102 and antenna 103 are provided outside the position detection device 100a, but they may be part of the position detection device 100a.
  • the voltage control unit 101c may apply a predetermined voltage required to start the control unit 201 of the power receiving device 200 to the power transmitting coil 107.
  • the voltage control unit 101c may apply a predetermined voltage for charging the power receiving coil 207 of the power receiving device 200 to the power transmitting coil 107.
  • the predetermined voltage required to start the control unit 201 and the predetermined voltage for charging the power receiving coil 207 of the power receiving device 200 may be voltages of the same magnitude or may be voltages of different magnitudes.
  • Fig. 7 is a flow diagram showing the operation of the position detection device according to the first embodiment. Note that the following flow may be considered as a flow of processing executed by the control unit 101 using a position detection program stored in the storage unit 104. In addition, the following description will be given of a case where the current of the power transmitting coil 107 is detected as electrical information as in Fig. 4, but it may of course be replaced with the transmitted power or the transmitted power rate.
  • the voltage control unit 101c applies a low voltage (e.g., 10V) to the power transmission coil 107 (St1).
  • the electrical information detection unit 101a detects the current in the power transmission coil 107 (St2).
  • the position detection unit 101b judges whether the detected current is smaller than the threshold value. If the detected current is smaller than the threshold value (St3, YES), it is determined that "the power receiving device 200 is in a position where charging is possible" (St4).
  • the voltage control unit 101c increases the voltage applied to the power transmission coil 107.
  • the control unit 201 of the power receiving device 200 is turned on (St5). Then, power supply from the power transmission device 100 to the power receiving device 200 starts, and the position detection flow ends.
  • the position detection unit 101b detects that the power receiving device 200 is not in a position where charging is possible (St6). In this case, the voltage control unit 101c stops applying voltage to the power transmission coil 107 (St7).
  • the position detection device 100a detects the position information of the power receiving device 200 relative to the power transmitting device 100 having the power transmitting coil 107 that transmits power wirelessly to the power receiving device 200 having the power receiving coil 207.
  • the position detection device 100a includes an electrical information detection unit 101a that detects electrical information of the power transmitting device 100, and a position detection unit 101b that detects the position information of the power receiving device 200 based on the electrical information.
  • the position detection device 100a or the power transmitting device 100 can detect whether the power transmitting device 100 and the power receiving device 200 are in close proximity even underwater.
  • the electrical information of the power transmission device 100 is electrical information of the power transmission coil 107 of the power transmission device 100. This allows the position detection device 100a or the power transmission device 100 to detect with higher accuracy whether the power transmission device 100 and the power receiving device 200 are in close proximity, even underwater.
  • the electrical information of the power transmission device 100 is the power transmission current, power transmission voltage, power transmission, or power transmission rate of the power transmission device 100. It may also be the power transmission current, power transmission voltage, power transmission, or power transmission rate of the power transmission coil 107 of the power transmission device 100. This allows the position detection device 100a or the power transmission device 100 to detect with higher accuracy whether the power transmission device 100 and the power receiving device 200 are in close proximity, even underwater.
  • the power receiving device 200 has a rechargeable storage battery 208, and in the position detection device 100a, the position detection unit 101b detects whether the power receiving device 200 is in a position where it can be charged. This allows the position detection device 100a or the power transmitting device 100 to detect with higher accuracy whether the power transmitting device 100 and the power receiving device 200 are in close proximity, even underwater.
  • the position detection unit 101b is connected to the communication unit 102 included in the power transmission device 100, and when the position detection unit 101b does not detect the position of the power receiving device 200, it transmits alert information to the power receiving device 200 via the communication unit 102. This allows the position detection device 100a or the power transmission device 100 to efficiently prompt the power receiving device 200 to charge when charging is required.
  • the position detection unit 101b is connected to the communication unit 102 provided in the power transmission device 100, and the position detection unit 101b communicates by radio waves via the communication unit 102. This allows the position detection device 100a or the power transmission device 100 to communicate efficiently.
  • the position detection unit 101b is connected to the communication unit 102 provided in the power transmission device 100, and the communication area of the communication unit 102 is larger than the power supply area to which the power transmission device 100 can supply power. This allows the position detection device 100a or the power transmission device 100 to communicate efficiently.
  • the position detection unit 101b detects the relative position of the power receiving coil 207 with respect to the power transmitting coil 107. This allows the position detection device 100a or the power transmitting device 100 to detect with higher accuracy whether the power transmitting device 100 and the power receiving device 200 are in close proximity to each other even underwater.
  • the power transmission device 100 also includes a position detection device 100a and a voltage control unit 101c that controls the voltage applied to the power transmission coil 107.
  • the position detection device 100a detects from the position information of the power receiving device 200 detected by the position detection unit 101b that the power receiving device 200 is in a position where the rechargeable storage battery 208 of the power receiving device 200 can be charged
  • the voltage control unit 101c applies a predetermined first voltage (for example, a voltage equal to or greater than the position detection voltage and less than the second voltage) to the power transmission coil 107 to activate the control unit 201 of the power receiving device 200.
  • a predetermined first voltage for example, a voltage equal to or greater than the position detection voltage and less than the second voltage
  • the voltage control unit 101c applies a predetermined second voltage (e.g., 100V or more) to the power transmission coil 107 that is greater than the first voltage for charging the power receiving coil 207 of the power receiving device 200.
  • a predetermined second voltage e.g. 100V or more
  • the position detection device 100a or the power transmission device 100 can detect whether the power transmission device 100 and the power receiving device 200 are in close proximity to each other even underwater, and can then perform charging.
  • the position detection method detects the position information of the power receiving device 200 relative to the power transmitting device 100 having a power transmitting coil 107 that transmits power wirelessly to the power receiving device 200 having a power receiving coil 207, and detects electrical information of the power transmitting device 100 and detects the position information of the power receiving device 200 based on the electrical information. This allows the position detection device 100a or the power transmitting device 100 to detect whether the power transmitting device 100 and the power receiving device 200 are in close proximity even underwater.
  • the position detection program causes a computer to execute a position detection device 100a that detects position information of the power receiving device 200 relative to the power transmitting device 100 having a power transmitting coil 107 that wirelessly transmits power to the power receiving device 200 having a power receiving coil 207, detects electrical information of the power transmitting device 100, and detects the position information of the power receiving device 200 based on the electrical information.
  • the position detection device 100a or the power transmitting device 100 can detect whether the power transmitting device 100 and the power receiving device 200 are in close proximity even underwater.
  • the technology disclosed herein can detect whether a power transmitting device and a power receiving device are in close proximity, even underwater.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

This position detection device detects position information for an electric power receiving device with respect to an electric power transmitting device with an electric power transmitting coil that wirelessly transfers electric power to and from the power receiving device having an electric power receiving coil. The position detection device comprises an electric power information detection unit that detects electric power information relating to the electric power transmitting device, and a position detection unit that detects position information for the electric power receiving device using the electric power information.

Description

位置検知装置、送電装置、位置検知方法、及び位置検知プログラムPosition detection device, power transmission device, position detection method, and position detection program
 本開示は、位置検知装置、送電装置、位置検知方法、及び位置検知プログラムに関する。 This disclosure relates to a position detection device, a power transmission device, a position detection method, and a position detection program.
 特許文献1には、送電装置に設けられた接近センサにより、受電装置の受電部が送電装置の送電部に接近したことを検知すると給電を開始する非接触給電装置が記載されている。この近接センサは、光を利用するもの、静電容量の変化を利用するもの、超音波を利用するもの、空気圧を利用するもの、電磁誘導によるうず電流による励磁コイルの入力インピーダンス変化を利用するものなど、一般に知られたものの中から適宜選択できることが示されている。 Patent Document 1 describes a contactless power supply device that starts supplying power when a proximity sensor provided in the power transmission device detects that the power receiving unit of the power receiving device has approached the power transmission unit of the power transmission device. It is shown that this proximity sensor can be appropriately selected from among commonly known sensors, such as those that use light, those that use changes in capacitance, those that use ultrasonic waves, those that use air pressure, and those that use changes in input impedance of an excitation coil due to eddy currents caused by electromagnetic induction.
日本国特開2004-166459号公報Japanese Patent Application Publication No. 2004-166459
 しかしながら、例えば光を利用したセンサとしてカメラを近接センサとして利用した場合、実際に送電部と受電部とが近接したかを検知することは困難である。カメラ画像を利用した位置確認では、水中(例えば海中)特有の濁りによってカメラ画像が不鮮明となる上、生物や植物などがカメラレンズに付着することで視野の妨げとなる可能性があるからである。また、例えば超音波を利用すると、水中(例えば海中)特有の雑音や反射などによって検知精度が低下するため、雑音や反射の少ない限られた場所のみでしか利用することができない。また、GPS(Global Positioning System)センサは、海中では電波が届かないので位置確認することができない。また、音波を利用したセンサでは、位置検知の精度が誤差数m[メートル]となるので、現実的に送電装置と受電装置とが近接したかを検知することは困難である。すなわち、一般的なセンサによって海中の送電部と受電部とが近接したことを検知することは困難であるという課題が存在している。 However, for example, when a camera is used as a proximity sensor using light, it is difficult to detect whether the power transmitting unit and the power receiving unit are actually close to each other. This is because when using a camera image to confirm the position, the camera image becomes unclear due to the turbidity specific to underwater (e.g., underwater), and living things and plants may adhere to the camera lens and obstruct the field of view. In addition, when ultrasonic waves are used, the detection accuracy decreases due to noise and reflections specific to underwater (e.g., underwater), so it can only be used in limited places with little noise and reflection. In addition, GPS (Global Positioning System) sensors cannot confirm the position because radio waves cannot reach underwater. In addition, with a sensor using sound waves, the accuracy of position detection is an error of several meters, so it is difficult to actually detect whether the power transmitting device and the power receiving device are close to each other. In other words, there is a problem that it is difficult to detect the proximity of the power transmitting unit and the power receiving unit underwater using a general sensor.
 本開示の目的は、海中においても、送電装置と受電装置が近接しているかどうかを検知することができる技術の提供にある。 The purpose of this disclosure is to provide technology that can detect whether a power transmitting device and a power receiving device are in close proximity, even underwater.
 本開示の一態様に係る位置検知装置は、受電コイルを有する受電装置に対し、無線で電力伝送を行う送電コイルを有する送電装置に対する前記受電装置の位置情報を検知する位置検知装置であって、送電装置の電気情報を検知する電気情報検知部と、前記電気情報を使って前記受電装置の位置情報を検知する位置検知部と、を備える。 A position detection device according to one aspect of the present disclosure is a position detection device that detects position information of a power receiving device with a power receiving coil relative to a power transmitting device with a power transmitting coil that wirelessly transmits power to the power receiving device, and includes an electrical information detection unit that detects electrical information of the power transmitting device, and a position detection unit that detects position information of the power receiving device using the electrical information.
 本開示の一態様に係る送電装置は、位置検知装置と、前記送電コイルに印加する電圧を制御する電圧制御部と、を備え、前記位置検知装置が、前記位置検知部が検知した前記受電装置の位置情報から、前記受電装置が充電可能である位置に存在すると検知した場合、前記電圧制御部は、前記受電装置が有する充電制御回路を起動させるために所定の電圧を前記送電コイルに印加する。 A power transmission device according to one embodiment of the present disclosure includes a position detection device and a voltage control unit that controls the voltage applied to the power transmission coil. When the position detection device detects that the power receiving device is in a position where it can be charged based on the position information of the power receiving device detected by the position detection unit, the voltage control unit applies a predetermined voltage to the power transmission coil to activate a charging control circuit in the power receiving device.
 本開示の一態様に係る位置検知方法は、受電コイルを有する受電装置に対し、無線で電力伝送を行う送電コイルを有する送電装置に対する前記受電装置の位置情報を検知する位置検知方法であって、送電装置の電気情報を検知し、前記電気情報を使って前記受電装置の位置情報を検知する。 A position detection method according to one aspect of the present disclosure is a position detection method for detecting position information of a power receiving device with a power receiving coil relative to a power transmitting device with a power transmitting coil that wirelessly transmits power to the power receiving device, by detecting electrical information of the power transmitting device and using the electrical information to detect the position information of the power receiving device.
 本開示の一態様に係る位置検知プログラムは、受電コイルを有する受電装置に対し、無線で電力伝送を行う送電コイルを有する送電装置に対する前記受電装置の位置情報を検知する位置検知方法であって、送電装置の電気情報を検知し、前記電気情報を使って前記受電装置の位置情報を検知する。 A position detection program according to one embodiment of the present disclosure is a position detection method for detecting position information of a power receiving device with a power receiving coil relative to a power transmitting device with a power transmitting coil that wirelessly transmits power to the power receiving device, and detects electrical information of the power transmitting device and uses the electrical information to detect the position information of the power receiving device.
 なお、これらの包括的又は具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム又は記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。 These comprehensive or specific aspects may be realized by a system, device, method, integrated circuit, computer program, or recording medium, or by any combination of a system, device, method, integrated circuit, computer program, and recording medium.
 本開示によれば、海中においても、送電装置と受電装置が近接しているかどうかを検知することができる。 According to this disclosure, it is possible to detect whether a power transmitting device and a power receiving device are in close proximity, even underwater.
実施の形態1に係る水中給電システムが設置される使用環境例を模式的に示す図FIG. 1 is a diagram illustrating an example of a usage environment in which an underwater power supply system according to a first embodiment is installed; 実施の形態1に係る水中給電システムの構成の一例を示すブロック図FIG. 1 is a block diagram showing an example of a configuration of an underwater power supply system according to a first embodiment. 送電コイルと受電装置の受電コイルとの位置関係例を示す図FIG. 1 is a diagram showing an example of the positional relationship between a power transmitting coil and a power receiving coil of a power receiving device; 送電コイルと受電装置の受電コイルとの位置関係例を示す図FIG. 1 is a diagram showing an example of the positional relationship between a power transmitting coil and a power receiving coil of a power receiving device; 送電コイルと受電装置の受電コイルとの位置関係例を示す図FIG. 1 is a diagram showing an example of the positional relationship between a power transmitting coil and a power receiving coil of a power receiving device; 図3Cを-X軸方向から見た図FIG. 3C is a view from the −X-axis direction. 実施の形態1に係る結合係数と送電装置の送電電流との関係の一例を示す図FIG. 1 is a diagram showing an example of a relationship between a coupling coefficient and a transmission current of a power transmitting device according to the first embodiment; 実施の形態1に係る結合係数と送電装置の送電電力との関係の一例を示す図FIG. 1 is a diagram showing an example of a relationship between a coupling coefficient and a transmission power of a power transmitting device according to the first embodiment; 実施の形態1に係る結合係数と送電装置の送電力率との関係の一例を示す図FIG. 1 is a diagram showing an example of a relationship between a coupling coefficient and a transmission power rate of a power transmitting device according to the first embodiment; 実施の形態1に係る位置検知装置の動作を示すフロー図FIG. 1 is a flow diagram showing the operation of the position detection device according to the first embodiment.
 以下、図面を適宜参照して、本開示に係る位置検知装置、送電装置、位置検知方法、及び位置検知プログラムを具体的に開示した実施の形態について、詳細に説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、すでによく知られた事項の詳細説明及び実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。なお、添付図面及び以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の記載の主題を限定することは意図されていない。 Below, with appropriate reference to the drawings, detailed explanations will be given of embodiments that specifically disclose the position detection device, power transmission device, position detection method, and position detection program according to the present disclosure. However, more detailed explanations than necessary may be omitted. For example, detailed explanations of already well-known matters and duplicate explanations of substantially identical configurations may be omitted. This is to avoid the following explanation becoming unnecessarily redundant and to facilitate understanding by those skilled in the art. Note that the attached drawings and the following explanation are provided to enable those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.
(実施の形態1)
1.水中給電システム1000
 図1は、実施の形態1に係る水中給電システム1000が設置される使用環境例を模式的に示す図である。水中給電システム1000は、送電装置100(図2参照)と、受電装置200(図2参照)と、を少なくとも備える。なお、水中給電システム1000は、管理部108(図2参照)、を更に備えてもよい。送電装置100と、受電装置200とは、それぞれ少なくとも1つのコイルCLを有する。送電装置100は、受電装置200に対して、それぞれのコイルCLを介して、磁気共鳴方式でワイヤレス(無接点)に電力を伝送する。
(Embodiment 1)
1. Underwater power supply system 1000
FIG. 1 is a diagram illustrating an example of a usage environment in which an underwater power supply system 1000 according to the first embodiment is installed. The underwater power supply system 1000 includes at least a power transmission device 100 (see FIG. 2) and a power receiving device 200 (see FIG. 2). The underwater power supply system 1000 may further include a management unit 108 (see FIG. 2). The power transmission device 100 and the power receiving device 200 each include at least one coil CL. The power transmission device 100 transmits power wirelessly (contactlessly) to the power receiving device 200 via each coil CL by a magnetic resonance method.
(1)送電装置100について
 送電装置100は、その一部が船舶50に設置されている。もちろん、送電装置100は、その他の箇所(例えば陸上に設置された給電設備1200)に配置されてよいし、全てが海中に配置されても良い。図1では、水中給電(例えば海中給電)を行うために、水中に浮遊するボビンbn10を含む給電スタンドと、海底910に配置されたボビンbn11を含む給電スタンドとが設置されている。
(1) Regarding the power transmission device 100 A part of the power transmission device 100 is installed on the ship 50. Of course, the power transmission device 100 may be installed at another location (e.g., a power supply facility 1200 installed on land) or may be entirely installed underwater. In Fig. 1, a power supply stand including a bobbin bn10 floating in water and a power supply stand including a bobbin bn11 arranged on the seabed 910 are installed to perform underwater power supply (e.g., subsea power supply).
 船舶50の一部は水面90(例えば海面)より上部つまり水上に存在し、船舶50の他の一部は水面90よりも下部つまり水中(例えば海中)に存在する。船舶50は、水上(例えば海上)及び海中で移動可能であり、例えば海中のデータ取得場所の上方へ自由に移動可能である。 A part of the vessel 50 is above the water surface 90 (e.g., sea surface), i.e., above the water, and another part of the vessel 50 is below the water surface 90, i.e., underwater (e.g., under the sea). The vessel 50 is movable above the water surface (e.g., above the sea) and underwater, and can move freely, for example, above a data acquisition location underwater.
 図1では、筒状のボビンbn10の外周に、送電コイルCLA11および中継コイルCLC11が巻回されて、給電スタンドとなっている。中継コイルCLC11は必ずしも必要ない。送電コイルCLA11には、電力ケーブル280が接続されており、海上に係留している船舶50から電力ケーブル280を介して電力が供給される。電力ケーブル280は、ボビンbn10、送電コイルCLA11、中継コイルCLC11を備える給電スタンドを海中で浮遊状態に支持する。後述する水中航走体70が、浮遊状態にある給電スタンドの出入口に対し水平方向に進入し、ボビンbn10の内部に留まった時、電力を受電することができる。従って、図1においては、ボビンbn10を含む給電スタンドでは電力伝送は行われていない。 In FIG. 1, a power supply stand is formed by winding a power transmission coil CLA11 and a relay coil CLC11 around the outer circumference of a cylindrical bobbin bn10. The relay coil CLC11 is not necessarily required. A power cable 280 is connected to the power transmission coil CLA11, and power is supplied from a ship 50 moored at sea via the power cable 280. The power cable 280 supports the power supply stand including the bobbin bn10, the power transmission coil CLA11, and the relay coil CLC11 in a floating state in the sea. When an underwater vehicle 70, which will be described later, enters the entrance of the floating power supply stand horizontally and stops inside the bobbin bn10, it can receive power. Therefore, in FIG. 1, power transmission is not performed at the power supply stand including the bobbin bn10.
 ボビンbn11を含む給電スタンドは、海底910に埋め込まれた2本の支柱1101の上部に固定される。給電スタンドでは、筒状のボビンbn11に送電コイルCLA12が巻回されて配置されているが、中継コイルCLCは配置されていない。当然、中継コイルCLCが配置されてもよい。送電コイルCLA12には、例えば海底910に這わされた電力ケーブル280Aが接続され、給電設備1200から電力ケーブル280Aを介して電力が供給されてよい。水中航走体70は、海底910に設置された給電スタンドの出入口に対し、水平方向に進入し、ボビンbn11の内部に留まって受電することができる。図1においては、ボビンbn11を含む給電スタンドの内部に水中航走体70が止まっているため、電力伝送が行われている。 The power supply stand including the bobbin bn11 is fixed to the top of two pillars 1101 embedded in the seabed 910. In the power supply stand, the power transmission coil CLA12 is wound around the cylindrical bobbin bn11, but the relay coil CLC is not arranged. Of course, the relay coil CLC may be arranged. For example, a power cable 280A laid on the seabed 910 is connected to the power transmission coil CLA12, and power may be supplied from the power supply equipment 1200 via the power cable 280A. The underwater vehicle 70 can enter the entrance of the power supply stand installed on the seabed 910 in the horizontal direction and receive power by staying inside the bobbin bn11. In FIG. 1, the underwater vehicle 70 is stopped inside the power supply stand including the bobbin bn11, so that power transmission is performed.
(2)受電装置200について
 図1においては、受電装置200は、移動可能な水中航走体70(例えば潜水艇、水底掘削機)に設けられる。ただし、受電装置200は、固定的に設置される水中設備(例えば地震計、監視カメラ、地熱発電機)などに設けられてもよい。図1では、水中航走体70の一例として潜水艇が図示されている。受電装置200に含まれる各受電コイルCLBは、水中(例えば海中)に設けられる。
(2) Power Receiving Device 200 In Fig. 1, the power receiving device 200 is provided in a mobile underwater vehicle 70 (e.g., a submarine or a bottom drilling machine). However, the power receiving device 200 may also be provided in a fixedly installed underwater facility (e.g., a seismometer, a surveillance camera, a geothermal power generator), etc. In Fig. 1, a submarine is illustrated as an example of the underwater vehicle 70. Each power receiving coil CLB included in the power receiving device 200 is provided underwater (e.g., in the sea).
 水中航走体70は、例えば遠隔操作無人探査機(ROV:Remotely Operated Vehicle)、無人潜水艇(UUV:Unmanned Underwater Vehicle)、あるいは自律型無人潜水機(AUV:Autonomous Underwater Vehicle)である。 The underwater vehicle 70 is, for example, a remotely operated vehicle (ROV), an unmanned underwater vehicle (UUV), or an autonomous underwater vehicle (AUV).
 水中航走体70は、水中を潜行し、船舶50などからの指示に基づいて所定のデータ取得ポイントへ自由に移動可能である。船舶50などからの指示は、各コイルCLや通信用のアンテナ203(図2参照)を介した通信により伝送されてもよいし、その他の通信方法により伝送されてもよい。 The underwater vehicle 70 can submerge underwater and move freely to a specified data acquisition point based on instructions from the ship 50 or the like. Instructions from the ship 50 or the like may be transmitted by communication via each coil CL or the communication antenna 203 (see FIG. 2), or by other communication methods.
(3)コイルCLについて
 コイルCLは、例えば環状に形成され、樹脂のカバーにより被覆されることで絶縁される。コイルCLは、例えばキャブタイヤケーブル、ヘリカルコイル、あるいはスパイラルコイルにより形成される。ヘリカルコイルは、同一平面内ではなく、磁気共鳴方式による電力の伝送方向に沿って、螺旋状に巻回された環状のコイルである。スパイラルコイルは、同一平面内においてスパイラル形状に形成された環状のコイルである。スパイラルコイルの採用により、コイルCLの薄型化が可能となる。ヘリカルコイルの採用により、巻回されたコイルCLの内部の空間を広く確保できる。なお、図1ではヘリカルコイルの例が図示されている。
(3) Coil CL The coil CL is formed, for example, in a ring shape and insulated by being covered with a resin cover. The coil CL is formed, for example, by a cab-tire cable, a helical coil, or a spiral coil. A helical coil is a ring-shaped coil wound in a spiral shape not in the same plane but along the direction of power transmission by the magnetic resonance method. A spiral coil is a ring-shaped coil formed in a spiral shape in the same plane. The use of a spiral coil makes it possible to make the coil CL thinner. The use of a helical coil makes it possible to secure a large space inside the wound coil CL. Note that an example of a helical coil is illustrated in FIG. 1.
 電力伝送に使用されるコイルCLは、送電コイルCLA(Primary Coil)および受電コイルCLB(Secondary Coil)を含む。また、コイルCLは、送電コイルCLAと受電コイルCLBとの間に配置された少なくとも1つの中継コイルCLC(Booster Coil)など他のコイルCLを含んでよい。中継コイルCLCは、送電コイルの一例とも言え、送電コイルCLAによる電力伝送を補助する。中継コイルCLCが複数ある場合には、それぞれの中継コイルCLC同士は略平行に配置され、中継コイルCLCにより形成される開口面の半分以上が重なる。複数の中継コイルCLC間の間隔は、例えば中継コイルCLCの半径以上確保される。 The coil CL used for power transmission includes a power transmission coil CLA (Primary Coil) and a power receiving coil CLB (Secondary Coil). The coil CL may also include other coils CL, such as at least one relay coil CLC (Booster Coil) arranged between the power transmission coil CLA and the power receiving coil CLB. The relay coil CLC can be considered an example of a power transmission coil, and assists the power transmission by the power transmission coil CLA. When there are multiple relay coils CLC, the relay coils CLC are arranged approximately parallel to each other, and more than half of the opening surfaces formed by the relay coils CLC overlap. The interval between the multiple relay coils CLC is, for example, equal to or greater than the radius of the relay coil CLC.
 送電コイルCLAは、図2においては送電コイル107であり、送電装置100に設けられる(図2参照)。また、送電コイルCLAは、ボビンbn10やボビンbn11の周りに巻かれている。受電コイルCLBは、図2においては受電コイル207であり、受電装置200に設けられる(図2参照)。中継コイルCLCは、送電コイル107の一部として機能し、送電装置100に設けられても、受電装置200に設けられても、送電装置100および受電装置200とは別に設けられてもよい。また、中継コイルCLCは、一部が送電装置100に設けられ、他の一部が受電装置200に設けられてもよい。 The power transmission coil CLA is the power transmission coil 107 in FIG. 2 and is provided in the power transmission device 100 (see FIG. 2). The power transmission coil CLA is wound around the bobbin bn10 and the bobbin bn11. The power receiving coil CLB is the power receiving coil 207 in FIG. 2 and is provided in the power receiving device 200 (see FIG. 2). The relay coil CLC functions as part of the power transmission coil 107 and may be provided in the power transmission device 100, in the power receiving device 200, or separately from the power transmission device 100 and the power receiving device 200. A part of the relay coil CLC may be provided in the power transmission device 100 and another part may be provided in the power receiving device 200.
 各コイルCLは、例えば等間隔に配置される。隣り合うコイルCL間の距離(コイル間隔)は、例えば5mである。コイル間隔は、例えばコイルCLの直径の半分程度の長さであるとよい。電力伝送周波数は、水中(例えば海中)での磁界強度の減衰量を考慮すると、例えば40kHz以下であり10kHz未満とされることが好ましい。また、10kHz以上の送信周波数で電力伝送する場合には、電波法の規定に基づいて所定のシミュレーションを行う必要があり、10kHz未満の場合にはこの作業を省略できる。なお、伝送周波数が低周波であるほど、電力伝送距離が長くなってコイルCLが大きくなる上に、コイル間隔が長くなる。なお、伝送周波数は、例えば通信信号が重畳される場合、40kHzよりも高い周波数としてもよい。 The coils CL are arranged, for example, at equal intervals. The distance between adjacent coils CL (coil interval) is, for example, 5 m. The coil interval may be, for example, about half the diameter of the coil CL. Considering the attenuation of the magnetic field strength underwater (for example, under the sea), the power transmission frequency is, for example, 40 kHz or less and preferably less than 10 kHz. Furthermore, when transmitting power at a transmission frequency of 10 kHz or more, a specified simulation must be performed based on the provisions of the Radio Law, but this work can be omitted when the frequency is less than 10 kHz. Note that the lower the transmission frequency, the longer the power transmission distance, the larger the coil CL, and the longer the coil interval. Note that the transmission frequency may be a frequency higher than 40 kHz, for example, when a communication signal is superimposed.
 電力の伝送周波数は、コイルCLのインダクタンス、コイルCLの直径、コイルのCLの巻き数等のコイル特性に基づき定まる。コイルCLの直径は、例えば数m~数10mである。コイルCLの太さが太い程、つまりコイルCLの線径が大きい程、コイルCLでの電気抵抗が減り、電力損失が小さくなる。また、コイルCLを介して伝送される電力は、例えば50W以上であり、kWオーダーでもよい。 The power transmission frequency is determined based on coil characteristics such as the inductance of the coil CL, the diameter of the coil CL, and the number of turns of the coil CL. The diameter of the coil CL is, for example, several meters to several tens of meters. The thicker the coil CL, that is, the larger the wire diameter of the coil CL, the lower the electrical resistance in the coil CL and the smaller the power loss. The power transmitted via the coil CL is, for example, 50 W or more, and may be on the order of kW.
(4)送電装置100に対する受電装置200の位置情報について
 図1においては、ボビンbn10を含む給電スタンドでは電力伝送が行われていない。それは、受電装置200を備える水中航走体70が、送電装置100の一部である給電スタンドの内部に入っていないからである。すなわち、この場合の位置情報は、送電装置100に対して受電装置200が「充電可能である領域」に存在しないことを示す情報となる。一方、ボビンbn11を含む給電スタンドの内部には水中航走体70が止まっているため、電力伝送を行うことができる状態である。すなわち、この場合の位置情報は、送電装置100に対して受電装置200が「充電可能である領域」に存在していることを示す情報となる。
(4) Positional information of the power receiving device 200 relative to the power transmitting device 100 In Fig. 1, power transmission is not performed at the power supply station including the bobbin bn10. This is because the underwater vehicle 70 equipped with the power receiving device 200 is not inside the power supply station which is part of the power transmitting device 100. In other words, the positional information in this case is information indicating to the power transmitting device 100 that the power receiving device 200 is not in a "chargeable area". On the other hand, the underwater vehicle 70 is stopped inside the power supply station including the bobbin bn11, so power transmission is possible. In other words, the positional information in this case is information indicating to the power transmitting device 100 that the power receiving device 200 is in a "chargeable area".
 送電装置100と受電装置200との間で電力伝送を行いたい場合、「充電可能である領域」に存在しているか否かを検知できない限り、電力伝送をすることができない。そこで、これから、送電装置100に対して受電装置200が「充電可能である領域」に存在しているか否かを示す位置情報を検知することについて説明を行う。 When power transfer is to be performed between the power transmission device 100 and the power receiving device 200, power transfer cannot be performed unless it is possible to detect whether the power receiving device 200 is in a "chargeable area." Therefore, we will now explain how the power transmission device 100 detects position information indicating whether the power receiving device 200 is in a "chargeable area."
2.送電装置100、受電装置200の構成について
 次に、図2を用いて、水中給電システム1000及び水中給電システム1000が備える送電装置100、受電装置200の構成について説明する。図2は、実施の形態1に係る水中給電システムの構成の一例を示すブロック図である。図2においては、水中給電システム1000は、送電装置100、受電装置200を備える。なお、送電装置100の一部として、陸上あるいは海上の管理部108を備える。それ以外の送電装置100、受電装置200の構成は、海中に設けられるとよい。
2. Configuration of the power transmitting device 100 and the power receiving device 200 Next, the configuration of the underwater power supply system 1000 and the power transmitting device 100 and the power receiving device 200 provided in the underwater power supply system 1000 will be described with reference to Fig. 2. Fig. 2 is a block diagram showing an example of the configuration of the underwater power supply system according to the first embodiment. In Fig. 2, the underwater power supply system 1000 includes the power transmitting device 100 and the power receiving device 200. Note that the power transmitting device 100 includes a management unit 108 on land or at sea as a part of the power transmitting device 100. The other components of the power transmitting device 100 and the power receiving device 200 may be provided underwater.
(1)送電装置100について
 送電装置100は、制御部101、通信部102、アンテナ103、記憶部104、高周波電源105、整合回路106、送電コイル107、管理部108を備える。制御部101は、電気情報検知部101aと位置検知部101bとを備える。制御部101、通信部102、記憶部104は、集積回路であるLSI(Large Scale Integration)として実現されてもよい。これらの機能ブロックは、個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。また、制御部101は記憶部104(メモリを含む)に記憶されたコンピュータプログラムを実行し、制御部101の機能ブロックを実現する装置であって良い。また、制御部101と高周波電源105は、陸上(海上)の管理部108の一部として配置されてもよい。
(1) Regarding the power transmission device 100 The power transmission device 100 includes a control unit 101, a communication unit 102, an antenna 103, a storage unit 104, a high-frequency power source 105, a matching circuit 106, a power transmission coil 107, and a management unit 108. The control unit 101 includes an electric information detection unit 101a and a position detection unit 101b. The control unit 101, the communication unit 102, and the storage unit 104 may be realized as an LSI (Large Scale Integration) which is an integrated circuit. These functional blocks may be individually integrated into one chip, or may be integrated into one chip so as to include some or all of them. The control unit 101 may be a device that executes a computer program stored in the storage unit 104 (including a memory) and realizes the functional blocks of the control unit 101. The control unit 101 and the high-frequency power source 105 may be arranged as part of a management unit 108 on land (sea).
 制御部101は、送電装置100に含まれる各構成ブロックを制御する。電気情報検知部101aは、送電装置100の電気情報を検知する。送電装置100の電気情報とは、例えば、送電装置100が有する送電コイル107に低電圧(第1電圧の一例)を印加した際の送電コイル107の電気情報である。電気情報は、送電電流、送電電圧、送電電力、あるいは送電力率およびこれらの電気情報の少なくとも一つを使って生成される電気情報の少なくとも一つであるとよい。また、低電圧とは、例えば10V程度の電圧である。詳細は後述するが、電力伝送を行なっていない時、送電装置100の位置と受電装置200の充電可能な位置との位置関係により、送電コイル107に低電圧を印加した際の送電コイル107の電気情報が変動する。電気情報検知部101aは、この変動し得る電気情報を検知する。 The control unit 101 controls each component block included in the power transmission device 100. The electrical information detection unit 101a detects electrical information of the power transmission device 100. The electrical information of the power transmission device 100 is, for example, electrical information of the power transmission coil 107 when a low voltage (an example of a first voltage) is applied to the power transmission coil 107 of the power transmission device 100. The electrical information may be at least one of the transmission current, the transmission voltage, the transmission power, or the transmission power rate and electrical information generated using at least one of these electrical information. The low voltage is, for example, a voltage of about 10V. Although details will be described later, when power transmission is not being performed, the electrical information of the power transmission coil 107 when a low voltage is applied to the power transmission coil 107 fluctuates depending on the positional relationship between the position of the power transmission device 100 and the position where the power receiving device 200 can be charged. The electrical information detection unit 101a detects this variable electrical information.
 位置検知部101bは、電気情報検知部101aが検知した電気情報を用いて、受電装置200の位置情報を検知する。位置検知部101bが検知する位置情報は、受電装置200が蓄電池208(図2参照)を充電可能である位置に存在するか否かを示す。なお、位置検知部101bが検知する位置情報として、受電装置200の位置と、充電可能である位置との位置関係を詳細に示してもよい。すなわち、例えば、送電装置100と受電装置との間が、どの程度の距離であるか、などを示してもよい。電圧制御部101cは、送電コイル107に印加する電圧を制御する。そして、少なくとも制御部101の電気情報検知部101a及び位置検知部101bを備えることによって位置検知装置100aとなる。 The position detection unit 101b detects the position information of the power receiving device 200 using the electrical information detected by the electrical information detection unit 101a. The position information detected by the position detection unit 101b indicates whether the power receiving device 200 is in a position where the storage battery 208 (see FIG. 2) can be charged. The position information detected by the position detection unit 101b may indicate in detail the positional relationship between the position of the power receiving device 200 and the position where charging is possible. That is, for example, it may indicate the distance between the power transmitting device 100 and the power receiving device. The voltage control unit 101c controls the voltage applied to the power transmitting coil 107. The position detection device 100a is formed by including at least the electrical information detection unit 101a and the position detection unit 101b of the control unit 101.
 通信部102は、アンテナ103を介して、受電装置200や管理部108、その他の装置などとの間で無線通信(送受信)をすることができる。また、送電装置100、受電装置200、その他の装置などの間の通信は、有線ケーブルで通信してもよいし、通信ネットワークとして有線LAN(Local Area Network)、無線LAN、LTE(Long Term Evolution)、4G(第4世代移動通信方式)、5G(第5世代移動通信方式)、インターネット、VPN(Virtual Private Network)等で通信を行なってもよい。必要に応じて、位置検知装置100aは、電気情報検知部101a及び位置検知部101bの他に、通信部102も含んでもよい。 The communication unit 102 can perform wireless communication (transmission and reception) with the power receiving device 200, the management unit 108, and other devices via the antenna 103. In addition, communication between the power transmitting device 100, the power receiving device 200, and other devices may be performed using a wired cable, or communication networks such as a wired LAN (Local Area Network), a wireless LAN, LTE (Long Term Evolution), 4G (fourth generation mobile communication system), 5G (fifth generation mobile communication system), the Internet, and a VPN (Virtual Private Network). If necessary, the position detection device 100a may include the communication unit 102 in addition to the electrical information detection unit 101a and the position detection unit 101b.
 記憶部104は、後述する位置検知部101bが使用する閾値などを記憶する。また、記憶部104の一部としてメモリを備え、位置検知プログラムを記憶してもよい。この位置検知プログラムは、制御部101によって実行される。 The storage unit 104 stores thresholds and the like used by the position detection unit 101b, which will be described later. In addition, a memory may be provided as part of the storage unit 104, and a position detection program may be stored therein. This position detection program is executed by the control unit 101.
 高周波電源105は、受電装置200に対してワイヤレス(無接点)で伝送するための電力の供給源となる送電用電源である。制御部101に制御される高周波電源105が供給する交流電流は、整合回路106を介して送電コイル107に印加される。送電コイル107は、図1においては送電コイルCLA11、CLA12である。もちろん、中継コイルCLC11も送電コイル107と考えてもよい。 The high frequency power supply 105 is a power supply for transmitting power wirelessly (without contact) to the power receiving device 200. The alternating current supplied by the high frequency power supply 105 controlled by the control unit 101 is applied to the power transmitting coil 107 via a matching circuit 106. In FIG. 1, the power transmitting coil 107 is the power transmitting coils CLA11 and CLA12. Of course, the relay coil CLC11 may also be considered as the power transmitting coil 107.
 管理部108は、例えばDB(Database)を有し、位置検知装置100aによって検知される送電装置100と受電装置200との相対的な位置情報を、制御部101から取得してDBに保存して管理する。 The management unit 108 has, for example, a database (DB), and obtains from the control unit 101 the relative position information of the power transmission device 100 and the power receiving device 200 detected by the position detection device 100a, and stores and manages the information in the DB.
(2)受電装置200について
 受電装置200は、制御部201、通信部202、アンテナ203、センサ204、整流器205、整合回路206、受電コイル207、蓄電池208を備える。制御部201、通信部202は、集積回路であるLSIとして実現されてもよい。これらの機能ブロックは、個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。
(2) Power Receiving Device 200 The power receiving device 200 includes a control unit 201, a communication unit 202, an antenna 203, a sensor 204, a rectifier 205, a matching circuit 206, a power receiving coil 207, and a storage battery 208. The control unit 201 and the communication unit 202 may be realized as an LSI, which is an integrated circuit. These functional blocks may be individually formed into single chips, or may be formed into a single chip so as to include some or all of these functional blocks.
 制御部201は、受電装置200に含まれる各構成ブロックを制御する。通信部202は、アンテナ203を介して、送電装置100、その他の装置などとの間で無線通信(送受信)をすることができる。センサ204は、例えばカメラなどであり、水中航走体70の電力を消費する負荷の一例である。また、センサ204は、水中航走体70に搭載され電力を消費する負荷の一例として、海中での移動を制御する駆動系機構(スラスタなど)でもよい。受電コイル207を介して受電した電力は、整合回路206、整流器205を介して蓄電池208に蓄えられる(つまり、蓄電池208が充電される)。そして、センサ204やスラスタなどが、蓄電池208に蓄えられた電力を消費する。受電コイル207は、図1においては受電コイルCLBである。 The control unit 201 controls each component block included in the power receiving device 200. The communication unit 202 can perform wireless communication (transmission and reception) with the power transmitting device 100 and other devices via the antenna 203. The sensor 204 is, for example, a camera, and is an example of a load that consumes power from the underwater vehicle 70. The sensor 204 may also be a drive mechanism (thruster, etc.) that controls movement in the sea, as an example of a load that is mounted on the underwater vehicle 70 and consumes power. The power received via the power receiving coil 207 is stored in the storage battery 208 via the matching circuit 206 and rectifier 205 (i.e., the storage battery 208 is charged). The sensor 204, the thruster, etc. consume the power stored in the storage battery 208. The power receiving coil 207 is the power receiving coil CLB in FIG. 1.
3.送電コイル107と受電コイル207との位置関係
 次に、図3A、図3B、図3C及び図3Dを用いて、送電装置100の送電コイル107と受電装置200の受電コイル207との位置関係例について説明する。図3A、図3B及び図3Cは、送電コイル107と受電装置200の受電コイル207との位置関係例を示す図である。図3Dは、図3Cの矢印Xから見た図である。図3Aから図3Dの説明において、重複する要素には同一の符号を付与して説明を簡略化あるいは省略し、異なる内容について説明する。図3Aから図3Dの説明において、XYZ軸を定義する。
3. Positional relationship between the power transmission coil 107 and the power receiving coil 207 Next, an example of the positional relationship between the power transmission coil 107 of the power transmission device 100 and the power receiving coil 207 of the power receiving device 200 will be described with reference to Figs. 3A, 3B, 3C, and 3D. Figs. 3A, 3B, and 3C are diagrams showing an example of the positional relationship between the power transmission coil 107 and the power receiving coil 207 of the power receiving device 200. Fig. 3D is a view seen from the arrow X in Fig. 3C. In the description of Figs. 3A to 3D, the same reference numerals are given to overlapping elements to simplify or omit the description, and different contents will be described. In the description of Figs. 3A to 3D, the XYZ axes are defined.
 具体的には、図3Aから図3Dにおいて、X軸は受電装置200が送電コイル107に接近する方向を示し、Y軸はX軸及びZ軸に垂直であって受電装置200の幅方向を示し、Z軸はX軸及びY軸に垂直であって受電装置200の高さ方向を示す。 Specifically, in Figures 3A to 3D, the X-axis indicates the direction in which the power receiving device 200 approaches the power transmission coil 107, the Y-axis is perpendicular to the X-axis and Z-axis and indicates the width direction of the power receiving device 200, and the Z-axis is perpendicular to the X-axis and Y-axis and indicates the height direction of the power receiving device 200.
 図3Aから図3Cにおいて、送電コイル107は、第1送電コイル107aと第2送電コイル107bと第3送電コイル107cとが受電装置200の進行方向(つまり、X軸方向)に沿って連結された構成である。なお、第3送電コイル107cは、中継コイルCLC11(図1参照)であってもよい。第1送電コイル107aと第2送電コイル107bとは例えばX軸方向に沿って1m[メートル]離れて連結されている。受電装置200の充電可能な位置は、例えば第1送電コイル107aから第3送電コイル107cまでの間に、受電装置200の受電コイル207の少なくとも半分が存在する位置である。なお、第1送電コイル107aから第3送電コイル107cのZ軸方向の上端部を覆うように、矩形状に構成されたアンテナ103が配置されている。さらに、アンテナ103よりZ軸方向に沿った上方に通信部102を構成するモジュールが配置されている。 3A to 3C, the power transmission coil 107 is configured such that the first power transmission coil 107a, the second power transmission coil 107b, and the third power transmission coil 107c are connected along the moving direction of the power receiving device 200 (i.e., the X-axis direction). The third power transmission coil 107c may be the relay coil CLC11 (see FIG. 1). The first power transmission coil 107a and the second power transmission coil 107b are connected, for example, 1 m apart along the X-axis direction. The position where the power receiving device 200 can be charged is, for example, a position where at least half of the power receiving coil 207 of the power receiving device 200 is located between the first power transmission coil 107a and the third power transmission coil 107c. The antenna 103 configured in a rectangular shape is arranged to cover the upper ends of the first power transmission coil 107a to the third power transmission coil 107c in the Z-axis direction. Furthermore, the module that constitutes the communication unit 102 is located above the antenna 103 in the Z-axis direction.
 図3Aには、送電コイル107に対する受電装置200の受電コイル207の相対的な位置関係例が示されている。具体的には、受電装置200の受電コイル207は、第1送電コイル107aから第2送電コイル107bまでの範囲に半分だけ位置している。この場合、受電装置200の受電コイル207は、受電装置200の充電可能な位置に到達した状態となっている(図4のC点参照)。 FIG. 3A shows an example of the relative positional relationship of the power receiving coil 207 of the power receiving device 200 with respect to the power transmitting coil 107. Specifically, the power receiving coil 207 of the power receiving device 200 is located halfway between the first power transmitting coil 107a and the second power transmitting coil 107b. In this case, the power receiving coil 207 of the power receiving device 200 has reached a position where the power receiving device 200 can be charged (see point C in FIG. 4).
 図3Bには、送電コイル107に対する受電装置200の受電コイル207の他の相対的な位置関係例が示されている。具体的には、受電装置200の受電コイル207は、第1送電コイル107aから第3送電コイル107cまでの範囲に位置している。この場合、受電装置200の受電コイル207は、安定して受電装置200の充電可能な位置に存在している(図4のD点参照)。 FIG. 3B shows another example of the relative positional relationship of the power receiving coil 207 of the power receiving device 200 with respect to the power transmitting coil 107. Specifically, the power receiving coil 207 of the power receiving device 200 is located in the range from the first power transmitting coil 107a to the third power transmitting coil 107c. In this case, the power receiving coil 207 of the power receiving device 200 is located in a stable position where the power receiving device 200 can be charged (see point D in FIG. 4).
 図3C及び図3Dには、送電コイル107に対する受電装置200の受電コイル207の他の相対的な位置関係例が示されている。具体的には、受電装置200の受電コイル207は、第1送電コイル107aから第3送電コイル107cまでの範囲であって、図3Bに比べてよりZ軸方向に沿って上方に位置している(図3D参照)。この場合、受電装置200の受電コイル207は、図3Bに示す位置に比べて、より安定して受電装置200の充電可能な位置に存在している(図4のE点参照)。これは、送電コイル107と受電装置200の受電コイル207との間の距離が、図3Bに示す長さよりも図3Cに示す長さの方が短く結合係数が高くなっているからである。 3C and 3D show other examples of the relative positional relationship of the power receiving coil 207 of the power receiving device 200 with respect to the power transmitting coil 107. Specifically, the power receiving coil 207 of the power receiving device 200 is located in the range from the first power transmitting coil 107a to the third power transmitting coil 107c, and is located higher along the Z axis direction compared to FIG. 3B (see FIG. 3D). In this case, the power receiving coil 207 of the power receiving device 200 is located in a more stable position where the power receiving device 200 can be charged compared to the position shown in FIG. 3B (see point E in FIG. 4). This is because the distance between the power transmitting coil 107 and the power receiving coil 207 of the power receiving device 200 is shorter in the length shown in FIG. 3C than in FIG. 3B, and the coupling coefficient is higher.
4.受電装置200の位置情報検知
 次に、図4、図5及び図6を用いて、受電装置200の位置情報検知方法について説明する。図4、図5及び図6は、実施の形態1に係る結合係数と送電装置の送電電流との関係の一例を示す図である。
4. Detection of position information of power receiving device 200 Next, a method of detecting position information of the power receiving device 200 will be described with reference to Fig. 4, Fig. 5, and Fig. 6. Fig. 4, Fig. 5, and Fig. 6 are diagrams showing an example of a relationship between a coupling coefficient and a transmission current of a power transmitting device according to the first embodiment.
 まず、受電装置200が送電装置100の充電可能な位置(領域)に遠いと、送電コイル107と受電コイル207の磁気的な結合度合いを示す結合係数は低くなる。そして、受電装置200が送電装置100の充電可能な位置(領域)に近づくほど、送電コイル107と受電コイル207の磁気的な結合度合いを示す結合係数は高くなる。送電装置100から受電装置200への電力伝送が行われていない時に、送電装置100の送電コイル107に低電圧を、常に、または一定時間ごとに印加すると、結合係数の変化によって送電コイル107に流れる電流(電気情報)が変化する。この結合係数によって電流(電気情報)が変化することを利用して、受電装置200の位置情報検知が可能となる。 First, if the power receiving device 200 is far from the position (area) where the power transmitting device 100 can be charged, the coupling coefficient indicating the degree of magnetic coupling between the power transmitting coil 107 and the power receiving coil 207 becomes low. Then, the closer the power receiving device 200 is to the position (area) where the power transmitting device 100 can be charged, the higher the coupling coefficient indicating the degree of magnetic coupling between the power transmitting coil 107 and the power receiving coil 207 becomes. When power is not being transmitted from the power transmitting device 100 to the power receiving device 200, if a low voltage is applied to the power transmitting coil 107 of the power transmitting device 100 constantly or at regular intervals, the current (electrical information) flowing through the power transmitting coil 107 changes due to the change in the coupling coefficient. By utilizing the fact that the current (electrical information) changes due to this coupling coefficient, it is possible to detect the position information of the power receiving device 200.
 図4を測定した条件のもとであれば、実験の結果、以下のようになる。受電装置200が送電装置100に対して非常に遠方にある時(A点)、送電コイル107の電流値は2Arms以上である。当然、受電装置200は、充電可能な位置には存在しない。受電装置200が送電装置100に対して少し遠くに存在する時(B点)、送電コイル107の電流値は1.7Arms程度である。この時はまだ、受電装置200は、充電可能な位置には存在しない。 Under the conditions for measuring Figure 4, the experimental results are as follows. When the power receiving device 200 is very far from the power transmitting device 100 (point A), the current value of the power transmitting coil 107 is 2 Arms or more. Naturally, the power receiving device 200 is not in a position where charging is possible. When the power receiving device 200 is slightly far from the power transmitting device 100 (point B), the current value of the power transmitting coil 107 is about 1.7 Arms. At this time, the power receiving device 200 is still not in a position where charging is possible.
 そして、受電装置200が送電装置100に対してギリギリ充電可能な位置に存在すると(C点)、送電コイル107の電流値は1.2Arms程度である。そして、受電装置200が送電装置100に対して十分に充電可能な位置に存在すると(D点)、送電コイル107の電流値は1Arms程度である。そして、受電装置200が送電装置100に対して最も充電効率の最適な位置に存在すると(E点)、送電コイル107の電流値は1Arm以下となる。なお、受電装置200が送電装置100に対してギリギリ充電可能な位置に存在するとは、例えば給電効率が50%などの所定の割合以上になる位置などである。そして、この場合、給電効率が50%以上であると、「受電装置200が充電可能である位置に存在する」となる。当然、給電効率が49%未満であると、「受電装置200が充電可能である位置に存在しない」となる。 When the power receiving device 200 is in a position where it can just barely charge the power transmitting device 100 (point C), the current value of the power transmitting coil 107 is about 1.2 Arms. When the power receiving device 200 is in a position where it can fully charge the power transmitting device 100 (point D), the current value of the power transmitting coil 107 is about 1 Arms. When the power receiving device 200 is in a position where it can charge the power transmitting device 100 most efficiently (point E), the current value of the power transmitting coil 107 is 1 Arm or less. Note that the power receiving device 200 is in a position where it can just barely charge the power transmitting device 100 means, for example, a position where the power supply efficiency is equal to or greater than a predetermined ratio, such as 50%. In this case, if the power supply efficiency is 50% or more, it means that "the power receiving device 200 is in a position where it can be charged". Naturally, if the power supply efficiency is less than 49%, it means that "the power receiving device 200 is not in a position where it can be charged".
 図4の状況下においては、位置検知部101bは、結合係数が0.169以上となると「受電装置200が充電可能である位置に存在する」と判断できる。従って、位置検知部101bは、送電コイル107の電流が約1.3Arms(閾値)よりも低くなると、送電装置100は、受電装置200が充電可能である位置に存在すると検知することができる。同時に、位置検知部101bは、送電コイル107の電流が約1.3Armsよりも高い場合は、送電装置100は、受電装置200が充電可能である位置に存在しないと検知することができる。すなわち、送電装置100の送電コイル107の電流を検知するだけで、送電装置100に対する受電装置200の位置情報を検知することができる。従って、送電装置100に対する受電装置200の位置情報を検知するために、カメラなど新たなセンサを用いる必要がない。また、本実施の形態において更にカメラなど新たなセンサも用いて受電装置200の位置情報検知を行う場合は、より精度の高い受電装置200の位置情報検知が可能となる。なお、図1における送電コイルCLAだけでなく、中継コイルCLCの電気情報を検知することで送電装置100に対する受電装置200の位置情報を検知することもできる。いずれにしても、送電装置100の送電コイル107の電流を検知するだけで、送電装置100に対する受電装置200の位置情報を検知することができる。 4, the position detection unit 101b can determine that "the power receiving device 200 is in a position where it can be charged" when the coupling coefficient is 0.169 or more. Therefore, when the current of the power transmission coil 107 becomes lower than about 1.3 Arms (threshold value), the position detection unit 101b can detect that the power transmission device 100 is in a position where the power receiving device 200 can be charged. At the same time, when the current of the power transmission coil 107 is higher than about 1.3 Arms, the position detection unit 101b can detect that the power transmission device 100 is not in a position where the power receiving device 200 can be charged. In other words, the position information of the power receiving device 200 relative to the power transmission device 100 can be detected simply by detecting the current of the power transmission coil 107 of the power transmission device 100. Therefore, there is no need to use a new sensor such as a camera to detect the position information of the power receiving device 200 relative to the power transmission device 100. Furthermore, in this embodiment, if a new sensor such as a camera is further used to detect the position information of the power receiving device 200, it is possible to detect the position information of the power receiving device 200 with higher accuracy. Note that the position information of the power receiving device 200 relative to the power transmitting device 100 can be detected by detecting electrical information of not only the power transmitting coil CLA in FIG. 1 but also the relay coil CLC. In any case, the position information of the power receiving device 200 relative to the power transmitting device 100 can be detected simply by detecting the current of the power transmitting coil 107 of the power transmitting device 100.
 なお、結合係数は、送電コイル107に対する受電コイル207の位置によっても変化するので(A~E点)、位置検知部101bは、送電コイル107に対する受電コイル207の位置(どのくらいの距離で離れているか)を検知、推定することができる。送電コイル107に対する受電コイル207の位置(距離)を検知、推定することによって、より精度の高い位置検知が可能となる。 Incidentally, since the coupling coefficient also changes depending on the position of the receiving coil 207 relative to the transmitting coil 107 (points A to E), the position detection unit 101b can detect and estimate the position (distance) of the receiving coil 207 relative to the transmitting coil 107. By detecting and estimating the position (distance) of the receiving coil 207 relative to the transmitting coil 107, more accurate position detection is possible.
 なお、図4においては、送電コイル107を流れる電流によって受電装置200の位置情報検知を行ったが、図5あるいは図6のように送電コイル107の送電電力あるいは送電力率によって受電装置200の位置情報検知を行ってもよい。どちらの場合も、図4と同様の条件下である場合、結合係数が0.169程度よりも大きくなると、「受電装置200が充電可能である位置に存在する」と検知したこととなる。そして、結合係数が0.169の時の電力、力率が、閾値となる。ただし、送電コイル107を流れる電流のみで判断する場合は電流のみを検知するだけで可能となるが、送電電力あるいは送電力率で判断する場合は送電電圧の情報も必要となる。従って、電流のみで検知することが簡単である。なお、前述した電気情報検知部101aが、送電コイル107の電流、電力、力率を検知することができる。 In FIG. 4, the position information of the power receiving device 200 is detected by the current flowing through the power transmission coil 107, but as shown in FIG. 5 or FIG. 6, the position information of the power receiving device 200 may be detected by the power transmission or power transmission rate of the power transmission coil 107. In either case, under the same conditions as in FIG. 4, when the coupling coefficient is greater than about 0.169, it is detected that "the power receiving device 200 is in a position where it can be charged." The power and power factor when the coupling coefficient is 0.169 are the threshold values. However, when making a judgment based only on the current flowing through the power transmission coil 107, it is possible to do so by detecting only the current, but when making a judgment based on the power transmission or power transmission rate, information on the power transmission voltage is also required. Therefore, it is easy to detect only the current. The electric information detection unit 101a described above can detect the current, power, and power factor of the power transmission coil 107.
 なお、図4から図6から明らかな通り、位置検知部101bは電気情報によって、受電装置200が送電装置100の充電可能な位置に存在するか否かだけでなく、受電装置200が送電装置100からどの程度離れているかも検知することができる。 As is clear from Figures 4 to 6, the position detection unit 101b can use the electrical information to detect not only whether the power receiving device 200 is located in a position where the power transmitting device 100 can be charged, but also how far the power receiving device 200 is from the power transmitting device 100.
 なお、図4から図6においては、常に、または一定時間ごとに送電コイル107に対して印加した低電圧(第1電圧の一例)は、例えば10Vである。この低電圧は10V以外の数字でも良いが、ある一定以上の電圧とした場合に受電装置200の受電が開始してしまうことがある。そのため、受電装置200の受電が開始しない程度の低電圧であると良い。 In addition, in Figures 4 to 6, the low voltage (an example of the first voltage) applied to the power transmission coil 107 constantly or at regular time intervals is, for example, 10V. This low voltage may be a number other than 10V, but if the voltage is set to a certain level or higher, the power receiving device 200 may start receiving power. Therefore, it is preferable that the voltage be low enough that the power receiving device 200 does not start receiving power.
 また、位置検知部101bが受電装置200の位置を検知しない場合、すなわち充電することができない場合は、送電装置100の通信部102がアンテナ103を介して受電装置200にアラート情報を送信しても良い。これによって、受電装置200に充電が必要であるときに、効率的に充電を促すことができる。受電装置200はアンテナ203を介して通信部202がこのアラート情報を受信する。アラート情報とは、位置検知部101bが受電装置200の位置を検知していないこと、すなわち充電することができていないことなどを示すと良い。このアラートは、特に、受電装置200が通信部202及びアンテナ203を介して充電が必要であることを示す情報を送信し、送電装置100が通信部102及びアンテナ103を介してその情報を受け取った場合に有効である。すなわち、受電装置200が充電を必要としているにもかかわらず、充電が開始されていない時にアラート情報を通信するとよい。また、この時のアラートの一部として、受電装置200と送電装置100との距離に関する情報を通信してもよい。 Also, if the position detection unit 101b does not detect the position of the power receiving device 200, i.e., if charging is not possible, the communication unit 102 of the power transmitting device 100 may transmit alert information to the power receiving device 200 via the antenna 103. This makes it possible to efficiently encourage charging when the power receiving device 200 needs charging. The communication unit 202 of the power receiving device 200 receives this alert information via the antenna 203. The alert information may indicate that the position detection unit 101b has not detected the position of the power receiving device 200, i.e., that charging is not possible. This alert is particularly effective when the power receiving device 200 transmits information indicating that charging is necessary via the communication unit 202 and the antenna 203, and the power transmitting device 100 receives the information via the communication unit 102 and the antenna 103. In other words, it is preferable to communicate the alert information when charging has not started despite the power receiving device 200 needing charging. In addition, information regarding the distance between the power receiving device 200 and the power transmitting device 100 may be communicated as part of the alert at this time.
 なお、送電装置100、受電装置200の間の通信は、電波であるとよく、それぞれが備える通信部102、202は電波による通信を行うと良い。これによって、効率的な通信を行うことができる。 Note that communication between the power transmitting device 100 and the power receiving device 200 is preferably by radio waves, and the communication units 102 and 202 provided in each of them preferably communicate by radio waves. This allows for efficient communication.
 また、通信部102、202が通信を可能とする通信領域は、送電装置100が受電装置200に対して充電を可能とする位置の領域よりも広い。これによって、位置検知部101bが受電装置200の位置を検知しない場合、すなわち充電することができない場合などに、送電装置100の通信部102がアンテナ103を介して受電装置200にアラート情報などの情報を送信することができる。なお、図2においては、通信部102及びアンテナ103は位置検知装置100aの外に設けられているが、位置検知装置100aの一部としても良い。 Furthermore, the communication area in which the communication units 102, 202 can communicate is wider than the area in which the power transmission device 100 can charge the power receiving device 200. This allows the communication unit 102 of the power transmission device 100 to transmit information such as alert information to the power receiving device 200 via the antenna 103 when the position detection unit 101b does not detect the position of the power receiving device 200, i.e., when charging is not possible. Note that in FIG. 2, the communication unit 102 and antenna 103 are provided outside the position detection device 100a, but they may be part of the position detection device 100a.
 また、位置検知部101bが、検知した受電装置200の位置情報から、受電装置200が充電可能である位置に存在すると検知した場合、電圧制御部101cは受電装置200が有する制御部201を起動させるために必要な所定の電圧を送電コイル107に印加するとよい。また、位置検知部101bが、検知した受電装置200の位置情報から、受電装置200が充電可能である位置に存在すると検知した場合、電圧制御部101cは受電装置200の受電コイル207に充電するための所定の電圧を送電コイル107に印加するとよい。なお、制御部201を起動させるために必要な所定の電圧と、受電装置200の受電コイル207に充電するための所定の電圧とは、同じ大きさの電圧であってもよいし、異なる大きさの電圧であってもよい。 In addition, when the position detection unit 101b detects from the detected position information of the power receiving device 200 that the power receiving device 200 is in a position where it can be charged, the voltage control unit 101c may apply a predetermined voltage required to start the control unit 201 of the power receiving device 200 to the power transmitting coil 107. In addition, when the position detection unit 101b detects from the detected position information of the power receiving device 200 that the power receiving device 200 is in a position where it can be charged, the voltage control unit 101c may apply a predetermined voltage for charging the power receiving coil 207 of the power receiving device 200 to the power transmitting coil 107. Note that the predetermined voltage required to start the control unit 201 and the predetermined voltage for charging the power receiving coil 207 of the power receiving device 200 may be voltages of the same magnitude or may be voltages of different magnitudes.
5.受電装置200の位置情報検知のフロー
 次に、図7を用いて、受電装置200の位置情報検知のフローについて説明する。図7は、実施の形態1に係る位置検知装置の動作を示すフロー図である。なお、以下のフローに関しては、記憶部104に記憶される位置検知プログラムを使って制御部101が実行する処理のフローと考えてよい。また、以下の説明は、図4のように電気情報として送電コイル107の電流を検知する場合について説明するが、当然、送電電力あるいは送電力率に置き換えてもよい。
5. Flow of detecting position information of the power receiving device 200 Next, a flow of detecting position information of the power receiving device 200 will be described with reference to Fig. 7. Fig. 7 is a flow diagram showing the operation of the position detection device according to the first embodiment. Note that the following flow may be considered as a flow of processing executed by the control unit 101 using a position detection program stored in the storage unit 104. In addition, the following description will be given of a case where the current of the power transmitting coil 107 is detected as electrical information as in Fig. 4, but it may of course be replaced with the transmitted power or the transmitted power rate.
 図7において、まず、電圧制御部101cによって、送電コイル107に低電圧(例えば10V)の電圧を印加する(St1)。次に、電気情報検知部101aが、送電コイル107の電流を検知する(St2)。そして、位置検知部101bが、検知した電流が閾値よりも小さいか否かを判断する。検知した電流が閾値よりも小さい場合(St3、YES)、「受電装置200が充電可能である位置に存在する」と検知したこととなる(St4)。その場合、電圧制御部101cによって送電コイル107に印加する電圧を上昇させる。その結果、受電装置200の制御部201がオンとなる(St5)。そして、送電装置100から受電装置200への給電が開始し、位置検知のフローは終了する。 In FIG. 7, first, the voltage control unit 101c applies a low voltage (e.g., 10V) to the power transmission coil 107 (St1). Next, the electrical information detection unit 101a detects the current in the power transmission coil 107 (St2). Then, the position detection unit 101b judges whether the detected current is smaller than the threshold value. If the detected current is smaller than the threshold value (St3, YES), it is determined that "the power receiving device 200 is in a position where charging is possible" (St4). In this case, the voltage control unit 101c increases the voltage applied to the power transmission coil 107. As a result, the control unit 201 of the power receiving device 200 is turned on (St5). Then, power supply from the power transmission device 100 to the power receiving device 200 starts, and the position detection flow ends.
 一方、位置検知部101bが、検知した電流が閾値以上の場合(St3、NO)、「受電装置200が充電可能である位置に存在していない」と検知したこととなる(St6)。その場合、電圧制御部101cによって送電コイル107に印加する電圧を停止する(St7)。 On the other hand, if the detected current is equal to or greater than the threshold (St3, NO), the position detection unit 101b detects that the power receiving device 200 is not in a position where charging is possible (St6). In this case, the voltage control unit 101c stops applying voltage to the power transmission coil 107 (St7).
 以上により、本実施の形態に係る位置検知装置100aは、受電コイル207を有する受電装置200に対し、無線で電力の伝送を行う送電コイル107を有する送電装置100に対する受電装置200の位置情報を検知する。位置検知装置100aは、送電装置100の電気情報を検知する電気情報検知部101aと、電気情報に基づいて受電装置200の位置情報を検知する位置検知部101bと、を備える。これにより、位置検知装置100aあるいは送電装置100は、海中においても、送電装置100と受電装置200が近接しているかどうかを検知することができる。 As described above, the position detection device 100a according to this embodiment detects the position information of the power receiving device 200 relative to the power transmitting device 100 having the power transmitting coil 107 that transmits power wirelessly to the power receiving device 200 having the power receiving coil 207. The position detection device 100a includes an electrical information detection unit 101a that detects electrical information of the power transmitting device 100, and a position detection unit 101b that detects the position information of the power receiving device 200 based on the electrical information. As a result, the position detection device 100a or the power transmitting device 100 can detect whether the power transmitting device 100 and the power receiving device 200 are in close proximity even underwater.
 また、本実施の形態に係る位置検知装置100aにおいて、送電装置100の電気情報は、送電装置100が有する送電コイル107の電気情報である。これにより、位置検知装置100aあるいは送電装置100は、海中においても、送電装置100と受電装置200が近接しているかどうかをより高い精度で検知することができる。 Furthermore, in the position detection device 100a according to this embodiment, the electrical information of the power transmission device 100 is electrical information of the power transmission coil 107 of the power transmission device 100. This allows the position detection device 100a or the power transmission device 100 to detect with higher accuracy whether the power transmission device 100 and the power receiving device 200 are in close proximity, even underwater.
 また、本実施の形態に係る位置検知装置100aにおいて、送電装置100の電気情報は、送電装置100の送電電流、送電電圧、送電電力、あるいは送電力率である。なお、送電装置100が有する送電コイル107の送電電流、送電電圧、送電電力、あるいは送電力率でもよい。これにより、位置検知装置100aあるいは送電装置100は、海中においても、送電装置100と受電装置200が近接しているかどうかをより高い精度で検知することができる。 In addition, in the position detection device 100a according to this embodiment, the electrical information of the power transmission device 100 is the power transmission current, power transmission voltage, power transmission, or power transmission rate of the power transmission device 100. It may also be the power transmission current, power transmission voltage, power transmission, or power transmission rate of the power transmission coil 107 of the power transmission device 100. This allows the position detection device 100a or the power transmission device 100 to detect with higher accuracy whether the power transmission device 100 and the power receiving device 200 are in close proximity, even underwater.
 また、本実施の形態に係る受電装置200は充電可能な蓄電池208を有し、位置検知装置100aにおいて、位置検知部101bは、受電装置200が充電可能である位置に存在するか否かを検知する。これにより、位置検知装置100aあるいは送電装置100は、海中においても、送電装置100と受電装置200が近接しているかどうかをより高い精度で検知することができる。 Furthermore, the power receiving device 200 according to this embodiment has a rechargeable storage battery 208, and in the position detection device 100a, the position detection unit 101b detects whether the power receiving device 200 is in a position where it can be charged. This allows the position detection device 100a or the power transmitting device 100 to detect with higher accuracy whether the power transmitting device 100 and the power receiving device 200 are in close proximity, even underwater.
 また、本実施の形態に係る位置検知装置100aにおいて、位置検知部101bは、送電装置100が備える通信部102と接続し、位置検知部101bが受電装置200の位置を検知しない場合、通信部102を介して受電装置200にアラート情報を送信する。これによって、位置検知装置100aあるいは送電装置100は、受電装置200に充電が必要であるときに、効率的に充電を促すことができる。 In addition, in the position detection device 100a according to this embodiment, the position detection unit 101b is connected to the communication unit 102 included in the power transmission device 100, and when the position detection unit 101b does not detect the position of the power receiving device 200, it transmits alert information to the power receiving device 200 via the communication unit 102. This allows the position detection device 100a or the power transmission device 100 to efficiently prompt the power receiving device 200 to charge when charging is required.
 また、本実施の形態に係る位置検知装置100aにおいて、位置検知部101bは、送電装置100が備える通信部102と接続し、位置検知部101bは、通信部102を介して、電波により通信を行う。これにより、位置検知装置100aあるいは送電装置100は、効率的な通信をすることができる。 In addition, in the position detection device 100a according to this embodiment, the position detection unit 101b is connected to the communication unit 102 provided in the power transmission device 100, and the position detection unit 101b communicates by radio waves via the communication unit 102. This allows the position detection device 100a or the power transmission device 100 to communicate efficiently.
 また、本実施の形態に係る位置検知装置100aにおいて、位置検知部101bは、送電装置100が備える通信部102と接続し、通信部102の通信領域は、送電装置100が給電可能な給電領域よりも大きい。これにより、位置検知装置100aあるいは送電装置100は、効率的な通信をすることができる。 In addition, in the position detection device 100a according to this embodiment, the position detection unit 101b is connected to the communication unit 102 provided in the power transmission device 100, and the communication area of the communication unit 102 is larger than the power supply area to which the power transmission device 100 can supply power. This allows the position detection device 100a or the power transmission device 100 to communicate efficiently.
 また、本実施の形態に係る位置検知装置100aにおいて、位置検知部101bは、送電コイル107に対する受電コイル207の相対的な位置を検知する。これにより、位置検知装置100aあるいは送電装置100は、海中においても、送電装置100と受電装置200が近接しているかどうかをより高い精度で検知することができる。 Furthermore, in the position detection device 100a according to this embodiment, the position detection unit 101b detects the relative position of the power receiving coil 207 with respect to the power transmitting coil 107. This allows the position detection device 100a or the power transmitting device 100 to detect with higher accuracy whether the power transmitting device 100 and the power receiving device 200 are in close proximity to each other even underwater.
 また、本実施の形態に係る送電装置100は、位置検知装置100aと、送電コイル107に印加する電圧を制御する電圧制御部101cと、を備える。位置検知装置100aが、位置検知部101bが検出した受電装置200の位置情報から、受電装置200が備える充電可能な蓄電池208の充電可能である位置に存在すると検知した場合、電圧制御部101cは、受電装置200が有する制御部201を起動させるために所定の第1電圧(例えば位置検知の電圧以上第2電圧未満の電圧)を送電コイル107に印加する。これにより、位置検知装置100aあるいは送電装置100は、海中においても、送電装置100と受電装置200が近接しているかどうかを検知できた上で、充電の準備をすることができる。 The power transmission device 100 according to this embodiment also includes a position detection device 100a and a voltage control unit 101c that controls the voltage applied to the power transmission coil 107. When the position detection device 100a detects from the position information of the power receiving device 200 detected by the position detection unit 101b that the power receiving device 200 is in a position where the rechargeable storage battery 208 of the power receiving device 200 can be charged, the voltage control unit 101c applies a predetermined first voltage (for example, a voltage equal to or greater than the position detection voltage and less than the second voltage) to the power transmission coil 107 to activate the control unit 201 of the power receiving device 200. As a result, the position detection device 100a or the power transmission device 100 can detect whether the power transmission device 100 and the power receiving device 200 are close to each other even underwater, and can prepare for charging.
 また、本実施の形態に係る送電装置100において、位置検知装置100aが、位置検知部101bが検出した受電装置200の位置情報から、受電装置200が蓄電池208の充電可能である位置に存在すると検知した場合、電圧制御部101cは、受電装置200の受電コイル207に充電するための第1電圧よりも大きい所定の第2電圧(例えば100V以上)を送電コイル107に印加する。これにより、位置検知装置100aあるいは送電装置100は、海中においても、送電装置100と受電装置200が近接しているかどうかを検知できた上で、充電をすることができる。 In addition, in the power transmission device 100 according to this embodiment, when the position detection device 100a detects, from the position information of the power receiving device 200 detected by the position detection unit 101b, that the power receiving device 200 is in a position where the storage battery 208 can be charged, the voltage control unit 101c applies a predetermined second voltage (e.g., 100V or more) to the power transmission coil 107 that is greater than the first voltage for charging the power receiving coil 207 of the power receiving device 200. As a result, the position detection device 100a or the power transmission device 100 can detect whether the power transmission device 100 and the power receiving device 200 are in close proximity to each other even underwater, and can then perform charging.
 また、位置検知方法は、受電コイル207を有する受電装置200に対し、無線で電力の伝送を行う送電コイル107を有する送電装置100に対する受電装置200の位置情報を検知する位置検知方法であって、送電装置100の電気情報を検知し、電気情報に基づいて、受電装置200の位置情報を検知する。これにより、位置検知装置100aあるいは送電装置100は、海中においても、送電装置100と受電装置200が近接しているかどうかを検知することができる。 The position detection method detects the position information of the power receiving device 200 relative to the power transmitting device 100 having a power transmitting coil 107 that transmits power wirelessly to the power receiving device 200 having a power receiving coil 207, and detects electrical information of the power transmitting device 100 and detects the position information of the power receiving device 200 based on the electrical information. This allows the position detection device 100a or the power transmitting device 100 to detect whether the power transmitting device 100 and the power receiving device 200 are in close proximity even underwater.
 位置検知プログラムは、受電コイル207を有する受電装置200に対し、無線で電力の伝送を行う送電コイル107を有する送電装置100に対する受電装置200の位置情報を検知する位置検知装置100aであって、送電装置100の電気情報を検知し、電気情報に基づいて、受電装置200の位置情報を検知することをコンピュータに実行させる。これにより、位置検知装置100aあるいは送電装置100は、海中においても、送電装置100と受電装置200が近接しているかどうかを検知することができる。 The position detection program causes a computer to execute a position detection device 100a that detects position information of the power receiving device 200 relative to the power transmitting device 100 having a power transmitting coil 107 that wirelessly transmits power to the power receiving device 200 having a power receiving coil 207, detects electrical information of the power transmitting device 100, and detects the position information of the power receiving device 200 based on the electrical information. As a result, the position detection device 100a or the power transmitting device 100 can detect whether the power transmitting device 100 and the power receiving device 200 are in close proximity even underwater.
 以上、添付図面を参照しながら実施の形態について説明したが、本開示はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例、修正例、置換例、付加例、削除例、均等例に想到し得ることは明らかであり、それらについても本開示の技術的範囲に属すると了解される。また、発明の趣旨を逸脱しない範囲において、上述した実施の形態における各構成要素を任意に組み合わせてもよい。  Although the embodiments have been described above with reference to the attached drawings, the present disclosure is not limited to such examples. It is clear that a person skilled in the art can conceive of various modifications, amendments, substitutions, additions, deletions, and equivalents within the scope of the claims, and it is understood that these also fall within the technical scope of the present disclosure. Furthermore, the components in the above-described embodiments may be combined in any manner as long as it does not deviate from the spirit of the invention.
 なお、本出願は、2023年2月8日出願の日本特許出願(特願2023-017868)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Patent Application No. 2023-017868) filed on February 8, 2023, the contents of which are incorporated by reference into this application.
 本開示の技術は、海中においても、送電装置と受電装置が近接しているかどうかを検知することができる。 The technology disclosed herein can detect whether a power transmitting device and a power receiving device are in close proximity, even underwater.
50 船舶
70 水中航走体
100 送電装置
101 制御部
101a 電気情報検知部
101b 位置検知部
101c 電圧制御部
102 通信部
103 アンテナ
104 記憶部
105 高周波電源
106 整合回路
107 送電コイル
200 受電装置
201 制御部
202 通信部
203 アンテナ
204 センサ
205 整流器
206 整合回路
207 受電コイル
208 蓄電池
1000 水中給電システム
CLA11 送電コイル
CLB 受電コイル
CLC11 中継コイル
50 Ship 70 Underwater vehicle 100 Power transmitting device 101 Control unit 101a Electrical information detection unit 101b Position detection unit 101c Voltage control unit 102 Communication unit 103 Antenna 104 Memory unit 105 High frequency power source 106 Matching circuit 107 Power transmitting coil 200 Power receiving device 201 Control unit 202 Communication unit 203 Antenna 204 Sensor 205 Rectifier 206 Matching circuit 207 Power receiving coil 208 Storage battery 1000 Underwater power supply system CLA11 Power transmitting coil CLB Power receiving coil CLC11 Relay coil

Claims (12)

  1.  受電コイルを有する受電装置に無線で電力伝送を行う送電コイルを有する送電装置に対する前記受電装置の位置情報を検知する位置検知装置であって、
     前記送電装置の電気情報を検知する電気情報検知部と、
     前記電気情報に基づいて、前記受電装置の位置情報を検知する位置検知部と、を備える、
     位置検知装置。
    A position detection device that detects position information of a power receiving device with respect to a power transmitting device having a power receiving coil that wirelessly transmits power to the power receiving device,
    an electrical information detection unit that detects electrical information of the power transmitting device;
    A position detection unit that detects position information of the power receiving device based on the electrical information.
    Position sensing device.
  2.  前記送電装置の電気情報は、前記送電装置が有する前記送電コイルの電気情報である、
     請求項1に記載の位置検知装置。
    The electrical information of the power transmitting device is electrical information of the power transmitting coil of the power transmitting device.
    The position sensing device according to claim 1 .
  3.  前記送電装置の電気情報は、前記送電装置の送電電流、送電電圧、送電電力、あるいは送電力率である、
     請求項1または2に記載の位置検知装置。
    The electrical information of the power transmitting device is a transmission current, a transmission voltage, a transmission power, or a transmission power rate of the power transmitting device.
    3. A position detection device according to claim 1 or 2.
  4.  前記受電装置は、充電可能な蓄電池を有し、
     前記位置検知部は、前記受電装置が前記蓄電池の充電可能である位置に存在するか否かを検知する、
     請求項1または2に記載の位置検知装置。
    The power receiving device has a rechargeable storage battery,
    The position detection unit detects whether the power receiving device is located at a position where the storage battery can be charged.
    3. A position detection device according to claim 1 or 2.
  5.  前記位置検知部は、前記送電装置が備える通信部と接続し、
     前記位置検知部は、前記受電装置の位置を検知しない場合、前記通信部を介して前記受電装置にアラート情報を送信する、
     請求項1または2に記載の位置検知装置。
    The position detection unit is connected to a communication unit included in the power transmission device,
    When the position detection unit does not detect the position of the power receiving device, the position detection unit transmits alert information to the power receiving device via the communication unit.
    3. A position detection device according to claim 1 or 2.
  6.  前記位置検知部は、前記送電装置が備える通信部と接続し、
     前記位置検知部は、前記通信部を介して電波により通信を行う、
     請求項1または2に記載の位置検知装置。
    The position detection unit is connected to a communication unit included in the power transmission device,
    The position detection unit communicates by radio waves via the communication unit.
    3. A position detection device according to claim 1 or 2.
  7.  前記位置検知部は、前記送電装置が備える通信部と接続し、
     前記通信部の通信領域は、前記送電装置が給電可能な給電領域よりも大きい、
     請求項1または2に記載の位置検知装置。
    The position detection unit is connected to a communication unit included in the power transmission device,
    A communication area of the communication unit is larger than a power supply area in which the power transmitting device can supply power.
    3. A position detection device according to claim 1 or 2.
  8.  前記位置検知部は、前記送電コイルに対する前記受電コイルの相対的な位置を検知する、
     請求項1または2に記載の位置検知装置。
    The position detection unit detects a relative position of the power receiving coil with respect to the power transmitting coil.
    3. A position detection device according to claim 1 or 2.
  9.  請求項1に記載の位置検知装置と、
     前記送電コイルに印加する電圧を制御する電圧制御部と、を備え、
     前記位置検知装置が、前記位置検知部が検知した前記受電装置の位置情報から、前記受電装置が備える充電可能な蓄電池の充電可能である位置に存在すると検知した場合、前記電圧制御部は、前記受電装置が有する充電制御回路を起動させるために所定の第1電圧を前記送電コイルに印加する、
     送電装置。
    A position detection device according to claim 1 ;
    A voltage control unit that controls a voltage applied to the power transmitting coil,
    When the position detection device detects, based on the position information of the power receiving device detected by the position detection unit, that the power receiving device is located at a position where a rechargeable storage battery included in the power receiving device can be charged, the voltage control unit applies a predetermined first voltage to the power transmitting coil to activate a charge control circuit included in the power receiving device.
    Power transmission equipment.
  10.  前記位置検知装置が、前記位置検知部が検知した前記受電装置の位置情報から、前記受電装置が前記蓄電池の充電可能である位置に存在すると検知した場合、前記電圧制御部は、前記受電装置の前記受電コイルに充電するための前記第1電圧よりも大きい所定の第2電圧を前記送電コイルに印加する、
     請求項9に記載の送電装置。
    When the position detection device detects, from the position information of the power receiving device detected by the position detection unit, that the power receiving device is located at a position where the storage battery can be charged, the voltage control unit applies a predetermined second voltage to the power transmitting coil, the second voltage being higher than the first voltage for charging the power receiving coil of the power receiving device.
    The power transmitting device according to claim 9 .
  11.  受電コイルを有する受電装置に対し、無線で電力伝送を行う送電コイルを有する送電装置に対する前記受電装置の位置情報を検知する位置検知方法であって、
     送電装置の電気情報を検知し、
     前記電気情報に基づいて、前記受電装置の位置情報を検知する、
     位置検知方法。
    A position detection method for detecting position information of a power receiving device with a power transmitting coil that wirelessly transmits power to a power receiving device, the method comprising:
    Detecting electrical information of the power transmitting device;
    Detecting location information of the power receiving device based on the electrical information.
    Position sensing method.
  12.  受電コイルを有する受電装置に対し、無線で電力伝送を行う送電コイルを有する送電装置に対する前記受電装置の位置情報を検知する位置検知方法であって、
     送電装置の電気情報を検知し、
     前記電気情報に基づいて、前記受電装置の位置情報を検知する、
     ことをコンピュータに実行させる、
     位置検知プログラム。
    A position detection method for detecting position information of a power receiving device with a power transmitting coil that wirelessly transmits power to a power receiving device, the method comprising:
    Detecting electrical information of the power transmitting device;
    Detecting location information of the power receiving device based on the electrical information.
    Make the computer do that,
    Location detection program.
PCT/JP2024/003734 2023-02-08 2024-02-05 Position detection device, electric power transmitting device, position detection method, and position detection program WO2024166871A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023017868A JP2024112665A (en) 2023-02-08 2023-02-08 Position detection device, power transmission device, position detection method, and position detection program
JP2023-017868 2023-02-08

Publications (1)

Publication Number Publication Date
WO2024166871A1 true WO2024166871A1 (en) 2024-08-15

Family

ID=92262714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/003734 WO2024166871A1 (en) 2023-02-08 2024-02-05 Position detection device, electric power transmitting device, position detection method, and position detection program

Country Status (2)

Country Link
JP (1) JP2024112665A (en)
WO (1) WO2024166871A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205749A (en) * 2010-03-24 2011-10-13 Toshiba Corp Determination device
JP2013172506A (en) * 2012-02-20 2013-09-02 Sumitomo Electric Ind Ltd Non-contact power supply system, non-contact power supply unit, non-contact power receiving unit and non-contact power supply method
WO2015114796A1 (en) * 2014-01-31 2015-08-06 日産自動車株式会社 Wireless power supply system and power transmission device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205749A (en) * 2010-03-24 2011-10-13 Toshiba Corp Determination device
JP2013172506A (en) * 2012-02-20 2013-09-02 Sumitomo Electric Ind Ltd Non-contact power supply system, non-contact power supply unit, non-contact power receiving unit and non-contact power supply method
WO2015114796A1 (en) * 2014-01-31 2015-08-06 日産自動車株式会社 Wireless power supply system and power transmission device

Also Published As

Publication number Publication date
JP2024112665A (en) 2024-08-21

Similar Documents

Publication Publication Date Title
US11273913B2 (en) Systems and methods of electrically powering devices
JP6531942B2 (en) Power transmission device
JP7222035B2 (en) transmission equipment
CN113794289A (en) System, apparatus, and method for optimizing wireless charging alignment
US10862341B2 (en) Electric power transmission device
JP2018191474A (en) Power transmission apparatus
EP2659496B1 (en) Device for transfer of electrical signals and/or electrical energy
WO2018180355A1 (en) Transmission coil and power transmission apparatus
US20210305846A1 (en) Power receiving device, power transmitting device, and underwater power supply system
CN114449468B (en) Deep sea monitoring sensor and non-contact power supply and information transmission system
KR20180060783A (en) Method and System for Wireless Power Transmission using Drone
WO2024166871A1 (en) Position detection device, electric power transmitting device, position detection method, and position detection program
Krestovnikov et al. Approach to choose of optimal number of turns in planar spiral coils for systems of wireless power transmission
JP6842885B2 (en) Wireless power supply device and wireless power supply method
JP2021114833A (en) Underwater non-contact power supply device
JP7152947B2 (en) charging system
Haibing et al. Comparison of two electromagnetic couplers in an inductive power transfer system for autonomous underwater vehicle docking application
WO2015129247A1 (en) Wireless power-feeding device, wireless power-feeding system, and wireless power-feeding method
JP6497813B2 (en) Underwater contactless power feeder
RU2744064C1 (en) Device for contactless transmission of electricity and information signals to an underwater vehicle
JP6760806B2 (en) Wireless power supply
US9923418B2 (en) Wireless power transfer for process control
JP2022086556A (en) Power receiving device and power control method
JP6195064B2 (en) Non-contact power / signal transmission system
US20230402875A1 (en) Underwater power supply system and power-receiving device